
A Framework for Specifying, Prototyping, and Reasoning about
Computational Systems

SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL
OF THE UNIVERSITY OF MINNESOTA

BY

Andrew Jude Gacek

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Gopalan Nadathur, Advisor
September, 2009

c© Andrew Jude Gacek 2009

Acknowledgments

Many people have supported me during the development of this thesis and I owe them all
a debt of gratitude.

Firstly, I would like to thank my advisor Gopalan Nadathur for his patience and guidance
which have played a significant part in my development as a researcher. His willingness
to share his opinions on everything from academic life to playing squash has helped me to
develop a perspective and to have fun while doing this. I look forward to continuing my
interactions with him far into the future.

I am grateful to Dale Miller for sharing with me an excitement for research and an
appreciation of the uncertainty that precedes understanding. I have never met anybody
else who so enjoys when things seem amiss, because he knows that a new perspective will
eventually emerge and bring clarity.

This thesis has been heavily influenced by the time I have spent working with Alwen
Tiu, David Baelde, Zach Snow, and Xiaochu Qi. Understanding their work has given me a
deeper understanding of my own research and its role in the bigger picture. I am thankful
for the time I have had with each and every one of them.

I have been inspired in my studies by my friends Mike Whalen and Jared Davis. Their
intelligence, drive, and curiosity are remarkable and have challenged me to work harder so
that I may hope to be considered their equals.

I also want to thank my committee members Eric Van Wyk, Mats Heimdahl, and Wayne
Richter for their time and for their guidance in my research career.

Finally, I am thankful to the many people who have supported me long before this
thesis began. I want especially to thank my wife, Ann, for her patience, understanding,
and love, and my parents for their never-ending encouragement and support. To the rest
of my family and friends: I thank you all!

Work on this thesis has been partially funded by the NSF Grants CCR-0429572 and
CCF-0917140. Support has also been received from a research contract from Boston Sci-
entific and from funds provided by the Institute of Technology and the Department of
Computer Science and Engineering at the University of Minnesota. Opinions, findings, and
conclusions or recommendations expressed in this thesis should be understood as mine. In
particular, they do not necessarily reflect the views of the National Science Foundation.

i

Abstract

A major motivation for formal systems such as programming languages and logics is that
they support the ability to perform computations in a safe, secure, and understandable
way. A considerable amount of effort has consequently been devoted to developing tools
and techniques for structuring and analyzing such systems. It is natural to imagine that
research in this setting might draw benefits from its own labor. In particular, one might
expect the study of formal systems to be conducted with the help of languages and logics
designed for such study. There are, however, significant problems that must be solved before
such a possibility can be made a practical reality. One such problem arises from the fact that
formal systems often have to treat objects such as formulas, proofs, programs, and types
that have an inherent binding structure. In this context, it is necessary to provide a flexible
and logically precise treatment of related notions such as the equality of objects under the
renaming of bound variables and substitution that respects the scopes of binders; there is
considerable evidence that if such issues are not dealt with in an intrinsic and systematic
way, then they can overwhelm any relevant reasoning tasks. For a logic to be useful in
this setting, it must also support rich capabilities such as those for inductive reasoning over
computations that are described by recursion over syntax.

This thesis concerns the development of a framework that facilitates the design and
analysis of formal systems. Specifically, this framework is intended to provide 1) a specifi-
cation language which supports the concise and direct description of a system based on its
informal presentation, 2) a mechanism for animating the specification language so that de-
scriptions written in it can quickly and effectively be turned into prototypes of the systems
they are about, and 3) a logic for proving properties of descriptions provided in the speci-
fication language and thereby of the systems they encode. A defining characteristic of the
proposed framework is that it is based on two separate but closely intertwined logics. One
of these is a specification logic that facilitates the description of computational structure
while the other is a logic that exploits the special characteristics of the specification logic
to support reasoning about the computational behavior of systems that are described using
it. Both logics embody a natural treatment of binding structure by using the λ-calculus as
a means for representing objects and by incorporating special mechanisms for working with
such structure. By using this technique, they lift the treatment of binding from the object
language into the domain of the relevant meta logic, thereby allowing the specification or
analysis components to focus on the more essential logical aspects of the systems that are
encoded.

One focus of this thesis is on developing a rich and expressive reasoning logic that is of
use within the described framework. This work exploits a previously developed capability
of definitions for embedding recursive specifications into the reasoning logic; this notion

ii

of definitions is complemented by a device for a case-analysis style reasoning over the
descriptions they encode. Use is also made of a special kind of judgment called a generic
judgment for reflecting object language binding into the meta logic and thereby for reasoning
about such structure. Existing methods have, however, had a shortcoming in how they
combine these two devices. Generic judgments lead to the introduction of syntactic objects
called nominal constants into formulas and terms. The manner in which such objects are
introduced often ensures that they satisfy certain properties which are necessary to take
note of in the reasoning process. Unfortunately, this has heretofore not been possible to
do. To overcome this problem, we introduce a special binary relation between terms called
nominal abstraction and show this can be combined with definitions to encode the desired
properties. The treatment of definitions is further enriched by endowing them with the
capability of being interpreted inductively or co-inductively. The resulting logic is shown
to be consistent and examples are presented to demonstrate its richness and usefulness in
reasoning tasks.

This thesis is also concerned with the practical application of the logical machinery it
develops. Specifically, it describes an interactive, tactic-style theorem prover called Abella
that realizes the reasoning logic. Abella embodies the use of lemmas in proofs and also
provides intuitively well-motivated tactics for inductive and co-inductive reasoning. The
idea of reasoning using two-levels of logic is exploited in this context. This form of reason-
ing, pioneered by McDowell and Miller, embeds the specification logic explicitly into the
reasoning logic and then reasons about particular specifications through this embedding.
The usefulness of this approach is demonstrated by showing that general properties can
be proved about the specification logic and then used as lemmas to simplify the overall
reasoning process. We use these ideas together with Abella to develop several interesting
and challenging proofs. The examples considered include ones in the recently proposed
POPLmark challenge and a formalization of Girard’s proof of strong normalization for the
simply-typed λ-calculus. We also explore the notion of adequacy that relates theorems
proved using Abella to the properties of the object systems that are ultimately of primary
interest.

iii

Contents

List of Figures vii

1 Introduction 1
1.1 A Specification, Prototyping, and Reasoning Framework 1
1.2 An Illustration of the Application of the Framework 4
1.3 The Contributions of this Thesis . 8
1.4 Overview of the Thesis . 11

2 A Logic for Specifying Computational Systems 14
2.1 The Syntax and Semantics of the Logic . 15
2.2 Properties of the Specification Logic . 18
2.3 Example Encoding in the Specification Logic 20
2.4 Adequacy of Encodings in the Specification Logic 22

3 A Logic for Reasoning About Specifications 26
3.1 A Logic with Generic Quantification . 28

3.1.1 The Basic Syntax . 28
3.1.2 Generic Judgments and ∇-quantification 29
3.1.3 A Sequent Calculus Presentation of the Core Logic 31

3.2 Characterizing Occurrences of Nominal Constants 33
3.2.1 Substitutions and their Interaction with Nominal Constants 34
3.2.2 Nominal Abstraction . 38
3.2.3 Proof Rules for Nominal Abstraction 40
3.2.4 Computing Complete Sets of Nominal Abstraction Solutions 42

3.3 Definitions, Induction, and Co-induction . 45
3.4 A Pattern-Based Form for Definitions . 48
3.5 Examples . 54

3.5.1 Properties of ∇ and Freshness . 55
3.5.2 Polymorphic Type Generalization . 56
3.5.3 Arbitrarily Cascading Substitutions 57

4 Some Properties of the Meta-logic 59
4.1 Consistency of the Meta-logic . 59
4.2 Adequacy of Encodings and Theorems in the Meta-logic 71

iv

5 An Interactive Theorem Prover for the Meta-logic 77
5.1 A Framework for Using Lemmas . 78
5.2 An Annotation Based Scheme for Induction 80
5.3 Extensions to the Basic Scheme for Induction 83

5.3.1 Induction on a Predicate in the Scope of Generic Quantifiers 83
5.3.2 Induction in the Presence of Additional Premises 84
5.3.3 Delayed Applications of the Induction Hypothesis 85
5.3.4 Nested Inductions . 86

5.4 An Annotation Based Scheme for Co-induction 89

6 A Two-level Logic Approach to Reasoning 92
6.1 Encoding the Specification Logic . 93

6.1.1 Encoding the Syntax of the Specification Logic 94
6.1.2 Encoding the Semantics of the Specification Logic 95
6.1.3 Some Provable Properties of the Specification Logic 98

6.2 Formalizing Properties of the Specification Logic 100
6.3 An Example of the Two-level Logic Reasoning Approach 101
6.4 Architecture of a Two-level Logic Based Theorem Prover 103
6.5 Adequacy for the Two-level Logic Approach to Reasoning 105

6.5.1 Adequacy of Encoding of the Specification Logic 106
6.5.2 Adequacy of Type Preservation Example 112

7 Applications of The Framework 113
7.1 Type-uniqueness for the Simply-typed λ-calculus 115
7.2 The POPLmark Challenge . 117
7.3 Path Equivalence for λ-terms . 122
7.4 Conversion between HOAS and de Bruijn Notation 127
7.5 Formalizing Tait-Style Proofs for Strong Normalization 130

7.5.1 Typing and One-step Reduction . 132
7.5.2 The Logical Relation . 133
7.5.3 Arbitrary Cascading Substitutions and Freshness Results 135
7.5.4 The Final Result . 138

8 Related Work 139
8.1 First-order Representations . 140

8.1.1 Named Representation . 140
8.1.2 Nameless Representation . 141
8.1.3 Locally Nameless Representation . 142

8.2 Nominal Representations . 144
8.3 Higher-order Representations . 146

8.3.1 Hybrid . 146
8.3.2 Twelf . 147

v

8.3.3 Delphin . 150
8.3.4 Tac . 151

9 Conclusion and Future Work 154
9.1 More Permissive Stratification Conditions for Definitions 155
9.2 Context Inversion Properties . 156
9.3 Types and Explicit Typing . 157
9.4 Alternate Specification Logics . 158
9.5 Focusing and Proof Search . 158
9.6 An Integrated Framework . 158

Bibliography 160

vi

List of Figures

1.1 Evaluation in the simply-typed λ-calculus 5
1.2 Typing in the simply-typed λ-calculus . 5
1.3 A Horn clause-like encoding of evaluation and typing 6

2.1 Derivation rules for the hH2 logic . 18
2.2 hH2 specification of evaluation and typing 21

3.1 The core rules of G . 32
3.2 Nominal abstraction rules . 40
3.3 A variant of DL based on CSNAS . 40
3.4 Introduction rules for atoms whose predicate is defined as ∀~x. p ~x , B p ~x . 45
3.5 The induction left and co-induction right rules 47
3.6 Introduction rules for a pattern-based definition D 50
3.7 Induction rule for pattern-based definitions 53

4.1 An evaluation relation for untyped λ-terms 73
4.2 An encoding of the evaluation relation in Figure 4.1 73

5.1 Transition diagrams for two different processes 89

6.1 Second-order hereditary Harrop logic in G 96
6.2 prog clauses for simply-typed λ-calculus . 102

7.1 Potential ctx definition without nominal abstraction 116
7.2 Algorithmic subtyping rules for System F<: 118
7.3 Specification of algorithmic subtyping for System F<: 120
7.4 Tree form of λx.(x(λy.y)) . 122
7.5 Specification of paths through λ-terms . 123
7.6 Specification of translation between HOAS and de Bruijn notation 127
7.7 Specification of typing and one-step reduction 131

9.1 Typing judgment directly within G . 156

vii

Chapter 1

Introduction

In this thesis we are interested in developing a framework for mechanizing the specification

and prototyping of formal systems and also the process of reasoning about the properties

of such systems based on their specifications. The formal systems that are of interest to us

are ones that concern computation: for instance, they might characterize evaluation and

typing in a programming language, provability in a logic, or behavior in a concurrency

system. Formal systems of these kinds typically manipulate syntactically complex objects

such as formulas, proofs, and programs. Mechanized specification and reasoning about such

systems has proven difficult to achieve through the use of traditional tools and techniques

[ABF+05]. We propose a framework here which overcomes these difficulties and, through

this process, brings the benefits of automation and computer-aided verification to bear on

the development of these types of systems. In particular, this thesis proposes a framework

that facilitates the development of such systems by providing 1) a specification language

which supports the concise and direct description of a system based on its informal presen-

tation, 2) a mechanism for animating the specification language so that descriptions written

in it can quickly and effectively be turned into prototypes of the systems they are about,

and 3) a logic for proving properties of descriptions provided in the specification language

and thereby of the systems they encode.

1.1 A Framework for Specification, Prototyping, and Reasoning

The formal systems that we would like to specify and reason about are all characterized

by the fact that they are based on syntactic expressions and their behavior is determined

by the structure of these expressions. For brevity we will refer to such systems simply as

1

1.1. A SPECIFICATION, PROTOTYPING, AND REASONING FRAMEWORK 2

computational systems. A popular approach to describing such systems starts by describing

various possible judgments over the syntax of the systems. Then rule schemas are pre-

sented where each schema allows a judgment to be formed from other judgments, often in

a compositional manner. Finally, instances of these rules schemas are chained together into

a derivation where each premise judgment of a rule instance is the consequence judgment

of another rule instance. A judgment is said to hold if and only if it is the final conclusion

judgment of derivation. Thus one can understand the behavior of a system by studying

the rule schemas for forming judgments about the system. This approach to describing a

computational system is known as structural operational semantics [Plo81].

Structural operational semantics descriptions have a logical flavor in that one simply

describes a few declarative rules for manipulating syntax and these are orchestrated together

to reach larger conclusions about the behavior of the system. The framework we propose

allows for such descriptions to be formally specified via a specification logic similar to the

logic of Horn clauses. We call such an encoding of a computational system into this logic

a specification. More specifically, the system syntax is encoded as specification logic terms,

judgments are encoded as specification logic atomic formulas, and rules are encoded as

richer specification logic formulas. Derivations of atomic formulas within the specification

logic then correspond to derivations in structural operational semantics descriptions. Thus

we can study a wide variety of computational systems via a study of the specification logic.

In order to interact with computational systems, our proposed framework supports

prototyping based on the system specification. This prototyping is driven directly by the

formal specification, by giving a computational interpretation of the specification logic in the

same sense that Prolog provides a computational interpretation to the logic of Horn clauses.

This eliminates the need for the framework user to manually develop a prototype based on

the specification, thus avoiding a source of potential errors. Also, as the specification evolves

this ensures that the prototype remains faithful to the current specification.

The specification of a computational system consists of local rules about the system

behavior, but one is often interested in global properties of the system. For example, pro-

1.1. A SPECIFICATION, PROTOTYPING, AND REASONING FRAMEWORK 3

gramming language designers often describe the rules for evaluation and typing judgments

for a language and then prove properties which relate the two judgments together such as

that the evaluation judgment preserves the typing judgment. Such properties ensure that

the language is well-behaved relative to programmers’ expectations. In order to prove these

properties about a structural operational semantics description one must be able to analyze

the ways in which derivations may be formed. In the example of proving that evaluation

preserves typing, one may inductively analyze the possible forms that a derivation of an

evaluation judgment may have and for each possibility argue that the typing judgment for

the evaluated term can be restructured into a typing judgment for the term which results

from the evaluation.

The proposed framework allows for reasoning over structural operational semantics de-

scriptions via a meta-logic. The meta-logic contains mechanisms such as induction and

co-induction which are essential to sophisticated reasoning. The meta-logic also contains a

mechanism called definitions which allows one to connect atomic judgments to descriptions

of behavior in a “closed world” fashion. Thus, it allows for both positive reasoning, i.e.,

showing that a judgment holds, and negative reasoning, i.e., analyzing why a judgment

holds. This allows one to easily carry out the case analysis-like reasoning described in the

example of typing and evaluation.

We refer to this second logic as a meta-logic because, in our approach, we use it to encode

the entire specification logic, rather than to encode each specification independently. We

then reason about particular specifications by reasoning about their descriptions in the

specification logic. This style of reasoning was pioneered by McDowell and Miller [MM02]

and is called the two-level logic approach to reasoning. One of its benefits is that it allows us

to reason over specifications exactly as they are written and used in prototyping. Another

is that it allows properties of the specification logic to be formally proven once and for

all in the meta-logic and then used freely during reasoning. In practice, many tedious

substitution lemmas proven about particular specifications are subsumed by these more

general properties of the specification logic.

1.2. AN ILLUSTRATION OF THE APPLICATION OF THE FRAMEWORK 4

A pervasive issue in the computational systems of interest is dealing with the binding

structure of syntactic objects. For example, to develop a programming language we need

to formalize the rules for binding local variables which requires a systematic way 1) to

associate variable occurrences with their binders, 2) to treat objects which differ only in

the name of bound variables as being identical, and 3) to realize a logically correct notion

of capture-avoiding substitution which respects the binding structure of objects. Our pro-

posed framework addresses all of these issue by mapping the binding structure of objects

into the abstraction mechanism of the meta-language, i.e., the specification logic during

specification and the meta-logic during reasoning. This is called a higher-order abstract

syntax representation [MN87, PE88]. In this way, the meta-language notion of binding

describes how variables occurrences are associated to the binder, the meta-language no-

tion of equality provides a way to identify objects differing only in the names of bound

variables, and meta-language function application and reduction realize capture-avoiding

substitution.

1.2 An Illustration of the Application of the Framework

Throughout this thesis we will use the example of the simply-typed λ-calculus [Chu41,

Bar84]. This is a compact example which highlights many of the essential difficulties in-

volved in specifying, prototyping, and reasoning about a computational system with bind-

ing. Anytime we use such a system as the focus of study we shall refer to it as the object

language or the object logic.

The syntax of the simply-typed λ-calculus is made up of two classes of expressions called

types and pre-terms which are defined, respectively, by the following grammar rules.

a ::= i | a→ a t ::= x | (λx :a. t) | (t t)

Here x is variable occurrence and in the expression (λx :a. t) the x is to be considered bound

within the expression t. We assume the standard notions of binding including free and bound

variables, equivalence under renaming of bound variables, and a notion of capture-avoiding

1.2. AN ILLUSTRATION OF THE APPLICATION OF THE FRAMEWORK 5

(λx :a. r) ⇓ (λx :a. r)
m ⇓ (λx :a. r) r[x := n] ⇓ v

(m n) ⇓ v

Figure 1.1: Evaluation in the simply-typed λ-calculus

x : a ∈ Γ
Γ ` x : a

Γ, x : a ` r : b
Γ ` (λx :a. r) : a→ b

x /∈ dom(Γ) Γ ` m : a→ b Γ ` n : a
Γ ` (m n) : b

Figure 1.2: Typing in the simply-typed λ-calculus

substitution denoted by t[x := s]. Note, however, that when one formally specifies this

system within a framework, these notions will need to be dealt with somehow. We will

denote types using variables named a, b, c, and d, pre-terms using variables named m, n,

r, s, t, and v, and object language variables using x, y, and z.

We define a notion of big-step call-by-name weak reduction which we call simply evalu-

ation. This is denoted by the judgment t ⇓ v which can be read as “t evaluates to v.” The

rules for forming derivations of this judgment are presented in Figure 1.1.

We define a notion of typing via the judgment Γ ` t : a which can be read as “t has

type a relative to the context Γ.” Here Γ is called a typing context and is described by the

following grammar.

Γ ::= · | Γ, x : a

We will write a context of the form ·, x1 : a1, . . . , xn : an simply as x1 : a1, . . . , xn : an. We

define dom(x1 : a1, . . . , xn : an) as {x1, . . . , xn}. In Γ, x : a we require that x /∈ dom(Γ).

We satisfy this restriction by renaming bound variables as needed. The rules for forming

derivations of the typing judgment are presented in Figure 1.2. If t is a pre-term such that

there exists a type a for which Γ ` t : a holds, then we call t a term.

We can now think of encoding the simply-typed λ-calculus into our specification logic.

This begins with the constructors i and arr for representing the base and arrow types. We

also use the constructors app and abs for representing applications and abstractions. Using

1.2. AN ILLUSTRATION OF THE APPLICATION OF THE FRAMEWORK 6

∀a,m.[eval (abs a m) (abs a m)]

∀m,a, r, n, v.[eval m (abs a r) ⊃ eval (r n) v ⊃ eval (app m n) v]

∀m,a, b, n.[of m (arr a b) ⊃ of n a ⊃ of (app m n) b]

∀a, r, b.[(∀x.of x a ⊃ of (r x) b) ⊃ of (abs a r) (arr a b)]

Figure 1.3: A Horn clause-like encoding of evaluation and typing

a higher-order abstract syntax encoding there is no constructor for variables, and instead

the abs constructor takes two arguments: 1) the type of the abstracted variable and 2)

a specification logic abstraction representing the body. For example, the object language

term (λx : i. (λy : i. x)) is denoted by (abs i (λx.abs i (λy.x))) where these latter λs are

specification logic abstractions.

We introduce the specification logic predicates eval and of for representing evaluation

and typing judgments respectively. Assuming a Horn clause-like specification logic, the

rules for forming evaluation and typing judgments are encoded into the specification logic

formulas shown in Figure 1.3. This specification uses various features of the specifica-

tion logic which go beyond simple Horn clauses such as function application for realizing

capture-avoiding substitution, universal quantification to avoid explicit side-conditions, and

specification logic hypotheses for representing typing contexts. The complete details of this

specification are presented in Chapter 2. For now it is sufficient to appreciate that the

structural operational semantics description of the simply-typed λ-calculus can be encoded

very directly into the specification logic. Moreover, a Prolog-like operational interpretation

of proof search for the specification logic yields a prototype for our specification.

Returning to the original structural operational semantics description of the simply-

typed λ-calculus for the moment, let us think of proving some global property of the system.

One such property of interest is that evaluation preserves the type of a term, called the type

1.2. AN ILLUSTRATION OF THE APPLICATION OF THE FRAMEWORK 7

preservation property. Let us consider how such a property can be proved in an informal,

mathematical setting. We might proceed by first showing the auxiliary properties of typing

judgments that are contained in the following two lemmas.

Lemma 1.2.1. If Γ ` t : a and Γ′ is a permutation of Γ, then Γ′ ` t : a. Moreover, the

derivations have the same height.

Proof. The proof is by induction on the height of the derivation of Γ ` t : a.

Lemma 1.2.2. If Γ, x : a ` t : b and Γ ` s : a then Γ ` t[x := s] : b.

Proof. The proof is by induction on the height of the derivation of Γ, x : a ` t : b. In the

case where t is an abstraction we use Lemma 1.2.1 to permute the assumption x : a to the

end of the context.

We can now state and prove the main property of interest.

Theorem 1.2.3. If t ⇓ v and ` t : a then ` v : a.

Proof. The proof is by induction on the height of the derivation of t ⇓ v.

Base case. If the derivation has height one then it must end with the following.

(λx :a. r) ⇓ (λx :a. r)

Then t = v and the result is trivial.

Inductive case. If the derivation has height greater than one, then it must end with the

following.
m ⇓ (λx :b. r) r[x := n] ⇓ v

(m n) ⇓ v

Here t = (m n) and we have shorter derivations of m ⇓ (λx : b. r) and r[x := n] ⇓ v. By

assumption we know that ` (m n) : a holds which means it has a derivation which must

end with
` m : c→ a ` n : c

` (m n) : a

1.3. THE CONTRIBUTIONS OF THIS THESIS 8

for some type c. Now we can apply the inductive hypothesis to m ⇓ (λx : b. r) and

` m : c→ a to obtain a derivation of ` (λx : b. r) : c→ a. Then it must be that b = c and

this derivation ends with the following rule.

x : b ` r : a
` (λx :b. r) : b→ a

By Lemma 1.2.2 we have a derivation of ` r[x := n] : a. Finally, we use the inductive

hypothesis on r[x := n] ⇓ v and this typing judgment to conclude ` v : a.

Our objective is to carry out the style of reasoning described above in a formalized,

computer-supported way. The framework that we will develop in this thesis will support

such an ability. The key to doing this is designing a meta-logic for reasoning directly

about the specification logic and, in this particular instance, the descriptions of evaluation

and typing that have been encoded in it. The meta-logic that we will describe will allow

the specification logic to be encoded as a definition in it, which then leads to the ability

to reason, within the meta-logic, about the structure of specification logic derivations.

Since these derivations have a close correspondence to the structural operational semantics

derivations, a reasoning process very similar to that in Theorem 1.2.3 can be carried out

within the meta-logic. Moreover, Lemmas 1.2.2 and 1.2.1 turn out to be instances of more

general properties of the specification logic, and thus one can essentially obtain these results

for free.

1.3 The Contributions of this Thesis

The framework that we are interested in developing in this thesis is characterized by a

specification logic, a meta-logic, and an integration of these logics in a way that supports

the two-level logic approach to reasoning. We shall base our specification logic on the

intuitionistic theory of higher-order hereditary Harrop formulas [MNPS91]. This theory,

which supports higher-order abstract syntax, underlies the λProlog programming language

[NM88] and descriptions written in it can be animated using the Teyjus system [GHN+08,

1.3. THE CONTRIBUTIONS OF THIS THESIS 9

Qi09]. Our focus in this work is on developing the meta-logic and the two-level logic

approach to reasoning and on demonstrating their practical usefulness.

The starting point for our work will be a variant of the meta-logic called FOλ∆IN

described by McDowell and Miller [MM00] that also supports the notion of higher-order

abstract syntax. Further, our work will be inspired by the two-level logic approach to

reasoning also described by McDowell and Miller [MM02]; from one perspective, we will

mainly be strengthening the foundations of this approach and demonstrating how that it can

be exploited effectively in practice. The specific realization of the two-level logic approach

to reasoning in the work of McDowell and Miller is based on FOλ∆IN together with the

same specification logic that we will be using in our framework. One of the most significant

components of FOλ∆IN is a definition mechanism which allows one to reason about “closed”

descriptions of systems. Thus, one can use the logic to perform case analysis-like reasoning

about the behavior of an encoded system. This definition mechanism is based on earlier work

on closed-world reasoning by many others, but most notably by Schroeder-Heister [SH93],

Eriksson [Eri91], and Girard [Gir92]. The FOλ∆IN logic includes within it a mechanism

for induction on natural numbers. Tiu extended this capability in the meta-logic Linc

to a more general one that allows definitions themselves to be treated inductively and co-

inductively. The co-inductive treatment was initially limited, but Tiu and Momigliano have

subsequently developed the logic Linc− which removes these limitations [TM09].

McDowell and Miller’s original meta-logic has also evolved in another way: the idea of

generic judgments has been added to it to provide a better treatment of binding structure in

higher-order abstract syntax representations than that afforded by the universal judgments

originally used for this purpose. More specifically, Miller and Tiu introduced a new quan-

tifier called ∇ which provides an elegant way to decompose higher-order abstract syntax

representations by mapping term-level binding structure into a closely related proof-level

binding structure. However, the original treatment of the ∇ quantifier interacted poorly

with inductive and co-inductive reasoning. This has motivated Tiu to develop the logic

LGω which refines the treatment of this new quantifier by including certain structural rules

1.3. THE CONTRIBUTIONS OF THIS THESIS 10

for it [Tiu06].

This thesis makes contributions to the setting described above by further strengthening

the meta-logic, by using it to develop an actual computer-based system for reasoning about

specifications, and by demonstrating the benefit of the overall framework through actual

reasoning applications. We discuss these contributions in more detail below.

1. We define a meta-logic called G which improves on previous logics such as Linc and

LGω. These other logics allow one to decompose higher-order abstract syntax by

introducing ∇-quantified variables into the structure of terms. These variables act

like proof-level binders and allowed one to reason about the binding structure of

objects without explicitly selecting variable names. However, these logics do not

have any way to analyze the structure of terms with respect to the occurrences of

such proof-level bound variables, a task which is common to almost all reasoning

about binding structure. The meta-logic G rectifies this situation by providing a

generalization of the notion of equality which allows for exactly the type of analysis

described. This generalized notion of equality behaves well with respect to definitions,

induction, and co-induction. We establish consistency and more generally the cut-

elimination property for G, and we find that this meta-theory is a natural and pleasing

extension of the meta-theory of previous logics. These contributions are the contents

of Chapters 3 and 4.

2. The two-level logic approach had previously not been implemented and, hence, tested

and the Linc logic had received only a partial implementation in a system called

Bedwyr [BGM+06]. This thesis develops, for the first time, a complete realization

of the reasoning component of the proposed framework. In particular, it develops a

system called Abella that implements the meta-logic G and supports the two-level

logic approach to reasoning. Abella greatly extends the capabilities of Bedwyr by

incorporating full inductive and co-inductive reasoning capabilities. Experiments with

Abella have largely verified the effectiveness of the framework it supports, and this

1.4. OVERVIEW OF THE THESIS 11

aspect of our work has consequently contributed significantly to demonstrating the

practicality of the two-level logic approach to reasoning. The discussion of Abella and

its architecture is the content of Chapter 5.

3. We use Abella to expose a methodology of proof construction within the proposed

framework which has a close correspondence with traditional pencil-and-paper proofs.

We formally prove part of this correspondence through adequacy results for our two-

level logic approach, and we demonstrate how to prove the full correspondence between

the two-level logic approach to reasoning and traditional pencil-and-paper proofs.

Finally, though concrete examples, we showcase the expressive power of the meta-

logic G and the practical benefits of the two-level logic approach to reasoning. These

contributions are the contents of Chapters 6 and 7.

We note that the work described in this thesis has already contributed to the tools and

techniques used by other researchers. The Abella system, that has been freely distributed,

has been downloaded and experimented with by several researchers. It has also been used

in at least one instance to verify a paper-and-pencil proof in a research paper [TM08].

1.4 Overview of the Thesis

In Chapter 2 we present the specification logic used in our proposed framework. We prove

properties of this logic which make it a good basis for reasoning about object systems. We

then encode the example of the simply-typed λ-calculus within the specification logic and

prove the type preservation property via this encoding. The reasoning techniques used in

this proof motivate some of the design of the meta-logic G. We pick up on the specification

logic again when we discuss the two-level approach to reasoning in Chapter 6.

Chapter 3 introduces the meta-logic G and its various features including an extended

notion of equality, a definition mechanism for encoding specifications, and induction and

co-induction capabilities. We show how the extended notion of equality can be combined

with the definition mechanism to produce a useful way of describing certain objects which

1.4. OVERVIEW OF THE THESIS 12

occur frequently when reasoning over higher-order abstract syntax descriptions. Finally, we

provide examples which highlight the expressiveness of the new extended notion of equality.

The contents of this chapter and the next also appear in [GMN08a, GMN09].

We develop the meta-theory of the meta-logic G in Chapter 4. The primary result of this

chapter is the proof of cut-elimination which we use to prove other useful properties relative

to our meta-logic. We discover here that there is a nice (meta-theoretic) modularity to our

use of an extended notion of equality as the basis for endowing G with richer capabilities

than the logics it builds on. In particular, we are able to reuse in this chapter much of the

meta-theory already developed for Linc− [TM09], thereby greatly reducing the effort that

is needed for proving properties such as cut-elimination.

In Chapter 5 we describe the Abella system and its architecture. We describe the role

of lemmas and lemma-like hypotheses during proof construction, and we show how the

induction and co-induction rules of G can be presented to the user in a very natural way.

Chapter 6 brings together the specification logic and the meta-logic to develop the two-

level logic approach to reasoning. In particular, this chapter describes how the specification

logic can be embedded in the meta-logic and what benefit this has towards formalizing

the properties of the specification logic. We reconsider the example of the simply-typed

λ-calculus and using the two-level logic approach to reasoning we provide a very short and

elegant proof of type preservation. Finally, we show that our encoding of the specification

logic is adequate subject to some minor conditions.

Using the two-level logic approach to reasoning and its embodiment in the Abella theo-

rem prover we present larger applications of our framework in Chapter 7. These applications

are intended to highlight the strengths and weaknesses of the two-level logic approach to

reasoning. They include examples such as the POPLmark challenge [ABF+05] and Girard’s

proof of strong normalization for the simply-typed λ-calculus.

In Chapter 8 we compare our framework against other approaches to specifying, proto-

typing, and reasoning about computational systems with binding.

We conclude this thesis in Chapter 9 and discuss various avenues of future work. These

1.4. OVERVIEW OF THE THESIS 13

range from foundational extensions which would increase the expressive power of the meta-

logic to more implementation oriented extensions which would better facilitate the reasoning

process.

Chapter 2

A Logic for Specifying Computational Systems

The primary requirement of a specification logic within the framework that we want to

develop is that it allow for a transparent encoding of the kinds of formal systems that are of

interest to us. In particular, such an encoding should cover both the objects manipulated

within the formal system and the rules by which they are manipulated. In the context of our

work, we are particularly concerned with the representation of objects that incorporate a

variable binding structure. A logically precise encoding of such structure plays an important

role in the overall treatment of the relevant computational systems. An encoding that

has this character usually requires the treatment of concepts related to binding, such as

equality under bound variable renaming and capture-avoiding substitution. If these aspects

are not dealt with in a systematic way within the specification logic, they can overwhelm

the process of constructing encodings and can make the subsequent process of reasoning

about specifications unnecessarily complex. We therefore seek a specification logic which

incorporates a flexible and sophisticated treatment of variable binding structure and which

also builds in the related binding notions.

In this chapter we introduce the specification logic of second-order hereditary Harrop

formulas, abbreviated hH2. This logic is essentially a restriction of the logic of higher-

order hereditary Harrop formulas [MNPS91] that underlies the language λProlog [NM88].

The hH2 logic can be seen as an extension of the Horn clause logic, the logic that un-

derlies Prolog, with devices for representing, examining, and manipulating objects with

binding structure. In particular, hH2 allows for a higher-order abstract syntax represen-

tation of objects with binding structure [MN87, PE88]. Thus issues of variable renaming

and capture-avoiding substitution are taken care of once and for all in the specification

14

2.1. THE SYNTAX AND SEMANTICS OF THE LOGIC 15

logic, leaving particular specifications free to focus on the more essential aspects of the

system they encode. Furthermore, like the logic of higher-order hereditary Harrop formulas

that it derives from, hH2 admits an operational semantics which allows specifications to be

animated automatically thus yielding quick prototypes of the computational systems they

encode.

In this chapter we formally define the hH2 logic, describe its operational semantics, state

and prove properties of the logic, and demonstrate its use through a concrete example.

2.1 The Syntax and Semantics of the Logic

Following Church [Chu40], terms in hH2 are constructed using abstraction and application

from constants and bound variables. All terms are typed using a monomorphic typing

system. The provability relation concerns well-formed terms of the the distinguished type o

that are also called formulas. Logic is introduced by including special constants representing

the propositional connectives >, ∧, ∨, ⊃ and, for every type τ that does not contain o, the

constants ∀τ and ∃τ of type (τ → o) → o. We do not allow any other constants or variables

to have a type containing the type o. The binary propositional connectives are written as

usual in infix form and the expressions ∀τx.B and ∃τx.B abbreviate the formulas ∀τλx.B

and ∃τλx.B, respectively. Type subscripts will be omitted from quantified formulas when

they can be inferred from the context or are not important to the discussion. We also

use a shorthand for iterated quantification: if Q is a quantifier, we will often abbreviate

Qx1 . . .Qxn.P to Qx1, . . . , xn.P or simply Q~x.P . We consider the scope of λ-binders (and

therefore quantifiers) as extending as far right as possible. We further assume that ⊃ is

right associative and has lower precedence than ∧ and ∨. For example, ∀x.t1 ⊃ t2 ⊃ t3 ∧ t4

should be read as ∀x.(t1 ⊃ (t2 ⊃ (t3 ∧ t4))).

We restrict our attention to two classes of formulas in hH2 described by the following

2.1. THE SYNTAX AND SEMANTICS OF THE LOGIC 16

grammar.

G ::= > | A | A ⊃ G | ∀τx.G | ∃τx.G | G ∧G | G ∨G

D ::= A | G ⊃ D | ∀τx.D

Here A denotes an atomic formula. The formulas denoted by G are called goals and repre-

sent the conclusions we can infer in the logic. A notable restriction on implication in goal

formulas is that the left hand side must be an atomic formula. Formulas denoted by D are

called definite clauses and represent the hypotheses we can assume in the logic. Notice that

disjunctions and existentials are not allowed in definite formulas because they represent

indefinite knowledge. For simplicity, we also disallow conjunction, but the effect of con-

junctions can be recovered by using a set of clauses in place of a single clause. The order of

a formula is the depth of implications which are nested to the left of other implications. Our

restriction on implication means goal formulas are at most first-order and definite clauses

are at most second-order. It is precisely this restriction which carves out the logic of second-

order hereditary Harrop formulas from the larger logic of higher-order hereditary Harrop

formulas. Finally, by using logical equivalences we can percolate universal quantifiers to

the top, to rewrite all definite clauses to be of the form ∀x1 . . .∀xn.(G1 ⊃ · · · ⊃ Gm ⊃ A)

where n and m may both be zero. In the future we will assume all definite clauses are in

this form.

The semantics of hH2 are formalized by means of a proof-theoretic presentation of what

it means for a goal to follow from a set of definite clauses. Specifically, we will be concerned

with the derivation of sequents of the form Σ : ∆ ` G where ∆ is a list of D-formulas, G

is a G-formula, and Σ is a set of variables called eigenvariables. For such a sequent to be

well-formed, we require that the formulas in ∆∪{G} must be constructed using using only

the logical and non-logical constants of the language and the eigenvariables in Σ. This well-

formedness condition is guaranteed for every sequent considered in a derivation by ensuring

that we try to construct derivations only for well-formed ones at the top-level and by the

use of typing judgments of the form Σ ` t : τ in rules that introduce new terms when these

2.1. THE SYNTAX AND SEMANTICS OF THE LOGIC 17

rules are interpreted in a proof search direction. The meaning of this typing judgment, that

we do not explicitly formalize here, is the following: for it to hold, the term t must have

the type τ and it must also be constructed using only the non-logical constants and the

eigenvariables in Σ.

The rules for constructing proofs for such sequents are presented in Figure 2.1. The

GENERIC rule introduces an eigenvariable when read in a proof search direction. There

is a freshness side-condition associated with this eigenvariable: c must not already be in

Σ. Note that for this to be possible, we must assume that there is an unlimited supply of

eigenvariables of each type. In the INSTANCE rule t is required to be a term such that

Σ ` t : τ holds. Similarly, in the BACKCHAIN rule for each term ti ∈ ~t we must have

Σ ` ti : τi where τi is the type of the quantified variable xi. An important property to note

about these rules is that if we use them to search for a proof of the sequent ∆ ` G, then

all the intermediate sequents that we will encounter will have the form ∆,L ` G′ for some

G-formula G′ and some list of atomic formulas L. Thus the initial context ∆ is global, and

only atomic formulas are added to the context during proof construction.

