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Abstract

The objective of this dissertation is the development and implementation of multiple

time scale stochastic models necessary for analysis, design and construction of novel

synthetic biological systems, such as gene networks.

At the dawn of the 21st century, scientists and engineers turned into engineering

new biological systems. Synthetic biology emerged as a distinct discipline, combining

biology and engineering towards the design and construction of new biological parts,

devices and systems with useful applications. This ambitious endeavor would not have

been possible, were it not for the recent, impressive discoveries in biology and the equally

remarkable advances in biotechnology. Indeed, we can now literally ”cut” and ”paste”

DNA at will.

The impact in everyday life may be significant, with wide-ranging applications: from

medicine, where gene regulatory networks can be used for gene therapy applications, to

the production of biopolymers, to the removal of environmental pollutants, and to clean

energy alternatives.

Even though wet lab experiments have provided ample proof of concept, the chal-

lenge facing the scientific and engineering communities is how to rationally design novel

biological systems. An answer lies with mathematical models and sophisticated algo-

rithms. It is the same philosophy used to design many of the modern marvels of tech-

nology, such as airplanes. Analogously, sophisticated computer-aided design (CAD)

algorithms, alongside with a minimal number of experiments, could be the standard

in constructing novel biological systems, devices, even entire organisms, alleviating the

need for expensive trial and error approaches.
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There are primarily three types of challenges in developing new CAD tools for syn-

thetic biological systems, such as gene networks. First, the number of molecular com-

ponents in biological systems is overwhelming. Second, all living microorganisms are

impacted by thermal noise and on occasion behave randomly. Third, the time scales at

which many of the biological phenomena occur can differ by many orders of magnitude,

resulting in stiff mathematical descriptions.

The aim of this thesis is the CAD of synthetic gene networks addressing these chal-

lenges. For that to be accomplished an important step is the development of multiple

time scale methods for the efficient and accurate integration of stiff chemical Langevin

equations. These describe the dynamics of many biological systems. Methods devel-

oped also include the description of noise through classical mathematical descriptions

instead of the more demanding stochastic formulation. Algorithms developed as part of

this dissertation are incorporated into CAD software tools built by our group. In the

last part of this dissertation we discuss how such tools are employed for CAD of novel

synthetic gene networks.
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Chapter 1

Introduction

During the 20th century scientists unveiled many of the secrets of the biological world by

studying the cell and its functions, identifying key molecules and molecular structures

within cells, and most importantly discovering DNA. The pace of discoveries appears

ever increasing in biology. Powerful technologies have been developed that probe bio-

logical systems, from molecules to cells to tissues to organisms. With all this gained

knowledge, at the dawn of the 21st century, scientists and engineers turned into engineer-

ing new biological systems. Synthetic biology emerged as a distinct discipline combining

biology and engineering. With synthetic biology scientists set their goals higher, than

previous genetic engineering goals, constructing biological systems, devices, even entire

organisms.

The promise of synthetic biology is the design and construction of biological factories,

cells that will perform specific tasks or generate products similar to modern factories.

The idea is analogous to programming robots to carry out certain tasks, but instead of

dealing with electrical circuits it would require reprogramming the cell’s DNA; introduc-

ing new or modifying existing gene circuits (i.e. DNA segments). The objective is not

just to utilize existing cell functions to our benefit, such as the biodegradation of treated

wastes for methane production, but also create new ones, which cells normally would

not perform. The realization of such an undertaking will impact significantly everyday

life, with wide-ranging applications: from medicine, where gene regulatory networks can

be used for gene therapy purposes, to the production of biopolymers, to the removal

of environmental pollutants, and to clean energy alternatives where microbes can be

1



engineered to produce hydrogen from sunlight and water. A number of synthetic gene

constructs has been proposed and implemented in vivo. Notable examples are bistable

switches, oscillators, and logic gates. Several of these synthetic constructs have been

applied towards useful applications.

Even though wet lab experiments have provided ample proof of concept, the chal-

lenge facing the scientific and engineering communities is how to rationally design novel

biological systems. The picture of an airplane comes to mind. The goal of an engineer

is to build the airplane from very many interacting components in a rational way, that

is without many rounds of expensive trial and error. A solution lies with mathematical

models. Mathematical models assist engineers to build marvelously complex entities,

from huge refineries to aircrafts and from supercomputers to tiny phones that can surf

the web.

In our work we set out to develop models of biological systems that can assist us

in rationally designing synthetic ones. There are chiefly three types of challenges: first,

the number of molecular components in biological systems (DNA sequences, proteins,

small organic molecules, etc.) is large. Second, all living microorganisms behave largely

in what can be summed up as a random behavior, which results in crucial parameters,

like the size of the cell, to vary considerably in a population. Third, the time scales at

which many of the biological phenomena occur can differ by many orders of magnitude,

resulting in stiff mathematical descriptions.

The need arises then for sophisticated models and algorithms that run on supercom-

puters. With the help of supercomputers we can run our models to quickly shift through

very many alternative synthetic designs. In the aircraft design example, engineers use

nowadays sophisticated simulation models to design components such as wings and the

fuselage of an aircraft. We are doing the same with synthetic biological systems.

1.1 Dissertation Outline

The work in this dissertation builds on existing mathematical models and algorithms

developed in the Kaznessis group. It improves the state of the art algorithms for efficient

and accurate integration of multiple time scale models for gene networks. The doctoral

dissertation has produced five peer-revied journal publications [1, 2, 3, 4, 5]. There are

2



more currently in preparation.

A brief overview of the key points presented and discussed in the current dissertation

follows.

• Chapter 2 introduces synthetic biology and discusses the recently emerged multi-

disciplinary field while also highlighting its extremely promising applications. A

number of wet lab and simulation experiments are briefly described in order to

demonstrate the initial successes of the field. Next the methodology to create

detailed mechanistic models of gene expression is presented. Chemical kinetics

models promise to become the foundation for a rational computer-aided design

approach for gene networks, similar to how we design many of the modern marvels

of technology. A short review on gene expression and regulation is presented since

a sound understanding of the central dogma of molecular biology is imperative

for any mechanistic model to accurately capture all interactions at the molecular

level. The effects of noise on the observed biological behavior is discussed through

pioneering work on single cell experiments.

• Chapter 3 discusses the implications of intrinsic noise effects in the modeling

approaches of gene regulatory networks. This is the last introductory chapter as

it communicates the recent advances in the field of stochastic chemical kinetics

models. A brief literature review highlights much of the state of the art algorithms.

Among them, a hybrid stochastic algorithm devised in the Kaznessis group is

presented in more depth as in many aspects it is the starting point for much of

the work in this dissertation. We discuss how the existence of different time scales

in a range of biological functions results in stiff mathematical descriptions, i.e.

numerical integration methods become numerically unstable, for many chemical

kinetics models. This observation generated the spark for our effort and led to the

work presented in the following two chapters.

• Chapter 4 presents an integration method for a subclass of stiff stochastic dif-

ferential equations (SDEs). Models involving SDEs play a prominent role in a

wide range of applications where systems are not at the thermodynamic limit, for

example biological population dynamics. Therefore there is a need for numerical

schemes that are capable of accurately and efficiently integrating systems of SDEs.
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In this work we introduce a variable size step algorithm and apply it to systems of

stiff SDEs with multiple multiplicative noise. The algorithm is validated using a

subclass of SDEs called chemical Langevin equations that appear in the description

of dilute chemical kinetics models, with important applications mainly in biology.

Three representative examples are used to test and report on the behavior of the

proposed scheme. We demonstrate the advantages and disadvantages over fixed

time step integration schemes of the proposed method, showing that the adaptive

time step method is considerably more stable than fixed step methods with no

excessive additional computational overhead.

• Chapter 5 considers an alternative approach for the problem discussed in Chapter

4. The scheme of the previous chapter is more general while the method in hand

is restricted on the dynamics of reaction sets governed by stiff chemical Langevin

equations, i.e. stiff stochastic differential equations. These are particularly chal-

lenging systems to model, requiring prohibitively small integration step sizes. We

describe and illustrate the application of a semi-analytical reduction framework

for chemical Langevin equations that results in significant gains in computational

cost. We illustrate this through a number of different instructive examples. The

framework, similarly to the previous chapter, handles successfully the two very im-

portant characteristics of biological reaction networks, namely it applies to models

that account for the inherent probabilistic nature of systems far from the ther-

modynamic limit and takes into consideration the disparate spectrum of time

scales observed in biological phenomena, such as slow transcription events and

fast dimerization reactions.

• In Chapter 6 we take a few steps back and go to the root of the modeling methodol-

ogy. We start from the defining equation of any stochastic chemical kinetics model,

the master probability equation. We note that the master probability equation

is very general and chemical kinetic models represent a subclass for which it ap-

plies. The equation helps us capture and understand the dynamic behavior of a

variety of stochastic phenomena that can be modeled as Markov processes. An-

alytical solutions to the master equation are hard to come by though because

they require the enumeration of all possible states and the determination of the
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transition probabilities between any two states. These two tasks quickly become

intractable for all but the simplest of systems. The master probability distribu-

tion can be expressed as a function of its moments. Instead of determining how

the probability distribution changes in time, we can then write transient equa-

tions for the probability distribution moments. In this work we present a general

scheme for deriving analytical moment equations for any N-dimensional Markov

process as a function of the jump moments. Jump moments are measures of the

rate of change in the probability distribution moment values, i.e. what is the

impact of any given transition between states on the moment values. Addition-

ally, we propose a scheme to derive analytical expressions for the jump moments

for any N-dimensional Markov process. We then focus on stochastic chemical

kinetics models for which we derive analytical relations for jump moments of ar-

bitrary order. The elements in the jump moment expressions are a function of the

stoichiometric matrix and the reaction propensities, i.e the probabilistic reaction

rates. Then we use two toy examples, a linear and a non-linear set of reactions, to

demonstrate the applicability and limitations of the scheme. Finally we estimate

the minimum number of moments necessary to obtain statistically significant data

that would uniquely determine the dynamics of the underlying stochastic chemi-

cal kinetic system. Contrary to broad belief, the first two moments only provide

limited information, especially when complex, non-linear dynamics are involved.

• In Chapter 7 two software tools, Hybrid Stochastic Simulation for Supercomputers

(Hy3S) and Synthetic Biology Software Suite (SynBioSS), developed by the Kaz-

nessis group are showcased. Both are the epitome of the group’s research efforts.

These tools embrace the key aspiration and motivation of the present dissertation

and implement the developed algorithms for use in computer-aided design of syn-

thetic gene construct. Our objective was and still is, for algorithms to be publicly

available and most importantly in a user friendly form, where even those with

limited programming knowledge can put them to good use.

• Chapter 8 present a computer-aided design example. In this chapter we use Hy3S

and SynBioSS in order to design novel synthetic tetracycline-inducible regulatory
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gene networks. In recent years tightly regulated gene networks, precisely control-

ling the expression of protein molecules, have received considerable interest by the

biomedical community due to their promising applications. Among the most well

studied inducible transcription systems are the tetracycline regulatory expression

systems based on the tetracycline resistance operon of Escherichia coli, Tet-Off

(tTA) and Tet-On (rtTA). Despite their initial success and improved designs, lim-

itations still persist, such as low inducer sensitivity. Instead of looking at these

networks statically, and simply changing or mutating the promoter and operator

regions with trial and error, a systematic investigation of the dynamic behavior of

the network can result in rational design of regulatory gene expression systems.

With computer-aided design, we aim to improve the synthesis of regulatory net-

works and propose new designs that enable tighter control of expression. In this

work we engineer novel networks by recombining existing genes or part of genes.

We synthesize four novel regulatory networks based on the Tet-Off and Tet-On

systems. We model all the known individual biomolecular interactions involved in

transcription, translation, regulation and induction. Important biomolecular in-

teractions are identified and the strength of the interactions engineered to satisfy

design criteria. A set of clear design rules is developed and appropriate mutants of

regulatory proteins and operator sites are proposed. We propose, test and accept

or reject design principles for each network.

• Chapter 9 conveys a final discussion and synopsis of the key results in the present

thesis and discuses interesting avenues of future research.
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Chapter 2

Background Information on

Synthetic Biology

2.1 Synthetic Biology and Applications

In the last half of the 20th century our perspective and understanding for the biological

world has grown significantly. The first big milestone was the discovery of the DNA and

its structure [6]. Since then many key molecules and molecular structures within cells

have been identified along with their key functionalities. Moreover, the identification

and characterization of complex pathways and interactions have drastically contributed

in understanding how information is propagated within any living cell, how cells utilize

the available energy sources, interact with their environment, grow and populate among

many other cell functions [7]. At the same time technological advances have made

feasible and affordable DNA sequencing, i.e. the decryption of the genetic information

encoded within DNA molecules, for many organisms [7]. Projects such as the sequencing

of Escherichia coli (E. coli), yeast and human genomes, led to the characterization of

multiple genes in miniscule amount of times, unveiling even more secrets of the biological

world.

The closer we study cells, the more we realize that they resemble modern factories.

Instead of workers, molecules are the workforce, responsible for communication, protein

production, biodegration of nutrients through complicated enzymatic pathways, that

resemble assemble lines. Furthermore certain molecules function like administrative

7



personnel by controlling or supervising entire cell functions. One can claim that DNA

corresponds to the organization chart and business plan where all orders stem from.

Moreover the remarkable organization present inside cells resembles the organization

inside factories where every department functions on its own but also would not exist

independently. Cells are sophisticated, well organized and optimized miniature factories.

These findings are exciting, because they provide a bridge between the physical world

of molecules to the biological world of complex behaviors, or phenotypes as biologists

call them. What is perhaps more exciting is that we now have the ability to construct

such bridges synthetically, that did not exist in the natural world. Synthetic biology

is what we call the efforts that stem from this ability. A combination of biology and

engineering that promises the design and construction of biological factories, cells that

will perform specific tasks or generate products similar to modern factories. The idea is

analogus to programming robots to carry out certain tasks, but instead of dealing with

electrical circuits it would require reprogramming the cell’s DNA; introducing new or

modifying existing gene circuits (i.e. DNA segments).

In other words, Synthetic biology aims at the design and construction of new bio-

logical parts, devices and systems from natural biological systems and the redesign of

existing motifs towards useful applications [8, 9]. The objective is similar to the con-

stant strive of chemical engineers to improve chemical processes in modern chemical

plants. An important note, is that in contrary to genetic engineering where usually one

to two genes are mutated to meet a design objective, synthetic biology proposes the

complete redesign of a cell process or a cell module to optimize the phenotypic behavior

at hand. Factiously we can say that synthetic biology is genetic engineering on steroids.

Synthetic biology is possible now because of recent advances in biotechnolgies, such as

DNA synthesis, cloning polymerase chain reaction (PCR) and green fluorescent protein

(GFP) monitoring [7].

The realization of such an undertaking will have significant impact in everyday

life, with applications in a range of disciplines: from medicine, where gene regulatory

networks can be used for gene therapy purposes, to the production of biopolymers, to

the removal of environmental pollutants [10, 11, 12], and to clean energy alternatives

where microbes can be engineered to produce hydrogen from sunlight and water [13].
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Quorum sensing
Density-dependent bacterial 
behaviour that is regulated by 
cell–cell communication.

CcdB
A toxic protein that targets the 
Escherichia coli DNA gyrase,  
a bacterial topoisomerase II.

Commensalism
Non-competitive existence and 
growth.

Amensalism
The presence of one organism 
adversely affects the other.

Mutualism
The presence of each organism 
benefits the other.

Parasitism
One organism enables the 
other to survive at the expense 
of the first organism.

Third party inducible 
parasitism
One organism directs a second 
organism to allow a third 
organism to act as a parasite.

Integrin receptor
A human cell surface receptor 
that interacts with several 
components of the 
extracellular matrix, including 
fibronectin.

In one project, Escherichia coli was engineered with 
a LuxI and LuxR AHL quorum sensing system coupled to 
the expression of a toxic protein (CcdB)51 (FIG. 3a). Higher 
cell densities result in higher levels of CcdB expression in 
each cell (and subsequent cell death). However, different  
cells in the population have different levels of CcdB 
owing to signalling variations and gene expression noise. 
The system design exploits this noise to maintain a stable 
cell population over a long period of time. Engineered 
population control could be used in many situations, 
including industrial fermentation, immune responses 
and bioremediation.

Using the cooperative yeast ecosystem CoSMO 
(cooperation that is synthetic and mutually obligatory), 
scientists have engineered two normally non-interacting 
strains of S. cerevisiae to each synthesize and secrete a 
metabolite that is vital for the survival of the other strain, 
demonstrating artificial symbiotic behaviour between  
different strains of yeast52 (FIG. 3b). The microbial consen sus  
consortium uses a different approach to achieve coordin-
ated behaviour between two types of cells. The system 
consists of two E. coli strains that have been engineered 
to communicate in a bidirectional manner using AHL 
signals, such that targeted gene expression is activ ated 
only if both cell populations are present at sufficient 
densities53. Cooperation between different coexisting cell 
types allows multicellular organisms to function and sur-
vive. A related synthetic bacterial predator–prey system 
illustrates the ability of two engineered E. coli popula-
tions to regulate each others’ growth dynamics through 
bidirectional communication. Extensive theoretical and 
computational analysis on predator–prey systems in the 
literature shows that this type of interaction often gener-
ates interesting and complex oscillatory population 
dynamics54–56. The predator decreases the population of 
the prey, leading to a decrease in the population of preda-
tors owing to a lack of prey, thereby allowing reconstitu-
tion of the prey population57. Often, we gain important 
insights by constructing biological systems and compar-
ing the experimental observations of these systems with 
long-standing computational and theoretical models.

Several other synthetic ecosystems have also been 
created, based on modulation of engineered mammalian 
and interkingdom cell–cell communication (between 
mam malian, yeast and bacterial cells) (FIG. 3b). Various 
mammalian strains were created to either produce or 
respond to compounds such as ampicillin, biotin and 
volatile acetaldehyde58. In some configurations, the engi-
neered mammalian cells were co-cultured with bacteria 
and yeast that produce acetaldehyde, bacteria that pro-
duce erythromycin or bacteria that respond to ampicillin.  
Different multicellular configurations were tested and 
analysed, including commensalism, amensalism, mutualism, 
parasitism, third party inducible parasitism and predator–prey 
relationships58. Based on the lessons learned from these 
engineered systems, and by incorporating additional parts 
and modules into the circuits, we might be able to create 
even more complex multicellular systems with practical 
purposes, such as tissue development and the creation of 
auxiliary control organs.

Application-orientated systems. The notion of pro-
grammable cells, or programmable biology in general, 
is inspiring researchers to devise innovative solutions to 
currently unsolved problems. For example, one system 
aims to destroy tumours by using bacteria as a living com-
putational therapeutic tool5,59. Upon the simultaneous  
detection of two conditions, using a two-input logical  
AND gate, engineered bacteria will invade and kill 
tumorous cells. Engineered bacteria must first detect 
that they inhabit a hypoxic environment (which is simi-
lar to the environment surrounding tumours in vivo). 
Second, exploiting the fact that some bacteria localize 
and thrive naturally in tumours, engineered bacteria 
use a synthetic quorum sensing pathway to detect high 
population density. When both conditions are satisfied, 
the bacteria express invasin, they bind specific mamma-
lian integrin receptors and they initiate endocytosis. This 
system comprises sensors, actuators and responses that 
are modular and can be swapped with different engi-
neered parts, allowing researchers to tailor the system 
to different cancers. Perhaps the most novel aspect of 

Timeline | Synthetic biology milestones

2000 2002 2003 2004 2005 2006 2007 2008

Achievements include the 
directed evolution of genetic 
circuits24 and stochastic gene 
expression in a single cell125.

The bacterial toggle switch6, 
the oscillator113 and engineered 
cell–cell communication47 are 
pioneered.

Massachusetts Institute of Technology (MIT), 
Cambridge, USA, students designed biological 
oscillators based on the Elowitz repressilator113.

Achievements include programmed pattern 
formation19, analysis of noise propagation in 
gene networks10,66,126 and artificial cell–cell 
communication in yeast49.

Achievements include interkingdom cell–cell 
communication58, RNA interference (RNAi) and 
the repressor protein switch36, RNAi-based logic 
circuits21 and ribozyme switches31,118.

The first intercollegiate genetically engineered machine (iGEM) 
competition is held at MIT (this became the international  
GEM competition in 2005). Five teams competed and the 
Registry of Standard Biological Parts was established.

Bacteria designed to detect and 
then destroy cancer cells by 
expressing invasin5.

Fifth iGEM held, with 84 teams from 21 countries.

Artemesinin is produced 
in engineered yeast63.The first International Meeting on Synthetic Biology (SB1.0) is held at MIT.

Achievements include programmed bacterial population 
control51 and a mammalian toggle switch7.

Logic gates are created by chemical 
complementation with transcription factors29.

The complete synthesis, cloning and assembly 
of a bacterial genome101 is achieved. 

REVIEWS

414 | JUNE 2009 | VOLUME 10  www.nature.com/reviews/molcellbio

Figure 2.1: Synthetic biology milestones. Figure adapted from Ref. [12].

One of the most promising and enticing application of synthetic biology is the de-

sign of artificially regulatory gene networks for gene therapy applications. As such,

they are an important part of this dissertation (cf. Chapter 8). Artificially regulatory

gene networks consist of well-characterized natural gene components that control the

expression of a reporter protein at will. Desired phenotypes range from simple on-off

systems to oscillating behavior. Such networks may significantly impact our ability for

targeted drug delivery. A well studied example of synthetic regulatory gene network is

the Tet-Off system, based on the tetracycline resistance operon of E. coli [14].

2.2 Synthetic Biology Examples

In its early years, synthetic biology mainly concentrated in strengthening and supporting

the rationality of its underlying logic. Since then, the field has grown significantly

managing to produce noteworthy results that promise to positively impact everyday

life [12]. A brief timeline chart depicting the milestones of synthetic biology is presented

in Fig. 2.1.

2.2.1 Experimental Perspective

Early wet lab experiments focused on simple examples that addressed design challenges

and developed design principles for simple modules, networks of two to three genes,
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Figure 2.2: Response of a synthetic bistable switch. The toggle behavior is evident
as cells move from the ”off” state, i.e. low protein levels, to the ”on” state, i.e. high
protein levels. The fraction of cells that are in the ”on” state increases sharply after a
threshold inducer (IPTG) concentration is reached. Figure adapted from Ref. [15].

with predefined phenotype. Many of the design objectives have been borrowed from

the fields of electrical and computer engineering, where similar to electrical circuits,

specific cell molecules were designed to perform oscillations, exhibit on-off behavior,

function as filters, produce time delays, compare signal values and even display logic

gate behavior [12].

The bistable switch of Gardner and coworkers is the first module successfully de-

signed in vivo [15]. The system consists of a two gene constructs where the protein

expressed from gene 1 represses the expression of gene 2. In turn, the product of gene

2, protein 1, represses the expression of gene 1. At the same time, both repressor

proteins can be induced by small chemical compounds that alleviate their repressing

capabilities (cf. Fig. 2.2). This simple genetic construct, which does not occur natu-

rally, when inserted into E. coli causes cells to exhibits on-off behavior depending on the

relative inducer concentrations. Likewise, synthetic switches that facilitate autoregula-

tion, negative feedback loop [16] or positive feedback loop [17] have been implemented

experimentally.

The next successful example, and among the most studied designs, is the repressila-

tor of Elowitz and Leibler [18]. In this module, a network of three genes was built, where

each gene produces a repressor that represses the expression of one of the other genes in
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Figure 2.3: Oscillating fluorescence in an E. coli cell. Figure adapted from Ref. [18]

a sequential manner, i.e. forming a ”vicious” cycle. This gene network results in oscillat-

ing behavior when inserted into E. coli cells. Oscillations are observed through a single

fluorescent protein that is related to one of the three repressor proteins (cf. Fig. 2.3).

In 2003, Atkinson and coworkers used a two gene network to construct a system with

dual phenotypes [19]. The system exhibits both toggle switch and oscillatory behavior

depending on induction.

Another noteworthy attempt is the implementation of logic gate behavior within

bacteria. Recently Cox and Elowitz presented multiple single-promoter motifs that ex-

hibit different logical gate behavior [20]. The alternative promoter design are the result

of a powerful combinatorial technique. In a similar approach, in our group, Ramalingam

and coworkers obtained AND logic gate behavior starting from a different approach [21].

By combining detailed mechanistic-kinetic models and in vivo experiments they studied

the potential of a synthetic, single promoter AND gate. The single promoter’s topology

and weak repression effects are considered and their impact on the AND gate func-

tionality is quantified. Efficient implementation of cascades within cells, composed of
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different logic gate motifs maybe the forefront of biocomputaion.

Similarly, Guet and coworkers used combinatorial techniques to create and screen a

vast variety of regulatory motifs based on the building blocks of three genes, encoding

the well known transcriptional regulators LacI, TetR and lambda cI [22]. The possible

permutations are increased through the use of five different promoters, regulated by the

three proteins. Cells can also be programmed to perform certain tasks during their life

cycle by coupling genes switches with cell signaling pathways [23].

Finally, an important part of the synthetic biology community is the international

genetically engineered machine (iGEM) competition that is conducted each year since

2004. Undergraduates with the guidance of faculty are given the opportunity to put their

imagination to work creating synthetic biological constructs with unique functionalities,

such as devices to detect heavy metal markers [24] or a trifold bistable switch [25]. In

2008, the Minnesota iGEM team constructed a comparator in vivo, that allows cells to

compare the strength of two different external signals and act accordingly.

2.2.2 Computational Approach

Computational tools have been used to assist scientists to understand and explain phe-

notypic behavior observed in a series of experiments. For instance, the bistable switch

and the repressilator examples discussed in Sec. 2.2.1 used simplified lumped models to

explain dynamical behavior while also served as tools to characterize responses [18, 15].

More recently mechanistic models combined with sophisticated algorithms have been

developed in order to predict dynamical behavior of biological systems and rationally

guide engineering of new synthetic biological constructs. The first notable approach is

that of Arkin and McAdams who used chemical kinetics models to predict how E. coli

cells behave when they are infected by the lambda-phage virus [26]. They found that

the health status of the infected cell determines which pathway the virus will follow,

lysis or lysogeny. Similarly, Wolf and Arkin modeled the fim switch in E. coli, which

controls the piliation of E. coli while it grows inside an animals intestine and determines

its strategy against the host immune response [27]. Vilar and coworkers modeled the

dynamical behavior of the well known lac operon [28].

Even though the previously mentioned examples are not directly connected to syn-

thetic biology, since they study the behavior of naturally occurring systems rather than
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artificial ones, they served as modeling prototypes for synthetic biology. Sophisticated

algorithms can be used to improve existing designs, predict new ones and handle systems

with an ever increasing complexity. Computational work focused on better understand-

ing and improving the design of the first successful wet lab experiments. Salis and

Kaznessis modeled the dynamical behavior of a bistable switch based on the Gardner,

Cantor and Collins design investigating also parameters that result in fine tuned sys-

tems, such as the affinity and placement of the operators [29]. Furthermore, based on

the design of the reprissilator, Tuttle and coworkers designed a three gene synthetic

network that sustains oscillations under certain conditions, while also exploring param-

eters that influence the periodicity of the system [30]. Lately, a bottom-up approach for

designing biological systems has been tested, where a stochastic model with fitted pa-

rameters is used to predict the dynamical behavior of novel networks [31]. Ramalingam

and coworkers employed mechanistic models to first design AND logic gates constructs

in silico and then have them tested in vivo. A combination of experimental and compu-

tational work is also that of Cox and coworkers, which proposes mathematical formulae

to predict promoter activity as a function of inducer concentration [20]. Similarly, a

computational approach that combines thermodynamical reasoning has also been used

to predict and explain designs with boolean logic [32].

2.3 Computer-Aided Design of Synthetic Constructs

As the design objectives of synthetic biology become even more ambitious, the different

design alternatives can multiply exponentially. At the same time the boom of biological

knowledge has increased the number of available components, enriching the available

toolboxes with thousands new building blocks, i.e. DNA sequences such as proteins,

promoters, operators and ribosome binding sites, every year. Technology is at a point

where we can literarily ”cut” and ”paste” DNA sequences, creating our own modified

organism. It then becomes evident, that while experiments have helped the field of

synthetic biology to mature, they will become intractable and expensive if they were

required to explore the vast space of all possible combinations.

Mathematical models, on the other hand, can help reduce the number of different

combinations, so that experiments can focus on only the most promising alternatives.
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Figure 2.4: Multiple time scales in biology

Instead of a trial and error experimental approach computer-aided design (CAD), based

on sophisticated algorithms, becomes a reasonable choice to quickly shift through dif-

ferent designs. The picture of an airplane comes to mind. The engineers goal is to build

the airplane from very many interacting components in a rational way, that is without

many rounds of expensive trial and error. The solution lies with mathematical mod-

els. They are routinely used in aircraft design. In similar fashion sophisticated CAD

algorithms alongside with a minimal number of experiments should be the standard in

designing novel biological organisms or modules within them.

The work in this dissertation sets out to develop new CAD models for synthetic biol-

ogy. There are chiefly three types of challenges when modeling biological systems. First,

the number of molecular components in biological systems (DNA sequences, proteins,

small organic molecules, etc.) is overwhelming. Second, all living microorganisms are

impacted by thermal noise (intrinsic noise) and on occasion behave randomly. Third,

the time scales at which many of the biological phenomena occur can differ by many

orders of magnitude (cf. Fig. 2.4), resulting in stiff mathematical descriptions.

With these difficulties in mind, in the rest of this chapter we describe first how

detailed mechanist-kinetic models for gene networks are created. Second we document

the importance of intrinsic noise effects in a cell’s phenotype and comment on the impact
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it has on the modeling approach. In Sec. 3.3 we elucidate on the effect that different

time scales have on the mathematical description of chemical kinetics models for gene

networks.

2.4 Mechanistic Models

A convenient way to represent interactions at the molecular level, such as transcription,

translation, induction stages and protein-protein interactions among others, is through

chemical kinetics models. Indeed, cell functions can be depicted as cascades of chemical

reactions, where the reacting molecules are promoters, operators, proteins and so forth

while generation, degradation, binding and conformational changes are the reacting

outcomes.

In order to convert cellular functions into simple mechanistic chemical reacting sys-

tems it is necessary to understand the central dogma of molecular biology [33]. Trans-

lating gene networks interactions into chemical reactions is the key element behind the

detailed mechanistic models we pursued.

2.4.1 Gene Expression and Regulation

We briefly outline how prokaryotes go from DNA to proteins. We focus on prokaryotic

cells as the findings of this dissertation are build around bacteria cells, E. coli in partic-

ular. Two well written books discussing the subject of gene expression and regulation

are Molecular Biology of The Cell [7] and Genes & Signals [34].

Gene expression, according to the central dogma of molecular biology, takes place

in two major stages, transcription and translation. Each of these two steps consists

of three phases, initiation, elongation and termination. In transcriptional initiation

RNA polymerase (RNAp) first recognizes a specific DNA site, known as the promoter.

Recognition is carried out by a certain subunit of RNAp, called sigma factor, by making

specific protein-DNA contacts with the promoter bases. RNAp binds with the promoter

to form the closed-promoter complex and then the DNA helix unwinds to form the

open-promoter complex. Initiation is completed when the first two bases have been

transcribed. As soon as the initiation stage is over, elongation starts and involves RNAp

moving along the DNA template strand copying the bases according to the Watson-Crick
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base pairing and producing messenger RNA (mRNA). Similarly to initiation, a specific

sequence in the DNA signals RNAp when to stop transcribing. This sequence is referred

as the terminator.

After mRNA is produced, it is translated in the ribosome, a two subunit molecule.

Ribosomes translate mRNA into amino acids and consequently to proteins based on

the genetic code. In similar fashion to transcriptional initiation, signals hidden in the

mRNA code dictate translational initiation. During elongation mRNA flows through

the ribosome subunits, like the conveyer belt in a factory, where the corresponding

amino acids bind to form proteins. Specific codons, i.e. three consecutive nucleotides,

on the mRNA template are responsible for signaling termination. The released mRNA

can go on and be translated in another ribosome. Both prokaryotes and eukaryotes

facilitate polyribosomes, an assembly of ribosomes, where a single mRNA is translated

simultaneously by many ribosomes in order to speed up production.

Gene expression is a highly regulated process. Both prokaryotes and eukaryotes use

complex regulatory pathways to control the expression of genes. Cell differentiation,

environmental adaptation and different protein requirements during cell cycle are some

of the reasons explaining why cells use such pathways. As the complexity of the organ-

isms increases so do the layers of regulation. Eukaryotes utilize a far more complex and

sophisticated network of regulation than prokaryotes do [7, 34].

Cells have many regulatory pathways in order to control gene expression. Usually

regulation occurs in the initiation phase. The main regulatory mechanisms through

which prokaryotic cells regulate transcriptional initiation involve proteins that enhance

or repress the functionality of a promoter. These proteins bind to specific sequences

on the DNA known as operators. Some bacteria promoters are weak; they have poor

affinity for RNAp, therefore regulatory proteins, called activators, bind adjacent to the

promoter and increase the likelihood for initiation to occur. The result is a gene more

actively transcribed; hence this mode is characterized as positive control. Activators

either provide an additional surface for RNAp binding or they increase the transition

probability from the close to the open promoter complex. On the other hand negative

control is observed when a bound protein obstructs the binding of RNAp or the binding

of an activator or when it obstructs elongation. These proteins are called repressors and
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Figure 2.5: Schematic representation of key biological interactions. (a) Protein dimer-
ization. (b) Inducer binding. (c) Transcription. (d) Translation. (e) Activation. (f)
Repression.

the obstruction is likely caused due to steric hindrance. Commonly, the binding or un-

binding of an activator or a repressor is mediated through small molecules called ligands,

adding another layer of control. Ligands binding or unbinding causes conformational

changes (allostery) to the protein that either enables or hinders it from binding to the

DNA sequence. Furthermore, some bacterial regulatory proteins can function both as

an activator or repressor depending on the relative placement of the operator compared

to the promoter. The most well studied example of a gene exhibiting both positive and

negative regulation is the lac operon of E. coli cells. The lac repressor represses expres-

sion of beta-galactosidase when glucose is abundant compared to lactose, while CAP

(catabolite activator protein) activates expression in the reverse scenario. Unbinding of

the lac repressor happens when allolactose (ligand) is present in the medium.

