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ABSTRACT

This thesis deals with the problem of anomaly detection for sequence data. Anomaly

detection has been a widely researched problem in several application domains such

as system health management, intrusion detection, health-care, bio-informatics, fraud

detection, and mechanical fault detection. Traditional anomaly detection techniques

analyze each data instance (as a univariate or multivariate record) independently, and

ignore the sequential aspect of the data. Often, anomalies in sequences can be detected

only by analyzing data instances together as a sequence, and hence cannot detected

by traditional anomaly detection techniques. The problem of anomaly detection for

sequence data is a rich area of research because of two main reasons. First, sequences

can be of different types, e.g., symbolic sequences, time series data, etc., and each

type of sequence poses unique set of problems. Second, anomalies in sequences can be

defined in multiple ways and hence there are different problem formulations. In this

thesis we focus on solving one particular problem formulation called semi-supervised

anomaly detection. We study the problem separately for symbolic sequences, univariate

time series data, and multivariate time series data.

The state of art on anomaly detection for sequences is limited and fragmented across

application domains. For symbolic sequences, several techniques have been proposed

within specific domains, but it is not well-understood as to how a technique developed

for one domain would perform in a completely different domain. For univariate time

series data, limited techniques exist, and are only evaluated for specific domains, while

for multivariate time series data, anomaly detection research is relatively untouched.

This thesis has two key goals. First goal is to develop novel anomaly detection

techniques for different types of sequences which perform better than existing techniques

across a variety of application domains. The second goal is to identify the best anomaly

detection technique for a given application domain. By realizing the first goal, we

develop a suite of anomaly detection techniques for a domain scientist to choose from,

while the second goal will help the scientist to choose the technique best suited for the

task.
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To achieve the first goal, we develop several novel anomaly detection techniques

for univariate symbolic sequences, univariate time series data, and multivariate time

series data. We provide extensive experimental evaluation of the proposed techniques

on data sets collected across diverse domains and generated from data generators, also

developed as part of this thesis. We show how the proposed techniques can be used to

detect anomalies which translate to critical events in domains such as aircraft safety,

intrusion detection, and patient health management. The techniques proposed in this

thesis are shown to outperform existing techniques on many data sets. The technique

proposed for multivariate time series data is one of the very first anomaly detection

technique that can detect complex anomalies in such data.

To achieve the second goal, we study the relationship between anomaly detection

techniques and the nature of the data on which they are applied. A novel analysis

framework, Reference Based Analysis (RBA), is proposed that can map a given data

set (of any type) into a multivariate continuous space with respect to a reference data

set. We apply the RBA framework to not only visualize and understand complex data

types, such as multivariate categorical data and symbolic sequence data, but also to

extract data driven features from symbolic sequences, which when used with traditional

anomaly detection techniques are shown to consistently outperform the state of art

anomaly detection techniques for these complex data types. Two novel techniques for

symbolic sequences, WIN1D and WIN2D are proposed using the RBA framework which

perform better than the best technique for each different data set.
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Chapter 1

Introduction

Anomaly detection, loosely defined as the task of detecting abnormal patterns in data,

is a significant research problem that has been widely explored in a variety of application

domains [35, 84]. Anomalies in such domains typically correspond to highly critical

events that are not observed in data corresponding to the normal behavior experienced

in the given domain. In many domains, such as flight safety, intrusion detection, fraud

detection, health-care, etc., data is collected in the form of sequences or time-series.

For example, in the domain of aviation or flight safety, the data collected from flights is

in the form of sequences of observations collected from various aircraft sensors during

the flight. A fault in the aircraft results in anomalous readings in sequences collected

from one or more of the sensors. Similarly, in health-care domain, an abnormal medical

condition in a patient’s heart can be detected by identifying anomalies in the time-series

corresponding to Electrocardiogram (ECG) recordings of the patient.

Traditional anomaly detection techniques assume that the data exists in the form of

univariate or multivariate records, and ignore the sequential aspect of the data. Often,

anomalies in sequences can be detected only by analyzing data instances together as a

sequence, and hence cannot be detected by the traditional anomaly detection techniques.

While the traditional anomaly detection problem has been widely researched [35, 84],

the research in the area of anomaly detection for sequences is at a relatively preliminary

stage. The objective of this thesis is to advance the state of art for the problem of

anomaly detection for sequences.

1



2

Anomaly detection for sequences is a rich problem domain due to two major rea-

sons. First, the nature of the sequence data varies across different application domains.

Sequences can be symbolic, such as gene sequences, or sequence of system calls, or time

series, such as ECGs, climate time series, stock prices, etc. Sequences can be univari-

ate, in which each observation of a sequence is a univariate symbol or real value, or

multivariate, in which each observation of a sequence is a multivariate vector consist-

ing of symbolic, continuous, or heterogenous mixture of univariate observations. Some

domains deal with complex sequences such as sequence of graphs, or sequence of docu-

ments, etc. Each type of sequence entails a unique set of challenges which are required

to be handled in a unique manner. The second reason that contributes to the richness

of the problem is that anomalies in sequences can be defined in multiple ways. For ex-

ample, an entire sequence can be anomalous with respect to a set of normal sequences.

Similarly, a subsequence within a long sequence can be anomalous with respect to the

rest of the sequence. Each of the different definitions of anomalies are fundamentally

distinct from each other and cannot be solved in the same manner.

1.1 Anomaly Detection for Sequences — State of Art

The problem of anomaly detection for sequences is not as well understood as the tra-

ditional anomaly detection problem. For certain types of sequences, like symbolic se-

quences, several anomaly detection techniques have been proposed [36], while for other

types of sequences, such as univariate and multivariate time series, limited techniques

exist. Existing research on anomaly detection for sequences has been fragmented across

different application domains, without an understanding of how the performance of the

techniques relates to the various aspects of the problem, such as nature of data, nature

of anomalies, etc. Thus techniques that are shown to perform well in one domain are

not guaranteed to perform well in a different domain, since the nature of the sequence

data encountered in the two domains is often significantly different.

In this thesis, we focus on the problem of detecting if a given sequence is anomalous

with respect to a database of normal sequences. We study the problem for three types

of sequences — univariate symbolic sequences, univariate time series, and multivariate

time series.
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Univariate Symbolic Univariate Multivariate
Sequences Time Series Time Series

State of Thesis State of Thesis State of Thesis

Research Goals Art Contrib. Art Contrib. Art Contrib.

1. Anomaly Detection Techniques? Several
√

Limited
√

None
√

2. Cross-domain Understanding?
√ √

3. Best Technique for a Domain?
√

4. Best Overall Technique?
√

Table 1.1: Thesis Contributions : Bridging Gaps Between State of Art and the Research
Goals

Table 1.1 illustrates the gap that exists between the current state of art and the

desired goal for each sequence type. The ultimate research goal for any type of sequence

data is to find an anomaly detection technique that can perform best on any data set.

In Table 1.1, we list the intermediate research goals that need to be met, to reach the

ultimate goal. Most of the current research in this area has been limited to techniques

that have been proposed within specific application domains. For symbolic sequences,

most of the existing techniques either focus on detecting anomalies in data obtained in

the domain of system call intrusion detection or in the domain of biological sequences.

For time series data, the research is even more sparse.

This thesis aims at bridging the gap between the current state of research on anomaly

detection for sequences and the ultimate research goal, as illustrated in Table 1.1. To

achieve the goal of developing an anomaly detection technique that can perform well on

symbolic sequence data from any application domain, we solve the following problems

in a step by step fashion:

1. Propose novel anomaly detection techniques for sequences. We propose several

novel anomaly detection techniques for different types of sequences. In particular,

we implement a window based strategy, in which a sequence is broken into fixed

length subsequences or “windows”. Each window is treated as a unit of analysis.

The window based techniques proposed in this thesis are shown to perform com-

parably or better than the existing techniques. This is especially significant for

multivariate time series data, for which there are no existing anomaly detection

techniques.
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2. Evaluate performance of techniques across domains. An anomaly detection tech-

nique, when applied in two different application domains, might encounter two

remarkably different types of data. Thus it is important to know how the per-

formance of a given technique varies across domains. In this thesis, we conduct

extensive experimental evaluation of the proposed anomaly detection techniques

and several state of art techniques on data sets collected from a variety of appli-

cation domains. The cross-domain evaluation provides an unbiased comparison

of the techniques, which can be used by a domain scientist when choosing an

anomaly detection technique for a particular application domain.

3. Understand the strengths and weaknesses of different techniques. A key observa-

tion from our experimental evaluations is that none of the techniques are found to

be superior across all domains, but their performance is closely tied to the nature

of the data they are applied to. We study the relationship between the perfor-

mance of anomaly detection techniques and the nature of the sequence data using

a formal analysis framework called Reference Based Analysis (RBA) framework.