In presenting sequents in later parts of this thesis, we shall occasionally omit writing

the signature. We will do this only when either the identity of the signature is irrelevant to

the discussion of when it can be inferred from the context.

The rules of hH2 admit a simple proof search procedure: given a sequent ∆ ` G we

decompose the goal G until we reach an atomic formula at which point we backchain and

attempt to prove the resulting goals. This is, in fact, a manifestation of the uniform proofs

property that hH2 inherits from the parent logic of higher-order hereditary Harrop formulas

[MNPS91]. The resulting procedure is non-deterministic since we have a choice when the

goal is a disjunction, an existential, or an atomic formula (we can choose which clause

to backchain on). The non-determinism induced by existentials can be handled using the

standard notion of instantiatable variables and unification while the non-determinism of the

OR and BACKCHAIN rules can be handled using depth-first search complemented with

backtracking. Computations described by hH2 are included within those corresponding to

2.2. PROPERTIES OF THE SPECIFICATION LOGIC 18

Σ : ∆ ` > TRUE

Σ : ∆ ` G1

Σ : ∆ ` G1 ∨G2
OR1

Σ : ∆ ` G2

Σ : ∆ ` G1 ∨G2
OR2

Σ : ∆ ` G1 Σ : ∆ ` G2

Σ : ∆ ` G1 ∧G2
AND

Σ : ∆ ` G[t/x]
Σ : ∆ ` ∃x.G INSTANCE

Σ : ∆, A ` G
Σ : ∆ ` A ⊃ G

AUGMENT
Σ ∪ {c :τ} : ∆ ` G[c/x]

Σ : ∆ ` ∀τx.G
GENERIC

Σ : ∆ ` G1[~t/~x] · · · Σ : ∆ ` Gm[~t/~x]
Σ : ∆ ` A BACKCHAIN

where ∀~x.(G1 ⊃ · · · ⊃ Gm ⊃ A′) ∈ ∆ and A′[~t/~x] = A

Figure 2.1: Derivation rules for the hH2 logic

λProlog and can therefore be compiled and executed efficiently, e.g., by the Teyjus system

[GHN+08, Qi09].

2.2 Properties of the Specification Logic

We will eventually encode object logic judgments into specification logic judgments. By

doing this, we enable ourselves to use properties of the specification logic in proving prop-

erties of the object logic. Therefore in this section we enumerate the various properties of

the hH2 logic which may be useful in such reasoning. The proofs of these properties will

be based on induction over the height of a derivation, a notion we define now.

Definition 2.2.1. The height of a derivation Π, denoted by ht(Π), is 1 if Π has no premise

derivations and is max{ht(Πi) + 1}i∈1..n if Π has the premise derivations {Πi}i∈1..n.

2.2. PROPERTIES OF THE SPECIFICATION LOGIC 19

The monotonicity property of hH2 states that the eigenvariables and the context of a

sequent can always be expanded while preserving provability.

Lemma 2.2.2. Let Σ : ∆ ` G be a well-formed sequent, let ∆′ be a list of definite clauses

such that ∆ ⊆ ∆′, and let Σ′ be a set of eigenvariables such that Σ ⊆ Σ′ and Σ′ contains all

the eigenvariables of ∆′. If Σ : ∆ ` G has a derivation then Σ′ : ∆′ ` G has a derivation.

Moreover, the height of the derivation does not increase.

Proof. Induction on the height of the derivation of Σ : ∆ ` G.

The instantiation property states that a eigenvariable c which arises from a use of the

GENERIC rule can always be instantiated with a particular value while preserving prov-

ability. As a result, our use of eigenvariables to denote universal quantification in hH2 is

well justified.

Lemma 2.2.3. Let c be a variable not in Σ. If Σ ∪ {c : τ} : ∆ ` G has a derivation then

for all terms t such that Σ ` t : τ there is a derivation of Σ : ∆[t/c] ` G[t/c]. Moreover,

the height of the derivation does not increase.

Proof. Induction on the height of the derivation of Σ ∪ {c : τ} : ∆ ` G.

Finally, the cut admissibility property says that the assumption of an atomic formula

can be discharged if the atomic formula is itself provable.

Lemma 2.2.4. If Σ : ∆, A ` G and Σ : ∆ ` A then Σ : ∆ ` G.

Proof. Induction on the height of the derivation of Σ : ∆, A ` G. There are two interesting

cases. The first case is when G is A′ ⊃ G′ in which case we must apply the monotonicity

property to move from Σ : ∆, A,A′ ` G to Σ : ∆, A′, A ` G. The other case is when the

BACKCHAIN rule selects A, in which case the derivation of Σ : ∆ ` A can be substituted.

2.3. EXAMPLE ENCODING IN THE SPECIFICATION LOGIC 20

2.3 Example Encoding in the Specification Logic

We now take the example of evaluation and typing for the simply-typed λ-calculus from

Section 1.2, and we encode it into the specification logic. We introduce the specification

logic types tp and tm for representing types and pre-terms respectively in the simply-typed

λ-calculus. Types in the simply-typed λ-calculus will be mapped to specification logic terms

constructed from the constants i and arr of types tp and tp → tp → tp, respectively. Pre-

terms in the simply-typed λ-calculus will be mapped to specification logic terms constructed

from the constants app and abs of types tm → tm → tm and tp → (tm → tm) → tm,

respectively. Notice that the second argument of abs is expected to be an abstraction

over tm in the specification logic. Finally, we will have two constants of and eval of types

tm → tp → o and tm → tm → o, respectively, which denote typing and evaluation,

respectively. The clauses for these predicates are presented in Figure 2.2. Here and in the

future we use the convention that tokens given by capital letters denote variables that are

implicitly universally quantified over the entire formula. In the second clause for evaluation,

R is an abstraction in the specification logic and thus the built-in notion of β-reduction

means that (R N) realizes capture-avoiding substitution of N in for the bound variable in

R. For the typing judgment, we do not keep an explicit context of typing assumptions,

instead relying on the specification logic context. This is reflected in the rule for typing

abstractions where we use the ∀ quantifier to create a fresh eigenvariable and we assume

that this eigenvariable has the proper type while we derive a typing assignment for the

body of the abstraction. In this way, we avoid having an explicit base case for typing.

Next, when we reason about this specification we will be able to exploit this encoding of

the typing context.

Using this encoding, we can now repeat the proof of type preservation and leverage on

the properties we have shown of the hH2 logic. Let ∆ be the clauses from Figure 2.2.

Theorem 2.3.1. If ∆ ` eval e v holds and ∆ ` of e t holds then ∆ ` of v t holds.

Proof. By induction on the height of the derivation of ∆ ` eval e v. We proceed by cases on

2.3. EXAMPLE ENCODING IN THE SPECIFICATION LOGIC 21

eval (abs A M) (abs A M)

eval M (abs A R) ⊃ eval (R N) V ⊃ eval (app M N) V

of M (arr A B) ⊃ of N A ⊃ of (app M N) B

(∀x.of x A ⊃ of (R x) B) ⊃ of (abs A R) (arr A B)

Figure 2.2: hH2 specification of evaluation and typing

the derivation of ∆ ` eval e v. This judgment must have been derived by backchaining on

one of the clauses for eval. If it was by the first clause, then e = v and the case is complete.

Otherwise it was by the second clause so e must be (app m n) for some m and n and we

have shorter derivations of ∆ ` eval m (abs a r) and and ∆ ` eval (r n) v for some a and

r. By similarly examining the derivation ∆ ` of (app m n) t we must have derivations

of ∆ ` of m (arr b t) and ∆ ` of n b for some b. Applying the inductive hypothesis to

∆ ` eval m (abs a r) and ∆ ` of m (arr b t) we have ∆ ` of (abs a r) (arr b t). This

derivation could only result if a = b and we have a derivation of ∆ ` ∀x[of x a ⊃ of (r x) t]

and thus a derivation of ∆, of c a ` of (r c) t for some eigenvariable c. Now we can apply the

instantiation property of our specification logic to get a derivation of ∆, of n a ` of (r n) t.

Next we apply the cut property with our derivation of ∆ ` of n a to get ∆ ` of (r n) t.

Finally, we apply the inductive hypothesis again to ∆ ` of (r n) t and ∆ ` eval (r n) v to

get ∆ ` of v t which completes the proof.

It is important to note in this proof that we did not have to prove a type substitution

property for the object logic. Instead, the object logic inherited this property from the more

general instantiation and cut properties of the specification logic. Also, induction over the

height of specification logic derivations corresponded with induction over the height of

object logic derivations. Thus we can reason about computational systems through their

encoding in the specification logic with little overhead cost.

2.4. ADEQUACY OF ENCODINGS IN THE SPECIFICATION LOGIC 22

2.4 Adequacy of Encodings in the Specification Logic

A tacit assumption in the example we considered in the previous section is that the spec-

ification of pre-terms, types, typing, and evaluation are all faithful representations of the

corresponding concepts in the object logic. This kind of property of encodings is referred to

as the adequacy property. We must, of course, prove such a property before we can derive

benefit from it. To do this, we need to prove that there is a bijection between components of

the object logic and their specification logic representations and that this bijection preserves

properties of relevance in the two systems. With specific reference to the example encoding

we have considered, we have to show that each object in the simply-typed λ-calculus has a

unique representation in the specification logic, and each representation in the specification

logic corresponds to a unique object in the simply-typed λ-calculus. We show below how

such arguments are typically carried out.

To simplify the argument we will assume an implicit mapping between bound variables

in the object language and bound variables in the specification language, and between free

variables in the object language and eigenvariables in the specification language. A more

rigorous treatment of adequacy would make this mapping explicit [Fel89].

We define the bijections φtp, φtm, φeval, φctx, and φof which are used to map types, pre-

terms, evaluation judgments, typing contexts, and typing judgments in the simply-typed

λ-calculus to their corresponding representations in the specification logic. We will omit the

subscripts on φ when they can be inferred from context. The proofs that these mappings are

bijective are always by straightforward induction on the size of terms or strong induction

on the height of derivations.

Types in the simply-typed λ-calculus map to terms of type tp in the specification logic.

We formalize this mapping as follows.

φ(i) = i φ(a→ b) = arr φ(a) φ(b)

This function is clearly a bijection.

Next we define the mapping between α-equivalence classes of pre-terms in the object

2.4. ADEQUACY OF ENCODINGS IN THE SPECIFICATION LOGIC 23

logic and terms of type tm in the specification logic.

φ(x) = x φ(m n) = app φ(m) φ(n) φ(λx :a. r) = abs φ(a) (λx.φ(r))

In the last rule for this mapping note that the λ within the φ is that of the simply-typed

λ-calculus while the one outside of φ is from the specification logic. This mapping is

clearly bijective under the assumption that α-convertible terms in the specification logic

are considered to be identical.

Let ∆ be the clauses from Figure 2.2. Then derivations of evaluation judgments in

the simply typed λ-calculus correspond to derivations of the sequent ∆ ` eval e v in the

specification logic as follows. First consider the translation of evaluation for abstractions:

φ

(
λx :a. t ⇓ λx :a. t

)
=

∆ ` eval φ(λx :a. t) φ(λx :a. t)

=
∆ ` eval (abs φ(a) (λx.φ(t))) (abs φ(a) (λx.φ(t)))

Here and in the future we propagate the mapping φ to make it clear that the specification

logic inference rules are well-formed. In this case, the right-hand inference rule an instance

of the BACKCHAIN rule over the clause for evaluating abstractions.

The translation for evaluations of applications is the following.

φ

 ...
m ⇓ λx :a. r

...
r[x := n] ⇓ v

m n ⇓ v



=

φ

(
...

m ⇓ λx :a. r

)
φ

(
...

r[x := n] ⇓ v

)
∆ ` eval φ(m n) φ(v)

=

φ(
...)

∆ ` eval φ(m) (abs φ(a) (λx.φ(r)))
φ(

...)
∆ ` eval (φ(r)[φ(n)/x]) φ(v)

∆ ` eval (app φ(m) φ(n)) φ(v)

In the final formula, we make use of the automatic β-conversion in the specification logic

where (λx.φ(r)) φ(n) = φ(r)[φ(n)/x], and we use the following compositional property of

2.4. ADEQUACY OF ENCODINGS IN THE SPECIFICATION LOGIC 24

the bijection for terms.

φ(r[x := n]) = φ(r)[φ(n)/x]

This equation relates the substitution of the simply-typed λ-calculus on the left with the

substitution in the specification logic on the right. The proof of this equality is by induction

on the structure of r. Thus the inference rule on the right-hand side above is a proper

instance of the BACKCHAIN rule over the clause for evaluating applications. The inverse

of the φ mapping is defined in the natural way and thus φ is a bijection.

Finally, we look at derivations of typing judgments in the simply-typed λ-calculus and

we map these to derivations of sequents of the form ∆,L ` of e t where L is a list of atomic

formulas of the form of x1 a1, . . . , of xk ak where each xi is a unique eigenvariable. We first

define the following bijection between a list of typing assumptions Γ from the simply-typed

λ-calculus and a list of atomic formulas of the form described for L.

φ(x1 : a1, . . . , xk : ak) = of x1 φ(a1), . . . , of xk φ(ak)

Given this, we can define the mapping for typing variables as follows.

φ

(
Γ ` xi : ai

)
=

∆, φ(Γ) ` of xi φ(ai)

If the typing derivation within the φ is correct then it must be that xi : ai ∈ Γ. Thus the

right-hand side is an instance of the BACKCHAIN rule on the clause of xi φ(ai) which is

in φ(Γ).

The typing rule for applications is mapped in the expected way:

φ

 ...
Γ ` m : a→ b

...
Γ ` n : a

Γ ` m n : b



=
φ

(
...

Γ ` m : a→ b

)
φ

(
...

Γ ` n : a

)
∆, φ(Γ) ` of φ(m n) φ(b)

=
φ(

...)
∆, φ(Γ) ` of φ(m) (arr φ(a) φ(b))

φ(
...)

∆, φ(Γ) ` of φ(n) φ(a)
∆, φ(Γ) ` of (app φ(m) φ(n))) φ(b)

2.4. ADEQUACY OF ENCODINGS IN THE SPECIFICATION LOGIC 25

For mapping the abstraction typing rule, we need to be mindful of the variable naming

restriction and how this is realized in the specification logic. Suppose we want to define the

following mapping.

φ

 ...
Γ, x : a ` r : b

Γ ` (λx :a. r) : a→ b


Here we assume that x does not appear in Γ so that the naming restriction is satisfied. We

map this to the following specification logic derivation.

φ(
...)

∆, φ(Γ), of x φ(a) ` of φ(r) φ(b)
∆, φ(Γ) ` of x φ(a) ⊃ of φ(r) φ(b) AUGMENT

∆, φ(Γ) ` ∀x.[of x φ(a) ⊃ of ((λx.φ(r)) x) φ(b)] GENERIC

∆, φ(Γ) ` of (abs φ(a) (λx.φ(r))) (arr φ(a) φ(b)) BACKCHAIN

In the GENERIC rule we overload notation to let x be the eigenvariable we select. Since

it does not appear in Γ it will not appear in φ(Γ), and thus the freshness side-condition on

the GENERIC rule is satisfied. In fact, the naming restriction in the object logic matches

up with the freshness side-condition in the specification logic exactly as needed.

The inverse of the φ mapping for typing judgments can be defined in the expected way,

and thus φ is a bijection. This concludes the proof of adequacy for our specification. In the

future we will omit such arguments since our specifications are often transparent encodings

of the systems they represent.

Chapter 3

A Logic for Reasoning About Specifications

In this chapter we present the meta-logic G. This logic allows for encoding descriptions

of computational systems and for reasoning over those descriptions. The logic includes

traditional reasoning devices such as case analysis, induction, and co-induction as well as

new devices specifically designed for working with higher-order abstract syntax.

The relevant history of G begins with the meta-logic FOλ∆IN developed by McDowell and

Miller for the purposes of inductive reasoning over higher-order abstract syntax descriptions

[MM02, MM00]. This logic contains a definition mechanism which allows one to specify and

reason about closed-world descriptions, i.e., allows one to form judgments and to perform

case analysis on them. This definition mechanism is based on earlier work on closed-

world reasoning by many others, but most notably by Schroeder-Heister [SH93], Eriksson

[Eri91], and Girard [Gir92]. The primary contribution of FOλ∆IN was the recognition

that definitions provided a way of encoding higher-order abstract syntax descriptions in

such a way that does not conflict with inductive reasoning. In particular, FOλ∆IN allowed

for natural number induction, and so many reasoning tasks could be naturally encoded.

More recently, Tiu [Tiu04] developed the meta-logic Linc which extends the mechanism of

definitions to integrate notions of generalized induction and co-induction over the structure

of definitions. These more general notions are present in G as well.

Another central advancement in the development of logics for reasoning over higher-

order abstract syntax descriptions was the recognition that one needed a way to reflect the

binding structure of terms into the structure of proofs. This was realized in earlier logics by

using universal judgments. However, this kind of correspondence was always an uneasy one

and the mismatch became explicit when it was necessary to use case analysis arguments over

26

27

binding structure as must be done, for example, in bisimilarity proofs associated with π-

calculus models of concurrent systems. The desire to provide a logically precise and cleaner

treatment led to the development of the ∇-quantifier and the associated generic judgment

by Miller and Tiu in the meta-logic FOλ∆∇ [MT05]. Tiu later refined this notion in

the meta-logic LGω so that ∇-quantifier behaved well with respect to inductive reasoning

[Tiu06]. This interpretation of the ∇-quantifier is present in G, and in this context it can

be understood as quantifying over fresh names.

The meta-logic G is a continuation of the research surrounding inductive reasoning and

higher-order abstract syntax descriptions. In particular, it extends the notion of equality

in the logic to one which can describe the binding structure of terms relative to the proof

context in which they occur. This turns out to be essential to describing the structure

of terms which are generated during inductive reasoning over higher-order abstract syntax

descriptions. Moreover, G identifies how this extended notion of equality can be integrated

with the definition mechanism to allow a succinct description of such objects.

The presentation of G is divided into three parts. First, Section 3.1 contains the core of

the logic including generic quantification. Then Section 3.2 introduces the extended notion

of equality known as nominal abstraction and rules for treating this notion within the logic.

Finally, Section 3.3 presents rules for treating fixed-points in the logic including mechanisms

for induction and co-induction. Although the logical features of G are described in their

entirety in the first three sections, it is sometimes convenient to use an alternative presenta-

tion for fixed-point definitions. This form, which uses patterns to distinguish different cases

in the structure of the atom being defined, is introduced in Section 3.4 and is elaborated

as an interpretation of the basic form of definitions that uses nominal abstractions explic-

itly. Rules for treating this alternative form of fixed-points are presented and proven to be

admissible. Finally, Section 3.5 provides some small examples to illustrate the expressive

power of the logic.

3.1. A LOGIC WITH GENERIC QUANTIFICATION 28

3.1 A Logic with Generic Quantification

In this section we present the core logic underlying G. This logic is obtained by extending an

intuitionistic and predicative subset of Church’s Simple Theory of Types with a treatment

of generic judgments. The encoding of generic judgments is based on the quantifier called ∇

(pronounced nabla) introduced by Miller and Tiu [MT05] and further includes the structural

rules associated with this quantifier in the logic LGω described by Tiu [Tiu06].

3.1.1 The Basic Syntax

Following Church [Chu40], terms are constructed from constants and variables using ab-

straction and application. All terms are assigned types using a monomorphic typing system;

these types also constrain the set of well-formed expressions in the expected way. The collec-

tion of types includes o, a type that corresponds to propositions. Well-formed terms of this

type are also called formulas. Two terms are considered to be equal if one can be obtained

from the other by a sequence of applications of the α-, β- and η-conversion rules, i.e., the

λ-conversion rules. This notion of equality is henceforth assumed implicitly wherever there

is a need to compare terms. Logic is introduced by including special constants representing

the propositional connectives >, ⊥, ∧, ∨, ⊃ and, for every type τ that does not contain o,

the constants ∀τ and ∃τ of type (τ → o) → o. The binary propositional connectives are

written as usual in infix form and the expressions ∀τx.B and ∃τx.B abbreviate the formulas

∀τλx.B and ∃τλx.B, respectively. Type subscripts will be omitted from quantified formulas

when they can be inferred from the context or are not important to the discussion. We also

use a shorthand for iterated quantification: if Q is a quantifier, we will often abbreviate

Qx1 . . .Qxn.P to Qx1, . . . , xn.P or simply Q~x.P . We consider the scope of λ-binders (and

therefore quantifiers) as extending as far right as possible. We further assume that ⊃ is

right associative and has lower precedence than ∧ and ∨. For example, ∀x.t1 ⊃ t2 ⊃ t3 ∧ t4

should be read as ∀x.(t1 ⊃ (t2 ⊃ (t3 ∧ t4))).

The usual inference rules for the universal quantifier can be seen as equating it to the

3.1. A LOGIC WITH GENERIC QUANTIFICATION 29

conjunction of all of its instances: that is, this quantifier is treated extensionally. There are

several situations where one wishes to treat an expression such as “B(x) holds for all x”

as a statement about the existence of a uniform argument for every instance rather than

the truth of a particular property for each instance [MT05]; such situations typically arise

when one is reasoning about the binding structure of formal objects represented using the λ-

tree syntax [Mil00] version of higher-order abstract syntax [PE88]. The ∇-quantifier serves

to encode judgments that have this kind of a “generic” property associated with them.

Syntactically, this quantifier corresponds to including a constant ∇τ of type (τ → o) → o

for each type τ not containing o.1 As with the other quantifiers, ∇τx.B abbreviates ∇τλx.B

and the type subscripts are often suppressed for readability.

3.1.2 Generic Judgments and ∇-quantification

Sequents in intuitionistic logic can be written as

Σ : B1, . . . , Bn −→ B0 (n ≥ 0)

where Σ is the “global signature” for the sequent that contains the eigenvariables (i.e., vari-

ables associated to the ∃L and ∀R inference rules) relevant to the sequent proof. We shall

think of Σ in this prefix position as an operator that binds each of the variables it contains

and that has the rest of the sequent as its scope. To treat the ∇-quantifier, the FOλ∆∇

logic [MT05] extends the notion of a judgment from just a formula to a formula paired with

a “local signature.” Thus, sequents within this logic are written more elaborately as

Σ : σ1 . B1, . . . , σn . Bn −→ σ0 . B0,

where each σ0, . . . , σn is a list of variables that are bound locally in the formula adjacent to

it. Such local signatures correspond to a proof-level encoding of binding that is expressed

within formulas through the ∇-quantifier. In particular, the judgment x1, . . . , xn . B and

1 We may choose to allow ∇-quantification at fewer types in particular applications; such a restriction may
be useful in adequacy arguments for reasons we discuss later.

3.1. A LOGIC WITH GENERIC QUANTIFICATION 30

the formula ∇x1 · · ·∇xn.B for n ≥ 0 have the same proof-theoretic force. In keeping with

this observation, we shall refer to a judgment of the form σ . B as a generic judgment.

As part of a generalization of sequents that bases them on generic judgments rather than

on formulas, we need to define when two such judgments are equal: this is necessary for

describing at least the initial and cut inference rules. The FOλ∆∇ logic [MT05] uses a simple

form of equality for this purpose. It deems two generic judgments of the form x1, . . . , xn .B

and y1, . . . , ym . C to be equal exactly when the λ-terms λx1 . . . λxn.B and λy1 . . . λym.C

are λ-convertible; notice that this necessarily implies that n = m. An equality notion is also

needed in formulating an induction rule. Unfortunately, the simple form of equality present

in FOλ∆∇ leads to a rather weak version of such a rule. To overcome this difficulty, Tiu

proposed the addition to the logic of two natural “structural” identities between generic

judgments. These identities are the ∇-strengthening rule ∇x.F = F , provided x is not

free in F , and the ∇-exchange rule ∇x∇y.F = ∇y∇x.F . In its essence, the LGω proof

system [Tiu06] is obtained from FOλ∆∇ by strengthening its notion of equality based on

λ-conversion through the addition of these two structural rules for ∇.

The move from the weaker logic FOλ∆∇ to the stronger logic LGω involves an ontolog-

ical commitment and has a proof-theoretic consequence.

At the ontological level, the strengthening rule implies that every type at which one is

willing to use ∇-quantification is non-empty and, in fact, contains an unbounded number

of members. For example, the formula ∃τx.> is always provable, even if there are no

closed terms of type τ because this formula is equivalent to ∇τy.∃τx.>, which is provable.

Similarly, for any given n ≥ 1, the following formula is provable

∃τx1 . . .∃τxn.

 ∧
1≤i,j≤n,i6=j

xi 6= xj

 .
At the proof-theoretic level, an acceptance of the strengthening and exchange rules

means that the length of a local context and the order of variables within it are unimportant.

For example, a sequent that contains the generic judgments x1, . . . , xn.B and y1, . . . , ym.C

can be rewritten (assuming n ≥ m) using α-conversion and strengthening into the judgments

3.1. A LOGIC WITH GENERIC QUANTIFICATION 31

z1, . . . , zn . B
′ and z1, . . . , zn . C

′ where B′ and C ′ are equal to B and C modulo variable

renamings. In this fashion, all local bindings in a sequent can be made to involve the same

variables, and, hence, the local bindings can be seen as a global binding over a sequent that

contains formulas and not generic judgments. The resulting sequent-level variable bindings

will be represented by specially designated nominal constants. Notice, however, that each of

these nominal “constants” has as its scope only a single formula. Thus, we must distinguish

the same nominal constant when it appears in two different formulas and we should treat

judgments as being equal if they are identical up to permutations of these constants.

3.1.3 A Sequent Calculus Presentation of the Core Logic

The logic G inherits from LGω the shift from a local to a global scope in the treatment of

the ∇-quantifier. In particular, we assume that the collection of constants is partitioned

into the set C of nominal constants and the set K of usual, non-nominal constants. We

assume the set C contains an infinite number of nominal constants for each type at which ∇

quantification is permitted. We define the support of a term (or formula), written supp(t),

as the set of nominal constants appearing in it. A permutation of nominal constants is a

type-preserving bijection π from C to C such that {x | π(x) 6= x} is finite. We denote the

application of such a permutation to a term or formula t by π.t and define this as follows:

π.a = π(a), if a ∈ C π.c = c, if c /∈ C is atomic

π.(λx.M) = λx.(π.M) π.(M N) = (π.M) (π.N)

We extend the notion of equality between terms to encompass also the application of permu-

tations to nominal constants appearing in them. Specifically, we write B ≈ B′ to denote the

fact that there is a permutation π such that B λ-converts to π.B′. Using the observations

that permutations are invertible and composable and that λ-convertibility is an equivalence

relation, it is easy to see that ≈ is also an equivalence relation.

The rules defining the core of G are presented in Figure 3.1. Sequents in this logic

have the form Σ : Γ −→ C where Γ is a multiset and the signature Σ contains all the

free variables of Γ and C. We use expressions of the form B[t/x] in the quantifier rules

3.1. A LOGIC WITH GENERIC QUANTIFICATION 32

B ≈ B′

Σ : Γ, B −→ B′ id
Σ : Γ −→ B Σ : B,∆ −→ C

Σ : Γ,∆ −→ C
cut

Σ : Γ, B,B −→ C

Σ : Γ, B −→ C
cL

Σ : Γ,⊥ −→ C
⊥L Σ : Γ −→ > >R

Σ : Γ, B −→ C Σ : Γ, D −→ C

Σ : Γ, B ∨D −→ C
∨L

Σ : Γ −→ Bi

Σ : Γ −→ B1 ∨B2
∨R, i ∈ {1, 2}

Σ : Γ, Bi −→ C

Σ : Γ, B1 ∧B2 −→ C
∧L, i ∈ {1, 2} Σ : Γ −→ B Σ : Γ −→ C

Σ : Γ −→ B ∧ C ∧R

Σ : Γ −→ B Σ : Γ, D −→ C

Σ : Γ, B ⊃ D −→ C
⊃L

Σ : Γ, B −→ C

Σ : Γ −→ B ⊃ C
⊃R

Σ,K, C ` t : τ Σ : Γ, B[t/x] −→ C

Σ : Γ,∀τx.B −→ C
∀L

Σ, h : Γ −→ B[h ~c/x]
Σ : Γ −→ ∀x.B ∀R, h /∈ Σ, supp(B) = {~c}

Σ, h : Γ, B[h ~c/x] −→ C

Σ : Γ,∃x.B −→ C
∃L, h /∈ Σ, supp(B) = {~c}

Σ,K, C ` t : τ Σ : Γ −→ B[t/x]
Σ : Γ −→ ∃τx.B

∃R

Σ : Γ, B[a/x] −→ C

Σ : Γ,∇x.B −→ C
∇L, a /∈ supp(B)

Σ : Γ −→ B[a/x]
Σ : Γ −→ ∇x.B ∇R, a /∈ supp(B)

Figure 3.1: The core rules of G

to denote the result of substituting the term t for x in the formula B. Note that such

a substitution must be done carefully, making sure to rename bound variables in B to

avoid capture of variables appearing in t. In the ∇L and ∇R rules, a denotes a nominal

constant of an appropriate type. In the ∃L and ∀R rule we use raising [Mil92] to encode the

dependency of the quantified variable on the support of B; the expression (h ~c) in which

h is a fresh eigenvariable is used in these two rules to denote the (curried) application of h

to the constants appearing in the sequence ~c. The ∀L and ∃R rules make use of judgments

of the form Σ,K, C ` t : τ . These judgments enforce the requirement that the expression

3.2. CHARACTERIZING OCCURRENCES OF NOMINAL CONSTANTS 33

t instantiating the quantifier in the rule is a well-formed term of type τ constructed from

the eigenvariables in Σ and the constants in K ∪ C. Notice that in contrast the ∀R and

∃L rules seem to allow for a dependency on only a restricted set of nominal constants.

However, this asymmetry is not significant: Corollary 4.1.5 in Section 4.1 will tell us that

the dependency expressed through raising in the latter rules can be extended to any number

of nominal constants that are not in the relevant support set without affecting the provability

of sequents.

Equality modulo λ-conversion is built into the rules in Figure 3.1, and also into later

extensions of this logic, in a fundamental way: in particular, proofs are preserved under

the replacement of formulas in sequents by ones to which they λ-convert. A more involved

observation is that we can replace a formula B in a sequent by another formula B′ such that

B ≈ B′ without affecting the provability of the sequent or even the very structure of the

proof. For the core logic, this observation follows from the form of the id rule and the fact

that permutations distribute over logical structure. We shall prove this property explicitly

for the full logic in Chapter 4.

3.2 Characterizing Occurrences of Nominal Constants

We are interested in adding to our logic the capability of characterizing occurrences of

nominal constants within terms and also of analyzing the structure of terms with respect to

such occurrences. For example, we may want to define a predicate called name that holds of

a term exactly when that term is a nominal constant. Similarly, we might need to identify a

binary relation called fresh that holds between two terms just in the case that the first term

is a nominal constant that does not occur in the second term. Towards supporting such

possibilities, we define in this section a special binary relation called nominal abstraction and

then present proof rules that incorporate an understanding of this relation into the logic. A

formalization of these ideas requires a careful treatment of substitution. In particular, this

operation must be defined to respect the intended formula-level scope of nominal constants.

We begin our discussion with an elaboration of this aspect.

3.2. CHARACTERIZING OCCURRENCES OF NOMINAL CONSTANTS 34

3.2.1 Substitutions and their Interaction with Nominal Constants

The following definition reiterates a common view of substitutions in logical contexts.

Definition 3.2.1. A substitution is a type preserving mapping from variables to terms that

is the identity at all but a finite number of variables. The domain of a substitution is the set

of variables that are not mapped to themselves and its range is the set of terms resulting from

applying it to the variables in its domain. We write a substitution as {t1/x1, . . . , tn/xn}

where x1, . . . , xn is a list of variables that contains the domain of the substitution and

t1, . . . , tn is the value of the map on these variables. The support of a substitution θ, written

as supp(θ), is the set of nominal constants that appear in the range of θ. The restriction of

a substitution θ to the set of variables Σ, written as θ ↑ Σ, is a mapping that is like θ on

the variables in Σ and the identity everywhere else.

A substitution essentially calls for the replacement of variables by their associated terms

in any context to which it is applied. A complicating factor in our setting is that nominal

constants can appear in the terms that are to replace particular variables. A substitution

may be determined relative to one formula in a sequent but may then have to be applied

to other formulas in the same sequent. In doing this, we have to take into account the fact

that the scopes of the implicit quantifiers over nominal constants are restricted to individual

formulas. Thus, the logically correct application of a substitution should be accompanied

by a renaming of these constants in the term being substituted into so as to ensure that

they are not confused with the ones appearing in the range of the substitution.

Definition 3.2.2. The ordinary application of a substitution θ to a term B is denoted

by B[θ] and corresponds to the replacement of the variables in B by the terms that θ

maps them to, making sure, as usual, to avoid accidental binding of the variables appear-

ing in the range of θ. More precisely, if θ = {t1/x1, . . . , tn/xn}, then B[θ] is the term

(λx1 . . . λxn.B) t1 . . . tn; this term is, of course, considered to be equal to any other term

that it λ-converts to. By contrast, the nominal capture avoiding application of θ to B is

written as B[[θ]] and is defined as follows. Assuming that π is a permutation of nomi-

3.2. CHARACTERIZING OCCURRENCES OF NOMINAL CONSTANTS 35

nal constants that maps those appearing in supp(B) to ones not appearing in supp(θ), let

B′ = π.B. Then B[[θ]] = B′[θ].

The notation B[θ] generalizes the one used in the quantifier rules in Figure 3.1. The

definition of the nominal capture avoiding application of a substitution is ambiguous in

that we do not uniquely specify the permutation to be used. We resolve this ambiguity

by deeming as acceptable any permutation that avoids conflicts. As a special instance of

the lemma below, we see that for any given formula B and substitution θ, all the possible

values for B[[θ]] are equivalent modulo the ≈ relation. Moreover, as we show in Chapter 4,

formulas that are equivalent under ≈ are interchangeable in the contexts of proofs.

Lemma 3.2.3. If t ≈ t′ then t[[θ]] ≈ t′[[θ]].

Proof. Let t be λ-convertible to π1.t
′, let t[[θ]] = (π2.t)[θ] where supp(π2.t) ∩ supp(θ) = ∅,

and let t′[[θ]] be λ-convertible to (π3.t
′)[θ] where supp(π3.t

′) ∩ supp(θ) = ∅. Then we define

a function π partially by the following rules:

1. π(c) = π2.π1.π
−1
3 (c) if c ∈ supp(π3.t

′) and

2. π(c) = c if c ∈ supp(θ).

Since supp(π3.t
′)∩supp(θ) = ∅, these rules are not contradictory, i.e., this (partial) function

is well-defined. The range of the first rule is supp(π2.π1.π
−1
3 .π3.t

′) = supp(π2.π1.t
′) =

supp(π2.t) which is disjoint from the range of the second rule, supp(θ). Since the mapping

in each rule is determined by a permutation, these rules together define a one-to-one partial

mapping that can be extended to a bijection on C. We take any such extension to be the

complete definition of π that must therefore be a permutation.

To prove that t[[θ]] ≈ t′[[θ]] it suffices to show that (π2.t)[θ] is λ-convertible to π.((π3.t
′)[θ]).

We do this by induction on the structure of t′ under the further assumption that t λ-converts

to π1.t
′. Suppose t′ is an abstraction. Then, it is easy to see that (π2.t)[θ] λ-converts to

λx.((π2.s)[θ]) and π.((π3.t
′)[θ]) λ-converts to λx.(π.((π3.s

′)[θ])) for some choice of variable

x and terms s and s′ such that s′ is structurally less complex than t′ and s λ-converts

3.2. CHARACTERIZING OCCURRENCES OF NOMINAL CONSTANTS 36

to π1.s
′. But then, by the induction hypothesis, (π2.s)[θ] λ-converts to π.((π3.s

′)[θ]) and

hence (π2.t)[θ] is λ-convertible to π.((π3.t
′)[θ]). A similar and, in fact, simpler argument

can be provided in the case where t′ is an application. If t′ is a nominal constant c

then (π2.t)[θ] must be λ-convertible to (π2.π1.c)[θ] = π2.π1.c. Also, π.((π3.t
′)[θ]) must

be λ-convertible to π.π3.c. Further, in this case the first rule for π applies which means

π.π3.c = π2.π1.π
−1
3 .π3.c = π2.π1.c. Thus (π2.t)[θ] is again λ-convertible to π.((π3.t

′)[θ]).

Finally, suppose t′ is a variable x. In this case t must be λ-convertible to x so that we must

show x[θ] λ-converts to π.(x[θ]). If x does not have a binding in θ then both terms are

equal. Alternatively, if x[θ] = s then π.s = s by the second rule for π and so the two terms

are again equal. Thus (π2.t)[θ] λ-converts to π.((π3.t
′)[θ]), as is required.

The nominal capture avoiding application of substitutions turns out to be the dominant

notion in the analysis of provability. For this reason, when we speak of the application of

a substitution in an unqualified way, we shall mean the nominal capture avoiding form of

this notion.

We shall need to consider the composition of substitutions later in this section. The

definition of this notion must also pay attention to the presence of nominal constants.

Definition 3.2.4. Given a substitution θ and a permutation π of nominal constants, let π.θ

denote the substitution that is obtained by replacing each t/x in θ with (π.t)/x. Given any

two substitutions θ and ρ, let θ◦ρ denote the substitution that is such that B[θ◦ρ] = B[θ][ρ].

In this context, the nominal capture avoiding composition of θ and ρ is written as θ • ρ

and defined as follows. Let π be a permutation of nominal constants such that supp(π.θ) is

disjoint from supp(ρ). Then θ • ρ = (π.θ) ◦ ρ.

The notation θ ◦ ρ in the above definition represents the usual composition of θ and

ρ and can, in fact, be given in an explicit form based on these substitutions. Thus, θ • ρ

can also be presented in an explicit form. Notice that our definition of nominal capture

avoiding composition is, once again, ambiguous because it does not fix the permutation to

be used, accepting instead any one that satisfies the constraints. However, as before, this

3.2. CHARACTERIZING OCCURRENCES OF NOMINAL CONSTANTS 37

ambiguity is harmless. To understand this, we first extend the notion of equivalence under

permutations to substitutions.