A special case of the above modes is self regulation, where the protein product

controls its own production either positively or negatively. An example is the tetracy-

cline resistance operon of E. coli, where the regulatory protein TetR mediates its own
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production and that of the resistance protein TetA [35]. Another control mechanism

that involves transcriptional initiation involves sigma factors. Prokaryotes have different

sigma factors, that can be used under different external conditions, e.g. under nitrogen

limitation, mediating which genes are expressed under certain environmental stimuli.

Regulation can also occur in all the other steps of gene expression, such as translation.

For instance, adjustable degradation rates help the cell to control protein levels. A

basic schematic representation of some key interactions discussed in the current section

is depicted in Fig. 2.5.

2.4.2 Chemical Kinetics Models

Certainly, there are many more hidden aspects of biology and Sec. 2.4.1 only briefly

scrapes the surface of the knowledge obtained over the last few decades. Still, that

knowledge is enough to create detailed mechanistic models of gene expression and regu-

lation. In what follows we briefly present a chemical kinetics model based on a general

gene expression and regulation scheme borrowed from E. coli cells. A more detailed

description of such a process can be found in Sec. 8.3.1.

The mentality to create chemical kinetics models for biological systems is straight-

forward. The first step is to identify the interactions at the molecular level that are of

interest and next translate those into chemical reaction formulae. In order to avoid con-

fusion all reactions are presented in Table 2.1 with brief descriptive comments. While

most of the time our understanding for bacteria cell cycle is sufficient to study their

dynamics the usual bottleneck of this approach is to obtain the appropriate kinetic data.

Even though many molecular components have been identified, kinetic studies and or

thermodynamic properties from which to deduct the necessary kinetic rates are rare.

The lack of quantitative description for much of the biological compounds examined

makes the need for a continuously expanding database containing kinetic constants of

essence.

All in all, mechanistic models of biological functions based on chemical kinetic mod-

els constitute a simple and intuitive way for computer-aided design of novel biological

systems.
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In the dead of a New England winter, 16 stu-
dents worked day and night for a month try-
ing to make Escherichia coli blink like a
lighthouse. No one really expected a blinking
bacterium to be all that useful. Instead, the
exercise was meant to teach students—and
their instructors—how to make reprogram-
ming bacterial behavior more routine. The
first class of its kind, held last January at the
Massachusetts Institute of Technology (MIT)
in Cambridge, also marked the emergence of
the hot new field of synthetic biology.

Bacterial blinking circuits are
just one element in the MIT re-
searchers’ “registry of standard
biological parts,” which is akin
to an inventory that electrical en-
gineers or basement tinkerers
might consult when they design
a new device, says class co-
instructor Drew Endy of MIT.
Researchers at MIT and else-
where are working on sensors
and actuators, input and output
devices, genetic circuits to con-
trol cells, and a microbial chas-
sis in which to assemble these
pieces. If they’re successful, the
registry will help them reach one
of the goals of synthetic biology:
to allow researchers to “go into
the freezer, get a part, hook it
up,” and have it work the first
time, Endy says.

The parts list is itself just one
piece of a hugely ambitious
plan: to engineer cells into tiny
living devices. Some of the engi-
neered devices these researchers
envision will function as molec-
ular-scale factories. Others will help detect
chemical weapons, clean up environmental
pollutants, make simple computations, diag-
nose disease, fix faulty genes, or make hy-
drogen from water and sunlight. “We’re go-
ing to modify the whole behavior of the
cell,” says bioengineer Ron Weiss of Prince-
ton University in New Jersey. Synthetic biol-
ogists aim to build cells from the ground up
rather than tinkering with a handful of genes
or tweaking a metabolic pathway or two, as
do today’s genetic engineers.

The fledgling field, which is attracting en-
gineers and biologists in equal measure,
means different things to different people.
Engineers view it primarily as an engineering
discipline, a way to fabricate useful microbes
that do what no current technology can. But
many biologists see it instead as a powerful
new way to learn about cells. Unlike systems
biologists, who analyze troves of data on the
activity of thousands of genes and proteins
(Science, 5 December 2003, p. 1646), syn-
thetic biologists simplify and build. They cre-

ate models of genetic circuits, build the cir-
cuits, see if they work, and adjust them if they
don’t—learning about biology in the process.
“I view it as a reductionist approach to sys-
tems biology,” says biomedical engineer
James Collins of Boston University.

However it’s defined, synthetic biology is
catching on. A growing cadre is publishing in
top journals. Researchers at Lawrence Berke-
ley National Laboratory (LBNL) in Califor-
nia established the world’s first synthetic biol-
ogy department last June. A European Com-

mission program designed to support “un-
conventional and visionary research” has is-
sued a request for synthetic biology research
proposals. The inaugural synthetic biology
conference (Synthetic Biology 1.0) is set for
next June at MIT. “I think we’re going to see
some spectacular new science and engineer-
ing,” says Eric Eisenstadt, a program manag-
er who oversees synthetic biology funding for
the Defense Advanced Research Projects
Agency (DARPA). J. Craig Venter, who
heads the Institute for Biological Energy Al-

ternatives in Rockville, Maryland,
predicts that “engineered cells and
life forms [will be] relatively com-
mon within a decade.”

Rewiring the cell
Nothing is more basic for a parts
list than reengineered genetic cir-
cuits that direct the behavior of
made-to-order microbes. Along
with parts, genetic-circuit design-
ers need simple principles to
guide their work, just as engineers
use Ohm’s law of resistance or
Kirchhoff’s rule on conservation
of charge at a junction to guide the
design of electric circuits. But bi-
ologists are just beginning to
grasp the rules.

The library of such principles
was inaugurated decades ago when
microbiologists François Jacob and
Jacques Monod of the Pasteur In-
stitute discovered the first gene cir-
cuit—a set of genes that help 
E. coli digest lactose. A regulatory
gene called a repressor is normally
on, keeping the lactose-digestion

circuit inactive. When lactose is present,
however, the bacterium turns the repressor
off. Such gene circuits can be diagramed
with nodes representing genes and arrows
indicating which other genes they regulate.
“If you squint hard enough, it begins to look
like [an electrical] circuit diagram,” says
bioengineer Jeff Hasty of the University of
California (UC), San Diego.

The analogy falls down on the details,
however. Electronics engineers know exactly
how resistors and capacitors are wired to
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A new breed of bioengineers aims to create microbes from off-the-shelf parts. The parts are coming, but will 
researchers be able to put them together?

Microbes Made to Order

News Focus

Blinkers on. A synthetic gene circuit that works like a clock turns on
fluorescent proteins that make these E. coli flash on and off.
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Figure 2.6: A synthetic oscillating gene circuit where E. coli cells flash green and red
and everything in between. Figure adapted from Ref. [13].

2.5 ”It’s a Noisy Business!” ∗: Importance of Intrinsic

Noise

In 2002 Elowitz and coworkers used single-cell experiments to prove that cell expression

is an inherent noisy process [37]. They used fluorescent marker proteins to study cell

cycles and concluded that cells that initially have identical key components, such as

RNA polymerase, ribosomes and protein levels, exhibit different phenotypic behavior.

In other words, even though each cell should have demonstrated identical fluorescent

levels at the same time intervals, the outcome was cells that revealed a distribution

of fluorescent levels. This can be more vividly visualized through Fig. 2.6 where in a

similar experiment cells flash in different colors instead of all being in the same ”color”

state.

The work of Elowitz and coworkers was the first in a long line showing that cell

dynamics are largely stochastic. Intrinsic noise effects play a crucial role in cell differen-

tiation and there are also examples where the cell’s fate is dictated by random effects [26].

Internal noise is the result of fluctuations due to random collision of molecules. Indeed,
∗Adapted from Ref. [36]
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whenever distinct numbers of molecules interact, fluctuations are important and must

be considered. Chemical kinetics models far from the thermodynamic limit, which is the

limit as the number of molecules (particles) in a system reaches infinity or Avogadros

number for practical purposes, experience fluctuations which disappear inversely pro-

portional to the number of molecules in the system [38]. For example the interaction of

RNAp with a promoter is a distinct event happening between few numbers of molecules.

Consequently, using mass action formalism to numerical integrate chemical kinetics

models may be invalid in many cases. Instead of using ordinary differential equations

(ODEs) there is the need for sophisticated stochastic algorithms that incorporate intrin-

sic noise effects. Among the first to realize that, Arkin and McAdams, used stochastic

simulations to describe cell dynamics [26, 39].

Since then, stochastic mathematical models have provided useful insights for many

biological processes, leading to a better understanding of the specific interactions in-

volved in gene expression, while quantifying intrinsic noise effects. For instance, the ef-

fects of fluctuations in operator-protein binding dynamics on gene expression have been

the study in the work of Kepler and Elston [40]. Moreover, the significance of fluctua-

tions of mRNA and protein numbers in gene expression has also been investigated [41].

Bundschuh and coworkers examined how the dimerization of regulatory proteins affects

the magnitude of fluctuations when these proteins regulate gene expression [42] and how

traditional reduced models fail to capture fluctuations or even averages [43]. Cox and

coworkers studied the effects of fluctuations in a quorum sensing system, which is a type

of cell-cell signaling pathway [44]. Paulsson used the fluctuation-dissipation theorem to

explain and quantify many of the stochastic effects present in the early pioneering sin-

gle cell experiments [45]. Bar-Evenm and coworkers investigated how noise scales with

protein abundance and whether noise levels are affected by global or local pathways,

mRNA or promoter levels [46].
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Chapter 3

Background Information on

Computational Models and

Algorithms

3.1 Stochastic Chemical Kinetics Models

Cell functions, such as gene expression, can be depicted through cascades of chemical

reactions, where generation, degradation, binding and conformational changes are the

reacting outcomes. Due to the importance of intrinsic noise effects in gene expression (cf.

Sec. 2.5) models have to account for the stochastic nature of many biological functions.

Therefore ordinary differential equations (ODEs) do not represent a valid mathematical

description to propagate such systems in time.

A discrete and probabilistic description of chemical kinetics is required, where de-

terministic rates are substituted with reaction probabilities per unit time. Instead of

ODEs, a gain-loss equation for probabilities, known as the chemical master equation

(CME), governs the time evolution of the reaction probability density function of the

systems chemical population [47, 48].

Consider a well-mixed bacterial-size volume V , i.e. virtually and spatially homoge-

neous medium, containing N distinct chemical species Si participating in M chemical

reactions. The state vector X(t) =
(
X1(t), . . . , XN (t)

)
contains the time evolution of
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the system, i.e. the number of molecules from each species at a certain time. An M×N
matrix ν is defined, containing all stoichiometric coefficients, where νij is the change in

the number of molecules of the ith species caused by the jth reaction. Reaction propen-

sities, α
(
X(t)

)
, represent the probabilistic reaction rates and form an M th order vector.

In particular, αj
(
X(t)

)
dt gives the probability that the jth reaction occurs in a small

time interval
[
t, t+ dt

]
.

Propensities may be calculated using different rate laws such as mass action or

Michaelis Menten kinetics. Using mass action kinetics, the probabilistic reaction rates

are calculated given the macroscopic (deterministic) rate constant k′j and the corre-

sponding reaction form and law [48, 29]. In general, the propensity of the jth reaction

can be calculated using the equation,

αj
(
X(t)

)
= cjhj

(
X(t)

)
(3.1)

where hj is the number of distinct combinations of the reacting species and cj is the

average specific reaction propensity for the jth reaction, which is also referred to as

the mesoscopic reaction rate, designated as kj . Consider the second order biomolecular

reaction,

A+B

k′j
GGGGGGA C (3.2)

and the corresponding reaction propensity terms are

hj =
(
number of molecules of A

)
×
(
number of molecules of B

)
cj ≡ kj =

k′j
NAV

(3.3)

where NA is Avogadro’s number.

3.1.1 Markov Processes and Chemical Kinetics

The random walk of a reaction network system in phase space, a collection of possible

states, can be described as a Jump Markov process. The Jump Markov process describes

how the system moves from one phase point, the current position on the phase space,
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to others. These transitions are discontinuous and occur with a certain probability,

which depends only on the current phase point and not on the system’s path. This

last characteristic is also the main advantage of using Markov processes to describe

stochastic chemical kinetics models.

The time evolution of such systems is described by the chemical master equation

(CME), a gain-loss equation for probability [47]. The derivation of the CME is based

on the definition of the propensities and uses the ”probability balance” axiom, meaning

that probabilities of jumping to other phase points from the current one, including the

current one too, always add up to one.

The probability of being at a state X(t) at time t+dt is the sum of the probabilities

of first being in an adjacent state and jumping to state X(t) and second the probability

of being in state X(t) with no transition occurring in t+ dt. In equation form,

P
(
X; t+ dt|X0; t0

)
= P

(
X; t|X0; t0

)[
1−

M∑
j=1

αj
(
X
)
dt

]
︸ ︷︷ ︸

no transition occurrence

+
M∑
j=1

[
P
(
X − νj ; t|X0; t0

)
αj
(
X − νj

)
dt
]

︸ ︷︷ ︸
transition from an adjacent state

, (3.4)

where P
(
X; t|X0; t0

)
is the conditional probability of being at state X at time t given

the fact that the system was at state X at time t0,
[
1−
∑M

j=1 αj
(
X
)
dt

]
is the probability

of no reacting event occurring and P
(
X−νj ; t|X0; t0

)
is the probability that the system

jumps to state X from an adjacent state. By doing some algebraic rearrangements in

Eq. (3.4) and taking the limit of dt→ 0, yields the CME

∂P
(
X; t|X0; t0

)
∂t

=
M∑
j=1

[
αj
(
X − νj

)
P
(
X − νj ; t|X0; t0

)
− αj

(
X
)
P
(
X; t|X0; t0

)]
(3.5)

The CME describes the time evolution of the system. In principle, the CME uniquely

determines the probability P (X, t) of the system being at a state X = X(t) at time

t > 0. In the Jump Markov process regime the phase space is an ensemble of states with

discrete number of molecules in each state, this implies that the solution is a discrete
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probability distribution.

If instead of a jump or discrete Markov process we were to consider a continuous

Markov process then the corresponding CME solution would be a continuous probability

distribution. The main difference between the continuous and discrete case is that the

state space is no longer a discrete set of states but rather a continuum of states. For

a continuous Markov process the CME in its general form and not directly applied to

chemical kinetics models has the following form

∂P (X, t)
∂t

=
∫ [

T
(
X/X

′)
P
(
X
′
, t
)
− T

(
X
′
/X
)
P
(
X, t

)]
dX

′
, (3.6)

where P (X, t) is the probability of the system being at state X at time t. T
(
X/X

′)
is

the transition probability per unit time for the system to jump from state X
′

to state

X and in the case of chemical kinetics it depends on the reaction propensities.

The solution for any given Markov process is a probability distribution. On the

contrary, that for a deterministic description is is a sharp delta function, i.e. a point in

the phase space. In Chapter 6 the connection between the stochastic and deterministic

description of a chemical kinetics model is established and discussed in depth.

3.1.2 Stochastic Simulation Algorithm

Analytical solutions for the CME exist only for the simplest of cases. For instance, one

step Master equations can be solved analytically when the transition rates are constant

or linear function of the state of the sytem [47, 49]. On the other hand, numerical

solutions of CMEs are discouraged as the computational intensity increases rapidly

with increasing system sizes and quickly become intractable.

For complex non-linear systems the CME cannot be analytically solved. Instead

numerical techniques are necessary. In the mid 70’s Gillespie devised the stochastic

stimulation algorithm (SSA) that uses Monte Carlo techniques to accurately sample

the underlying probability distribution [48, 50]. The exact form of which can only be

obtained if the CME could be solved analytically.
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In equation form and for the Direct method variant [48] the algorithm determines

τ =
1
α
ln

(
1
r1

)
(3.7)

and

µ−1∑
k=1

αk < r2α ≤
µ∑
k=1

αk, (3.8)

where τ is the time increment at which the next reaction will occur, α is the sum of all

reaction propensities and r1 and r2 are uniform random numbers. Briefly, the algorithm

first determines when the next reaction will occur based on the sum of probabilistic

reaction rates (cf. Eq. (3.7)) and then the method establishes which of the M reaction

channels will indeed fire, given the relative propensities values. The jth reactions occurs

when the cumulative sum of the j first terms becomes greater than r2α (cf. Eq. (3.8)).

Subsequently the reaction propensities are updated, since the system has ”jumped” to

a neighboring state and the process is repeated until the system reaches the desired end

time point.

In fact, the process is repeated multiple times, generating a set of different trials

from which the underlying probability distribution can be obtained. The larger the

number of trials the more accurate the reconstruction of the distribution will be. There

are instances, when the number of trials has to be extremely large for an accurate

representation to be obtained rendering the process computational demanding [51, 52].

In general and for most cases, trials in the order of tenth to hundredth of thousands are

more than adequate.

3.1.3 Progress in Stochastic Algorithms for Chemical Kinetics

The stochastic simulation algorithm simulates each reacting event, which renders the

algorithm accurate, but at the same time computationally demanding. It especially

becomes unfavorable when there is a large number of reactions occurring with high

frequency. For instance, when fast dimerization reactions are present. There have been

numerous attempts to improve the efficiency of SSA and most of them within the last

ten years, even though the algorithm exists since the 70’s. The effort is parallel to
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the realization that synthetic biology and gene network engineering in particular can

greatly benefit from the existence of sophisticated stochastic algorithms targeted for

computer-aided design.

Gibson and Bruck improved the performance of SSA by resourcefully managing the

need for random numbers, creating the Next Reaction variant of SSA [53]. Cao and

coworkers optimized the Direct reaction variant of the SSA, proving that for certain

systems this approach is more efficient than the Next Reaction variant [54]. However

the algorithm remained computationally expensive.

A number of mathematically equivalent approximation to the SSA have been pro-

posed aiming to balance efficiency with complexity. In general, such approximations can

be classified into two major categories, time-leaping methods and system-partitioning

methods. The time-leaping methods depend on the assumption that many reacting

events will occur in a time period without significantly changing the reaction probabili-

ties, i.e. the change in the state of the system minimally impacts the reaction propensi-

ties. This group includes the explicit [55] and implicit tau-leaping [56] algorithms, which

use Poisson random variables to compute the reacting frequencies of each reacting events

in a given time interval. The main drawback of the tau-leaping approximation is that

it becomes inaccurate when a significant number of critical reactions (reactions where

even a single reacting event significantly impacts the reaction propensities) are included

in a single leap such that the reaction propensities change excessively or some molecular

populations become negative. Concerns have been addressed by adaptively restricting

the size of each individual leap [57, 58, 59]. Similarly, Tian and Burrage proposed a tau-

leaping method based upon binomial random variables rather than unbounded Poisson

random variables [60]. While these recent versions appear to be more vigorous they still

are insufficient when small numbers of reacting molecules result in dramatic changes in

propensity functions.

The second approach to speeding up the SSA involves separating the system into

slow and fast subsets of reactions. In these methods, analytical or numerical approx-

imations to the dynamics of the fast subset are computed and then the slow subset

is stochastically simulated. In one of the first such methods, Rao and Arkin applied

a quasi-steady-state assumption to the fast reactions and treated the remaining slow

reactions as stochastic events [61]. Recently, hybrid methods have received considerable
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interest. Puchalka and Kierzek partitioned the system into slow and fast reaction sub-

sets, with the first propagated through the Next Reaction variant and the latter through

a Poison (tau-leaping) distribution [62]. Haseltine and Rawlings also partition the sys-

tem into slow and fast reactions, representing them as jump and continuous Markov

processes respectively [63]. Both aforementioned hybrid methods suffer when it comes

to implementation issues, making them slower or inaccurate. In a similar fashion to

Haseltine and Rawlings, Salis and Kaznessis separated the system into slow and fast

reactions and managed to overcome the inadequacies and achieve a substantial speed

up compared to the SSA while retaining accuracy [64]. Fast reactions are approximated

as a continuous Markov process, through Chemical Langevin Equations (CLE) [65] and

the slow subset is approximated through jump equations derived by extending the Next

Reaction variant approach [53]. This hybrid method is discussed in more detail in

Sec. 3.2. Goutsias proposed a quasiequilibrium method [66] based on the work of Rao

and Arkin [61] and that of Haseltine and Rawlings [63]. Cao et al. have partitioned

the system according to fast and slow species in order to develop the slow-scale SSA

(ssSSA) [67]. Finally, Weinan and coworkers studied the use of a two SSA combination

scheme, an outer and an inner SSA, where the first simulates slow reactions based on

the information received from the latter that propagates the fast subset [68].

Except from those two major categories there are also other approaches that cannot

be classified to one or the other group. Such methods include the equation free proba-

bilistic steady state approach of Salis and Kaznessis [69]. In this methodology reactions

are partitioned into slow/discrete and fast/discrete subsets and the future states are

predicted through the sampling of a quasi steady state marginal distribution. A similar

approach is followed in the work of Samant and Vlachos [70]. Recently, Erban and

coworkers proposed an equation-free numerical technique in order to speed up SSA [71].

SSA is used to initialize and estimate probability densities and then standard numerical

techniques propagate the system. In a different approach, Munsky and Kammash used

projection formalism to truncate the state space of the corresponding Markov process

and then directly solve or approximate the solution of the CME [72].
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3.2 A Hybrid Stochastic Algorithm

Salis and Kaznessis proposed a hybrid stochastic algorithm that is based on a dynamical

partitioning of the set of reactions into fast and slow subsets [64]. The fast subset is

treated as a continuous Markov process governed by a multidimensional Fokker-Plank

equation, while the slow is considered to be a jump or discrete Markov process governed

by a CME. The approximation of fast/continuous reactions as a continuous Markov

process significantly reduces the computational intensity and introduces a marginal

error when compared to the exact jump Markov simulation. This idea becomes very

useful in biological systems where reactions with multiple reaction scales are constantly

present.

3.2.1 System Partitioning

Given a stochastic chemical kinetics models (cf. Sec 3.1), the set of reactions is dy-

namically portioned into two subsets, the fast/continuous and slow/discrete reactions.

Namely M is now the sum of the fast Mfast and slow M slow reactions respectively.

Propensities are also designated as fast αf and slow αs.

For any reaction to be classified as fast the following two conditions need to be

met [64, 65]

• The reaction occurs many times in a small time interval.

• The effect of each reaction on the numbers of reactants and products species is

small, when compared to the total numbers of reactant and product species.

Or in equation form, respectively,

(i) αj
(
X(t)

)
≥ λ� 1

(ii) Xi(t) > ε|νji|, (3.9)

where the ith species is either a product or a reactant in the jth reaction. The two

parameters λ and ε define respectively the numbers of reactions occurring within time

∆t and what is the upper limit for the effect of a reaction to be negligible in the number

of molecules of the reactants and products. This approximation becomes valid when
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both λ and ε become infinite i.e. in the thermodynamic limit. In practice, typical values

for λ and ε are 10 and 100 respectively. Obviously the conditions must be evaluated

multiple times within a simulation since both the propensities and the state of the

system change over time. This practically means that it is possible for one reaction to

interchange subsets, i.e. fast or slow, within an execution.

3.2.2 Propagation of Fast Subsystem - Chemical Langevin Equation

The fast subset dynamics are assumed to follow a continuous Markov process descrip-

tion and therefore a multidimensional Fokker-Planck equation describes their time evo-

lution [65]. The multidimensional Fokker-Plank equation more accurately describes the

evolution of the probability distribution of only the fast reactions. The solution is a

distribution, not necessarily Gaussian, depicting the state occupancies. If the interest is

in obtaining one of the possible trajectories of the solution, the proper course of action

is to solve a system of chemical Langevin Equations (CLEs) [47].

A CLE is an Itô stochastic differential equation (SDE) [73] with multiplicative noise

terms and represents one possible solution of the Fokker-Planck equation. From a

multidimensional Fokker-Planck equation we end up with a system of CLEs

dXi =
Mfast∑
j=1

νjiαj
(
X(t)

)
dt+

Mfast∑
j=1

νji

√
αj
(
X(t)

)
dWj , (3.10)

where aj , νji are the propensities and the stoichiometric coefficients respectively and

Wj is a Wiener process responsible for the Gaussian white noise.

Efficient and accurate integration of CLEs is a significant part of the current disser-

tation. Chapters 4 and 5 discuss in depth methods that successfully overcome many of

the numerical integration challenges that are highlighted in Sec 3.3.

3.2.3 Propagation of Slow Subsystem - Jump Equations

On the other hand, the time evolution of the subset of slow reactions is propagated in

time using a slightly modification of the Next Reaction variant of SSA [53]. A system

of differential jump equations is used to calculate the next jump of any slow reaction.
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The jump equations are defined as follows,

dRj(t) = αsj
(
X(t)

)
dt

Rj
(
t0
)

= log
(
rj
)

j = 1, . . . ,M slow, (3.11)

where Rj denotes the residual of the jth slow reaction, αsj are the propensities of only the

slow reactions and rj is a uniform random number in the interval (0, 1). Equation (3.11)

depicts the rate at which the reaction residuals change. Note that the initial conditions

of all Rj are negative. The next slow reaction occurs when the corresponding residual

value makes a zero crossing, from negative to positive values.

Equations (3.11) are also Itô differential equations even though they do not contain

any Wiener process, because the propensities of the slow reactions depend on the state

of the system, which in turn depends on the system of CLEs. Due to the coupling

between the system of CLEs and the differential jump equations, a simultaneous nu-

merical integration is necessary. If there is no coupling between fast and slow subsets or

there are only slow reactions the system of differential jump equations (cf. Eq. (3.11))

simplifies to the Next Reaction variant.

The method can be further sped up by allowing more than one zero crossings, i.e.

more than one slow reactions to occur in the time it takes the system of CLEs to advance

by ∆t. Though this is an additional approximation contributing to the error introduced

by the approximation of the fast reactions as continuous Markov process, it results in

significant decrease in simulation times. The accuracy depends on the number of slow

reactions allowed within a ∆t and decreases as the number increases.

3.3 Multiple Time Scales in Gene Expression

Biological phenomena, such as gene expression, and in general cell functions are charac-

terized by disparity in time scales. Fast dimerization reactions versus slow transcription

events are among the most common encounters in gene network engineering. The dif-

ferent time scales result in stiff mathematical descriptions of the underlying physical

problem causing extra challenges in the time integration.

In a sense, the reason for the inefficiency of SSA can be attributed to the existence of
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Figure 3.1: Appropriate Markov process regimes depending on the number of molecules
and reaction propensities. For even larger values of ε and λ the appropriate description
falls into ordinary differential equation and intrinsic noise effects can be neglected for
practical purposes.

multiple time scales. Therefore much of the effort and approaches discussed in Sec. 3.1.3

aim to increase the efficiency of the algorithms when stiffness is present. A stiff system

causes numerical integration methods to become numerically unstable, unless the step

size is taken to be extremely small. Figure 3.1 depicts the appropriate Markov process

regimes that each of the reactions in a given chemical kinetics model may belong to.

This separation is necessary in order to efficiently and successfully handle stiffness.

Many of the methods presented in Sec. 3.1.3 tend to perform better on some of the four
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regions (I-IV), which are characterized by the relative values of ε and λ, or even parts

of regions. In particular, the source of stiffness may be dual, either from rather rapidly

fluctuating species populations or large kinetic parameter values. Both lead to quickly

varying probabilistic reaction rates which in principle are the main reason for numerical

instabilities.

At the moment there is not a universal algorithm that can handle the different time

scales present in any given chemical kinetics model stemming from a real biological

example. A major part of this dissertation focuses on addressing the accurate and

efficient numerical integration of stiff chemical Langevin equations. This work builds

on the hybrid method presented in Sec. 3.2 studying multiple time scale algorithms

that will allow for a greater flexibility in the numerical integration of chemical kinetic

systems. To be more concise, Chapters 4 and 5 concentrate on section II of Fig. 3.1

presenting two different methods to overcome stiffness in the continuous Markov process

regime.

Examples of biological systems that lie in the continuous Markov process regime

may include but are not limited to fast occurring dimerization reactions, inducer-protein

interactions and protein binding to non-specific DNA sites.
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Chapter 4

An Adaptive Time Step Scheme

for Systems of SDEs with

Multiple Multiplicative Noise:

Chemical Langevin Equation, A

Proof of Concept

4.1 Introduction

Studying the effects of the intrinsic fluctuations of cell species in the overall cell pheno-

type requires the development of sophisticated stochastic models [74], including stochastic-

discrete and stochastic-continuous. Both have been introduced by Gillespie [50, 65]. Re-

cent literature has focused on developing algorithms that integrate multiple time scales

present in the system kinetics. Building on the work of Gillespie there have been many

algorithms that continue and improve its initial work for simulating stochastic chemical

systems [53, 55, 60, 54, 67, 69, 68, 61, 63, 64, 70]. The majority of these algorithms

have been incorporated in software suites that are able to simulate multiscale models of

biological reacting networks, but are not limited to them [1, 75, 76, 77]. In this work we

focus on chemical reacting systems that are modeled by a set of stochastic differential or
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chemical Langevin equations. Importantly we present an adaptive time-step algorithm

that numerically integrates stochastic differential equations (SDEs) involving multiple

time scales.

The challenge is to develop integration schemes for SDEs that are both accurate and

as fast as their deterministic equivalents. While SDEs can be numerically integrated in a

similar fashion as ordinary differential equations (ODEs) there are significant differences

in the two approaches. The major one stems from the fact that the classic chain rule

found in the deterministic case is substituted by the well known Itô formula in stochastic

calculus. This complicates the extraction of numerical methods from an Itô-Taylor

expansion, since extra terms are introduced. The latter reduces to the chain rule formula

only for linear systems. Moreover, the theory behind SDEs becomes complicated and

differs from that of ODEs for adaptive and implicit integration methods. However,

there is a sufficient number of numerical schemes for SDEs, starting from the simple

Euler-Maruyama method, going on with the Milstein method, and continuing with

higher order schemes such as Runge Kutta methods. To that we can add the explicit

and implicit, partial implicit or fully implicit, versions of the methods [78, 79, 80]. A

detailed description and analysis of these methods can be found in the well written book

of Kloeden and Platen [73].

Similar to ODEs, multiple time scales in the underlying models cause a system of

SDEs to become mathematically stiff. Conventional fixed step methods, in both the

stochastic and the deterministic regime, require a small time step for integrating stiff

systems. Therefore they become computationally slow. In addition, stiffness may arise

during some parts of the simulation allowing for a larger time step in the remaining time

interval. Hence the need for an adaptive time step method that will adjust the time step

accordingly is evident. To our knowledge, and in contrast to the deterministic cases,

adaptive time stepping strategies for SDEs are significantly less developed and limited to

special cases. Although recently there has been a considerable effort to develop adaptive

time stepping schemes for SDEs the majority of them deals only with cases where there

is only a single Wiener process and where SDE terms are commutative [81, 82, 83, 84].

In the literature there are variable step size algorithms which in their majority use higher

order methods to numerically integrate the system [81, 82]. This implies multiple Itô

integrals have to be approximated increasing the computational cost. An adaptive
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scheme based on the Euler-Maruyama method is also available, but with a significant

implementation cost [85].

In this chapter we present an adaptive time stepping scheme for integrating sys-

tems of stiff stochastic differential equations (SDEs) with multiple multiplicative noise.

These types of SDEs are the most difficult to numerically integrate due to the intense

coupling of the noise terms and the existing stiffness. We use the Milstein method as

our numerical method and combine it with local error criteria originating from the work

of Lamba [84]. These determine when the adaptive time stepping selection mechanism

should be introduced. For the variable step size scheme we choose to use the method-

ology of Gaines and Lyons [83] that introduced the notion of Brownian trees originated

from the work of Lévy [86]. Brownian trees are based on a binary logic; the step can be

either halved or doubled.

Finally, the developed framework is applied and tested to a particular class of SDEs,

the chemical Langevin equations (CLEs) that arise in the description of dilute chemical

reacting systems far from the thermodynamic limit [65]. Such systems can be described

as continuous Markov processes governed by a chemical master equation that reduces to

a Fokker-Planck equation [64]. The CLE is an Itô stochastic differential equation with

multiplicative noise and represents one possible solution of the Fokker-Planck equation.

These kinds of systems have recently appeared in the field of computational biology,

modeling cell processes and interactions of cell species, where fluctuations play a key

role. Three examples are chosen, the first is a system of linear SDEs with multiple

multiplicative noise and the second is a nonlinear system. In the final example we use

an actual stiff biological example to test the performance of the proposed algorithm in

a realistic biological network. Therefore the adaptive scheme is integrated into Hy3S, a

collection of multiscale algorithms that use CLEs to propagate system of reactions that

belong in the continuous Markov process regime [1]. Hy3S is capable of simulating the

stochastic dynamics of networks of biochemical reactions and has been used to study

the dynamic behavior of gene regulatory networks [2].

The present chapter is organized as follows. In the Theory section (cf. Sec. 4.2) we

formulate the problem and then discuss convergence properties of numerical solutions for

SDEs. Next we outline the Milstein method, the numerical scheme used predominantly

in CLEs integration. Then we describe the binary adaptive time step selection based
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on the notion of Brownian trees and continue with the introduction of the local error

criteria. Next, we briefly provide some necessary background information about CLEs

and finally we discuss implementation issues. In the Examples section (cf. Sec. 4.3) we

test and report on the behavior of the proposed scheme and finally in the discussion

section (cf. Sec. 4.4) we conclude and argue about the contribution of the present scheme.

Very recently, a new method was published by Lamba et al. that demonstrates

strong convergence of an adaptive time stepping scheme for SDEs based on the Euler-

Maruyama method instead of the Milstein method used in the present work [87]. While

their method would be likely faster for a majority of SDEs, since it has less imple-

mentation requirements, mainly in that it does not require the approximation of a two

dimensional Itô integral, it fails to work for most CLEs, because they do not always

satisfy Assumption 5.1 in their manuscript. This assumption requires that the number

of reactants be equal to the number of reactions which is not the case in the majority of

CLEs and also requires the CLEs to follow a dissipativity condition which is not always

necessarily met.

