Investigating the Induction and Purification of OGG1 Protein and Its Role in DNA-Protein Cross-Linking
Thuy Duong Nguyen-Tran, Ifeanyi Anwah, and Dr. Colin Campbell
University of Minnesota-Twin Cities

Background of DNA-Protein Cross-Linking
DNA-protein cross-links (DPC's) occur when a protein reacts with a DNA strand. DPC's can lead to cell death if it is not repaired due to its potential to interfere with cellular processes such as DNA replication and transcription because it causes a bulky distortion in the DNA double helix. Various chemical agents, such as 1,2,3,4-tetrachloroethylene (TCE), are known to induce DPC's because of their alkylating functions. When uncontrollably created in cells, DPC's have a harmful effect, but they can have a therapeutic function if they are specifically induced in cells and controlled. Thus, with its potential lethality to cells, DPC's have been studied as a possible cancer treatment by trying to target its production specifically induced in cells and controlling. Thus, with its effect, but they can have a therapeutic function if they are known to induce DPC's because of their alkylating functions.

Approach to Create and Observe DPC's

Insertion of OG Oligonucleotide in pDONR Plasmid
OG oligonucleotide + pDONR plasmid

Creation of DPC via Cross-Linking Reaction
OGG1 protein + pDONR plasmid with OG oligonucleotide

Transfect Plasmid with DPC into Mammalian Cells and Observe Effects of DPC

OGG1 Protein
Encoded by the OGG1 gene, this protein is involved in base excision repair. The OGG1 protein contains a hexahistidine tag that allows for its selection using nickel agarose affinity chromatography (Ni-NTA).

OG Oligonucleotide Duplex
This 158 base pair oligonucleotide duplex contains an 8-oxoguanine residue site for cross-linking. The oligonucleotide duplex was created by annealing and ligating six oligonucleotides and was then purified using a 6% polyacrylamide gel.

Cross-Linking of OG and OGG1
The above image depicts the mechanism of the reaction between OGG1 and the OG site of DNA in which a DPC is formed using a borohydride compound.

Optimizing OGG1 Recovery
To maximize the recovery of OGG1 protein, different dialysis and freezing methods were used:

1. **Immediate Dialysis and -80°F Freezing**
 a) Immediately dialed into 250 mM NaCl, 10% glycerol, 10 mM Tris-HCl overnight
 b) Stored at -80°F
 c) Result: Low protein yield because the low freezing temperature affected protein stability

2. **Delayed Dialysis and -20°F Freezing**
 a) Stored in 50% glycerol at -20°F
 b) Dialyzed into 50 mM NaCl, 20 mM Tris-HCl, and 1 mM EDTA overnight the day before using protein for cross-linking reaction
 c) Result: High protein yield after freezing, but protein precipitated out during dialysis

3. **Shorter Dialysis Time and -20°F Freezing**
 a) Stored in 50% glycerol at -20°F
 b) Dialyzed into 50 mM NaCl, 20 mM Tris-HCl, and 1 mM EDTA for 3 hours before using protein for cross-linking reaction
 c) Result: High protein yield after freezing and dialysis with no precipitate

Induction and Purification of OGG1

OGG1 Recovery

By immediately dialyzing and storing the recovered OGG1 protein at -80°F, there was a significant loss of protein as shown by comparing the highlighted bands in lanes 7 and 8. However, cross-linking occurred at a higher rate using NaBH4, with approximately 1/3 of the OG successfully cross-linking with OGG1.

Next Steps
Expression and purification of OGG1 were achieved at satisfactory efficacy and purity by using a shorter dialysis time and -20°F storage temperature because these conditions allowed for better maintenance of protein stability. Furthermore, the cross-linking of OGG1 to OG was achieved at satisfactory levels using NaBH4.

The next steps are to insert OG into the pDONR and cross-linking OGG1 to OG using the aforementioned procedure. The plasmid will then be transfected into mammalian cells to observe the effects of DPC's.

References