Definition 3.2.5. Two substitutions θ and ρ are considered to be permutation equivalent,

written θ ≈ ρ, if and only if there is a permutation of nominal constants π such that

θ = π.ρ. This notion of equivalence may also be parameterized by a set of variables Σ as

follows: θ ≈Σ ρ just in the case that θ ↑ Σ ≈ ρ ↑ Σ.

It is easy to see that all possible choices for θ • ρ are permutation equivalent and that

if ϕ1 ≈ ϕ2 then B[[ϕ1]] ≈ B[[ϕ2]] for any term B. Thus, if our focus is on provability, the

ambiguity in Definition 3.2.4 is inconsequential by a result to be established in Chapter 4.

As a further observation, note that B[[θ • ρ]] ≈ B[[θ]][[ρ]] for any B. Hence our notion of

nominal capture avoiding composition of substitutions is sensible.

The composition operation can be used to define an ordering relation between substi-

tutions:

Definition 3.2.6. Given two substitutions ρ and θ, we say ρ is less general than θ, notated

as ρ ≤ θ, if and only if there exists a σ such that ρ ≈ θ • σ. This relation can also be

parameterized by a set of variables: ρ is less general than θ relative to Σ, written as ρ ≤Σ θ,

if and only if ρ ↑ Σ ≤ θ ↑ Σ.

The notion of generality between substitutions that is based on nominal capture avoiding

composition has a different flavor from that based on the traditional form of substitution

composition. For example, if a is a nominal constant, the substitution {a/x} is strictly less

general than {a/x, y′a/y} relative to Σ for any Σ which contains x and y. To see this, note

that we can compose the latter substitution with {(λz.y)/y′} to obtain the former, but the

naive attempt to compose the former with {y′a/y} yields {b/x, y′a/y} where b is a nominal

constant distinct from a. In fact, the “most general” solution relative to Σ containing {a/x}

will be {a/x} ∪ {z′a/z | z ∈ Σ\{x}}.

3.2. CHARACTERIZING OCCURRENCES OF NOMINAL CONSTANTS 38

3.2.2 Nominal Abstraction

The nominal abstraction relation allows implicit formula-level bindings represented by nom-

inal constants to be moved into explicit abstractions over terms. The following notation is

useful for defining this relationship.

Notation 3.2.7. Let t be a term, let c1, . . . , cn be distinct nominal constants that possibly

occur in t, and let y1, . . . , yn be distinct variables not occurring in t and such that, for

1 ≤ i ≤ n, yi and ci have the same type. Then we write λc1 . . . λcn.t to denote the term

λy1 . . . λyn.t
′ where t′ is the term obtained from t by replacing ci by yi for 1 ≤ i ≤ n.

There is an ambiguity in the notation introduced above in that the choice of variables

y1, . . . , yn is not fixed. However, this ambiguity is harmless: the terms that are produced

by acceptable choices are all equivalent under a renaming of bound variables.

Definition 3.2.8. Let n ≥ 0 and let s and t be terms of type τ1 → · · · → τn → τ and τ ,

respectively; notice, in particular, that s takes n arguments to yield a term of the same type

as t. Then the expression sD t is a formula that is referred to as a nominal abstraction of

degree n or simply as a nominal abstraction. The symbol D is used here in an overloaded

way in that the degree of the nominal abstraction it participates in can vary. The nominal

abstraction sD t of degree n is said to hold just in the case that s λ-converts to λc1 . . . cn.t

for some nominal constants c1, . . . , cn.

Clearly, nominal abstraction of degree 0 is the same as equality between terms based

on λ-conversion, and we will therefore use = to denote this relation in that situation. In

the more general case, the term on the left of the operator serves as a pattern for isolating

occurrences of nominal constants. For example, the relation (λx.x) D t holds exactly when

t is a nominal constant.

The symbol D corresponds, at the moment, to a mathematical relation that holds be-

tween pairs of terms as explicated by Definition 3.2.8. We now overload this symbol by

treating it also as a binary predicate symbol of G. In the next subsection we shall add

3.2. CHARACTERIZING OCCURRENCES OF NOMINAL CONSTANTS 39

inference rules to make the mathematical understanding of D coincide with its syntactic

use as a predicate in sequents. It is, of course, necessary to be able to determine when we

mean to use D in the mathematical sense and when as a logical symbol. When we write

an expression such as s D t without qualification, this should be read as a logical formula

whereas if we say that “s D t holds” then we are referring to the abstract relation from

Definition 3.2.8. We might also sometimes use an expression such as “(sD t)[[θ]] holds.” In

this case, we first treat sD t as a formula to which we apply the substitution θ in a nominal

capture avoiding way to get a (syntactic) expression of the form s′ D t′. We then read D

in the mathematical sense, interpreting the overall expression as the assertion that “s′ D t′

holds.” Note in this context that sD t constitutes a single formula when read syntactically

and hence the expression (sDt)[[θ]] is, in general, not equivalent to the expression s[[θ]]Dt[[θ]].

In the proof-theoretic setting, nominal abstraction will be used with terms that contain

free occurrences of variables for which substitutions can be made. The following definition

is relevant to this situation.

Definition 3.2.9. A substitution θ is said to be a solution to the nominal abstraction sD t

just in the case that (sD t)[[θ]] holds.

Solutions to a nominal abstraction can be used to provide rich characterizations of the

structures of terms. For example, consider the nominal abstraction (λx.fresh x T) D S in

which T and S are variables and fresh is a binary predicate symbol. Any solution to this

problem requires that S be substituted for by a term of the form fresh a R where a is a

nominal constant and R is a term in which a does not appear, i.e., a must be “fresh” to R.

An important property of solutions to a nominal abstraction is that these are preserved

under permutations to nominal constants. We establish this fact in the lemma below; this

lemma will be used later in showing the stability of the provability of sequents with respect

to the replacement of formulas by ones they are equivalent to modulo the ≈ relation.

Lemma 3.2.10. Suppose (sD t) ≈ (s′ D t′). Then sD t and s′ D t′ have exactly the same

solutions. In particular, sD t holds if and only if s′ D t′ holds.

3.2. CHARACTERIZING OCCURRENCES OF NOMINAL CONSTANTS 40

{Σθ : Γ[[θ]] −→ C[[θ]] | θ is a solution to (sD t)}θ

Σ : Γ, sD t −→ C
DL

Σ : Γ −→ sD t
DR, sD t holds

Figure 3.2: Nominal abstraction rules

{Σθ : Γ[[θ]] −→ C[[θ]] | θ ∈ CSNAS(Σ, s, t)}θ

Σ : Γ, sD t −→ C
DLCSNAS

Figure 3.3: A variant of DL based on CSNAS

Proof. We prove the particular result first. It suffices to only show it in the forward direction

since ≈ is symmetric. Let π be the permutation such that the expression s′ D t′ λ-converts

to π.(s D t). Now suppose s D t holds since s λ-converts to λ~c.t. Then s′ will λ-convert

to λ(π.~c).t′ where π.~c is the result of applying π to each element in the sequence ~c. Thus

s′ D t′ holds.

For the general result it again suffices to show it in one direction, i.e., that all the

solutions of sD t are solutions to s′ D t′. Let θ be a substitution such that (sD t)[[θ]] holds.

By Lemma 3.2.3, (sD t)[[θ]] ≈ (s′ D t′)[[θ]]. Thus by the particular result from the first half

of this proof, (s′ D t′)[[θ]] holds.

3.2.3 Proof Rules for Nominal Abstraction

We now add the left and right introduction rules for D that are shown in Figure 3.2 to link

its use as a predicate symbol to its mathematical interpretation. The expression Σθ in the

DL rule denotes the application of a substitution θ = {t1/x1, . . . , tn/xn} to the signature

Σ that is defined to be the signature that results from removing from Σ the variables

{x1, . . . , xn} and then adding every variable that is free in any term in {t1, . . . , tn}. Notice

also that in the same inference rule the operator [[θ]] is applied to a multiset of formulas in

the natural way: Γ[[θ]] = {B[[θ]] | B ∈ Γ}. Note that the DL rule has an a priori unspecified

number of premises that depends on the number of substitutions that are solutions to the

3.2. CHARACTERIZING OCCURRENCES OF NOMINAL CONSTANTS 41

relevant nominal abstraction. If s D t expresses an unsatisfiable constraint, meaning that

it has no solutions, then the premise of DL is empty and the rule provides an immediate

proof of its conclusion.

The DL and DR rules capture nicely the intended interpretation of nominal abstraction.

However, there is an obstacle to using the former rule in derivations: this rule has an infinite

number of premises any time the nominal abstraction sDt has a solution. We can overcome

this difficulty by describing a rule that includes only a few of these premises but in such way

that their provability ensures the provability of all the other premises. Since the provability

of Γ −→ C implies the provability of Γ[[θ]] −→ C[[θ]] for any θ (a property established

formally in Chapter4), if the first sequent is a premise of an occurrence of the DL rule,

the second does not need to be used as a premise of that same rule occurrence. Thus, we

can limit the set of premises to be considered if we can identify with any given nominal

abstraction a (possibly finite) set of solutions from which any other solution can be obtained

through composition with a suitable substitution. The following definition formalizes the

idea of such a “covering set.”

Definition 3.2.11. A complete set of nominal abstraction solutions (CSNAS) of s and t

on Σ is a set S of substitutions such that

1. each θ ∈ S is a solution to sD t, and

2. for every solution ρ to sD t, there exists a θ ∈ S such that ρ ≤Σ θ.

We denote any such set by CSNAS(Σ, s, t).

Using this definition we present an alternative version of DL in Figure 3.3. Note that

if we can find a finite complete set of nominal abstraction solutions then the number of

premises to this rule will be finite.

Theorem 3.2.12. The rules DL and DLCSNAS are inter-admissible.

Proof. Suppose we have the following arbitrary instance of DL in a derivation:

{Σθ : Γ[[θ]] −→ C[[θ]] | θ is a solution to (sD t)}θ

Σ : Γ, sD t −→ C
DL

3.2. CHARACTERIZING OCCURRENCES OF NOMINAL CONSTANTS 42

This rule can be replaced with a use of DLCSNAS instead if we could be certain that, for

each ρ ∈ CSNAS(Σ, s, t), it is the case that Σρ : Γ[[ρ]] −→ C[[ρ]] is included in the set of

premises of the shown rule instance. But this must be the case: by the definition of CSNAS,

each such ρ is a solution to sD t.

In the other direction, suppose we have the following arbitrary instance of DLCSNAS.

{Σθ : Γ[[θ]] −→ C[[θ]] | θ ∈ CSNAS(Σ, s, t)}θ

Σ : Γ, sD t −→ C
DLCSNAS

To replace this rule with a use of the DL rule instead, we need to be able to construct a

derivation of Σρ : Γ[[ρ]] −→ C[[ρ]] for each ρ that is a solution to sD t. By the definition of

CSNAS, we know that for any such ρ there exists a θ ∈ CSNAS(Σ, s, t) such that ρ ≤Σ θ,

i.e., such that there exists a σ for which ρ ↑ Σ ≈ (θ ↑ Σ) • σ. Since we are considering

the application of these substitutions to a sequent all of whose eigenvariables are contained

in Σ, we can drop the restriction on the substitutions and suppose that ρ ≈ θ • σ. Now,

we shall show in Chapter 4 that if a sequent has a derivation then the result of applying

a substitution to it in a nominal capture-avoiding way produces a sequent that also has a

derivation. Using this observation, it follows that Σθσ : Γ[[θ]][[σ]] −→ C[[θ]][[σ]] has a proof.

But this sequent is permutation equivalent to Σρ : Γ[[ρ]] −→ C[[ρ]] which must, again by a

result established explicitly in Chapter 4, also have a proof.

Theorem 3.2.12 allows us to choose which of the left rules we wish to consider in any

given context. We shall assume the DL rule in the formal treatment in the rest of this

thesis, leaving the use of the DLCSNAS rule to practical applications of the logic.

3.2.4 Computing Complete Sets of Nominal Abstraction Solutions

For the DLCSNAS rule to be useful, we need an effective way to compute restricted complete

sets of nominal abstraction solutions. We show here that the task of finding such complete

sets of solutions can be reduced to that of finding complete sets of unifiers (CSU) for higher-

order unification problems [Hue75]. In the straightforward approach to finding a solution

3.2. CHARACTERIZING OCCURRENCES OF NOMINAL CONSTANTS 43

to a nominal abstraction sD t, we would first identify a substitution θ that we apply to sD t

to get s′ D t′ and we would subsequently look for nominal constants to abstract from t′ to

get s′. To relate this problem to the usual notion of unification, we would like to invert this

order: in particular, we would like to consider all possible ways of abstracting over nominal

constants first and only later think of applying substitutions to make the terms equal. The

difficulty with this second approach is that we do not know which nominal constants might

appear in t′ until after the substitution is applied. However, there is a way around this

problem. Given the nominal abstraction s D t of degree n, we first consider substitutions

for the variables occurring in it that introduce n new nominal constants in a completely

general way. Then we consider all possible ways of abstracting over the nominal constants

appearing in the altered form of t and, for each of these cases, we look for a complete set

of unifiers.

The idea described above is formalized in the following definition and associated theo-

rem. We use the notation CSU(s, t) in them to denote an arbitrary but fixed selection of a

complete set of unifiers for the terms s and t.

Definition 3.2.13. Let s and t be terms of type τ1 → . . .→ τn → τ and τ , respectively. Let

c1, . . . , cn be n distinct nominal constants disjoint from supp(sD t) such that, for 1 ≤ i ≤ n,

ci has the type τi. Let Σ be a set of variables and for each h ∈ Σ of type τ ′, let h′ be a distinct

variable not in Σ that has type τ1 → . . .→ τn → τ ′. Let σ = {h′ c1 . . . cn/h | h ∈ Σ} and

let s′ = s[σ] and t′ = t[σ]. Let

C =
⋃
~a

CSU(λ~b.s′, λ~b.λ~a.t′)

where ~a = a1, . . . , an ranges over all selections of n distinct nominal constants from supp(t)∪

{~c} such that, for 1 ≤ i ≤ n, ai has type τi and ~b is some corresponding listing of all the

nominal constants in s′ and t′ that are not included in ~a. Then we define

S(Σ, s, t) = {σ • ρ | ρ ∈ C}

The use of the substitution σ above represents another instance of the application of the

general technique of raising that allows certain variables (the h variables in this definition)

3.2. CHARACTERIZING OCCURRENCES OF NOMINAL CONSTANTS 44

whose substitution instances might depend on certain nominal constants (c1, . . . , cn here) to

be replaced by new variables of higher type (the h′ variables) whose substitution instances

are not allowed to depend on those nominal constants. This technique was previously used

in the ∃L and ∀R rules presented in Section 3.1.

Theorem 3.2.14. S(Σ, s, t) is a complete set of nominal abstraction solutions for sD t on

Σ.

Proof. First note that supp(σ)∩supp(sD t) = ∅ and thus (sD t)[[θ]] is equal to (s′D t′). Now

we must show that every element of S(Σ, s, t) is a solution to sD t. Let σ • ρ ∈ S(Σ, s, t) be

an arbitrary element where σ is as in Definition 3.2.13, ρ is from CSU(λ~b.s′, λ~b.λ~a.t′), and

s′ = s[σ] and t′ = t[σ]. By the definition of CSU we know (λ~b.s′ = λ~b.λ~a.t′)[ρ]. This means

(s′ = λ~a.t′)[[ρ]] holds and thus (s′ D t′)[[ρ]] holds. Rewriting s′ and t′ in terms of s and t this

means (sD t)[[σ]][[ρ]]. Thus σ • ρ is a solution to sD t.

In the other direction, we must show that if θ is a solution to s D t then there exists

σ •ρ ∈ S(Σ, s, t) such that θ ≤Σ σ •ρ. Let θ be a solution to sD t. Then we know (sD t)[[θ]]

holds. The substitution θ may introduce some nominal constants which are abstracted out

of the right-hand side when determining equality, so let us call these the important nominal

constants. Let σ = {h′ c1 . . . cn/h | h ∈ Σ} be as in Definition 3.2.13 and let π′ be a

permutation which maps the important nominal constants of θ to nominal constants from

c1, . . . , cn. This is possible since n nominal constants are abstract from the right-hand side

and thus there are at most n important nominal constants. Then let θ′ = π′.θ, so that

(s D t)[[θ′]] holds and it suffices to show that θ′ ≤Σ σ • ρ. Note that all we have done at

this point is to rename the important nominal constants of θ so that they match those

introduced by σ. Now we define ρ′ = {λc1 . . . λcn.r/h′ | r/h ∈ θ′} so that θ′ = σ • ρ′. Thus

(s D t)[[σ]][[ρ′]] holds. By construction, σ shares no nominal constants with s and t, thus

we know (s′ D t′)[[ρ′]] where s′ = s[σ] and t′ = t[σ]. Also by construction, ρ′ contains no

interesting nominal constants and thus (s′ = λ~a.t′)[[ρ]] holds for some nominal constants ~a

taken from supp(t) ∪ {~c}. If we let ~b be a listing of all nominal constants in s′ and t′ but

not in ~a, then (λ~b.s′ = λ~b.λ~a.t′)[[ρ]] holds. At this point the inner equality has no nominal

3.3. DEFINITIONS, INDUCTION, AND CO-INDUCTION 45

Σ : Γ, B p ~t −→ C

Σ : Γ, p ~t −→ C
defL

Σ : Γ −→ B p ~t

Σ : Γ −→ p ~t
defR

Figure 3.4: Introduction rules for atoms whose predicate is defined as ∀~x. p ~x , B p ~x

constants and thus the substitution ρ can be applied without renaming: (λ~b.s′ = λ~b.λ~a.t′)[ρ′]

holds. By the definition of CSU, there must be a ρ ∈ CSU(λ~b.s′, λ~b.λ~a.t′) such that ρ′ ≤ ρ.

Thus σ • ρ′ ≤Σ σ • ρ as desired.

3.3 Definitions, Induction, and Co-induction

The sequent calculus rules presented in Figure 3.1 treat atomic judgments as fixed, unana-

lyzed objects. We now add the capability of defining such judgments by means of formulas,

possibly involving other predicates. In particular, we shall assume that we are given a fixed,

finite set of clauses of the form ∀~x. p ~x , B p ~x where p is a predicate constant that takes

a number of arguments equal to the length of ~x. Such a clause is said to define p and the

entire collection of clauses is called a definition. The expression B, called the body of the

clause, must be a term that does not contain p or any of the variables in ~x and must have

a type such that B p ~x has type o. Definitions are also restricted so that a predicate is

defined by at most one clause. The intended interpretation of a clause ∀~x. p ~x , B p ~x is

that the atomic formula p ~t, where ~t is a list of terms of the same length and type as the

variables in ~x, is true if and only if B p ~t is true. This interpretation is realized by adding

to the calculus the rules defL and defR shown in Figure 3.4 for unfolding predicates on the

left and the right of sequents using their defining clauses.

A definition can have a recursive structure. For example, in the clause ∀~x. p ~x , B p ~x,

the predicate p can appear free in B p ~x. In this setting, the meanings of predicates are

intended to be given by any one of the fixed points that can be associated with the defi-

nition. Such an interpretation may not always be sensible. In particular, without further

restrictions, the resulting proof system may not be consistent. There are two constraints

3.3. DEFINITIONS, INDUCTION, AND CO-INDUCTION 46

that suffice to ensure consistency. First, the body of a clause must not contain any nominal

constants. This restriction can be justified from another perspective as well: as we see in

Chapter 4, it helps in establishing that ≈ is a provability preserving equivalence between

formulas. Second, definitions should be stratified so that clauses, such as a , (a ⊃ ⊥), in

which a predicate has a negative dependency on itself, are forbidden. While such strati-

fication can be enforced in different ways, we use a simple approach to doing this in this

thesis. This approach is based on associating with each predicate p a natural number that

is called its level and that is denoted by lvl(p). This measure is then extended to arbitrary

formulas by the following definition.

Definition 3.3.1. Given an assignment of levels to predicates, the function lvl is extended

to all formulas in λ-normal form as follows:

1. lvl(p t̄) = lvl(p)

2. lvl(⊥) = lvl(>) = lvl(sD t) = 0

3. lvl(B ∧ C) = lvl(B ∨ C) = max(lvl(B), lvl(C))

4. lvl(B ⊃ C) = max(lvl(B) + 1, lvl(C))

5. lvl(∀x.B) = lvl(∇x.B) = lvl(∃x.B) = lvl(B)

In general, the level of a formula B, written as lvl(B), is the level of its λ-normal form.

A definition is stratified if we can assign levels to predicates in such a way that lvl(B p ~x) ≤

lvl(p) for each clause ∀~x. p ~x , B p ~x in that definition.

The defL and defR rules do not discriminate between any of the fixed points of a

definition. We now allow the selection of least and greatest fixed points so as to support

inductive and co-inductive definitions of predicates. Specifically, we denote an inductive

clause by ∀~x. p ~x µ
= B p ~x and a co-inductive one by ∀~x. p ~x ν= B p ~x. As a refinement of

the earlier restriction on definitions, a predicate may have at most one defining clause that

is designated to be inductive, co-inductive or neither. The defL and defR rules may be

3.3. DEFINITIONS, INDUCTION, AND CO-INDUCTION 47

~x : B S ~x −→ S ~x Σ : Γ, S ~t −→ C

Σ : Γ, p ~t −→ C
IL

provided p is defined as ∀~x. p ~x µ
= B p ~x and S is a term that has the same type as p

Σ : Γ −→ S ~t ~x : S ~x −→ B S ~x

Σ : Γ −→ p ~t
CIR

provided p is defined as ∀~x. p ~x ν= B p ~x and S is a term that has the same type as p

Figure 3.5: The induction left and co-induction right rules

used with clauses in any one of these forms. Clauses that are inductive admit additionally

the left rule IL shown in Figure 3.5. This rule is based on the observation that the least

fixed point of a monotone operator is the intersection of all its pre-fixed points; intuitively,

anything that follows from any pre-fixed point should then also follow from the least fixed

point. In a proof search setting, the term corresponding to the schema variable S in this

rule functions like the induction hypothesis and is accordingly called the invariant of the

induction. Clauses that are co-inductive, on the other hand, admit the right rule CIR

also presented in Figure 3.5. This rule reflects the fact that the greatest fixed point of a

monotone operator is the union of all the post-fixed points; any member of such a post-fixed

point must therefore also be a member of the greatest fixed point. The substitution that is

used for S in this rule is called the co-invariant or the simulation of the co-induction. Just

like the restriction on the body of clauses, in both IL and CIR, the (co-)invariant S must

not contain any nominal constants.

As a simple illustration of the use of these rules, consider the clause p
µ
= p. The desired

inductive reading of this clause implies that p must be false. In a proof-theoretic setting,

we would therefore expect that the sequent · : p −→ ⊥ can be proved. This can, in fact, be

done by using IL with the invariant S = ⊥. On the other hand, consider the clause q ν= q.

The co-inductive reading intended here implies that q must be true. The logic G satisfies

this expectation: the sequent · : · −→ q can be proved using CIR with the co-invariant

3.4. A PATTERN-BASED FORM FOR DEFINITIONS 48

S = >.

The addition of inductive and co-inductive forms of clauses and the mixing of these

forms in one setting might be expected to require stronger conditions than those described

earlier in this section to guarantee consistency. One condition, in addition to the absence

of nominal constants in the bodies of clauses and stratification based on levels, that suffices

and that is also practically acceptable is the following that is taken from [TM09]: in a

clause of any of the forms ∀~x. p ~x , B p ~x, ∀~x. p ~x µ
= B p ~x or ∀~x. p ~x ν= B p ~x, it must

be that lvl(B (λ~x.>) ~x) < lvl(p). This disallows any mutual recursion between clauses, a

restriction which can easily be overcome by merging mutually recursive clauses into a single

clause. We henceforth assume that all definitions satisfy all three conditions described for

them in this section. Corollary 4.1.7 in Chapter 4 establishes the consistency of the logic

under these restrictions.

3.4 A Pattern-Based Form for Definitions

When presenting a definition for a predicate, it is often convenient to write this as a col-

lection of clauses whose applicability is also constrained by patterns appearing in the head.

For example, in logics that support equality but not nominal abstraction, list membership

may be defined by the two pattern based clauses shown below.

member X (X :: L) , > member X (Y :: L) , member X L

These logics also include rules for directly treating definitions presented in this way. In

understanding these rules, use may be made of the translation of the extended form of

definitions to a version that does not use patterns in the head and in which there is at most

one clause for each predicate. For example, the definition of the list membership predicate

would be translated to the following form:

member X K , (∃L. K = (X :: L)) ∨ (∃Y ∃L. K = (Y :: L) ∧member X L)

The treatment of patterns and multiple clauses can now be understood in terms of the rules

for definitions using a single clause and the rules for equality, disjunction, and existential

3.4. A PATTERN-BASED FORM FOR DEFINITIONS 49

quantification.

In the logic G, the notion of equality has been generalized to that of nominal abstrac-

tion. This allows us also to expand the pattern-based form of definitions to use nominal

abstraction in determining the selection of clauses. By doing this, we would allow the head

of a clausal definition to describe not only the term structure of the arguments, but also

to place restrictions on the occurrences of nominal constants in these arguments. For ex-

ample, suppose we want to describe the contexts in typing judgments by lists of the form

of c1 T1 :: of c2 T2 :: . . . :: nil with the further proviso that each ci is a distinct nominal con-

stant. We will allow this to be done by using the following pattern-based form of definition

for the predicate ctx :

ctx nil , > (∇x.ctx (of x T :: L)) , ctx L

Intuitively, the ∇ quantifier in the head of the second clause imposes the requirement that,

to match it, the argument of ctx should have the form of x T :: L where x is a nominal

constant that does not occur in either T or L. To understand this interpretation, we could

think of the earlier definition of ctx as corresponding to the following one that does not use

patterns or multiple clauses:

ctx K , (K = nil) ∨ (∃T∃L. (λx.of x T :: L) DK ∧ ctx L)

Our objective in the rest of this section is to develop machinery for allowing the extended

form of definitions to be used directly. We do this by presenting its syntax formally, by

describing rules that allow us to work off of such definitions and, finally, by justifying the

new rules by means of a translation of the kind indicated above.

Definition 3.4.1. A pattern-based definition is a finite collection of clauses of the form

∀~x.(∇~z.p ~t) , B p ~x

where ~t is a sequence of terms that do not have occurrences of nominal constants in them,

p is a constant such that p ~t is of type o and B is a term devoid of occurrences of p, ~x and

3.4. A PATTERN-BASED FORM FOR DEFINITIONS 50

Σ : Γ −→ (B p ~x)[θ]
Σ : Γ −→ p ~s

defRp

for any clause ∀~x.(∇~z.p ~t) , B p ~x in D and any θ such that range(θ) ∩ Σ = ∅ and

(λ~z.p ~t)[θ] D p ~s holds

 Σθ : Γ[[θ]], (B p ~x)[[θ]] −→ C[[θ]] ∀~x.(∇~z.p ~t) , B p ~x ∈ D and

θ is a solution to ((λ~z.p ~t) D p ~s)


Σ : Γ, p ~s −→ C

defLp

Figure 3.6: Introduction rules for a pattern-based definition D

nominal constants and such that B p ~t is of type o. Further, we expect such a collection

of clauses to satisfy a stratification condition: there must exist an assignment of levels

to predicate symbols such that for any clause ∀~x.(∇~z.p ~t) , B p ~x occurring in the set,

assuming p has arity n, it is the case that lvl(B (λ~x.>) ~x) < lvl(p). Notice that we allow

the collection to contain more than one clause for any given predicate symbol.

The logical rules for treating pattern-based definitions are presented in Figure 3.6. These

rules encode the idea of matching an instance of a predicate with the head of a particular

clause and then replacing the predicate with the corresponding clause body. The kind

of matching involved is made precise through the construction of a nominal abstraction

after replacing the ∇ quantifiers in the head of the clause by abstractions. The right rule

embodies the fact that it is enough if an instance of any one clause can be used in this way

to yield a successful proof. In this rule, the substitution θ that results from the matching

must be applied in a nominal capture avoiding way to the body. However, since B does

not contain nominal constants, the ordinary application of the substitution also suffices. To

accord with the treatment in the right rule, the left rule must consider all possible ways in

which an instance of an atomic assumption p ~s can be matched by a clause and must show

that a proof can be constructed in each such case.

3.4. A PATTERN-BASED FORM FOR DEFINITIONS 51

The soundness of these rules is the content of the following theorem whose proof also

makes explicit the intended interpretation of the pattern-based form of definitions.

Theorem 3.4.2. The pattern-based form of definitions and the associated proof rules do

not add any new power to the logic. In particular, the defLp and defRp rules are admissible

under the intended interpretation via translation of the pattern-based form of definitions.

Proof. Let p be a predicate whose clauses in the definition being considered are given by

the following set of clauses.

{∀~xi. (∇~zi.p ~ti) , Bi p ~xi}i∈1..n

Let p′ be a new constant symbol with the same argument types as p. Then the intended

interpretation of the definition of p in a setting that does not allow the use of patterns in

the head and that limits the number of clauses defining a predicate to one is given by the

clause

∀~y.p ~y ,
∨

i∈1..n

∃~xi.((λ~zi.p′ ~ti) D p′ ~y) ∧Bi p ~xi

in which the variables ~y are chosen such that they do not appear in the terms ~ti for 1 ≤ i ≤ n.

Note also that we are using the term constructor p′ here so as to be able to match the entire

head of a clause at once, thus ensuring that the ∇-bound variables in the head are assigned

a consistent value for all arguments of the predicate.

Based on this translation, we can replace an instance of defRp,

Γ −→ (Bi p ~xi)[θ]
Γ −→ p ~s

defRp

with the following sequence of rules, where a double inference line indicates that a rule is

used multiple times.

Γ −→ (λ~zi.p′ ~ti)[θ] D p′ ~s
DR

Γ −→ (Bi p ~xi)[θ]

Γ −→ ((λ~zi.p′ ~ti)[θ] D p′ ~s) ∧ (Bi p ~xi)[θ]
∧R

Γ −→ ∃~xi.((λ~zi.p′ ~ti) D p′ ~s) ∧Bi p ~xi
∃R

Γ −→
∨

i∈1..n ∃~xi.((λ~zi.p′ ~ti) D p′ ~s) ∧Bi p ~xi
∨R

Γ −→ p′ ~t
defR

3.4. A PATTERN-BASED FORM FOR DEFINITIONS 52

Note that we have made use of the fact that θ instantiates only the variables xi and thus

has no effect on ~s. Further, the side condition associated with the defRp rule ensures that

the DR rule that appears as a left leaf in this derivation is well applied.

Similarly, we can replace an instance of defLp,{
Σθ : Γ[[θ]], (Bi p ~xi)[[θ]] −→ C[[θ]] | θ is a solution to ((λ~z.p ~ti) D p ~s)

}
i∈1..n

Σ : Γ, p ~s −→ C
defLp

with the following sequence of rules

{
Γ[[θ]], (Bi p ~xi)[[θ]] −→ C[[θ]] | θ is a solution to ((λ~z.p′ ~ti) D p′ ~s)

}
Γ, (λ~zi.p′ ~ti) D p′ ~s,Bi p ~xi −→ C

DL

Γ, ((λ~zi.p′ ~ti) D p′ ~s) ∧Bi p ~xi −→ C
∧L∗

Γ,∃~xi.((λ~zi.p′ ~ti) D p′ ~s) ∧Bi p ~xi −→ C
∃L


i∈1..n

Γ,
∨

i∈1..n ∃~xi.((λ~zi.p′ ~ti) D p′ ~s) ∧Bi p ~xi −→ C
∨L

Γ, p ~s −→ C
defL

Here ∧L∗ is an application of cL followed by ∧L1 and ∧L2 on the contracted formula. It is

easy to see that the solutions to (λ~z.p ~ti) D p ~s and (λ~z.p′ ~ti) D p′ ~s are identical and hence

the leaf sequents in this partial derivation are exactly the same as the upper sequents of

the instance of the defLp rule being considered.

A weak form of a converse to the above theorem also holds. Suppose that the predicate

p is given by the following clauses

{∀~xi. (∇~zi.p ~ti) , Bi p ~xi}i∈1..n

in a setting that uses pattern-based definitions and that has the defLp and defRp but not

the defL and defR rules. In such a logic, it is easy to see that the following is provable:

∀~y.

[
p ~y ≡

∨
i∈1..n

∃~xi.((λ~zi.p′ ~ti) D p′ ~y) ∧Bi p ~xi

]

Where B ≡ C denotes (B ⊃ C) ∧ (C ⊃ B). Thus, in the presence of cut, the defL

and defR rules can be treated as derived ones relative to the translation interpretation of

pattern-based definitions.

3.4. A PATTERN-BASED FORM FOR DEFINITIONS 53

{
~xi : Bi S ~xi −→ ∇~zi.S ~ti

}
i∈1..n

Σ : Γ, S ~s −→ C

Σ : Γ, p ~s −→ C
ILp

assuming p is defined by the set of clauses {∀~xi.(∇~zi.p ~ti)
µ
= Bi p ~xi}i∈1..n

Figure 3.7: Induction rule for pattern-based definitions

We would like also to allow patterns to be used in the heads of clauses when writing

definitions that are intended to pick out the least and greatest fixed points, respectively.

Towards this end we admit in a definition also clauses of the form ∀~x.(∇~z.p ~t) µ
= B p ~x and

∀~x.(∇~z.p ~t) ν= B p ~x with the earlier provisos on the form of B and ~t and the types of B

and p and with the additional requirement that all the clauses for any given predicate are

un-annotated or annotated uniformly with either µ or ν. Further, a definition must satisfy

stratification conditions as before. In reasoning about the least or greatest fixed point forms

of definitions, we may use the translation into the earlier, non-pattern form together with

the rules IL and CIR. It is possible to formulate an induction rule that works directly from

pattern-based definitions using the idea that to show S to be an induction invariant for the

predicate p, one must show that every clause of p preserves S. A rule that is based on this

intuition is presented in Figure 3.7. The soundness of this rule is shown in the following

theorem.

Theorem 3.4.3. The ILp rule is admissible under the intended translation of pattern-based

definitions.

Proof. Let the clauses for p in the pattern-based definition be given by the set

{∀~xi.(∇~zi.p ~ti)
µ
= Bi p ~xi}i∈1..n

in which case the translated form of the definition for p would be

∀~y.p ~y µ
=
∨

i∈1..n

∃~xi.((λ~zi.p′ ~ti) D p′ ~y) ∧Bi p ~xi.

3.5. EXAMPLES 54

In this context, the rightmost upper sequents of the ILp and the IL rules that are needed

to derive a sequent of the form Σ : Γ, p ~s −→ C are identical. Thus, to show that ILp rule

is admissible, it suffices to show that the left upper sequent in the IL rule can be derived

in the original calculus from all but the rightmost upper sequent in an ILp rule. Towards

this end, we observe that we can construct the following derivation:

{
(~y, ~xi)θ : (Bi p ~xi)[[θ]] −→ (S ~y)[[θ]] | θ is a solution to ((λ~z.p′ ~ti) D p′ ~y)

}
~y, ~xi : (λ~zi.p

′ ~ti) D p′ ~y,Bi S ~xi −→ S ~y
DL

~y, ~xi : ((λ~zi.p
′ ~ti) D p′ ~y) ∧Bi p ~xi −→ S ~y

∧L∗

~y : ∃~xi.((λ~zi.p
′ ~ti) D p′ ~y) ∧Bi S ~xi −→ S ~y

∃L


i∈1..n

~y :
∨

i∈1..n ∃~xi.((λ~zi.p
′ ~ti) D p′ ~y) ∧Bi S ~xi −→ S ~y

∨L

Since the variables ~y are distinct and do not occur in ~ti, the solutions to (λ~z.p′ ~ti) D p′ ~y

have a simple form. In particular, let ~t′i be the result of replacing in ~ti the variables ~z with

distinct nominal constants. Then ~y = ~t′i will be a most general solution to the nominal

abstraction. Thus the upper sequents of the invariant derivation above will be

~xi : Bi p ~xi −→ S ~t′i

which are derivable if and only if the sequents

~xi : Bi p ~xi −→ ∇~zi.S ~ti

are derivable.

We do not introduce a co-induction rule for pattern-based definitions largely because

it seems that there are few interesting co-inductive definitions that require patterns and

multiple clauses.

3.5 Examples

We now provide some examples to illuminate the properties of nominal abstraction and its

usefulness in both specification and reasoning tasks; while G has many more features, their

characteristics and applications have been exposed in other work (e.g., see [MM02, MT03b,

3.5. EXAMPLES 55

Tiu04, TM08]). In the examples that are shown, use will be made of the pattern-based

form of definitions described in Section 3.4. We will also use the convention that tokens

given by capital letters denote variables that are implicitly universally quantified over the

entire clause.

3.5.1 Properties of ∇ and Freshness

We can use nominal abstraction to gain a better insight into the behavior of the∇ quantifier.

Towards this end, let the fresh predicate be defined by the following clause.

(∇x.fresh x E) , >

We have elided the type of fresh here; it will have to be defined at each type that it is

needed in the examples we consider below. Alternatively, we can “inline” the definition

by using nominal abstraction directly, i.e., by replacing occurrences of of fresh t1 t2 with

∃E.(λx.〈x,E〉D 〈t1, t2〉) for a suitably typed pairing construct 〈·, ·〉.

Now let B be a formula whose free variables are among z, x1, . . . , xn, and let ~x = x1 ::

. . . :: xn :: nil where :: and nil are constructors in the logic.2 Then the following formulas

logically imply one another in G.

∇z.B ∃z.(fresh z ~x ∧B) ∀z.(fresh z ~x ⊃ B)

Note that the type of z allows it to be an arbitrary term in the last two formulas, but its

occurrence as the first argument of fresh will restrict it to being a nominal constant (even

when ~x = nil).

In the original presentation of the ∇ quantifier [MT03a], it was shown that one can

move a ∇ quantifier inwards over universal and existential quantifiers by using raising to

encode an explicit dependency. To illustrate this, let B be a formula with two variables

2 We are, once again, finessing typing issues here in that the xi variables may not all be of the same type.
However, this problem can be solved by surrounding each of them with a constructor that yields a term
with a uniform type.

3.5. EXAMPLES 56

abstracted out, and let C ≡ D be shorthand for (C ⊃ D) ∧ (D ⊃ C). The the following

formulas are provable in the logic.