For the first time an adaptive time stepping method is presented for integrating

systems of chemical Langevin equations accurately and efficiently. Chemical Langevin

equations are stochastic differential equations with multiple multiplicative noises and

belong to the subclass of SDEs that are among the hardest to numerically integrate

due to the noncommutativity and the multiple noise terms. To our knowledge there

are no simple and relative easy to numerically implement schemes that accurately and

efficiently overcome noncommutative terms and multiplicative noise. Most previously

reported schemes rely on higher order Runge-Kutta algorithms and are harder to imple-

ment. Importantly, the scheme is simple to implement and can be potentially applied

to any system of SDEs beyond CLEs.
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4.2 Theory

We consider a system of Itô SDEs with multiple multiplicative noise,

dXi = fi
(
X(t)

)
dt+

M∑
j=1

gi,j
(
X(t)

)
dWj(t), i = 1, . . . , N

Xi(t = 0) = Xi,0, t ∈
[
0, T

]
, (4.1)

where X(t) is a N-dimensional state vector. In the case of biomolecular systems, for

example, X(t) can be the vector with the concentration of the N species. W (t) is an

M-dimensional Wiener process. A Wiener process W is a Gaussian process with the

following properties

E
(
W (t = 0)

)
= 0, E

(
W (t)W (s)

)
= min(t, s), (4.2)

where E(y) is the expectation value of variable y. Additionally, fi
(
X(t)

)
, gi,j

(
X(t)

)
are

scalars with values depending on the state vector of the system. The first part on the

right hand side of Eq. (4.1) is called the drift term, while the second is usually referred

to as the diffusion part. For chemical reaction networks fi
(
X(t)

)
is associated with the

deterministic reaction rates and gi,j
(
X(t)

)
are the terms of the fluctuations for a system

away from the thermodynamic limit.

There are two ways to write down an SDE, using either the Itô or the Stratonovich

formulation. Equation (4.1) uses the Itô formulation. The main difference between

the two lies in the way the stochastic integrals are computed. The Itô formulation

computes the integral in the beginning of each subinterval while Stratonovich computes

it in the middle. The two forms are equivalent and we can obtain the Stratonovich

from the Itô form by using a simple formula [73]. From a purely mathematical point

of view, both representations are appropriate. From a physical point of view Itô SDEs

are more appropriate describing systems in which intrinsic noise is important [73]. In

the remainder of the chapter we will consider SDEs in the Itô form, since CLEs are also

cast in Itô form.
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4.2.1 Strong and Weak Convergence

Before dealing with the actual numerical integration schemes, there is an important

concept we have to consider, convergence of the numerical solution. Although these

definitions are found in the literature we present these definitions here for completeness.

In numerical methods used to integrate SDEs, two definitions of convergence are present,

the weak and the strong convergence. The weak convergence deals with convergence in

the probability distribution of the actual and numerical solution. On the other hand,

strong convergence deals with convergence between the trajectories of the actual and

numerical solution. In equation form the above definitions are formulated as follows [73].

• Strong convergence. A time discrete approximation Xδ(t), of the Itô process Xt,

converges strongly to Xt with order γ > 0 at time T, if there exists a positive

constant C, independent of δ and δ0 > 0, such that,

ε(δ) = E
(∣∣XT −Xδ(T )

∣∣) 6 Cδγ , δ ∈ (0, δ0) (4.3)

• Weak convergence. A time discrete approximation Xδ(t), of the Itô process Xt,

converges weakly to Xt with order β > 0 at time T, if for each q ∈ C2(β+1)
p [q is

2(β + 1) times differentiable] there exists a positive constant C, independent of δ

and δ0 > 0, such that,

ε(δ) =
∣∣E(q(XT

))
− E

(
q
(
Xδ(T )

))∣∣ 6 Cδβ, δ ∈ (0, δ0) (4.4)

In practical situations when algorithms are used to numerically compute the solution

of SDEs, Eq. (4.3) and (4.4) can be used to calculate the error. Though Eq. (4.3)

is more appropriate, its implementation for computing the strong mean and variance

errors requires fixing the Brownian paths that the Wiener process follows. Practically

this means we have to use the same sequence of random numbers to compute the

actual solution, analytically if possible, and the approximate one, which is not always

applicable.
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4.2.2 Milstein Method

The simplest scheme to numerically integrate Eq. (4.1) is the explicit Euler-Maruyama

method. It is derived from first order truncation of the Itô-Taylor expansion [73]. The

Euler-Maruyama method has a strong order of 0.5 and weak order 1.0. The scheme for

Eq. (4.1) has the form

Xk+1
i = Xk

i + fi
(
Xk
)
∆t+

M∑
j=1

gi,j
(
Xk
)
I(j), i = 1, . . . , N, (4.5)

where

I(j) =
∫ t+∆t

t
dWj(t) u Nj(0,∆t) (4.6)

is an one dimensional (1D) Itô integral. In practical applications the 1D Itô integral

of Eq. (4.6) can be approximated as a Gaussian random number with zero mean and

variance ∆t, N(0,∆t).

The method we concentrate on is the the explicit Milstein method, which is similar

to the Euler-Maruyama method with the only difference being the addition of an extra

term containing a two dimensional Itô integral. This extra term is of order O(∆t)and

is responsible for increasing the strong order convergence to 1.0 compared to the 0.5

order of the Euler-Maruyama, while the weak order is also 1.0. The Milstein scheme is

derived also from an Itô-Taylor expansion. Applying it directly to Eq. (4.1)

Xk+1
i = Xk

i + fi
(
Xk
)
∆t+

M∑
j=1

gi,j
(
Xk
)
I(j)

+
M∑
j1=1

M∑
j2=1

Lj1gi,j2
(
Xk
)
I(j1, j2)︸ ︷︷ ︸

extra term

, i = 1, . . . , N, (4.7)

where I(j1, j2) is a two dimensional Itô integral:

I(j1, j2) =
∫ t+∆t

t
dWj1(t)dWj2(t), (4.8)
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and Lj1 is an operator defined as follows

Lj1 =
M∑
d

gd,j1
∂

∂Xd
(4.9)

The difficult part in the implementation of this method is the approximation of the

two dimensional (2D) Itô integral (cf. Eq.(4.8)). When j1 = j2 the expression for the

Itô integral simplifies to

I(j1, j1) =
1
2
{(

∆Wj1

)2 −∆t
}

(4.10)

When j1 6= j2 with j1, j2 = 1, . . . ,M the Itô and Stratonovic versions of the in-

tegral are equal and thus we can use the following approximation which is based on

the Stratonovic definition of the integral. The approximation is based on a Fourier

expansion [73] of the Stratonovic version of Eq.(4.8).

I(j1, j2) = ∆t
{1

2
ξj1ξj2 +

√
ρp
(
µj1,pξj2 − µj2,pξj1

)}
+

∆t
2π

p∑
r=1

1
r

{
ζj1,r

(√
2ξj2 + ηj2,r

)
− ζj2,r

(√
2ξj1 + ηj1,r

)}
, (4.11)

where

ρp =
1
12
− 1

2π2

p∑
r=1

1
r2

(4.12)

for j = 1, . . . ,M , r = 1, . . . , p and p = 1, 2, . . . , determines the number of Fourier

expansion terms retained in the solution. ξj , µj,p, ηj,r and ζj,r being all independent

normal Gaussian random numbers, N(0, 1). In particular ξj is correlated to ∆Wj by

the following relation

ξj =
1√
∆t

∆Wj , (4.13)

where ∆Wj is again approximated as a Gaussian random number with zero mean and

variance ∆t, N(0,∆t). The choice of p value determines the accuracy of the 2D Itô

integral approximation. In this work it is chosen so it guarantees that the order of
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strong convergence is γ = 1. Its actual influence on the solution will be examined

in Sec. 4.3.

In a similar fashion, we can extract higher order methods from the Itô-Taylor ex-

pansion, such as Runge-Kutta methods [78]. The drawback is that although higher

order methods provide a more accurate solution, they also demand the calculation of

higher order Itô integrals. Practically this increases the demand for random number

generation, hence causing significant slow down in execution times.

Except from the relative small computational overheads, the Milstein method has

also another advantage. It is the simplest numerical method with a strong order 1.0.

This feature becomes important in our effort to combine the method with a variable size

algorithm. According to Gaines and Lyons in order for an adaptive time step regime to

converge to the correct solution the numerical method must have at least strong order

of convergence one [83]. In conclusion, the Milstein method is the simplest numerical

scheme one can use in a variable time stepping procedure by balancing out the required

accuracy and computational overhead.

4.2.3 Adaptive Time Stepping: Brownian Trees

Using an adaptive time stepping scheme allows for an integration step size that is

dynamically changed depending on convergence criteria. Such schemes increase the

efficiency of simulation, especially when dealing with dynamically stiff systems, where

the method will decrease the time step of the numerical integration when stiffness exists,

but will increase it when the system is no longer stiff.

Adaptive time step methods for SDEs differ significantly from ODEs. In the deter-

ministic case using an adaptive scheme requires the recalculation of all terms using the

new time step. In the stochastic case while the recalculation using the new time step

is also required, the procedure differs when considering the Wiener increments ∆Wj .

While it seems logical to solely draw new ∆Wj that will correspond to the altered time

step and continue with the calculation, this would be inappropriate. When integrating

SDEs it is important that the solution remains in the proper Brownian path, where the

term Brownian path is used for describing the increment of the Wiener process ∆Wj .

This means that if we have to alter the time step we cannot simply throw away ∆Wj

and draw new ones. In that case we would end up with a biased solution, meaning the
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Figure 4.1: A schematic representation of a Brownian tree.

solution would not remain in the correct Brownian path. In order to ensure that the

solution remains on the correct path we have to condition the new ∆Wj selection on

the previous one. In other words instead of drawing a new ∆Wj we compute the new

one using the old one. For example, if ∆W∆t corresponds to time step ∆t, then if the

time step is halved, ∆W∆t/2 has to be computed using ∆W∆t. The implementation of

this strategy requires the use of binary data structures referred to as Brownian trees.

The notion of Brownian trees introduced by Gaines and Lyons based on results of

Lévy becomes very useful in selecting the new Wiener increments (∆Wj) conditioned on

the previous ones [83]. Brownian trees are based on the following binary logic: the time

integration step can be either halved or doubled. Generalizations of the Brownian trees

where the time step is increased in multiples between 0.0 and 2.0 exist in the literature,

but require extra effort to compute the new Wiener increments [81]. A Brownian tree

is made up of increments of Wiener processes ∆Wi,j , where j indicates the row and i

the branch where ∆W is located on the tree. The values of each row are conditioned to

the corresponding values of the previous row. Also each ∆Wi,j corresponds to a time

step that is equal to the initial time step divided by 2j−1.

In Fig. 4.1, a schematic representation of a Brownian tree is presented. The top row

corresponds to the initial time step of the simulation ∆tini and houses the corresponding

Gaussian random numbers (for a single SDE, ∆W1,1 is a scalar value, while for a system

of SDEs ∆W1,1 is a vector). Additional branches and rows are created when halving

the time step. The number of branches of each row is 2j−1 and the corresponding
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time step for each ∆Wi,j is ∆tini/2j−1, where j is the row number. The construction

of the Brownian tree, i.e. evaluating the Wiener increments of each branch, utilizes a

relationship introduced by Lévy [82, 83]

∆W2k−1,j+1 =
1
2

∆Wk.j + yk,j , j = 1, 2, . . . ,# of rows

∆W2k,j+1 =
1
2

∆Wk.j − yk,j , k = 1, 2, . . . , 2j−1, (4.14)

where yk,j follows a normal distribution with zero mean and variance 2−j and k denotes

the number of nodes with each node having two branches. This procedure assures that

the integration will remain on the proper path initially defined by ∆W1,1. It is important

to note that for the definition of the Brownian tree only ∆W1,1 is necessary, since all

other rows follow from Eq. (4.14). This allows for a convenient way to dynamically

generate the tree during simulations.

Going up and down in the Brownian tree or equivalently altering the time step

depends on whether or not a set of pre-defined constraints are met. For example, if we

try an initial time step ∆tini with ∆W1,1 and one or more of the constraints are not met,

the system is rewound and half the initial step size is tried where now ∆W1,2 is used.

If that fails then ∆tini/4 with ∆W1,3 is tried, but if the criteria are met the system is

propagated with the remaining half step and ∆W2,2. The procedure continues until the

final time has been reached. Every time the step size is accepted the algorithm checks

if it is possible to climb up the tree, otherwise the time step is kept the same. The step

can be doubled whenever the branch number is divisible by two. This procedure allows

for a flexible time step size that will decrease if necessary and increase when able.

The procedure described above corresponds to an SDE with a single Wiener process.

For a system of SDEs with multiple noise terms (M Wiener increments) the above

mentioned scheme can be easily generalized. The main difference is that at every branch

of the Brownian tree instead of ∆Wi,j being a scalar, ∆Wi,j is a vector containing the M

Wiener increments. As in the single Wiener process case, we use Eq. (4.14) to generate

the corresponding vector elements of each branch. Equation (4.14) is applied at each

vector element. Again we only need to know the elements of vector ∆W 1,1 in order to

construct all subsequent rows and branches of the tree. Finally the strategy for climbing

up and down the tree is independent of the number of Wiener processes and therefore
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Figure 4.2: Two distinct representations of a Brownian tree. (a) A Brownian tree with
3 rows. (b) A Brownian tree with 7 rows.
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is identical in either the single or multiple Wiener processes cases.

In Fig. 4.2 we use MATLAB to generate two different visualizations of the Brownian

tree. In both subfigures an initial value of the random process W ∼ N(0,∆t) is chosen

and through Eq. (4.14) the underlying rows are created. ∆tini is chosen to be 0.01 s

and we assume that we start from W = 0 for simplicity, i.e., ∆W = W ∼ N(0,∆t).

In Fig. 4.2(a) the values between each dot depict a Wiener increment corresponding to

∆Wi,3, i = 1, 2, 3, 4. In other words, Fig. 4.2(a) is an example realization of Fig. 4.1,

where the bold (blue) dashed (green) and bold with dots (red) line depict the first,

second and third row respectively. Note that all three lines have the same start and end

points which basically summarizes the idea of Brownian trees, remain on the correct

Brownian path. From Fig. 4.2(b) we observe that as the row number increases the

Wiener increment become finer and finer.

4.2.4 Error Criteria

In order for the adaptive scheme to decide whether or not to alter the time step local

error criteria are necessary. Lamba proposed a set of criteria that determine the local

error on both the drift and diffusion terms [84]. In that work both criteria are present

for an SDE with one dimensional Wiener process. Based on these derivations, we extend

the criteria so that they apply to a system of SDEs with multiple multiplicative noise

as in Eq. (4.1). The drift local error (Ed) is namely

Ed
(
Xk,∆t

)
=
wwww∆t

2
(
f(Xk + ∆tf(Xk))− f(Xk)

)wwww
∞

(4.15)

The infinity norm corresponds to the maximum absolute sum along the row dimension.

The drift local error is of order . The local error of the diffusion term Edf is

Edf
(
Xk,∆t

)
=

1
6

∆W 3

wwh′ww∞wwh′ · hww∞ (4.16)

where ∆W 3 is an M -dimensional vector with cubed Gaussian random numbers as ele-

ments, h (N × 1 matrix) contains the sum of the corresponding row elements of matrix

g
(
X(t)

)
, meaning hj =

∑
i gj,i, h

′
(N ×N matrix) is the Jacobian of h and · symbolizes
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matrix vector multiplication. Again the infinity norm corresponds to the maximum ab-

solute sum along the row dimension. Both errors correspond to estimates of the leading

error component in the drift and diffusion terms.

4.2.5 Chemical Langevin Equations

A subset of SDEs with multiple multiplicative noise terms is the chemical Langevin

equations (CLEs) [65]. In what follows, we will briefly outline how CLEs emerge given

a chemical kinetics model. Consider a well-mixed volume V , containing N distinct

chemical species Si (i = 1, . . . , N) participating in M chemical reactions. The state

vector X(t) =
(
X1(t), . . . , XN (t)

)
contains the time evolution of the system, i.e. the

number of molecules from each species at a certain time. An M×N matrix ν is defined,

containing all stoichiometric coefficients, where νi,j is the change in the number of Si
molecules caused by the jth reaction. Reaction propensities, α

(
X(t)

)
dt, form an M -

vector denoting the probabilistic rates of a reaction. In particular, α
(
X(t)

)
dt gives the

probability that the jth reaction occurs in a small time interval [t, t+ dt].

If the following conditions are met the system of reactions can be described as a con-

tinuous time Markov process governed by multidimensional Fokker-Planck equation [64].

(i) The reaction occurs many times in a small time interval.

(ii) The effect of each reaction on the numbers of reactants and products species is

small, when compared to the total numbers of reactant and product species.

Or in equation form, respectively,

(i) αj
(
X(t)

)
≥ λ� 1

(ii) Xi(t) > ε|νji|, (4.17)

where the ith species is either a product or a reactant in the jth reaction.

The two parameters λ and ε define respectively the numbers of reactions occurring

within time ∆t and what is the upper limit for the effect of a reaction to be negligible

in the number of molecules of the reactants and products. This approximation becomes

valid when both λ and ε become infinite i.e. in the thermodynamic limit. In practice,

typical values for λ and ε are 10 and 100 respectively.
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The multidimensional Fokker-Planck equation describes the evolution of the proba-

bility distribution of the reactions. The solution is a distribution, not necessarily Gaus-

sian, depicting the state occupancies. If the interest is in obtaining one of the possible

trajectories of the solution, the proper course of action is to solve a system of CLEs [47].

The CLE is an Itô stochastic differential equation with multiplicative noise and repre-

sents one possible solution of the Fokker-Planck equation. From a multidimensional

Fokker-Planck equation we end up with a system of CLEs

dXi =
M∑
j=1

νjiαj
(
X(t)

)
dt+

M∑
j=1

νji

√
αj
(
X(t)

)
dWj , (4.18)

where αj , νji are the propensities and the stoichiometric coefficients respectively, M is

the number of fast reactions and W is a Wiener Process with dimension M , producing

the Gaussian white noise.

In order to validate the proposed algorithm we will need to compare our numerical

solution with the actual solution. In general, for systems of SDEs with multiple multi-

plicative noise, like Eq. (4.18), analytical solutions do not exist. Therefore there is the

need to find an alternative way to estimate the error. In the case of chemical kinetics

models we are able to compute an accurate numerical solution using the fact that the

original system is a discrete time Markov process governed by a chemical master equa-

tion [50]. We use the stochastic simulation algorithm (SSA) to obtain the trajectories

which we consider as accurate as the actual solution [53]. Note that the trajectories

produced by the system of CLEs are an approximation to the solution of SSA when the

above mentioned conditions are met with the error being marginal [64].

As a final point we would like to discuss under what conditions systems in the form

of Eq. (4.18) are considered to be stiff. While in the deterministic case we can simply

judge by looking into the eigenvalues of the system, in the stochastic regime there is

not a similar criterion. Nevertheless, one can judge whether or not the system is stiff

by looking into the values of the reaction propensities. The larger the absolute ratio of

the maximum propensity over the minimum propensity, the larger the stiffness of the
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system [69]. A measure of stiffness Sf can then be defined as

Sf =
max

(
α(t)

)
min

(
α(t)

) (4.19)

where α(t) corresponds to the vector of reaction propensities.

4.2.6 Implementation Details

In this section we apply the adaptive time stepping algorithm to the system of CLEs

(cf. Eq. (4.18)) and present a brief description of how the algorithm functions.

1. Milstein Method

We start by rewriting the basic relations of the numerical integration scheme as they

apply in the system of CLEs. Applying the Milstein method to the system of CLEs,

Xk+1
i = Xk

i +
M∑
j=1

νjiαj
(
Xk
)
∆t+

M∑
j=1

νji

√
αj
(
Xk
)
I(j)

+
1
2

M∑
j1=1

M∑
j2=1

M∑
n=1

νj1,nνj2,i

√
αj1
(
Xk
)

αj2
(
Xk
) ∂αj1
∂Xn

I(j1, j2), i = 1, . . . , N, (4.20)

where I(j), I(j1, j2) represent 1D and 2D Itô integrals, respecively.

2. Local Error Criteria

For the local error criteria, Eq. (4.15) and (4.16), we have for the vector f and

matrix g, respectively.

f =



M∑
j=1

νj1αj
(
Xk
)

...
M∑
j=1

νjNαj
(
Xk
)

 (4.21)
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g =


∑M

j=1 ν11

√
α1

(
Xk
)

· · ·
∑M

j=1 νM1

√
αM
(
Xk
)

...
. . .

...∑M
j=1 ν1N

√
α1

(
Xk
)
· · ·

∑M
j=1 νM1

√
αM
(
Xk
)
 , (4.22)

which when substituted in the respective equations yield the local error criteria appli-

cable to our case. In our algorithm we introduce two user defined parameters that are

used to control the error tolerance in the adaptive scheme. The first variable called SDE

tolerance represents the tolerance in the diffusion error term. The second parameter is

a weight coefficient, called SDE coeff, that weights in the importance of the tolerance

in the drift term. Basically, the tolerance in the drift term is calculated by multiplying

SDE coef with SDE tolerance. The higher the SDE coeff value the less important the

drift error becomes and vise versa. While the standard procedure is to use the same

error tolerance for both error terms, we found that by using this extra weight coefficient

the algorithm can be better tuned to produce both accurate and fast results. Therefore

we choose to use a value of 1,000 for the SDE coeff. Of course, the choice of the coef-

ficient is user defined and may vary depending the application. Usually the further the

system of SDEs from the diffusion limit the more important the drift terms becomes

and the smaller the SDE coeff should be.

3. Convergense

For comparison purposes we will contrast the behavior of the proposed scheme with

the solution obtained from SSA. For that we chose to use the definition of the weak con-

vergence. Even though the definition of strong convergence is more appropriate there

is no known way we can use the same sequence of random numbers to ensure the same

path wise solution. This difficulty stems from the different approach the two algorithms,

namely SSA and the proposed one, have. Therefore, the error is computed based on the

definition of the weak error. We know that the weak convergence quantifies the conver-

gence of probability distributions of the actual and the numerical solution. The mean

and the variance of a distribution are two of its important characteristics. The weak

mean error measures the difference in the mean of the actual and numerically obtained

distribution while the weak variance error measures the difference in the variance of the

two distributions. If we normalize the errors using the actual solution, we obtain the
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following equations for the weak mean and variance error

∆i
mean(t) =

E[Xactual
i (t)

]
− E

[
Xnumerical
i (t)

]
E
[
Xactual
i (t)

]
(4.23)

∆i
var(t) =

var
[
Xactual
i (t)

]
− var

[
Xnumerical
i (t)

]
var
[
Xactual
i (t)

]
where index i corresponds to the ith component of the state vector, E

[
Xi(t)

]
denotes

the mean of Xi(t) and var
[
Xi(t)

]
stands for the variance of Xi(t).

4.3 Examples

The subject of this section is to validate the adaptive scheme. Three examples are

used. The first is a chemical kinetics model that leads to a system of stiff linear CLEs,

while the second one leads to a system of stiff non-linear CLEs. In the final example

the adaptive scheme is integrated into Hy3S, a multiscale algorithm that uses CLEs

to propagate the system of reactions that belong in the continuous Markov process

regime [1]. Results are compared with the actual solution obtained through SSA and

with the simple Milstein scheme.

4.3.1 A Reversible Dimerization Reaction

Consider the reaction network depicted in Table 4.1, a slight modification from the one

used to study the implicit and explicit tau-leap methods [56]. The initial propensities

of the two reactions are

α1 = k1 × S1 = 108 molecules s−1

α2 = k2 × S2 = 108 molecules s−1 (4.24)

α3 = k3 = 9.998× 104 molecules s−1

The system initially and during the course of simulation satisfies Eq. (4.17), which

means that its time evolution can be described through a system of CLEs. Moreover,

fluctuations and the large values of the propensities, initially and during the course of
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Table 4.1: Reactions and Parameters for a Reversible Dimerization Reaction

Set of Reactions Mesoscopic Reaction Rates† Initial Values‡

S1

k1
GGGGGGA S2 k1 = 1.0× 105

[
S1

]
0

= 103

S2

k2
GGGGGGA S1 k2 = 1.0× 105

[
S2

]
0

= 103

k3
GGGGGGA S1 k3 = 9.998× 104

† for 0th order reactions the units are molecules s−1 and for 1st order reactions the
units are s−1.
‡ initial values are in number of molecules.

simulation, are responsible for the mathematical stiffness arising in the system of CLEs.

In order to validate the adaptive scheme we use SSA to simulate the system on the

time interval [0, 0.01] s. We use the SSA realization available in Hy3S [1]. As we men-

tioned in Sec. 4.2 the trajectories generated by both the SSA and the proposed scheme

sample the underlying distribution. In order to accurately sample the distribution we

need a large sample of trajectories. Here we run 10,000 independent trials. The results

obtained through SSA are presented in Fig. 4.3. Figure 4.3(b) presents the probability

distribution of the number of molecules of S1 and S2 at time t = 0.005 s. The computed

mean and variance (cf. Fig. 4.3(c) and 4.3(d)) will be used to validate the adaptive

Milstein scheme in the remainder of this section.

In what follows we propagate system of reactions (cf. Table 4.1) in time through

a system of CLEs and compare the results with SSA so that we can determine the

accuracy of the adaptive scheme. The system of CLEs is

dX1 =
[
ν11α1

(
X(t)

)
+ ν21α2

(
X(t)

)
+ ν31α3

(
X(t)

)]
dt

+ ν11

√
α1

(
X(t)

)
dW1 + ν21

√
α2

(
X(t)

)
dW2 + ν31

√
α3

(
X(t)

)
dW3

dX2 =
[
ν12α1

(
X(t)

)
+ ν22α2

(
X(t)

)]
dt+ ν12

√
α1

(
X(t)

)
dW1

+ ν22

√
α2

(
X(t)

)
dW2, (4.25)

where X1 corresponds to the state of species S1, meaning the number of molecules of
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Figure 4.3: Solution of the dimerization reaction system, depicted in Table 4.1, using
SSA in the interval [0, 0.01] s. (a) A sample trajectory of the number of S1 and S2

molecules. (b) The probability distribution of species S1 and S2 at t = 0.005 s. (c) Mean
number of S1 and S2 molecules averaged over 10,000 trials. (d) Variance of number of
S1 and S2 molecules averaged over 10,000 trials.
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Figure 4.4: Solution of Eq. (4.25) using the fixed step Milstein method (p = 10). (a)
Comparison of the average normalized weak mean error of S1 and S2 generated by the
fixed step (log scale) Milstein method. (b) Comparison of the average normalized weak
mean variance of S1 and S2 (log scale) generated by the fixed step (log scale) Milstein
method.

S1, and X2 corresponds to the state of species S2, νij is the stoichiometric coefficient of

the ith species in the jth reaction, and α1

(
X(t)

)
= k1 ×X1(t), α2

(
X(t)

)
= k2 ×X2(t),

and α3

(
X(t)

)
= k3 are the reaction propensities.

We first examine how well the fixed step Milstein method captures the complex

dynamics. The 2D Itô integral is approximated with a parameter p set to 10. Its

effect on the error will be discussed below. We run again 10,000 independent trials and

calculate the solution in the interval [0, 0.01] s. For comparison with the actual solution

(cf. Fig. 4.3) we calculate the normalized weak mean and variance errors of S1 using

Eq. (4.23) and report on their average. The results are depicted in Fig. 4.4.

From Fig. 4.4 we observe that the fixed step method fails to produce solutions when

the step size is larger than 5.0 × 10−6 s. This happens because during the integration

species concentrations attain negative values, which is physically unacceptable. Addi-

tionally, there is a slight decrease in the normalized weak mean error as the time step

decreases (cf. Fig. 4.4(a)), but still the order of the error remains O(10−4). On the

other hand, the error in the variance decreases continuously as the time step decreases
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(cf. Fig. 4.4(b)). The variance error decreases roughly by two orders of magnitude. In

summary, as the time step decreases significantly the fixed step method produces accu-

rate solutions. By comparing the corresponding probability distributions we can infer

that an acceptable convergence in distribution is observed when ∆t is equal to or less

than 5.0× 10−7 s.

Next we study the accuracy of the proposed adaptive scheme. First, we examine

how the error generated by the scheme is affected by the user defined error tolerance

(SDE tolerance). On the other hand SDE coeff is kept constant at 1,000 during the

course of all simulations involving the adaptive scheme. Second, we examine the effect

of parameter p on the approximation of the 2-D Itô integral and consequently in the

error of the solution.

For analyzing the effect of SDE tolerance we again run 10,000 independent simu-

lations and fix the initial time step to be ∆tini = 10−4 s and p = 10 for varying SDE

tolerance values, ranging from 10−2 to 10−6. Subsequently, we calculate the average

normalized weak mean and variance errors of S1 and S2 and the probability distribu-

tion of S1 at t = 0.005 s (cf. Fig. 4.5). It is evident from Fig. 4.5(a) and 4.5(b) that

as we decrease the error tolerance the weak mean error decreases slightly, while the

decrease is more extreme in the variance where the change is two orders of magnitude

between SDE tolerance 10−2 to 10−6. The most affected quantity by the variation of

SDE tolerance is the variance as was the case in Fig. 4.4. If we further compare Fig. 4.4,

4.5(a) and 4.5(b) we observe that for the fixed step Milstein method to reach the same

accuracy as the adaptive step Milstein with SDE tolerance 10−4 the needed step size is

approximately ∆t = 5.0×10−7 s. Recall that all adaptive time step runs were initialized

with ∆tini = 10−4 s for which the fixed step method failed.

From the definition of the weak error we know that it quantifies the convergence in

the probability distribution of the actual and numerical solution. Figures 5C and 5D

compare the distribution of the solution between SSA (actual) and the adaptive Milstein

method with varying SDE tolerance. Results show that an acceptable convergence is

observed for SDE tolerance values of or less. Concluding, both the mean and variance

errors have to be small in order to have convergence in distribution. This fact is not

always obvious from figures similar to Figures 5A and 5B.

Now we turn our attention to the effect of parameter p in the solution error. 10,000
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Figure 4.5: Solution of Eq. (4.25) using the adaptive scheme with variable SDE tolerance
(SDE coeff = 1000, p=10 and ∆tini = 10−4 s). (a) Average normalized weak mean error
of S1 and S2 for different error tolerances (log scale). (b) Average normalized weak
variance error of S1 and S2 (log scale) for different error tolerances (log scale). (c)
Comparison of the probability distribution of species S1 between SSA and solutions
with SDE tolerance of 10−3 and 10−4 at t = 0.005 s. (d) Comparison of the probability
distribution of species S1 between SSA and solutions with SDE tolerance 10−5 and 10−6

at t = 0.005 s.
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Figure 4.6: Solution of Eq. (4.25) using the adaptive scheme with variable p values for
constant initial time step, ∆tini = 10−4 s. (a) Average normalized weak mean error of
S1 and S2 for varying p (log scale). (b) Average normalized weak variance error of S1

and S2 for varying p (log scale).

independent trajectories with initial time step of ∆tini = 10−4 s and SDE tolerance of

10−4 are used to obtain solutions with varying p. The values of p we tested are 1, 10, 50,

100 and 1,000. Recall that p determines the truncation order of the Fourier expansion

of the 2D Itô Integral (cf. Eq. (4.8)). Average normalized weak mean and variance

errors of S1 and S2 for the different values of p are plotted in Fig. 4.6. Figure 4.6(a)

and4.4(b) reveal that the value of p does not have a significant effect on the weak mean

and variance error for given initial ∆t and given SDE tolerance. The argument is further

supported by examining the corresponding distributions which differ only slightly. This

result was more or less expected since we examine the behavior of the weak error. Both

the Milstein and the Euler-Maruyama methods are of weak order 1.0. On the other

hand the Euler-Maruyama is of strong order 0.5, while the Milstein is of strong order

1.0. The inclusion of the 2D Itô integral is the reason why the latter method has a

higher strong order. Hence, when we compute the weak error, the value of p should not

make any difference, which is indeed obvious, looking at Fig. 4.6. The value of p should
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Figure 4.7: Comparison of execution times between the adaptive and fixed step methods
for a single trial of the dimerization reaction system depicted in Table 4.1. Average
normalized weak variance error of S1 (log scale) as a function of the execution time.
Both methods have p set to 10 and the adaptive scheme uses an initial time step of
∆tini = 10−4 s.

play a role when computing the strong error.

Finally, since computational costs are also important we briefly present and compare

the simulations times. Note that simulation times refer to the overall time frame of

0.01 s. All realizations were obtained using dual-core 2.6 GHz AMD Opteron processors.

In Fig. 4.7 we display how the simulation time of each trial depends on the weak variance

error introduced by either the fixed step or adaptive Milstein method. We only display

results using the variance since both methods yield similar behaviour and accuracy for

the weak mean error and thus the error in the variance is more indicative. For the

variable step size method we chose ∆tini = 10−4 s and p = 10.

From Fig. 4.7 we note that as the desired accuracy increases the two schemes con-

verge in execution time. In general the fixed step method is slightly faster for a given

error tolerance. We believe that this is directly correlated with the constant calculation

of the two error criteria and the need to reapproximate the 2D Itô integral using a series

of random number that add up to the execution time. In our opinion the latter is the

main reason for the existing slow down. Obviously the anticipated speed up observed in
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the case of adaptive schemes in ODEs, where a substantial decrease in computational

costs is the usual case, is not present. That was something we could have anticipated

given the fact that adaptive methods are more intensive in the stochastic regime. How-

ever the adaptive scheme manages to integrate the system regardless of the initial time

step, adding stability to the integrator. Finally, for comparison purposes we note that

SSA required approximately 2.5 s per trial to simulate the dimerization reaction system

depicted in Table 4.1. This makes both the fixed and adaptive step methods faster than

SSA except if we use time steps less than 5.0× 10−8 s for the fixed step method or SDE

tolerance less than 10−4 for the adaptive method, which will not be necessary since an

acceptable convergence is observed for larger values in both cases.