The essence of this framework is to characterize a data set using a set of real

valued features, and then relate the different techniques to one or more of these

features.

4. Propose techniques that performs best across domains. The real valued features

obtained using RBA not only allow analysis of a data set but can also be used

as features for anomaly detection. We propose a novel technique that utilizes

RBA features which is shown to outperform all existing techniques for symbolic

sequences across data sets obtained from a variety of application domains.

1.2 Contributions

This thesis makes the following key contributions:

1.2.1 A Reference Based Analysis Framework for Exploring Data

A novel analysis framework, Reference Based Analysis (RBA), is proposed that can map

a given data set (of any type) into a multivariate continuous space with respect to a
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reference data set. The key property of the mapping is that the data instances which

are similar to the reference data are mapped to a different region in the multivariate

space than the instances that are different from the reference data. The RBA framework

is used to not only visualize and understand complex data types, such as multivariate

categorical data and symbolic sequence data, but also to extract data driven features

which when used with traditional anomaly detection techniques are shown to consis-

tently outperform the state of art anomaly detection techniques for these complex data

types. Two novel techniques for symbolic sequences, WIN1D and WIN2D are proposed

using the RBA framework.

1.2.2 Anomaly Detection Techniques for Symbolic Sequences

We provide an experimental evaluation of a large number of anomaly detection tech-

niques for symbolic sequences on a variety of data sets. We propose a novel window

based technique called FSAz which consistently performs better than most of the ex-

isting techniques. The experimental analysis allows relative comparison of the different

anomaly detection techniques and highlights their strengths and weaknesses. We pro-

pose a novel artificial data generator that can be used to generate validation data sets to

evaluate anomaly detection techniques for sequences. The generator allows to generate

data sets with different characteristics by varying the associated parameters to study the

relationship between the anomaly detection techniques and the different characteristics

of the data.

To understand the relationship between anomaly detection techniques and nature of

sequence data, we use the RBA framework to characterize data, and then identify how

the performance of each technique is related to one or more of these characteristics.

We propose two techniques, WIN1D and WIN2D using the RBA based features

for symbolic sequences. These techniques are designed to better utilize the difference

between normal and anomalous data, and are shown to perform better than the best

anomaly detection techniques for each application domain.
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1.2.3 Anomaly Detection Techniques for Univariate Time Series Data

We study the problem of detecting anomalies in a time series database. We investigate

different ways of solving this problem. First way is to use distance or similarity kernels

for time series data. Second is to extract fixed length windows from a test time series

and assign anomaly scores to the windows. Third is to learn a predictive or forecasting

model from the training data and use the model to detect anomalies in a test time series.

Fourth is to learn a state space model for the normal time series and detect anomalies

by passing a test time series through the state space model. We adapt several machine

learning techniques (such as one class support vector machines, nearest neighbor density

estimation, support vector regression) to detect anomalies in time series data. We

evaluate these novel adaptations along with existing state of the art anomaly detection

techniques for time series data [191, 32]. One of our novel adaptations, WINCSV M , is

shown to perform better than the existing anomaly detection techniques. To understand

the performance of existing anomaly detection techniques for symbolic sequences [38],

we discretized the continuous time series data and applied the symbolic techniques on

the discretized data. We provide useful insights regarding the relative performance of

different techniques based on the experimental evaluation and relate the performance

of different techniques to the nature of the underlying time series data.

1.2.4 Anomaly Detection Techniques for Multivariate Time Series Data

We propose a novel window based anomaly detection technique, called WINSS for mul-

tivariate time series data. The proposed technique uses concept of subspace monitoring

developed to reduce a multivariate time series into a univariate time series, capturing

the dynamics of the data. The strength of WINSS is that it is first attempt to model

both the sequence and the multivariate aspect of the data to detect anomalies. Ex-

perimental results show that WINSS is significantly better than techniques that either

ignore the sequence aspect or the multivariate aspect of the data.

Software and Data Sources

Implementations for the anomaly detection techniques described in this thesis as well

as the data sets used for the experimental evaluation are available at http://www.cs.

http://www.cs.umn.edu/~chandola/software.html
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umn.edu/~chandola/software.html [33].

1.3 Thesis Outline

This thesis is organized in following three parts:

Part I provides the necessary background required for the rest of this thesis. Chapter 2

discusses the general problem of anomaly detection and provides a brief overview

of the related work in area of anomaly detection. Chapter 3 discusses the problem

of anomaly detection for symbolic sequences and time series data. We provide

the different existing problem formulations and the related research. We also

provide an exact definition of the anomaly detection problem solved by the tech-

niques proposed in this thesis and the evaluation methodology used to measure

the performance of the techniques. Chapter 4 introduces a novel data analysis

framework, known as Reference Based Analysis (RBA), which is instrumental in

understanding the performance of different anomaly detection techniques.

Part II deals with anomaly detection for univariate symbolic sequences. We provide

a comparative evaluation of anomaly detection techniques for univariate symbolic

sequences in Chapter 5. In Chapter 6, we show how a novel data analysis frame-

work, called Reference Based Analysis (RBA), is applied to understand the per-

formance of different anomaly detection techniques and to develop novel anomaly

detection techniques for univariate symbolic sequences.

Part III deals with anomaly detection for time series data. We study anomaly detec-

tion techniques for univariate time series data in Chapter 7. In Chapter 8, we

propose a novel technique to detect anomalies in multivariate time series. We

conclude with future directions of research in Chapter 9.

http://www.cs.umn.edu/~chandola/software.html
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Chapter 2

Anomaly Detection —

Background and Definitions

Anomaly detection refers to the problem of finding patterns in data that do not conform

to expected behavior. These non-conforming patterns are often referred to as anoma-

lies, outliers, discordant observations, exceptions, aberrations, surprises, peculiarities

or contaminants in different application domains. Of these, anomalies and outliers are

two terms used most commonly in the context of anomaly detection; sometimes inter-

changeably. Anomaly detection finds extensive use in a wide variety of applications

such as fraud detection for credit cards, insurance or health care, intrusion detection

for cyber-security, fault detection in safety critical systems, and military surveillance

for enemy activities.

Traditionally, anomaly detection techniques treat data as a collection of multivariate

records. A large and diverse literature on techniques that handle such data exists, and

has been covered in several survey articles and books [35, 84, 5, 138, 161, 154, 13, 79,

17, 9]. The literature on anomaly detection techniques for sequence data is relatively

sparse [36, 41].

The importance of anomaly detection is due to the fact that anomalies in data

translate to significant (and often critical) actionable information in a wide variety of

application domains. For example, an anomalous traffic pattern in a computer network

could mean that a hacked computer is sending out sensitive data to an unauthorized

9
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destination [110]. An anomalous MRI image may indicate presence of malignant tumors

[163]. Anomalies in credit card transaction data could indicate credit card or identity

theft [6] or anomalous readings from a space craft sensor could signify a fault in some

component of the space craft [64].

In this chapter we discuss the problem of anomaly detection and provide the related

work done in this area. Section 2.1 provides a general definition of anomalies. A key

aspect of the anomaly detection problem is the different ways in which anomalies can

be defined as discussed in Section 2.2. We provide an overview of the related research

done in the area of anomaly detection in Section 2.3.

2.1 What are anomalies?

Anomalies are patterns in data that do not conform to a well defined notion of normal

behavior. Figure 2.1 illustrates anomalies in a simple 2-dimensional data set. The data

has two normal regions, N1 and N2, since most observations lie in these two regions.

Points that are sufficiently far away from the regions, e.g., points o1 and o2, and points

in region O3, are anomalies.

x

y

N1

N2

o1

o2

O3

Figure 2.1: A simple example of anomalies in a 2-dimensional data set.

Anomalies might be induced in the data for a variety of reasons, such as malicious

activity, e.g., credit card fraud, cyber-intrusion, terrorist activity or breakdown of a
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system, but all of the reasons have a common characteristic that they are interesting to

the analyst. The “interestingness” or real life relevance of anomalies is a key feature of

anomaly detection.

Anomaly detection is related to, but distinct from noise removal [178] and noise

accommodation [154], both of which deal with unwanted noise in the data. Noise can

be defined as a phenomenon in data which is not of interest to the analyst, but acts as a

hindrance to data analysis. Noise removal is driven by the need to remove the unwanted

objects before any data analysis is performed on the data. Noise accommodation refers

to immunizing a statistical model estimation against anomalous observations [93].

Another topic related to anomaly detection is novelty detection [131, 132, 157] which

aims at detecting previously unobserved (emergent, novel) patterns in the data, e.g., a

new topic of discussion in a news group. The distinction between novel patterns and

anomalies is that the novel patterns are typically incorporated into the normal model

after being detected.