∇z.∀x.(B z x) ≡ ∀h.∇z.(B z (h z)) ∇z.∃x.(B z x) ≡ ∃h.∇z.(B z (h z))

In order to move a ∇ quantifier outwards over universal and existential quantifiers, one

would need a way to make non-dependency (i.e., freshness) explicit. This is now possible

using nominal abstraction as shown by the following equivalences.

∀x.∇z.(B z x) ≡ ∇z.∀x.(fresh z x ⊃ B z x) ∃x.∇z.(B z x) ≡ ∇z.∃x.(fresh z x ∧B z x)

Finally, we note that the two sets of equivalences for moving the ∇ quantifier interact nicely.

Specifically, starting with a formula like∇z.∀x.(B z x) we can push the∇ quantifier inwards

and then outwards to obtain ∇z.∀h.(fresh z (h z) ⊃ B z (h z)). Here fresh z (h z) will only

be satisfied if h projects away its first argument, as expected.

3.5.2 Polymorphic Type Generalization

In addition to reasoning, nominal abstraction can also be useful in providing declarative

specifications of computations. We consider the context of a type inference algorithm that

is also discussed in [CU08] to illustrate such an application. In this setting, we might need

a predicate spec that relates a polymorphic type σ, a list of distinct variables list of distinct

variables ~α (represented by nominal constants) and a monomorphic type τ just in the case

that σ = ∀~α.τ . Using nominal abstraction, we can define this predicate as follows.

spec (monoTy T) nil T
µ
= >

(∇x.spec (polyTy P) (x :: L) (T x))
µ
= ∇x.spec (P x) L (T x).

Note that we use ∇ in the head of the second clause to associate the variable x at the head

of the list L with its occurrences in the type (T x). We then use ∇ in the body of this

clause to allow for the recursive use of spec.

3.5. EXAMPLES 57

3.5.3 Arbitrarily Cascading Substitutions

Many reducibility arguments, such as Tait’s proof of normalization for the simply typed

λ-calculus [Tai67], are based on judgments over closed terms. During reasoning, however,

one has often to work with open terms. To accommodate this requirement, the closed

term judgment is extended to open terms by considering all possible closed instantiations

of the open terms. When reasoning with G, open terms are denoted by terms with nominal

constants representing free variables. The general form of an open term is thus M c1 · · · cn,

and we want to consider all possible instantiations M V1 · · · Vn where the Vi are closed

terms. This type of arbitrary cascading substitutions is difficult to realize in reasoning

systems where variables are given a simple type since M would have an arbitrary number

of abstractions but the type of M would a priori fix that number of abstractions.

We can define arbitrary cascading substitutions in G using nominal abstraction. In

particular, we can define a predicate which holds on a list of pairs 〈ci, Vi〉, a term with the

form M c1 · · · cn and a term of the form M V1 · · · Vn. The idea is to iterate over the list

of pairs and for each pair 〈c, V 〉 use nominal abstraction to abstract c out of the first term

and then substitute V before continuing. The following definition of the predicate subst is

based on this idea.

subst nil T T
µ
= >

(∇x.subst (〈x, V 〉 :: L) (T x) S)
µ
= subst L (T V) S

Given the definition of subst one may then show that arbitrary cascading substitutions

have many of the same properties as normal higher-order substitutions. For instance, in

the domain of the untyped λ-calculus, we can show that subst acts compositionally via the

following lemmas.

∀`, t, r, s. subst ` (app t r) s ⊃ ∃u, v.(s = app u v ∧ subst ` t u ∧ subst ` r v)

∀`, t, r. subst ` (abs t) r ⊃ ∃s.(r = abs s ∧∇z.subst ` (t z) (s z))

Both of these lemmas have straightforward proofs by induction on subst.

3.5. EXAMPLES 58

We use this technique for describing arbitrary cascading substitutions again in Sec-

tion 7.5 to formalize Girard’s strong normalization argument for the simply-typed λ-calculus.

Chapter 4

Some Properties of the Meta-logic

In this chapter we study some of the meta-theory of G. There are two parts to our discussion.

In the first part of the chapter, we prove various properties of the logic which show that

the logic is well-designed and which are also useful when working within the logic. Most

significantly, we prove the cut-elimination property for G and then use this to establish the

consistency of the logic. In the second part of the chapter we look at the question of how

we can formally relate an object system to a potential encoding of it in G. The naturalness

of such a relationship is a strong recommendation for the meta-logic: it is ultimately this

correspondence that allows us to use G in establishing properties of an object system.

Showing this type of relationship depends crucially on the earlier cut-elimination result

which further justifies the emphasis we place on it.

4.1 Consistency of the Meta-logic

The logic G, whose proof rules consist of the ones Figures 3.1, 3.2, 3.4, and 3.5, combines

and extends the features in several logics such as FOλ∆IN [MM00], FOλ∆∇ [MT05], LGω

[Tiu08] and Linc− [TM09]. The relationship to Linc− is of special interest to us below:

G is a conservative extension to this logic that is obtained by adding a treatment of the

∇ quantifier and the associated nominal constants and by generalizing the proof rules

pertaining to equality to ones dealing with nominal abstraction. This correspondence will

allow the proof of the critical meta-theoretic property of cut-elimination for Linc− to be

lifted to G.

We shall actually establish three main properties of G in this section. First, we shall

show that the provability of a sequent is unaffected by the application of permutations of

59

4.1. CONSISTENCY OF THE META-LOGIC 60

nominal constants to formulas in the sequent. This property consolidates our understanding

that nominal constants are quantified implicitly at the formula level; such quantification

also renders irrelevant the particular names chosen for such constants. Second, we show

that the application of substitution in a nominal capture-avoiding way preserves provability;

by contrast, ordinary application of substitution does not have this property. Finally, we

show that the cut rule can be dispensed with from the logic without changing the set of

provable sequents. This implies that the left and right rules of the logic are balanced and

moreover, that the logic is consistent. This is the main result of this section and its proof

uses the earlier two results together with the argument for cut-elimination for Linc−.

Several of our arguments will be based on induction on the heights of proofs. This

measure is defined formally below. Notice that the height of a proof can be an infinite

ordinal because the DL rule can have an infinite number of premises. Thus, we will be

using a transfinite form of induction.

Definition 4.1.1. The height of a derivation Π, denoted by ht(Π), is 1 if Π has no premise

derivations and is the least upper bound of {ht(Πi)+1}i∈I if Π has the premise derivations

{Πi}i∈I where I is some index set.

Many proof systems, such as Linc−, include a weakening rule that allows formulas to

be dropped (reading proofs bottom-up) from the left-hand sides of sequents. While G does

not include such a rule directly, its effect is captured in a strong sense as we show in the

lemma below. Two proofs are to be understood here and elsewhere as having the same

structure if they are isomorphic as trees, if the same rules appear at corresponding places

within them and if these rules pertain to formulas that can be obtained one from the other

via a renaming of eigenvariables and nominal constants.

Lemma 4.1.2. Let Π be a proof of Σ : Γ −→ B and let ∆ be a multiset of formulas whose

eigenvariables are contained in Σ. Then there exists a proof of Σ : ∆,Γ −→ B which has

the same structure as Π. In particular ht(Π) = ht(Π′) and Π and Π′ end with the same

rule application.

4.1. CONSISTENCY OF THE META-LOGIC 61

Proof. The lemma can be proved by an easy induction on ht(Π). We omit the details.

The following lemma shows a strong form of the preservation of provability under per-

mutations of nominal constants appearing in formulas, the first of our mentioned results.

Lemma 4.1.3. Let Π be a proof of Σ : B1, . . . , Bn −→ B0 and let Bi ≈ B′
i for i ∈

{0, 1, . . . , n}. Then there exists a proof Π′ of Σ : B′
1, . . . , B

′
n −→ B′

0 which has the same

structure as Π. In particular ht(Π) = ht(Π′) and Π and Π′ end with the same rule applica-

tion.

Proof. The proof is by induction on ht(Π) and proceeds specifically by considering the last

rule used in Π. When this is a left rule, we shall assume without loss of generality that it

operates on Bn.

The argument is easy to provide when the last rule in Π is one of ⊥L or >R. If this

rule is an id, i.e., if Π is of the form

Bj ≈ B0

Σ : B1, . . . , Bn −→ B0
id

then, since ≈ is an equivalence relation, it must be the case that B′
j ≈ B′

0. Thus, we can

let Π′ be the derivation
B′

j ≈ B′
0

Σ : B′
1, . . . , B

′
n −→ B′

0
id

If the last rule is a DL applied to a nominal abstraction sD t that has no solutions, then,

by Lemma 3.2.10, the sequent Σ : B′
1, . . . B

′
n −→ B′

0 also has a nominal abstraction with

no solutions. Thus, Π′ can be a derivation consisting of the single rule DL. Lemma 3.2.10

similarly provides the key observation when the last rule in Π is an DR.

All the remaining cases correspond to derivations of height greater than 1. We shall

show that the last rule in Π in all these cases could also have Σ : B′
1, . . . , B

′
n −→ B′

0 as a

conclusion with the premises in this application of the rule being related via permutations

in the way required by the lemma to the premises of the rule application in Π. The lemma

then follows from the induction hypothesis.

4.1. CONSISTENCY OF THE META-LOGIC 62

In the case when the last rule in Π pertains to a binary connective—i.e., when the rule

is one of ∨L, ∨R, ∧L, ∧R, ⊃L or ⊃R—the desired conclusion follows naturally from the

observation that permutations distribute over the connective. The proof can be similarly

completed when a ∃L, ∃R, ∀L or ∀R rule ends the derivation, once we have noted that

the application of permutations can be moved under the ∃ and ∀ quantifiers. For the cut

and cL rules, we have to show that permutations can be extended to include the newly

introduced formula in the upper sequent(s). This is easy: for the cut rule we use the

identity permutation and for cL we replicate the permutation used to obtain B′
n from Bn.

The two remaining rules from the core logic are ∇L and ∇R. The argument in these

cases are similar and we consider only the later in detail. In this case, the last rule in Π is

of the form
Σ : B1, . . . , Bn −→ C[a/x]
Σ : B1, . . . , Bn −→ ∇x.C ∇R

where a /∈ supp(C). Obviously, B′
0 = ∇x.C ′ for some C ′ such that C ≈ C ′. Let d be a

nominal constant such that d /∈ supp(C) and d /∈ supp(C ′). Such a constant must exist

since both sets are finite. Then C[a/x] ≈ C[d/x] ≈ C ′[d/x]. Thus the following

Σ : B′
1, . . . , B

′
n −→ C ′[d/x]

Σ : B′
1, . . . , B

′
n −→ ∇x.C ′ ∇R

is also an instance of the ∇R rule and its upper sequent has the form desired.

The only case that remains to be treated when the last rule applies to a nominal ab-

straction is that of DL that has at least one upper sequent. In this case the rule has the

structure

{Σθ : B1[[θ]], . . . , Bn−1[[θ]] −→ B0[[θ]] | θ is a solution to sD t}
Σ : B1, . . . , sD t −→ B0

DL

Here we know that B′
n is a nominal abstraction s′D t′ that, by Lemma 3.2.10, has the same

solutions as sD t. Further, by Lemma 3.2.3, Bi[[θ]] ≈ B′
i[[θ]] for any substitution θ. Thus{

Σθ : B′
1[[θ]], . . . , B

′
n−1[[θ]] −→ B′

0[[θ]] | θ is a solution to s′ D t′
}

Σ : B′
1, . . . , s

′ D t′ −→ B′
0

DL

4.1. CONSISTENCY OF THE META-LOGIC 63

is also an instance of the DL rule and its upper sequents have the required property.

The arguments for the rules defL and defR are similar and we therefore only consider

the case for the former rule in detail. Here, Bn must be of the form p ~t where p is a predicate

symbol and the upper sequent must be identical to the lower one except for the fact that

Bn is replaced by a formula of the form B p ~t where B contains no nominal constants.

Further, B′
n is of the form p ~s where p ~t ≈ p ~s. From this it follows that B p ~t ≈ B p ~s and

hence that Σ : B′
1, . . . , B

′
n −→ B′

0 can be the lower sequent of a rule whose upper sequent

is related in the desired way via permutations to the upper sequent of the last rule in Π.

The only remaining rules to consider are IL and CIR. Once again, the arguments in

these cases are similar and we therefore consider only the case for IL in detail. Here, Π

ends with a rule of the form

~x : B S ~x −→ S ~x Σ : B1, . . . , S ~t −→ B0

Σ : B1, . . . , p ~t −→ B0
IL

where p is a predicate symbol defined by a clause of the form ∀~x. p ~x µ
= B p ~x and S

contains no nominal constants. Now, B′
n must be of the form p ~r where p ~t ≈ p ~r. Noting

the proviso on S, it follows that S ~t ≈ S ~r. But then the following

~x : B S ~x −→ S ~x Σ : B′
1, . . . , S ~r −→ B′

0

Σ : B′
1, . . . , p ~r −→ B′

0
IL

is also an instance of the IL rule and its upper sequents are related in the manner needed

to those of the IL rule used in Π.

Several rules in G require the selection of new eigenvariables and nominal constants.

Lemma 4.1.3 shows that we obtain what is essentially the same proof regardless of how

we choose nominal constants in such rules so long as the local non-occurrence conditions

are satisfied. A similar observation with regard to the choice of eigenvariables is also

easily verified. We shall therefore identify below proofs that differ only in the choices of

eigenvariables and nominal constants.

We now turn to the second of our desired results, the preservation of provability under

substitutions.

4.1. CONSISTENCY OF THE META-LOGIC 64

Lemma 4.1.4. Let Π be a proof of Σ : Γ −→ C and let θ be a substitution. Then there is

a proof Π′ of Σθ : Γ[[θ]] −→ C[[θ]] such that ht(Π′) ≤ ht(Π).

Proof. We show how to transform the proof Π into a proof Π′ for the modified sequent.

The transformation is by recursion on ht(Π), the critical part of it being a consideration

of the last rule in Π. The transformation is, in fact, straightforward in all cases other that

when this rule is DL, ∀R, ∃L, ∃R, ∀L, IL and CIR. In these cases, we simply apply

the substitution in a nominal capture avoiding way to the lower and any possible upper

sequents of the rule. It is easy to see that the resulting structure is still an instance of

the same rule and its upper sequents are guaranteed to have proofs (of suitable heights) by

induction.

Suppose that the last rule in Π is an DL, i.e., it is of the form

{Σρ : Γ[[ρ]] −→ C[[ρ]] | ρ is a solution to sD t}
Σ : Γ, sD t −→ C

DL

Then the following

{Σ(θ • ρ′) : Γ[[θ • ρ′]] −→ C[[θ • ρ′]] | ρ′ is a solution to (sD t)[[θ]]}
Σθ : Γ[[θ]], (sD t)[[θ]] −→ C[[θ]]

DL

is also an DL rule. Noting that if ρ′ is a solution to (s D t)[[θ]], then θ • ρ′ is a solution to

sD t, we see that the upper sequents of this rule are contained in the upper sequents of the

rule in Π. It follows that we can construct a proof of the lower sequent whose height is less

than or equal to that of Π.

The argument is similar in the cases when the last rule in Π is a ∀R or a ∃L so we

consider only the former in detail. In this case the rule has the form

Σ, h : Γ −→ B[h ~c/x]
Σ : Γ −→ ∀x.B ∀R

where {~c} = supp(∀x.B). Let {~a} = supp((∀x.B)[[θ]]). Further, let h′ be a new variable

name. We assume without loss of generality that neither h nor h′ appear in the domain or

range of θ. Letting ρ = θ ∪ {λ~c.h′ ~a/h}, consider the structure

(Σ, h)ρ : Γ[[ρ]] −→ B[h ~c/x][[ρ]]
Σθ : Γ[[θ]] −→ (∀x.B)[[θ]]

4.1. CONSISTENCY OF THE META-LOGIC 65

The upper sequent here is equivalent under λ-conversion to Σθ, h′ : Γ[[θ]] −→ (B[[θ]])[h′ ~a/x]

so this structure is, in fact, also an instance of the ∀R rule. Moreover, its upper sequent is

obtained via substitution from the upper sequent of the rule in Π. The lemma then follows

by induction.

The arguments for the cases when the last rule is an ∃R or an ∀L are similar and so we

provide it explicitly only for the former. In this case, we have the rule

Σ,K, C ` t : τ Σ : Γ −→ B[t/x]
Σ : Γ −→ ∃τx.B

∃R

ending Π. Assuming that the substitution (∃τx.B)[[θ]] uses the permutation π to avoid the

capture of nominal constants, consider the structure

Σ,K, C ` π.t : τ Σθ : Γ[[θ]] −→ B[[θ]][π.t/x]
Σθ : Γ[[θ]] −→ (∃τx.B)[[θ]]

This is also obviously an instance of the ∃R rule and its right upper sequent is related

via substitution to that of the rule in Π. The lemma follows from these observations by

induction.

The only remaining cases for the last rule are IL and CIR. The arguments in these

cases are, yet again, similar and it suffices to make only the former explicit. In this case,

the end of Π has the form

~x : B S ~x −→ S ~x Σ : Γ, S ~t −→ C

Σ : Γ, p ~t −→ C
IL

But then the following

~x : B S ~x −→ S ~x Σθ : Γ[[θ]], (S ~t)[[θ]] −→ C[[θ]]

Σθ : Γ[[θ]], (p ~t)[[θ]] −→ C[[θ]]

is also an instance of the IL rule. Moreover, the same proof as in Π can be used for the left

upper sequent and the right upper sequent has the requisite form for using the induction

hypothesis.

4.1. CONSISTENCY OF THE META-LOGIC 66

The proof of Lemma 4.1.4 effectively defines a transformation of a derivation Π based

on a substitution θ. We shall use the notation Π[[θ]] to denote the transformed derivation.

Note that ht(Π[[θ]]) can be less than ht(Π). This may happen because the transformed

version of a DL rule can have fewer upper sequents.

Corollary 4.1.5. The following rules are admissible.

Σ, h : Γ −→ B[h ~a/x]
Σ : Γ −→ ∀x.B ∀R∗ Σ, h : Γ, B[h ~a/x] −→ C

Σ : Γ,∃x.B −→ C
∃L∗

where h /∈ Σ and ~a is any listing of distinct nominal constants which contains supp(B).

Proof. Let Π be a derivation for Γ −→ B[h ~a/x], let h′ be a variable that does not appear

in Π, and let {~c} = supp(B). By Lemma 4.1.4, Π[[λ~a.h′ ~c/h]] is a valid derivation. Since ~a

contains ~c, no nominal constants appear in the substitution {λ~a.h′ ~c/h}. It can now be seen

that the last sequent in Π[[λ~a.h′ ~c/h]] has the form Σ, h′ : Γ′ −→ B′ where B′ ≈ B[h′ ~c/h]

and Γ′ results from replacing some of the formulas in Γ by ones that they are equivalent to

under ≈. But then, by Lemma 4.1.3, there must be a derivation for Σ, h′ : Γ −→ B[h′ ~c/h].

Using a ∀R rule below this we get a derivation for Σ : Γ −→ ∀x.B, verifying the admissibility

of ∀R∗. The argument for ∃L∗ is analogous.

We now turn to the main result of this section, the redundancy from a provability

perspective of the cut rule in G. The usual approach to proving such a property is to define

a set of transformations called cut reductions on derivations that leave the end sequent

unchanged but that have the effect of pushing occurrences of cut up the proof tree to the

leaves where they can be immediately eliminated. The difficult part of such a proof is

showing that these cut reductions always terminate. In simpler sequent calculi such as the

one for first-order logic, this argument can be based on an uncomplicated measure such as

the size of the cut formula. However, the presence of definitions in a logic like G renders this

measure inadequate. For example, the following is a natural way to define a cut reduction

4.1. CONSISTENCY OF THE META-LOGIC 67

between a defL and a defR rule that work on the cut formula:

Π′

Σ : Γ −→ B p ~t

Σ : Γ −→ p ~t
defR

Π′′

Σ : B p ~t,∆ −→ C

Σ : p ~t,∆ −→ C
defL

Σ : Γ,∆ −→ C
cut

⇓

Π′

Σ : Γ −→ B p ~t
Π′′

Σ : B p ~t,∆ −→ C

Σ : Γ,∆ −→ C
cut

Notice that B p ~t, the cut formula in the new cut introduced by this transformation, could be

more complex than p ~t, the old cut formula. To overcome this difficulty, a more complicated

argument based on the idea of reducibility in the style of Tait [Tai67] is often used. Tiu and

Momigliano [TM09] in fact formulate a notion of parametric reducibility for derivations

that is based on the Girard’s proof of strong normalizability for System F [GTL89] and

that works in the presence of the induction and co-induction rules for definitions. Our

proof makes extensive use of this notion and the associated argument structure.

Theorem 4.1.6. The cut rule can be eliminated from G without affecting the provability

relation.

Proof. The relationship between G and the logic Linc− treated by Tiu and Momigliano

can be understood as follows: Linc− does not treat the ∇ quantifier and therefore has no

rules for it. Consequently, it does not have nominal constants, it does not use raising over

nominal constants in the rules ∀R and ∃L, it has no need to consider permutations in the

id (or initial) rule and has equality rules in place of nominal abstraction rules. The rules in

G other than the ones for ∇, including the ones for definitions, induction, and co-induction,

are essentially identical to the ones in Linc− except for the additional attention to nominal

constants.

Tiu and Momigliano’s proof can be extended to G in a fairly direct way since the addition

of nominal constants and their treatment in the rules is quite modular and does not create

any new complexities for the reduction rules. The main issues in realizing this extension

4.1. CONSISTENCY OF THE META-LOGIC 68

is building in the idea of identity under permutations of nominal constants and lifting the

Linc− notion of substitution on terms, sequents, and derivations to a form that avoids

capture of nominal constants. The machinery for doing this has already been developed in

Lemmas 4.1.3 and 4.1.4. In the rest of this proof we assume a familiarity with the argument

for cut-elimination for Linc− and discuss only the changes to the cut reductions of Linc−

to accommodate the differences.

The id rule in G identifies formulas which are equivalent under ≈ which is more per-

missive than equality under λ-convertibility that is used in the Linc− initial rule. Corre-

spondingly, we have to be a bit more careful about the cut reductions associated with the

id (initial) rule. For example, consider the following reduction:

B ≈ B′

Σ : Γ, B −→ B′ id
Π′

Σ : B′,∆ −→ C

B,Γ,∆ −→ C
cut =⇒ Π′

Σ : B′,∆ −→ C

This reduction has not preserved the end sequent. However, we know B ≈ B′ and so we

can now use Lemma 4.1.3 to replace Π′ with a derivation of Σ : B,∆ −→ C. Then we can

use Lemma 4.1.2 to produce a derivation of Σ : B,Γ,∆ −→ C as desired. The changes to

the cut reduction when id applies to the right upper sequent of the cut rule are similar.

The ∀R and ∃L rules of G extend the corresponding rules of Linc− by raising over

nominal constants in the support of the quantified formula. The ∀L and ∃R rules of

G also extend the corresponding rules in Linc− by allowing instantiations which contain

nominal constants. Despite these changes, the cut reductions involving these quantifier

rules remain unchanged for G except for the treatment of essential cuts that involve an

interaction between ∀R and ∀L and, similarly, between ∃R and ∃L. The first of these is

4.1. CONSISTENCY OF THE META-LOGIC 69

treated as follows:

Π′

Σ, h : Γ −→ B[h ~c/x]
Σ : Γ −→ ∀x.B ∀R

Π′′

Σ : ∆, B[t/x] −→ C

Σ : ∆,∀x.B −→ C
∀L

Σ : Γ,∆ −→ C
cut

⇓

Π′[[λ~c.t/h]]
Σ : Γ −→ B[t/x]

Π′′

Σ : ∆, B[t/x] −→ C

Σ : Γ,∆ −→ C
cut

The existence of the derivation Π′[[λ~c.t/h]] (with height at most that of Π′) is guaranteed

by Lemma 4.1.4. The end sequent of this derivation is Σ : Γ[[λ~c.t/h]] −→ B[h ~c/x][[λ~c.t/h]].

However, Γ[[λ~c.t/h]] ≈ Γ because h is new to Γ and B[h ~c/x][[λ~c.t/h]] ≈ B[t/x] because

{~c} = supp(B) and so λ~c.t has no nominal constants in common with supp(B). Thus, by

Lemma 4.1.3 and by an abuse of notation, we may consider Π′[[λ~c./h]] to also be a derivation

of Σ : Γ −→ B[t/x]. The reduction for a cut involving an interaction between an ∃R and

an ∃L rule is analogous.

The logic G extends the equality rules in Linc− to treat the more general case of nominal

abstraction. Our notion of nominal capture-avoiding substitution correspondingly general-

izes the Linc− notion of substitution, and we have shown in Lemma 4.1.4 that this preserves

provability. Thus the reductions for nominal abstraction are the same as for equality, except

that we use nominal capture-avoiding substitution in place of regular substitution. For ex-

ample, the essential cut involving an interaction between an DR and an DL rule is treated

as follows:

Σ : Γ −→ sD t
DR

{
Πθ

Σθ : ∆[[θ]] −→ C[[θ]]

}
Σ : ∆, sD t −→ C

DL

Σ : Γ,∆ −→ C
cut =⇒ Πε

Σ : ∆ −→ C

Here we know s D t holds and thus ε, the identity substitution, is a solution to this nom-

inal abstraction. Therefore we have the derivation Πε as needed. We can then apply

Lemma 4.1.2 to weaken this derivation to one for Σ : Γ,∆ −→ C. For the other cuts

4.1. CONSISTENCY OF THE META-LOGIC 70

involving nominal abstraction, we make use of the fact proved in Lemma 4.1.4 that nomi-

nal capturing avoiding substitution preserves provability. This allows us to commute other

rules with DL. For example, consider the following reduction of a cut where the upper right

derivation uses an DL on a formula different from the cut formula:

Π′
Σ : Γ −→ B

{
Πθ

Σθ : B[[θ]],∆[[θ]] −→ C[[θ]]

}
Σ : B,∆, sD t −→ C

DL

Σ : Γ,∆, sD t −→ C
cut

⇓
Π′[[θ]]

Σθ : Γ[[θ]] −→ B[[θ]]
Πθ

Σθ : B[[θ]],∆[[θ]] −→ C[[θ]]
Σθ : Γ[[θ]],∆[[θ]] −→ C[[θ]]

cut


Σ : Γ,∆, sD t −→ C

DL

Finally, G has new rules for treating the ∇-quantifier. The only reduction rule which

deals specifically with either the ∇L or ∇R rule is the essential cut between both rules

which is treated as follows:

Π′

Σ : Γ −→ B[a/x]
Σ : Γ −→ ∇x.B ∇R

Π′′

Σ : B[a/x],∆ −→ C

Σ : ∇x.B,∆ −→ C
∇L

Σ : Γ,∆ −→ C
cut

⇓

Π′

Σ : Γ −→ B[a/x]
Π′′

Σ : B[a/x],∆ −→ C

Σ : Γ,∆ −→ C
cut

.

With these changes, the cut-elimination argument for Linc− extends to G, i.e., G admits

cut-elimination.

The consistency of G is an easy consequence of Theorem 4.1.6.

Corollary 4.1.7. The logic G is consistent, i.e., not all sequents are provable in it.

Proof. The sequent −→ ⊥ has no cut-free proof and, hence, no proof in G.

4.2. ADEQUACY OF ENCODINGS AND THEOREMS IN THE META-LOGIC 71

4.2 Adequacy of Encodings and Theorems in the Meta-logic

The logic G provides various features such as λ-terms, definitions, and ∇-quantification

which form a convenient vehicle for encoding computational systems. With all these fea-

tures, one might rightfully ask if our encodings in G are faithful representations of the

computational systems they describe. This kind of property for encodings, which is for-

mally known as adequacy, is similar to the one that we have already encountered with

respect to the specification logic. A proof of adequacy establishes a relationship between

terms and judgments in an object system and their encoding in G in such a way that we

can relate reasoning results proven about the encoding to results about the original system.

In this section we discuss adequacy in more detail, we describe the general approach to

proving adequacy, and we present an example which illustrates some of the nuances which

may arise for particular encodings.

At a philosophical level, adequacy is the method by which we assign meaning to our logic.

Without adequacy, the logic has only behavior. Thus, one may naively ask a question such

as, “what does the ∇-quantifier mean?” To which a valid answer is that the ∇-quantifier

has no meaning in itself. It has the behavior of introducing a fresh nominal constant into

a formula, but it is only through adequacy that we can interpret this behavior and provide

it with some meaning. For instance, we might establish a correspondence between nominal

constants in a G formula and free variables in a typing judgment for an object system. In

this setting, the meaning of ∇-quantification can be interpreted as quantifying over fresh

free variables.

A proof of adequacy for an encoding of an object system in G consists of two parts:

1. the description of a bijection between the terms of the object system and their encod-

ing in G, and

2. a proof, based on this bijection, that a judgment in the object system holds if and

only if its encoding in G is provable.

For the second point, the cut-elimination result from Section 4.1 is of critical importance

4.2. ADEQUACY OF ENCODINGS AND THEOREMS IN THE META-LOGIC 72

since it allows us to restrict the sort of proofs we must consider. Without an indepen-

dent proof of the cut-elimination property, proving adequacy would require establishing

something like a cut-elimination theorem relative to each encoding that we wish to prove

adequate.

Our ultimate objective is, of course, to prove theorems about the original system. How-

ever, this follows naturally from the proof of a relevant theorem in G and the adequacy of

encodings in the following way: 1) using adequacy, object level judgments are translated

into G formulas, 2) the relevant theorem proven in G is used as a lemma on these formulas,

and 3) using adequacy, the result of that lemma application is then translated back into an

object level judgment. The end result is that the theorem is proven for the object system

while most of the reasoning takes place within G. The cut rule plays an essential role here

as it allows us to use theorems proven in G as lemmas which is very useful in reasoning

and absolutely vital in the adequacy argument outlined above. It is for this reason that we

cannot simply exclude the cut rule from our logic and hope to avoid the work involved in

showing cut-elimination.

It is important to remember that adequacy is only an interface issue, i.e., it is only a

question about the “inputs” and “outputs” of G. We show that an encoding of an object

system (the “input”) is adequate and we use this to relate reasoning results in G (the

“output”) to results about the original system. Any auxiliary notions that we use within

the logic in order to establish the results of interest do not matter for the purposes of

adequacy. This is not to say that we do not care what goes on in between. Certainly we

have designed the logic G so that the intermediate reasoning can closely mimic the informal

reasoning that is typically done. But in the end, the correctness of the reasoning that is

performed depends only on the adequacy results and the cut-elimination property for G.

As an example, let us now consider the adequacy of a proof of determinacy for an

evaluation relation on untyped λ-terms. The evaluation relation of interest is presented in

Figure 4.1. This example will be sufficient to illustrate the key issues involved in show-

ing adequacy for an encoding in G, while a more thorough example is presented later in

4.2. ADEQUACY OF ENCODINGS AND THEOREMS IN THE META-LOGIC 73

(λx.r) ⇓ (λx.r)
m ⇓ (λx.r) r[x := n] ⇓ v

(m n) ⇓ v

Figure 4.1: An evaluation relation for untyped λ-terms

eval (abs R) (abs R)
µ
= >

eval (app M N) V
µ
= ∃R. eval M (abs R) ∧ eval (R N) V

Figure 4.2: An encoding of the evaluation relation in Figure 4.1

Section 6.5.1.

To represent untyped λ-terms in G, we introduce the type tm along with the constructors

app : tm→ tm→ tm and abs : (tm→ tm) → tm. Then we encode the evaluation relation

as a definition for a predicate eval : tm → tm → o as shown in Figure 4.2. Given this

definition, we can prove the following determinacy result in G:

∀t, v1, v2.(eval t v1 ∧ eval t v2) ⊃ v1 = v2.

What we want to do is use this result to obtain a similar determinacy result for evaluation

in the original system. We will develop the bijections and the associated adequacy lemmas

below to be able to obtain such a translation.

We begin by defining a mapping p·q from untyped λ-terms to their representation in G:

pxq = x pt1 t2q = app pt1q pt2q p(λx.t)q = abs (λx.ptq)

Note that we conflate the names of variables in untyped λ-terms with the corresponding

names in G. In truth, the bound variables of untyped λ-terms will be mapped to bound

variables of type tm in G, while the free variables of untyped λ-terms will be mapped to

nominal constants of type tm in G. Assuming a one-to-one correspondence between such

terms, the above mapping is obviously bijective. Moreover, closed untyped λ-terms will

4.2. ADEQUACY OF ENCODINGS AND THEOREMS IN THE META-LOGIC 74

map to terms in G without nominal constants and vice-versa. Thus our representation of

untyped λ-terms is adequate.1

Since we use the substitution mechanism of G in the definition of eval to encode substi-

tution on untyped λ-terms, we will later need to know that these two substitution relations

are related via p·q in the following sense.

Lemma 4.2.1. Let t1 and t2 be untyped λ-terms. Then pt1[x := t2]q = pt1q[pt2q/x] where

the substitution on the left takes place in the context of untyped λ-terms and the substitution

on the right takes place in G.

Proof. The proof is by a straightforward induction on the structure of t1.

Next we want to show an if-and-only-if relationship between the original evaluation

judgment and its encoding in G. This is formalized as follows.

Lemma 4.2.2. t ⇓ v has a derivation if and only if −→ eval ptq pvq is provable in G.

Proof. The proof in the forward direction is by straightforward induction on the derivation

of t ⇓ v.

For the backward direction we first note that −→ eval ptq pvq must have a cut-free

derivation by Theorem 4.1.6. The proof will be by induction on the height of this cut-free

derivation. The cut-free derivation must end with defR though for ease of presentation we

may suppose that it ends with defRp.2 The interesting case is when considering the second

clause for eval, i.e., when t = (m n) and the derivation ends as follows.

−→ eval pmq (abs R) −→ eval (R pnq) pvq

−→ eval pmq (abs R) ∧ eval (R pnq) pvq
∧R

−→ ∃r. eval pmq (abs r) ∧ eval (r pnq) pvq
∃R

−→ eval (app pmq pnq) pvq
defRp

1 A subtle but important point: we do not permit ∇-quantification at type tm→ tm. Allowing this would
mean that we will have terms in G such as abs c for a nominal constant c. Since such a term cannot be the
image of any untyped λ-term, the representation would then not be adequate.

2 Note that cut-elimination was shown for the logic containing defL and defR, whereas defLp and defRp

are only admissible additions to the logic.

4.2. ADEQUACY OF ENCODINGS AND THEOREMS IN THE META-LOGIC 75

Here R is a term of type tm → tm. By the bijectivity of p·q, we know that (abs R) is

the representation of an untyped λ-term and thus we can apply the inductive hypothesis to

the upper left sequent. Similarly, we can apply the inductive hypothesis to the upper right

sequent after using Lemma 4.2.1 to convert (R pnq) to the representation of a substitution

over untyped λ-terms.

It was essential to applying the inductive hypothesis in the proof of the lemma above

that our mapping p·q was a bijection. This property would not hold, for instance, if we

restricted attention to only closed untyped λ-terms in the object language and we still

allowed ∇-quantification at type tm and, hence, admitted nominal constants of this type;

specifically, we would have terms of type tm in G that do not correspond to any closed

untyped λ-terms. We would then not have been able to apply the inductive hypothesis in

the proof of Lemma 4.2.2 because we would have to consider the possibility that particular

occurrences of the ∃R rule generalize on terms of type tm that contain one or more nominal

constants. However, it is still possible to use a proof in G to establish a property about the

original system even in this case. To do this, we would have to introduce a definition in

G for the class of terms of type tm that do not contain nominal constants and we would

have to relativize the theorem we prove in G to the class of terms satisfying this definition.

From this perspective, adequacy is not always just a matter of mapping terms in the object

system to terms in G: we may need to map terms in the object system to terms satisfying

a particular predicate in G.

We now return to showing how a theorem in G about the determinacy of the evaluation

relation can be combined with the adequacy property for the encoding of untyped λ-terms

to yield a theorem about the determinacy of the evaluation relation in the original calculus.

Theorem 4.2.3. If t ⇓ v1 and t ⇓ v2 then v1 equals v2.

Proof. Suppose t ⇓ v1 and t ⇓ v2 both have derivations. By Lemma 4.2.2, that means we

have proofs of −→ eval ptq pv1q and −→ eval ptq pv2q. We also know from before that the

4.2. ADEQUACY OF ENCODINGS AND THEOREMS IN THE META-LOGIC 76

following has a derivation in G:

−→ ∀t, v1, v2.(eval t v1 ∧ eval t v2) ⊃ v1 = v2.

Then using the rules ∀L, ⊃L, ∧R, id, and cut, we can construct a derivation of −→ pv1q =

pv2q. By Theorem 4.1.6 we know that −→ pv1q = pv2q must have a cut-free derivation.

This derivation must end with DR which applies only if pv1q is equal to pv2q. Since p·q is

a bijection, this means that v1 equals v2.

The discussion of adequacy in this section is reminiscent of an earlier discussion relative

to the specification logic and hence raises the question of what, if anything, is different.

The main observation here is that the logic G is significantly richer than the hH2 logic.

In particular, when proving properties about an hH2 specification, reasoning is conducted

using general mathematical techniques, while for proving properties about an encoding in

G, the reasoning is conducted within G itself. Thus, when working with G, we use adequacy

to connect results proven in G with corresponding results about the original system. One

may informally think of this as establishing adequacy for the theorems in G relative to their

counterparts about the original system.

Chapter 5

An Interactive Theorem Prover for the Meta-logic

As part of this thesis, we have developed an interactive theorem prover called Abella for the

logic G [Gac08, Gac09]. Abella is implemented in OCaml and currently comprises approx-

imately 4,000 lines of code. This system has been available to the public as open source

software since March 2008 and has, in fact, been downloaded by several researchers. One

of the key components of a theorem prover for G is the treatment of nominal abstraction

problems. We have discussed in Section 3.2.4 how the task of finding a solution to partic-

ular instances of the nominal abstraction predicate can be reduced to solving higher-order

unification problems. Abella makes use of this reduction. Moreover, it assumes that the

resulting unification problems lie within a restricted class known as the higher-order pattern

unification class [Mil91, Nip93]. To solve such problems, it uses an algorithm developed by

Nadathur and Linnell [NL05] that was initially implemented in Standard ML and that has

subsequently been adapted to OCaml.