4.3.2 A System of Stiff, Nonlinear CLEs

As a second example we exploit a more elaborate one. Consider the reaction network

depicted in Table 4.2. During the length of the simulation interval, of [0, 0.01] s, the

stiff, nonlinear network of reactions satisfy the conditions presented in Eq. (4.17), which

means that the systems time evolution can be described through a system of CLEs. The

corresponding system of CLEs is

dXi =
[
ν1iα1

(
X(t)

)
+ ν2iα2

(
X(t)

)
+ ν3iα3

(
X(t)

)
+ ν4iα4

(
X(t)

)
+ ν5iα5

(
X(t)

)
+ ν6iα6

(
X(t)

)]
dt+ ν1i

√
α1

(
X(t)

)
dW1

+ ν2i

√
α2

(
X(t)

)
dW2 + ν3i

√
α3

(
X(t)

)
dW3 + ν4i

√
α4

(
X(t)

)
dW4

+ ν5i

√
α5

(
X(t)

)
dW5 + ν6i

√
α6

(
X(t)

)
dW6, i = 1, 2, 3, (4.26)

where Xi corresponds to the state of ith species and the corresponding propensities are

α1

(
X(t)

)
= k1X1(t)X2(t), α2

(
X(t)

)
= k2X3(t),

α3

(
X(t)

)
= k3X1(t)X3(t), α4

(
X(t)

)
= k4X2(t),

α5

(
X(t)

)
= k5X2(t)X3(t), α6

(
X(t)

)
= k6X1(t), (4.27)

By substituting the kinetic parameters and initial conditions in the above equations

we note that there is a five order separation in the reaction scales, denoted by the
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Table 4.2: Reactions and Parameters for a Stiff, Nonlinear Network of Reactions

Set of Reactions Mesoscopic Reaction Rates† Initial Values‡

S1 + S2

k1
GGGGGGBFGGGGGG

k2

S3 k1 = 103 / k2 = 103
[
S1

]
0

= 103

S1 + S3

k3
GGGGGGBFGGGGGG

k4

S2 k3 = 10−5 / k4 = 10
[
S2

]
0

= 103

S2 + S3

k5
GGGGGGBFGGGGGG

k6

S1 k5 = 1.0 / k6 = 106
[
S3

]
0

= 106

† for 1st order reactions the units are s−1 and for 2nd order reactions the units are
molecules−1s−1.
‡ initial values are in number of molecules.

propensities values.

Again we use SSA as our actual solution. We simulate the system on the time

interval [0, 0.01] s and conduct 10,000 independent trials. For brevity and clarity we

only present the results for S1 (cf. Fig. 4.8). Similar behavior is observed for S2 and

S3 where both their values fluctuate over time around their initial conditions. Finally,

the mean and the variance evaluated through SSA are used for the comparison and the

evaluation of the adaptive scheme.

Figure 4.9 examines how well the fixed step method integrates the system of CLEs.

The 2D Itô integral is approximated with parameter p set to 10. We run again 10,000

independent trials and calculate the solution in the interval [0, 0.01] s. For comparison

with the actual solution (cf. Fig. 4.8) we calculate the average normalized weak mean

and variance errors of all species using Eq. (4.23). The results are presented in Fig. 4.9.

As in the previous example, the fixed step method fails to integrate the system for large

time step values. In particular we could not obtain solutions for step size larger than

5.0× 10−7 s. This occurs because species concentrations attain negative values. Notice

that the behaviour of the scheme is similar to the one of the previous example, meaning

that the error in the variance is the one mostly affected by the decrease in the time step

(cf. Fig. 4.9(b)), while the normalized weak mean error remains for practical purposes

the same (cf. Fig. 4.9(a)). A notable exception is the behavior of S3 which appears to

have a very small error in the mean. This can be explained if we take into the account
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Figure 4.8: Solution of Eq. (4.26) using SSA in the interval [0, 0.01] s.] (a) A sample
trajectory of the number of S1 molecules. (b) The probability distribution of species
S1 at t = 0.005 s. (c) Mean number of S1 molecules averaged over 10,000 trials. (d)
Variance of number of S1 molecules averaged over 10,000 trials.
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Figure 4.9: Solution of Eq. (4.26) using fixed step Milstein method (p = 10). (a)
Comparison of the average normalized weak mean error of S1, S2 and S3 (log scale)
generated by the fixed step (log scale) Milstein method. (b) Comparison of the average
normalized weak mean variance of S1, S2 and S3 (log scale) generated by the fixed step
(log scale) Milstein method.

the large, in comparison with the other species, initial and hence equilibrium values. Its

large concentrations allow for a small influence by the noisy environment, meaning it is

minimally affected by the evolution of the noise terms.

Subsequently we look into the accuracy of the proposed scheme. We examine the

effect on the user defined parameter SDE tolerance in the accuracy of the solution. SDE

coeff is kept at 1,000. Results are shown in Fig. 4.10, obtained from 10,000 independent

trajectories and fixed initial time step of ∆tini = 10−4 s and p = 10. The values of SDE

tolerance range from 10−2 to 10−5. We calculate the average normalized weak mean

and variance errors of all species and look into the probability distribution of species

S1 at t = 0.005 s. Obviously as we decrease the error tolerance the weak variance

error decreases. The decrease is approximately one order of magnitude between SDE

tolerance 10−2 to 10−5 (cf. Fig. 4.10(b)). For the weak mean error we observe small if

any decrease in its value as SDE tolerance decreases. It is noteworthy to point out that

the adaptive scheme achieves to integrate the system even though it uses a high initial

time step if compared with the fixed step counterpart. Finally, from Fig. 4.10(c) and

63



Figure 4.10: Solution of Eq. (4.26)) using the adaptive scheme with variable SDE tol-
erance (SDE coeff = 1,000, p = 10 and ∆tini = 10−4 s). (a) Average normalized weak
mean error of S1, S2 and S3 (log scale) for different error tolerances (log scale). (b)
Average normalized weak variance error of S1, S2 and S3 (log scale) for different er-
ror tolerances (log scale). (c) Comparison of the probability distribution of species S1

between SSA and solutions with SDE tolerance of 10−2 and 10−3 at t = 0.005 s. (d)
Comparison of the probability distribution of species S1 between SSA and solutions
with SDE tolerance 10−4 and 10−5 at t = 0.005 s.
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Figure 4.11: Comparison of execution times between the adaptive and fixed step meth-
ods for a single trial of the stiff, nonlinear reaction system depicted in Table 4.2. Average
normalized weak variance error of S1 (log scale) as a function of the execution time.
Both methods have p set to 10 and the adaptive scheme uses an initial time step of
∆tini = 10−4 s.

4.10(d) we infer that an acceptable convergence in distribution is feasible for values of

SDE tolerance equal to or less than .

Figure 4.11 shows a different behavior from the one noted in Fig. 4.7. In this example

both approaches seem to produce results with the same accuracy while approximately

requiring the same computational effort. This means that there is no apparent advantage

of the fixed step scheme over the adaptive. We believe that this is the case because from

a two variable system in the first example we went to a three variable system which is also

nonlinear that allowed the adaptive scheme to gain slightly over the fixed step method.

Nonetheless, perhaps the important benefit is larger time steps while retaining stability.

Finally, it is interesting to note that SSA required approximately 65.81 s per trial to

simulate the system of stiff, nonlinear reactions depicted in Table 4.2. Apparently, both

methods are faster except if we use very small values for either the time step of the fixed

method or SDE tolerance of the adaptive method.
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4.3.3 An Actual Stiff Biochemical Network

The third example involves a larger chemical kinetics network, in particular an actual

biochemical network that experiences stiffness. The reason we choose to use this last

example is to highlight the advantages of using the present algorithm in conjunction

with our Hybrid multiscale algorithm, called Hy3S (Hybrid Stochastic Simulations for

Supercomputers) capable of fast and accurately simulate in time biochemical networks

that are far from the thermodynamic limit [1]. Hy3S is based on a hybrid approach that

separates the reactions into two subsets, fast/continuous and slow/discrete. The first

are propagated in time using the chemical Langevin equation (CLE) and the later using

differential jump equations. When the underlying biological network is stiff the fixed

step integration in Hy3S fails, mainly because species populations become negative.

Therefore we incorporated into Hy3S our adaptive time step selection scheme in order

to add stability and better error control in the time integration process.

As an example we use a previously studied stochastic Petri model proposed by

Srivastava et al. that quantifies the heat shock response of E. coli [88]. The model

involves 17 linear and nonlinear reactions with 14 participating species. The reactions

with their corresponding kinetic parameters are presented in Table 4.3, while the initial

values of each species are depicted in Table 4.4. The volume of the cell is considered

to be V = 1.5× 10−15 l. All the kinetic and initial data are chosen in accordance with

Ref. [89] except for the initial value for species DnaJ where we followed an approach

similar to Ref. [68] in order for the system to be further from the equilibrium state.

As it becomes apparent from Tables 4.3 and 4.4 not all reactions can be initially (and

during the course of the simulation) classified as fast (cf. Eq. (4.17)), hence not all

species are propagated using CLEs. Reactions (15)-(17) are the ones classified as fast

throughout the course of the simulation. This is the shortcoming of using an actual

biological example since in nature slow and fast reactions coexist, interact and control

the rates of each other. Still the existence of fast reactions will allow examining the

behavior of the present algorithm in the context of Hy3S.

As in the previous two examples we use SSA as our actual solution. We simulate

the system on the time interval [0, 100] s and conduct 1,000 independent trials. Again

the mean and the variance evaluated through SSA are used for the comparison and the

evaluation of the adaptive scheme. Note that we conduct 10 times fewer trials than in
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Table 4.4: Initial Values of Species Involved in the Heat Shock Model of E. coli according
to Ref. [89].

# Species Initial Values†

1 DNA · σ32 1

2 mRNA · σ32 17

3 σ32 15

4 RNAPσ32 76

5 DNA ·DnaJ 1

6 DNA · FtsH 0

7 DNA ·GroEL 1

8 DnaJ 4640

9 FtsH 200

10 GroEL 4314

11 DnaJ · Unfolded Protein 5.0× 106

12 Protein 5.0× 106

13 σ32 ·DnaJ 2959

14 Unfolded Protein 2.0× 106

† initial values are in number of molecules.
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Figure 4.12: Solution of the heat shock response model using SSA in the interval
[0, 100] s. (a) A sample trajectory of the number of DnaJ molecules. (b) A sample
trajectory of the number of σ32 molecules.

the previous two examples. In order to study the effect of the algorithm on a bigger

time frame, 100 s compared to 0.01 s, we had to reduce the number of total trials.

Still the number of trials is enough to produce an accurate sampling of the underlying

distribution. Our results will be reported based on two species, DnaJ and σ32. The

first is chosen because it is involved in fast reactions and the second because it is only

affected by slow reactions, hence we will be able to judge whether or not the algorithm

introduces error in both the fast and slow subspaces. A sample trajectory for both

species is shown in Fig. 4.12. Note in Fig. 4.12(a) the steep initial decrease in the

concentration of DnaJ.

Similar to the previous two examples the fixed step Milstein method fails to inte-

grate the system when the integration time step is larger than 10−4 s. This is shown

in Fig. 4.13 where the average normalized weak mean and variance errors for different

time steps are compared for the two species. All results were obtained through 1,000

independent trials with the parameter p set at 10. Focusing on the results for DnaJ we

note that as the time step decreases the error in the mean remains practically unaltered
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Figure 4.13: Solution of the heat shock response model using the fixed step Milstein
method (p = 10). (a) Comparison of the average normalized weak mean error of DnaJ
and σ32 (log scale) generated by the fixed step (log scale) Milstein method. (b) Com-
parison of the average normalized weak mean variance of DnaJ and σ32 (log scale)
generated by the fixed step (log scale) Milstein method.

while the error in the variance decreases, a scenario observed in the previous two ex-

amples. On the other hand the error in both the mean and variance for σ32 remain the

same as the time step changes. This implies that the time step used in the integration of

the fast species does not affect the propagation of the slow species. The last observation

is something we anticipated and also expect to see when instead of the fixed step we

use the adaptive method.

By substituting the fixed step integrator with the adaptive one the results report a

similar performance but instead of the varying time step we vary the SDE tolerance.

Figure 4.14 shows the results obtained from 1,000 independent trials using a fixed initial

time step of ∆tini = 0.1 s, p = 10 and SDE coeff = 1,000. We calculate the average

normalized weak mean and variance errors of the two species of interest using values of

SDE tolerance that range from to 10−2 to 10−5. As in Fig. 4.13 the error in the mean

is mainly unaffected for both DnaJ and σ32, while a decrease is only observed in the

variance error for σ32 as SDE tolerance decreases. Importantly we note that first the
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Figure 4.14: Solution of the heat shock response model using the adaptive scheme with
variable SDE tolerance (SDE coeff = 1000, p = 10 and ∆tini = 0.1 s). (a) Average
normalized weak mean error of DnaJ and σ32 (log scale) for different error tolerances
(log scale). (b) Average normalized weak variance error of DnaJ and σ32 (log scale) for
different error tolerances (log scale).

adaptive scheme does not affect the propagation of the slow species, since σ32 mean

and variance errors are not affected. And second the adaptive algorithm manages to

integrate the system starting from an initial time step of ∆tini = 0.1 s. Comparing the

probability distributions obtained through SSA and Hy3S we report that an acceptable

convergence is obtained for SDE tolerance equal or less to 10−4.

Finally reporting on the execution times we note that the adaptive scheme requires

more time to produce accurate results. Results shown in Fig. 4.15 resemble those in

Fig. 4.7. We think this is because the complexity of the system of CLEs in this example,

two linear and one nonlinear reactions, is closer to that of the first example and hence

the same reasons apply. Still the adaptive scheme retained its stability by integrating

the system even though the starting time step was large. As an additional comment we

want to point out the use of the variance error of DnaJ to report the execution times,

as it is the most indicative.
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Figure 4.15: Comparison of execution times between the adaptive and fixed step meth-
ods for a single trial of the heat shock response model depicted in Table 4.3. Average
normalized weak variance error of DnaJ (log scale) as a function of the execution time.
Both methods have p set to 10 and the adaptive scheme uses an initial time step of
∆tini = 0.1 s.

4.4 Summary

We have demonstrated that the proposed adaptive scheme can produce accurate results

when stiff systems of Itô SDEs with multiple multiplicative noise arise, such as the

system of CLEs in Eq. (4.25) or (4.26). The SDE tolerance, a user defined parameter,

can be used to tune the scheme and balance precision with simulation times. The use

of the weight coefficient (SDE coeff) allows balancing the importance between the drift

and diffusion error controls. The higher the SDE coeff value the less important the drift

error becomes and vise versa.

We also noted that the proposed scheme is more stable than its fixed step coun-

terpart. While the fixed step method fails to produce results, because of numerical

instabilities, the adaptive scheme is able to produce stable solutions even when the ini-

tial time step is large. This feature becomes important when trying to integrate systems

of SDEs for which we do not know a priori whether or not they are stiff or if they be-

come during the course of integration. The adaptive scheme adds the necessary stability
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in the integration scheme allowing the method to avoid incorrect integration paths.

In terms of computational efficiency the developed adaptive time step method slightly

underperforms compared to the fixed time step method. In the first and third examples

the margin of the fixed step method was present but not significant while in the second

example, fixed and adaptive scheme produced the same accuracy in the same amount

of computational time. This means that an adaptive time step scheme is considerably

more stable than fixed step analogues with no excessive additional computational over-

head. It is interesting to note that in all the examples the adaptive scheme is initialized

with a time step that is far from the optimum time step of each SDE tolerance value.

In general, the larger the distance between the two the more computational intensity is

necessary.

In conclusion, we developed an adaptive scheme which numerically solves stiff sys-

tems of SDEs with multiple multiplicative noise by appropriately adjusting the time

step, dynamically decreasing the time step of the numerical integration when stiffness

exists, but dynamically increasing it when the system is no longer stiff. While this pro-

cedure adds stability in the integration algorithm it does not appear to have a significant

negative impact on the speed up of the fixed Milstein method. This is important since

for many applications the stability part of an algorithm is a crucial component of the

modeling effort. The presented algorithm has been embedded successfully in a Hybrid

multiscale algorithm we have developed, called Hy3S, used to propagate in time chemi-

cal kinetics models that are far from the thermodynamic limit [1]. Hy3S is available for

download at http://hysss.sourceforge.net/.
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Chapter 5

Model Reduction of Multiscale

Chemical Langevin Equations:

A Numerical Case Study

5.1 Introduction

Stochastic kinetic models are used to accurately represent the inherent probabilistic

nature of systems of chemical or biochemical reaction networks that are far from the

thermodynamic limit [90, 91, 74, 27, 29, 30, 2, 32, 37].

In this work we focus on networks of reactions that can be approximated as continu-

ous Markov processes and are modeled through systems of chemical Langevin equations

(CLEs). These are reactions that occur frequently in a given time interval and have

participating species with relatively large concentrations [65]. For example, fast protein

dimerization reactions where the monomer and dimer appear in concentrations of over

100 molecules each in a volume approximately the size of a small bacterial cell can be

modeled by CLEs [64]. More precisely, the stochastic dynamics of such systems are

governed by Fokker-Planck equations. Instead of solving the Fokker-Planck equations

it is usually more convenient to sample the underlying probability distribution through

trajectories obtained as solutions of the corresponding CLE or systems of CLEs [65].

CLEs are Itô stochastic differential equations (SDEs) with multiple multiplicative
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noise terms and like ordinary or partial differential equations their solution can be a

stiff numerical problem whenever the underlying physical system exhibits multiple-time

scales. One possible way to overcome stiffness in such systems is to efficiently adjust

the integration time step using an adaptive time stepping algorithm (cf. Chapter 4) [3].

An alternative route for addressing multiple-time scales in a system of CLEs is through

model reduction. While model reduction techniques are well studied for deterministic

kinetics models, modeled by ordinary differential equations (ODEs) [92, 93, 94, 95,

96, 97], the same is not true for the stochastic regime and in particular for CLEs.

In the stochastic framework, efforts have concentrated in the jump Markov process

regime either by reduction of the chemical master equation [98, 99, 100, 101] or by

using the quasi-steady state approximation to eliminate fast occurring reactions [61, 69,

67, 66]. Recently, Dong and coworkers proposed a reduction approach for CLEs where

the reduction methodology is based on the corresponding system of ODEs [102].

In this chapter we describe and illustrate the application of a reduction framework

for multi-scale systems of CLEs [103]. The proposed framework is semi-analytical and is

based on a three-step systematic procedure that appropriately reduces the initial system

of CLEs to subsystems with similar time scales. The first step entails the derivation

of a linear transformation which decomposes the initial state vector of the CLE system

into fast and slow varying variables [104]. This allows for a non-stiff description by

treating each set differently. A set of sufficient and necessary conditions emerges, which

must be met to ensure the existence of the appropriate transformation. The second step

is to treat each of the two subsets independently by applying the method of adiabatic

elimination to the systems under consideration [105]. Fast variables are assumed to relax

to a pseudo-stationary density under the hypothesis that the slow variables remain

constant. Slow variables are approximated through a Fokker-Planck equation which

governs their probability density. Ultimately the distribution of the slow variables can

be sampled through the solutions of a system of CLEs that correspond only to the

slow subspace and can be integrated with large integration steps. The final step is to

compute the approximated solution of the initial CLEs system by simply multiplying

the two independent probability densities.

The chapter is organized as follows. First we briefly present background information

on continuous Markov processes and their governing equation, the chemical Langecin
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equations. Then we present a motivating example that lies in the continuous Markov

process regime. Then the reduction framework is formulated theoretically. We finally

test the numerical accuracy and demonstrate the computational efficiency of the pro-

posed scheme.

5.2 Continuous Markov Processes: Chemical Langevin Equa-

tions

Consider a system of N distinct chemical species, Xi (i = 1, . . . , N), participating in M

chemical reactions in a well-mixed bacterial size volume V

N∑
i=1

rjiXi

kj
GGGGGGA

N∑
i=1

pjiXi, j = 1, . . . ,M (5.1)

The corresponding system of chemical Langevin equations (CLEs) under the assump-

tion that the system of reactions can be described as a continuous Markov process [3]

is

dX =
M∑
j=1

νjkjcj(X(t))dt+
M∑
j=1

νj

√
kjcj(X(t))dWj , (5.2)

where X =
[
X1 · · · XN

]T is the state vector of the system containing the concentra-

tion of the N species, kj corresponds to the mesoscopic reaction rate of the jth reaction,

W =
[
W1 · · · WM

]T is an M−dimensional Wiener process, νj and cj denote the

stoichiometric vector associated with the jth reaction and the number of distinct com-

binations of the reacting species participating in the jth reaction respectively and are

defined as follows

νj =


pj1 − r

j
1

...

pjN − r
j
N

 cj(X) =
N∏
i=1

Xi!

rji !
(
Xi − rji

)
!

(5.3)

The product of αj(X) = kjcj(X) is usually referred to as the reaction propensity and

corresponds to the probabilistic reaction rate of the jth reaction.
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For any reaction to be considered as a continuous Markov process the following two

conditions must be met [64]

αj(X) ≥ λ� 1 Xi > ε|νji| (5.4)

The two parameters λ and ε define respectively the numbers of reactions occurring within

time ∆t and the lower limit in the number of molecules of the reactants and products

for the effect of a reaction to be negligible. In practice, typical values for λ and ε can

be empirically determined for computational efficiency and acceptable accuracy [64]. In

the present work we consider λ = 10 and ε = 100.

5.3 Motivating Example

Let us consider the network of reactions shown in Table 5.1 taking place in a bacterial-

sized volume of 10−15 L. Species A, B can represent monomer proteins that fuse to form

a dimer protein C that in turn fuses with D to form multimer E. The first reversible

reaction is assumed to be much faster in both directions than the second one. Note

that ki’s are the macroscopic reaction rates. Given both the initial conditions and the

kinetic parameters (cf. Table I) one can infer that conditions in Eq. (5.4) are met for

all reactions and therefore the system lies entirely in the continuous Markov process

regime both initially and until the equilibrium state is reached as it will become evident

below. The corresponding system of CLEs for all five species is

dXA = (−k1XAXB + k2XC)dt−
√
k1XAXBdW1 +

√
k2XCdW2

dXB = (−k1XAXB + k2XC)dt−
√
k1XAXBdW1 +

√
k2XCdW2

dXC = (k1XAXB − k2XC − k3XCXD + k4XE)dt+ (5.5)

+
√
k1XAXBdW1 −

√
k2XCdW2 −

√
k3XCXDdW3 +

√
k4XEdW4

dXD = (−k3XCXD + k4XE)dt−
√
k3XCXDdW3 +

√
k4XEdW4

dXE = (k3XCXD − k4XE)dt+
√
k3XCXDdW3 −

√
k4XEdW4

Using Hy3S [1], a suite of multiscale algorithms that use CLEs to propagate systems

of reactions that belong in the continuous Markov process regime, or SynBioSS [4], a
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Table 5.1: Reactions and Parameters for the Motivating Example

Set of Reactions Mesoscopic Reaction Rates† Initial Values‡

k1 = 4.981
[
A
]
0

= 2800

A+B
k1

GGGGGGBFGGGGGG

k2

C k2 = 1.5× 102
[
B
]
0

= 2500

C +D
k3

GGGGGGBFGGGGGG

k4

E k3 = 1.66× 10−5
[
C
]
0

= 1600

k4 = 4× 10−3
[
D
]
0

= 1900

[
E
]
0

= 3000

† for 1st order reactions the units are s−1 and for 2nd order reactions the units are
molecules−1s−1.
‡ initial values are in number of molecules.

cross-platform and user friendly version of Hy3S, we simulated Eq. (5.5) in the interval

[0, 200.0] s and run 2, 000 independent trials for accurate statistical sampling. We used

the fixed step Euler-Maruyama method [73] as our integration method and set the initial

time step to 0.1 s. Every time the integration failed we decreased the time step using the

following series of time steps 0.1 s, 0.05 s, 0.01 s, 5× 10−3 s, 1× 10−3 s,...etc; 5× 10−5 s

was the first time step for which the integration did not fail, i.e. species populations did

not attain negative values. The selected integration time step provided relative accurate

results compared to the SSA. Average normalized weak mean and variance errors [3] are

relatively small for all species. Reducing the time step only impacts the variance error

of the fast evolving species while the corresponding errors for the slow varying species

seem to be invariant. Simulation results are shown in Fig. 5.1. In the remainder of the

present chapter whenever we state that the integration fails for larger time steps it is

assumed that we followed a similar approach to arrive at the selected time step.

Looking at the time axes, it is apparent in Fig. 5.1 that species evolve over time

affected by the two different time scales. In particular species A and B are mainly

affected by the fast dynamics and reach very quickly (less than 0.01 s) what appears

to be a pseudo-steady state (cf. Fig. 5.1(a)) or more accurately a pseudo-stationary
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(a) (b)

(c) (d)

Figure 5.1: A simulated trajectory of system (5.5) using the fixed step Euler-Maruyama
method with time step 5× 10−5 s. (a) Time evolution of species A, B and C in the first
0.01 s. (b) Time evolution of species A, B and C in the time interval [0, 200] s. (c)
Time evolution of species D and E in the first 0.01 s. (d) Time evolution of species D
and E in the time interval [0, 200] s.
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distribution. On the other hand, species D and E are mainly influenced by the slow

reactions and in the time interval of 0.01 s their concentrations are practically unaltered

(cf. Fig. 5.1(c)). Species C seems to be affected equally by both the fast and slow

dynamics. Observing Fig. 5.1(b) and 5.1(d) we conclude that the system practically

reaches its final equilibrium distribution after 150 s. Lastly, we want to point out that

during the chosen time interval all reactions indeed satisfy Eq. (5.4).

Simulating the system of stochastic differential equations depicted in Eq. (5.5) re-

quires a small integration time step since the existence of stiffness causes species con-

centration to become negative if a relatively large time steps is used. For the large

time interval that the system requires reaching equilibrium the computational cost is

significant. Consequently a reduction framework that will identify the minimal number

of fast and slow variables and will propagate them separately in time will in principle

improve the efficiency of integration.

5.4 Problem Formulation

If multiple time scales are present in the system of reactions (cf. Eq. (6.28)), then in

Eq. (5.2) the state variables are affected by reaction rates of both fast and slow reactions

resulting in a stiff numerical problem. In the majority of cases, there is no intuitive way

to distinguish between slow and fast variables. Therefore we seek a coordinate change

that will transform the original system in a new singularly perturbed SDE system where

fast and slow variables are explicitly identified; in equation form we want to transform

the initial system of CLEs (cf. Eq. (5.2)), to the following form

dY s = Ds(Y s, Y f )dt+ E
s
(Y s, Y f )dW s

dY f =
1
δ
Df (Y s, Y f )dt+

1√
δ
E
f
(Y s, Y f )dW s, (5.6)

where matrices Ds(Y s, Y f ), Df (Y s, Y f ), E
s
(Y s, Y f ) and E

f
(Y s, Y f ) will be explicitly

identified in the remainder of the paper. In Eq. (5.6), fast, Y f , and slow, Y s, variables

are identified, but are still coupled through matrices Ds, Df , E
s

and E
f
. Decoupling

them will allow for a non-stiff description and enable to treat each set differently.
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5.5 Model Reduction Framework

The idea of the model reduction framework is to reduce the initial system of CLEs

to subsystems with similar time scales and then treat each one independently [103].

We next highlight the steps of identifying an appropriate coordinate transformation,

of decoupling the two subsets and of approximating the probability distribution of the

initial system.

5.5.1 Identifying Fast and Slow Variables

Assume that there are p fast reactions in Eq. (6.28) and without loss of generality these

are assumed to be the last p, which stated in equation form are

ki
kj
' O(1), i, j ≥M − p+ 1

kM−p+1 � ki, i ≤M − p+ 1, (5.7)

where all ki are in consistent units. Then the N × M stoichiometric matrix can be

written as ν =
[
ν
s
ν
f

]
where ν

s
is an N × (M − p) matrix corresponding to the

stoichiometric vectors associated with the slow reactions and ν
f

(an N ×p matrix) with

the fast reactions respectively. In equation form we have

ν
s

=
[
ν1 . . . νM−p

]
ν
f

=
[
νM−p+1 . . . νM

]
(5.8)

The identification of fast and slow variables and hence the transformation of Eq. (5.2)

to the singularly perturbed form of Eq. (5.6) is possible if and only if the following

condition between the images of the two stoichiometric submatrices is met [103, 104]

Imν
s

⋂
Imν

f
= Ø (5.9)

Approaching the relation from a purely mathematical point of view the condition re-

quires the intersection of the images of the two stoichiometric matrices to be the null

space. On a more practical note the condition requires that there are no fast and slow

reactions that are stoichiometrically dependent. For example, a reversible reaction being

fast only in one direction violates the condition.
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Let us define the following three subspaces

Ss = kerνT
f
\ kerνT Sc = kerνT Sf = kerνT

s
\ kerνT , (5.10)

where ker denotes the null space of a matrix. Then if the condition in Eq. (5.9) is met

the linear coordinate change Y = T X where

T =
[
T T
s
T T
f

]T =
[
T̂
T

s
T̂
T

c
T̂
T

f

]T
, (5.11)

and where T̂
s
, T̂

c
and T̂

f
are full rank matrices satisfying T̂

T

s
∈ Ss, T̂

T

c
∈ Sc and

T̂
T

f
∈ Sf , transforms the original system of CLEs to a system of the form of Eq. (5.6).

The transformed, singularly perturbed, SDE system is

dY s = T
s
ν
s
As(Y s, Y f )dt+ T

s
ν
s
D
(√

As(Y s, Y f )
)
dW s

dY f =
1
δ
T
f
ν
f
Af (Y s, Y f )dt+

1√
δ
T
f
ν
f
D
(√

Af (Y s, Y f )
)
dW f , (5.12)

where the small parameter δ is defined as δ = 1/kM−p+1, the notation D
(√
F
)

denotes

the diagonal matrix whose (i, i)th element is the square root of the ith component of vec-

tor F , W s and W f correspond to appropriate vectors of independent Wiener processes

and the vectors As and Af are

As =


k1c1(Y s, Y f )

...

kM−pcM−p(Y s, Y f )

 Af =
1

kM−p+1


kM−p+1cM−p+1(Y s, Y f )

...

kMcM (Y s, Y f )

 (5.13)

The coordinate transformation leads to the following three subsets of variables,

Y s = T̂
T

s
X Y c = T̂

T

c
X Y f = T̂

T

f
X (5.14)

classified as slow, constant and fast, respectively. Constant variables represent conser-

vation relations and can also be designated as slow ones since they do not change over

time. Thus instead of T̂
s

and T̂
c

we can mask both slow and constant variables under

the matrix T
s
. Equation (5.12) represents a transformed system of SDEs where slow
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and fast variables have been identified but still are coupled through the matrices As and

Af .

5.5.2 Decoupling Fast and Slow Variables

Removing the coupling between fast and slow variables is the next important step of

the proposed framework. This decoupling can be achieved by applying the method

of adiabatic elimination to the system of the transformed SDEs [105]. Fast variables

are assumed to relax to a pseudo-stationary density under the assumption that the

slow variables remain constant. The pseudo-stationary distribution, pY s
(Y f ), can be

retrieved as the solution of the following homogeneous Fokker-Planck equation

− ∂

∂Y f

[(
T̂
f
ν
f
Af (Y )

)
pY s

(Y f )
]
+

+
1
2

∂

∂Y f

∂

∂Y f

:
[(
T̂
f
ν
f
D
(
Af (Y )

)
νT
f
T̂
T

f

)
pY s

(Y f )
]

= 0, (5.15)

where the colon operator represents differentiation.

On the other hand the dynamics of the slow variables are approximated through a

Fokker-Planck equation which governs the probability density of only the slow variables,

p̂(Y s; t)

∂p̂(Y s; t)
∂t

= − ∂

∂Y s

[(
T̂
s
ν
s
Ãs(Y )

)
p̂(Y s; t)

]
+

+
1
2

∂

∂Y s

∂

∂Y s

:
[(
T̂
s
ν
s
D
(
Ãs(Y )

)
νT
s
T̂
T

s

)
p̂(Y s; t)

]
, (5.16)

where the colon operator represents differentiation and Ãs is a vector representing the

mean reaction rates and its ith component is defined as follows

Ãis(Y s, Y c) =
∫
Ais(Y s, Y c, Y

′
f )pY s

(Y
′
f )dY

′
f (5.17)

Instead of solving Eq. (5.16) it is more convenient to sample the underlying prob-

ability distribution through the solutions of a system of CLEs that correspond only to
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the slow variables

dY s = T̂
s
ν
s
Ãs(Y s, Y c)dt+ T̂

s
ν
s
D
(√

Ãs(Y s, Y c)
)
dW s (5.18)

From Eq. (5.17) it is evident that in order to solve for the slow variables we have to

know the pseudo-stationary distribution that the fast variables relax into. Additionally

Eq. (5.16) describes the time evolution of the probability distribution of only the slow

variables. Constant variables are not included since they remain constant over time.

Finally, Eq. (5.16) and (5.17) imply that using the reduction framework we are able

to initiate the time integration of the slow variables on the ”equilibrium manifold”.

This is achieved because the fast variables have effectively reached a pseudo-stationary

distribution.

5.5.3 Approximated Probability Distribution

The final step in the context of the framework is to compute the approximated proba-

bility distribution emerging from the initial system of CLEs by simply multiplying the

two independent probability densities

p(Y s, Y f ; t) = pY s
(Y f )p̂(Y s; t) (5.19)

Note that the constant variables are not included in the solution of the slow variables

which is a direct result of the reduction approach method that allows the identification

of the minimal number of variables for describing the dynamics of the system. First

and second moments values, of all initial state variables can be retrieved from the joint

probability distribution and given the definition of constant species.