It should be noted that solutions for above mentioned related problems are often

used for anomaly detection and vice-versa, and hence are discussed in this review as

well.

2.2 Different Aspects of An Anomaly Detection Problem

This section identifies and discusses the different aspects of anomaly detection. As

mentioned earlier, a specific formulation of the problem is determined by several different

factors such as the nature of the input data, the availability (or unavailability) of labels

as well as the constraints and requirements induced by the application domain. This

section brings forth the richness in the problem domain and justifies the need for the

broad spectrum of anomaly detection techniques.

2.2.1 Nature of Input Data

A key aspect of any anomaly detection technique is the nature of the input data. Input

is generally a collection of data instances (also referred as object, record, point, vector,

pattern, event, case, sample, observation, entity) [172, Chapter 2] . Each data instance
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can be described using a set of attributes (also referred to as variable, characteris-

tic, feature, field, dimension). The attributes can be of different types such as binary,

categorical or continuous. Each data instance might consist of only one attribute (uni-

variate) or multiple attributes (multivariate). In the case of multivariate data instances,

all attributes might be of same type or might be a mixture of different data types.

The nature of attributes determine the applicability of anomaly detection techniques.

For example, for statistical techniques different statistical models have to be used for

continuous and categorical data. Similarly, for nearest neighbor based techniques, the

nature of attributes would determine the distance measure to be used. Often, instead of

the actual data, the pairwise distance between instances might be provided in the form

of a distance (or similarity) matrix. In such cases, techniques that require original data

instances are not applicable, e.g., many statistical and classification based techniques.

Input data can also be categorized based on the relationship present among data

instances [172]. Most of the existing anomaly detection techniques deal with record

data (or point data), in which no relationship is assumed among the data instances.

In general, data instances can be related to each other. Some examples are sequence

data, spatial data, and graph data. In sequence data, the data instances are linearly

ordered, e.g., time-series data, genome sequences, protein sequences. In spatial data,

each data instance is related to its neighboring instances, e.g., vehicular traffic data,

ecological data. When the spatial data has a temporal (sequential) component it is

referred to as spatio-temporal data, e.g., climate data. In graph data, data instances are

represented as vertices in a graph and are connected to other vertices with edges. Later

in this section we will discuss situations where such relationship among data instances

become relevant for anomaly detection.

2.2.2 Type of Anomaly

An important aspect of an anomaly detection technique is the nature of the desired

anomaly. Anomalies can be classified into following three categories:

Point Anomalies

If an individual data instance can be considered as anomalous with respect to the rest

of data, then the instance is termed as a point anomaly. This is the simplest type of
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anomaly and is the focus of majority of research on anomaly detection.

For example, in Figure 2.1, points o1 and o2 as well as points in region O3 lie

outside the boundary of the normal regions, and hence are point anomalies since they

are different from normal data points.

As a real life example, consider credit card fraud detection. Let the data set cor-

respond to an individual’s credit card transactions. For the sake of simplicity, let us

assume that the data is defined using only one feature: amount spent. A transaction

for which the amount spent is very high compared to the normal range of expenditure

for that person will be a point anomaly.

Contextual Anomalies

If a data instance is anomalous in a specific context (but not otherwise), then it is

termed as a contextual anomaly (also referred to as conditional anomaly [162]).

The notion of a context is induced by the structure in the data set and has to be

specified as a part of the problem formulation. Each data instance is defined using

following two sets of attributes:

1. Contextual attributes. The contextual attributes are used to determine the con-

text (or neighborhood) for that instance. For example, in spatial data sets, the

longitude and latitude of a location are the contextual attributes. In time-series

data, time is a contextual attribute which determines the position of an instance

on the entire sequence.

2. Behavioral attributes. The behavioral attributes define the non-contextual charac-

teristics of an instance. For example, in a spatial data set describing the average

rainfall of the entire world, the amount of rainfall at any location is a behavioral

attribute.

The anomalous behavior is determined using the values for the behavioral attributes

within a specific context. A data instance might be a contextual anomaly in a given

context, but an identical data instance (in terms of behavioral attributes) could be

considered normal in a different context. This property is key in identifying contextual

and behavioral attributes for a contextual anomaly detection technique.
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Figure 2.2: Contextual anomaly t2 in a monthly temperature time series.

Contextual anomalies have been most commonly explored in time-series data [185,

155] and spatial data [108, 159]. Figure 2.2 shows one such example for a temperature

time series which shows the monthly temperature of an area over last few years. A

temperature of 35F might be normal during the winter (at time t1) at that place, but

the same value during summer (at time t2) would be an anomaly.

A similar example can be found in the credit card fraud detection domain. A

contextual attribute in credit card domain can be the time of purchase. Suppose an

individual usually has a weekly shopping bill of $100 except during the Christmas week,

when it reaches $1000. A new purchase of $1000 in a week in July will be considered a

contextual anomaly, since it does not conform to the normal behavior of the individual

in the context of time (even though the same amount spent during Christmas week will

be considered normal).

The choice of applying a contextual anomaly detection technique is determined

by the meaningfulness of the contextual anomalies in the target application domain.

Another key factor is the availability of contextual attributes. In several cases defining a

context is straightforward, and hence applying a contextual anomaly detection technique

makes sense. In other cases, defining a context is not easy, making it difficult to apply

such techniques.
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Collective Anomalies

If a collection of related data instances is anomalous with respect to the entire data set, it

is termed as a collective anomaly. The individual data instances in a collective anomaly

may not be anomalies by themselves, but their occurrence together as a collection is

anomalous. Figure 2.3 illustrates an example which shows a human electrocardiogram

output [72]. The highlighted region denotes an anomaly because the same low value

exists for an abnormally long time (corresponding to an Atrial Premature Contraction).

Note that that low value by itself is not an anomaly.

0 500 1000 1500 2000 2500 3000
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Figure 2.3: Collective anomaly corresponding to an Atrial Premature Contraction in an
human electrocardiogram output.

As an another illustrative example, consider a sequence of actions occurring in a

computer as shown below:

. . . http-web, buffer-overflow, http-web, http-web, smtp-mail, ftp, http-web, ssh, smtp-mail,

http-web, ssh, buffer-overflow, ftp, http-web, ftp, smtp-mail,http-web . . .

The highlighted sequence of events (buffer-overflow, ssh, ftp) correspond to a

typical web based attack by a remote machine followed by copying of data from the

host computer to remote destination via ftp. It should be noted that this collection of
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events is an anomaly but the individual events are not anomalies when they occur in

other locations in the sequence.

Collective anomalies have been explored for sequence data [59, 169], graph data

[135], and spatial data [159].

It should be noted that while point anomalies can occur in any data set, collective

anomalies can occur only in data sets in which data instances are related. In contrast,

occurrence of contextual anomalies depends on the availability of context attributes in

the data. A point anomaly or a collective anomaly can also be a contextual anomaly if

analyzed with respect to a context. Thus a point anomaly detection problem or collec-

tive anomaly detection problem can be transformed to a contextual anomaly detection

problem by incorporating the context information.

The techniques used for detecting collective anomalies are very different than the

point and contextual anomaly detection techniques, and require a separate detailed

discussion. Hence we chose to not cover them in this survey. For a brief review of the

research done in the field of collective anomaly detection, the reader is referred to an

extended version of this survey [34].

2.2.3 Data Labels

The labels associated with a data instance denote if that instance is normal or anoma-

lous1. It should be noted that obtaining labeled data which is accurate as well as

representative of all types of behaviors, is often prohibitively expensive. Labeling is

often done manually by a human expert and hence requires substantial effort to ob-

tain the labeled training data set. Typically, getting a labeled set of anomalous data

instances which cover all possible type of anomalous behavior is more difficult than get-

ting labels for normal behavior. Moreover, the anomalous behavior is often dynamic in

nature, e.g., new types of anomalies might arise, for which there is no labeled training

data. In certain cases, such as air traffic safety, anomalous instances would translate to

catastrophic events, and hence will be very rare.

Based on the extent to which the labels are available, anomaly detection techniques

can operate in one of the following three modes:

1Also referred to as normal and anomalous classes.
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Supervised anomaly detection

Techniques trained in supervised mode assume the availability of a training data set

which has labeled instances for normal as well as anomaly class. Typical approach in

such cases is to build a predictive model for normal vs. anomaly classes. Any unseen

data instance is compared against the model to determine which class it belongs to.