In this chapter, we briefly describe the architecture of Abella; this discussion serves the

auxiliary purpose of building up ideas and terminology that we need for presenting appli-

cations of G in Chapter 7. Abella requires proofs to be constructed through an interaction

with a user. At any time, the state of a proof is represented as a collection of subgoals, all

of which need to be proved for the overall proof to succeed. The user applies a tactic to

a subgoal in order to make progress towards a completed proof. If we think of the proof

as a derivation constructed in G, then the subgoals in Abella correspond to sequents in

the derivation which do not themselves have derivations as yet. Tactics then correspond

to schemes for applying the rules of G to such sequents in order to (incrementally) fill out

their derivations.

77

5.1. A FRAMEWORK FOR USING LEMMAS 78

There are two guiding principles for designing tactics in Abella:

1. they should correspond to some combination of rules from G, and

2. they should correspond to natural reasoning steps.

For the most part, the rules of G themselves resemble natural reasoning steps. The role of

many tactics therefore, is simply to chain these together into larger steps. For example,

given a goal of the form

Σ : Γ −→ ∀~x. H1 ⊃ . . . ⊃ Hn ⊃ C

we may want to transition in one step into a goal of the following form:

Σ, ~x : Γ,H1, . . . ,Hn −→ C.

Tactics are also used to group together many alternative rules. For example, a “case

analysis” tactic may actually perform ∨L, ∧L, ⊥L, defL, ∃L, or ∇L based on the structure

of the formula to which it is applied.

In the rest of this chapter, we describe two areas in which tactics greatly massage the

rules of G into a convenient form. The first concerns how hypotheses or lemmas of a

particular form can be applied to other hypotheses. The second concerns a treatment of

induction and co-induction which can naturally accommodate even sophisticated inductive

and co-inductive arguments.

5.1 A Framework for Using Lemmas

Suppose we have a hypothesis of the form

∀~x. H1 ⊃ . . . ⊃ Hn ⊃ C

and further hypotheses H ′
1, . . . ,H

′
n which match H1, . . . ,Hn under proper instantiations of

the ~x. Then we would like a tactic to apply the first hypothesis to H ′
1, . . . , H ′

n, i.e., a tactic

which finds the proper instantiations for ~x and chains together the rules of G to generate a

5.1. A FRAMEWORK FOR USING LEMMAS 79

new hypothesis C ′ that is the corresponding instantiation of C. To be more specific, let Γ

contain H ′
1, . . . , H ′

n. Then we want a tactic which constructs the derivation

Π1

Γ −→ H1[~t/~x]

Πn

Γ −→ Hn[~t/~x]
Π

Γ, C[~t/~x] −→ B

Γ,Hn[~t/~x] ⊃ C[~t/~x] −→ B
⊃L

...
Γ,H2[~t/~x] ⊃ . . . ⊃ Hn[~t/~x] ⊃ C[~t/~x] −→ B

Γ,H1[~t/~x] ⊃ . . . ⊃ Hn[~t/~x] ⊃ C[~t/~x] −→ B
⊃L

Γ,∀~x. H1 ⊃ . . . ⊃ Hn ⊃ C −→ B
∀L

where each Πi is just the identity rule. In an actual implementation, this construction may

be accomplished by replacing the variables ~x with instantiatable meta-variables ~v and using

unification between Hi[~v/~x] and H ′
i to determine specific values for the ~v.

Using the above construction, we can think of more sophisticated ways in which H ′
i will

match Hi[~t/~x]. All that we effectively require is that a derivation of H ′
i −→ Hi[~t/~x] can

be constructed automatically. One useful case arises when Hi[~t/~x] has the form ∇~z.H ′′
i for

some formula H ′′
i , and where H ′

i will match H ′′
i [~a/~z] for some distinct listing of nominal

constants ~a which are not in the support of H ′′
i . If such a case holds, then a derivation of

H ′
i −→ ∇~z.H ′′

i can be constructed by repeated use of ∇R followed by the initial rule. As

before, in an actual implementation, we might be working with Hi[~v/~x] = ∇~z.H ′′′
i where ~v

are instantiatable meta-variables. In such a case, we can determine proper instantiations

for the ~v by solving the nominal abstraction λ~z.H ′′′
i DH ′

i.

Typically, lemmas also have the form

∀~x. H1 ⊃ . . . ⊃ Hn ⊃ C.

If we have independently proven such a lemma, then we can use cut to bring it in as a

hypothesis at any time. Then we can use this lemma together with other hypotheses as

described above so as to derive a suitable instance of C.

By supporting an easy and direct use of lemmas, the system encourages large proofs to

be broken down into separate lemmas which build towards a final result. In practice, these

5.2. AN ANNOTATION BASED SCHEME FOR INDUCTION 80

intermediate lemmas and the points at which they are used are often the most important

pieces in the development of a proof. In fact, the structure of most arguments is the

following: use the induction rule, then perform case analysis and finally use particular

lemmas and the induction hypothesis to obtain the goal. Thus in actual presentation of

proofs, the detailed proof steps are hidden by default, and instead the focus is on the series

of lemmas that lead to the desired conclusions [Gac09].

A final point worth mentioning is that we deliberately consider formulas of the form

∀~x. H1 ⊃ . . . ⊃ Hn ⊃ C

even though the following form is equivalent and perhaps more easy to read for humans:

∀~x. H1 ∧ . . . ∧Hn ⊃ C.

The reason we prefer the first form is two-fold: 1) it has a recursive structure which is easier

to work with in an implementation, and 2) in the degenerate case the when n = 0, then

first form is ∀~x. C while the second is the more obtuse ∀~x.> ⊃ C. In the future, we shall

always work with formulas in the first form.

5.2 An Annotation Based Scheme for Induction

The rule for induction in G can be somewhat awkward to use from a traditional reasoning

perspective: it requires one to formulate an invariant S, prove that S is truly an invariant,

and then use S in place of the predicate that was given by the inductive definition under

consideration. In traditional reasoning, these steps are often merged into a single idea

which is called simply “reasoning by induction.” In this section we present a treatment of

induction based on annotating formulas which aims to capture this simplified approach to

induction. Further, we justify this treatment by translating the tactic that underlies it into

a particular application of the logical rules of G.

Let us consider a very simple inductive argument to introduce the annotation based

5.2. AN ANNOTATION BASED SCHEME FOR INDUCTION 81

treatment of induction. Suppose we define even and odd on natural numbers as follows.

even z
µ
= > odd (s z)

µ
= >

even (s (s N))
µ
= even N odd (s (s N))

µ
= odd N

Suppose we want to prove that if N is even then s N is odd:

∀N. even N ⊃ odd (s N).

The proof is by induction on the even hypothesis. The annotation based treatment of this

induction proceeds by creating a new hypothesis (called the inductive hypothesis) of the

form

∀N. (even N)∗ ⊃ odd (s N)

and changing the goal to

∀N. (even N)@ ⊃ odd (s N).

The ∗ annotation indicates that the inductive hypothesis can only be applied to an argument

which has that same annotation. The @ annotation indicates that when this atomic formula

is subjected to case analysis, any recursive calls to even will be annotated with ∗. In all

other respects, the annotations are to be ignored, and besides the induction tactic there is

no way to introduce these annotations. In this way, Abella allows the inductive hypothesis

to be applied only when the distinguished inductive argument has been subjected to case

analysis.

Coming back to the proof, let us abbreviate the inductive hypothesis by IH. Then we

can eventually do case analysis on the even hypothesis which leads to the following sequents.

IH −→ odd (s z) IH, (even N ′)∗ −→ odd (s (s (s N ′)))

The first of these is easily provable. In the second we apply the inductive hypothesis which

is allowed based on the annotations, and this produces a hypothesis of odd (s N ′). The

rest of the proof is straightforward.

5.2. AN ANNOTATION BASED SCHEME FOR INDUCTION 82

We will now show how this annotation based treatment of induction is sound by trans-

lating it to rules from G. Suppose we want to prove the following.

∀~x. H1 ⊃ . . . ⊃ Hn ⊃ C

Further, assume that we want to do this by induction on Hi = p ~t where p is defined by

∀~y.p ~y µ
= B p ~y. Then we define the invariant S as

S = λ~y.∀~x. ~y = ~t ⊃ H1 ⊃ . . . ⊃ Hn ⊃ C

where ~y = ~t denotes an equality between appropriately typed tuples involving the indicated

terms. Using this invariant, we can construct the following derivation in G.

ΠS
~y : B S ~y −→ S ~y

Π
~x : S ~t,H1, . . . ,Hn −→ C

~x : p ~t,H1, . . . ,Hn −→ C
IL

~x : H1, . . . ,Hn −→ C
cL

~x : · −→ H1 ⊃ . . . ⊃ Hn ⊃ C
⊃R

· : · −→ ∀~x. H1 ⊃ . . . ⊃ Hn ⊃ C
∀R

Now, the missing derivation Π is trivial to construct using ∀L, ⊃L, DR and id. We fill in

the other missing derivation, ΠS , as follows:

Π′
S

~x : B S ~t,H1, . . . ,Hn −→ C

~x, ~y : B S ~y, ~y = ~t,H1, . . . ,Hn −→ C
DLCSNAS

~x, ~y : B S ~y −→ ~y = ~t ⊃ H1 ⊃ . . . ⊃ Hn ⊃ C
⊃R

~y : B S ~y −→ ∀~x. ~y = ~t ⊃ H1 ⊃ . . . ⊃ Hn ⊃ C
∀R

Then we fill in Π′
S based on the content of the inductive argument carried out within the

annotation based scheme.

To complete this picture, let us consider how uses of the induction hypothesis in the

annotation based treatment of induction correspond to making use of the hypothesis B S ~t

in constructing the derivation Π′
S . Within the annotation based treatment, the induction

hypothesis has the following form:

∀~x. H1 ⊃ . . . ⊃ (p ~t)∗ ⊃ . . . ⊃ Hn ⊃ C.

5.3. EXTENSIONS TO THE BASIC SCHEME FOR INDUCTION 83

Given the restrictions on annotations, this hypothesis can only be used if instantiations are

found for the ~x such that (p ~t)∗ is equal to one of the (p ~s)∗ which occurs as a result of case

analysis on the original hypothesis of (p ~t)@. By understanding case analysis as defL in

G, we see that these occurrences of (p ~s)∗ for which the induction hypothesis is applicable

are exactly those occurrences of p in B p ~t. In turn, the induction invariant is available for

those same occurrences of p when constructing the derivation Π′
S , which is precisely what

is realized via the hypothesis B S ~t. Thus the annotation based treatment of induction can

be translated to a proper derivation in G, and therefore the treatment is sound.

5.3 Extensions to the Basic Scheme for Induction

The treatment of induction that we have just described can be extended in a few different

ways. Each of these brings some additional complications to the construction of a corre-

sponding derivation in G. For clarity of presentation, we shall consider each extension in

isolation, but we note that they could all be combined.

5.3.1 Induction on a Predicate in the Scope of Generic Quantifiers

We can extend the annotation based treatment of induction to work with predicates which

occur underneath ∇-quantifiers. Suppose again we want to prove

∀~x. H1 ⊃ . . . ⊃ Hn ⊃ C

where, this time, we want to induct on Hi = ∇~z. p ~t where p is defined by ∀~y.p ~y µ
=

B p ~y. Within the annotation based treatment, nothing needs to be changed to cater to

this situation: (p ~t) is annotated with ∗ in the inductive hypothesis and with @ in the goal

and the rules for applying an inductive hypothesis with ∇s over the inductive argument are

the same as those described in Section 5.1.

We justify this treatment by defining the invariant S as follows.

S = λ~y.∀~x. (λ~z.~tD ~y) ⊃ H1 ⊃ . . . ⊃ Hn ⊃ C

5.3. EXTENSIONS TO THE BASIC SCHEME FOR INDUCTION 84

We can follow the original construction with this invariant, and the only wrinkle is in the

construction of ΠS , a derivation of ~y : B S ~y −→ S ~y. We construct this as follows.

Π′
S

~x : B S ~t,H1, . . . ,Hn −→ C

~x, ~y : B S ~y, (λ~z.~tD ~y),H1, . . . ,Hn −→ C
DLCSNAS

~x, ~y : B S ~y −→ (λ~z.~tD ~y) ⊃ H1 ⊃ . . . ⊃ Hn ⊃ C
⊃R

~y : B S ~y −→ ∀~x. (λ~z.~tD ~y) ⊃ H1 ⊃ . . . ⊃ Hn ⊃ C
∀R

Here and in the future, we simplify the presentation by treating the free variables ~z in ~t as

nominal constants. Now we fill in Π′
S based on the content of the inductive argument carried

out within the annotation based scheme. After using ∇L and case analysis on Hi = ∇~z.p ~t

we will have B p ~t and also B S ~t. Thus we have the inductive hypothesis available for the

recursive calls to p. The restrictions enforced by the nominal abstraction in S are the same

as those enforced when applying hypotheses which have embedded occurrences of ∇, as per

the discussion in Section 5.1. Thus this treatment is sound.

5.3.2 Induction in the Presence of Additional Premises

We extend the annotation based treatment of induction by allowing induction in the context

of other hypotheses. That is, instead of proving · : · −→ ∀~x. H1 ⊃ . . . ⊃ Hn ⊃ C, we prove

Σ : Γ −→ ∀~x. H1 ⊃ . . . ⊃ Hn ⊃ C

Within the annotation based treatment of induction, there is nothing that needs to be

changed to handle this case: we annotate the goal and generate an annotated induction

hypothesis which is added to the other hypotheses.

To verify the soundness of this extension, we reconstruct the original soundness ar-

gument using the invariant S′ = λ~y.∀Σ.
∧

Γ ⊃ S ~y where S is the invariant prescribed

in the original construction and
∧

Γ denotes the conjunction of all formulas in Γ. Then

the only significant change in the construction is that ΠS needs to be a derivation of

~y : B S′ ~y −→ S′ ~y. Using ∀R, ⊃R, and ∧L this becomes Σ, ~y : Γ, B S′ ~y −→ S ~y. Finally,

5.3. EXTENSIONS TO THE BASIC SCHEME FOR INDUCTION 85

we know ∀Σ.∀~y.
∧

Γ ⊃ S′ ~y ⊃ S ~y by the definition of S′, and since B does not use its

first argument negatively (due to stratification), we know ∀Σ.∀~y.
∧

Γ ⊃ B S′ ~y ⊃ B S ~y.

By using this, all we have left to show is Σ, ~y : Γ, B S ~y −→ S ~y which we can unfold as in

the original construction and what is left matches the work done in the annotation based

treatment.

5.3.3 Delayed Applications of the Induction Hypothesis

Another extension we can make is to allow the inductive hypothesis to be applied not just

for immediate recursive calls, but for finitely nested ones as well. This is supported in the

annotation based treatment by saying that case analysis on a hypothesis with a ∗ annotation

results in recursive calls which also have the ∗ annotation. For example, taking even and

odd as before, suppose we want to prove every natural number is either even or odd:

∀N. nat N ⊃ even N ∨ odd N.

The proof is by induction on nat N . Thus we have the inductive hypothesis IH as follows:

∀N. (nat N)∗ ⊃ even N ∨ odd N.

When we perform case analysis on the hypothesis (nat N)@ in the goal it leads to the

following sequents.

IH −→ even z ∨ odd z IH, (nat N ′)∗ −→ even (s N ′) ∨ odd (s N ′)

The first sequent is trivial to prove, and we can apply case analysis to (nat N ′)∗ in the

second to get the following two sequents.

IH −→ even (s z) ∨ odd (s z) IH, (nat N ′′)∗ −→ even (s (s N ′′)) ∨ odd (s (s N ′′))

Again the first sequent is trivial. In the second sequent we can apply the inductive hypoth-

esis to get the sequent

. . . , even N ′′ ∨ odd N ′′ −→ even (s (s N ′′)) ∨ odd (s (s N ′′)).

5.3. EXTENSIONS TO THE BASIC SCHEME FOR INDUCTION 86

Now we can apply ∨L and the rest of the proof is trivial to construct.

The justification for this extension in G is to use the invariant S′ = λ~y.S ~y ∧ B S ~y in

the original construction where S is the original invariant. Then only significant change in

the construction is that we are required to fill out the following derivation

Π1

~y : B S′ ~y −→ S ~y
Π2

~y : B S′ ~y −→ B S ~y

~y : B S′ ~y −→ S′ ~y
∧R

Now note that ∀~x. S′ ~x ⊃ S ~x and ∀~x. S′ ~x ⊃ B S ~x are both trivially provable after

expanding the definition of S′. Since B does not allow its first argument to occur negatively

(due to stratification) this means we can inductively construct derivations of ∀~x. B S′ ~x ⊃

B S ~x and ∀~x. B S′ ~x ⊃ B (B S) ~x. The construction of the derivation Π2 follows directly

from the first of these. The derivation Π1 contains the real content of the inductive proof.

If case analysis is eventually used on Hi = p ~t in this derivation then the ~y will have been

instantiated with ~t so that we have the hypothesis B S′ ~t. Thus we will have B S ~t which

is the regular inductive hypothesis and also B (B S) ~t which is the inductive hypothesis

applied to recursive calls nested at depth two. This depth can be extended to any finite

number by repeating the above construction with the appropriate S′.

5.3.4 Nested Inductions

The use of annotations can be extended to allow nested inductions. For example, suppose

we define the following predicate ack for computing the Ackermann function.

ack z N (s N)
µ
= >

ack (s M) z R
µ
= ack M (s z) R

ack (s M) (s N) R
µ
= ∃R′. ack (s M) N R′ ∧ ack M R′ R

And suppose we want to prove that this function is total in its first two arguments:

∀M,N. nat M ⊃ nat N ⊃ ∃R. nat R ∧ ack M N R

5.3. EXTENSIONS TO THE BASIC SCHEME FOR INDUCTION 87

The proof requires an outer induction on nat M and an inner induction on nat N . In the

annotation based treatment of induction, this is realized as follows. Applying induction to

nat M produces the outer inductive hypothesis

∀M,N. (nat M)∗ ⊃ nat N ⊃ ∃R. nat R ∧ ack M N R

and the goal

∀M,N. (nat M)@ ⊃ nat N ⊃ ∃R. nat R ∧ ack M N R.

Then applying induction to nat N in this goal produces the inner inductive hypothesis

∀M,N. (nat M)@ ⊃ (nat N)∗∗ ⊃ ∃R. nat R ∧ ack M N R

and the goal

∀M,N. (nat M)@ ⊃ (nat N)@@ ⊃ ∃R. nat R ∧ ack M N R.

The treatment of annotations is the same as described before. The annotations ∗ and

∗∗ as well as @ and @@ are considered distinct and unrelated. Thus the outer inductive

hypothesis applies as before, while the inner inductive hypothesis can only be applied to

(nat M)@ from the goal and something with the ∗∗ annotation which can only come from

case analysis on (nat N)@@.

We will use this treatment to finish the proof of totality for the Ackermann function. Let

IH and IH ′ be the outer and inner induction hypotheses, respectively. Then the interesting

part of the proof comes after we have done case analysis on both (nat M)@ and (nat N)@@.

In particular, in the case where M = s M ′ and N = s N ′ we need to prove the following

sequent.

IH, IH ′, (nat (s M ′))@, (nat M ′)∗, (nat N ′)∗ −→ ∃R. nat R ∧ ack (s M ′) (s N ′) R

Note that we must have performed contraction on (nat M)@ prior to case analysis in order

to keep a copy of it. Then we can apply the inner induction hypothesis to (nat (s M ′))@

and (nat N ′)∗ to get the hypotheses nat R′ and ack (s M ′) N R′ for some new variable R′.

5.4. AN ANNOTATION BASED SCHEME FOR CO-INDUCTION 88

Applying the outer inductive hypothesis to (nat M ′)∗ and nat R′ produces the hypotheses

nat R′′ and ack M ′ R′ R′′. Then we can apply ∃R with R = R′′, and the rest of the proof

is trivial.

We now justify the annotation based treatment of nested induction. As in the original

construction, suppose we want to prove

∀~x. H1 ⊃ . . . ⊃ Hn ⊃ C.

And suppose the proof is by an outer induction on Hi = p ~t where p is defined by ∀~y.p ~y µ
=

B p ~y and an inner induction on Hj = q ~s where q is defined by ∀~z.q ~z µ
= B′ q ~z. We proceed

with the original construction using the original invariant S for the outer induction. This

leaves us with a need to prove the following.

~x : B S ~t,H1, . . . ,Hn −→ C

Now we apply contraction on Hj = q ~s and induct on one of the copies using the following

invariant.

S′ = λ~z.∀~x. B S ~t ⊃ ~z = ~s ⊃ H1 ⊃ . . . ⊃ Hn ⊃ C

The only non-trivial sequent to prove will be ~z : B′ S′ ~z −→ S′ ~z. Applying ∀R, ⊃R, and

DLCSNAS, this reduces to showing

~x : B′ S′ ~s,B S ~t,H1, . . . ,Hn −→ C

Now from B S ~t we have the outer induction invariant available for the recursive calls to

p which arise from case analysis on Hi = p ~t. From B′ S′ ~s we have the inner induction

invariant available for the recursive calls to q which arise from case analysis onHj = q ~s. The

caveat is that the inner induction invariant S′ requires a proof of B S ~t. This constrains the

variables ~x in the inner induction variant based on their occurrences in ~t. In the annotation

based treatment, the requirement of a hypothesis with a @ annotation enforces exactly this

condition for the inner inductive hypothesis.

5.4. AN ANNOTATION BASED SCHEME FOR CO-INDUCTION 89

p0 p1 q0 q1 q2

Figure 5.1: Transition diagrams for two different processes

5.4 An Annotation Based Scheme for Co-induction

We can also use annotations to treat co-induction. To illustrate how this works, we will take

an example from the domain of process calculi. Let us consider the two processes depicted

in Figure 5.4. Here the circles represent states and the arrows represent possible transitions

between those states. We say that a P is simulated by a state Q if for every transition that

P can make to a state P ′ there exists a state Q′ to which Q can transition and such that P ′

is simulated by Q′. We consider the notion of simulation as co-inductive so a state can be

simulated by another state even if both have infinite (possibly cyclic) chains of transitions

from them. Suppose then, that we want to show that the state p0 is simulated by the state

q0. We can see that this is true by considering all possible transitions from these states and

recognizing that p1 is simulated by the state q1.

Let us now think of conducting this example in G. We start by encoding the two

processes using the following definition of step.

step p0 p1 , > step p1 p0 , >

step q0 q1 , > step q1 q0 , > step q1 q2 , >

Then we define simulation as a co-inductive predicate sim P Q which holds when the process

P is simulated by the process Q. The precise definition is as follows.

sim P Q
ν= ∀P ′. step P P ′ ⊃ ∃Q′. step Q Q′ ∧ sim P ′ Q′

Our goal is then to prove sim p0 q0 which we generalize based on the argument sketched

above into the following formula to prove:

∀P,Q. (P = p0 ∧Q = q0) ∨ (P = p1 ∧Q = q1) ⊃ sim P Q.

5.4. AN ANNOTATION BASED SCHEME FOR CO-INDUCTION 90

If we apply annotation based co-induction to this goal we get the co-inductive hypothesis

∀P,Q. (P = p0 ∧Q = q0) ∨ (P = p1 ∧Q = q1) ⊃ (sim P Q)+

and the new goal

∀P,Q. (P = p0 ∧Q = q0) ∨ (P = p1 ∧Q = q1) ⊃ (sim P Q)#.

Note that the annotations for co-induction apply to the consequent of an implication rather

than one of the hypotheses. The rules for these new annotations are as follows. If we

unfold (i.e., use defR on) a co-inductive definition with a # annotation then all of its

recursive calls have the + annotation. Hypotheses with a + annotation are obtained from

the co-inductive hypothesis and can only be used to match a goal with the + annotation.

For all other purposes, the annotations can be ignored. The proof of the above simulation

eventually reduces to the following two sequents where CH is the co-inductive hypothesis.

CH −→ (sim p0 q0)# CH −→ (sim p1 q1)#

The proofs of these two sequents are similar, so we will consider only the first one. Here if

we apply defR we will eventually end up with the sequent

CH −→ (sim p1 q1)+.

At this point we can apply the co-inductive hypothesis to get a hypothesis which will match

the goal.

We can justify the annotation based treatment of co-induction by translating it into

appropriate rules from G. Suppose we want to prove the following where p is defined by

∀~y.p ~y ν= B p ~y.

∀~x. H1 ⊃ . . . ⊃ Hn ⊃ p ~t

We proceed as in the construction for induction to get the sequent

~x : H1, . . . ,Hn −→ p ~t.

5.4. AN ANNOTATION BASED SCHEME FOR CO-INDUCTION 91

We then apply co-induction with the invariant S as follows.

S = λ~y.∃~x. ~y = ~t ∧H1 ∧ . . . ∧Hn

The CIR rule applied to the earlier sequent requires us to show ~x : H1, . . . ,Hn −→ S ~t

which is trivial and ~y : S ~y −→ B S ~y which contains the real content of the co-inductive

proof. A derivation of this later sequent can be constructed as follows.

~x : H1, . . . ,Hn −→ B S ~t

~y, ~x : ~y = ~t,H1 . . . , Hn −→ B S ~y
DLCSNAS

~y, ~x : ~y = ~t ∧H1 ∧ . . . ∧Hn −→ B S ~y
∧L

~y : ∃~x. ~y = ~t ∧H1 ∧ . . . ∧Hn −→ B S ~y
∃L

The derivation for the upper-most sequent here can be constructed based on the argument

carried out in the the annotation based treatment. Within that argument, when the goal

(p ~t)# is unfolded, the recursive calls will be annotated with + and will be provable using

the co-inductive hypothesis. This is what is given in the formal derivation by the goal B S ~t.

This annotation based treatment of co-induction can be extended in ways similar to

the inductive treatment. For example, we can allow co-induction within a context of other

hypotheses, or we can allow the goal to be unfolded multiple times before applying the

co-inductive hypotheses. The soundness arguments for these extensions are similar to the

inductive case.

Chapter 6

A Two-level Logic Approach to Reasoning

One approach to reasoning about object systems is to encode their descriptions directly

into definitions in G and to then use the inference rules of G with these definitions. In

this chapter we explore an alternative approach. In particular, we show how the meta-

logic G can be used to encode the specification logic hH2 and to then reason about hH2

specifications through this encoding. This is the two-level logic approach to reasoning that

was enunciated by McDowell and Miller earlier in the context of the meta-logic FOλ∆IN

[MM02].

An important part of assessing the value of the two-level logic approach to reasoning

is understanding both its benefits and its costs. One benefit is that the specification logic

carves out a useful subset of the specifications that are possible in the meta-logic while

at the same time possessing a complete proof search procedure which make it possible to

execute the specifications. A second benefit is that by encoding an entire specification logic

in the meta-logic, we can formalize properties of the specification logic and make them

available during reasoning. An auxiliary observation in this context is that because of the

way the specification logic can be used to encode object systems, the properties of this logic

that are used in meta-logic reasoning often turn out to be based on intuitions about the

properties of the object systems themselves. From a cost perspective, one issue with the

two-level logic approach to reasoning is that there is an additional overhead to reasoning

about specifications through the encoded semantics of the specification logic rather than

directly. Another cost to be considered is that because the specification logic is only a

subset of the full range of specifications allowed by the meta-logic, this approach in some

ways limits what we are able to say within a specification.

92

6.1. ENCODING THE SPECIFICATION LOGIC 93

After all aspects are taken into account, we believe that the combination of the hH2

specification logic and the meta-logic G seems to provide a nice balance between the ben-

efits and costs of the two-level logic approach to reasoning. The specification logic hH2

elegantly encodes many systems of interest, and there are efficient implementations of this

specification logic. Moreover, as we saw in Section 2.3, the properties of hH2 provide useful

results during reasoning. Finally, as we shall see in this chapter, the encoding of hH2 into

G is lightweight and therefore imposes little overhead on the reasoning process.

The rest of this chapter is laid out as follows. Section 6.1 describes the encoding of hH2

into G. Section 6.2 formalizes some properties of hH2 as theorems in G; these theorems

can then be used as lemmas to simplify subsequent reasoning. Section 6.3 illustrates our

specific realization of the two-level logic approach to reasoning and demonstrates its power

by using it to formalize the informal proof that we have presented in Chapter 1 of the fact

that types are preserved by evaluation in the simply-typed λ-calculus. Finally, Section 6.5

discusses the issue of adequacy relative to the two-level logic approach to reasoning.

6.1 Encoding the Specification Logic

There are two components to our encoding of the specification logic hH2 into the meta-logic

G. First, we encode the syntax by defining a mapping ψ from specification logic types and

terms to meta-logic types and terms. Since both logics are constructed from Church’s simple

theory of types and hence contain subsets of expressions that are isomorphic, this encoding

can be very shallow. Second, we encode the semantics of hH2 (i.e., the provability relation)

via the definition of a suitably chosen atomic judgment in G. This encoding is lightweight

which makes later reasoning fairly transparent. To aid in that reasoning we observe some

formulas that can be proved in G involving the judgment that encodes specification logic

provability. These theorems of G can be used as lemmas to shorten other proofs that we

would want to construct in G.

6.1. ENCODING THE SPECIFICATION LOGIC 94

6.1.1 Encoding the Syntax of the Specification Logic

The types of our specification logic are mapped to isomorphic types in the meta-logic. We

define the mapping ψ on types as follows.

ψ(τ) = τ if τ is a base type ψ(τ1 → τ2) = ψ(τ1) → ψ(τ2)

For each specification type, we assume a bijective mapping between eigenvariables of that

type (in the specification logic) and nominal constants of that type (in the meta-logic). We

denote this mapping using subscripts: the eigenvariable h maps to the nominal constant

ah and the nominal constant a maps to the eigenvariable ha. Using this, we define the

encoding of specification terms as follows.

ψ(c) = c if c is a constant ψ(h) = ah if h is an eigenvariable

ψ(x) = x if x is a variable ψ(λx.t) = λx.ψ(t) ψ(t1 t2) = ψ(t1) ψ(t2)

Now for clarity and correctness of the encoding, we make two adjustments to this map-

ping. First, the specification logic type o for formulas is mapped to a distinguished type frm

to avoid conflicting with the type o for meta-logic formulas. Second, we introduce a distin-

guished type atm for atomic specification logic formulas and a constructor 〈·〉 : atm→ frm

to inject such atoms into formulas. We then modify the type of the specification logic ⊃

connective to atm → frm → frm to enforce the restriction that the left-hand side of an

implication is atomic.

Note that we map specification logic constants to constants of the same name in the

meta-logic. This means, for example, that the meta-logic will have two constants called ∧.

One will be the logical connective of G with type o→ o→ o, and the other will be a term

constructor for representations of specification logic formulas with type frm → frm →

frm. We will always be able to distinguish between such constants based on the context

in which they are used.

Our encoding is clearly bijective. Furthermore, typing judgments are preserved by the

bijection in the following sense. Let K denote the set of meta-logic constants which represent

6.1. ENCODING THE SPECIFICATION LOGIC 95

the constants of the specification logic, then Σ ` t : τ is a valid specification logic typing if

and only if ψ(Σ),K ` ψ(t) : ψ(τ) is a valid meta-logic typing where ψ(Σ) = {ψ(h) | h ∈ Σ}.

Since our mapping ψ is bijective we will use the mapping ψ−1 freely.

6.1.2 Encoding the Semantics of the Specification Logic

In the encoding of the semantics of our specification logic, we shall use two auxiliary notions.

First, we introduce a type nt for natural numbers with the constructors z : nt and s : nt→

nt and the predicate nat : nt→ o defined by

nat z
µ
= > nat (s N)

µ
= nat N

As we see below, these numbers will be used to capture the idea of the height of a derivation

in our encoding of the provability relation of the specification logic. Second, we introduce

a type atmlist with constructors nil : atmlist and the infix :: : atm→ atmlist→ atmlist

and the predicate member : atm→ atmlist→ o defined by

member A (A :: L)
µ
= > member A (B :: L)

µ
= member B L

We shall use lists of this kind and the corresponding membership predicate to encode the

addition to premise sets when trying to prove implicational formulas in hH2.

We encode hH2 provability in G through the predicate seq : nt→ atmlist→ frm→ o

that is defined by the clauses in Figure 6.1. This encoding of hH2 provability derives from

McDowell and Miller [MM02]. As described in Chapter 2, proofs in hH2 contain sequents

of the form Σ : ∆,L ` G where ∆ is a fixed set of closed D-formulas and L is a varying set

of atomic formulas. The eigenvariables in Σ are encoded as nominal constants in G. The

meta-logic predicate prog : atm→ frm→ o is used to represent the D-formulas in ∆: the

D formula ∀~x.[G1 ⊃ · · · ⊃ Gn ⊃ A] is encoded as the clause ∀~x.prog A (G1 ∧ · · · ∧Gn) , >

and ∀~x.A is encoded by the clause ∀~x.prog A > , >. We denote these prog clauses by Ψ(∆),

and we note that such clauses do not contain any nominal constants since the formulas of

∆ are closed. Finally, the hH2 sequent is encoded as seqN ψ(L) ψ(G) where we define ψ

6.1. ENCODING THE SPECIFICATION LOGIC 96

seq(s N) L >
µ
= >

seq(s N) L (B ∨ C)
µ
= seqN L B

seq(s N) L (B ∨ C)
µ
= seqN L C

seq(s N) L (B ∧ C)
µ
= seqN L B ∧ seqN L C

seq(s N) L (A ⊃ B)
µ
= seqN (A :: L) B

seq(s N) L (∀B)
µ
= ∇x.seqN L (B x)

seq(s N) L (∃B)
µ
= ∃x.seqN L (B x)

seq(s N) L 〈A〉
µ
= member A L

seq(s N) L 〈A〉
µ
= ∃b.prog A b ∧ seqN L b

Figure 6.1: Second-order hereditary Harrop logic in G

on lists of atomic formulas as ψ(An, . . . , A1) = A1 :: . . . :: An :: nil. The argument N ,

written as a subscript, roughly corresponds to the height of the proof tree and is used in

inductive arguments. To simplify notation, we write L
n G for seqn L G and L
G for

∃n.nat n ∧ seqn L G. When L is nil we write simply
nG or
G.

Proofs of universally quantified G formulas in hH2 are generic in nature. A natural

encoding of this (object-level) quantifier in the definition of seq uses a (meta-level) ∇-

quantifier. In the case of proving an implication, the atomic assumption is maintained

in a list (the second argument of seq). The last clause for seq implements backchaining

over a fixed hH2 specification (stored as prog atomic formulas). The matching of atomic

judgments to heads of clauses is handled by the treatment of definitions in the logic G,

thus the last rule for seq simply performs this matching and makes a recursive call on the

corresponding clause body.

Note that for each specification type τ we have the constants ∀τ : (τ → frm) → frm

and ∃τ : (τ → frm) → frm, thus we should have seq clauses for each of these. However,

6.1. ENCODING THE SPECIFICATION LOGIC 97

here and going forward, we present only general rules for ∀ and ∃, knowing that the actual

rules are easily derived from these.

With this kind of an encoding, we can now formulate and prove in G statements about

what is or is not provable in hH2. In constructing such proofs, we shall sometimes need

induction over the height of derivations. Such arguments can be realized via induction on

the predicate nat n in a formula of the form ∃n.nat n ∧ seqn L G occurring on the left of a

sequent. We may sometimes also want to use strong induction in our arguments. Towards

this end, we introduce the auxiliary predicate lt : nt→ nt→ o defined as follows.

lt z (s N)
µ
= >

lt (s M) (s N)
µ
= lt M N

Now, a formula such as ∀n.(nat n) ⊃ P can be proven using strong induction by proving

∀n,m.(nat n ∧ lt n m ∧ nat m) ⊃ P and using induction on nat m. Section 6.3 contains an

example that uses this approach. Finally, the defL rule can be used to realize case analysis

based reasoning in the derivation of an atomic goal. Using this rule leading eventually to

a consideration of the different ways in which an atomic judgment may have been inferred

in the specification logic.

In the rest of this chapter, we shall conduct all of our reasoning by constructing deriva-

tions in G, with the exception of adequacy arguments where we will need to reason over

G derivations. Thus, when we say that “a formula F is provable” or that “a formula F is

provable in G”, we shall mean that the sequent −→ F is provable in G. Moreover, when

we talk about the “proof of a formula F” we shall mean the derivation in G of the se-

quent −→ F . When we say that such proofs are constructed “by induction” we shall mean

that we use the IL rule of G with an induction invariant derived from the entire sequent

being considered. We shall also talk about proving a formula by induction on one of its

hypotheses (i.e., one of its subformulas to the left of a ⊃) by which we mean following the

constructions for induction described in Chapter 5. The construction of the derivations in

G is often straightforward, with only a few sequents which may be interesting, and so we

6.1. ENCODING THE SPECIFICATION LOGIC 98

shall frequently skip directly to such sequents. Finally, we shall often use running text to

describe the construction of a derivation in G; this is possible since the rules of G often

mimic traditional mathematical reasoning, but it must be remembered that the proof is

still being carried out within G.

Several of the results that we present below concern the provability of formulas in

G. While our proofs of these results here involve arguing about derivations in G, it is

important to note that these arguments sketch a scheme for actually carrying out the

proof within a system such as Abella. Thus, the justification for using such formulas in

subsequent arguments is completely formalized through actual mechanical proofs and the

lemma mechanism of Abella; in particular, the resulting style of (mechanized) argument

does not rely on the informal proofs we present to justify the approach.

6.1.3 Some Provable Properties of the Specification Logic

It is often convenient to reason directly with formulas of the form L
 G rather than

expanding them into ∃n.nat n ∧ seqn L G. In this section, we show that certain schematic

formulas corresponding to
 judgments are provable in G. Using these as lemmas allows us

to encode certain direct forms of reasoning about
 in G proofs. The particular formulas

that we show to be provable in G closely mirror the clauses which define the seq predicate.

Lemma 6.1.1. The following formulas are provable in G.

1. ∀`.(`
>)

2. ∀`, g1, g2.(`
g1) ⊃ (`
g1 ∨ g2)

3. ∀`, g1, g2.(`
g2) ⊃ (`
g1 ∨ g2)

4. ∀`, g1, g2.(`
g1) ∧ (`
g2) ⊃ (`
g1 ∧ g2)

5. ∀`, a, g.(a :: `
g) ⊃ (`
a ⊃ g)

6. ∀`, g.(∇x.(`
(g x)) ⊃ (`
∀g)

6.1. ENCODING THE SPECIFICATION LOGIC 99

7. ∀`, g, t.(`
(g t)) ⊃ (`
∃g)

Proof. It is easy to see that the formulas 1, 2, 3, 5, and 7 are provable in G by unfolding

(i.e., using defR on) the goal formulas.

