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Abstract

Cognitive maps were proposed as an alternative to stimulus-response explanations of animal
behavior. Although the concept of cognitive maps advanced treatments of complex animal
behavior, it has remained resistant to theoretical definition. A simplified perspective on
cognitive maps that focused on spatial behavior and the construction of spatial maps has
provided an important approach to understanding the role of the hippocampus in spatial
behavior and spatially modulated neural activity, particularly within the hippocampus.
However, this perspective leaves open many questions on how spatial maps and neural
activities within the hippocampus are used and how they contribute to selection of adaptive
actions.

A reinforcement learning approach to animal behavior was used to develop a theory of
cognitive map function. Reinforcement learning provides a theoretical framework within
which the components of cognitive map function can be readily defined and explored. This
approach addresses long-standing criticisms of cognitive map theory by explicit mapping
of stimuli to action via specific, albeit behaviorally unobservable, computations. Flexible
behavior associated with cognitive maps implies the use of transition models in reinforce-
ment learning algorithms. In contrast to model-free algorithms that depend on current
experience only, model-based reinforcement algorithms represent sensory or state informa-
tion beyond the modeled animal’s current sensory experience. As a result, model-based
reinforcement learning provides a principled approach to analysis of neural representations
and the dynamic processes that support cognition.

Neurophysiological recordings in the hippocampus showed that apparent noise present in
spatially modulated place cell activity could be explained as coherent spatial representations
that deviated from the animal’s position on the maze. These non-local representations were
associated with fast spatial representation dynamics and were typically found when the
animal was at feeder locations or choice points. Non-local representations at choice points

shifted forward of the animal to potential future spatial positions and were associated with

v



theta and gamma local field potential activity. Forward-shifted spatial representations were
associated with vicarious-trial-and-error behaviors and were task and experience dependent.
In sum, these results suggest how cognitive maps in the hippocampus can contribute to
selection of adaptive actions through the construction of past events and potential future

experiences.
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List of Figures

1.1 Basic circuitry of the hippocampus. Superficial layers of the entorhinal cortex
project to hippocampus; layer II projects to dentate gyrus and CA3 while
layer III directly projects to CAl. Dentate gyrus projects to CA3. CA3
contains a dense set of recurrent connections (not shown), projects to the
contralateral CA3 and CA1 via the anterior commissure, and projects to
CA1. CA1 projects to subiculum and deep layers of entorhinal cortex (after
Neves et al., 2008). . . . . . . . ..
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1.2 A graphical comparison of instrumental and Pavlovian conditioning and spa-
tial learning. Balleine and colleagues have described goal directed behavior
as sensitive to both outcome devaluation and contingency degradation. A
Basic instrumental conditioning can be described as an action-outcome asso-
ciation. Animals display sensitivity to outcome devaluation only during early
training (Adams and Dickinson, 1981; Balleine and Dickinson, 1998) and de-
veloping devaluation insensitivity is dependent on the dorsolateral striatum
(Yin et al., 2004, 2006). B Multiple action-outcome paradigms have been
used to assess the dependence of action-outcome contingencies for behavior.
Action-outcome associations are dependent on prelimbic mPFC (Corbit and
Balleine, 2003a) and the entorhinal cortex (Corbit et al., 2002). These tasks
are dependent on context (shown as an open box). C More recently Balleine
has shown that multi-action-outcome associations are dependent on medial
agranular premotor cortex (unpublished observations). Note that Balleine’s
goal directed behavior is independent of stimulus information. D Pavlovian
conditioning is described as stimulus dependent behavior wherein the uncon-
ditioned response to an outcome is associated with a conditioned stimulus s.
E Pavlovian decision tasks are dependent on the basolateral amygdala and
orbitofrontal cortex (Schoenbaum et al., 1998; Pickens et al., 2003; Ostlund
and Balleine, 2007). F Spatial learning involves multi-step interaction of both
stimulus and action -based processing. This is similar to causal texture of

the environment proposed by Tolman and Brunswik (1935). . .. ... ..