The reduction framework is built upon the assumption that the initial system of

reactions remains in the continuous Markov process regime for the entire simulated

time interval. If for example the pseudo-stationary distribution turns out to have a

mean that is below the value of ε or the value of the propensity of any given reaction

falls below λ then not all reactions lie in the continuous Markov process regime and a

different approach should be applied. Of course since both values for ε and λ are user

defined there is a flexibility but still attention should be paid to ensure that Eq. (5.4) is
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satisfied during all times. On the other hand, while ε and λ can be varied at will their

values should be handled with care to ensure that the CLE approximation is valid.

5.6 Examples

The examples used in this section aim to test the numerical accuracy of the proposed

algorithm and demonstrate the benefits of the presented reduction formalism when

integrating systems of stiff CLEs. All examples lie in the continuous Markov process

regime, i.e. species and reaction rates satisfy conditions in Eq. (5.4). Paradigms of

reacting systems that lie in the continuous Markov process regime may include but are

not limited to fast occurring dimerization reactions, inducer-protein interactions and

protein binding to non-specific DNA sites.

5.6.1 Example Revisited

First, we revisit the motivating example presented in the methods section (cf. Table 5.1).

Recall that the reaction network dynamics are described through Eq. (5.5), requiring a

relatively small time step for its accurate integration. Instead of using a small time step,

we can apply the reduction framework under consideration. Even though the example

looks simple, identifying the fast, slow or constant variables is not intuitive due to the

coupling in the system of CLEs. Using the notation presented in the methods section

the matrices ν
s

and ν
f

are

ν
s

=

[
0 0 −1 −1 1

0 0 1 1 −1

]T
ν
f

=

[
−1 −1 1 0 0

1 1 −1 0 0

]T
(5.20)

The two matrices satisfy Eq. (5.9) and thus the appropriate diffeomorphism exists.

Using the proposed framework the coordinate transformation is of the form

T̂
s

=
[

0 0 0 0 1
]

T̂
f

=
[

1 0 0 0 0
] T̂

c
=


−1 1 0 0 0

−1 0 −1 1 0

1 0 1 0 1

 (5.21)
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with Y1 = XE being the slow species, Y5 = XA the fast species and Y2 = XB−XA = q1,

Y3 = XD−XA−XC = q2 and Y2 = XA+XC+XE = q3 the constant species (values for

all qican be inferred from the initial conditions shown in Table I). The dimensionality

of the problem is reduced from five variables to only two.

Taking into account the transformed variables, vectors and are defined through the

following equations

As =

[
k3

(
q3 − Y5 − Y1

)(
q2 + q3 − Y1

)
k4Y1

]
Af =

1
k1

[
k1Y5

(
q1 + Y5

)
k2

(
q3 − Y5 − Y1

) ] (5.22)

After obtaining the coordinate transformation and identifying the transformed vari-

ables as fast, slow and constant the next step is to compute the pseudo-stationary

distribution through Eq. (5.15). Since there is only one fast variable the homogeneous

Fokker-Planck equation in probability (cf. Eq. (5.15)), reduces into a linear homogeneous

ordinary differential equation (ODE).

− d

dY f

[
A pY s

(Yf )
]

+
1
2
d2

dY 2
f

[
B pY s

(Yf )
]

= 0, (5.23)

where after some calculations

A =
[
k2

k1

(
q3 − Y5 − Y1

)
− Y5

(
q1 + Y5

) ]
B =

[
k2

k1

(
q3 − Y5 − Y1

)
+ Y5

(
q1 + Y5

) ]
(5.24)

For the boundary we can impose either Dirichlet or Neuman boundary conditions.

Both approaches produce the same final result (data not shown). In this example we use

reflecting boundary conditions, i.e. Neuman, since when a homogeneous Fokker-Planck

equation assumes reflecting boundary conditions then under certain conditions there

exists an analytical solution that depends only on matrices A and B (cf. Eq. (5.24)). In

the case of only one fast variable such an analytical solution exists always while in the

case of more than one variable the solution exists under certain conditions [105]. For
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Figure 5.2: The pseudo-stationary dis-
tribution that the fast variable, Y5, re-
laxes into obtained as the solution of
Eq. (5.23).

Figure 5.3: Probability distribution of
the fast variable Y5 = XA at two dif-
ferent time points, t = 0.01 s and
t = 180 s, using 2,000 indepen-
dent trials of the original set of CLEs
(cf. Eq. (5.5)).

the case of only one variable the solution is of the form

pY s
(Yf ) = exp

[
2
∫ Yf

α
A(x)/B(x)dx

]
, (5.25)

where α corresponds to the lower boundary and A(x) and B(x) are scalars for the one

variable case (cf. Eq. (5.24)). We use Simpson’s method with discretization step h = 0.1

to compute the numerical value of the integral. In this case the method becomes semi-

analytical but still it is more easily programmable than the use of finite differences

for integrating Eq. (5.23). The solution interval is [102, 104], chosen large enough to

ensure that the solution lies within the interval and also satisfies the assumption for

the reflecting boundary conditions. Finally note that the solution of Eq. (5.23) depends

on the slow species Y1. Its value is set equal to its initial condition as depicted by the

adiabatic elimination hypothesis.

We obtained the pseudo-stationary distribution depicted in Fig. 5.2. The mean

and standard deviation are E
(
Y5|Y1

)
= 523.43 molecules and σ = 12.27 molecules
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respectively. For any such solution to make sense we have to compare the pseudo-

stationary distribution with the probability distribution obtained from the initial sys-

tem (cf. Eq. (5.5)). Results from the initial system for two different time points are

shown in Fig. 5.3. Studying the results in Fig. 5.3 one notices that the distribution

of the fast species A shifts to the left as time goes by. Indeed the mean value of the

probability distribution at 0.01 s is 522.95 molecules and moves to 461.16 molecules at

180.0 s. Additionally, Fig. 5.1 also suggests that at time 180.0 s the system has practi-

cally attained its equilibrium distribution. At the same time the standard deviation of

the distribution decreases over time from 12.50 molecules at 0.01 s to 11.15 molecules

at 180.0 s. Note that the initial concentration of species A was 2800 molecules and in

just 0.01 s it shifts to 522.95 molecules. This evidence suggests that species A, the fast

species according to the reduction framework, relaxes particularly fast into a pseudo-

stationary distribution, and then evolves slowly to its equilibrium distribution. These

observations, while expected from Fig. 5.1 are now confirmed through Fig. 5.3. Based

on the previous analysis, the distribution at time t = 0.01 s corresponds to a pseudo-

stationary distribution, whereas the distribution at time t = 180 s corresponds to the

equilibrium distribution. The important conclusion is that the solution of Eq. (5.23) in-

deed corresponds to a pseudo-stationary distribution close to 0.01 s. Further comparing

Fig. 5.2 and 5.3 we observe that the two distributions have similar shapes, i.e. similar

higher moments, and the error between the reduced and full system is less than 0.1 %

in terms of the mean and the standard deviation.

The next step in the reduction framework is to compute the probability distribution

of the slow species through Eq. (5.18). First we compute the mean reaction rates through

Eq. (5.17) while taking into account the pseudo-stationary distribution and Eq. (5.22).

After some calculations we have for the mean reaction rates, Ãs(Ys)

Ã1
s(Y1) = k3

[
Y 2

1 +
(
E
(
Y5|Y1

)
− q2 − 2q3

)
Y1 +

(
q2 + q3

)(
q3 − E

(
Y5|Y1

))]
Ã2
s(Y1) = k4Y1, (5.26)

where E
(
Y5|Y1

)
denotes the conditional expectation of species Y5 and also corresponds

to the dependence in the pseudo-stationary distribution. Since there is only one slow

variable, Eq. (5.18) reduces to a single CLE. For an accurate sampling of the probability
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(a)

(b)

Figure 5.4: Probability distribution of the slow species, Y1, at different time points.
(a) Using the reduced model. (b) Using the full model.
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distribution for the slow species we run 2,000 independent trials of Eq. (5.18). We used

the Euler-Maruyama method to integrate the CLE with a time step 0.1 s in the time

interval [0, 200.0] s. Note that the time step is relatively large compared to the one used

to solve the initial stiff system (cf. Eq. (5.5)). Results for the probability distribution

at different time points are shown in Fig. 5.4(a), whereas in Fig. 5.4(b) we depict the

probability distributions at the same time points calculated from the full order model

instead of the reduced one.

Through Fig. 5.4 we observe that as we move along the time interval the proba-

bility distribution shifts towards the right, i.e. its mean increases. This is evident for

both the reduced and the full model. Additionally as the system approaches its equilib-

rium distribution the distributions converge. Comparing Fig. 5.4(a) and 5.4(b) we can

conclude that the error introduced in the probability distributions of the slow species

by the reduction framework is not significant, since distributions obtained by the full

and reduced model do not differ appreciably. In order to quantify this observation we

calculated the mean and standard deviation for the probability distributions at each

time point and for the two methods. Results are depicted in Table 5.2 along with the

corresponding error percentages. As the simulation time increases so does the error in

the mean while that in the standard deviation decreases, but both remain relative small

as the system approaches equilibrium. This error is the direct result of the discrepancy

between the pseudo-stationary and the equilibrium distribution (cf. Fig. 5.2 and 5.3),

which in this case is approximately 14 % for the mean and 13 % for the standard de-

viation. Evidently the reduction framework attenuates the error in the fast dynamics

and accurately captures the dynamics of the slow species.

Examining the average normalized weak mean and variance errors [3] we observed

that the errors introduced in the reduced system is invariant to a time step decrease

and at least the variance error is similar to the full order system. On the other hand,

the normalized error in the mean appears to be an order of magnitude larger. In the

full order system there are two errors, the Langevin approximation and the integration

error terms. For the reduced system we have an additional error term that comes from

the reduction framework itself. This last term is the reason for the larger normalized

mean error (cf. Table 5.2). Of course, for practical purposes the error is insignificant

but it is still larger than the full order system.
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(a) (b)

Figure 5.5: Joint probability distribution t = 180 s. (a) Using the reduced model. (b)
Using the full model.

The final step in the reduction framework is to reproduce the joint probability dis-

tribution through Eq. (5.19). In Fig. 5.5 we plot the joint probability density at time

t = 180 s as this is produced from the reduced model (Fig. 5.5(a)) and the full model

(Fig. 5.5(b)). Fig. 5.5 essentially captures all the advantages and the limitations of the

reduction framework. First comparing Fig. 5.5(a) 5.5(b) we notice that there is a shift

in the joint probability distribution in the y-direction, i.e. the number of molecules

of Y5, which is a direct result of the error between the pseudo-stationary distribution

calculated through the reduction approach and the actual equilibrium distribution. On

the x-axis, i.e. the number of molecules of Y1, the shift is negligible as result of the

small error introduced by the reduction framework in the slow species. On the other

hand the shape of the two distributions in terms of higher moments looks similar which
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is also an important aspect. The sharper look of the distribution in Fig. 5.5(b) is a

result of the number of trials conducted. Using more than 2,000 trials would result in

a smoother distribution. Note that the joint probability distribution depends only on

the fast and slow species, while all information regarding the initial state variables can

simply be reproduced through the joint probability distribution and the relations for

the constant species.

A final point to make is the comparison of execution times between the full and

reduced order models (details for each code have been mentioned throughout this sec-

tion). For that, full and reduced order models where coded in Matlab (Intel Core 2 Duo

2.0 GHz processor with 3 GB RAM); no attempts to optimize the codes were made.

Therefore results should only be considered as indicative. The full systems requires

more than 105 s while the reduced model approximately 1000 s. Execution times corre-

spond to the total computational cost since a reduction to per trial cost is not applicable

for the reduced system. Results show that the reduction framework greatly decreases

computational costs.

5.6.2 Second Example

As a second example we use an altered cycle test system. Consider the system of

reactions detailed in Table 5.3 taking place in a bacterial-sized volume of 10−15 L. The

reversible reaction is assumed to be much slower in both directions than the rest of the

reactions. The corresponding system of CLEs is

dXA = (−k1XA + k3XC − k4XAXD + k5XE)dt−

−
√
k1XAdW1 +

√
k3XCdW3 −

√
k4XAXDdW4 +

√
k5XEdW5

dXB = (k1XA − k2XB)dt+
√
k1XAdW1 −

√
k2XBdW2

dXC = (k2XB − k3XC)dt+
√
k2XBdW2 −

√
k3XCdW3 (5.27)

dXD = (−k4XAXD + k5XE)dt−
√
k4XAXDdW4 +

√
k5XEdW5

dXE = (k4XAXD − k5XE)dt+
√
k4XAXDdW4 −

√
k5XEdW5

Using Hy3S [1] or SynBioSS [4], we conducted 2, 000 independent trials of Eq. (5.27)

in the time interval [0, 50] s, long enough so that it reaches its equilibrium distribution,
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Table 5.3: Reactions and Parameters for the Second Example

Set of Reactions Mesoscopic Reaction Rates† Initial Values‡

A
k1

GGGGGGA B k1 = 1.5× 103
[
A
]
0

= 1200

B
k2

GGGGGGA C k2 = 5× 103
[
B
]
0

= 800

C
k3

GGGGGGA A k3 = 103
[
C
]
0

= 1500

A+D
k4

GGGGGGBFGGGGGG

k5

E k4 = 1.66× 10−4
[
D
]
0

= 500

k5 = 8× 10−2
[
E
]
0

= 200

† for 1st order reactions the units are s−1 and for 2nd order reactions the units are
molecules−1s−1.
‡ initial values are in number of molecules.

approximately after 25 s. Results are not presented for brevity, but we want to point

out that during the chosen time interval all reactions satisfy conditions Eq. (5.4) and

thus can be described as continuous Markov processes. Examining the time trajectories

of the system more closely we infer that species concentrations evolve over time affected

by the two different time scales. In particular species A and B are mainly affected

by the fast dynamics and reach very quickly, in approximately 0.01 s, what appears

to be a pseudo-steady state or more accurately a pseudo-stationary distribution. On

the other hand, species D and E are mainly influenced by the slow reactions and in

the time interval of 0.01 s their concentrations are practically unaltered. Similar to the

first example we used the fixed step Euler-Maruyama method [73] as our integration

method with time step size set to 10−4 s. For larger time steps the integration fails;

species populations attain negative values. This is a direct consequence of the disparate

time scales, i.e. mesoscopic kinetic rates values differ by six orders of magnitude (cf.

Table 5.3).

Therefore we can apply the reduction framework to the system under consideration.

Using conditions in Eq. (5.7) and the data from Table 5.3 we obtain the corresponding

stoichiometric submatrices defined through Eq. (5.8). More importantly, ν
s

and ν
f
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satisfy condition in Eq. (5.9) thus the appropriate diffeomorphism exists and is of the

form

T̂
f

=

[
0 1 0 0 0

0 0 1 0 0

]

T̂
s

=
[

0 0 0 0 1
] T̂

c
=

[
−1 −1 −1 1 0

1 1 1 0 1

]
(5.28)

with XE being the slow species, XD−XA−XB−XC = q1 and XA+XB+XC+XE = q2

the constant species and XB and XC the fast species. Importantly, the dimensionality

of the problem is reduced from five variables to only three. The values for q1 and q2

can be calculated from the initial values (cf. Table 5.3). A priori identification of fast,

slow or constant variables is not intuitive due to the coupling in the system of CLEs

(cf. Eq. (5.27)). Given the transformed variables, vectors As and Af are defined as

As =

[
k4

(
q2 − Y1 − Y4 − Y5

)(
q1 + q2 − Y1

)
k5Y1

]

Af =
1
k1


k1

(
q2 − Y1 − Y4 − Y5

)
k2Y2

k3Y5

 , (5.29)

where Yi correspond to the new variables starting with the slow, continuing with the

constant and ending with the fast ones.

After obtaining the coordinate transformation and identifying the transformed vari-

ables as fast, slow and constant the next step is to compute the pseudo-stationary

distribution through Eq. (5.15). Since there are two fast variable the homogeneous

Fokker-Planck equation in probability forms a homogeneous linear partial differential

equation (PDE). An analytical solution does not exist as was the case in the first ex-

ample [105]; we use central finite differences to approximate the first and second order

derivatives in concentrations and then solve the corresponding system of linear alge-

braic equations. For the boundary we impose Dirichlet boundary conditions. Setting

zero boundary values is realistic, but the system would then only attain the trivial

solution. A more practical approach is to consider that at distances larger than five
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Figure 5.6: The pseudo-stationary distribution that the fast variables, Y4 and Y5, relax
into obtained as the solution of Eq. (5.15).

standard deviations the tail of the probability distribution approaches zero but is not

actually zero, i.e. on the boundaries we set the probability distribution value equal to

10−10. Notice that through Eq. (5.29) the solution of the PDE depends on the slow

species, Y1. Its value is set equal to its initial condition as depicted by the adiabatic

elimination hypothesis.

We solve Eq. (5.15) using an equally spaced mesh. The discretization step is 0.5, for

which convergence in the desired accuracy is achieved (data not shown). The pseudo-

stationary distribution is depicted in Fig. 5.6. The conditional expectation of species

B with respect to C is E
(
Y4|Y5, Y1

)
= 374.99 molecules and that of C with respect to

B is E
(
Y5|Y4, Y1

)
= 1875.03 molecules. By comparing (data not shown) the reduced

and full system solutions we infer that indeed the result in Fig. 5.6 corresponds to a
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Figure 5.7: Probability distribution of the slow species, Y1, at different time points.

pseudo-stationary distribution located at or close to 0.01 s. Importantly, the shapes of

the two distributions in terms of higher moments look similar. The error between the

reduced and the solution of the full system at time t = 0.01 s is less than 0.1 %.

Next we use Eq. (5.18) to compute the probability distribution of the slow species.

First we compute the mean kinetic rates through Eq. (5.17) using Eq. (5.29). Skipping

through some tedious calculations we have

Ã1
s(Y1) = k4

[
Y 2

1 +
(
E
(
Y4|Y5, Y1

)
+ E

(
Y5|Y4, Y1

)
− q1 − 2q2

)
Y1

+
(
q1 + q2

)(
q2 − E

(
Y4|Y5, Y1

)
− E

(
Y5|Y4, Y1

))]
(5.30)

Ã2
s(Y1) = k5Y1,
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where the dependence on the pseudo-stationary distribution is manifested through the

two conditional expectations. Recall that there is only one slow variable thus we have

a single CLE. For an accurate sampling of the probability distribution for the slow

species we run 2, 000 independent trials using the Euler-Maruyama method to integrate

Eq. (5.18) with a time step 0.1 s in the time interval [0, 50] s. Note that the time

step is relatively large compared to the one used to integrate the initial stiff system

(cf. Eq. (5.27)). As in the first example the accuracy of the framework is invariant

in a decrease in the integration time step since the reduction approach introduced the

leading error term. The probability distributions at different time points are shown in

Fig. 5.7. As we move along the time interval the probability distribution shifts towards

the right, i.e. its mean increases.

In order to have an estimate of the error introduced by the reduction approach we

calculated the mean and standard deviation for the probability distribution at each time

point using both the reduced and full order models. Results are depicted in Table 5.4

along with the corresponding error percentages. As the simulation time increases so does

the error in the mean while that in the standard deviation decreases, but both remain

relative small as the system approaches equilibrium. The error in the slow species is

a direct consequence of the discrepancy, if any, between the pseudo-stationary and the

equilibrium distribution of the fast species. In the present example the conditional

expectations of both fast species exhibit an error of approximately 10 % between their

equilibrium and pseudo-stationary distributions. Thus the reduction framework is able

to attenuate the error in the fast dynamics. Overall the reduction framework captures

the dynamics of the slow species more accurately than for the fast ones.

Finally we compare the execution times between the full and reduced order mod-

els (details for each code have been mentioned during the present section). For this

part both models, full and reduced, were coded in Matlab (Intel Core 2 Duo 2.0 GHz

processor with 3GB RAM); no attempts to optimize the codes were made. Therefore

results should only be considered as indicative. The full system requires more than

3 × 105 s while the reduced approximately 1350 s (includes the time needed to solve

the PDE and the time it takes to obtain 2,000 trajectories for the CLE describing

the slow species). Note that for the reduced model the finite difference mesh used is[
250, 550

]
×
[
1750, 2050

]
. Of course, use of a larger mesh in the finite difference scheme
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would result in a considerable increase in CPU time. The choice of the mesh is based

on an a priori knowledge. Such an insight can be obtained by running a single trial of

the initial stiff system. In that case the total CPU time for the reduced model, in the

context of the present example, would be approximately 1550 s. In summary, having

an insight on the dynamics of the system results in the use of a reasonable mesh that

further contributes in the significant decrease in computational cost observed with the

reduction framework.

5.6.3 Sugar Cataract Development Model

As a final example we consider a previously studied biological model that describes the

formation of sugar cataract. This sugar cataract development (SCD) model depicts how

the enzyme sorbitol dehydrogenase (SDH) catalyzes the reversible oxidation of sorbitol

and other polyalcohols to the corresponding ketosugars [106]. Accumulation of excess

sorbitol to the lens is responsible for the sugar cataract development that distorts light

passing through the lens. In particular, ratios of sorbitol over fructose larger than one

have been shown to be an indication of early stages of cataract formation.

The original SCD model involves 7 reactions with 7 participating species. All but

one reaction can be modeled as a continuous Markov processes, i.e. their dynamics are

governed through a system of CLEs [107]. Only the conversion of SDH to its inactive

form lies in the discrete Markov process regime. In other words, its reaction rate is

many orders of magnitude smaller than the rest of the reactions and its impact on the

system can be neglected for a short initial time frame. Therefore for the purposes of the

present work we do not consider the inactivation of SDH. The details of the SCD model

used in the present study are depicted in Table 5.5, where SDH represents the enzyme

sorbitol dehydrogenase, S and F represent sorbitol and fructose, respectively, NADH

represents the nicotinamide adenine dinucleotide and NAD+ is the oxidized form of

NADH. Initial conditions correspond to the average concentrations according to Table

II in Ref. [107]. All reactions take place in a bacterial-sized volume of 10−15 L.

Using Hy3S [1] or SynBioSS [4], we conducted 2, 000 independent trials of the corre-

sponding system of CLEs [107] in the time interval [0, 60] s, long enough so that it reaches

its equilibrium distribution, but at the same time short enough so that the system dy-

namics are not affected by the reaction we neglected. Examining the time trajectories

101



of the system more closely we infer that species concentrations evolve over time affected

by the two different time scales. In particular species SDH, E − NAD+ and NAD+

are mainly affected by the fast dynamics and reach very quickly, in approximately 0.1 s,

what appears to be a pseudo-steady state or more accurately a pseudo-stationary distri-

bution. On the other hand, species S and F are mainly influenced by the slow reactions

and in the time interval of 0.1 s their concentrations are practically unaltered. Similar

to the previous two examples we used the fixed step Euler-Maruyama method [73] as

our integration method with time step size set to 10−3 s. For larger time steps the in-

tegration fails; species populations attain negative values. This is a direct consequence

of the different time scales.

From conditions in Eq. (5.7) and the data from Table 5.5 we obtain the corresponding

stoichiometric submatrices defined through Eq. (5.8). More importantly, ν
s

and ν
f

satisfy condition Eq. (5.9) thus the appropriate diffeomorphism exists, i.e. the reduction

framework is applicable. The transformed system has two fast variables and one slow

variable, while there are also four constant species. XF is the slow species, XSDH +

XE−NADH +XE−NAD+ = q1, XNADH +XNAD+ −XSDH = q2, XNADH +XE−NADH +

XS = q3 and XF − XNADH − XE−NADH = q4 the constant species and XSDH and

XNADH the fast species. Importantly, the dimensionality of the problem is reduced

from seven variables to only three. The values for all q′is can be calculated from the

initial values (cf. Table 5.5). The identification of NADH as fast species was unexpected

given the data we had from the full order system. This goes to show that an a priori

identification of fast, slow or constant variables is not straightforward.

Interestingly, both the SCD model and the second example reduce to a similar

transformed system with two fast and one slow species even though their full order

models differ significantly. Therefore the reduction methodology for the SCD model is

similar to the second example, meaning that the pseudo-stationary distribution of the

fast species arises as the solution of a homogeneous PDE and the dynamics of the slow

species are described through a single CLE.

The solution of Eq. (5.15) for the sugar cataract development model is depicted in

Fig. 5.8. Again we used an equally spaced mesh with the discretization step set to

0.5. From the pseudo-stationary distribution we infer that the conditional expectation

of species SDH with respect to NADH is E
(
XSDH |XNADH , XF

)
= 2826.7 molecules
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Figure 5.8: The pseudo-stationary distribution that the fast variables, XSDH and
XNADH , relax into obtained as the solution of Eq. (5.15) as it applies to the SCD
model.

and that of NADH with respect to SDH is E
(
XNADH |XSDH , XF

)
= 3200.5 molecules.

Comparing the reduced and full system solutions we conclude that indeed the result

in Fig. 5.8 corresponds to a pseudo-stationary distribution located at or close to 0.1 s.

Importantly, the shapes of the two distributions in terms of higher moments look similar.

The error between the reduced and the full system solution at time t = 0.1 s is less than

0.1 %. Note that the conclusions drawn for the SCD are qualitatively similar to the

second example.

For the slow dynamics we use Eq. (5.18) to perform multiple trials in order to

obtain an accurate sampling of the probability distribution of the slow species. Mean

kinetic rates are calculated similarly to the second example. Recall that there is only
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one slow variable in the transformed system, which translates to a single CLE. We

run 2, 000 independent trials using the Euler-Maruyama method to integrate Eq. (5.18)

with a time step 0.1 s in the time interval [0, 60] s. Note that the time step is two

orders of magnitude larger than the one used to integrate the initial stiff system. The

error introduced in the slow dynamics through the reduction framework is estimated

in Table 5.6 where we compare the first two moments of the probability distributions

between the full and reduced order models at three different time points. Contrary to

the behavior observed in the previous two examples, as the simulation time increases

so do the errors in the mean and in the standard deviation. Focusing in the standard

deviation error we notice a 50 % difference between the full and reduced order solution.

That would be an unacceptable result if the concentration of the slow species was not

in the order of 105. Factoring in the large concentration of the slow species we observe

that if we normalize the error in the standard deviation with the observed mean, then

the error is only 0.01 %. Therefore, we conclude that the reduction framework captures

the dynamics of the slow species accurately.

Finally, execution times for the reduced model are very similar to the ones recorded

in the second example, as both examples reduce to the same number of fast and slow

variables. For the full order system we report execution times in the range of 2× 104 s

(Results should only be considered as indicative and all simulations were run in Matlab,

Intel Core 2 Duo 2.0 GHz processor with 3 GB RAM). There is an approximate 10-fold

decrease in the computational cost which is less than that observed in the previous two

examples, as the present example is less stiff.

5.7 Summary

A new, semi-analytical reduction framework for multiscale systems of chemical Langevin

equations was presented and its advantages and limitations were examined through il-

lustrative examples. Whenever a necessary and sufficient condition is met the iden-

tification of fast, slow and constant variables becomes possible. Next the framework

utilizes the already established method of adiabatic elimination in order to compute the

pseudo-stationary distribution of the fast species under the assumption that slow vari-

ables remain constant. The probability distribution of the slow species is obtained as
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a solution of a Fokker-Planck equation or equivalently a system of CLEs governed only

by the slow dynamics. The final step is to compute the joint probability distribution by

multiplying each independent probability.

The reduction framework proves to be relatively easy to implement and at the same

time accurate. It accurately captures the slow dynamics, which usually exhibit the most

interesting phenomena, while reproducing the fast dynamics, which are usually less im-

portant, with an acceptable error. Implementation of the framework is straightforward,

especially for the case of only one fast variable, where a semi-analytical solution renders

its applicability attractive. Importantly, a notable advantage is the computational ef-

ficiency of the proposed algorithm that results in significant decrease in computational

resource cost, ranging from one to two orders of magnitude depending on the stiffness

of the system.
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Chapter 6

Analytical Derivation of Moment

Equations in Stochastic Chemical

Kinetics

6.1 Introduction

Many stochastic processes in physics and chemistry can be considered to follow the

Markov property; the movement of the system in the available state space depends

only on the previous state and not on the path that the stochastic process has followed

before.

Any stochastic process that obeys the Markov property is a Markov process. The

underlying probability distribution, that is the probability of finding the system at any

possible state at a certain time, is governed by a single partial differential equation

(PDE) called the master equation (ME). If an initial condition is known and given

the transitional probabilities, i.e the probabilities of the system transitioning from any

state to any other state, ME uniquely determines the probability distribution at any

later time [47, 105].

The solution of ME requires enumerating the states and finding the transition ma-

trix, a task that is tractable only for the simplest of systems. For more complex sys-

tems, in lieu of a solution of ME, kinetic Monte Carlo techniques are often used to
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sample the underlying probability distribution. There is a growing community of re-

searchers that develops computationally efficient and accurate stochastic simulation

algorithms [64, 69, 53, 58, 56, 67, 70, 72, 3, 5, 1, 4].

Alternatively, instead of sampling the probability distribution all important infor-

mation for the system’s behavior can be had through the moments of the probability

distribution [108]. The first moment relates to the mean of the probability distribution,

the second to the variance, the third to skewness and the fourth to kurtosis. Higher

order moments may also contain important information on systems dynamics especially

when these systems are complex and highly non-linear.

In this work we start from the master equation and derive a system of ordinary

differential equations (ODE) that describe the dynamics of the probability distribution

moments. We express the transient moment dynamics in terms of the derivative or jump

moments [109]. Jump moments quantify the effect of any transition between states in

the probability distribution moment values. In other words, they are measures of the

rate at which moment values change when the process moves from state to state.

What is new in the current work is a scheme to derive analytical expressions for the

jump moments for any N-dimensional Markov process. These expressions can enable

scientist to quickly construct the infinite linear system of ODEs that describes the

moment dynamics of any such process.

We then apply this scheme to stochastic chemical kinetics. Stochastic chemical

kinetics have emerged in recent years as an appropriate modeling formalism for biological

systems that are away from the thermodynamic limit [74, 2, 90, 110, 30, 32, 21].

The idea of using moment equations to predict dynamics of systems in the stochastic

chemical kinetics regime has also been considered early on [111]. In recent years, publica-

tions have proposed alternative ways to derive the moment equations [112, 113, 114, 115].

Our work complements this rich literature, providing useful analytical relations for the

jump moments in stochastic chemical kinetics. These relations are then used to provide

analytical equations for the probability distribution moments.

The paper is organized as follows. First we briefly present background information

on Markov processes and their governing equations. We then define the jump moments

of Markov processes and we use this definition to derive the general form of the moment

equations. Then we concentrate on the stochastic chemical kinetics regime and we
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derive analytical relations for the jump moments. We use examples to discuss the

applicability of the derived equations. Finally we discuss the drawbacks of any moment

based method that mainly stem from the fact that the resulting ODE system is infinite

dimensional. We discuss literature moment-closure schemes and speculate on how the

analytical expressions we develop may assist in the development of accurate closing

schemes. We also argue that higher order moments, at least up to order six, are necessary

for biologically-relevant chemical kinetics systems. This is contrary to the widely held

belief that only the mean and variance are important in stochastic chemical kinetic

models.

6.2 Theory

6.2.1 Markov Processes

Consider a Markov process, X(t), a stochastic process that for any n successive set of

times, t1 < t2 < · · · < tn, obeys the following property, known as the Markov property

P1|n−1 (Xn, tn | X1, t1; . . . ;Xn−1, tn−1) = P1|1 (Xn, tn | Xn−1, tn−1) , (6.1)

where P1|n−1 and P1|1 denote conditional probabilities and Xk is the state of the system

at time tk. The Markov property states that the transition of the system to state

Xn at time tn depends only on the previous state Xn−1 at time tn−1 and therefore is

independent of the history of the process, i.e. X1, t1; . . . ;Xn−2, tn−2.

Any stochastic process with state vector X(t) = (X1(t), . . . , XN (t)) and initial condi-

tion X(t = 0) = X0 obeying the Markov property is governed by a differential difference

equation in probability known as the master equation (ME) [47]

∂P (X, t)
∂t

=
∫ [

T
(
X/X

′)
P
(
X
′
, t
)
− T

(
X
′
/X
)
P
(
X, t

)]
dX

′
, (6.2)

where P (X, t) is the probability of the system being at state X at time t and T
(
X/X

′)
is the transition probability per unit time for the system to jump from state X

′
to state

X. In principle, the ME uniquely determines the probability P (X, t) of the system

being at a state X = X(t) at time t > 0. Note that using integrals in the ME we have
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made the assumption that variable X(t) is continuous.

An alternative description of the Markov process probability distribution is obtained

through the Kramers-Moyal expansion [47].

∂P (X, t)
∂t

=
∞∑
m=1

(−1)m

m!

N∑
j1,··· ,jm=1

∂m

∂Xj1 · · · ∂Xjm

[am(X)P (X, t)] , (6.3)

where am are m-order tensors and were originally called derivative or jump moments by

Moyal [109] and later referred to as propagator moment functions [108]. Jump moments

are measures of the rate of change in the probability distribution moment values, i.e.

what is the impact of any given transition between states on the moment values.

6.2.2 Moments and Jump Moments

Let us consider an N-dimensional Markov process X(t) = (X1(t), . . . , XN (t)) with prob-

ability distribution P (X(t), t).

The m-th moment of the probability distribution is defined as

〈
Xm
i

〉
=
∫
Xm
i P

(
X, t

)
dX i = 1, . . . , N (6.4)

The first order moments of any Xi is usually referred to as the mean while sec-

ond order moments relate to the variance of the probability distribution through the

relation, var(Xi) =
〈
X2
i

〉
−
〈
Xi

〉2.

The joint moments are defined through the following relations

〈
Xm1

1 Xm2
2 · · ·Xmn

n

〉
=
∫ [

Xm1
1 Xm2

2 · · ·Xmn
n

]
P
(
X, t

)
dX m1, · · · ,mn = 1, 2, . . . (6.5)

where the sum m = m1 +m2 + · · ·mn is the order of the joint moment. The set of the

m-th order moments uniquely determines the underlying probability distribution. The

existence of higher order moments depends on how fast P (X(t), t) approaches zero as

‖X‖ → ∞.