In the straightforward construction of a proof of formula 4, we shall need to construct

a proof of the following sequent.

nat n, seqn ` g1,nat m, seqm ` g2 −→ ∃p.nat p ∧ seqp ` (g1 ∧ g2).

To prove this we must reconcile the measures n and m. Towards this end, we might first

show that the following formula that relates n and m is provable in G:

∀m,n.(nat m) ∧ (nat n) ⊃ (lt m n) ∨ (m = n) ∨ (lt n m).

This can be proved by induction on one of the nat hypotheses. Then we can also prove the

following formula which allows us to increase the measure of a derivation:

∀m,n, `, g.(lt m n) ∧ (`
m g) ⊃ (`
n g).

This is proved by induction on lt m n. Using these two lemmas the rest of the proof is

straightforward.

In constructing a proof of Formula 6 we will find it necessary to construct a proof of

the sequent

∃n.nat n ∧ seqn ` (g a) −→ ∃m.nat m ∧ seqm ` (∀g).

where a is a nominal constant. Now when we apply ∃L, we have the sequent

nat (n′ a) ∧ seq(n′ a) ` (g a) −→ ∃m.nat m ∧ seqm ` (∀g).

The raising of n′ over a here prevents this proof from going through immediately, thus we

need the following lemma.

∀n.(∇x.nat (n x)) ⊃ ∃p.n = λy.p

This is proved by induction on nat. Once we apply this lemma we have n′ = λy.p for some

p and rest of the proof is straightforward.

6.2. FORMALIZING PROPERTIES OF THE SPECIFICATION LOGIC 100

6.2 Formalizing Meta-Theoretic Properties of the Specification Logic

In Section 2.2 we observed certain meta-theoretic properties of hH2 which are useful in

reasoning about hH2 specifications. Since we have encoded the entire specification logic

into G, we can formalize such properties of the specification logic within G. In particular,

we can consider particular formulas in G that encode these properties and then we can

show that these formulas are provable in G. Doing this will allow us to later bring these

properties to bear on particular reasoning tasks that are carried out using G. The particular

properties of hH2 that we consider in this way in this section are monotonicity, instantiation,

and cut admissibility. With one exception, the proofs of these properties never use a prog

formula except in the initial rule and thus the proofs are independent of any particular

specification encoded in prog. The one exception is specifically noted, and even here the

proof is independent of the specification.

Monotonicity The statement of monotonicity for hH2, expressed as a formula of G, is

∀n, `1, `2, g.(`1
n g) ∧ (∀e.member e `1 ⊃ member e `2) ⊃ (`2
n g).

The proof is by straightforward induction on the hypothesis nat n in `1
n g.

Instantiation The instantiation property recovers the notion of universal quantification

from our representation of the specification logic ∀ using ∇. This property is expressed in

G through the formula

∀`, g.(∇x.(` x)
n (g x)) ⊃ ∀t.(` t)
n (g t).

Stated another way, although ∇ quantification cannot be replaced by ∀ quantification in

general, it can be replaced in this way when dealing with specification judgments. The

proof of this formula is by induction on the hypothesis nat n in (` x)
n (g x), and the

following two auxiliary results are useful in constructing this proof.

∀`, a.(∇x.member (a x) (` x)) ⊃ ∀t.member (a t) (` t)

6.3. AN EXAMPLE OF THE TWO-LEVEL LOGIC REASONING APPROACH 101

∀a, b.(∇x.prog (a x) (b x)) ⊃ ∀t.prog (a t) (b t)

The first is proved by induction on the member hypothesis. The second depends on the

particular specification encoded in prog, but the core of the proof is always applying defL to

prog (a x) (b x) followed by defR on prog (a t) (b t). This will succeed for any specification

since prog only performs pattern matching and contains no “logic.”

Cut admissibility The cut admissibility property of hH2 is expressed in G through the

formula

∀`, a, g.(`
〈a〉) ∧ (a :: `
g) ⊃ (`
g).

The proof is by induction on the nat n assumption in ∃n.nat n ∧ seqn (a :: `) g. If n = z

then the seq judgment is impossible, thus we know n = s m for some m. The proof proceeds

by case analysis on the seq judgment.

1. One case is when g = 〈a′〉 and member a′ (a :: `). Applying defL to this member

hypothesis results in two additional cases: either a = a′ so that `
 〈a〉 holds by

assumption, or we know member a′ ` and thus `
 〈a′〉 holds by applying defRp and

init.

2. Another case is when g = a′ ⊃ g′ so that we have a′ :: a :: `
m g
′. We then apply the

monotonicity property once to get a :: a′ :: `
m g
′ and another time to get a′ :: `
〈a〉.

Then we can apply the inductive hypothesis to get a′ :: `
g′ and therefore `
a′ ⊃ g′.

3. The remaining cases follow directly from the inductive hypothesis and the results in

Lemma 6.1.1.

6.3 An Example of the Two-level Logic Reasoning Approach

Within this framework of the two-level logic approach to reasoning, we come back to the

example of evaluation and typing for the simply-typed λ-calculus. We use the hH2 specifica-

tion of these notions given in Section 2.3 which yields the prog clauses shown in Figure 6.2.

We can now formalize the type preservation theorem completely in the meta-logic:

6.3. AN EXAMPLE OF THE TWO-LEVEL LOGIC REASONING APPROACH 102

prog (eval (abs A R) (abs A R)) > , >

prog (eval (app M N) V) (〈eval M (abs A R)〉 ∧ 〈eval (R N) V 〉) , >

prog (of (app M N) B) (〈of M (arr A B)〉 ∧ 〈of N A〉) , >

prog (of (abs A R) (arr A B)) (∀x.of x A ⊃ 〈of (R x) B〉) , >

Figure 6.2: prog clauses for simply-typed λ-calculus

Theorem 6.3.1. The following formula is derivable in G.

∀e, t, v.(
〈eval e v〉) ∧ (
〈of e t〉) ⊃ (
〈of v t〉)

Proof. The informal argument for the proof of type preservation presented in Section 2.3

is based on strong induction over the height of hH2 derivations. We will now show how we

can mimic that same style of induction in G. We first generalize the formula we want to

prove to the following.

∀e, t, v, i, j.(nat j) ∧ (lt i j) ∧ (seqi nil 〈eval e v〉) ∧ (
〈of e t〉) ⊃ (
〈of v t〉)

If we prove this generalization, then we can use the cut rule to bring it in as a hypothesis

in a proof of the original formula. The resulting sequent will then be easily provable. To

prove the generalization, we use induction on nat j. In the case where j = z, the proof is

trivial since lt i z is unsatisfiable. In the other case we have j = s j′ and we know the result

holds for any i such that lt i j′. In this way, we can completely handle the strong induction

within our logic.

The rest of proof of the generalization closely follows the informal argument with only

the following points worthy of note.

Case analysis on specification judgments in the informal argument is realized in the

construction of a derivation in G by using defL twice. Specifically, if we want to do case

analysis on a derivation such as seqi nil 〈eval e v〉 then we apply defL which results in two

6.4. ARCHITECTURE OF A TWO-LEVEL LOGIC BASED THEOREM PROVER 103

cases. The first is that member (eval e v) nil holds which is impossible. The second is that

∃b.prog (eval e v) b∧ seqi′ nil b holds for some i′ such that i = s i′. Then we can apply defL

on prog (eval e v) b which gives us the two cases corresponding to the clauses for forming

eval judgments.

The instantiation and cut admissibility properties of our specification logic which are

used the informal argument are now formal lemmas which are applied in this proof. Thus

the entire proof is formally constructed within G while still using meta-theoretic properties

of hH2.

6.4 Architecture of a Two-level Logic Based Theorem Prover

The architecture of the Abella theorem prover for G presented in Chapter 5 can be naturally

extended to support the two-level logic approach to reasoning that is the topic of discussion

in this current chapter. In fact, the Abella system already incorporates such an extension

[Gac09]. In this section we briefly describe the architectural changes which facilitate this

support. Most of these changes can be motivated from the type preservation example shown

in the previous section which we will refer to as simply “the example.”

The first step in the two-level logic approach to reasoning is encoding a specification into

the proper prog statement. Abella facilitates this by reading specifications written in the

subset of λProlog which corresponds to hH2. In this way, the specifications used by Abella

are directly executable by λProlog implementations such as Teyjus without the potentially

error-prone need to translate between different input languages.

To reduce syntactic overhead associated with the two-level logic approach to reason-

ing, Abella has specialized syntax for representing judgments of the form `
 g. Direct

reasoning on these judgments is enabled by incorporating the derived rules of inference

from Section 6.1.3. Case analysis on judgments of the form `
 g in Abella corresponds to

applying defL to underlying the seq judgment followed by applying defL to the resulting

prog judgment. Trivial cases such as member E nil are handled automatically. Thus much

of the overhead which is shown in the example is hidden when working with Abella.

6.4. ARCHITECTURE OF A TWO-LEVEL LOGIC BASED THEOREM PROVER 104

The monotonicity, instantiation, and cut-admissibility properties of the specification

logic (Section 6.2) are incorporated into Abella in the form of tactics. Moreover, the mono-

tonicity property is incorporated into some other existing tactics since it seems to be used

most often. For example, when determining if `
 g implies `′
 g the system checks if ` is

an obvious subset of `′. Such checks arise often, for example, when applying a lemma to

hypotheses.

Abella simulates strong induction on hH2 derivations using the technique shown in the

example. In general, the induction tactic applied to a judgment of the form `
g is treated

as strong induction on the underlying measure. This is approximated using the annotation

based treatment of induction from Section 5.2 applied directly to specification judgments.

This has the benefit of removing much of the tedious reasoning about natural numbers

which would otherwise clutter a proof. As an example of this annotation based treatment,

suppose we want to prove a formula of the form

∀~x. (`
g) ⊃ F.

Then the induction scheme creates the following inductive hypothesis and goal, respectively:

∀~x. (`
g)∗ ⊃ F ∀~x. (`
g)@ ⊃ F.

Eventual case analysis on (`
g)@ results in recursive judgments of the form (`′
g′)∗ which

are subject to the inductive hypothesis. The monotonicity and instantiation properties

of the specification logic preserve the height of hH2 derivations, and thus tactics which

implement them preserve induction annotations as well (since induction is being carried

out on the underlying height measure). Finally, suppose we want to deal with mutual

induction on specification judgments. For example, suppose we have a goal of the form

(∀~x1. (`1
g1) ⊃ F1) ∧ (∀~x2. (`2
g2) ⊃ F2).

We can perform induction on both of the specification judgments simultaneously by instead

considering the following goal

∀n.nat n ⊃ (∀~x1. (`1
n g1) ⊃ F1) ∧ (∀~x2. (`2
n g2) ⊃ F2),

6.5. ADEQUACY FOR THE TWO-LEVEL LOGIC APPROACH TO REASONING 105

and performing induction on nat n. Once this new goal is proven, the original is an easy

consequence. We extend the annotation based treatment of induction to treat this kind of

mutual induction directly. Specifically, it creates the following two inductive hypotheses

(∀~x1. (`1
g1)∗ ⊃ F1) (∀~x2. (`2
g2)∗ ⊃ F2),

and the goal becomes

(∀~x1. (`1
g1)@ ⊃ F1) ∧ (∀~x2. (`2
g2)@ ⊃ F2).

The proof then proceeds as normal. When case analysis is performed on a judgment with

a @ annotation, the recursive calls will have the ∗ annotation and thus be candidates for

either of the inductive hypotheses.

6.5 Adequacy for the Two-level Logic Approach to Reasoning

Adequacy within the framework based on the two-level logic approach to reasoning has

three components:

1. Our encoding of the object system into hH2 must be adequate.

2. Our encoding of hH2 into G must be adequate.

3. We must show that information about object system properties can be extract from

theorems in G via the two encodings.

The first component is particular to the object system of interest. For example, adequacy

for the hH2 encoding of evaluation and typing for the simply-typed λ-calculus was shown

in Section 2.4. In the current section we are primary concerned with latter two components

which deal with adequacy relative to G. The second component is a general result about

hH2 and its encoding in the predicate seq (we shall often call this simply “the adequacy

of seq”). The proof of this result is carried out in the next subsection, and it never needs

to be changed since hH2 and seq are fixed. The last component of adequacy is particular

6.5. ADEQUACY FOR THE TWO-LEVEL LOGIC APPROACH TO REASONING 106

to the theorems of interest, and in Section 6.5.2 we show this adequacy for the example of

type preservation for the simply-typed λ-calculus.

There is some difficulty in establishing adequacy relative to G. When we represent

objects in G we usually denote bound variables using λ-terms and free variables using

nominal constants. Then, when we quantify over such objects, we are usually interested

only in objects whose free variables are restricted to a particular set (e.g., we may care

only about closed objects). The ∀ and ∃ quantifiers of G, however, allow nominal constants

to appear freely in the terms that instantiate them. There are two ways to address this

mismatch (without modifying the logic G). The first is to define an explicit typing of objects

(e.g., through a predicate typeof L T A where L is a context of nominal constants), and

to attach this typing judgment to all quantified variables. This is a very heavy approach

and requires explicitly maintaining a context of which nominal constants are allowed to

appear in objects. An alternative approach, and the one we use to establish the adequacy

of seq in the next subsection, is to restrict the use of nominal constants in such a way

that adequacy can still be established. How exactly this is done depends on the particular

system of interest and how nominal constants are treated by it. In the case of seq we know

that nominal constants can always be instantiated, thus the only restriction we need is that

nominal constants are allowed only at inhabited types.

6.5.1 Adequacy of Encoding of the Specification Logic

We now show that our encoding of the specification logic hH2 in the definition of seq and

prog is adequate. The critical aspect of this result is showing that theoremhood in the two

systems is preserved under an appropriate mapping.

Theorem 6.5.1. Let ∆ be a list of closed D-formulas, L a list of atoms, G a G-formula, and

Σ a set of eigenvariables containing at least the free variables of ∆, L, and G. Suppose that

all non-logical specification logic constants and types are represented by equivalent constants

and types in G. Suppose also that specification logic ∀-quantification (eigenvariables) and

meta-logic ∇-quantification (nominal constants) are allowed only at inhabited types. Then

6.5. ADEQUACY FOR THE TWO-LEVEL LOGIC APPROACH TO REASONING 107

Σ : ∆,L ` G has a derivation in hH2 if and only if ψ(L)
 ψ(G) is provable in G with

the clauses for nat, member, and seq as stated before and the clauses for prog as given by

Ψ(∆).

Proof. Note that in this proof we will desugar the representation of quantification and

substitution in the specification logic.

Forward direction. Given a derivation of Σ : ∆,L ` G in hH2, we will construct a

proof of ψ(L)
ψ(G) in G. The construction uses structural induction on the hH2 derivation

and proceeds by cases on the last rule used in the derivation.

1. Suppose the derivation ends with OR1:

Σ : ∆,L ` G1

Σ : ∆,L ` G1 ∨G2
OR1

By the inductive hypothesis we know ψ(L)
ψ(G1) is provable in G. Then we know

ψ(L)
ψ(G1 ∨G2) using the appropriate formula from Lemma 6.1.1.

2. Suppose the derivation ends with TRUE, OR2, AND, or AUGMENT: these cases are

similar to the previous one.

3. Suppose the derivation ends with GENERIC:

Σ, c : ∆,L ` G′ c

Σ : ∆,L ` ∀G′ GENERIC

By the inductive hypothesis we know ψ(L)
ψ(G′ c) is provable in G. We also know

ψ(G′ c) = ψ(G′) ac where ac is a nominal constant not in ψ(Σ) (and therefore not

occurring in ψ(L) or ψ(G′)). Thus we know there is a proof of ∇x.(ψ(L)
(ψ(G′) x)).

Using the appropriate formula from Lemma 6.1.1, there must be a proof of ψ(L)

∀ψ(G′).

4. Suppose the derivation ends with INSTANCE:

Σ : ∆,L ` G′ t

Σ : ∆,L ` ∃τG
′ INSTANCE

6.5. ADEQUACY FOR THE TWO-LEVEL LOGIC APPROACH TO REASONING 108

By the inductive hypothesis we know ψ(L)
ψ(G′ t) is provable in G. We also know

ψ(G′ t) = ψ(G′) ψ(t). Using the appropriate formula from Lemma 6.1.1, there must

be a proof of ψ(L)
∃ψ(G′).

5. Suppose the derivation ends with BACKCHAIN:

Σ : ∆,L ` G1 ~t · · · Σ : ∆,L ` Gm ~t

Σ : ∆,L ` A BACKCHAIN

where ∀~x.(G1 ~x ⊃ · · · ⊃ Gm ~x ⊃ A′ ~x) ∈ ∆,L and A′ ~t = A. We distinguish two cases

based on whether the formula is in ∆ or in L.

(a) Suppose ∀~x.(G1 ~x ⊃ · · · ⊃ Gm ~x ⊃ A′ ~x) ∈ ∆. Then we must have the following

clause.

∀~x.prog (ψ(A′) ~x) (ψ(G1) ~x ∧ · · · ∧ ψ(Gm) ~x) , >

By the inductive hypothesis we have a proof of ψ(L)
 ψ(Gi ~t) for each i ∈

{1, . . . ,m}. By repeatedly using the appropriate formula from Lemma 6.1.1 we

can construct a proof of ψ(L)
 (ψ(G1 ~t) ∧ · · · ∧ ψ(Gm ~t)), which we can write

as ψ(L)
(ψ(G1)
−−→
ψ(t)) ∧ · · · ∧ ψ(Gm)

−−→
ψ(t)). Finally we know ψ(A) = ψ(A′ ~t) =

ψ(A′)
−−→
ψ(t). Thus we know ∃b.prog ψ(A) b ∧ (ψ(L)
 b) and we can construct a

proof of ψ(L)
〈ψ(A)〉.

(b) Suppose ∀~x.(G1 ~x ⊃ · · · ⊃ Gm ~x ⊃ A′ ~x) ∈ L. Since L contains only atoms we

must have A = A′ and thus A ∈ L. Then member ψ(A) ψ(L) is provable and

thus so is ψ(L)
〈ψ(A)〉.

Backward direction. It suffices to show if nat (s n) and seq(s n) ψ(L) ψ(G) have

cut-free proofs in G, then we can construct a derivation of Σ : ∆,L ` G in hH2 for any Σ

which contains at least the eigenvariables of L and G. The proof is by induction on the

natural number denoted by (s n) (which we know is a natural number since nat (s n) has

a proof). This proof will always end with defRp (or can be seen to) and we will consider

cases based on the definitional clause used in this rule.

6.5. ADEQUACY FOR THE TWO-LEVEL LOGIC APPROACH TO REASONING 109

1. The cases for the first five clauses of seq are all similar and thus we will consider just

one instance. Suppose the cut-free proof ends with,

−→ seqn ψ(L) ψ(G1)
−→ seq(s n) ψ(L) (ψ(G1) ∨ ψ(G2))

defRp

By the inductive hypothesis we know there is a derivation of Σ : ∆,L ` G1 and we

can construct the following.

Σ : ∆,L ` G1

Σ : ∆,L ` G1 ∨G2
OR1

2. Suppose the cut-free proof ends with,

−→ seqn ψ(L) (ψ(G′) a)
−→ ∇x.seqn ψ(L) (ψ(G′) x)

∇R

−→ seq(s n) ψ(L) (∀ψ(G′)) defRp

Since ψ(G′) a = ψ(G′ ha) we know from the inductive hypothesis that there is a

derivation of Σ, ha : ∆,L ` G′ ha. Thus we can construct the following.

Σ, ha : ∆,L ` G′ ha

Σ : ∆,L ` ∀G′ GENERIC

3. Suppose the cut-free proof ends with,

C,K ` t : τ −→ seqn ψ(L) (ψ(G′) t)
−→ ∃τx.seqn ψ(L) (ψ(G′) x) ∃R

−→ seq(s n) ψ(L) (∃τψ(G′)) defRp

Now tmay contain any nominal constants and therefore t′ = ψ−1(t) may contain eigen-

variables not in Σ. Thus when we apply the inductive hypothesis to seqn ψ(L) ψ(G′ t′)

we get a derivation of Σ′ : ∆,L ` G′ t′ where Σ′ may contain additional eigenvari-

ables. To reconcile this, we use the restriction that eigenvariables are allowed only at

inhabited types. For each eigenvariable in t′ and not in Σ, we select an inhabitant of

the corresponding type and substitute it for the eigenvariable using the instantiation

property of hH2. Since these eigenvariables do not occur in Σ, they also do not occur

6.5. ADEQUACY FOR THE TWO-LEVEL LOGIC APPROACH TO REASONING 110

in L or G and therefore the instantiations affect only t′. Thus the result of all these

instantiations is a derivation of Σ : ∆,L ` G′ t′′ for some t′′. Then we can construct

the following.
Σ : ∆,L ` G′ t′′

Σ : ∆,L ` ∃G′ INSTANCE

4. Suppose the cut-free proof ends with,

−→ member ψ(A) ψ(L)
−→ seq(s n) ψ(L) 〈ψ(A)〉 defRp

Then it must be that A ∈ L, and so we can construct the following.

Σ : ∆,L ` A BACKCHAIN

5. Suppose the cut-free proofs ends with,

−→ prog ψ(A) b defRp

−→ seqn ψ(L) b
−→ prog ψ(A) b ∧ seqn ψ(L) b ∧R

−→ ∃b.prog ψ(A) b ∧ seqn ψ(L) b ∃R

−→ seq(s n) ψ(L) 〈ψ(A)〉 defRp

for some instantiation of b. Suppose also that prog ψ(A) b holds by matching with

some clause,

∀~x.prog (ψ(A′) ~x) (ψ(G1) ~x ∧ · · · ∧ ψ(Gm) ~x) , >.

Then we know ∀~x.(G1 ~x ⊃ · · · ⊃ Gm ~x ⊃ A′ ~x) ∈ ∆. From matching with the

prog clause we know there exists ~t such that ψ(A) = ψ(A′) ~t, so let ~s = ψ−1(~t).

Then b is ψ(G1 ~s) ∧ · · · ∧ ψ(Gm ~s) and we have proofs of seqn ψ(L) ψ(Gi ~s) for each

i ∈ {1, . . . ,m}. By the inductive hypothesis we have derivations of Σ′ : ∆,L ` Gi ~s

where Σ′ contains the eigenvariables of L, G1, . . . , Gm, and ~s. Note that as was the case

for the seq rule governing the existential quantifier, Σ′ may contain some eigenvariables

from ~s which do not occur in Σ. As with that case, we can use the restriction on

specification logic eigenvariables to instantiate all such eigenvariables with inhabitants

therefore yielding derivations Σ : ∆,L ` Gi ~r where ~r is the result of the instantiations

6.5. ADEQUACY FOR THE TWO-LEVEL LOGIC APPROACH TO REASONING 111

on ~s. Finally, we know A = A′ ~s but we need to know A = A′ ~r. Note that A′ contains

no eigenvariables and the eigenvariables of A are a subset of Σ, thus the eigenvariables

in ~s but not in Σ play no role in the equality A = A′ ~s. Therefore instantiating those

eigenvariables does not change the equality and we have A = A′ ~r. Thus we can

construct the following.

Σ : ∆,L ` G1[~r/~x] · · · Σ : ∆,L ` Gm[~r/~x]
Σ : ∆,L ` A BACKCHAIN

Note that this theorem restricts the definitions of the predicates nat, member, seq,

and prog, but makes no explicit reference to other predicates. Indeed, the definitions of

other predicates have no affect on the adequacy of the encoding of the specification logic.

Additionally, G may make use of additional constants and types which are unconnected

to the constants and types used to represent the specification logic without affecting the

adequacy of the encoding.

Another point of interest is the following condition of the previous theorem: specifica-

tion logic ∀-quantification and meta-logic ∇-quantification are allowed only at inhabited

types. This condition arises because we have chosen to do a shallow encoding of the typing

judgment of the specification logic. That is, rather than encode an explicit typing judg-

ment for specification logic terms, we have instead relied on the typing judgment of G to

enforce the well-formedness of terms. Due to the lack of restrictions on the occurrences of

nominal constants, the typing judgment in G is more permissive than the specification logic

typing. As the previous theorem shows, however, this difference only manifests itself for

uninhabited types. A deeper encoding involving an explicit typing judgment would avoid

this condition, but would also impose some overhead additional costs in terms of reasoning

about and through the encoding. We find the shallow encoding to be a good balance in

practice.

6.5. ADEQUACY FOR THE TWO-LEVEL LOGIC APPROACH TO REASONING 112

6.5.2 Adequacy of Type Preservation Example

We can now use our adequacy results to extract a proof of type preservation for the simply-

typed λ-calculus from the proof of its encoding in G.

Theorem 6.5.2. If t ⇓ v and ` t : a then ` v : a.

Proof. Suppose t ⇓ v and ` t : a, then by the adequacy results in Section 2.4, we know

that ∆ ` eval φ(t) φ(v) and ∆ ` of φ(t) φ(a) have derivations in hH2 where φ is the

bijection between the object language and its specification logic representation and ∆ is

the specification of eval and of. By Theorem 6.5.1, we know
 〈eval ψ(φ(t)) ψ(φ(v))〉

and
 〈of ψ(φ(t)) ψ(φ(v))〉 have proofs in G. Using these proofs and the proof of the

formula in Theorem 6.3.1 together with various rules of G (notably the cut rule), we can

construct a proof of
 〈of ψ(φ(v)) ψ(φ(a))〉 in G. Then using the backwards direction of

Theorem 6.5.1 we know ∆ ` of φ(v) φ(a) has a derivation in hH2, and using adequacy

results from Section 2.4 we find that ` v : a must hold.

Chapter 7

Applications of The Framework

In this chapter we consider various applications of the proposed framework, focusing mainly

on the reasoning component. The purpose of these applications is illustrate both the

strengths and the weaknesses of the framework. From this perspective, we are interested in

the quality of the encodings and associated reasoning, e.g., properties such as naturalness,

expressiveness, complexity, and overhead. We will try to expose and highlight these traits

in this chapter.

We begin in Section 7.1 with a proof of type uniqueness for the simply-typed λ-calculus

which provides a simple example of how judgment contexts and the related variable freshness

information is handled in the framework. In Section 7.2 we present a solution to part of the

POPLmark challenge [ABF+05] which demonstrates the more sophisticated inductive rea-

soning that is possible within G. Section 7.3 contains an example of proving the equivalence

of λ-terms based on the set of paths they contain, and shows how easily the framework han-

dles formulas with a more sophisticated quantification structure. In Section 7.4 we describe

a translation between higher-order abstract syntax and de Bruijn notation for λ-terms, and

we show that this translation is deterministic in both directions. This example highlights a

more expressive use of definitions to describe the structure of judgment contexts. Finally,

in Section 7.5 we show how Girard’s proof of strong normalization for the simply-typed

λ-calculus can be encoded. This is by far the largest application in this chapter, and it uses

many of the features highlighted by previous examples as well as introducing new ones such

as a way of dealing with an arbitrary number of substitutions applied to a term.

There have been many other applications of the reasoning component of our framework

that we do not discuss explicitly in this thesis. These include the following.

113

114

• Properties of big and small step evaluation and typing in the simply-typed λ-calculus

• Translation among combinatory logic, natural deduction, and sequent calculus

• Soundness and completeness for a focused sequent calculus

• Cut-admissibility for LJ

• Takahashi’s proof of the Church-Rosser theorem

• Properties of bi-simulation in CCS and the π-calculus

• Tait’s argument for weak normalization of the simply-typed λ-calculus [GMN08b].

• The substitution theorem for Canonical LF.

All of the applications mentioned above and the ones presented in this chapter are available

on the Abella website [Gac09]. We note that some of these examples have been developed

by other researchers. Randy Pollack contributed the formalization of the Church-Rosser

result. The formalization of the substitution theorem for Canonical LF was contributed

by Todd Wilson and is the largest development done in Abella to date. This development

includes two sophisticated results: one which uses a triply nested induction where the inner-

most induction is an eight-way mutual induction and another which uses a doubly nested

induction with an outer strong induction and an inner three-way mutual induction. The

richness and elegance of this development serves as a powerful example of the expressivity

of Abella.

Finally, before we proceed to the examples we establish a few common items and conven-

tions which simplify the presentation. First, in specification formulas we elide the outermost

universal quantifiers and assume that tokens given by capital letters denote variables that

are implicitly universally quantified over the entire formula. Second, for judgments of the

form (L
 〈A〉) we write simply (L
 A) since we will only ever display this with atomic

formulas on the right of the judgment. We assume the following definition of name (with

7.1. TYPE-UNIQUENESS FOR THE SIMPLY-TYPED λ-CALCULUS 115

appropriate type based on the application):

(∇x.name x) , >.

We will use the following result about the (non)occurrences of nominal constants in lists:

∀L,E.∇x. member (E x) L ⊃ ∃E′. (E = λy.E′).

This says that if an element of a list depends on a nominal constant and the list itself does

not, then the element’s dependency must be vacuous. The proof is by induction on the

member hypothesis. We will leave out the details of most proofs except to note the uses of

induction or the particularly interesting cases. Also, we will freely and implicitly make use

of the properties of the specification logic.

7.1 Type-uniqueness for the Simply-typed λ-calculus

The type of a λ-term in the simply-typed λ-calculus is unique. Proving this type unique-

ness property requires reasoning inductively about typing judgments which, in turn, requires

generalizing the context in which typing judgments are made. We can encode such argu-

ments directly in our framework so long as we can describe the structure of the judgment

contexts. Such descriptions can be naturally expressed using nominal abstraction and, in

fact, this is the most common use of nominal abstraction. Thus, we use the present exam-

ple to demonstrate how nominal abstraction can be used in this way and to point out the

related lemmas that often go along with such descriptions.

We will use the specification of the simply-typed λ-calculus developed thus far in the

thesis (Section 2.3). Relative to this, we can formally state type uniqueness as

∀E, T1, T2. (
of E T1) ⊃ (
of E T2) ⊃ (T1 = T2).

Suppose we try to prove this directly by induction on one of the typing judgments. Then,

when we consider the case where E is an abstraction, the typing context will grow which

7.1. TYPE-UNIQUENESS FOR THE SIMPLY-TYPED λ-CALCULUS 116

ctx nil
µ
= >

ctx (of X A :: L)
µ
= (∀M,N. X = app M N ⊃ ⊥) ∧

(∀R,B. X = abs B R ⊃ ⊥) ∧

(∀B. member (of X B) L ⊃ ⊥) ∧

ctx L

Figure 7.1: Potential ctx definition without nominal abstraction

means the inductive hypothesis will not be able to apply. Instead, we need to generalize

the statement of type uniqueness to the following.

∀L,E, T1, T2. ctx L ⊃ (L
of E T1) ⊃ (L
of E T2) ⊃ (T1 = T2).

Where ctx is a definition which restricts L so that the formula is provable. In particular,

ctx L should enforce that L has the structure (x1, A1) :: . . . :: (xn, An) :: nil where each

xi is atomic and unique. In the logics which preceded G, these atomicity and uniqueness

properties could not be directly described and instead one needed to encode them by ex-

plicitly excluding the other possibilities as shown in Figure 7.1. However, using nominal

abstraction we define ctx as

ctx nil
µ
= > (∇x.ctx (of x A :: L))

µ
= ctx L.

Note that in (of x A :: L), the atomicity of x is enforced by it being ∇ quantified while

the uniqueness is enforced by L being quantified outside the scope of x. Had we wanted to

allow x to occur later in the context we could have written (L x) in place of L.

The definition of ctx enforces atomicity and uniqueness properties for the first element

of the context and then calls itself recursively on the remaining portion of the context.

Thus, to know that an arbitrary element of the context has the atomicity and uniqueness

properties requires inductive reasoning. We state these properties in the following two

7.2. THE POPLMARK CHALLENGE 117

lemmas.

∀L,X,A. ctx L ⊃ member (of X A) L ⊃ name X

∀L,X,A1, A2. ctx L ⊃ member (of X A1) L ⊃ member (of X A2) ⊃ (A1 = A2)

Both of these lemmas have direct proofs using induction on one of the member hypotheses.

With the above lemmas in place, the rest of the type uniqueness proof is straightfor-

ward. There is an interesting point to be noted here, though, concerning the treatment

of abstractions, i.e., when considering the typing in the context L of a λ-term of the form

abs A R. The use of a universal quantifier in the specification of typing in this case and the

interpretation in the meta-logic of such universal quantifiers via ∇-quantifiers ensures that

the typing of R will be done in a context given by of x A :: L where x is a nominal constant

not appearing in L. In the type uniqueness proof, we will need to show that this extended

typing context is well-formed. This is done by showing that ctx (of x A :: L) follows from

ctx L which is clear based on the definition of ctx and the way x was introduced in the

typing process. If a definition such as in Figure 7.1 were used, this argument would be more

complicated.

7.2 The POPLmark Challenge

The POPLmark challenge is a call to researchers to develop tools and methodologies

for animating and for reasoning about systems with binding [ABF+05]. The particu-

lar challenge proposed focuses on System F<:, a polymorphic λ-calculus with subtyping

[CMMS94, CG94]. This challenge is of interest to us primarily because it provides a com-

mon benchmark on which various frameworks may be compared. In addition, some of the

reasoning required for this problem illustrates the sophistication and naturalness of the

reasoning tools available in our framework.

The POPLmark challenge consists of three challenge problems which focus on 1) the type

system, 2) evaluation, type preservation, and progress, and 3) animation. In this section

we explain the solution to the first challenge problem which requires sophisticated induc-

7.2. THE POPLMARK CHALLENGE 118

Γ ` S <: Top (SA-Top)

Γ ` X <: X (SA-Refl-TVar)

X<:U ∈ Γ Γ ` U <: T
Γ ` X <: T

(SA-Trans-TVar)

Γ ` T1 <: S1 Γ ` S2 <: T2

Γ ` S1 → S2 <: T1 → T2
(SA-Arrow)

Γ ` T1 <: S1 Γ, X<:T1 ` S2 <: T2

Γ ` (∀X<:S1. S2) <: (∀X<:T1. T2)
(SA-All)

Figure 7.2: Algorithmic subtyping rules for System F<:

tion schemes and some reasoning about binding structure. The second challenge problem

requires a significant amount of reasoning about binding structure, but since we take bind-

ing as fundamental in our framework, this challenge problem is straightforward and fairly

mundane in our framework (the development is available on the Abella website). Finally,

the last challenge problem could be addressed through an animation system for λProlog,

but we do not explore this in this section. The first and second challenge problems also

have an additional component that asks for proofs to be repeated for System F<: extended

with records and patterns. This extension requires a significant amount of additional work

without providing much additional insight in the framework, and thus we do not pursue

this extension.

The first POPLmark challenge problem focuses on the type system of System F<:. In

particular, given an algorithmic presentation of the subtyping rules for System F<:, the

challenge asks one to show that the subtyping relation is reflexive and transitive, the key

results needed to show equivalence between the algorithmic and declarative descriptions of

subtyping. Reflexivity turns out to be straightforward, while transitivity requires sophisti-

cated inductive reasoning. In the rest of this section we focus on the proof of transitivity.

7.2. THE POPLMARK CHALLENGE 119

Types and typing contexts in System F<: are described by the following grammars.

T ::= X | Top | T → T | ∀X<:T. T

Γ ::= ∅ | Γ, X<:T

Here X denotes a variable occurrence, and ∀X<:T1. T2 denotes that the variable X is bound

within the scope of T2 (but not in the scope of T1). In Γ, X<:T it is assumed that X does

not occur in Γ. The algorithmic subtyping relation of System F<: is denoted by Γ ` S <: T ,

and is defined by the rules in Figure 7.2.

The challenge problem is to prove that the subtyping relation is transitive: if Γ ` S <: Q

and Γ ` Q <: T then Γ ` S <: T . The proof of this property requires another result called

narrowing to be proved simultaneously: if Γ, X<:Q,∆ ` M <: N and Γ ` P <: Q then

Γ, X<:P,∆ ` M <: N . The proof of these two properties requires a mutual induction on

the structure of the type Q. Within this induction the transitivity property is proved by

induction on the structure of Γ ` S <: Q and it uses the narrowing property for structurally

smaller types Q. The narrowing property is proved by an inner induction on the structure

of Γ, X<:Q,∆ `M <: N and uses the transitivity property for the type Q. With the proper

induction schemes as described, the details of the proof are straightforward.

To formalize System F<: types we introduce the type ty and the following constants.

top : ty arrow : ty → ty → ty all : ty → (ty → ty) → ty

Typing contexts will be represented using the context of specification logic judgments. We

introduce the constant bound : ty → ty → o for representing individual type bindings within

that context.

We encode subtyping rules of System F<: as specification logic formulas concerning the

constant sub : ty → ty → o as presented in Figure 7.3. Note that we do not explicitly

represent the typing context, but instead make assumptions of the form bound X T to

denote a typing assumption of X<:T . Also, in the formal rules SA-Refl-TVar and SA-

Trans-TVar the variable X represents only type variables while our translation of these

7.2. THE POPLMARK CHALLENGE 120

sub S top

bound X U ⊃ sub X X

bound X U ⊃ sub U T ⊃ sub X T

sub T1 S1 ⊃ sub S2 T2 ⊃ sub (arrow S1 S2) (arrow T1 T2)

sub T1 S1 ⊃ (∀x.bound x T1 ⊃ sub (S2 x) (T2 x)) ⊃ sub (all S1 S2) (all T1 T2)

Figure 7.3: Specification of algorithmic subtyping for System F<:

rules do not directly enforce this constraint. Instead, our translations require that any such

X satisfy a bound X U judgment for some U . Since we only make such judgments for X

which denotes a type variable, our encoding remains adequate.

To reason about subtyping we first formalize the notion that a typing context is well-

formed. Strictly speaking, a context is well-formed if it is either ∅ or Γ, X<:T where X is

a variable which does not occur in Γ. For reasons we discuss later, we deliberately weaken

this notion and require only that X is a variable. We recognized such well-formed contexts

with the following definition.

ctx nil
µ
= > ctx (bound X U :: L)

µ
= name X ∧ ctx L

We also prove the following associated lemma.

∀E,L. ctx L ⊃ member E L ⊃ ∃X,U. (E = bound X U) ∧ name X

This is proved by a simple induction on the member hypothesis.