There are two major issues that arise in supervised anomaly detection. First, the

anomalous instances are far fewer compared to the normal instances in the training

data. Issues that arise due to imbalanced class distributions have been addressed in

the data mining and machine learning literature [96, 97, 40, 143, 186, 182]. Second,

obtaining accurate and representative labels, especially for the anomaly class is usually

challenging. A number of techniques have been proposed that inject artificial anomalies

in a normal data set to obtain a labeled training data set [179, 1, 166]. Other than these

two issues, the supervised anomaly detection problem is similar to building predictive

models. Hence we will not address this category of techniques in this survey.

Semi-Supervised anomaly detection

Techniques that operate in a semi-supervised mode, assume that the training data has

labeled instances for only the normal class. Since they do not require labels for the

anomaly class, they are more widely applicable than supervised techniques. For exam-

ple, in space craft fault detection [64], an anomaly scenario would signify an accident,

which is not easy to model. The typical approach used in such techniques is to build

a model for the class corresponding to normal behavior, and use the model to identify

anomalies in the test data.

A limited set of anomaly detection techniques exist that assume availability of only

the anomaly instances for training [46, 45, 58]. Such techniques are not commonly used,

primarily because it is difficult to obtain a training data set which covers every possible

anomalous behavior that can occur in the data.

Unsupervised anomaly detection

Techniques that operate in unsupervised mode do not require training data, and thus are

most widely applicable. The techniques in this category make the implicit assumption
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that normal instances are far more frequent than anomalies in the test data. If this

assumption is not true then such techniques suffer from high false alarm rate.

Many semi-supervised techniques can be adapted to operate in an unsupervised

mode by using a sample of the unlabeled data set as training data. Such adaptation

assumes that the test data contains very few anomalies and the model learnt during

training is robust to these few anomalies.

2.2.4 Output of Anomaly Detection

An important aspect for any anomaly detection technique is the manner in which the

anomalies are reported. Typically, the outputs produced by anomaly detection tech-

niques are one of the following two types:

Scores

Scoring techniques assign an anomaly score to each instance in the test data depending

on the degree to which that instance is considered an anomaly. Thus the output of such

techniques is a ranked list of anomalies. An analyst may choose to either analyze top

few anomalies or use a cut-off threshold to select the anomalies.

Labels

Techniques in this category assign a label (normal or anomalous) to each test instance.

Several techniques, internally, calculate a score for each test instance and use either a

threshold or a statistical test to assign a label.

Scoring based anomaly detection techniques allow the analyst to use a domain-

specific threshold to select the most relevant anomalies. Techniques that provide binary

labels to the test instances do not directly allow the analysts to make such a choice,

though this can be controlled indirectly through parameter choices within each tech-

nique.
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2.3 Related Work for Traditional Anomaly Detection

In this section we provide a brief overview2 of the related research in the area of anomaly

detection. Anomaly detection techniques can be grouped into following broad categories:

• Classification based techniques learn a classifier from a labeled (or unlabeled)

training data and assign an anomaly score or label to a test data instance [177,

175, 176, 11, 153, 80, 126, 127].

• Nearest neighbor based techniques analyze the nearest neighborhood of a

test instance to assign it an anomaly score [149, 106, 107, 136, 174, 26, 25].

• Clustering based techniques learn clusters from a given data set and assign an

anomaly score to a test instance based on its relationship with its nearest cluster

[51, 82, 130, 51, 145, 129].

• Statistical techniques estimate a parameteric or non-parametric model from

the data and apply a statistical test on the probability of the instance to be

generated by the estimated model to assign an anomaly score to the test instance

[13, 60, 2, 113, 43].

• Spectral decomposition based techniques find an approximation of the data

using a combination of attributes that capture the bulk of variability in the data.

Instances that are significantly different from others in the lower approximation

are detected as anomalies [3, 137, 160, 64, 148].

• Information theoretic techniques analyze the information content of a data

set using different information theoretic measures such as Kolomogorov Complex-

ity, entropy, relative entropy, etc and detect instance that induce irregularities in

the information content of the data set as anomalies [7, 103, 117, 83, 81].

• Contextual anomaly detection techniques analyze a context around each

test data instance to determine if the instance is anomalous or not. Contextual

anomaly detection techniques have been developed to handle spatial data [123,

159, 108, 168] and sequence data [2, 60, 180, 65, 196, 94, 182, 186].

2The reader is referred to [35] for an extended survey on anomaly detection techniques.



Chapter 3

Anomaly Detection for Sequences

– Background and Related Work

In this chapter we will discuss the problem of anomaly detection for sequence data.

Anomaly detection for sequences is fundamentally distinct from the traditional point

anomaly detection problem discussed in Chapter 2. A key characteristic of the problem

is that it can be defined in multiple ways such that each problem definition is unique.

In this chapter we will discuss different problem formulations that relevant for symbolic

sequences and time series data. We will also provide a brief overview of the existing

research for each of these problem formulation.

As mentioned in Chapter 2, a large number of anomaly detection techniques exist

for point anomaly detection, which typically deal with multivariate non-sequential data.

While such techniques, when applied to sequences, can detect individual observations

that are anomalous (i.e. point anomalies), they cannot detect contextual and collective

anomalies.

For example, consider the set of user command sequences shown in Table 3.1. Clearly

the sequence S5 is anomalous, corresponding to a hacker breaking into a computer after

multiple failed attempts, even though each command in the sequence by itself is normal.

Thus traditional techniques, which analyze each data instance (an individual command),

cannot detect such anomalies.

20



21

S1 login, pwd, mail, ssh, . . . , mail, web, logout

S2 login, pwd, mail, web, . . . , web, web, web, logout

S3 login, pwd, mail, ssh, . . . , mail, web, web, logout

S4 login, pwd, web, mail, ssh, . . . , web, mail, logout

S5 login,pwd, login,pwd, login,pwd, . . . , logout

Table 3.1: Sequences of User Commands

For time series data, we refer the reader to Figure 2.3 in Chapter 2, which corre-

sponds to a human electrocardiogram output [72]. The highlighted region denotes an

anomaly because the same low value exists for an abnormally long time (correspond-

ing to an Atrial Premature Contraction). Note that that low value by itself is not an

anomaly and hence the anomalous region cannot be detected by traditional techniques

that do not account for the sequential nature of the data.

The rest of this chapter is organized as follows. Section 3.1 describes three different

anomaly detection problem formulations for sequences. We elaborate on semi-supervised

anomaly detection problem formulation in 3.2, since the techniques proposed in this

thesis solve that specific problem. We provide the evaluation methodology that we

adopt to evaluate the semi-supervised anomaly detection techniques in Section 3.3.

Section 3.4 provides an overview of existing research on anomaly detection for symbolic

sequences. Section 3.5 provides an overview of existing research on anomaly detection

for univariate time series data. Section 3.6 provides an overview of existing research on

anomaly detection for multivariate time series data.

3.1 Problem Formulations

For sequence data, the problem of anomaly detection can be formulated in following

three distinct ways:

3.1.1 Detecting Anomalous Sequences w.r.t a Sequence Database

The first problem formulation for sequences is to determine if a given test sequence is

anomalous with respect to a database of sequences. The training database is assumed

to consist of mostly normal sequences. Thus this problem formulation is similar to the



22

semi-supervised point anomaly detection problem, only difference being that data points

are replaced with sequences. A variant of the semi-supervised problem formulation is

the case when the sequence database is unlabeled and can contain both normal as well

as anomalous sequences. Thus the problem formulation is to detect all sequences in a

given database which are anomalous, and is similar to the unsupervised point anomaly

detection problem.

For example, consider the following scenario that can arise in the domain of operating

system intrusion detection. A security analyst is interested in detecting “illegal” user

sessions on a computer belonging to a corporate network. An illegal user session is

caused when an unauthorized person uses the computer with malicious intent. To detect

such intrusions, the analyst can use the first formulation, in which the past normal user

sessions (sequence of system calls/commands) are used as the training data, and a new

user session is tested against this training data.

For time series data, consider the example shown in Figure 3.1. Figure 3.1(a) shows a

set of reference time series corresponding to measurements from a healthy rotary engine

disk of an aircraft [165], and Figure 3.1(b) shows a test set of time series corresponding

to measurements from healthy (solid) and cracked (dashed) disks.This task requires

assigning an anomaly score (or label) to the test time series.
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Figure 3.1: Normal and test time series for aircraft engine data.
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3.1.2 Detecting Anomalous Subsequence within a Sequence

The second problem formulation for sequences is to detect any subsequence within a

given long sequence which is anomalous with respect to the rest of the sequence. This

problem formulation is also referred to as discord detection, in the context of time series

[101].

For example, consider the following scenario in the domain of system call intrusion

detection. A security analyst is interested in detecting if a user’s account was misused

(hacked) in the past few months. To detect this misuse, the analyst can use the second

formulation, in which the user’s activity for the past few months is considered as a long

sequence, and is tested for any anomalous subsequence.