On the other hand, jump moments relate to the transition probability rather than

the probability distribution. Based on Moyal’s work jump moments are defined through
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the following relations [109]

aim(X) =
∫

(X
′
i −Xi)m T (X

′
/X)dX

′
i = 1, . . . , N (6.6)

Index m refers to the order of the moment and index i to the element within the tensor.

Analogously the joint jump moments are

ai,j···mi+mj+···(X) =
∫ [

(X
′
i −Xi)mi(X

′
j −Xj)mj · · ·

]
T
(
X
′
/X
)
dX

′
(6.7)

Jump moments are tensors and the indexes i, j, . . . denote the element of the m =

mi + mj + · · · order tensor. Jump moments of order 2 and greater are symmetric

tensors, i.e. a1,2
2 = a2,1

2 . The same is true for regular moments. In the simple case of an

one-dimensional Markov process jump moments are simply scalars.

6.2.3 Derivation of Moment Equations

Given the definitions for both regular and jump moments we can now start deriving the

moment equations, i.e. the system of ODEs that describes moment dynamics.

Starting with the first moment we have

〈
Xi

〉
=
∫
XiP

(
X, t

)
dX (6.8)

From the defining equation we have the exact identity for the time derivative of the

first moment

d
〈
Xi

〉
dt

=
∫
Xi
∂P
(
X, t

)
∂t

dX (6.9)

substituting Eq. (6.2) in the last equation we have

d
〈
Xi

〉
dt

=
∫
Xi

∫ [
T
(
X/X

′)
P
(
X
′
, t
)
− T

(
X
′
/X
)
P
(
X, t

)]
dX

′
dX =

=
∫ ∫ [

XiT
(
X/X

′)
P
(
X
′
, t
)
−XiT

(
X
′
/X
)
P
(
X, t

)]
dX

′
dX (6.10)

Noticing that that the integration over X and X
′

runs over the same domain we can
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interchange indexes in the last equation, i.e.

XiT
(
X/X

′)
P
(
X
′
, t
)

= X
′
iT
(
X
′
/X
)
P
(
X, t

)
(6.11)

thus we have

d
〈
Xi

〉
dt

=
∫ ∫

(X
′
i −Xi)T

(
X
′
/X
)
P
(
X, t

)
dX

′
dX (6.12)

Recalling the definition of the jump moment in section 6.2.2 and in particular that of

the first moment

ai1(X) =
∫

(X
′
i −Xi)T

(
X
′
/X
)
dX

′
(6.13)

the right hand side (RHS) of Eq. (6.12) can be recast in the following form

d
〈
Xi

〉
dt

=
∫
ai1(X)P

(
X, t

)
dX (6.14)

where the RHS term denotes the average of ai1(X).

The ODE equation describing the dynamics of the first moment of variable Xi is

then simply

d
〈
Xi

〉
dt

=
〈
ai1(X)

〉
i = 1, . . . , N (6.15)

The set of N Eq. (6.15) describes the dynamics of all the first moments of any N-

dimensional Markov process. In most physical processes of interest all or the majority

of ai1(X) are nonlinear functions and therefore the RHS side depends on higher order

moment terms. Assuming that ai1(X) are polynomial functions of second order then the

RHS will depend on second order moments. If some ai1(X) are third order polynomials

then third order moments also appear in the RHS of Eq. (6.15). The dependency of

lower order dynamics on higher order moments is an important characteristic of moment

schemes when the underlying physical process is non-linear. Its significance will be the

focus of a subsequent section. In the rare case where ai1(X) are linear functions then
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Eq. (6.15) simplifies to

d
〈
Xi

〉
dt

= ai1(
〈
X
〉
) i = 1, . . . , N (6.16)

We can now derive the second order moment equations. The starting point is the

defining Eq. (6.5) from which the following identity is derived for the time derivative

d
〈
XiXj

〉
dt

=
∫
XiXj

∂P
(
X, t

)
∂t

dX i, j = 1, . . . , N (6.17)

Analogously to the derivation of the first moment equations, we substitute Eq. (6.2)

in the last equation and by interchanging notation using the same arguments as previ-

ously (cf. eq. (6.11)). Then

d
〈
XiXj

〉
dt

=
∫ ∫

(X
′
iX
′
j −XiXj)T

(
X
′
/X
)
P
(
X, t

)
dX

′
dX (6.18)

Through algebraic manipulations we can rearrange the terms in the last equation. In

particular we use the following identity

(X
′
iX
′
j −XiXj) = (X

′
i −Xi)(X

′
j −Xj) +Xj(X

′
i −Xi) +Xi(X

′
j −Xj) (6.19)

Substituting the term in the RHS of Eq. (6.18) yields

d
〈
XiXj

〉
dt

=
∫ ∫

(X
′
i −Xi)(X

′
j −Xj)T

(
X
′
/X
)
P
(
X, t

)
dX

′
dX

+
∫ ∫

Xj(X
′
i −Xi)T

(
X
′
/X
)
P
(
X, t

)
dX

′
dX

+
∫ ∫

Xi(X
′
j −Xj)T

(
X
′
/X
)
P
(
X, t

)
dX

′
dX (6.20)

Invoking the definition of the joint jump moments (cf. eq. (6.7)) and also that of averages

the RHS becomes

d
〈
XiXj

〉
dt

=
〈
aij2 (X)

〉
+
〈
Xia

j
1(X)

〉
+
〈
Xja

i
1(X)

〉
i, j = 1, . . . , N (6.21)

where a
2
(X) is a second order tensor, whereas a1(X) is a first order tensor. In the
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trivial case where i = j the last equation simplifies to

d
〈
XiXi

〉
dt

=
〈
aii2 (X)

〉
+ 2
〈
Xia

i
1(X)

〉
i = 1, . . . , N (6.22)

Following a similar way of thinking and carrying out slightly more complicated

algebraic calculations, which we omit in the present section for brevity but we include

in Appendix A for completeness, we can write the moment equations for third and

fourth order moment dynamics.

d
〈
XiXjXl

〉
dt

=
〈
aijl3 (X)

〉
+
〈
Xia

jl
2 (X)

〉
+
〈
Xja

il
2 (X)

〉
+
〈
Xla

ij
2 (X)

〉
(6.23)

+
〈
XiXja

l
1(X)

〉
+
〈
XiXla

j
1(X)

〉
+
〈
XjXla

i
1(X)

〉
i, j, l = 1, . . . , N

d
〈
XiXjXlXm

〉
dt

=
〈
aijlm4 (X)

〉
+
〈
Xia

jlm
3 (X)

〉
+
〈
Xja

ilm
3 (X)

〉
+
〈
Xla

ijm
3 (X)

〉
+
〈
Xma

ijl
3 (X)

〉
+
〈
XlXma

ij
2 (X)

〉
+
〈
XjXma

il
2 (X)

〉
+
〈
XjXla

im
2 (X)

〉
+
〈
XiXma

jl
2 (X)

〉
+
〈
XiXla

jm
2 (X)

〉
+
〈
XiXja

lm
2 (X)

〉
+
〈
XiXjXla

m
1 (X)

〉
+
〈
XiXjXma

l
1(X)

〉
(6.24)

+
〈
XiXlXma

j
1(X)

〉
+
〈
XjXlXma

i
1(X)

〉
i, j, l,m = 1, . . . , N

Using inductive reasoning and Eq. (6.15), (6.21), (6.23) and (6.24) we derive the

general moment equation for the mth order moment of an N-dimensional Markov process
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as a function of joint jump moments

d
〈
Xm1

1 Xm2
2 · · ·XmN

N

〉
dt

=
m1,m2...,mN∑
j1,j2...,jN =0

(
m1

j1

)(
m2

j2

)
· · ·
(
mN

jN

)
×

×
〈
Xm1−j1

1 Xm2−j2
2 · · ·XmN−jN

N aindexj1+j2+···jN (X)
〉

(6.25)

with initial conditions

〈
Xm1

1 Xm2
2 · · ·XmN

N

〉
t=0

=
〈
Xm1

1 (t = 0)Xm2
2 (t = 0) · · ·XmN

N0 (t = 0)
〉

where by identity a0(X) = 0 and index notation is used to symbolize the following

operation

index = {1, . . . , 1︸ ︷︷ ︸
m1

, 2, . . . , 2︸ ︷︷ ︸
m2

, . . . , N, . . . , N︸ ︷︷ ︸
mN

} − {1, . . . , 1︸ ︷︷ ︸
j1

, 2, . . . , 2︸ ︷︷ ︸
j2

, . . . , N, . . . , N︸ ︷︷ ︸
jN

}

= {1, . . . , 1︸ ︷︷ ︸
m1−j1

, 2, . . . , 2︸ ︷︷ ︸
m2−j2

, . . . , N, . . . , N︸ ︷︷ ︸
mN−jN

} (6.26)

In other words, the index notation refers to the appropriate element of the jth order

tensor, j = j1 + j2 + · · · jN .

To our knowledge there have been no other attempts to deduce the general moment

equation from jump moments in the case of a N-dimensional Markov process.

In the case of a 1-dimensional Markov process the above equation reduces to the

following simpler relation [108]

d
〈
Xm

〉
dt

=
m∑
j=1

(
m

j

)〈
Xm−jaj(X)

〉

〈
Xm

〉
t=0

=
〈
Xm(t = 0)

〉
(6.27)

The system of Eq. (6.25) completely characterizes the moment dynamics for any

given N-dimensional Markov process. The only prerequisite is the knowledge of analyt-

ical relations for the jump moments. These relations depend on the underlying physics

of the problem as it will become evident in the following section. In particular, we derive
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analytical relations for the components of the jump moments tensors in the case where

the underlying Markov process stems from a stochastic chemical kinetics model. The

final equations may appear cumbersome but they are very simple to generate with the

help of a computer program.

Even though we have made the silent assumption that variables X(t) are continuous,

this does not need to be the case. The derivation of equation (6.25) could have been

carried out similarly by starting from the discrete ME [47], alleviating the need for

continuous variables. The main difference in the derivation is that instead of integrals,

summation signs over all possible states would be used.

6.2.4 Jump Moments and Stochastic Chemical Kinetics

Consider a system of N distinct chemical species, Xi (i = 1, . . . , N), participating in M

chemical reactions in a well-mixed bacterial size volume V

N∑
i=1

rjiXi

kj
GGGGGGA

N∑
i=1

pjiXi, j = 1, . . . ,M (6.28)

and where νj is the stoichiometric vector associated with the jth reaction

νj =


pj1 − r

j
1

...

pjN − r
j
N

 j = 1, . . . ,M (6.29)

Such systems of reactions are widely used to model biological interactions, such as

transcription, translation, degradation, regulation and protein-protein interactions [27,

90, 116, 30, 2]. Dilute and sparse species populations render the traditional continuous-

deterministic modeling approach false. Instead, stochastic chemical kinetics models are

more appropriate to describe systems of reactions that are far from the thermodynamic

limit [37]. Therefore system (6.28) is frequently considered as a Markov process where a

chemical master equation (CME) governs the evolution of the probability distribution.
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Under the stochastic chemical kinetics regime reaction rates become reaction propen-

sities, αj(X). These are the probabilistic equivalents and are defined as follows

αj(X) = kjcj(X) cj(X) =
N∏
i=1

Xi!

rji !
(
Xi − rji

)
!

(6.30)

Each constant kj represents the mesoscopic reaction rate of the jth reaction.

In what follows we derive analytical relations for the jump moments for any stochas-

tic chemical kinetics model. Starting with the CME, we can determine the Kramers-

Moyal expansion of the probability distribution (cf. Eq. (6.3)). If we truncate the

expansion and retain only the first two terms then the resulting equation is the well-

known Fokker-Plank equation (FPE) [47]

∂P (X, t)
∂t

= − ∂

∂X

[
a1(X)P (X, t)

]
+

1
2
∂

∂X

∂

∂X
:
[
a

2
(X)P (X, t)

]
, (6.31)

where a
2

and a1 are the first two jump moments tensors or using the terminology most

often referred to them the drift vector and diffusion tensor respectively. Instead of solv-

ing the Fokker-Planck equations it is usually more convenient to sample the underlying

probability distribution generating ensembles of trajectories obtained as solutions of the

corresponding chemical Langevin equations (CLE) or systems of CLEs [65].

From the work of Gillespie we know that for systems of chemical reactions under

the Markov process regime the corresponding chemical Langevin equation is [65]

dX = ν α(X)dt+ ν D
(√

α(X)
)
dW, (6.32)

where ν corresponds to the N × M stoichiometric matrix, α(X) corresponds to the

M × 1 propensities vector and the notation D
(√
F
)

denotes the diagonal matrix whose

(i, i)th element are the only nonzero elements and their value equals the square root of

the ith component of vector F .

Given any FPE we can deduce the corresponding system of CLEs and vice versa.

This direct relation between the two allows us to infer through inductive reasoning

analytical relations for the jump moment tensors elements. From Eq. (6.32) we obtain
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the following representation for the FPE

∂P (X, t)
∂t

= − ∂

∂X

[
ν α(X)P (X, t)

]
+

1
2
∂

∂X

∂

∂X
:
[
ν D

(
α(X)

)
νTP (X, t)

]
(6.33)

Comparing Eq. (6.31) and (6.33) we retain the following relations for the first two

jump moment tensors

a1(X) = ν α(X)

a
2
(X) = ν D

(
α(X)

)
νT (6.34)

or using summation notation each of the tensor elements is defined as follows

ai1(X) =
M∑
k=1

νikαk(X)

aij2 (X) =
M∑
k=1

νikνjkαk(X) (6.35)

We notice that the difference between the two jump moments relations relies on

an additional component of the stoichiometric vector. Following the discussion in the

previous section we infer the relations for the third and fourth jump moments, where

a3(X) and a4(X) are N ×N ×N and N ×N ×N ×N tensors respectively.

aijl3 (X) =
M∑
k=1

νikνjkνlkαk(X)

aijlm4 (X) =
M∑
k=1

νikνlkνjkνmkαk(X) (6.36)

In general, for stochastic chemical kinetics models we infer that given the stoichio-

metric matrix and the reaction propensities vector all jump moments can be defined

analytically through the following recursive formula

a

m indeces︷ ︸︸ ︷
ij · · · l
m (X) =

M∑
k=1

νikνjk · · · νlk︸ ︷︷ ︸
m ν′s

αk(X) (6.37)
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The formula is relatively simple and intuitive. Substituting the last equation into

Eq. (6.25) returns analytical relations for the moment equations. A first obvious com-

ment is that the linear or non-linear character of the underlying reaction networks

manifests itself through the reaction propensities which in turn render jump moments

linear or non-linear functions of the chemical species concentrations. The impact of the

non-linear jump moment relations will become evident in the examples following. In

general, a similar approach may lead to analytical relations for jump moments for any

given Markov process.

6.3 Examples

The aim of this section is to highlight the analytical form of the moment equations for

stochastic chemical kinetic systems through illustrative examples. For this reason we

use two toy examples, a linear and a non-linear reaction network. Both these reaction

motifs can be thought of as components of a larger chemical kinetics model which may

be used to capture the dynamic behavior of a biomolecular interactions network. Note

that the corresponding systems of ODEs are identical with the ODE systems obtained

through an alternative derivation of the moment equations [112]. Note that the moment

scheme can be easily implemented using any numerical computing environment such as

Matlab.

6.3.1 Linear Kinetics

In volume, V, consider the reversible reaction

A
k1

GGGGGGBFGGGGGG

k2

B (6.38)

The reaction may, for example, represent the transition between the active and non-

active state of a protein molecule. The state vector of the system is X(t) = [XA XB]T

while the corresponding stoichiometric matrix and the reaction propensities vector are

ν =

[
−1 1

1 −1

]
α(X) =

[
k1XA

k2XB

]
(6.39)

120



We observe that reaction propensities are linear functions of the state variable as

expected from the linearity of the underlying reaction network. Through Eq. (6.39)

and (6.37) we can compute all the jump moments tensors, up to any desired order.

a1(X) =

[
−k1XA + k2XB

k1XA − k2XB

]

a
2
(X) =

[
k1XA + k2XB −k1XA − k2XB

−k1XA − k2XB k1XA + k2XB

]
(6.40)

...

a

m indeces︷ ︸︸ ︷
ij · · · l
m (X) =

M∑
k=1

νikνjk · · · νlk︸ ︷︷ ︸
m ν′s

αk(X)

Higher order jump moments are hard to write down as they are mth order tensors,

but their elements can be easily computed through (6.37). Notice that jump moment

elements are also linear functions of the state variables. This feature, the linearity of the

jump moments functions, will prove to be very useful in the generation of the desired

moment equations.

Combining (6.40) and (6.25) we obtain the corresponding system of moment equa-

tions up to any desired order. In the moment equations the state vector refers to

moments of the state variables, i.e.

Y (t) =
[
〈XA〉 〈XB〉 〈X2

A〉 〈XAXB〉 〈X2
B〉 〈X3

A〉 〈X2
AXB〉 · · ·

]T
(6.41)

In principle the dimensionality of Y (t) is infinite but for practical purposes we only

require a finite number of moments to obtain all necessary statistical information and

approximately reconstruct the probability distribution with a relatively small error tol-

erance.

The moment equations for the first nine elements of Y (t), i.e. up to third order

moments, using matrix notation are
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d d
t

                   〈X
A
〉

〈X
B
〉

〈X
2 A
〉

〈X
A
X
B
〉

〈X
2 B
〉

〈X
3 A
〉

〈X
2 A
X
B
〉

〈X
A
X

2 B
〉

〈X
3 B
〉

                   =

                   −
k

1
+
k

2
0

0
0

0
0

0
0

k
1
−
k

2
0

0
0

0
0

0
0

k
1

k
2
−

2k
1

2k
2

0
0

0
0

0

−
k

1
−
k

2
k

1
−

(k
1

+
k

2
)

k
2

0
0

0
0

k
1

k
2

0
2k

1
−

2k
2

0
0

0
0

−
k

1
k

2
3k

1
3k

2
0

−
3k

1
3k

2
0

0

k
1
−
k

2
−

2k
1

k
1
−

2k
2

k
2

k
1
−

(2
k

1
+
k

2
)

2k
2

0

−
k

1
k

2
k

1
k

2
−

2k
1
−

2k
2

0
2k

1
−

(k
1

+
2k

2
)

k
2

k
1
−
k

2
0

3k
1

3k
2

0
0

3k
1

−
3k

2

                                      〈X
A
〉

〈X
B
〉

〈X
2 A
〉

〈X
A
X
B
〉

〈X
2 B
〉

〈X
3 A
〉

〈X
2 A
X
B
〉

〈X
A
X

2 B
〉

〈X
3 B
〉

                    (6
.4

2)
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Note that the equations form a linear system of ODEs that can be easily integrated

given any initial condition. Since the system is linear the equations describing the means

correspond to the equations that we obtain applying mass action kinetics principles.

6.3.2 Non-Linear Kinetics

In volume V, consider the non-linear reversible reaction

A+B
k1

GGGGGGBFGGGGGG

k2

C (6.43)

The state vector of the system is X(t) = [XA XB XC ]T while the corresponding stoi-

chiometric matrix and the reaction propensities vector are

ν =


−1 1

−1 1

1 −1

 α(X) =

[
k1XAXB

k2XC

]
(6.44)

Notice that the reaction propensities vector contains nonlinear functions of the state

vector. As a consequence jump moments will also be non-linear functions of the state

vector. Using Eq. (6.44) and (6.37) we compute the first two jump moment tensors

a1(X) =


−k1XAXB + k2XC

−k1XAXB + k2XC

k1XAXB − k2XC



a
2
(X) =


k1XAXB + k2XC k1XAXB + k2XC −k1XAXB − k2XC

k1XAXB + k2XC k1XAXB + k2XC −k1XAXB − k2XC

−k1XAXB − k2XC −k1XAXB − k2XC k1XAXB + k2XC

 (6.45)

while higher order moment tensor elements can be easily computed through relation (6.37).

Combining (6.45) and (6.25) the corresponding system of moment equations using
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matrix notation and up to second order moments is

d

dt



〈XA〉
〈XB〉
〈XC〉
〈X2

A〉
〈XAXB〉
〈XAXC〉
〈X2

B〉
〈XBXC〉
〈X2

C〉



=



0 0 k2 0 −k1 0 0 0 0

0 0 k2 0 −k1 0 0 0 0

0 0 −k2 0 k1 0 0 0 0

0 0 k2 0 k1 2k2 0 0 0

0 0 k2 0 k1 k2 0 k2 0

0 0 −k2 0 −k1 −k2 0 0 k2

0 0 k2 0 k1 0 0 2k2 0

0 0 −k2 0 −k1 0 0 −k2 k2

0 0 k2 0 k1 0 0 0 −2k2





〈XA〉
〈XB〉
〈XC〉
〈X2

A〉
〈XAXB〉
〈XAXC〉
〈X2

B〉
〈XBXC〉
〈X2

C〉



+

+



0 0 0

0 0 0

0 0 0

−2k1 0 0

−k1 −k1 0

k1 0 −k1

0 −2k1 0

0 k1 −k1

0 0 2k1




〈X2

AXB〉
〈XAX

2
B〉

〈XAXBXC〉

 (6.46)

The last equation represents again a linear system of ODEs but in contrast to

Eq. (6.42) the system is infinite dimensional. Note that lower order moments depend on

higher order moments. More specifically, second order moments depend on third order

moments. Apparently then the system of needed ODEs becomes infinite. Therefore

an exact analytical or numerical solution is impossible. This is the direct consequence

of non-linear jump moments functions, or, better, of the non-linear character of the

underlying physical problem.
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6.4 Discussion

6.4.1 Infinite Dimensional Moment Equations

For any given non-linear model, whether it is a chemical kinetics model or an electrical

circuit model, jump moments will be non-linear functions of the state vector, hence the

system of ODEs describing the moment evolution will be infinite dimensional.

The general form of the ODEs describing the moment dynamics of a stochastic

chemical kinetics model up to a desired order can be summarized through the following

matrix equation

dY

dt
= A Y +A

h
Y h +B (6.47)

where Y is a vector containing the moment elements of interest and A is a square

matrix with appropriate dimensions. Its elements depend on the kinetic constants and

the stoichiometric matrix of the reactions set. Matrix A may be sparse depending on the

connectivity of the system. Vector B contains the terms that depend on any zeroth order

reactions and are always constant as the corresponding reaction rates are independent

from the state vector. Finally, the term A
h
Y h denotes the dependence of lower order

moments on higher order moments. Vector Y h contains higher order moments and

matrix A
h
, which is not necessarily square as observed in section 6.3.2, depends on the

reaction constants and stoichiometric matrix. A
h
Y h vanishes only when the underlying

system is linear.

6.4.2 Moment Closure Schemes

As mentioned earlier Eq. (6.47) is not solvable when the system of reactions is non-

linear, as the dependence on higher moments renders the system infinite. In this section

we briefly discuss existing approaches, called moment closure techniques, that attempt

to bypass the problem and obtain approximate solutions.

The main idea behind any moment closure scheme is to approximate the infinite

dimensional system of ODEs depicted in Eq. (6.47) with a finite system of the form

dY t

dt
= A Y t + f

h
(Y t) +B (6.48)
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where Y t is a truncated version of the infinite dimensional vector Y (cf. eq. (6.47)). The

last equation explicitly states that the term A
h
Y h in Eq. (6.47) should be substituted

with a vector containing linear or non-linear functions of Y , f
h
(Y t), that would closely

approximate the effect of the higher order moment terms. In other words, the effect of

higher order moment terms is approximated through functions of lower order moment

terms. This approximation renders the system finite but also non-linear as all the

developed approaches consider f to be non-linear functions. At the same time the

approximation introduces an error in the moment values with its significance depending

on how well f follows A
h
Y h.

Two major approaches exist on how the components of vector f are chosen. In

the first, a shape for the underlying distribution is assumed, for example Gaussian or

log-normal, which allows to establish relations between higher and lower order mo-

ments [117]. Advantages include easily determined relations between lower order and

higher order terms that are not system specific. On the down side, if the assumption for

the shape of the underlying distribution is not valid then the error would be significant.

In practise it is difficult to have a priori knowledge on the state variables distributions,

which may even change over the simulation time interval.

In a similar approach, it is usually convenient to assume that higher order central

moments are negligible. This is indeed the case for normal distributions where central

moments higher than two are always zero. For other distributions there is no intuitive

way to distinguish which central moments can be neglected, as this would require to

know the shape of the underlying distribution. The general approach followed is to

consider central moments of order higher than the desired truncation order negligible.

The truncation order refers to the highest order moment included in vector Y . Setting

them equal to zero provides non-linear relations between the higher order moments

included in Y h and those in Y t [118, 114]. The advantage is that such relations are easily

obtained but disadvantages include poor performance when the underlying distribution

are anything but Gaussian. Usually there is a good estimation for the mean and the

variance but higher order moments values deviate significantly. The significance of

higher order moments is discussed in detail in section 6.4.3.

An alternative approach, developed recently, defines the functional form of vector f

by imposing that the values and derivatives of vectors Y and Y t differ by a small value
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Table 6.1: Reactions and Parameters for the Schlögl Model

Set of Reactions§ Mesoscopic Reaction Rates† Initial Values‡

A+ 2X
k1

GGGGGGA 3X k1 = 3× 10−7
[
X
]
0

= 247

3X
k2

GGGGGGA 2X +A k2 = 10−4 × 102

B
k3

GGGGGGA X k3 = 10−3
[
A
]

= 105

X
k4

GGGGGGA B k4 = 3.5× 102
[
B
]

= 2× 105

§ A and B are buffer species.
† for 1st order reactions the units are s−1, for 2nd order reactions the units are

molecules−1s−1 and for 3rd order reactions the units are molecules−2s−1.
‡ initial values are in number of molecules.

ε [112]. The resulting functional form of f suggests that the underlying probability dis-

tributions are log-normal. In the case of stochastic chemical kinetics this is usually true

when species concentrations are close to the origin. In all other cases there is deviation

between actual and approximated moments, especially as the system departs from log-

normal or gaussian behavior. Additionally higher order moments values exhibit large

deviations and are mostly used to increase accuracy in the first two moments. When

the system pertains complex non-linear dynamics, i.e. bimodality, the performance is

suboptimal.

A summary of the existing moment closure techniques in stochastic chemical kinetics

system can be found in reference [119]. To our knowledge there is no satisfactory

solution to the moment closure scheme with broad applicability and the topic is still

being actively researched.

6.4.3 Importance of Higher Moments in Non-linear Chemical Kinetics

In this section we determine the probability distribution of a simple non-linear system of

chemical reaction to illustrate how higher than the first two order moments are necessary

to capture the dynamic behavior. Consider the well studied Schlögl model that under

specific values for the kinetic rates exhibits bistability, similar to the bistable switch [15]
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Table 6.2: First Eight Moment Values for the Schlögl Model

Moments Value at t = 2 s Value at t = 4 s Value at t = 20 s

〈X〉 268.9871 295.6759 301.6574

〈X2〉 9.2903× 104 1.3364× 105 1.4733× 105

〈X3〉 3.7966× 107 7.0001× 107 8.1413× 107

〈X4〉 1.7179× 1010 3.8403× 1010 4.6203× 1010

〈X5〉 8.2743× 1012 2.1488× 1013 2.6470× 1013

〈X6〉 4.1528× 1015 1.2170× 1016 1.5262× 1016

〈X7〉 2.1465× 1018 6.9578× 1018 8.8511× 1018

〈X8〉 1.1347× 1021 4.0100× 1021 5.1617× 1021

and or the λ-phage infection [116]. Consider the network of reactions shown in Table 6.1.

Kinetic data and initial conditions are taken from reference [120].

The kinetic values depicted in Table 6.1 render the system bistable. The use of

the Schlögl model enables us to determine the minimum number of moments needed

to reconstruct the underlying probability distribution within a reasonable error. Using

Hy3S and SynBioSS [1, 4], a suite of multiscale algorithms, we generate 105 independent

trajectory trials in the interval [0,20] s.

We use Matlab to compute the underlying probability distribution of species X

at three different time points. The shapes and characteristics of the corresponding

probability distributions are depicted in Fig. 6.1(a). Next we compute the first eight

moments of X at the three different time points using the data obtained from the

stochastic simulation. Their values are shown in Table 6.2. Using the numerical values

of the moments we can reconstruct the corresponding probabilities using an algorithm

based on the maximum entropy principle and developed by Mohammad-Djafari [121].

In order to determine the minimum number of moments we first reconstruct the

distributions using only the first two moments and then we keep increasing the number

of moments by two and up to order eight.
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Figure 6.1: Actual and reconstructed probability distributions for the Schlögl model,
depicted in Table 6.1, using the moment data in Table 6.2. (a) Probability distribution
of species X at times t = 2 s, 4s and 20 s. (b) Comparison between the actual and
reconstructed probability distributions using different moment sets at time t = 2 s. (c)
Comparison between the actual and reconstructed probability distributions using differ-
ent moment sets at time t = 4 s. (d) Comparison between the actual and reconstructed
probability distributions using different moment sets at time t = 20 s.
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In Fig. 6.1(b), 6.1(c) and 6.1(d) the comparison between the actual and recon-

structed probabilities are depicted. Reconstructed probabilities using only the first two

moments expectedly fail to capture the bimodality of the distribution especially in the

cases of t = 4 s and 20 s. Using four moments seems to capture the essential futures

of the distributions, i.e. the two modes, but it fails to weight in the relative peaks of

the two modes. Six moments produce adequate results, especially when the separation

between the two modes is distinct (cf. Figure 6.1(d)), but results are inferior when there

is no distinct separation (cf. Fig. 6.1(b) and 6.1(c)). Still results are relatively accurate.

Finally, using the first eight moments produces distributions that are almost identical

to the actual distribution with minor, if any, deviations.

Overall, it is evident that using the first two moments is not adequate to reconstruct

the probability distribution. Our analysis shows that use of at least the first six moments

and in some case eight is needed.

6.5 Summary

A new derivation of the moment equations for any N-dimensional Markov process using

the definition of jump moments was presented. The applicability of the scheme is general

and leads to analytical relations given that the functional form of the jump moments is

known.

Focusing on stochastic chemical kinetics models, we derived analytical relations for

the elements of any jump moment tensor, demonstrating the ease of equation setup.

The elements of the analytical relations are a function of the stoichiometric matrix and

the reaction propensities, i.e the probabilistic reaction rates.

Using two toy examples, a linear and a non-linear set of reactions, we demonstrated

the applicability of the jump-moments derivation. Through the two examples we estab-

lished that when the underlying system contains non-linear dynamics the corresponding

system of moment equations becomes an infinite dimensional system of linear ODEs.

We briefly mentioned already developed moment closure schemes, highlighting the need

for a closure scheme that has broad applicability and produces accurate moment values.

Using a simple example of non-linear kinetics we illustrated how higher than second

order moments are important to accurately reconstruct the probability distribution for
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biologically-relevant chemical kinetics systems. Certainly, then, more effort is warranted

on the development of moment closure schemes.
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Chapter 7

Software Tools for

Computer-Aided Design of

Synthetic Gene Networks

7.1 Guided User Interfaces for Gene Network Engineering

In this dissertation the focus is on developing multiple time scale algorithms that can be

used for computer-aided design (CAD) of synthetic gene networks. The prospect is to

eventually put these algorithms to the test and attempt to use them for CAD of synthetic

gene networks. This endeavor requires the algorithms to be publicly available and

most importantly in a user friendly form, where even those with limited programming

knowledge can use them. Our main target group is biologists and our aspiration is for

them to use our algorithms actively. For that, our group has concentrated in producing

software tools that intent to simplify computer-aided design of gene networks. Nowadays

there is a large number of available software tools and a good source for many of the

application is the systems biology markup language (SBML) website, http://sbml.

org/SBML_Software_Guide.
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Figure 7.1: Screenshot of the main GUI window of Hy3S.

7.2 Hybrid Stochastic Simulation for Supercomputers

A user friendly program that implements the hybrid stochastic algorithm discussed

in Sec. 3.2, called Hy3S short for hybrid stochastic simulation for supercomputers, is

readily available [1]. Hy3S incorporates a Graphical User Interface (GUI) which makes

easier for the user to enter the reactions and determine model parameters, such as the

number of trials, time internal, save times etc. A screenshot of the main GUI window

is presented in Fig. 7.1

Hy3S incorporates also some interesting features. It utilizes MPI, treats special

events such as cell division sufficiently and encompasses options for introducing pertur-

bation. For example the user can choose to perturb the reacting species concentrations,

kinetic constants or both during the simulations. Additionally, sensitivity analysis can

be performed through a combinatorial scheme allowing for running multiple simulations

with varying initial concentrations and kinetic constants. Since large networks of reac-

tions can be simulated with Hy3S, an optimized binary format (NetCDF) accounts for

storing and handling large simulations data. All the above features make Hy3S a very
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attractive simulation platform for biological systems.

The algorithms upon which Hy3S is build are mostly described in Sec. 3.2. Hy3S

uses fixed or adaptive time step schemes to numerically integrate the coupled system

of CLEs and differential Jump equations. The adaptive scheme is part of the work

conducted under the scope of the present dissertation and has been extensively discussed

in Chapter 4.

Hy3S is among the pioneering software tools in the field. Nonetheless, limitations

are still present. For instance the GUI is built using the Matlab environment, which

obliges any potential user to have access to a commercial software. Additionally, there

is no embedded visualizing software thus a third party application is required for post

processing.

7.3 Synthetic Biology Software Suite

In an attempt to overcome the limitations while also strengthening the computer-aided

design capabilities of Hy3S, our group developed the synthetic biology modeling suite,

known as SynBioSS [4]. SynBioSS is capable of creating models of arbitrary synthetic

gene constructs. The modeling suite is built upon three distinct entities. Each of

them will be briefly presented in the following sections. Detailed instructions along

with useful examples regarding SynBioSS can be found on the project’s website, http:

//synbioss.sourceforge.net/.