The logic G allows for induction only on definitions and not on terms. Thus to induct

on the structure of a System F<: type we must create a definition which recognizes such

7.2. THE POPLMARK CHALLENGE 121

types. We define a predicate wfty : ty → o as follows.

wfty top
µ
= >

(∇x.wfty x)
µ
= >

wfty (arrow T1 T2)
µ
= wfty T1 ∧ wfty T2

wfty (all T1 T2)
µ
= wfty T1 ∧∇x.wfty (T2 x)

Induction on wfty Q will correspond to structural induction on the type Q as needed.

Note that we could impose additional well-formedness constraints which restrict variable

occurrences relative to some context of type variables, but such restrictions are unnecessary

for the proof at hand.

We can state the combined transitivity and narrowing property as follows.

∀Q. wfty Q ⊃

(∀L, S, T. ctx L ⊃ (L
sub S Q) ⊃ (L
sub Q T) ⊃ (L
sub S T)) ∧

(∀L,P,X,M,N. ctx (bound X Q :: L) ⊃ (L
sub P Q) ⊃

(bound X Q :: L
sub M N) ⊃ (bound X P :: L
sub M N))

The proof is by an outer induction on wfty Q. To prove the inner conjunction we use the

following derived rule of G.
Γ −→ B Γ, B −→ C

Γ −→ B ∧ C ∧R∗

This rule is clearly admissible using cut and ∧R. We use this rule with B as the transitivity

result for the typeQ and C as the narrowing result for the typeQ. Thus this rule allows us to

use the transitivity result for the type Q while proving the corresponding narrowing result.

Once this is applied we can prove transitivity using a further induction on (L
 sub S Q)

and narrowing using a further induction on (bound X Q :: L
 sub M N). The reasoning

which remains is straightforward.

Notice that in the original statement of narrowing, the distinguished typing assumption

X<:Q is taken from the middle of the typing context, while in our formalized statement

we consider the assumption bound X Q only at the front. By formalizing narrowing in

7.3. PATH EQUIVALENCE FOR λ-TERMS 122

λx

@

x λy

y

Figure 7.4: Tree form of λx.(x(λy.y))

this way, we greatly simplify the associated reasoning (e.g., we do not need to talk about

appending contexts as we would with a direct statement). The cost is that when we add

other elements to the context, we must show that the distinguished binding can always

be moved to the front. This is possible since we have weakened the ctx judgment to not

contain any freshness information, and therefore no ordering information. Since freshness

information is not relevant to the transitivity and narrowing results, there is no cost to

leaving this information out. To establish adequacy, we can use a more precise description

of typing contexts and still make use of these results proved for the looser description.

7.3 Path Equivalence for λ-terms

We can characterize λ-terms by means of their paths, where a path formalizes the idea of

descending through the abstract syntax tree of a term. For example, the tree for the λ-term

λx.(x(λy.y)) is shown in Figure 7.3 has has two paths:

1. descend through the binder for x, go left at the application, stop at x, and

2. descend through the binder for x, go right at the application, descend through the

binder for y, stop at y

7.3. PATH EQUIVALENCE FOR λ-TERMS 123

term M ⊃ term N ⊃ term (app M N)

(∀x.term x ⊃ term (R x)) ⊃ term (abs R)

path M P ⊃ path (app M N) (left P)

path N P ⊃ path (app M N) (right P)

(∀x.∀p.path x p ⊃ path (R x) (S p)) ⊃ path (abs R) (bnd S)

Figure 7.5: Specification of paths through λ-terms

Our goal is section is to show that if two λ-terms share all the same paths, then the terms

must be equal. We call this the path equivalence property.

We are interested in the path equivalence property since it expresses a model checking-

like property over terms with binding structure. This type of property is difficult or im-

possible to formalize in competing frameworks like Twelf [PS99] since expressing the hypo-

thetical property that two λ-terms have all the same paths requires a sufficiently rich logic.

However, in our framework, we find that this property can be stated and reasoned about

directly. Also, this application illustrates how we can use definitions to describe the struc-

ture of multiple judgment contexts which have related structure. Finally, a complication in

this application demonstrates the need for occasional vacuity properties to be established

regarding the occurrences of nominal constants in terms.

We introduce a type tm for untyped λ-terms and pt for paths together with the following

constructors.

app : tm→ tm→ tm abs : (tm→ tm) → tm

left : pt→ pt right : pt→ pt bnd : (pt→ pt) → pt

We then introduce the predicates term : tm → o and path : tm → pt → o defined by the

specification logic formulas in Figure 7.5.

7.3. PATH EQUIVALENCE FOR λ-TERMS 124

Given this description of paths through λ-terms we can state the path equivalence

property as follows.

∀M,N. (
term M) ⊃ (∀P. (
path M P) ⊃ (
path N P)) ⊃ (M = N)

Note that we have added the explicit assumption (
 term M) so that we can induct on

the structure of M . Also, we have stated only that the paths in M are also in N , but not

vice-versa. It turns out that this weaker property is sufficient to prove the result.

Before we can proceed with the proof of the above statement, we need to strengthen

it. In particular, when M is an abstraction we need to consider how the contexts for the

term and path judgments will grow. This is done with the following definition of ctxs which

describes not only how each context grows, but how the two contexts are related.

ctxs nil nil
µ
= > (∇x.∇p.ctxs (term x :: L) (path x p :: K))

µ
= ctxs L K

Along with this definition, we need the following lemmas which allow us to extract infor-

mation about a term based on its membership in one of the contexts described by ctxs.

∀X,L,K. ctxs L K ⊃ member (term X) L ⊃

name X ∧ ∃P. member (path X P) K

∀X,P,L,K. ctxs L K ⊃ member (path X P) K ⊃ name X ∧ name P

The proofs of both lemma are by straightforward induction on the member hypotheses.

We can state the strengthened equivalence property as follows.

∀L,K,M,N. ctxs L K ⊃ (L
term M) ⊃

(∀P. (K
path M P) ⊃ (K
path N P)) ⊃ (M = N)

The proof of this statement is by induction on (L
term M). In the base case we need the

following lemma which is proved by induction one of the member hypotheses.

∀L,K,X1, X2, P. ctxs L K ⊃

member (path X1 P) K ⊃ member (path X2 P) K ⊃ (X1 = X2)

7.3. PATH EQUIVALENCE FOR λ-TERMS 125

In the other cases of the proof, we need to show that the top-level constructor of M is

also the top-level constructor for N . We do by finding a path through M and using the

hypothesis that M and N share the same paths to find the same path in N . The top-level

constructor of that path will determine the top-level constructors of M and N . However,

this requires that we can always find a path through a term which we formalize this as the

following lemma.

∀L,K,M,P. ctxs L K ⊃ (L
term M) ⊃ ∃P. (K
path M P)

The proof of this lemma is by induction on (L
term M).

There is one last complication in the proof of path equivalence which comes from the

inductive case concerning abstractions. Suppose M = abs R and N = abs R′. Here we

know

∀P. (K
path (abs R) P) ⊃ (K
path (abs R′) P)

but in order to use the inductive hypothesis we must show

∀P. (path x p :: K
path (R x) P) ⊃ (path x p :: K
path (R′ x) P)

where x and p are nominal constants. Now the problem is that when we go to prove this

latter formula, the ∀R rule says that we must replace P by P ′ x p for some new eigenvariable

P ′. Note that P ′ is raised over both x and p even though the dependency on x must be

vacuous. We must prove this vacuity to finish this case of the proof, and thus we need the

following lemma.

∀K,M,P.∇x, p. (path x p :: K
path (M x) (P x p)) ⊃ ∃P ′.(P = λz.P ′)

This is proved by induction on the path judgment. With this issue resolved, the rest of the

path equivalence proof is straightforward.

As we have seen, the path equivalence property is expressed naturally in our framework

through the use of a formula with a nested universal quantifier and implication. We briefly

discuss the adequacy considerations regarding such a formula. The goal is to use the

7.3. PATH EQUIVALENCE FOR λ-TERMS 126

path equivalence property proven in G in order to prove the path equivalence property for

the object system. To do this, we need to show that the hypotheses we have about the

object system imply that there are proofs in G of the corresponding hypotheses for the

formalization of the path equivalence problem; if we can show this, then we will obtain the

desired result by using the bijectivity of the mappings for terms. Looking more carefully at

the hypothesis, we see that the main concern is showing that if every path in a λ-term m

is a path in another λ-term n then the following is provable in G:

∀P. (
path ψ(φ(m)) P) ⊃ (
path ψ(φ(n)) P) (7.1)

Here φ is the bijection between object terms and their specification logic representations,

and ψ is the bijection between specification logic terms and their meta-logic representations.

To complete this discussion, we provide a sketch of how a proof of (7.1) might be con-

structed. We start with the knowledge that every path in m is a path in n. Then, assuming

that the specification of path is adequate, we know that whenever ∆ ` path φ(m) φ(p)

has an hH2 derivation, it must be that ∆ ` path φ(n) φ(p) also has an hH2 derivation

where ∆ is the specification of path and term. By the adequacy of seq established in The-

orem 6.5.1, we know that whenever
 path ψ(φ(m)) ψ(φ(p)) is provable in G, it must be

that
path ψ(φ(n)) ψ(φ(p)) is also provable in G. We will use this knowledge shortly. Now

to prove (7.1) in G we start by applying the ∀R and ⊃R rules. Then we repeatedly apply

appropriate left rules starting with the assumption
path ψ(φ(m)) P . Since ψ(φ(m)) has

no eigenvariables and path always deconstructs its first argument, this repeated application

of left rules can be made to result only in sequents with no formulas on the left and where

P is instantiated with a term such that
path ψ(φ(m)) P is provable in G. Now using our

knowledge from before and the assumption that φ and ψ are bijections, it must be that

path ψ(φ(n)) P is provable in G. This is exactly the form of the right side of each of the

sequents which results from the repeated application of left rules. Thus each such sequent

must be provable, and therefore (7.1) must also be provable in G.

7.4. CONVERSION BETWEEN HOAS AND DE BRUIJN NOTATION 127

add z C C.

add A B C ⊃ add (s A) B (s C)

ho2db M D M ′ ⊃ ho2db N D N ′ ⊃ ho2db (app M N) D (dapp M ′ N ′)

depth X DX ⊃ add DX X ′ D ⊃ ho2db X D (dvar X ′)

(∀x.depth x D ⊃ ho2db (R x) (s D) R′) ⊃ ho2db (abs R) D (abs R′)

Figure 7.6: Specification of translation between HOAS and de Bruijn notation

7.4 Conversion between HOAS and de Bruijn Notation

De Bruijn notation is a first-order representation of binding which uses numeric indices

to associate variable occurrences with their binders. More precisely, the index denoting

a variable occurrence corresponds the number of abstractions between the occurrence and

its binder. In this section we describe a translation between higher-order abstract syntax

representation and de Bruijn notation for untyped λ-terms, and we prove that this transla-

tion is deterministic in both directions. This example highlights the use of a definition for

describing a context which carries more than just variable freshness information.

We start by introducing the type tm for the higher-order abstract syntax representation

of untyped λ-terms with the constructors app : tm→ tm→ tm and abs : (tm→ tm) → tm.

For natural numbers we use the type nt with constructors z : nt and s : nt → nt. Finally,

for de Bruijn notation terms we introduce the type db with the following constructors.

dabs : db→ db dapp : db→ db→ db dvar : nt→ db

We translate from higher-order abstract syntax to de Bruijn notation as follows. We

walk over the structure of the term keeping track of the number of abstractions we have

descended through. Whenever we come to an abstraction we use the context to record a

new variable for that abstraction and the abstraction depth at which it was encountered.

7.4. CONVERSION BETWEEN HOAS AND DE BRUIJN NOTATION 128

When we encounter a variable occurrence, we subtract the current abstraction depth from

the corresponding depth in the context to determine the index for that variable occurrence.

Using the predicates add : nt → nt → nt → o, depth : tm → nt → o, and ho2db : tm →

nt→ db→ o, the specification of the translation is presented in Figure 7.6.

Now there is a derivation of ho2db M z M ′ if and only if M is a higher-order abstract

syntax representation of the de Bruijn notation term M ′. Moreover, note that the trans-

lation is symmetric: we could start with either M or M ′ and construct a derivation of

ho2db M z M ′ to determine a value for the other.

Now we want to show that the above translation is deterministic in both directions. In

doing this, we will need to make certain properties of natural numbers explicit. For this we

make use of the following two definitions.

nat z
µ
= > le A A

µ
= >

nat (s A)
µ
= nat A le A (s B)

µ
= le A B

Along with these we prove the following arithmetic properties by straightforward induction.

∀A,B. le (s A) B ⊃ le A B

∀A. nat A ⊃ le (s A) A ⊃ ⊥

∀A,B,C. (
add A B C) ⊃ le B C

∀A1, A2, B, C. nat C ⊃ (
add A1 B C) ⊃ (
add A2 B C) ⊃ (A1 = A2)

∀A,B1, B2, C. (
add A B1 C) ⊃ (
add A B2 C) ⊃ (B1 = B2)

Note that we have made the assumption nat explicit in some of these to provide a target

for induction.

Derivations of ho2db will construct contexts of the form

depth xn (sn z) :: . . . :: depth x2 (s (s z)) :: depth x1 (s z) :: depth x0 z :: nil

where each xi is unique. Moreover, the numbers associated with each xi will also be

unique since they are sequential. Each of these uniqueness properties will be needed to

7.4. CONVERSION BETWEEN HOAS AND DE BRUIJN NOTATION 129

show determinacy for one or the other direction of the translation. We can describe these

contexts with the following definition.

dctx nil z
µ
= > (∇x.dctx (depth x D :: L) (s D))

µ
= dctx L D

The corresponding lemma for dctx is as follows

∀E,L,D. dctx L D ⊃ member E L ⊃ ∃X,DX . (E = depth X DX) ∧ name X

The proof is by induction on the member judgment. One complication related to contexts

arises when we call add from within ho2db: the add judgments inherits the context from

ho2db. This is a problem since all of our lemmas about add assume that it has an empty

context. We can fix this by proving the following lemma.

∀L,D,A,B,C. dctx L D ⊃ (L
add A B C) ⊃ (
add A B C)

This is proved by a simple induction on the add judgment.

Now let us consider the determinacy proof going from higher-order abstract syntax to

de Bruijn notation. For this, we need the following lemma which says that each variable in

the context has a unique index associated with it.

∀L,D,X,D1, D2. dctx L D ⊃

member (depth X D1) L ⊃ member (depth X D2) L ⊃ (D1 = D2)

This is proved by a straightforward induction on one of the member hypotheses. Then we

can prove the generalized determinacy result:

∀L,M,M ′
1,M

′
2, D. dctx L D ⊃

(L
ho2db M D M ′
1) ⊃ (L
ho2db M D M ′

2) ⊃ (M ′
1 = M ′

2).

This is proved by induction on one of the ho2db judgments. We then apply this general-

ization with L = nil and D = z to get the specific determinacy result we care about.

7.5. FORMALIZING TAIT-STYLE PROOFS FOR STRONG NORMALIZATION 130

To prove determinacy in the other direction we need a lemma which says that each

index in the context has a unique variable associated with it. We can state this as

∀L,D,X1, X2, DX . dctx L D ⊃

member (depth X1 DX) L ⊃ member (depth X2 DX) L ⊃ (X1 = X2).

This is proved by induction on one of the member hypotheses, however we need an addi-

tional result about the restrictions on indices in the context for the proof to go through.

Specifically, the following lemma is required.

∀L,D,DX , X. dctx L D ⊃ member (depth X DX) L ⊃ le D DX ⊃ ⊥

This is proved by induction on the member hypothesis and in turn requires the following

result which follows by a simple induction.

∀L,D. dctx L D ⊃ nat D

With these lemmas in place, the generalized determinacy result is as follows.

∀L,M1,M2, D,M
′. dctx L D ⊃

(L
ho2db M1 D M ′) ⊃ (L
ho2db M2 D M ′) ⊃ (M1 = M2)

This is now proved by straightforward induction on one of the ho2db hypotheses, and again

we can substitution L = nil and D = z to obtain the specialized result.

7.5 Formalizing Tait-Style Proofs for Strong Normalization

Tait introduced the idea of a logical relation and showed how this could be used to pro-

vide an elegant proof of the strong normalization property for the typed λ-calculus [Tai67].

Girard subsequently generalized this idea to obtain a strong normalization result for the

computationally much richer second-order λ-calculus or System F [Gir72]. This style of ar-

gument has both an elegance and a sophistication that would be interesting to see captured

7.5. FORMALIZING TAIT-STYLE PROOFS FOR STRONG NORMALIZATION 131

type i

type A ⊃ type B ⊃ type (arrow A B)

of M (arrow A B) ⊃ of N A ⊃ of (app M N) B

type A ⊃ (∀x.of x A ⊃ of (R x) B) ⊃ of (abs A R) (arrow A B)

type A ⊃ of c A

step M M ′ ⊃ step (app M N) (app M ′ N)

step N N ′ ⊃ step (app M N) (app M N ′)

step (app (abs A R) M) (R M)

(∀x.step (R x) (R′ x)) ⊃ step (abs A R) (abs A R′)

Figure 7.7: Specification of typing and one-step reduction

in formalizations. We show in this section that our framework is up to the task by consid-

ering an encoding of the argument for the simply typed λ-calculus drawn from [GTL89].

One note, however, is that the strong normalization argument requires a definition for a

logical relation which does not satisfy our current stratification restriction. We strongly

believe that the stratification condition on definitions in G could be weakened to allow

this definition while preserving cut-elimination, but at present we have no corresponding

cut-elimination proof.

To encode the simply-typed λ-calculus we use the familiar types ty and tm along with

their constructors i, arrow, app, and abs. In Girard’s argument he assumes that we are

always working with open terms and can therefore always select a free variable at any type.

Rather than explicitly representing this style of reasoning, we opt to introduce a constant

c : tm which we allow to take on any type. This does not impair the adequacy of our final

result: if a term does not contain c then none of the terms it reduces to will contain it, and

7.5. FORMALIZING TAIT-STYLE PROOFS FOR STRONG NORMALIZATION 132

therefore c has no effect on normalization. The specification of typing (of : tm → ty → o)

and one-step reduction (step : tm → tm → o) is given in Figure 7.7. The specification

includes a predicate a predicate type : ty → o to recognize types, which we use in the

abstraction typing rule since this will be needed for later arguments. Also, we add a typing

clause for c to allow it to take on any type.

Strong normalization says that all reduction paths eventually terminate. We can suc-

cinctly encode this property in the following definition.

sn M
µ
= ∀M ′. (
step M M ′) ⊃ sn M ′

Note that there is no explicit base case for sn, but ifM has no reductions then (
step M M ′)

will be impossible and therefore sn M will hold. Also, we will see that structural induction

on the definition of sn corresponds to induction on the structure of the possible reductions

from a term. The adequacy of sn can be established in the same manner as adequacy for

the path equivalence application (Section 7.3). We can now state the goal of this section:

∀M,A. (
of M A) ⊃ sn M

The rest of this section describes definitions and lemmas necessary to prove this formula.

7.5.1 Typing and One-step Reduction

In order to reason about typing judgments, we need to make explicit the structure of the

contexts of such judgments. They are described by the following definition.

ctx nil
µ
= > (∇x.ctx (of x A :: L))

µ
= (
type A) ∧ ctx L

We then prove the corresponding lemma about context membership:

∀E,L. ctx L ⊃ member E L ⊃ ∃X,A. (E = of X A) ∧ name X ∧ (
type A)

The proof is by induction the the member hypothesis. Another auxiliary lemma we need

about typing says that we can extract type judgments from of judgments.

∀L,M,A. ctx L ⊃ (L
of M A) ⊃ (
type A)

7.5. FORMALIZING TAIT-STYLE PROOFS FOR STRONG NORMALIZATION 133

This is proved by induction on the of judgment and requires the following lemma which

says that type judgments ignore typing contexts.

∀L,A. ctx L ⊃ (L
type A) ⊃ (
type A)

This is proved by induction on the type judgment.

Now, the first real result we need is that one-step reduction preserves typing:

∀L,M,M ′, A. ctx L ⊃ (L
of M A) ⊃ (
step M M ′) ⊃ (L
of M ′ A).

The proof is by induction on the step judgment. Note that we have to generalize the typing

context since one-step reduction can take place underneath abstractions. Another useful

lemma is the following.

∀M. sn (app M c) ⊃ sn M

The proof is by induction on sn.

7.5.2 The Logical Relation

The difficulty with proving strong normalization directly is that it is not closed under

application, i.e., sn M and sn N does not imply sn (app M N). Instead, we must strengthen

the normalization property to one which includes a notion of closure under application. This

strengthened condition is called reducibility and is originally due to Tait [Tai67]. We say

that a term M reduces at type A if reduce M A holds where reduce is defined as follows:

reduce M i
µ
= (
of M i) ∧ sn M

reduce M (arrow A B)
µ
= (
of M (arrow A B)) ∧

(∀U. reduce U A ⊃ reduce (app M U) B)

Note that reduce is defined with a negative use of itself and therefore does not satisfy the

current stratification condition on definition. However, the second argument to reduce is

smaller in the negative occurrence, and thus there are no logical loops introduced by this

7.5. FORMALIZING TAIT-STYLE PROOFS FOR STRONG NORMALIZATION 134

definition. Intuitively, we can think of (λx.reduce x A) as defining a separate fixed-point

for each type A, and that these fixed-points are constructed based on induction on A.

An auxiliary notion used when discussing reducibility is called neutrality : a term is

called neutral if it is not an abstraction. We can define this directly as follows.

neutral M , ∀A,R. (M = abs A R) ⊃ ⊥

Now Girard lays out three properties of reducibility which we can formalize as follows.

(CR 1) ∀M,A. (
type A) ⊃ reduce M A ⊃ sn M

(CR 2) ∀M,M ′, A. (
type A) ⊃ reduce M A ⊃ (
step M M ′) ⊃ reduce M ′ A

(CR 3) ∀M,A. (
type A) ⊃ neutral M ⊃ (
of M A) ⊃

(∀M ′. (
step M M ′) ⊃ reduce M ′ A) ⊃ reduce M A

Each of these follows by induction on the type judgment. The proof of (CR 2) is straight-

forward, but the proofs (CR 1) and (CR 3) are more complicated. In particular, (CR 1)

depends on (CR 3) at types structurally smaller than A while (CR 3) depends on (CR 1)

at the same type A. As in the POPLmark application (Section 7.2) we can handle this by

stating a combined lemma and using ∧R∗ within the induction:

∀A. (
type A) ⊃

(∀M. reduce M A ⊃ sn M) ∧

(∀M. neutral M ⊃ (
of M A) ⊃

(∀M ′. (
step M M ′) ⊃ reduce M ′ A) ⊃ reduce M A)

The proof is by induction on the type judgment, and the (CR 1) portion of the proof is

relatively straightforward. In the (CR 3) portion, when A is an arrow type, say arrow A1 A2,

we need to show

∀U. reduce U A1 ⊃ reduce (app M U) A2.

From the (CR 1) inductive hypothesis on type A1 we can determine that sn A1 holds, and

then proof is by an inner induction on sn A1.

7.5. FORMALIZING TAIT-STYLE PROOFS FOR STRONG NORMALIZATION 135

The last reducibility lemma we need says that if for all reducible U of type A, M [U/x]

is reducible, then so is λx : A. M . For λx : A. M to be reducible requires showing that

for all reducible V that M V is reducible. Girard proves this by induction on the sum

of the lengths of the longest reduction paths from M and V . We can state this unfolded

reducibility lemma as follows.

∀V,M,A,B. (
of (abs A M) (arrow A B)) ⊃

sn V ⊃ sn (M c) ⊃ reduce V A ⊃

(∀U. reduce U A ⊃ reduce (M U) B) ⊃

reduce (app (abs A M) V) B

The proof of this formula is by induction on sn V with a nested induction on sn (M c).

Clearly reduce is closed under application and by (CR 1) it implies strong normalization,

thus we strengthen our desired normalization result to the following:

∀M,A. (
of M A) ⊃ reduce M A.

In order to prove this formula we will have to induct on the height of the proof of the typing

judgment. However, when we consider the case that M is an abstraction, we will not be

able to use the inductive hypothesis since reduce is defined only on closed terms, i.e., those

typeable in the empty context. The standard way to deal with this issue is to generalize

the desired formula to say that if M , a possibly open term, has type A then each closed

instantiation for all the free variables in M , say N , satisfies reduce N A. This requires a

formal description of simultaneous substitutions that can “close” a term.

7.5.3 Arbitrary Cascading Substitutions and Freshness Results

Given (L
 of M A), i.e., an open term and its typing context, we define a process of

substituting each free variable in M with a value V which satisfies the logical relation for

7.5. FORMALIZING TAIT-STYLE PROOFS FOR STRONG NORMALIZATION 136

the appropriate type. We define this subst relation as follows:

subst nil M M
µ
= >

(∇x.subst ((of x A) :: L) (R x) M)
µ
= ∃U. reduce U A ∧ subst L (R U) M

By employing nominal abstraction in the second clause, we are able to use the notion of

substitution in the meta-logic to directly and succinctly encode substitution in the object

language. Also note that we are, in fact, defining a process of cascading substitutions rather

than simultaneous substitutions. Since the substitutions we define (using closed terms) do

not affect each other, these two notions of substitution are equivalent. We will have to

prove some part of this formally, of course, which in turn requires proving results about the

(non)occurrences of nominal constants in our judgments.

One consequence of defining cascading substitutions via the notion of substitution in

the meta-logic is that we do not get to specify where substitutions are applied in a term.

In particular, given an abstraction abs A R we cannot preclude the possibility that a

substitution for a nominal constant in this term will affect the type A. Instead, we must

show that well-formed types cannot contain free variables which we formalize as

∀A.∇x. (
type (A x)) ⊃ ∃A′. (A = λy.A′).

This formula essentially states any dependencies a type has nominal constants must be

vacuous. A related result is that in any provable judgment of the form (L
 of M A), any

nominal constant (denoting a free variable) in M must also occur in L, i.e.,

∀L,M,A.∇x. ctx L ⊃ (L
of (M x) (A x)) ⊃ ∃M ′. (M = λy.M ′)

This is proved by induction on the of judgment.

Given these results about the (non)occurrences of nominal constants in judgments,

we can now prove fundamental properties of arbitrary cascading substitutions. The first

property states that closed terms, those typeable in the empty context, are not affected by

substitutions, i.e.,

∀L,M,N,A. (
of M A) ⊃ subst L M N ⊃ (M = N).

7.5. FORMALIZING TAIT-STYLE PROOFS FOR STRONG NORMALIZATION 137

The proof here is by induction on subst which corresponds to induction on the length of

the list L. The key step within the proof is using the lemma that any nominal constant

in the judgment (
 of M A) must also be contained in the context of that judgment.

Since the context is empty in this case, there are no nominal constants in M and thus the

substitutions from L do not affect it.

We must show that our cascading substitutions act compositionally on terms in the

simply-typed λ-calculus. For the term c this is almost trivial,

∀L,M. subst L c M ⊃ (M = c).

The proof is by induction on subst. For application we have the following.

∀L,M,N,U. ctx L ⊃ subst L (app M N) U ⊃

∃MU , NU . (U = app MU NU) ∧ subst L M MU ∧ subst L N NU

This is proved by induction on subst. Finally, for abstractions we prove the following, also

by induction on subst:

∀L,A,R,U. ctx L ⊃ subst L (abs A R) U ⊃ (
type A) ⊃

∃RU . (U = abs A RU) ∧

(∀V. reduce V A ⊃ ∇x. subst ((of x A) :: L) (R x) (RU V))

Here we have the additional hypothesis of (
 type A) to ensure that the substitutions

created from L do not affect A. At one point in this proof we have to show that the

order in which cascading substitutions are applied is irrelevant. The key to showing this is

realizing that all substitutions are for closed terms. Since closed terms cannot contain any

nominal constants, substitutions do not affect each other.

Finally, we must show that cascading substitutions preserve typing. Moreover, after

applying a full cascading substitution for all the free variables in a term, that term should

now be typeable in the empty context:

∀L,M,N,A. ctx L ⊃ subst L M N ⊃ (L
of M A) ⊃ (
of N A).

This formula is proved by induction on subst.

7.5. FORMALIZING TAIT-STYLE PROOFS FOR STRONG NORMALIZATION 138

7.5.4 The Final Result

Using cascading substitutions we can now formalize the generalization of strong normal-

ization that we described earlier: given a (possibly open) well-typed term, every closed

instantiation for it satisfies the logical relation reduce:

∀L,M,N,A. ctx L ⊃ (L
of M A) ⊃ subst L M N ⊃ reduce N A

The proof of this formula is by induction on the typing judgment. The inductive cases

are fairly straightforward using the compositional properties of cascading substitutions and

various results about reducibility. In the base case, we must prove

∀L,M,N,A. ctx L ⊃ member (of M A) L ⊃ subst L M N ⊃ reduce N A,

which is done by induction on member. Strong normalization is now a simple corollary

where we take L to be nil. Thus we have proved

∀M,A. (
of M A) ⊃ sn M.

Chapter 8

Related Work

There are many frameworks which can be used to specify, to prototype, and to reason about

computational systems. Some of these are designed specifically for this purpose while others

have a different motivation, but can achieve a similar result. In this chapter we present a

selection of these frameworks and contrast their capabilities with the framework put forth

in this thesis. As the contributions of this thesis are primarily in the reasoning part of the

framework, we shall give extra attention to this component in the comparisons.

Our framework is based on a two-level logic approach to reasoning. We have found this

to be very effective in practice, but one could use the logic G in a single-level logic fashion

as well. The frameworks in this chapter come in both varieties: some use a two-level logic

approach to which we can compare directly, while others use a single-level logic approach.

In either case, the differences due to the reasoning approach used are often overshadowed

by the differences in the treatment of binding. Thus we shall often say very little about the

reasoning approach except when comparing against another two-level logic framework.

We organize our comparison of frameworks around the techniques used to represent the

binding structure of objects. This is by far the most salient characteristic of the frameworks,

and has the largest effect on the succinctness and the quality of the corresponding reasoning.

Thus we will focus on issues such as the representation of binding, determining equality

modulo renaming of bound variables, capture-avoiding substitution, and representing judg-

ments with side-conditions related to binding. We will use the example of the simply-typed

λ-calculus from Section 1.2 to illustrate these issues. We will order our comparisons based

on the kind of support for binding provided by the framework. Specifically, we will look at

frameworks based on first-order, nominal, and higher-order representations.

139

8.1. FIRST-ORDER REPRESENTATIONS 140

8.1 First-order Representations

First-order representations provide no special treatment for binders. As a result, variables

must be encoded using strings or integers and binding aspects must be captured through

constructors. Further, mechanisms for manipulating and reasoning about binders must be

developed by interpreting the constructors representing them on a case-by-case basis by by

users of the framework. On the other hand, the benefit of first-order representations is that

many mature frameworks exist which support this type of representation. For example,

languages like SML and Prolog can effectively prototype specifications written using a

first-order representation, while in the reasoning phase, theorem provers like Coq [BC04],

ACL2 [KMM00], and HOL [Har96] can operate directly on first-order representations. Our

discussion in this section will focus not on any particular framework but rather on the

benefits and costs of various first-order representations. In particular, we look at the three

most common first-order representations: named, nameless, and locally nameless.

8.1.1 Named Representation

The most direct and naive approach to encoding binders is to assign each variable a fixed

name. For instance, the term (λx : i. x) might be encoded as (abs “x” i (var “x”)). Here we

have picked a particular name, x, to denote the otherwise arbitrary variable in the function.

This representation is very natural, but it creates at least three major problems for users.

First, equality modulo the renaming of bound variables is not reflected in the represen-

tation. For example, the terms (λx : i. x) and (λy : i. y) have two different representations,

(abs “x” i (var “x”)) and (abs “y” i (var “y”)). Thus users of a named representation must

explicitly define a notion of equivalence for each syntactic class with binding. This becomes

particularly painful in reasoning where the user must establish many equivalence lemmas.

Second, no support is provided for capture-avoiding substitution over binding, and in-

stead users must define this substitution on their own. Naive capture-avoiding substitution

is not structurally recursive, and thus one must resort to well-founded recursion or instead

8.1. FIRST-ORDER REPRESENTATIONS 141

use simultaneous capture-avoiding substitution. Either choice results in additional over-

head during reasoning when the user must prove various substitution lemmas. Moreover,

substitution must be defined for each class of syntactic objects with binding, and the proofs

of related lemmas must be repeated.

Third, no logical support is provided for treating side-conditions related to variable

binding structure. An example of such a side-condition is manifest in the following rule for

typing abstractions in the λ-calculus:

Γ, x : a ` r : b
Γ ` (λx :a. r) : a→ b

x /∈ dom(Γ).

With the named representation, users must devise their own mechanisms for treating such

side-conditions. A naive approach in the case of the rule above is to select any fresh variable

name, but this can lead to structural induction principles which are too weak to be usable

in practice. Moreover, one must still prove that the choice for a variable name is truly

arbitrary.

Large-scale developments have been constructed using the named representation, and

the result is often that the binding issues overwhelm the development. For instance, VanIn-

wegen used a named representation to encode and reason about SML in the HOL theorem

prover [Van96]. She noted:

Proving theorems about substitutions (and related operations such as alpha-

conversion) required far more time and HOL code than any other variety of

theorems.

8.1.2 Nameless Representation

A more sophisticated first-order representation encodes each variable occurrence with an

integer denoting the location of its binder relative to the binding structure around it. Com-

monly, one uses the distance from the variable occurrence to its binder, measured in terms

of other binders above it in the abstract syntax tree. For example, the term (λx : i. (λy : i. x))

would be encoded as (abs i (abs i (var 2))). Here the 2 denotes that the binder for this

8.1. FIRST-ORDER REPRESENTATIONS 142

variable occurrence is two binders away. This kind of representation originates from de

Bruijn [dB72] and hence is often referred to as the de Bruijn representation.

The benefit of a nameless representation over a named representation is that α-equivalent

terms, i.e., those that differ only in the names of bound variables, are syntactically iden-

tical. Thus in the reasoning phase the user does not need to prove additional properties

about α-equivalence.

The nameless representation shares many problems with the named representation and

has some additional ones as well. The nameless representation still requires users to define

capture-avoiding substitution themselves, and now this makes it necessary to reason about

the correctness of the arithmetical operations that have to be carried out for maintaining the

consistency of the representation when effecting substitutions. A new difficulty introduced

by the nameless treatment of variables is that representations become hard for humans to

read, since different occurrences of the same variable in them may be rendered into different

integers depending on the contexts in which they appear. This also has an impact on the

statements of lemmas and theorems that often need to explicitly talk about re-numberings

and other arithmetical operations over terms, thereby diminishing clarity.

The nameless representation has been used in large-scale developments. Hirschkoff, for

instance, used it to formalize the π-calculus in the Coq theorem prover [Hir97]. He found

that the nameless representation simplified much of the work with bound variables versus

the named representation, but the treatment of binding within it still overwhelmed the

development. He concluded:

Technical work, however, still represents the biggest part of our implementation,

mainly due to the managing of De Bruijn indexes [...] Of our 800 proved lemmas,

about 600 are concerned with operators on free names.

8.1.3 Locally Nameless Representation

The most promising first-order representation is a hybrid approach which uses the nameless

representation for bound variables and the named representation for free variables. This is

8.1. FIRST-ORDER REPRESENTATIONS 143

called the locally nameless representation [ACP+08, Cha09].

The locally nameless representation has advantages over both the named and name-

less representations. First, α-equivalent terms are syntactically equal, as in the nameless

representation. Second, the statement of lemmas and theorems rarely need to talk about

arithmetical operations over terms. Third, since free and bound variables are syntacti-

cally distinguished, capture-avoiding substitution can be defined in a straightforward and

structurally recursive way.

Like other first-order approaches, the locally nameless representation still requires users

to define capture-avoiding substitution and prove various lemmas about it. A drawback

specific to this representation is that users must provide functions which bind and unbind

variables (i.e., implementing the interface between the named and nameless representa-

tions). Constructing or deconstructing a term with binding requires going through these

functions in order to ensure that certain invariants regarding free and bound variables are

maintained. Finally, users must show that these binding and unbinding functions interact

with substitution in appropriate ways. Recent progress has been made in automatically

generating this type of infrastructure [AW09].

The locally nameless representation has some analogs to our own representation in

the following sense: we represent bound variables using λ-terms and free variables using

nominal constants. However, we provide capture-avoiding substitution for free to the user.

Unbinding and binding of terms (e.g., switching between λ-binders and nominal constants)

is handled using application and nominal abstraction, respectively. In the locally nameless

approach one occasionally needs to prove that free variables can be renamed while preserving

provability, while that is an innate property of our framework due to our treatment of

nominal constants. The fundamental contrast is that the locally nameless representation

allows one to use an existing theorem prover, but requires significant binding infrastructure

to be constructed, while our representation requires a new theorem prover, but incorporates

binding infrastructure into the theory underlying the prover.

8.2. NOMINAL REPRESENTATIONS 144

8.2 Nominal Representations

The nominal representation of binding is a mild extension of first-order abstract syntax with

support for α-equivalence classes. The basis of the nominal representation is an infinite

collection of names called atoms together with a freshness predicate—denoted by the infix

operator #—between atoms and other objects and a swapping operation involving a pair

of atoms and a term. Binding is represented by means of a term constructor 〈·〉· which

takes an atom and a term. The nominal representation then assumes certain properties of

swapping and freshness with respect to this constructor so that α-equivalence classes are

respected. This representation is also referred to as nominal abstract syntax.

Nominal representations were first introduce through the nominal logic of Pitts [Pit03],

which is an extension of first-order logic. When working with nominal abstract syntax in

a logical setting it is often desirable to quantify over fresh atoms. In this regard, a useful

consequence of the properties assumed for freshness and swapping is that the following

equivalence holds for any formula φ whose free variables are a, x1, . . . , xn where a is of atom

type:

∃a.(a#x1 ∧ . . . ∧ a#xn ∧ φ) ≡ ∀a.(a#x1 ∧ . . . ∧ a#xn ⊃ φ)

Nominal logic introduces the N-quantifier by defining Na.φ as one of the above formulas.

This is very reminiscent of the properties shown for the ∇-quantifier in Section 3.5.1, and

in general, the ∇-quantifier and the N-quantifier behave very similarly.

The most prominent specification and prototyping language based on nominal repre-

sentations is αProlog, an extension of Prolog that accords a proof search interpretation of

a version of Horn clauses in nominal logic [CU03]. In particular, αProlog allows the N-

quantifier to appear in the heads of clauses. This allows αProlog to describe specifications

which involve a finer treatment of names than what is possible in our specification logic of

hH2. However, it seems that αProlog clauses bear a close resemblance to the patterned

form of definitions in G which allow the ∇-quantifier in the head (see Section 3.4). While

a formal encoding of αProlog clauses as definitions in G is left to future work, we note that

8.2. NOMINAL REPRESENTATIONS 145

such definitions can be animated using a system similar to Bedwyr [BGM+07], a specifica-

tion tool based on a simple proof search procedure for the Linc logic (one of the precursors

to G).