For time series data, Figure 2.3 shows an example of a discord, which can be detected

using the second problem formulation. For time series data, a special type of sequence

anomaly occurs when the length of the anomalous subsequence is 1, i.e., one is interested

in finding individual observations that are anomalous in the time series; these individual

observations are also referred to as outliers. A vast literature in the time series statistics

community exists that deals with outlier detection in time series data. See Section 3.5

for more discussion on such techniques.

3.1.3 Determining if the frequency of a query pattern in a given se-

quence is anomalous w.r.t its expected frequency

The third problem formulation for sequences is to detect if the frequency of occurrence

a given short query subsequence in a long test sequence is anomalous with respect to its

frequency of occurrence in a database of normal sequences. This problem formulation

is relevant only for symbolic sequences, since the frequency of exact occurrence of a

continuous subsequence is not significant.

For symbolic sequences, this problem is also referred to as surprise detection [102,

120]. Going back to the example from system call intrusion detection given in Table

3.1, the sequence login,passwd,login,passwd corresponds to a failed login attempt

followed by a successful login attempt. Occurrence of this sequence in a user’s daily

profile is normal if it occurs occasionally, but is anomalous if it occurs very frequently,

since it could correspond to an unauthorized user surreptitiously attempting an entry
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into the user’s computer by trying multiple passwords. To detect such intrusions, the

analyst can use the third formulation, in which the sequence of commands is the query

pattern, and the frequency of the query pattern in the user sequence for the given day

is compared against the expected frequency of the query pattern in the daily sequences

for the user in the past, to detect anomalous behavior.

3.2 Semi-supervised Anomaly Detection for Sequences

In this thesis, we address a specific anomaly detection problem formulation for sequence

data. The key objective here is to detect anomalous sequences with respect to a database

of normal sequences. The exact formulation of the problem addressed by techniques in

this thesis is:

Problem 1 Given a set of n training sequences, T, and another set of m test sequences

S, find the anomaly score A(Sq) for each test sequence Sq ∈ S, with respect to T.

The length of sequences in S and sequences in T might or might not be equal in length.

The training database T is assumed to contain mostly normal sequences, and hence will

also be referred to as normal database.

Several anomaly detection techniques for sequences, solve the following unsupervised

version of Problem 1:

Problem 2 Given a set of n sequences, S, find the anomaly score A(Sq) for each

sequence Sq ∈ S.

Problem 1 can be posed as Problem 2, and vice-versa. In this thesis, to maintain

uniformity, we have adapted all techniques to solve Problem 1.

3.3 Evaluation Methodology

Evaluating anomaly detection techniques is a critical part of the anomaly detection

research. Since most of the techniques are developed in the context of a particular

application domain, it is essential to assess how well does a technique perform in terms

of detecting anomalies from a given test data set. Additionally, an evaluation metric is

required to compare anomaly detection techniques and find the best technique suited
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for a particular problem. Evaluation of anomaly detection techniques is challenging

because often a labeled validation data set is not available. Here we discuss certain

aspects regarding evaluation of anomaly detection techniques for sequences. Another

challenge arises since the techniques are scoring based, and do not provide a binary

classification of test sequences as normal or anomalous. Thus traditional classification

based evaluation metrics, such as accuracy, precision, and recall, cannot be directly

applied.

3.3.1 Lack of Availability of Labeled Validation Data

In most domains, since anomalies correspond to a rare, and often improbable, event, a

validation data set that contains labeled anomalies and normal sequences is not always

available. In such cases, one has to rely on evaluation methods that do not require

knowledge of a labeled validation data. One such method is to use a validation set

consisting of only normal sequences (which is relatively easier to obtain). A strong

anomaly detection technique will assign low scores to all validation data instances,

while the scores assigned by a weak technique will have a wider “spread”. Note that

this evaluation only assesses how well a technique can detect normal sequences from a

test set, but does not guarantee if the technique will assign higher scores to anomalous

sequences.

If an unlabeled validation set containing both normal and anomalous sequences is

available, and the proportion of normal and anomalous sequences is known, one can

visualize the distribution of anomaly scores assigned by a technique. If the distribution

is shows bi-modality, and the relative sizes of the two “modes” are same as the known

proportion, the anomaly detection technique might be performing better than a tech-

nique for which the distribution does not exhibit any bi-modality. Again, such behavior

does not guarantee the performance of the technique, but can be used as an indicator

to compare techniques, or select suitable parameter settings.

3.3.2 Evaluating Scoring Based Techniques

Evaluation of an anomaly detection technique, when a labeled validation set is available,

is still challenging. The output of a typical anomaly detection technique is an anomaly
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score for every test instance. While this score can be used to rank the instances based

on their degree of anomaly, it cannot be directly converted into a “classification type”

binary output.

Threshold Based Evaluation To convert the anomaly scores into a binary output,

a threshold on the anomaly score can be employed, such that any score above the

threshold is labeled as anomalous and any score below the threshold is labeled as normal.

Alternatively, one can label top few ranked instances (according to the anomaly score)

as anomalous and rest as normal. In this thesis, we use the latter method to evaluate

the output of any anomaly detection technique as follows:

1. Rank the test sequences in decreasing order based on the anomaly scores.

2. Label the sequences in the top p portion of the sorted test sequences as anomalous,

and rest sequences as normal, where 1 < p ≤ s, where s is the total number of

test sequences.

The binary output can now be used to measure standard metrics such as precision, recall,

misclassification accuracy, etc [172]. We evaluate the technique using the following

evaluation metric:

Accuracy =
t

p
(3.1)

where t is the true anomalous sequences in top p ranked sequences. The metric measures

how precise is the anomaly detection technique for the top p ranked anomalies. Thus if

an analyst has resources to process only the top p ranked anomalies, the metric measures

how many ”true” anomalies will be processed. In this thesis, we report the accuracy

when p = q, where q is number of true anomalous sequences in the test data set.

Area Under ROC One drawback of the above threshold based metric is that it

is highly dependent on the choice of the threshold p. A technique might show 100%

accuracy for a particular value of p but show 50% accuracy for 2p. An alternative

evaluation metric that can be computed for an anomaly detection technique is the Area

Under ROC1 (AUC). The ROC can be constructed by varying the threshold p from 1 to

1Receiver Operating Characteristic[53].
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s and computing the false positive rate and the true positive rate for each value of p. A

technique with higher AUC is better than a technique with lower AUC. An advantage

of using AUC is that it is independent of any threshold. A possible disadvantage of

using AUC is that it measures the behavior of the technique for the entire output, while

often, an analyst might only be interested in top few ranked anomalies. Thus even if

one technique might be better than another based on AUC, but the former might not

detect as many ”true” anomalies in the top ranks.

3.3.3 Other Metrics

While the above two metrics are generic for any type of data, additional metrics are

sometimes required to evaluate anomaly detection techniques for sequences. One metric

is the localization of anomaly and measures how accurately can a technique detect the

location(s) of anomaly(ies) in a test sequence. Certain techniques can only determine

if a given sequence is anomalous or not, without any information about the location of

the anomalous region(s). This metric is important for domains such as system health

monitoring, to help diagnose the problem in a system, such as an aircraft or spacecraft,

that causes the anomaly. Another metric is time to detect the anomaly in a sequence and

measures how quickly can a technique detect an anomaly in a test sequence, after the

real anomaly has started. This metric is important when the testing is being done in an

online fashion, such as monitoring health of a spacecraft in operation. A technique that

can detect the occurrence of an anomaly as soon as it actually occurs can be used for

real time monitoring, while a technique that can detect anomalies only after observing

the entire sequence are not useful in such scenarios.

In this thesis, we evaluate the anomaly detection techniques using the threshold

based accuracy metric and the AUC metric. We also evaluate the scalability of the

techniques based on the time taken by the technique for training and testing.

3.4 Anomaly Detection for Symbolic Sequences – Related

Work

In this section, we provide an overview of the existing research on anomaly detection

for symbolic sequences. Bulk of research in this area focusses on the first problem
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formulation as discussed in Section 3.1.1. Such techniques can be grouped into following

categories:

• Kernel Based Techniques: These techniques treat the entire test sequence

as a unit element in the analysis [28, 29, 189], and hence are analogous to point

based anomaly detection techniques. They typically apply a proximity based point

anomaly detection technique by defining an appropriate similarity kernel for the

sequences.

• Window Based Techniques: These techniques analyze a short window of

symbols—a short subsequence—within the test sequence at a time [58, 87, 50,

48, 70, 69, 112, 111, 30]. Thus such techniques treat a subsequence within the test

sequence as a unit element for analysis. These techniques require an additional

step in which the anomalous nature of the entire test sequence is determined,

based on the analysis on the subsequences within the entire sequence.