7.3.1 Synthetic Biology Software Suite: Desktop Simulator

The first entity is the SynBioSS Desktop Simulator (SynBioSS DS), a cross-platform

(Windows, Mac OS and Linux are supported) desktop application. SynBioSS DS uses

the same algorithms as Hy3S to efficiently and accurately simulate dynamics of syn-

thetic gene constructs. Much effort has been spend in creating an even friendlier user

interface compared to Hy3S. A typical screenshot of the GUI is depicte in Fig 7.2. The

dependence on Matlab is no longer present while there is also a proprietary visualizing

application for post-processing of simulation results. NetCDF file support is kept intact

and SBML [122] file support has been added to accommodate the fact that SBML has

become the standard markup language for representing chemical kinetics models.
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!

Figure 7.2: Screenshot of the main GUI window of SynBioSS Desktop Simulator.

7.3.2 Synthetic Biology Software Suite: Wiki

The second entity is the SynBioSS Wiki. The Wiki is a searchable and curated database,

similar to wikipedia, that stores reaction kinetic data necessary to build chemical ki-

netics models to represent biological interactions. The Wiki is a completely web-based

application (http://synbioss.sourceforge.net/) that addresses the critical limita-

tion of the chemical kinetics approach, namely the sparsity and lack of easily available

kinetic data. A very attractive feature of the SynBioSS Wiki is the ability to collect

and combine reactions along with their corresponding kinetic rates to create desired

chemical kinetics models on the fly. Models can then be exported in SBML format and

simulated using the SynBioSS Desktop Simulator.

7.3.3 Synthetic Biology Software Suite: Designer

The last entity in the SynBioSS modeling suite is the SynBioSS Designer (http://

synbioss.sourceforge.net/). Similar to Wiki the Designer is also a web based appli-

cation that combines available data from the Wiki, predefined design rules and BioBricks
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mentality to predict or suggest a cascade of reactions that can be used as a model for

a given system of gene network. In other works, the Designer uses as inputs networks

of standardized parts, i.e. BioBricks [123], that form the synthetic gene network un-

der investigation. Then based on a set of design principles the software generates the

appropriate chemical kinetics model and assigns the suitable kinetic rates using the

Wiki database. The model is then exported in either NetCDF or SBML file format and

imported in the Desktop Simulator.

The aspiration of the Designer project is synonymous to computer-aided design. The

Designer encompasses and embraces our group’s philosophy of how state of the art al-

gorithms, wrapped around user friendly interfaces, can greatly benefit the advancement

of synthetic biology and gene network engineering in particular.
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Chapter 8

Synthetic Tetracycline-Inducible

Regulatory Networks: Computer

Aided Design of Dynamic

Phenotypes

8.1 Introduction

In this chapter we model novel tetracycline-inducible regulatory gene networks using

the principles of computer-aided design and the software tools presented in the previous

chapters. This part of the dissertation conveys how sophisticated algorithms can reduce

the vast amount of possible design alternatives by rapidly and rationally shifting through

possible design combinations. In every step, we propose, test, and accept or reject

design principles for each alternative, eventually developing design principles for novel

tetracycline-inducible gene networks.

Tightly regulated gene networks, precisely controlling the expression of protein

molecules, have received considerable interest [10] by the biomedical community due

to their promising applications. Recently, regulatory gene networks have been used in

exciting biomedical applications, such as delivery of therapeutic genes, treating cancer,

diabetes, and other diseases [124, 125]. Proposed designs have been tested both in vitro
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and in vivo [124, 125], leading to encouraging results.

Desirable characteristics of a fine tuned system include silent expression in the ab-

sence of inducer (low expression leakiness), high induced expression, high specificity and

sensitivity to inducers, quick response to inducers, regulation by an orally bioavailable

inducer, minimal or no immune impact to the host and finally in vivo applicability.

The most widely used inducible transcription systems that largely meet these criteria

are the tetracycline regulatory expression systems based on the tetracycline resistance

operon of Escherichia coli (E. coli) [126]. Tet-Off and Tet-On systems, also known

as rTA and rtTA, respectively, are among the most well studied systems of this cate-

gory [127, 128, 14, 129].

Tet-Off, first employed by Gossen and Bujard is a binary transgenic system in which

expression of a target transgene is dependent on the activity of an inducible transcrip-

tional activator [14]. The transcriptional activator is a tetracycline-controlled transac-

tivator protein (tTA), which is a fusion between the Tet repressor DNA binding protein

(TetR) and a transactivator, such as VP16 of the herpes simplex virus. The target gene

is under transcriptional control of a tetracycline-responsive promoter element (TRE), a

seven Tet operators (TetO) moiety placed upstream of a minimal promoter, typically

derived from the human cytomegalovirus (hCMV). Expression of the transgene can

be regulated both reversibly (expression is turned back on again when tetracycline has

cleared out of the system) and quantitatively by exposing the system to varying concen-

trations of tetracycline (Tc), or Tc derivatives such as doxycycline (Dox) or minocycline.

Transcription is silenced when tetracycline derivatives are administered, since TetR loses

its affinity for TetO.

While Tet-Off requires the absence of Tc for expression of the transgene, in the

Tet-On system the transgene is expressed when Tc or its analogues are present. Four

amino acid substitutions on the TetR sequence led to reverse TetR, which binds TetO

sequences only in the presence of Tc. Reverse TetR fused with a transactivator domain

(rtTA) has the reverse phenotype of tTA, allowing transgene expression in the presence

of Tc or its analogues. This last characteristic makes Tet-On systems more attractive

than Tet-Off, since in general, organisms are more easily saturated with an inducer than

depleted of it.

Despite their initial success, both systems (tTA and rtTA) still face limitations that
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need to be addressed before routinely using them in human gene therapies:

• High-level expression of Tet-OFF or Tet-ON transactivators might cause cellular

toxicity, or selective pressure against the stable incorporation of vectors expressing

the transactivators.

• Therapeutic gene expression leakage is still present despite the strength of biomolec-

ular interactions comprising Tet-OFF or Tet-ON. For example, there is residual

affinity of Tet-ON for TetO, even in the absence of Tc.

• Only traces of Tc or Dox appear to be sufficient for silencing expression in Tet-

OFF, requiring days before the systems behavior is reversed.

• Fairly high levels of Dox are required for Tet-ON to be activated, a concentration

that cannot be readily achieved in the brain of mice.

To address these issues, novel tetracycline regulated systems were engineered that

display both low basal expression levels and higher affinity for Dox [130, 131]. Addition-

ally acidic activation domains can replace VP16, creating a wide selection of possible

transactivators. Another strategy employed to reduce basal activity was the fusion of

TetR with a KRAB domain (tTS) [132], which led to repression of unwanted transgene

when Tc was absent without affecting expression in the presence of Tc. Combined

tTS and rtTA [133] systems demonstrate promising results. Moreover autoregulated

expression vectors have been successfully used to control expression of Tet-OFF or Tet-

ON [134]. Additional strategies working towards improving the original Tet designs

include the use of adenovirus vector systems [135] and the use of histone deacetylases

in mammalian cells [136].

Nonetheless, limitations persist. Instead of looking at these networks statically, and

simply changing or mutating the promoter and operator regions with trial and error, a

systematic investigation of the dynamic behavior of the network can result in rational

design of regulatory gene expression systems. The observation that gene networks are

inherently stochastic [37], allow to numerically simulate complex networks of regulated

biological reactions. By combining fast supercomputers and greater knowledge of the

molecular mechanisms of gene expression, we can numerically simulate the stochastic

dynamics of gene networks and understand in depth how components of the network
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affect system level performance. Multiple time-scale algorithms [74] are able to accu-

rate capture the dynamical behavior of complex gene networks, such as the bistable

switch [29], the fim switch [27], the oscillator [30] and the lac operon [28].

Using computer simulations, we aim to facilitate rational synthesis of tetracycline-

inducible regulatory networks and propose new designs that aim to address some of

the limitations, for example enable tighter control of expression. We first generate

four novel gene regulatory networks based on the tTA, rtTA and the wild type operon

of E. coli. Then a chemical kinetics model based on the interactions present in the

network is constructed and the dynamical behavior of the wild type network is simulated.

The model consists of all distinct biomolecular interactions involved in transcription,

translation, regulation and induction. The behavior is evaluated and design principles,

such as mutations, are introduced, which aim in a fine tuned dynamical behavior. We

propose, mutations in TetR sequence which affect both the relative binding affinity

with TetO [137, 138, 139] and with tetracycline [140] allowing for a fine tuned design.

Moreover, we suggest mutations in the TetO [141, 142, 143, 144] sequence that affect

the relative binding affinity with TetR.

8.2 Four Novel Networks Based on the Tetracycline Re-

sistance Operon of E. coli

Based on the components of Tet-Off, Tet-On and the tetracycline resistance operon

of E. coli we introduce four novel model networks that address limitations present in

current designs. By computationally identifying the important molecular interactions,

the objective is to find ways to fine tune the dynamic response of the systems. We will

mainly concentrate in controlling levels of repressor-transactivator proteins, response

times and sensitivity to Tc or its analogues. A schematic representation of the proposed

gene networks is shown in Fig. 8.1. The connectivity between network components in

the absence or presence of Tc are shown in Fig. 8.2, where nodes represent genes and

arrows represent repression, activation and blocking of activation.

Selection of network designs is a crucial subject in the present work. Based on the

building blocks of the wild-type rTA and rtTA we constructed four networks with both

different number of genes and components. The driving force behind the particular
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(I)

(III) (IV)

(II)

Figure 8.1: Schematic representation of the four regulatory gene networks showing
the way components of the Tet-Off, Tet-On and the tetracycline resistance operon are
combined. TetR: the wild type Tet repressor, TetO: the wild type Tet operator, Ptet:
the wild type Tet Promoter, Tet-OFF: protein fusion of TetR with a transactivator
domain, Tet-ON: protein fusion of reverse TetR with a transactivator domain and GFP:
Green Fluorescent Protein.

design selection is mainly intuition. Intuition and the understanding of the existing

design flaws lead to propose the present four networks. Of course there are millions

other configurations we could have used, given the enormous amount of DNA sequences

and proteins available, such as a combination of promoters from the lac and tetracycline

resistance operon. But our objective was to keep the proposed networks as simple as

possible for two reasons. First, at present it is hard to experimentally realize gene

networks with more than three genes and secondly as nature has taught us, simple is

always better.

The major components of the four networks are the wild type Tet repressor DNA

binding protein (TetR), the wild type Tet operator (TetO), the wild type Tet promoter

(Ptet), the Tet-OFF protein (fusion of TetR with an appropriate transactivator domain)

and the Tet-ON protein (fusion of reverse TetR with an appropriate transactivator do-

main). Note that the proteins Tet-OFF and Tet-ON are written using capital letters for

141



(I) (II)

(III) (IV)

Figure 8.2: Schematic representation of the network connectivities in the presence or
absence of Tc. Nodes represent genes and are numbered according to Fig. 8.1. Arrows
represent repression or activation.

ON and OFF in contrast to the Tet-Off and Tet-On systems where lower cases are used.

When TetO is located upstream of Ptet we assume that there is no overlapping of the

two sequences, with the proximity of the two being appropriate for the transactivators

to interact with the transcriptional machinery. The promoter is not silenced while TetR

is bound to TetO; RNA polymerase can still be recruited. Green Fluorescent Protein

(GFP) is used as a reporter gene in our networks. In practical gene therapy applications,

a therapeutic gene can replace GFP.

The complexity and the degree of uncertainty we have for mammalian transcrip-

tion and translation stages prohibit us currently from simulating the gene networks

in mammalian cells. Therefore we study the time evolution of the networks within

bacteria, in particular E. coli where molecular mechanisms are less complex and well

studied. We use strings of E. coli that do not contain the natural tetracycline resistance

operon. Our models incorporate all individual molecular species and interactions known
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to be involved in the transcription, translation, regulation, and induction steps in the

tetracycline-regulated expression system. For example we end up with 93 reactions that

model all the individual biomolecular interaction events in Network III. The detailed

network of reactions, along with a short description can be found in the Methods section

of the present chapter (cf. Sec. 8.3.1).

We start by looking into the wild type dynamical behavior of each network, using

chemical kinetics models. This approach allows us to look into the molecular level and

investigate how species concentrations vary over time and how they affect the actual

phenotype. First we determine important interactions and secondly we propose ways to

manipulate sequences and binding affinities to achieve design goals. Although intuition

can help us to decide what new designs to construct based on qualitative arguments, it is

the insight of the molecular level that guides us to propose changes that will attempt to

address limitations and also lead to design rules for fine tuned systems. Experimentally

realizable changes include the use of new TetR or reverse TetR [137, 138, 139] and

TetO [141, 142, 143, 144] variants as well as TetR variants that do not bind Tc [140].

Effects are studied and the suggested changes are accepted, rejected, or combined.

8.3 Methods

8.3.1 Chemical Kinetics Models

Representing the physicochemical interactions between biomolecules, such as recruit-

ment of RNA polymerase on promoter sites, as a set of chemical reactions enables us

to study the time evolution of a gene network using stochastic algorithms. The knowl-

edge for the molecular mechanism of transcription and translation provides us with

enough insight to classify interactions in the molecular level as first order, second order,

Michaelis Menten type, etc. reactions. Reversible phenomena, as binding and unbind-

ing of tetracycline to TetR, are represented as two separate reactions (forward and

reverse reactions). Special events as transcriptional elongation are modeled as gamma

distributed events [53], whereas interactions between three or more species, where one

of the species has a binary state, (one or zero number of molecules, for instance non

occupied and occupied operators) are assumed to follow power law kinetics.

As an example, consider the synthetic Network III (cf. Fig. 8.1). The network
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consists of 63 species, participating in 93 distinct chemical reactions. In Table 8.1, we

present all reactions with their kinetic parameters. These parameters are largely taken

from the existing literature and others adjusted to give specific values, for example

the rates of mRNA half-life and mRNA ribosome binding (initialization of translation)

are adjusted to produce approximately 20 protein molecules per mRNA transcript.

Table 8.1 represents the wild-type behavior of the genes. We will briefly describe how

we assigned the appropriate kinetic data to the set of reactions. For brevity we will

focus on the reactions depicted by design III (cf. Table 8.1), but the approach is similar

for the rest of the networks.

Administration of Tc into the medium causes diffusion through the cytoplasmic

membrane of E. coli [145]. The process has a half-equilibration time of approximately

35± 15 min and is modeled as first order chemical reaction (k = 3.3× 104 s−1).

Dimerization of TetR and Tet-OFF are reversible reactions and their equilibrium

constants, in the absence of specific experimental information, are assumed to be sim-

ilar to lac [146]. Binding of tetracycline to TetR is also a reversible phenomenon and

equilibrium constants are readily available in the literature [126, 147]. In the case of

Tet-OFF, we assume it has the same binding affinity for Tc as TetR, a reasonable as-

sumption if one notes that the inducer binding domain of TetR is not affected when

the transactivator is added. Each TetR or Tet-OFF dimer requires two molecules of

Tc to be fully induced. Due to the stochastic nature of the algorithm it is in general

difficult to model a reaction where more than two species are simultaneously involved.

We break down the reaction of the two Tc molecules with either one TetR or Tet-OFF

dimer into two steps. In the first step, one Tc molecule reacts with one TetR/Tet-OFF

dimer molecule with rate constant 2.0 × 106 M−1s−1 and in the next step the formed

complex reacts very fast (1.0×1015 M−1s−1)with another Tc molecule to form the fully

induced complex. It is obvious that the first step is the rate limiting one and that the

underlying assumption is that Tc induction depends linearly on the concentration of Tc.

Finally, due to the short life of the intermediates we do not consider them degrading.

Binding constants for TetR and Tet-OFF dimers in the operator sequence (TetO)

are available in the literature [147, 148]. As previously, we assume a similar behavior

between the two dimers. Presence of Tc causes TetR or Tet-OFF dimmers bound to an

operator to unbind faster [149], meaning that that the complexes have a smaller half-life
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(2 min) as compared to the normal half-life of approximately 20 min. Similar to the

binding of two Tc molecules to free TetR, the reaction of two Tc molecules with bound

to an operator TetR is again broken down to two steps.

Protein degradation can be modelled as a first order reaction, with the kinetic con-

stant calculated from half-life data. Protein half-lifes can vary by many orders of magni-

tudes and depend on the cell type and environmental conditions. Consequently it would

be invalid to consider a typical value that would apply universally. The solution to this

problem comes by adding a C-terminal tag. In the present study we assumed that all

proteins, except GFP, have an initial half-life of approximately 10 min (0.0012 s−1).

Wild type GFP degradation is slow, has a half-life of approximately 26 hours. For

distinct turn on and off times of the reporter gene smaller half-life times are desired.

New unstable variants of GFP proteins have been introduced [150]. We choose GFP-

L-A-A (the last three letters denote the amino acids of the C-terminal tag), which has

a reported half-life of 40 min. Finally, since for E. coli there is no specific pathway for

biodegrading Tc, we assume that the rate at which Tc is removed from the system is

equal to the half-life (48 h) of Tc in distilled water [151].

E. coli RNA polymerase recruitment to the promoter region, interaction with the

occupied or not operator region, formation of close complex and then formation of the

open complex are modelled through a cascade of reactions. Literature data [152, 155]

provide the desirable kinetic constants. Open complex formation is assumed to be

irreversible, since cells try to minimize their energy use. Transactivators in general

attract, position and modify RNA polymerase. Given that Ptet is a strong promoter

we assume that the presence of either Tet-OFF or Tet-ON in close proximity to the

promoter mainly affects the formation of the open complex. In the present study we

assume that the kinetic constant of the irreversible formation of the open complex is

increased by a factor of 10, since we were not able to obtain kinetic data for prokaryotic

transactivators.

Recruitment of RNA polymerase is described using power law kinetics. Initiation

of transcription is modeled as a first order reaction, whereas elongation is considered

to be a gamma distributed event [53]. Movement of the RNA polymerase across the

DNA (coding sequence), occurs at a rate of approximately 30 nucleotides/s [154]. The

parameter N of the gamma distribution is equal to the number of nucleotides each
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coding sequence has. TetR is comprised of 207 Amino Acids (AA), whereas Tet-OFF

has the extra AA from the transactivator domain. The GFP variant is comprised of

238 AA, plus three AA from the peptide chain.

As in the case of proteins, mRNA can be degraded. Similar to proteins there are

complex pathways for biodegrading mRNA. Again we considered degradation to be a

first order chemical reaction. Furthermore, mRNA is translated in the ribosomes where

proteins are the final product. Initiation of translation is considered to be irreversible

since the cell utilizes energy in the form of ATP. Kinetic constants for both stages are

adjusted so that for each mRNA transcript approximately 20 protein molecules are being

produced. Elongation of translation is treated similarly to transcription. Movement of

the ribosomal subunits across the mRNA occurs at a rate of 100 AA/s [26]. Similar to

transcription, we model translation as a gamma distributed event [53].

Assumptions that relate to our specific system and have not been mentioned in the

previous paragraphs are the following. Monomer forms of TetR protein or fusion of

TetR with tranactivators are not able to bind to operator regions. Furthermore we

assume that monomer TetR and Tet-OFF are not able to react with Tc molecules, only

the dimer forms do.

8.3.2 Model Assumptions and Initial Conditions

The main underlying assumptions on which the model is based are as follows. The

reactant volume is considered to be well stirred and the species are diluted in a large

number of water molecules (homogeneous). In all simulations we consider a cell which

we follow over time as it divides to produce ancestors (cell division with the doubling

time of cells being 30± 4 min). Each cell is considered to be of initial volume 10−15 L

and then grows exponentially until it divides, with division times following a normal

distribution with mean 30 min and standard deviation 4 min. Furthermore, the species

velocities follow a Maxwell Boltzmann distribution leading to a large number of neutral

collisions that add to the homogeneity and a small number of reacting collisions. The

system is considered to be isolated, that is other genes or organelles are assumed not

to interfere, while mass transfer through the boundaries is allowed (for example nu-

cleotides bases are readily available). Also, the cell has all the nutrients it needs to fuel

its metabolism, which keeps major components (for example, free and available RNA
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polymerase, proteolytic enzymes) concentrations constant. Temperature and pH are

assumed to remain constant throughout the simulations.

Turning our attention to the initial conditions we briefly discuss how they were gen-

erated. When inserting a vector in a cell that expresses non natural occurring proteins

(proteins that are not expressed naturally within the cell) you do not expect to have any

previous accumulation of those proteins. In our case there is no previous accumulation

of TetR, TetOFF or TetON and GFP. For TetR this is true because we use strings of E.

coli that do not contain the natural tetracycline resistance operon. TetOFF and TetON

are not naturally occurring proteins in any bacterial or mammalian cell and finally GFP

is also not being naturally expressed in E. coli. Therefore all their concentrations are set

initially to zero. This also means that all intermediates involved in their transcription,

translation, regulation will also be absent, hence have zero initial concentrations. On

the other hand we set the initial concentration of each promoter/operator sites equal

to one since that is the amount the cell will recognize. Finally available and free RNA

polymerase and ribosome numbers are set accordingly to represent average values. In

our case, all simulations use 180 molecules of free and available RNA polymerase and

300 free and available ribosomes [29, 30, 26]. The initialization of the simulations with

more free RNA polymerase or free ribosomes will only result in sifted up values of trans-

lated and transcribed proteins, such as GFP, but the qualitative characteristics remain

unaltered.

8.3.3 Computer-aided Design Software Tools

For the time integration of the generated chemical kinetics models for each of the four

Networks we use either Hy3S or SynBioSS (cf. Chapter 7). Both depend on the hybrid

algorithm described in Sec 3.2 which has been enhanced with the implementation of the

adaptive algorithm presented in Chapter 4.

We have made available the necessary files for simulating Network IV in the website

of SynbioSS (http://synbioss.sourceforge.net/). Accessibility of the files is plau-

sible through either of the GUIs. In these files initial conditions are set as discussed in

Sec 8.3.2 and the values used for the kinetic parameters in the case of wild-type dynamics

are depicted in Table 8.1. Averages are computed from 100 independent trajectories.
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In our work, all realizations were obtained using Itanium2 1.5 GHz processors. Aver-

age simulation times for Network IV range from 4 to 6 hours per trial on supercomputers.

8.4 Network I

8.4.1 Dynamical Behavior Based on Wild Type Kinetics

Starting with Network I (cf. Fig. 8.1), we intend to control the concentration of Tet-

ON with self-repression and decrease the sensitivity of the network to low Tc levels.

This decreased sensitivity will result in shorter time intervals before gene expression of

the reporter gene is turned back off again, after Tc administration. With Tc present,

Tet-ON can bind on TetO, downstream of Ptet and self-repress while transcription of

the reporter gene is on and activated by Tet-ON. The rate of the transcription depends

on the amount of Tet-ON induced with Tc available and on the promoter strength.

In the absence of Tc, Tet-ON does not bind to either TetO sequences and expression

levels of Tet-ON and GFP will depend on promoter strength (basal activity). For

small Tc concentrations, self-repression of Tet-ON will result in a decrease of Tet-ON

concentration and lower expression of reporter gene. A schematic representation of these

interactions can be seen in Fig. 8.2(a).

First we investigate the dynamical behavior, both transient and at equilibrium, of

the network. The dynamical behavior of Network I in the presence or absence of Tc,

over a time period of 6 × 104 s (16.7 h) is presented in Fig. 8.3(a). In the absence

of Tc basal expression of GFP is approximately 250 molecules. The system reaches

an equilibrium state after 104 s (2.8 h) with Tet-ON dimer concentrations values of

approximately 40 molecules (data not shown). On the other hand, GFP production

is increased when Tc is added, 2000 and 5000 molecules at time 2 × 104 s (5.6 h)

(cf. Fig. 8.3(a)). Maximum GFP values reach levels of approximately 850 molecules,

a 200 % increase from basal expression. The differences between the two cases are

the time that the system sustains maximum levels of GFP and eventually the turning

off time. This differentiation is a direct result of Tet-ON dimer concentration before

the addition of Tc and the concentration of added Tc. In both cases, before adding

Tc the concentration of Tet-ON monomers and dimers was the same and that led to

similar levels of induced Tet-ON, meaning same GFP values. The lengthened duration
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of the pulse in case two is mainly due to the larger amount of free and available Tc

molecules that sustained induced Tet-ON molecules longer. In both cases maximum

free Tc amounts in the cell were below toxicity levels, approximately 600 (0.44 µg/mL)

and 1600 (1.18 µg/mL) molecules respectively.

8.4.2 Fine Tuning Using Mutated TetR and TetO Variants

As we observe the system experiences high levels of basal expression. This has been

anticipated since the Ptet promoter is naturally a strong promoter. Overcoming this

limitation will require to change Ptet with a minimal one, something attempted success-

fully in mammalian cells with a promoter from hCMV. For this we will focus on other

strategies to fine tune the system, such as mutating operator sequences and changing

half-lifes.

The first proposed change is to mutate TetO of the gene encoding Tet-ON. Mutat-

ing TetO in general will result in less binding affinity for induced Tet-ON, since TetR

or revTetR interaction with TetO is considered to be very strong. Therefore we will

consider only cases where a decrease in the binding affinity is observed. Implementing

the change in our model requires increasing the dissociation constant of the induced

Tet-ON dimer from TetO (decrease half-life of the complex). Initially, the wild type

kinetic constant was set to 0.01 s−1. We changed the dissociation kinetic constant from

0.01 s−1 to 0.2 s−1 and then again to 0.5 s−1.The results are shown in Fig. 8.3(b), where

at time 2× 104 s there is an addition of 2000 molecules of Tc in the medium. Although

we observe a decrease in the occupancy of the mutated operator and a small increase

in the number of induced Tet-ON dimers as well as the time period they are present,

no significant change in the occupancy of the operator in the reporter gene is observed.

Therefore as the kinetic parameter is increased, GFP levels are slightly altered whereas

pulse duration practically remains the same. This becomes more evident in Fig. 8.3(c)

where we compare the dynamical behavior of the wild type kinetics with the operator

having a 20 fold (0.2 s−1) decrease in the affinity for Tet-ON.

On the other hand mutating the operator adjacent to Ptet encoding GFP will only

result in decreased production of GFP, a direct consequence of the reduced occupancy

of the operator. The same outcome can be achieved by adding less Tc into the system.
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Figure 8.3: Dynamical behavior of Network I: (a) Average number of GFP molecules
in the absence of Tc (WT w/o Tc, blue line) and when 2000 molecules (WT /w 2000
Tc, green line) or 5000 molecules (WT /w 2000 Tc, red line) of Tc are added into
the medium at time 2 × 104 s, using wild-type kinetics. (b) Average number of GFP
molecules when 2000 molecules of Tc are added into the medium at time 2×104 s, using
wild-type kinetics (WT /w 2000 Tc, blue line), a 20 fold (Des 1.1 /w 2000 Tc, green
line) and a 50 fold (Des 1.2 /w 2000 Tc, red line) increase in the dissociation constant of
induced Tet-ON from TetO of the gene encoding Tet-ON. (c) Average number of GFP
molecules when 2000 molecules of Tc are added into the medium at time 2× 104 s and
6× 104 s, using wild-type kinetics (WT /w 2000 Tc (x2), blue line), a 20 fold (Des 1.1
/w 2000 Tc (x2), green line) increase in the dissociation constant of induced Tet-ON
from TetO of the gene encoding Tet-ON. (d) Average number of GFP molecules when
2000 molecules of Tc are added into the medium at time 2 × 104 s, using wild-type
kinetics (WT /w 2000 Tc, blue line), a doubled (Des 1.3 /w 2000 Tc, green line) and a
quadrupled (Des 1.4 /w 2000 Tc, red line) half-life of Tet-ON.
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Another way to fine tune the systems behavior is by increasing the half-life of Tet-

ON, leading to higher amounts of Tet-ON before administration of Tc. Applying such

a change requires the addition of a C-terminal tag. The half-life of Tet-ON was initially

set to 10 min; we looked into the cases of doubling it (5.7762×10−4 s−1) and quadrupling

it (2.8881×10−4 s−1). The results are shown in Fig. 8.3(d), where again 2000 molecules

of Tc are added at 2 × 104 s. In both cases we observe a change in the phenotype,

GFP levels are increased over time and the duration is also increased. Looking into

the levels of free and induced Tet-ON molecules we observe an increase of almost 75 %

and a 150 % for doubled and quadrupled half-lifes, respectively. Comparable increases

in GFP levels or duration are not monitored, due to non significant alternation in the

occupancy of TetO in the reporter gene.

Concluding, controlling GFP levels and duration of the pulse (turning on and off

times) cannot be accomplished separately. Both are related to the amount of Tet-ON

dimers in the system prior to inducers administration and on the amount of the inducer

added. The higher the amounts of Tet-ON dimers and of inducer, the higher GFP levels

are going to be. On the other hand longer duration is achieved, by keeping the levels

of induced Tet-ON constant over time.

8.5 Network II

8.5.1 Dynamical Behavior Based on Wild Type Kinetics

In Network II (cf. Fig. 8.1), we add a third gene encoding TetR to improve the regulation

achieved with the first design. In the absence of Tc, TetR will minimize expression of all

genes including itself. In the presence of Tc, TetR will no longer repress. Tet-ON levels

will increase depending on the strength of self-repression, activating GFP expression.

Tet-ON will also activate expression of TetR. At low levels of Tc, TetR binds to Tc

and represses Tet-ON and reporter gene expression. Schematically these interactions

are shown in Fig. 8.2(b).

Adding a third gene in the first network encoding TetR actually makes the system

less sensitive to Tc concentrations. Fig. 8.4(a) compares the behavior of the system when

there is no inducer present and when we add Tc, 2000 and 5000 molecules respectively at

time 2×104 s. If we further compare these results with the ones presented in Fig. 8.4(a)
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we observe that the system exhibits the same phenotype when Tc is absent, while GFP

levels are down and the duration of the pulse is smaller when the inducer is present.

Network II has an extra source of Tc consumption, TetR dimers, so there is less free and

available Tc concentration to induce Tet-ON. Also there is one extra TetO competing for

the transactivator as well as Tet-ON has to compete with TetR for TetO. Concentrations

of induced TetR reach maximum levels of approximately 140 and 180 molecules, for

addition of 2000 and 5000 molecules of Tc respectively. On the contrary, induced Tet-

ON molecules reach maximum levels of about 28 and 35 molecules respectively, lower

compared to Network I. These lower values, together with the presence of TetR account

for less GFP production. Comparing the different scenarios of inducer administered we

notice that the more Tc present the more GFP is produced and for a longer period.

At last, maximum free Tc amounts in the cell were below toxicity levels, approximately

400 (0.30 µg/mL) and 1200 (0.89 µg/mL) molecules, respectively.

8.5.2 Fine Tuning Using Mutated TetR and TetO Variants

It can be again observed that the system experiences high levels of basal expression. As

mentioned before, a plausible solution for E. coli is the use of a minimal promoter, while

in mammalian cells rTS could substitute TetR. In the remaining section the focus is to

improve the design by proposing strategies, for instance mutated operator sequences or

coding sequences that alter the dynamical behavior.

First we start by introducing a mutation in the operator controlling the expression of

Tet-ON. This change will affect both TetR and induced Tet-ON binding. For simplicity

we assume that the change is analogues for both cases. The approach is indeed simpli-

fied, but this assumption is made due to the similarity of the two proteins that differ

only by a small number of mutations. The idea behind this mutation is to decrease the

turning on response time but also increase GFP levels. TetR dimers will bind weaker,

resulting in higher Tet-ON dimer levels at equilibrium. At the same time self repression

is limited in the presence of the inducer. We changed the dissociation kinetic constants

from 0.01 s−1 (wild-type) to 0.1 s−1 and then again to 0.5 s−1 in the case of induced

Tet-ON and from 5.11× 10−4 s−1 (wild-type) to 5.11× 10−3 s−1 to 2.555× 10−4 s−1 in

the case of TetR. The results are depicted in Fig. 8.4(b), where at time 2×104 s there is

an addition of 2000 molecules of Tc. As the affinity decreases, we observe higher levels
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Figure 8.4: Dynamical behavior of Network II: (a) Average number of GFP molecules
in the absence of Tc (WT w/o Tc, blue line) and when 2000 molecules (WT /w 2000
Tc, green line) or 5000 molecules (WT /w 5000 Tc, red line) of Tc are added into
the medium at time 2 × 104 s, using wild-type kinetics. (b) Average number of GFP
molecules when 2000 molecules of Tc are added into the medium at time 2×104 s, using
wild-type kinetics (WT /w 2000 Tc, blue line), a 10 fold (Des 2.1 /w 2000 Tc, green
line) and a 50 fold (Des 2.2 /w 2000 Tc, red line) increase in the dissociation constant
of both TetR and induced Tet-ON from TetO of the gene encoding Tet-ON. (c) Average
number of GFP molecules when 2000 molecules of Tc are added into the medium at
time 2×104 s, using wild-type kinetics (WT /w 2000 Tc, blue line). All other plots have
a 10 fold increase in the dissociation constant of both TetR and induced Tet-ON from
TetO of the gene encoding Tet-ON, but differ in a 5 fold (Des 2.3 /w 2000 Tc, green
line) and 20 fold (Des 2.4 /w 2000 Tc, red line) increase in the dissociation constant
of both TetR and induced Tet-ON from TetO of the gene encoding TetR. (d) Average
number of GFP molecules when 2000 molecules of Tc are added into the medium at
time 2 × 104 s, using wild-type kinetics (WT /w 2000 Tc, blue line). All other plots
have mutated TetR variants that do not bind Tc and show a decreased binding affinity
for TetO (20 fold decrease in the dissociation constant), but differ in the half-life of
Tet-ON, 40 min (Des 2.5 /w 2000 Tc, green line) and 24 h (Des 2.6 /w 2000 Tc, red
line).
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of GFP but also a small but visible decrease in the turning on time. Increased Tet-ON

levels at equilibrium help the system to respond faster when Tc is added. Indeed, levels

of Tet-ON dimer prior to Tc administration show a 500 % and 1250 % increase for a

10 fold and 50 fold increases in the dissociation constants, respectively. In contrast, the

actual phenotype is only increased by 15 % (from approximately 570 to 660 molecules of

GFP), since the actual increase of induced Tet-ON dimers is only 25 % for both cases.