Nominal logic does not have a parallel to the fixed-point interpretation of definitions in

G, and thus nominal logic cannot be used directly to reason about specifications written

within it. Instead, such reasoning must be carried out indirectly by first formalizing the

relevant nominal logic specification in a richer logic such as that underlying a system like

Coq or Isabelle/HOL and then using the capabilities of that logic [ABW06, UT05]. The

most prominent development in this area is the Nominal package for Isabelle/HOL. This

package allows for an easy definition of syntactic objects with α-equivalence classes. This

construction is conducted completely within the HOL logic and can thus be trusted. More-

over, the construction of these α-equivalence classes and some boilerplate results about

them are provided automatically via the macro-like features of Isabelle. This includes a

strong induction principle which matches the one used in typical “pencil and paper” proofs,

and it includes a recursion combinator which allows capture-avoiding substitution to be

defined structurally.

The nominal approach has a number of drawbacks. First, binding is only simulated by

means of a distinguished constructor and thus substitution is not automatically provided.

Instead, users must define it on their own for both specification and reasoning, and conse-

quently, must prove substitution lemmas relative to their definition of substitution. Second,

in order to use functions and predicates in the reasoning phase, one must prove properties

which state that name swapping does not change the results of a function or the provability

of a predicate—a property which is enforceable statically for definitions of predicates in

G. Third, to effectively use the nominal representation in reasoning, one really needs an

existing package which automates the construction of α-equivalence classes and proves the

related lemmas. Although such a mature package exists for Isabelle/HOL, other theorem

provers may not have the automation capabilities necessary to effectively construct such a

package. Finally, an often trumpeted benefit of nominal representations is that they allow

8.3. HIGHER-ORDER REPRESENTATIONS 146

a first-class treatment of names, but the analyses enabled by that treatment seem no more

powerful than what is now provided by nominal abstraction. A formal validation of this

observation is left to future work.

8.3 Higher-order Representations

Higher-order representations use the meta-level function space to encode binding in object

languages, e.g., by using data constructors such as abs : (tm → tm) → tm. This allows

the object representation to inherit all the properties of binding from the meta-level. How-

ever, traditional tools often have a very strong notion of equality (e.g., incorporating case

analysis or fixed-point combinators) which makes them ill-suited to encoding higher-order

representations. For this reason, we choose to focus here on frameworks based on the λ-

tree syntax representation of binding which assumes only αβη-conversion in determining

equality [Mil00]. This allows an adequate representation of object languages with binding,

and provides free α-conversion and capture-avoiding substitution for those languages. The

cost is that usually new frameworks must be developed which support the λ-tree syntax

representation. In this section we discuss such frameworks which have been implemented.

8.3.1 Hybrid

Hybrid is a system which aims to support reasoning over higher-order abstract syntax

specifications using traditional theorem provers such as Coq and Isabelle/HOL [FM09a].

The basic idea of the system is translate higher-order abstract syntax descriptions into

an underlying de Bruijn representation. The logic of the theorem prover then serves as

the meta-logic in which reasoning is conducted. This approach necessarily produces more

overhead during reasoning due to the need occasionally to reason about the effects of the

translation. However, there is good reason to believe that most of this can be automated

in the future. Also, Hybrid is often used in a two-level logic approach using a specification

logic which is essentially identical to our own hH2 specification language.

The Hybrid system, by design, lacks a meta-logic with the tools to elegantly reason over

8.3. HIGHER-ORDER REPRESENTATIONS 147

higher-order abstract syntax descriptions. Most notably, the meta-logics used by Hybrid

lack a device like the ∇-quantifier for reasoning about open terms and generic judgments.

Recent work has suggested that such a device is not necessary for simple reasoning tasks

such as type uniqueness arguments [FM09b]. Yet, it is unclear how the naive approach used

in this work will scale to problems such as those proposed by the POPLmark Challenge

[ABF+05]. In such problems one needs to recognize as equivalent those judgments which

differ only in the renaming of free variables. Such a property is built into our meta-logic

by representing such free variables by nominal constants, while in Hybrid one will have to

manually develop and prove properties about notions of variable permutations.

8.3.2 Twelf

Twelf [PS99] is a system for specifying and reasoning with λ-tree syntax using LF, a depen-

dently typed lambda calculus [HHP93]. In the LF methodology, object language judgments

are encoded as LF types, and rules for making judgments are encoded as LF constructors

for the corresponding types. The LF terms inhabiting these types are then derivations of

judgments. Thus LF constitutes a specification language. Twelf implements an operational

semantics for constructing LF terms which provides a means of animating LF specifications.

Since dependent types can be exploited in LF specifications, these can often be more

elegant than those described in our simply-typed setting. For example, one can provide a

definition of simply-typed λ-terms where the type of a λ-term is reflected in the type of

its LF representation. When it is done in this way, one does not need to talk about pre-

terms and provide a separate typing judgment for selecting well-typed terms. Moreover,

this allows some properties to be obtained for free. For example, we can define evaluation

over this representation of simply-typed λ-calculus so that type preservation is a direct

consequence of the type of the evaluation judgment (i.e., evaluation is defined to take a

λ-term with a particular type and return another λ-term with the same type). However, in

terms of expressive power, the simply-typed and dependently-typed specification languages

are equivalent [Fel91]. Thus when referring to the example of the simply-typed λ-calculus

8.3. HIGHER-ORDER REPRESENTATIONS 148

we will assume that it is encoded in LF in the same style as in our framework.

Since derivations of judgments are LF terms, we can think of defining further judgments

over such terms. For example, suppose that we encode the simply-typed λ-calculus in

LF including the type constructors of and eval corresponding to typing and evaluation

judgments and the corresponding term constructors for forming those judgments. Then we

could define a judgment named preserve which holds of a derivation of (of t a), a derivation

of (eval t v), and a derivation of (of v a). Viewing this judgment as one which takes the

first two arguments and produces the third, we could provide term constructors for preserve

which describe how derivations of (of t a) and (eval t v) are used to reconstruct a derivation

of (of v a). Twelf can then check that this judgment is total in its first two arguments, i.e.,

it is defined and terminates for all inputs. If so, we can think of preserve as a proof of the

meta-property that evaluation preserves typing in the simply-typed λ-calculus. This style

of encoding is known as a Twelf meta-theorem.

The Twelf approach of encoding meta-theorems as LF judgments has some serious

limitations. For example, consider the following statement of the type preservation theorem:

“forall derivations of (of t a) and forall derivations of (eval t v) there exists a derivation of

(of v a).” This theorem was encoded in an LF judgment which took the first two derivations

as input and produced the last one as output. In general, a judgment representing a Twelf

meta-theorem has inputs corresponding to ∀ quantifiers and outputs corresponding to ∃

quantifiers. Therefore, meta-theorems are restricted to a ∀∃ quantification structure.

A related issue with the Twelf approach is that Twelf does not have a definition mecha-

nism. Instead one has to use LF judgments to describe the properties of a specification. This

is severely limiting since LF judgments can only describe behaviors that may happen and

cannot describe those which must happen. For example, to state the strong normalization

property for the simply-typed λ-calculus in Section 7.5, we used the following definition:

sn M
µ
= ∀M ′. (
step M M ′) ⊃ sn M ′

This says that in order for sn M to hold, every term to which M can convert must also

satisfy sn. Such a definition is not possible with Twelf. A similar issue arises if one tries to

8.3. HIGHER-ORDER REPRESENTATIONS 149

encode the path equivalence property for λ-terms from Section 7.3. The hypothesis in this

case is that every path in one λ-term must occur in the other λ-term.

There is also a practical issue of relying on Twelf’s totality checks in order to ensure that

a meta-theorem is correct. It is possible, for example, for one to fill out the details of a meta-

theorem so that totality holds, but for Twelf’s checker to be unable to determine totality.

In such a case, one must confront various options: 1) try to rewrite the meta-theorem so

that totality is more evident, 2) wait for a new version of Twelf’s totality checker that may

be more powerful, or 3) do a careful hand proof of totality. The first option is not always

possible, and the latter two are fairly undesirable.

An interesting comparison between the Twelf approach and our own is in the treatment

of judgment contexts. In our approach, the definition of seq includes a list argument which

keeps track of the context of a judgment and makes it explicit during reasoning. We then

define a predicate like ctx which will recognize the structure of such a context, and we

prove various inversion lemmas about membership in that context. In Twelf, such contexts

are called regular worlds, and although they are declared explicitly, they are kept implicit

during reasoning. The Twelf machinery automatically provides the associated inversion

properties of regular worlds. Like most automation, this is very useful when it works

and rather bothersome when it does not. For instance, in the conversion between higher-

order abstract syntax and de Bruijn representations from Section 7.4, we work with a

context which has an arithmetical property which depends on the judgment being made.

Specifically, the context must not contain de Bruijn indices which are greater than the depth

at which the conversion judgment is being made. This is needed to ensure uniqueness of de

Bruijn indices when descending underneath abstractions. The regular worlds mechanism

of Twelf does not allow the description of a context to the depend on the arguments of

the judgments made in that context. Thus one cannot express this property directly and

must instead find a way to work around this limitation, e.g., by making the context explicit

[Cra08].

8.3. HIGHER-ORDER REPRESENTATIONS 150

8.3.3 Delphin

Delphin is a higher-order functional programming language which operates over LF terms

and can serve as a meta-logic for LF specifications [Pos08]. Delphin makes a distinction

between LF functions which are purely representational (i.e., that must be parametric in

their argument) and Delphin functions which are computational (i.e., that may perform

case analysis on their argument). A Delphin meta-theorem is a Delphin function which is

total. For example, the property of type preservation for the simply-typed λ-calculus is

encoded as a function which takes LF terms denoting derivations of (of t a) and (eval t v)

and returns an LF term denoting a derivation of (of v a). Like Twelf, it is possible for

Delphin not to be able to automatically determine totality of a meta-theorem, and then

one must either rewrite the meta-theorem, wait for a stronger totality checker, or perform

the totality check by hand.

The central way in which Delphin improves on Twelf is that it treats Delphin functions

as first-class, and thus more sophisticated properties can be encoded during reasoning. For

example, the path equivalence of λ-terms from Section 7.3 can be encoded fairly directly

in Delphin. The property that all the paths in the λ-term s must also exist in the λ-term

t can be represented in Delphin by a function which takes a judgment like (path s p) and

returns a judgment like (path t p), and such a function can be an input (i.e., hypothesis)

to a Delphin meta-theorem stating the path equivalence property.

Delphin also uses first-class functions to treat the contexts of specification judgments.

When a Delphin meta-theorem is written, it may make a recursive call to itself underneath

some additional abstractions. These abstractions create new variables for which the Delphin

meta-theorem must be defined. To achieve this, the Delphin meta-theorem carries around

an argument which is a function mapping such variables to an appropriate invariant. This

approach to representing contexts is more flexible than the regular worlds approach of

Twelf. Specifically, in the example of conversion between higher-order abstract syntax and

de Bruijn representations from Section 7.4, the dependency between the judgment and the

context in the judgment can be made explicit in Delphin. Thus one can prove that the

8.3. HIGHER-ORDER REPRESENTATIONS 151

conversion is deterministic in a fairly straightforward way in Delphin.

Despite the additional flexibility that Delphin provides in working with the contexts of

judgments, it still does not make those contexts explicit as in our approach. Thus, some

operations over contexts which we can perform easily in our framework are difficult or

impossible in the Delphin approach. For example, in our formalization of Girard’s proof of

strong normalization for the simply-typed λ-calculus in Section 7.5, we defined a process of

closing a term by instantiating all free variables with closed terms of the appropriate types.

This definition was based on walking over the context of the typing judgment of such a

term, something that is not possible to do in Delphin.

8.3.4 Tac

Tac is a general framework for implementing logics. For the purposes of our present discus-

sion, we will focus on the particular logic µLJ which is the most popular logic implemented

in Tac [BMSV09b, Bae08a]. The logic µLJ comes from the same line of logics as G and

differs primarily in the semantics attributed to the ∇-quantifier. We recall that the in-

terpretation of ∇ in G is derived from adding to FOλ∆IN the exchange and strengthening

properties related to this quantifier that are embodied in the following equivalences:

∇x.∇y.F ≡ ∇y.∇x.F ∇x.F ≡ F , if x does not occur in F

The µLJ logic eschews these additions, strengthening the interpretation of the ∇-quantifier

instead through a capability to lift its predicative effect over types. At a practical, proof

construction level, whereas the ∇-quantifier can be treated in G using nominal constants, in

µLJ it must be treated by using explicit local contexts for each formula in a sequent. The

size and ordering of the local context is always respected and instantiations for existentially

or universally quantified variables may only use those generic variables which appear in the

local context.

The µLJ logic does not have an operation like nominal abstraction and instead treats

only equality. The issue with extending µLJ to treat nominal abstraction is that the pro-

8.3. HIGHER-ORDER REPRESENTATIONS 152

cess of nominal capture-avoiding substitution (through which the nominal abstraction rules

are defined) is based on carrying substitution information from one formula into all other

formulas in a sequent. In the minimal setting, however, such information may be invalid

in other formulas because the local signatures do not match. For example, a substitution

which replaces M by a variable x from the local context does not make any sense in a

formula which contains M but has an empty local context. As a result of this lack of nomi-

nal abstraction, the descriptions of properties such as the binding structure of specification

judgment contexts in µLJ is less direct and thus harder to work with (see Figure 7.1 for

an example). Furthermore, without nominal abstraction, one cannot directly formulate the

invariants necessary to perform induction underneath ∇ (see Section 5.3.1). An ability of

equivalent power is obtained in µLJ instead through the lifting capability mentioned earlier

[Bae08b]. From a practical perspective, however, we find that reasoning based on lifting is

often much more complicated than reasoning based on traditional induction combined with

nominal abstraction.

The benefit of minimal treatment of the ∇-quantifier is that the local context of a

formula can be used to provide an adequate encoding for certain types of similar contexts

in an encoding. This allows certain encodings to be shallower or to have fewer adequacy

side-conditions than their counterparts in our setting. For example, in the statement of

adequacy for our encoding of the specification logic into the predicate seq in Section 6.5.1

we have the requirement that ∇-quantification is allowed only at inhabited types. This is

necessary since if τ were an un-inhabited type then ∃τx.> should not be provable in the

specification logic, and yet its encoding as a seq judgment is provable if ∇-quantification is

allowed at type τ . The issue is that the specification logic existential quantifier is mapped

to the meta-logic existential quantifier and the latter allows instantiations containing any

nominal constants even if there are no other inhabitants at that type. If we take the

definition of seq as being in µLJ then it should be an adequate encoding of the specification

logic without any conditions. Thus the local context in the minimal approach provides an

adequate representation of the variable signature of an hH2 sequent. To achieve the same

8.3. HIGHER-ORDER REPRESENTATIONS 153

condition-less adequacy for G would require explicitly carrying around a representation of

the specification logic signature and using this to restrict the type of instantiations for meta-

logic universal and existential quantifiers. This approach would require more work due to

the need to establish properties about the signature, but this is the same work which is

already required in the minimal approach. Moreover, this explicit encoding of the signature

would allow one to directly analyze and interact with the signature (e.g., quantifying over

all signatures of a certain type) which is not possible in the minimal approach.

Chapter 9

Conclusion and Future Work

This thesis has concerned the development of a framework for specifying, prototyping, and

reasoning about formal systems. The specific framework that has been of interest has two

defining characteristics. First, it has been based on an intertwining of two distinct logics for

specification and for reasoning about specifications. The specification logic has the prop-

erty of also being executable, thereby rendering descriptions written in it transparently into

prototypes of the formal systems that are encoded. The reasoning logic has the capability

of directly embedding the specification logic; specifications themselves are represented in-

directly through this medium. This is, in fact, the style of encoding that is developed here.

The benefits of this approach are that the same specifications can be used for prototyp-

ing and reasoning and generic properties of the specification logic can be proved and used

to advantage in reasoning. The second important characteristic of our framework is that

uses a higher-order treatment of binding constructs, supporting this approach in both the

specification and the reasoning levels through targeted logical devices.

The focus in this thesis has been on the reasoning component of the above framework.

In this context, we have developed the logic G that provides the mechanism of fixed-point

definitions that can also be interpreted inductively or co-inductively and that has sophis-

ticated devices for dealing with higher-order representations of syntactic constructs. An

important component of this logic is the notion of nominal abstraction that allows for the

reflection into definitions of properties of objects introduced into proofs in the course of

treating binding constructs. We have used G as the basis of an interactive theorem prover

called Abella and have explored a two-level logic approach to reasoning about formal sys-

tems in its context. This system has been applied to several interesting reasoning examples

154

9.1. MORE PERMISSIVE STRATIFICATION CONDITIONS FOR DEFINITIONS 155

and has yielded appealing solutions in most of these situations.

While several promising results have been obtained in this thesis, there remain many

more interesting things still to be done. We sketch below some possible ways in which

the framework for specification, prototyping, and reasoning that has been considered can

be further enriched. The kind of work involved in realizing these possibilities ranges from

foundational considerations for increasing the expressive power of the meta-logic to more

implementation oriented efforts to better facilitate the reasoning process.

9.1 More Permissive Stratification Conditions for Definitions

The stratification condition for definitions in G is fairly simplistic, and it rules out seemingly

well-behaved definitions such as the reducibility relation used in logical relations arguments

(see Section 7.5). One could imagine a more sophisticated condition which would allow

definitions to be stratified based on an ordering relation over the arguments of the predicate

being defined. The proof theoretic arguments needed to prove cut-elimination for a logic

with such definitions seem rather delicate, particularly since we allow substitutions which

may interfere with any ordering based on term structure. From the perspective of developing

the theory for such an extension, a first step might be to realize the addition to the Linc−

logic [TM09]. Given the way the cut-elimination proof for G has been obtained from cut-

elimination for Linc−, if we can successfully carry out such an extension to Linc−, the

desired result relative to G might then follow easily.

There is also an interaction of this line of research with the development of induction

and co-induction. The strict notion of stratification that G uses ensures that each definition

describes a single fixed-point and the induction and co-induction rules operate on this

structure. However, if we weaken the stratification condition, then each definition can be

viewed as a possibly infinite collection of fixed-points. The rules for induction and co-

induction must be carefully adapted in light of this fact.

9.2. CONTEXT INVERSION PROPERTIES 156

(∇x.typeof (L x) x A) , ∇x. member (assm x A) (L x)

typeof L (app M N) B , ∃A. typeof L M (arr A B) ∧ typeof L N A

typeof L (abs A R) (arr A B) , ∇x. typeof ((assm x A) :: L) (R x) B

Figure 9.1: Typing judgment directly within G

9.2 Context Inversion Properties

When reasoning about specification judgments we often need to describe and utilize prop-

erties of the contexts in which those judgments are formed. This takes the form of stating

a definition describing those contexts, proving various inversion lemmas about membership

in those contexts, and then applying these lemmas at the appropriate times. Manually

stating, proving, and using these lemmas introduces a fair amount of overhead which seems

mundane enough that we might want to avoid it.

One option is to attack this problem with automation. One could imagine automati-

cally generating and proving inversion properties for those definitions which can be seen

as describing contexts. The inversion properties follow directly from the definitions, and

the proofs are by simple inductive arguments. These lemmas could then be automatically

applied anytime we have a member of such a context. However, it is unlikely that such

automation of these properties would be able to cope with more complicated properties of

contexts such as those used in the conversion between higher-order abstract syntax and the

de Bruijn representation (see Section 7.4).

Another option would be to devise an alternate version of the specification logic or of

its encoding in the meta-logic so that such context inversion properties are not needed as

often. It is unclear how such alternatives would be developed, but as an analogy, consider

the following. Typing for the simply-typed λ-calculus can be defined directly within G via

a definition of (typeof L M A) which holds when M has type A in the typing context L.

The clauses for this definition are presented in Figure 9.1. Using nominal abstraction, this

9.3. TYPES AND EXPLICIT TYPING 157

definition of typing directly precludes the possibility of looking anything up in the context

which is not of the form (assm x A) for some nominal constant x. Thus one does not

need to deal with superfluous cases when performing case analysis on a typing judgment.

Note, however, that uniqueness properties regarding the typing context would still need to

handled manually.

9.3 Types and Explicit Typing

The types in G play no role in reasoning except to restrict the valid instantiations of quan-

tifiers. Thus, for example, one cannot directly perform induction or case analysis on a term

based on its type. Instead, one must create a definition which recognizes terms of that type,

and then use induction or case analysis on that definition. This requires that one knows

that the definition holds on the term, which in turn may require carrying around more

explicit typing information in the specification or reasoning. All of this creates overhead

just to work effectively with types. For example, in formalizing Girard’s proof of strong

normalization for the simply-typed λ-calculus (Section 7.5) we had to create a specification

logic judgment which recognized well-formed types. This judgment was then carried around

during reasoning, and it even had to be put into the specification of the object language

typing judgment. We then had to prove a lemma which said that an object language type

could not contain any nominal constants.

One possible solution is to attach explicit typing information to every variable in the

specification and in reasoning. Ideally this should be done in such a way that the end user

would not need to deal with explicit typing information, but would be able to perform

operations like induction and case analysis based on the type of a term. A major difficulty

in such automation would be dealing with the contexts needed to recognize terms which

use higher-order abstract syntax. Multiple terms may have different contexts which have

a particular relationship to each other which needs to be maintained. It is not clear how

such information could be succinctly expressed.

9.4. ALTERNATE SPECIFICATION LOGICS 158

9.4 Alternate Specification Logics

One motivation for the two-level logic approach to reasoning is that it lets us use general

properties of a specification logic in reasoning about particular specifications. This approach

has been successful relative to the second-order hereditary Harrop formula logic. However,

different problem domains might require different specification logics. For example, a linear

specification logic that allows for transient judgments has been found useful in characterizing

properties of hardware [Chi95] and programming languages with references [MM02]. One

can imagine an extension of the Abella system which allows different specification logics to

be plugged in and used as particular reasoning tasks demand. Given the way our framework

is designed, judgments from these different specification languages would be able to co-exist

during reasoning.

9.5 Focusing and Proof Search

Recent research has been looking at techniques for guiding proof search in G-like logics

based on the notion of focusing [BM07, BMSV09a]. These techniques allow the automation

of a significant portion of the reasoning process by pruning redundant choices. For example,

it was proven that if an atomic judgment is to be inducted on during a proof, then this

induction can be done immediately. These techniques have been effectively realized in the

Tac theorem prover [BMSV09b]. The Abella system could also be extended to support this

type of automation. Moreover, one should investigate how this automation interacts with

the two-level logic approach to reasoning.

9.6 An Integrated Framework

The Teyjus system allows for animating descriptions in our specification logic and the Abella

system allows for reasoning about such descriptions. It would be worthwhile to combine

these systems into an integrated framework which enables a more fluid relationship between

the processes of specification and reasoning. In its simplest form, such an integration would

9.6. AN INTEGRATED FRAMEWORK 159

allow the different aspects of prototyping and reasoning to be invoked seamlessly from a

common description of a formal system. As an example of a deeper kind of integration

looked at from the perspective of the reasoning component, uses of the defR and defL rules

relative to the encodings of specifications within G can draw benefit from computations

within the specification logic. An important issue to be tackled in implementing such

relationships would be that of designing an interface that allows a smooth transition between

the different functionalities that Teyjus and Abella, the two currently separate components

of our framework, provide.

Bibliography

[ABF+05] Brian E. Aydemir, Aaron Bohannon, Matthew Fairbairn, J. Nathan Foster,
Benjamin C. Pierce, Peter Sewell, Dimitrios Vytiniotis, Geoffrey Washburn,
Stephanie Weirich, and Steve Zdancewic. Mechanized metatheory for the
masses: The POPLmark challenge. In Theorem Proving in Higher Order
Logics: 18th International Conference, number 3603 in LNCS, pages 50–65.
Springer-Verlag, 2005.

[ABW06] Brian Aydemir, Aaron Bohannon, and Stephanie Weirich. Nominal reasoning
techniques in Coq. In International Workshop on Logical Frameworks and
Meta-Languages: Theory and Practice (LFMTP), Seattle, WA, USA, August
2006.

[ACP+08] Brian Aydemir, Arthur Charguéraud, Benjamin C. Pierce, Randy Pollack, and
Stephanie Weirich. Engineering formal metatheory. In 35th ACM Symposium
on Principles of Programming Languages, pages 3–15. ACM, January 2008.

[AW09] Brian Aydemir and Stephanie Weirich. LNgen: Tool support for locally name-
less representations. Available from http://www.cis.upenn.edu/~baydemir/
papers/lngen.pdf, 2009.

[Bae08a] David Baelde. A linear approach to the proof-theory of least and greatest fixed
points. PhD thesis, Ecole Polytechnique, December 2008.

[Bae08b] David Baelde. On the expressivity of minimal generic quantification. In A. Abel
and C. Urban, editors, International Workshop on Logical Frameworks and
Meta-Languages: Theory and Practice (LFMTP 2008), number 228 in Elec-
tronic Notes in Theoretical Computer Science, pages 3–19, 2008.

[Bar84] Hank Barendregt. The Lambda Calculus: Its Syntax and Semantics, volume
103 of Studies in Logic and the Foundations of Mathematics. Elsevier, revised
edition, 1984.

[BC04] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program
Development. Coq’Art: The Calculus of Inductive Constructions. Texts in
Theoretical Computer Science. Springer Verlag, 2004.

[BGM+06] David Baelde, Andrew Gacek, Dale Miller, Gopalan Nadathur, and Alwen Tiu.
A User Guide to Bedwyr, November 2006.

160

BIBLIOGRAPHY 161

[BGM+07] David Baelde, Andrew Gacek, Dale Miller, Gopalan Nadathur, and Alwen Tiu.
The Bedwyr system for model checking over syntactic expressions. In Frank
Pfenning, editor, 21th Conference on Automated Deduction (CADE), number
4603 in LNAI, pages 391–397. Springer, 2007.

[BM07] David Baelde and Dale Miller. Least and greatest fixed points in linear logic.
In N. Dershowitz and A. Voronkov, editors, International Conference on Logic
for Programming and Automated Reasoning (LPAR), volume 4790 of LNCS,
pages 92–106, 2007.

[BMSV09a] David Baelde, Dale Miller, Zach Snow, and Alexandre Viel. Focused inductive
theorem proving. Available from http://www.lix.polytechnique.fr/Labo/
Dale.Miller/papers/tac-draft.pdf, 2009.

[BMSV09b] David Baelde, Dale Miller, Zach Snow, and Alexandre Viel. Tac: A generic
and adaptable interactive theorem prover. http://slimmer.gforge.inria.
fr/tac/, 2009.

[CG94] Pierre-Louis Curien and Giorgio Ghelli. Coherence of subsumption, minimum
typing and type-checking in F≤. Theoretical aspects of object-oriented pro-
gramming: types, semantics, and language design, pages 247–292, 1994.

[Cha09] Arthur Charguéraud. The locally nameless representation. Available from
http://arthur.chargueraud.org/research/2009/ln/, July 2009.

[Chi95] Jawahar Chirimar. Proof Theoretic Approach to Specification Languages. PhD
thesis, University of Pennsylvania, February 1995.

[Chu40] Alonzo Church. A formulation of the simple theory of types. Journal of
Symbolic Logic, 5:56–68, 1940.

[Chu41] Alonzo Church. The Calculi of Lambda-Conversion. Princeton University
Press, 1941.

[CMMS94] Luca Cardelli, John C. Mitchell, Simone Martini, and Andre Scedrov. An
extension of System F with subtyping. Information and Computation, 109(1–
2):4–56, 1994.

[Cra08] Karl Crary. Explicit contexts in LF (extended abstract). In A. Abel and
C. Urban, editors, International Workshop on Logical Frameworks and Meta-
Languages: Theory and Practice (LFMTP 2008), number 228 in Electronic
Notes in Theoretical Computer Science, pages 53–68, 2008.

[CU03] James Cheney and Christian Urban. System description: Alpha-Prolog, a
fresh approach to logic programming modulo alpha-equivalence. In J. Levy,
M. Kohlhase, J. Niehren, and M. Villaret, editors, Proc. 17th Int. Workshop on

BIBLIOGRAPHY 162

Unification, UNIF’03, pages 15–19, Valencia, Spain, June 2003. Departamento
de Sistemas Informaticos y Computacion, Universidad Politecnica de Valencia.
Technical Report DSIC-II/12/03.

[CU08] James Cheney and Christian Urban. Nominal logic programming. ACM Trans-
actions on Programming Languages and Systems, 30(5):1–47, 2008.

[dB72] Nicolaas Govert de Bruijn. Lambda calculus notation with nameless dummies,
a tool for automatic formula manipulation, with application to the Church-
Rosser Theorem. Indagationes Mathematicae, 34(5):381–392, 1972.

[Eri91] Lars-Henrik Eriksson. A finitary version of the calculus of partial inductive
definitions. In L.-H. Eriksson, L. Hallnäs, and P. Schroeder-Heister, editors,
Proceedings of the Second International Workshop on Extensions to Logic Pro-
gramming, volume 596 of LNAI, pages 89–134. Springer-Verlag, 1991.

[Fel89] Amy Felty. Specifying and Implementing Theorem Provers in a Higher-Order
Logic Programming Language. PhD thesis, University of Pennsylvania, August
1989.

[Fel91] Amy Felty. Transforming specifications in a dependent-type lambda calculus to
specifications in an intuitionistic logic. In Gérard Huet and Gordon D. Plotkin,
editors, Logical Frameworks. Cambridge University Press, 1991.

[FM09a] Amy Felty and Alberto Momigliano. Hybrid: A definitional two-level approach
to reasoning with higher-order abstract syntax, 2009. Available from http:
//arxiv.org/abs/0811.4367.

[FM09b] Amy Felty and Alberto Momigliano. Reasoning with hypothetical judgments
and open terms in Hybrid. In Proceedings of PPDP 2009: 11th International
ACM SIGPLAN Conference on Principles and Practice of Declarative Pro-
gramming, 2009. To appear.

[Gac08] Andrew Gacek. The Abella interactive theorem prover (system descrip-
tion). In Alessandro Armando, Peter Baumgartner, and Gilles Dowek, editors,
Fourth International Joint Conference on Automated Reasoning, volume 5195
of LNCS, pages 154–161. Springer, 2008.

[Gac09] Andrew Gacek. The Abella system and homepage. http://abella.cs.umn.
edu/, 2009.

[GHN+08] Andrew Gacek, Steven Holte, Gopalan Nadathur, Xiaochu Qi, and Zach Snow.
The Teyjus system – version 2. http://teyjus.cs.umn.edu/, March 2008.

[Gir72] Jean-Yves Girard. Interprétation fonctionnelle et élimination des coupures de
l’arithmétique d’ordre supérieur. PhD thesis, Université Paris 7, 1972.

BIBLIOGRAPHY 163

[Gir92] Jean-Yves Girard. A fixpoint theorem in linear logic. An email posting to the
mailing list linear@cs.stanford.edu, February 1992.

[GMN08a] Andrew Gacek, Dale Miller, and Gopalan Nadathur. Combining generic judg-
ments with recursive definitions. In F. Pfenning, editor, 23th Symposium on
Logic in Computer Science, pages 33–44. IEEE Computer Society Press, 2008.

[GMN08b] Andrew Gacek, Dale Miller, and Gopalan Nadathur. Reasoning in Abella about
structural operational semantics specifications. In A. Abel and C. Urban, ed-
itors, International Workshop on Logical Frameworks and Meta-Languages:
Theory and Practice (LFMTP 2008), number 228 in Electronic Notes in The-
oretical Computer Science, pages 85–100, 2008.

[GMN09] Andrew Gacek, Dale Miller, and Gopalan Nadathur. Nominal abstraction.
Submitted. Available from http://arxiv.org/abs/0908.1390, 2009.

[GTL89] Jean-Yves Girard, Paul Taylor, and Yves Lafont. Proofs and Types. Cambridge
University Press, 1989.

[Har96] John Harrison. HOL Light: A tutorial introduction. In FMCAD, pages 265–
269, 1996.

[HHP93] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining
logics. Journal of the ACM, 40(1):143–184, 1993.

[Hir97] Daniel Hirschkoff. A full formalization of pi-calculus theory in the Calculus of
Constructions. In E. Gunter and A. Felty, editors, International Conference
on Theorem Proving in Higher Order Logics (TPHOLs’97), number 1275 in
LNCS, pages 153–169, Murray Hill, New Jersey, August 1997.

[Hue75] Gérard Huet. A unification algorithm for typed λ-calculus. Theoretical Com-
puter Science, 1:27–57, 1975.

[KMM00] Matt Kaufmann, J. Strother Moore, and Panagiotis Manolios. Computer-Aided
Reasoning: An Approach. Kluwer Academic Publishers, Norwell, MA, USA,
2000.

[Mil91] Dale Miller. A logic programming language with lambda-abstraction, function
variables, and simple unification. Journal of Logic and Computation, 1(4):497–
536, 1991.

[Mil92] Dale Miller. Unification under a mixed prefix. Journal of Symbolic Computa-
tion, 14(4):321–358, 1992.

[Mil00] Dale Miller. Abstract syntax for variable binders: An overview. In John Lloyd
and et. al., editors, Computational Logic - CL 2000, number 1861 in LNAI,
pages 239–253. Springer, 2000.

BIBLIOGRAPHY 164

[MM00] Raymond McDowell and Dale Miller. Cut-elimination for a logic with defini-
tions and induction. Theoretical Computer Science, 232:91–119, 2000.

[MM02] Raymond McDowell and Dale Miller. Reasoning with higher-order abstract
syntax in a logical framework. ACM Transactions on Computational Logic,
3(1):80–136, 2002.

[MN87] Dale Miller and Gopalan Nadathur. A logic programming approach to manip-
ulating formulas and programs. In Seif Haridi, editor, IEEE Symposium on
Logic Programming, pages 379–388, San Francisco, September 1987.

[MNPS91] Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre Scedrov. Uniform
proofs as a foundation for logic programming. Annals of Pure and Applied
Logic, 51:125–157, 1991.

[MT03a] Dale Miller and Alwen Tiu. A proof theory for generic judgments: An extended
abstract. In Phokion Kolaitis, editor, 18th Symposium on Logic in Computer
Science, pages 118–127. IEEE, June 2003.

[MT03b] Alberto Momigliano and Alwen Tiu. Induction and co-induction in sequent
calculus. In Mario Coppo, Stefano Berardi, and Ferruccio Damiani, editors,
Post-proceedings of TYPES 2003, number 3085 in LNCS, pages 293–308, Jan-
uary 2003.

[MT05] Dale Miller and Alwen Tiu. A proof theory for generic judgments. ACM
Transactions on Computational Logic, 6(4):749–783, October 2005.

[Nip93] Tobias Nipkow. Functional unification of higher-order patterns. In M. Vardi,
editor, Proc. 8th IEEE Symposium on Logic in Computer Science (LICS 1993),
pages 64–74. IEEE, June 1993.

[NL05] Gopalan Nadathur and Natalie Linnell. Practical higher-order pattern unifi-
cation with on-the-fly raising. In ICLP 2005: 21st International Logic Pro-
gramming Conference, volume 3668 of LNCS, pages 371–386, Sitges, Spain,
October 2005. Springer.

[NM88] Gopalan Nadathur and Dale Miller. An overview of λProlog. In Fifth Inter-
national Logic Programming Conference, pages 810–827, Seattle, August 1988.
MIT Press.

[PE88] Frank Pfenning and Conal Elliott. Higher-order abstract syntax. In Proceed-
ings of the ACM-SIGPLAN Conference on Programming Language Design and
Implementation, pages 199–208. ACM Press, June 1988.

[Pit03] Andrew M. Pitts. Nominal logic, A first order theory of names and binding.
Information and Computation, 186(2):165–193, 2003.

BIBLIOGRAPHY 165

[Plo81] Gordon D. Plotkin. A structural approach to operational semantics. DAIMI
FN-19, Aarhus University, Aarhus, Denmark, September 1981.

[Pos08] Adam Poswolsky. Functional Programming with Logical Frameworks. PhD
thesis, Yale University, December 2008.

[PS99] Frank Pfenning and Carsten Schürmann. System description: Twelf — A
meta-logical framework for deductive systems. In H. Ganzinger, editor, 16th
Conference on Automated Deduction (CADE), number 1632 in LNAI, pages
202–206, Trento, 1999. Springer.

[Qi09] Xiaochu Qi. An Implementation of the Language λProlog. PhD thesis, Univer-
sity of Minnesota, September 2009. Forthcoming.

[SH93] Peter Schroeder-Heister. Rules of definitional reflection. In M. Vardi, editor,
Eighth Annual Symposium on Logic in Computer Science, pages 222–232. IEEE
Computer Society Press, IEEE, June 1993.

[Tai67] William W. Tait. Intensional interpretations of functionals of finite type I.
Journal of Symbolic Logic, 32(2):198–212, 1967.

[Tiu04] Alwen Tiu. A Logical Framework for Reasoning about Logical Specifications.
PhD thesis, Pennsylvania State University, May 2004.

[Tiu06] Alwen Tiu. A logic for reasoning about generic judgments. In A. Momigliano
and B. Pientka, editors, International Workshop on Logical Frameworks and
Meta-Languages: Theory and Practice (LFMTP’06), 2006.

[Tiu08] Alwen Tiu. Cut elimination for a logic with generic judgments and induction.
Technical report, CoRR, January 2008. Extended version of LFMTP’06 paper.
Available from http://arxiv.org/abs/0801.3065.

[TM08] Alwen Tiu and Dale Miller. Proof search specifications of bisimulation and
modal logic for the π-calculus. Submitted, May 2008.

[TM09] Alwen Tiu and Alberto Momigliano. Induction and co-induction in sequent
calculus. Available from http://arxiv.org/abs/0812.4727, 2009.

[UT05] Christian Urban and Christine Tasson. Nominal techniques in Isabelle/HOL.
In R. Nieuwenhuis, editor, 20th Conference on Automated Deduction (CADE),
volume 3632 of LNCS, pages 38–53. Springer, 2005.

[Van96] Myra VanInwegen. The Machine-Assisted Proof of Programming Language
Properties. PhD thesis, University of Pennsylvania, May 1996.