• Markovian Techniques: These techniques predict the probability of observing

each symbol of the test sequence, using a probabilistic model, and use the per-

symbol probabilities to obtain an anomaly score for the test sequence [169, 192,

133, 52, 116]. These techniques analyze each symbol with respect to previous few

symbols.

• Hidden Markov Model Based Techniques: These techniques transform the

input sequences into sequences of hidden states, and then detect anomalies in the

transformed sequences [59, 147, 198, 57].

Though several techniques have been proposed for symbolic sequences in various appli-

cation domains, there has not been any cross domain evaluation and understanding of

the existing techniques. Forrest et al [59] compared four different anomaly detection

techniques, but evaluated them in the context of system call intrusion detection. Sun et

al [169] proposed a technique for protein sequences, but no evaluation with techniques

proposed for system call data was done. Similarly, while Budalakoti et al [28] proposed

a clustering based techniques to detect anomalies in flight sequences, it has not been

shown how the same technique would perform on system call intrusion detection data

or protein data.
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Most of the anomaly detection techniques that handle the second problem for-

mulation (Section 3.1.2) slide a fixed length window across the given long sequence

and compare each window with the remaining sequence to detect anomalous windows

[101, 100, 119, 184].

Techniques that handle the third problem formulation (Section 3.1.3) compute the

frequency of the query pattern in normal sequences and in the test sequence and compare

the frequencies to assign an anomaly score to the query pattern [102, 120, 77, 78].

3.5 Anomaly Detection for Univariate Time Series Data –

Related Work

In this section, we provide an overview of the existing research on anomaly detection

univariate time series data. Several statistical techniques detect anomalous observations

(also referred to as outliers) within a single time series using various time series modeling

techniques such as Regression [60, 2, 154], Auto Regression (AR) [63, 188], ARMA [144],

ARIMA [195], Support Vector Regression (SVR) [124], Kalman Filters [105], etc. The

general approach behind such techniques is to forecast the next observation in the time

series, using the statistical model and the time series observed so far, and compare

the forecasted observation with the actual observation to determine if an anomaly has

occurred.

Two broad categories of techniques have been proposed to solve the first problem

formulation (Section 3.1.1, viz., segmentation based and kernel based anomaly detection

techniques. The general approach behind segmentation based techniques is to segment

the normal time series, and treat each segment as a state in a Finite State Automaton

(FSA), and then use the FSA to determine if a test time series is anomalous or not.

Several variants of the segmentation based technique have been proposed [32, 128, 156].

Kernel based anomaly detection techniques compute similarity/distance between time

series and apply a nearest neighbor based anomaly detection technique on the similarity

“kernel” [146, 183, 191]. Protopapas et al [146] use cross correlation as the similarity

measure, and compute the anomaly score of a test time series as the inverse of its average

similarity to all other time series in the given data set. Wei et al [183] use a rotation

invariant variant of Euclidean distance to compute distance between time series, and
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then assign an anomaly score to each time series as equal to its distance to its nearest

neighbor. Yankov et al [191] proposed pruning based heuristics to improve the efficiency

of the nearest neighbor technique [183].

Several anomaly detection techniques for time series data solve the second problem

formulation (Section 3.1.2, also referred to as discord detection [101, 100, 103, 119, 62,

27, 191]. Such techniques analyze fixed length windows obtained from the time series

by comparing each window with the rest of the time series or against all other windows

from that time series. A window which is significantly different from other windows is

declared as a discord.

Similar to symbolic sequences, the existing techniques for time series data have

been proposed within application domains and have not been compared with techniques

proposed for other domains. For example, while Mahoney and Chan [32] propose a

segmentation based technique to detect anomalies in data obtained from spacecraft, it

has not been compared with techniques that have been proposed for ECG data, nor has

it been applied to other domains to test its performance.

3.6 Anomaly Detection for Multivariate Time Series Data

– Related Work

Limited research has been done to solve the semi-supervised anomaly detection problem

for multivariate time series data. Most of the existing anomaly detection techniques for

multivariate time series focus on detecting a single anomalous multivariate observation

[10, 66, 181]. Baragona and Battaglia [10] propose an ICA based technique to detect

outliers in multivariate time series. The underlying idea is to isolate the multivariate

time series into a set of independent univariate components and an outlier signal, and

analyze the univariate outlier signal to determine the outliers. The ICA based technique

assumes that the observed signals are linear combination of independent components as

well as independent noise signal, and the the added noise has a high kurtosis.

Cheng et al [42] proposed a distance based approach to detects anomalous subse-

quences within a given multivariate sequence. For a given multivariate sequence S, all w

length windows are extracted. The distance between each pair of windows is computed

to obtain a symmetric (T −w+1)× (T −w +1) kernel matrix. A fully connected graph
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Type of Sequence Data
Univariate Sym-
bolic

Univariate Time
Series

Multivariate
Time Series

System Call Intrusion Detection [58, 87, 51, 52,
112]

Network Intrusion Detection [51]
Aircraft/Space Shuttle Safety [28, 29] [165, 63, 155, 156,

32, 128]
[64, 90]

Cardiac/Brain Health Monitoring [184, 100, 103] [10]
Eco-system Disturbance Detection [22] [42]
Proteomics [76, 169, 122]
Fraud Detection [31, 140, 139]
Astronomy [146, 150, 191]

Table 3.2: Applications of Anomaly Detection for Sequences

is constructed using the kernel matrix in which each node represents a w length window

and the weight on the edges between the pair of windows is equal to the similarity

(inverse of distance) between the pair. The nodes (or components) of the graph that

have least connectivity are declared as anomalies.

3.7 Applications of Anomaly Detection for Sequences

Anomaly detection is a highly application oriented field of research. Most of the existing

techniques for sequences have been proposed in the context of different application

domains. We summarize the different application domains in which anomaly detection

techniques for different types of sequences have been applied in Table 3.2.



Chapter 4

A Reference Based Analysis

Framework for Data

A key, though often overlooked, aspect of data mining based research is the relationship

between the performance of an algorithm and the nature of the data to which the

algorithm is applied. This is even more significant in the context of anomaly detection,

since it is an application oriented field of research. An anomaly detection algorithm,

when applied in two different application domains, might encounter two remarkably

different types of data. Thus it is essential to understand the characteristics of a given

data set and to relate the performance of an anomaly detection algorithm to these

characteristics, to understand how a given algorithm will perform on a given data set.

In this chapter we introduce a novel analysis framework to characterize a data set. In

Chapter 6, we will show how the framework can be used to understate the performance

of a given anomaly detection algorithm.

The Reference Based Analysis (RBA) framework can be used to analyze a given data

set, with respect to a reference data set. This framework is motivated from the way semi-

supervised anomaly detection techniques differentiate between normal and anomalous

test instances by learning a model of normal behavior from a normal training set. The

strength of the RBA framework is that it can be used to analyze complex types of data,

for which limited analysis techniques exist. The key feature of the RBA framework

is its ability to analyze a given data set with respect to a reference data set. In the

32
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transformed space, unseen instances similar to the reference data set will tend to occupy

the same region that is occupied by instances from the reference data set. By contrast,

instances that are different (we call this the novel class) will tend to be mapped to other

regions, at least for some of the dimensions. This transformation of categorical data to

continuous space can be utilized in practice for a variety of purposes.

The rest of this chapter is organized as follows. Section 4.1 provides a motivation

for RBA framework from the perspective of semi-supervised anomaly detection. Section

4.2 provides a general introduction to categorical data and the motivation for the RBA

framework for such type of data. Section 4.3 provides the related work done in the

field of analyzing multivariate categorical data. Section 4.4 defines a set of separability

statistics which form the core of the RBA framework. Section 4.5 describes how the

separability statistics can be used to map categorical data into a continuous space.

Sections 4.6 and 4.7 describe how the RBA framework can be employed for visualization

and anomaly detection for categorical data, respectively. We conclude with potential

future extensions of the RBA framework in Section 4.8.

4.1 Motivation for Reference Based Analysis Framework

Semi supervised anomaly detection techniques distinguish between normal and anoma-

lous instances in a given test data set, using a reference (or training) data set consisting

of mostly normal instances. Each technique relies on the relationship between a test in-

stance and reference data set and an assumption that the relationship between a normal

test instance and the reference set is different than the relationship between an anoma-

lous test instance and the reference set. We refer to such relationship as a distinguishing

characteristic of the test instances.

For example, the k-nearest neighbor (kNN) based anomaly detection technique

[149] assigns an anomaly score to each test instance equal to its distance to its kth

nearest neighbor in the reference set. Thus the distance to the kth nearest neighbor in

the reference set is the distinguishing characteristic for the kNN technique. Similarly, a

standard clustering based anomaly detection technique assigns an anomaly score to each

test instance equal to its distance to the centroid of the closest cluster from the reference

set. Thus the distance to the closest cluster in the reference set is the distinguishing
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characteristic for the clustering based technique.