We also propose to mutate TetO in the gene encoding TetR. The objective is to

decrease production of TetR when Tc is added. The expectations are to observe higher

expression of GFP and less Tc bound TetR. The latter is a consequence of the fact

that less TetR is being produced when the inducer is present, while the former is a

result of higher transactivator concentrations. Results are not shown for brevity but

the objectives are largely met. Furthermore, the system appears to have a small increase

in the turning off time.

Since both above mentioned mutations were in the same direction, the next logical

step is to combine them. In Fig. 8.4(c), the wild type kinetics dynamical behavior is

compared to the behavior of the mutated TetOs. In all cases, the dissociation constants

concerning TetO of the Tet-ON gene where increased by a factor of 10, while those for

the other TetO have a 5 or a 20 fold increase. From the figure it is obvious that levels of

GFP are up, the turning off time is also increased while the turning on time is shortened.

Apparently, the two mutations acted additively in the case of GFP production. The

mutated TetO of TetR increased the turning off time whereas the other mutated TetO

contributed to the decreased turning on time. Obviously, one can adjust the parameters

accordingly in order to achieve the tergeted phenotype.

Finally, a more radical approach is attempted. The wild type behavior is compared

with the ones resulting from a series of mutations (cf. Fig. 8.4(d)). First TetR is mutated

so that it does not bind Tc and at the same time mutated to bind weaker to all TetO,

a 20 fold increase in the dissociation constant. The two mutations do not overlap in

the coding sequence, since different amino acids are responsible for the DNA binding

and for Tc binding. For simplicity we assume there is no direct or indirect (allostery)

interference between the two mutations. Second, the half-life of Tet-ON is increased

from 10 min to 40 min and then again to 24 h. Briefly the idea is first to increase Tet-

ON concentration before the addition of Tc and to reduce the need for Tc. The results
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are inferior if the interest is in GFP production but on the other hand the duration of

the pulse is increased.

Concluding we observed that by adding TetR in the equation we are able to adjust

and better control the expression of GFP. We are able to regulate both turning on and

off times and at the same time manipulate levels of GFP. The downside is that for a

given addition of Tc concentration Network I will reach higher GFP levels compared to

Network II, since the latter has an extra source of Tc consumption, namely TetR.

8.6 Network III

8.6.1 Dynamical Behavior Based on Wild Type Kinetics

With Network III we anticipate to increase sensitivity to Tc. Without Tc, Tet-OFF

production is on and self-activating. Tet-OFF also activates TetR expression. Further-

more, TetR production is also on but self-repressing and at the same time TetR represses

Tet-OFF and GFP expression. In this network, Tet-OFF represses expression of the

reporter gene instead of activating it. TetR stimulates the amount of both TetR and

Tet-OFF dimers in the cell by competing with Tet-OFF for TetO. In the presence of Tc,

GFP levels will mainly depend on the basal expression of the promoter and the ratio

of Tc over Tet-OFF and TetR concentrations. Fig. 8.2(c) summarizes the interactions

betweens genes in Network III.

Simulating the time evolution of Network III (cf. Fig. 8.5(a)) using wild-type ki-

netics, results in a substantially different observed phenotype. In the absence of Tc,

equilibrium state values of GPF approach zero, approximately 4 molecules of GFP. A

sharp pick in the concentration of GFP in the transient period is a result of small ini-

tial TetR and Tet-OFF concentrations, which at equilibrium sum up to a total average

number of approximately 300 molecules. Next we add 2000 and 5000 molecules of Tc

at 2× 104 s (cf. Fig. 8.5(a)). The higher the inducer concentration, the more time the

operator, located downstream in the reporter gene, will be unoccupied leading to more

GFP for longer time periods. GPF maximum concentrations values approach levels of

approximately 250 molecules (basal expression).This network takes into account and ef-

fectively uses the high basal expression of Ptet. Again Tc levels remained below toxicity

levels.
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8.6.2 Fine Tuning Using Mutated TetR and TetO Variants

The challenges that this network poses are first to eliminate expression leaking when Tc

is absent and second, to increase the sensitivity of the network to Tc. Beginning with

the first challenge an obvious step is to increase repressors levels, meaning the total

amount of both TetR and Tet-OFF dimmer molecules, when Tc is absent. This can be

accomplished if we allow Tet-OFF to occupy operator sites for longer times compared

to TetR. One alternative is to mutate TetR so that it shows weaker binding to TetO.

Increasing the dissociation of TetR from TetO by a factor of 10 or 50, we managed

indeed to achieve a decrease in the levels of GFP, but we did not manage to make

them zero (cf. Fig. 8.5(b)). Levels of repressors indeed raised 50 % and 100 % for a

10 and 50 fold increase in the kinetic parameter, respectively. To generalize, as TetR

binds progressively more weakly to TetO, GFP levels in the absence of Tc decrease by

two molecules (50 %) when the dissociation constant is increased 50 times. Conversely,

GFP levels decrease drastically for a given (2000 molecules of Tc added at 2 × 104 s)

concentration of inducer, less sensitivity to Tc.

On the other hand, trying to increase the sensitivity of the system to Tc concen-

trations requires the opposite, a decrease in the repressors concentration. Similarly,

mutating Tet-OFF instead of TetR, leads to smaller production of both proteins. In

Fig. 8.5(c) we compare the wild type phenotype with the one observed by increasing

the dissociation constant 5 (2.555 × 10−3 s−1) and 20 (1.022 × 10−2 s−1) times. It is

obvious that GFP levels increase towards basal expression levels. Repressors levels in

the cell decrease approaching total values of 80 molecules, with leaking becoming more

evident in the absence of inducer.

Since the above two mutations do not point on the same direction, it would not be

fruitful to try to combine them. For this we tried something more extreme in order

to eliminate leaking. We mutated TetR for smaller binding affinity to TetO sequences

and also we increased the half-life of both TetR and Tet-OFF with the purpose of

increasing the overall concentration of repressors. We keep the same TetR mutant in

all simulations presented, 10 fold increase in the kinetic parameter, while we triple, (30

min) and quadruple (40 min) the half-lifes. The results are shown in Fig. 8.5(d). The

increase in the repressors total concentration is approximately 100 molecules (22 %)

for both half-life cases whereas the actual decrease in GFP is 3 molecules (75 %). In
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Figure 8.5: Dynamical behavior of Network III: (a) Average number of GFP molecules
in the absence of Tc (WT w/o Tc, blue line) and when 2000 molecules (WT /w 2000
Tc, green line) or 5000 molecules (WT /w 5000 Tc, red line) of Tc are added into
the medium at time 2 × 104 s, using wild-type kinetics. (b) Average number of GFP
molecules when 2000 molecules of Tc are added into the medium at time 2×104 s, using
wild-type kinetics (WT /w 2000 Tc, blue line), a 10 fold (Des 3.1 /w 2000 Tc, green
line) and a 50 fold (Des 3.2 /w 2000 Tc, red line) increase in the dissociation constant
of TetR for all TetO (mutated TetR variant). (c) Average number of GFP molecules
when 2000 molecules of Tc are added into the medium at time 2×104 s, using wild-type
kinetics (WT /w 2000 Tc, blue line), a 5 fold (Des 3.3 /w 2000 Tc, green line) and a 20
fold (Des 3.4 /w 2000 Tc, red line) increase in the dissociation constant of Tet-OFF for
all TetO (mutated Tet-OFF variant). (d) Average number of GFP molecules when 2000
molecules of Tc are added into the medium at time 2× 104 s, using for all simulations
a mutated TetR variant with 10 fold (Des 3.1 /w 2000 Tc, blue line) increase in the
dissociation constant plus a tripled (Des 3.5 /w 2000 Tc, green line) and a quadrupled
(Des 3.6 /w 2000 Tc, red line) half-life for both Tet-ON and TetR.
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Conclusion, increasing the half-life eventually will lead to zero GFP levels but with large

amounts of proteins molecules in the cell that may be toxic. At the same time large

inducer amounts are required to transfer the system from the Off to the On state.

In conclusion we explored possible mutations that would allow us to eliminate ex-

pression leakage. We observed that even if we increased repressor molecules levels by

100 % leaking is still present but in limited amounts. For complete silencing large

amounts of repressor molecules are required leading to toxicity concerns. On the other

hand increasing sensitivity to Tc requires less repressor molecules being present. There-

fore depending on application requirements we can adjust the system parameters in

order to achieve either very low GFP expression or higher sensitivity.

8.7 Network IV

8.7.1 Dynamical Behavior Based on Wild Type Kinetics

Finally for Network IV in the absence of Tc, Tet-OFF production is on and self-

activating and TetR production is also on, but self-repressing. GFP expression will

also be on, but how strongly depends on the ratio of TetR and Tet-OFF amounts avail-

able. With Tc present, TetR production is on, Tet-OFF and reporter gene production

depend on the promoter strength. A schematic representation of these interactions can

be seen in Fig. 8.2(d). Note that constant Tc administration will be required for the

expression to be silenced, a limitation following Tet-OFF. Adjusting turning on response

times is the objective in the present network.

In Fig. 8.6(a) the time evolution of Network IV is shown. When Tc is absent the

network produces higher concentration of GFP than the other networks, equilibrium

values are approximately 1650 molecules. Obviously the system has not reached an

equilibrium state, even after 28 hours. Addition of Tc causes an evident decrease in

GFP production, with the transition from the Off to the On state having a large re-

sponse time. This phenotype is a direct consequence of the competition between TetR

and Tet-OFF dimers to occupy TetO sequences. Initially, or after Tc administration,

concentrations of dimer TetR increase rapidly reaching a maximum concentration, only

to fall rapidly short thereafter, approaching zero levels. Tet-OFF dimer concentration

goes rapidly to 200 molecules and then requires 10 times more time to reach equilibrium
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values (approximately 300 molecules). These high concentration values are eventually

responsible for the increased expression of GFP. High levels of Tc are required in or-

der to drop production of GFP down to basal expression levels. Free maximum Tc

concentrations reach levels below toxicity, approximately 100 (0.07 µg/mL) and 1200

(0.89 µg/mL) molecules for addition of 2000 and 5000 molecules of Tc, respectively.

8.7.2 Fine Tuning Using Mutated TetR and TetO Variants

By investigating the time evolution of the system, we can pinpoint limitations in the

design and propose changes. First, the high basal expression is a common drawback

among the proposed networks. Secondly, it is apparent that the response of the system

is slow, both initially and after administration of the inducer. Finally, one would like to

make the system more sensitive to Tc concentrations for two reasons; easier transition

between the On and Off states and better control over the duration of the Off state.

In the previous section, we noted that the slow response is due to competitive bind-

ing between Tet-OFF and TetR with TetO. Improving the response time will require

altering the relative binding affinity of the two dimers. We mutate TetR, since it is the

one that does not add to GFP production. The appropriate kinetic parameters were

altered from 5.11 × 10−4 s−1 to 5.11 × 10−3 s−1 to 1.022 × 10−2 s−1, a 10 and 20 fold

increases respectively. Simulating the new network we find that the initial lag is reduced

significantly (cf. Fig. 8.6(b)). The system reaches equilibrium values in only 2.8 h. Note

that the difference in the responses between the two mutations is small, which means

that a little alternation is capable of producing the targeted behavior. Additionally,

Tet-OFF levels reach their equilibrium values much faster than before. The difference is

also noted by looking at the percent of Tet-OFF occupying TetOs over time, increasing

as TetR affinity for TetOs decreases.

In this particular system, increased sensitivity to Tc can be achieved through a

decrease in the equilibrium values of TetR and Tet-OFF. However, this will also cause

a decrease in GFP levels. Another way to go about this problem is to use TetR variants

that do not bind to Tc. The downside is that TetR will always be able to bind to

TetO sequences. Using the last alternative, we simulate the system and the results

are presented in Fig. 8.6(c). Obviously the new system appears to have longer pulse

duration. Still the response time for transition between On and Off states remains large.
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Figure 8.6: Dynamical behavior of Network IV: (a) Average number of GFP molecules
in the absence of Tc (WT w/o Tc, blue line) and when 2000 molecules (WT /w 2000
Tc, green line) or 5000 molecules (WT /w 5000 Tc, red line) of Tc are added into
the medium at time 5 × 104 s, using wild-type kinetics. (b) Average number of GFP
molecules in the absence of Tc, using wild-type kinetics (WT w/o Tc, blue line), a 10
fold (Des 4.1 w/o Tc, green line) and a 20 fold (Des 4.2 w/o Tc, red line) increase in the
dissociation constant of TetR from all TetO in the network(mutated TetR variant, less
affinity for TetO). (c) Average number of GFP molecules when 5000 molecules of Tc
are added into the medium at time 5×104 s, using wild-type kinetics (WT /w 5000 Tc,
blue line) and mutated TetR variant that does not bind Tc (Des 4.3 /w 2000 Tc, green
line). (d) Average number of GFP molecules when 5000 molecules of Tc are added into
the medium at times 2 × 104 s and 6 × 104 s, using a mutated TetR variant that does
not bind Tc and also shows different levels of binding affinity for TetO, 10 fold (Des 4.4
/w 2000 Tc (x2), blue line), 20 fold (Des 4.5 /w 2000 Tc (x2), green line) and 50 fold
(Des 4.6 /w 2000 Tc (x2), red line) decrease in the dissociation constant.
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Since both mutations in the coding sequence of TetR improved the design we decided

to combine them, assuming the two mutations do not interfere with each other. In

Fig. 8.6(d) the time evolution of the system is presented. Tc is added into the system

at two time points, 2× 104 s and 6× 104 s. Though all TetR variants have no affinity

for Tc, they have different levels of binding affinity for TetO, namely 10, 20 and 50 fold

increase in the dissociation constant. Indeed the behavior of the system looks superior

compared to the wild type. Furthermore, the network exhibit shorter turn off times

as the binding affinity of TetR for TetO weakens. Constant Tc administration for low

GFP production as well as the high GFP production in the absence of inducer (560 %

above basal expression) render this system difficult but at the same time attractive for

applications.

In summary, we achieved to decrease the response times of the network in both

the transient period and also after Tc administration. Adjusting the corresponding

kinetic parameter gives the required edge to Tet-OFF over TetR and hence improves

the response. Additionally we explored ways to decrease the necessity for Tc in order

to silence the system. We observed that by mutating TetR appropriately the required

amounts of Tc are indeed reduced.

8.8 Summary

Using all the molecular components of transcription, translation, regulation and induc-

tion, the dynamic behavior of the proposed synthetic gene networks can be simulated

and screened for possible improvements. It should not go unnoticed that the simulation

of a system that spans many orders of magnitude in kinetic constant values is indeed

realizable. To achieve this, we use a hybrid dynamic stochastic-discrete and stochastic-

continuous algorithm equipped with an adaptive time stepping method for numerically

integrating the set of stochastic differential equations in the model. The simulations

allow the quick and inexpensive investigation and comparison of multiple alternative

designs. They provide a clear insight at the molecular level, while experiments focus

on the phenotype. The key is to identify the important interactions and based on them

propose design rules. Important interactions can be obvious but non-apparent in terms

of their impact on the phenotype of the system. Ideally, the computational approach
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will be able to investigate thoroughly all possible alternatives and adjust the dynamical

behavior of a gene network to fit certain demands.

Based on the tetracycline-regulated systems, we propose four novel regulatory gene

networks in order to alleviate limitations faced in widely used systems. We improved the

design of all networks using mutations in the coding and operator sequences. Though

there is still plenty of room for improvement, especially if one considers the amount of

available operator, promoter and coding sequences that exist in nature. Our model-

driven designs can become the first step in improved gene regulatory networks.

169



Chapter 9

Concluding Remarks

9.1 Summary of Contributions

The goal of this dissertation is the computer-aided design of synthetic gene networks.

In the preceding chapters of this dissertation the focus has been on methodologies,

algorithms, software tools and their applicability for computer-aided design of novel

gene regulatory networks. The key contributions are summarized below.

• Efficient and accurate integration of stiff chemical Langevin equations

An important challenge in any computer-aided design process is the accurate and

efficient numerical integration of the underlying models. In gene network engi-

neering and in synthetic biology in general, chemical Langevin equations (CLEs)

appear when in a chemical kinetics model there are species and reactants in the

same reaction that are minimally affected with each reaction occurrence and when

that specific reaction channel fires frequently. The mathematical representation,

i.e. the system of chemical Langevin equations, becomes stiff when there are

different and deviant firing rates, meaning different timescales.

In Chapter 4 we address the existence of stiffness by proposing a new adaptive

time step scheme. The scheme is general and applies to any Itô SDEs with mul-

tiple multiplicative noise terms, a subclass of which are CLEs. The time step is

adjusted, increased, decreased or kept the same, depending on two error controls.

Contrary to the fixed step counterpart, the adaptive scheme is more stable in all
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the examples tested. The integration proceeds even when the initial time step is

relatively large where the fixed step scheme fails to produce meaningful trajecto-

ries. This feature is extremely useful, especially when the dynamical behavior of

the CLE system is unknown, as the solution may become numerically unstable

during the course of the simulation. In terms of the required execution time, the

method does not outperform the fixed step method as expected by comparing

them with their deterministic counterparts. In fact, it slightly underperforms.

Overall, the adaptive methodology adds much needed stability to the integration

algorithm without crippling execution times. This led us to successfully incor-

porate the adaptive scheme into the hybrid stochastic algorithm, described in

Sec. 3.2, which is now the ”engine” for both Hy3S and SynBioSS (cf. Chapter 7).

In Chapter 5 we approached the same problem from a completely different per-

spective. Instead of treating the complete system of CLEs we examined the ef-

fectiveness of a semi-analytical reduction framework. Variables are identified and

separated into fast and slow subsets under a necessary and sufficient condition.

Then each subset is treated independently through the use of the adiabatic elim-

ination methodology. Fast variables relax relatively fast into a pseudo-stationary

distribution under the assumption of unchanged slow variables. Next the proba-

bility distribution of the transformed slow species is obtained as the solution of

the corresponding system of CLEs for only the slow variables. Finally the overall

probability distribution is obtained as the product of the two probabilities. On all

the examples we have tested the method, results indicate a significant reduction

in the computational cost, reaching up to two orders of magnitude. More impor-

tantly, the algorithm accurately reproduces the slow dynamics, while, depending

on the system, deviations are more significant but within acceptable limits in the

fast dynamics. Compared to the adaptive scheme, the main advantage is the

resulting decrease in computational cost by sacrificing the accuracy in the fast

species.

• Deterministic description of a Markov process

The mathematical description of a chemical kinetics model as it applies to gene

networks maybe challenging to propagate in time. The stochastic nature and the
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different time scales complicate any such approach. Therefore, a transformation

of the problem into any mathematical equivalent form that involves only ordinary

differential equations is welcome. In Chapter 6 we present a derivation of the

moment equations starting from the master equation using the definition of jump

moments. Analytical expressions are derived that apply to any process described

as a Markov process. Similar to Chapter 4 the approach is generic and is not

restrictive to chemical kinetics systems. As again our interest is in chemical kinet-

ics models we derived analytical relations for the elements of any jump moment

tensor, demonstrating the ease of equation setup. The elements of the analytical

relations are a function of the stoichiometric matrix and the reaction propensi-

ties, i.e the probabilistic reaction rates. The drawback of the method, which is

currently and actively researched, is that moment equations form an infinite di-

mensional system that does not accept a solution unless it is ”cleverly” truncated.

Applicability is briefly illustrated through toy examples. Finally, using a simple

non-linear example, known as the Schlögl model, we prove the need for higher

than second order moments to accurately reconstruct the probability distribution

for biologically-relevant chemical kinetics systems.

• Software tools for computer-aided design

To cope with the ever increasing knowledge of the biological world and the expo-

nential increase in available DNA sequences, a set of modeling algorithms would

be useful in synthetic biology. They should be sophisticated enough to capture

the complexity of biomolecular systems, yet easy enough to use by biologists, who

are not experts in high performance computing. For this reason, in Chapter 7

we present two software tools, Hybrid Stochastic Simulation for Supercomputers

(Hy3S) and Synthetic Biology Software Suit (SynBioSS), that make the use of our

algorithms easy for all.

• A computer-aided design example

In Chapter 8 we use two promising synthetic gene constructs as the seeds to gen-

erate novel gene networks to address current known performance limitations. In

particular, we use the tetracycline regulatory expression systems, i.e. Tet-Off and

Tet-On systems, based on the tetracycline resistance operon of E. coli, to propose
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new synthetic networks with improved characteristics. A computational approach

is followed, where four alternative designs are proposed, tested and screened for

any possible improvements. Results suggest that by setting the desired objectives

for any given network, important interactions are identified, which may be obvi-

ous but non-apparent in terms of their impact on the phenotype of the system,

and the strength of the interactions engineered to satisfy design criteria. A set

of clear design rules is developed and appropriate mutants of regulatory proteins

and operator sites are proposed.

Instead of looking at these networks statically, and simply changing or mutating

the promoter and operator regions with trial and error, we use simulations to

guide the design process based on desired objectives. Even thought the original

networks were constructed in mammalian cells we created our respective models

to correspond to bacteria cells physiology as the higher complexity in mammalian

cells hinders any accurate model representation (cf. Sec 2.4.1). Detailed models,

including all the molecular components of transcription, translation, regulation

and induction provide the necessary detail level to propose actual changes in the

DNA sequence. For instance mutations in the operator and or protein sequences.

The simulation packages Hy3S and SynBioSS DS, discussed in Chapter 7, were

used to profile the dynamic behavior of each of the networks. All in all, Chapter 8

conveys the usefulness of model-driven design in synthetic biology while at the

same time the findings of the study propose actual improvements in the design

blueprints, in a miniscule amount of time, leading to novel tetracycline-inducible

regulatory gene networks.

9.2 Future Research Directions

As the filed of synthetic biology grows so will the need for efficient and accurate algo-

rithms that will guide design efforts. We are far from any software tool or algorithm that

resembles the use and efficiency of computer-aided design packages used to design the

modern marvels of technology, for instance the software packages used by Airbus or Bo-

ing to design their fleets. Certainly, much more effort is warranted on the development

of multiple time scale algorithms for gene networks.
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Several open questions remain in order for the endeavor to be succesfull. Of great

importance is the development of multiscale algorithms that can efficiently and accu-

rately handle the different time scales present in any given chemical kinetics model of

a real biological system. Looking back at Fig. 3.1 the question is how can we capture

all the important and interesting dynamics present in any of the four regions of the

problem space without sacrificing accuracy and speed. The answer, in our opinion,

lies within the concepts developed in Chapter 6. Chapter 6 includes the foundation

for describing Markov processes, such as stochastic chemical kinetics models, using a

deterministic description. The advantages for such an approach will be significant since

ODEs are well studied and many of the needed tools are already available. The bottle-

neck, as mentioned earlier, is that the system of moment equations is infinite and all

the approximate solutions proposed to this date are not satisfactory. They have limited

applicability or require a priori knowledge on the shape of the underlying distribution.

Questions such as how many moments are indeed important, or at what order should

the system be truncated in order to retain an accurate resolution of the lower order

moments, are of importance, and to date they are only partially answered. But the

single most important question is whether there exists a universal truncation formula.

Answering this question will benefit numerous fields where Markov processes do play a

crucial role for modeling purposes, including the design of novel gene networks.

Moreover, as the capabilities of CAD software for gene networks increase, there will

also be a constant strive to prove their rigorousness. So far there have been a few studies

combining detailed chemical kinetics models with actual experiments. By comparing

wet lab and simulation experiments we can determine qualitative and quantitative per-

formance of our algorithms. This will allow us to improve our CAD algorithms as well

fine tune our modeling approaches. Under this scope, our group works to build in vivo

equivalent networks to those discussed in Chapter 8. Experimental data will confirm

or reject modeling predictions. In any case, this step is important and will only benefit

the development of models. Arising questions range from, why do or don’t we have

qualitative or quantitative agreement, to are there interactions that are important but

are either unknown or have been silently neglected? Comparing and contrasting simu-

lation and wet lab experiments results is not only necessary but an important process

in developing accurate modeling strategies and algorithms.
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A final direction which promises to have a direct impact is the implementation of the

reduction framework in the hybrid stochastic algoritm. While not a scientific undertak-

ing, but rather an implementation challenge, the integration may reduce significantly

execution times. At this point, the main disadvantage is that while the reduction

algorithm is fairly simple on its own, incorporation into Hy3S is anything but straight-

forward. Hy3S is already a 10,000 plus line code with limited flexibility and a predefined

architecture. So, in this case the open questions relate more on how do we create a bet-

ter algorithm rather than how we improve the methods implemented in the algorithm.

Improving algorithms and software tools should be a constant objective for all of those

involved in computational synthetic biology.
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Appendix A

Results for Chapter 6

A.1 Derivation of Third Order Moment Equations

In the derivation of the third moment equations we start again with the defining moment

equation (cf. section 6.2.2)

〈
XiXjXl

〉
=
∫
XiXjXlP

(
X, t

)
dX (A.1)

and the time derivative is defined as follows

d
〈
XjXiXl

〉
dt

=
∫
XiXjXl

∂P
(
X, t

)
∂t

dX (A.2)

substituting equation (6.2) in the last equation we have

d
〈
XjXiXl

〉
dt

=
∫
XjXiXl

∫ [
T
(
X/X

′)
P
(
X
′
, t
)]
− T

(
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′
/X
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P
(
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)]
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′
dX =

=
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(
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P
(
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′
, t
)
−XjXiXlT

(
X
′
/X
)
P
(
X, t

)]
dX

′
dX (A.3)

Noticing that that the integration over X and X
′

runs over the same domain we can

interchange indexes in the last equation, i.e.

XjXiXlT
(
X/X

′)
P
(
X
′
, t
)

= X
′
jX
′
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′
lT
(
X
′
/X
)
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(
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)
(A.4)
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thus we have

d
〈
XjXiXl

〉
dt
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jX
′
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l −XjXiXl)T
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′
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Skipping through some tedious calculations we use the following relation to transform

the RHS of equation (A.5)
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′
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substituting yields
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)
dX

′
dX

+
∫ ∫

Xj(X
′
i −Xi)(X

′
l −Xl)T

(
X
′
/X
)
P
(
X, t

)
dX

′
dX

+
∫ ∫

Xl(X
′
i −Xi)(X

′
j −Xj)T

(
X
′
/X
)
P
(
X, t

)
dX

′
dX

+
∫ ∫

XiXj(X
′
l −Xl)T

(
X
′
/X
)
P
(
X, t

)
dX

′
dX

+
∫ ∫

XiXl(X
′
j −Xj)T

(
X
′
/X
)
P
(
X, t

)
dX

′
dX

+
∫ ∫

XjXl(X
′
i −Xi)T

(
X
′
/X
)
P
(
X, t

)
dX

′
dX (A.7)
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Using the definitions of the joint jump moments (cf. eq. (6.7)) and that of the averages

the RHS eventually becomes

d
〈
XiXjXl

〉
dt

=
〈
aijl3 (X)

〉
+
〈
Xia

jl
2 (X)

〉
+
〈
Xja

il
2 (X)

〉
+
〈
Xla

ij
2 (X)

〉
(A.8)

+
〈
XiXja

l
1(X)

〉
+
〈
XiXla

j
1(X)

〉
+
〈
XjXla

i
1(X)

〉
i, j, l = 1, . . . , N

where a
3
(X) is a third order tensor. In the trivial case where i = j = l the last equation

simplifies to

d
〈
X3
i

〉
dt

=
〈
aiii3 (X)

〉
+ 3
〈
Xia

ii
2 (X)

〉
+ 3
〈
X2
i a

i
1(X)

〉
i = 1, . . . , N (A.9)

A.2 Derivation of Fourth Order Moment Equations

For the fourth order moments the starting point is again the moment defining equation

(cf. section 6.2.2)

〈
XiXjXlXm

〉
=
∫
XiXjXlXmP

(
X, t

)
dX (A.10)

and the time derivative is defined as follows

d
〈
XjXiXlXm

〉
dt

=
∫
XiXjXlXm

∂P
(
X, t

)
∂t

dX (A.11)

substituting equation (6.2) in the last equation we have

d
〈
XjXiXlXm

〉
dt

=
∫
XjXiXlXm

∫ [
T
(
X/X

′)
P
(
X
′
, t
)
− T

(
X
′
/X
)
P
(
X, t

)]
dX

′
dX =

=
∫ ∫ [

XjXiXlXmT
(
X/X

′)
P
(
X
′
, t
)
−XjXiXlXmT

(
X
′
/X
)
P
(
X, t

)]
dX

′
dX

(A.12)

Similarly to the third order moments case the integration in equation (A.12) over

193



X and X
′

runs over the same domain thus we can interchange indexes, i.e.

XjXiXlXmT
(
X/X

′)
P
(
X
′
, t
)

= X
′
jX
′
iX
′
lX
′
mT
(
X
′
/X
)
P
(
X, t

)
(A.13)

thus we have

d
〈
XjXiXl

〉
dt

=
∫ ∫

(X
′
jX
′
iX
′
lX
′
m −XjXiXlXm)T

(
X
′
/X
)
P
(
X, t

)
dX

′
dX (A.14)

Skipping through some tedious calculations we use the following relation to transform

the RHS of equation (A.5)

(X
′
jX
′
iX
′
lX
′
m −XiXjXlXm) = (X

′
i −Xi)(X

′
j −Xj)(X

′
l −Xl)(X

′
m −Xm)

+Xi(X
′
j −Xj)(X

′
l −Xl)(X

′
m −Xm)

+Xj(X
′
i −Xi)(X

′
l −Xl)(X

′
m −Xm)

+Xl(X
′
i −Xi)(X

′
j −Xj)(X

′
m −Xm)

+Xm(X
′
i −Xi)(X

′
j −Xj)(X

′
l −Xl)

+XiXj(X
′
l −Xl)(X

′
m −Xm) +XiXl(X

′
j −Xj)(X

′
m −Xm)

+XiXm(X
′
j −Xj)(X

′
l −Xl) +XjXl(X

′
i −Xi)(X

′
m −Xm)

+XjXm(X
′
i −Xi)(X

′
l −Xl) +XlXm(X

′
i −Xi)(X

′
j −Xj)

+XiXjXl(X
′
m −Xm) +XiXjXm(X

′
l −Xl)

+XiXlXm(X
′
j −Xj) +XjXlXm(X

′
i −Xi) (A.15)
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substituting yields

d
〈
XiXjXl

〉
dt

=
∫ ∫

(X
′
i −Xi)(X

′
j −Xj)(X

′
l −Xl)(X

′
m −Xm)T

(
X
′
/X
)
P
(
X, t

)
dX

′
dX

+
∫ ∫

Xi(X
′
j −Xj)(X

′
l −Xl)(X

′
m −Xm)T

(
X
′
/X
)
P
(
X, t

)
dX

′
dX

+
∫ ∫

Xj(X
′
i −Xi)(X

′
l −Xl)(X

′
m −Xm)T

(
X
′
/X
)
P
(
X, t

)
dX

′
dX

+
∫ ∫

Xl(X
′
i −Xi)(X

′
j −Xj)(X

′
m −Xm)T

(
X
′
/X
)
P
(
X, t

)
dX

′
dX

+
∫ ∫

Xm(X
′
i −Xi)(X

′
j −Xj)(X

′
l −Xl)T

(
X
′
/X
)
P
(
X, t

)
dX

′
dX

+
∫ ∫

XiXj(X
′
l −Xl)(X

′
m −Xm)T

(
X
′
/X
)
P
(
X, t

)
dX

′
dX

+
∫ ∫

XiXl(X
′
j −Xj)(X

′
m −Xm)T

(
X
′
/X
)
P
(
X, t

)
dX

′
dX

+
∫ ∫

XiXm(X
′
j −Xj)(X

′
l −Xl)T

(
X
′
/X
)
P
(
X, t

)
dX

′
dX

+
∫ ∫

XjXl(X
′
i −Xi)(X

′
m −Xm)T

(
X
′
/X
)
P
(
X, t

)
dX

′
dX

+
∫ ∫

XjXm(X
′
i −Xi)(X

′
l −Xl)T

(
X
′
/X
)
P
(
X, t

)
dX

′
dX

+
∫ ∫

XlXm(X
′
i −Xi)(X

′
j −Xj)T

(
X
′
/X
)
P
(
X, t

)
dX

′
dX

+
∫ ∫

XiXjXl(X
′
m −Xm)T

(
X
′
/X
)
P
(
X, t

)
dX

′
dX

+
∫ ∫

XiXjXm(X
′
l −Xl)T

(
X
′
/X
)
P
(
X, t

)
dX

′
dX

+
∫ ∫

XiXlXm(X
′
j −Xj)T

(
X
′
/X
)
P
(
X, t

)
dX

′
dX

+
∫ ∫

XjXlXm(X
′
i −Xi)T

(
X
′
/X
)
P
(
X, t

)
dX

′
dX (A.16)

Using the definitions of the joint jump moments (cf. eq. (6.7)) and that of the averages
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the RHS eventually becomes

d
〈
XiXjXlXm

〉
dt

=
〈
aijlm4 (X)

〉
+
〈
Xia

jlm
3 (X)

〉
+
〈
Xja

ilm
3 (X)

〉
+
〈
Xla

ijm
3 (X)

〉
+
〈
Xma

ijl
3 (X)

〉
+
〈
XlXma

ij
2 (X)

〉
+
〈
XjXma

il
2 (X)

〉
+
〈
XjXla

im
2 (X)

〉
+
〈
XiXma

jl
2 (X)

〉
+
〈
XiXla

jm
2 (X)

〉
+
〈
XiXja

lm
2 (X)

〉
+
〈
XiXjXla

m
1 (X)

〉
+
〈
XiXjXma

l
1(X)

〉
(A.17)

+
〈
XiXlXma

j
1(X)

〉
+
〈
XjXlXma

i
1(X)

〉
i, j, l,m = 1, . . . , N

where a
4
(X) is a fourth order tensor. In the trivial case where i = j = l = m the last

equation simplifies to

d
〈
X4
i

〉
dt

=
〈
aiiii4 (X)

〉
+ 4
〈
Xia

iii
3 (X)

〉
+ 6
〈
X2
i a

ii
2 (X)

〉
+ 4
〈
X3
i a

i
2(X)

〉
i = 1, . . . , N

(A.18)
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