1.3 Hierarchical approaches to Bayes’ rule for cognitive research (after Tenen-

2.1

baum et al., 2006). The left column shows the basic structure for hierarchi-
cal Bayesian analysis. Observations are interpreted based on an inferential
hierarchy. At the lowest level of this hierarchy are structured probabilis-
tic models that are explicit hypotheses on the distribution of observations.
Higher levels allow comparison of multiple probabilistic models relative to
data and abstract domain principles. And these hierarchies can be further
extended to include higher order theoretical principles. The central column
shows how hierarchical Bayesian analysis has been used for taxonomic infer-
ence for pictures by Tenenbaum and Xu (2000). Within this example, low
hierarchical levels are used for analyzing picture contrast and higher hierar-
chical levels are used for category and word selection (taxonomy). The right
column shows an interpretation of Tolman’s ideas on cognitive inference us-
ing a hierarchical Bayesian approach. Tolman argued that animals learn the
causal texture of the environment and led to the formation of cognitive maps
and higher order cognitive structure (Tolman and Brunswik, 1935; Tolman,
1948, 1949). Hierarchical Bayesian approaches explicitly suggest how cogni-
tive maps fundamentally alter an animal’s perception of its environment, its
remembrance of prior experience and, consequently, its inference (Tolman,

1949). . .

A sketch of the state-space defined by Zilli and Hasselmo (2008) for location,
working memory and episodic memory. Zilli and Hasselmo’s definition iden-
tifies Sg, € [SL X Swum| € [SL X Swam X Sgp|. Because only actions within
the St space are rewarded, the set of state trajectories defined by an optimal
policy are increasingly biased against working memory and episodic memory
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Summary of the multiple-T task and model. The task consisted of a sequence
of four T choices with reward available on one arm of the final T. The model
used radial basis functions to compute the state-action value Q(s,a) over a
continuous state, discrete action space. Each action was selected using soft-
maz. A: One example track as used in the model. B: Place fields represent
state through a distributed encoding. x indicates the position of the animal,
active units are shown. D: State (B) and one of the eight possible actions
(C) were each associated with a value function Q(s,a;). Figure used with
permission (Johnson and Redish, 2005a). . . ... ... ... ... .. ...
Comparison of learning in TDRL models with and without developing replay-
based practice. A: Both models show a decrease in the number of steps to
complete each lap. The number of steps required to achieve the optimal path
depended on the configuration of the maze, but was approximately 200 steps.
B: The model with replay typically acquires more reward than the standard
model. For agents that completed a lap, chance would be 50%, however,
because agents were removed after 2000 steps, chance is actually much lower
than 50%. Figure used with permission (Johnson and Redish, 2005a).

Comparison of TDRL models with and without developing replay-based prac-
tice over twenty-four sessions. A: The model with replay shows a faster de-
crease in the number of errors per lap than the standard model. B: The
model with replay shows a slower onset of path stereotypy than the standard
model. Figure used with permission (Johnson and Redish, 2005a). . . . . .
Replay developed over the course of the session. Replay strength was mea-
sured as the length of the replayed sequence. Plotted are the proportion of
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proceed robustly, thus producing longer replays. Figure used with permission
(Johnson and Redish, 2005a). . . . ... ... ... ... ..
Sharp wave emission develops across experience in a multipleT task. Sharp
waves were detected using standard methods (see Jackson et al., 2006 for
details). Note that increased sharp wave emission in CA3 leads increased
sharp wave emission in CAl. Figure used with permission (Jackson et al.,
2000). .
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Chapter 1

Cognition and cognitive maps

1.1 Problem statement

The basic question of this thesis is how animals construct, evaluate and implement plans.
To make this question more tractable it has been approached within the context of navi-
gation, cognitive maps and hippocampal place cells. Animal beha