The key aspect of the distinguishing characteristics is that they are computed for

every test instance using the reference set. It is straightforward to note that for kNN

to perform well on a given data set, the normal and anomalous test instances need

to be different from each other in terms of the distinguishing characteristic. Thus

the distinguishing characteristics for a given test set are indicative of how well the

corresponding anomaly detection techniques will perform on the test set. In other words,

if the test data is mapped along a single dimension that represents a distinguishing

characteristic, then the corresponding anomaly detection technique will perform well if

the data is separable along this dimension.

The RBA framework is motivated from such distinguishing characteristics. For any

type of data, a set of canonical features (also referred to as separability statistics) are

constructed, which are similar in spirit to the distinguishing characteristics, but are more

fundamental and can be used to compute the characteristics. The test data is mapped

into the multi-dimensional space constructed using the separability statistics. If a test

set is separable along a dimension, then any technique that utilizes that dimension, will

perform well on the test set, and vice-versa. One can also use the features to visualize

the data, which is one important use of RBA framework, especially for data types for

which no visualization schemes exist. Often, a test set might not be separable along a

single dimension, but might be separable using a linear or non-linear combination of the

dimensions. Thus RBA allows for devising novel anomaly detection techniques which

utilize such combinations and are best suited for a given test set.

4.2 Categorical Data

Categorical data (also known as nominal or qualitative multi-state data) has become

increasingly common in modern real-world applications. Table 4.1 shows a sample of a

categorical data set. These data sets are often rich in information and are frequently en-

countered in domains where large-scale data sets are common, e.g., in network intrusion

detection. However, unlike continuous data, categorical data attribute values cannot

be naturally mapped on to a scale, making most continuous data analysis techniques

inapplicable in this setting: Table 4.2 lists common exploratory analysis techniques
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for continuous data and categorical data. As one can see, many techniques that are

applicable to continuous data have no natural analogues in the categorical space.

cap-shape cap-surface · · · habitat Class

convex smooth urban poisonous
convex smooth grasses edible
bell smooth meadows edible
convex scaly urban poisonous
convex smooth grasses edible
· · ·

Table 4.1: Sample of the Mushroom Data Set from the UCI Machine Learning Reposi-
tory [8].

When exploring the characteristics of a multi-dimensional continuous data set, we

might begin by looking at one attribute at a time. We could compute the mean, per-

centiles, variance and skewness, or construct a box plot, histogram or nonparametric

density function. This would give us an idea of the range and overall distribution of

each attribute. However, with categorical data we can only look at the mode or an

unordered histogram. With ordinal data (ordered categorical data), we may also be

able to look at percentiles but for the most part the situation is similar to categorical

data.

Other techniques that are extremely valuable in exploring continuous data including

factor analysis techniques such as PCA, or multidimensional scaling can give us an idea

about the variability of the data across all attributes. Multivariate techniques such as

these are not even applicable in the categorical setting. Regardless of our final goal

in analyzing a continuous data set, all of the above steps would help us understand

its characteristics. On the other hand, when given a categorical data set many of

these exploratory steps cannot naturally be extended to the new setting, leaving a huge

“gap” as can be seen from Table 4.2. Thus, there is a need for elemental approaches for

exploring the characteristics of a categorical data set.

In this chapter we propose the RBA framework in the context of multivariate cat-

egorical data [37]. We seek to utilize underlying data characteristics for categorical

data analysis, in the spirit of data-driven similarity measures. Specifically, we introduce

the concept of separability statistics, which characterize the differences between a given
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Continuous Categorical

Single At-
tribute

Mean, Median, Box Plot, Histogram,
Percentile, Variance, Skewness, Den-
sity Function

Mode, Histogram (no ordering)

Pairs of At-
tributes

Covariance, Scatter Plot, Correlation,
2-D Histogram, Density Function

Contingency Table, Correspondence
Analysis, 2-D Histogram (no ordering)

Entire Space PCA, Subspaces, MDS, LLE, SVD,
ISOMAP, FastMAP

Subspaces, Data Cube

Other Tech-
niques

Correlation Matrix1, LDA Correlation Matrix1, Discriminant
Correspondence Analysis

Table 4.2: Exploratory data analysis techniques for continuous and categorical data.

instance and a labeled reference data set. Each statistic essentially represents a dis-

tance between an instance and the reference data set (i.e., the statistic allows mapping

of the categorical data into a 1-dimensional continuous space). Therefore, using these

statistics and a reference data set, one can map any collection of categorical instances

(including those from the reference data set) to a multidimensional continuous space.

Clustering and outlier detection require a similarity measure when applied to cate-

gorical data. In previous work [24], we have shown that the choice of similarity measure

significantly affects overall performance. The proposed framework provides the capa-

bility to define a better similarity measure for a particular categorical data set; we will

demonstrate this in the context of anomaly detection, although one can extend this to

other data mining tasks such as classification as well.

To illustrate the utility of separability statistics, let us consider a simple example.

The Mushroom Data Set is a well-known categorical data set available from the UCI

Machine Learning Repository [8]. This data set has 22 categorical attributes describ-

ing the various characteristics of a mushroom and a class which denotes whether a

mushroom is edible or poisonous; the number of values taken by each of the attributes

ranges between 2 and 12. While one can always explore the data set using techniques

in Table 4.2 such as an unordered histogram, these techniques are limited in what they

can reveal about the joint distribution of the attributes. Table 4.1 shows the first few

data instances in the Mushroom data set over a subset of the attributes. Using the

methods to be discussed in this paper, this data set was mapped to a continuous space

for visualization. Figure 4.1 shows the data instances in this transformed space with
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markers defined by the true labels: it is evident that the classes are well separated in

this space. This allows the analyst to visually explore the classes in the Mushroom data

set, which is not easy to do for the original categorical data set.

First principal component in transformed space
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Figure 4.1: Visualization of the Mushroom data set using the proposed framework.

4.3 Related Work

Data with categorical attributes has been studied for a very long time, dating back at

least a century when Karl Pearson [141, 142] introduced the χ2 test for independence

between categorical attributes. The traditional exploratory techniques used are contin-

gency tables, the chi-square statistic, unordered histograms and pie charts [4]. Friendly

[61] proposed several sophisticated statistical techniques such as Sieve Diagrams and

Mosaic Displays to view k-way contingency tables, and Multiple Correspondence Anal-

ysis (MCA), to handle multivariate categorical data sets, though most techniques are

limited to attributes that take few possible values. Fernandez [56] discusses several

exploratory techniques for categorical data from a data mining perspective.

There have been a number of studies directed at categorical data in the visualization

1A matrix which shows the intra- and inter-class correlation in a block structure [173, chap. 3].
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community [18, 21, 85, 86]. In particular, one direction in visualization has been to order

the categories using the information present in the data [20, 125]. One such technique,

called Distance Quantification Classing (DQC), was proposed by Rosario et al [152] to

order the categories present in a class variable in a categorical data set with respect

to the predictor variables. None of the techniques directly address the problem of

analyzing a categorical data set with respect to a reference data set, which is the focus

of our paper.

A number of unsupervised learning algorithms have been proposed for categorical

data, e.g. CLICKS [194], CLOPE [190], ROCK [75], CACTUS [67], COOLCAT [12],

and other techniques [71, 92]. Most of these techniques use some notion of similarity

when comparing instances. Similarity measures that are devised using the framework

proposed in this paper can be plugged in to many such algorithms.

Several probabilistic analysis techniques have such as Naive Bayes and other Bayesian

techniques, Linear Discriminant Analysis, etc., are applicable for modeling categorical

data. Such techniques are different from RBA since they operate on a single labeled

data set, while the RBA framework analyzes data with respect to a reference data set.

While the objective of the probabilistic modeling methods is to estimate the probabili-

ties of observing test instances, the objective of RBA is to map categorical data into a

multidimensional continuous space.

While RBA allows one to map categorical data into a multi-dimensional continuous

space, one alternative method to achieve similar mapping is to binarize the categorical

data. Thus each attribute, which takes k values, gets transformed into k binary values.

A data instance with a particular value for that attribute has 1 at the corresponding

binary location and 0 for all other locations. In this chapter we will show how RBA

is significantly better than binarization for categorical data due to two reasons, first

that binarization results in a large number of features, especially when the categorical

attributes take a large number of possible values, and second that binarization does

not utilize the notion of the reference set while transforming the data instances into a

continuous space.
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4.4 Separability Statistics

In this section we present a set of data-driven separability statistics that can be calcu-

lated for a given test data set with respect to a reference data set. Each statistic allows

mapping of the categorical data into a 1-dimensional continuous space. The statistics

are meant to differentiate instances in the reference data set from instances in other data

sets. Since, for categorical data, the difference can be characterized in many different

ways, a variety of separability statistics are possible. We only consider a few in this

chapter.

(a) Data set.

A B C D

a1 b1 c1 d1

a1 b1 c2 d1

a1 b1 c3 d1

a2 b1 c4 d2

a2 b1 c5 d1

a1 b2 c6 d3

a1 b2 c7 d3

a2 b2 c8 d3

a2 b2 c9 d3

a2 b2 c10 d4

(b) Characteristics of attributes and values.

arity A: 2 B: 2 C: 10 D: 4

frequency a1: 5 b1: 5 c1: 1 d1: 4
a2: 5 b2: 5 c2: 1 d2: 1

c3: 1 d3: 4
c4: 1 d4: 1
c5: 1
c6: 1
c7: 1
c8: 1
c9: 1

c10: 1

Table 4.3: A simple categorical data set with four attributes.

The discussion of the separability statistics is organized in the following manner: we

will begin by discussing the intuition behind each of the statistics, including motivating

examples, and then proceed to formally define the statistics. For now, let us refer to the

four statistics as dm, fm, nx and fx. Let us also consider the simple categorical data

set shown in Table 4.3, and the following two data instances: y = 〈a1, b1, c10, d1〉 and

z = 〈a3, b2, c10, d5〉.
The statistic dm essentially captures the extent to which a given instance has match-

ing values with instances in the reference data set. This is driven by the intuition that

an instance belonging to the same class as the reference class will, on average, have

more matching values with the reference class than an instance belonging to a different

class. The procedure to map categorical data to continuous space will be discussed in
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Section 4.5. For the purposes of the example being discussed with instances y and z, a

brief outline is as follows: each statistic is computed by comparing a given instance with

every instance in the reference data set, and then taking the average. For the instance

y, the values corresponding to the first and last rows of the data set would be 3 and 1

respectively. The final value of this statistic for the instances y and z is 1.5 and 0.6,

respectively.

The statistic fm takes into account the frequency of matching values between an

instance and reference data set. One way to think of this statistic is as a frequency-

weighted version of the statistic dm. The key intuition here is that in addition to the

importance of more matching values, instances belonging to the reference class will

also tend to match on relatively frequent values, while instances not belonging to the

reference class will tend to match on infrequent values. This is important in situations

where an attribute in the reference data set takes a very large number of values (e.g.

the IP address in a network intrusion data set) thus making the odds of any match high.

The value of this statistic for the instances y and z is 6.7 and 2.6, respectively.

The statistic nx is a function of the arity of the mismatching attributes between an

instance and a reference data set. In particular, the value of the statistic is higher when

the mismatching attributes have lower arity, i.e. they take fewer values. The idea is

that if an instance mismatches on an attribute that takes very few values across many

instances in the reference class, then it is unlikely that it belongs to the class (simply

because there are few opportunities to not match). The value of this statistic for the

instances y and z is -5.45 and -7.90, respectively.

The statistic fx looks at the frequency of mismatching attribute values between an

instance and a reference data set. In a sense, this statistic is the “complement” of the

fm statistic and the intuition is also related to nx; if the frequency of mismatching

values is high between a given instance and most members of the reference class is high,

then this means the instance often mismatches with the reference class on values that

are common in the reference class. Thus, it is unlikely that the instance belongs to the

same class as the reference class. The value of this statistic for the instances y and z is

-1.57 and -2.725, respectively.

The values assigned by the four statistics for instances y and z suggest that y belongs

to the reference class and z does not. This is somewhat difficult to conclude just by
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looking at the instances and the reference data set, but by examining the underlying

quantities behind the statistics one can see that it is indeed reasonable to say that y

and z belong to different classes. In particular, we have seen how the statistics map an

instance between categorical space and continuous space based on several key underlying

characteristics of the data set.

4.4.1 Formal Definition

Table 4.4 lists the notation that will be used in the subsequent discussions.

T Reference data set
D Test data set
N Size of reference data set
d Number of attributes in T and D

ai ith attribute (1 ≤ i ≤ d)
Ai Set of categorical values taken by ai in T

ni Number of values taken by ai (= |Ai|)
fi(x) Number of times ai takes value x in T

Table 4.4: Notation used for explaining RBA.

Given a pair of categorical data instances z ∈ D and y ∈ T , we define a partitioning

of attribute set A into Am and Ax, such that, zi = yi,∀i ∈ Am and zi 6= yi,∀i ∈ Ax. Am

denotes the set of matching attributes and Ax denotes the set of mismatching attributes

for the pair z, y.

We compute the following quantities for the pair z, y:

dm = |Am| (4.1)

fm =
∑

i∈Am

fzi
(4.2)

nx = −
∑

i∈Ax

1

ni
(4.3)

fx = −
∑

i∈Ax

(
1

zi
+

1

yi
) (4.4)

Thus, for every pair of categorical data instances z ∈ D and y ∈ T we have the

following 4-tuple: 〈dm, fm, nx, fx〉zy. For a test instance z we get a |T |×4 matrix of the
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above mentioned 4-tuple, denoted as:

Mz = [〈dm, fm, nx, fx〉zy]∀y∈T (4.5)

Let ~zk denote a row vector containing top kth value for each column of Mz, such that:

~zk = 〈dmk, fmk, nxk, fxk〉 (4.6)

For a given value of k, we define a set of 4 statistics denoted as the row vector ~zk.

The reason to choose the top kth value from each column of Mz instead of a pa-

rameter independent value, such as the mean of the column, is to avoid issues due to

multiple modes existing in the reference data set, T . If a very small value of k, such as

1, is chosen, the statistics can get affected by the presence of outliers in T . We have

empirically observed that 5 ≤ k ≤ 15 is a reasonable value of k for a variety of data sets.

A set of statistics can be defined using multiple values of k to reduce the sensitivity on

k.

Each of the four statistics mentioned in (4.6) are motivated from the following ob-

servations in context of two instances z1, z2 ∈ D and y ∈ T , such that z1 is similar to

instances (generated by the same distribution as T ) in T while z2 is different from the

instances in T (not generated by the same distribution as T ):

1. dm|z1y > dm|z2y.

2. fm|z1y > fm|z2y.

3. fx|z1y > fx|z2y.

4. nx|z1y > nx|z2y.

The above mentioned arguments indicate that if test instances z ∈ D are transformed

or mapped to ~zk, then the instances similar to T will map to the same region, while the

instances different from T will map to a different region.

It should be noted that all of the above four observations might not necessarily hold

true at the same time for a given data set. But one or more of them will likely hold

true and hence by mapping the data into the joint space, one can distinguish between

the two types of test instances.
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Measure Si(zi, yi) ∝

Overlap =

{

1 if zi = yi

0 otherwise
dmk

Goodall =

{

fi(zi)(fi(zi)−1)
N(N−1)

if zi = yi

0 otherwise
fmk

OF =

{

1 if zi = yi
1

1+log N
fi(zi)

×log N
fi(yi)

otherwise dmk , fxk

Eskin =

{

1 if zi = yi

n2
i

n2
i
+2

otherwise
dmk, nxk

Table 4.5: Similarity Measures for Categorical Attributes. Note that S(z, y) =
∑d

i=1 Si(zi, yi).

4.4.2 Relationship to Similarity Measures

There have been several data driven similarity measures proposed for categorical data

sets [24]. Table 4.5 lists four popular similarity measures that have been defined to

measure similarity S(z, y), between a pair of data instances.

We argue that the similarity of a test instance z to its kth nearest neighbor in T

using a data driven similarity measure, can be expressed as a function of one or more

of the canonical statistics listed in (4.6). Column 3 in Table 4.5 indicates the particular

test statistic that corresponds to each similarity measure.

As an illustrative example, consider the similarity measure Goodall listed in Table

4.5. Let us consider a test instance z and the reference data set T . The Goodall

similarity of z with an instance y ∈ T can be written as:

S(z, y) =
∑

i∈Am

fi(zi)(fi(zi) − 1)

N(N − 1)
+
∑

i∈Ax

0

=
1

N(N − 1)
(
∑

i∈Am

fi(zi)
2 −

∑

i∈Am

fi(zi))

≈ 1

N(N − 1)
(f2

m − fm)

where Am and Ax denote the set of attributes in which z and y match and mis-

match, respectively. Note that we approximate
∑

i∈Am
fi(zi)

2 with (
∑

i∈Am
fi(zi))

2.
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The similarity of z to its kth nearest neighbor in T , using the Goodall, is equal to the

kth largest value of S(z, y)∀y ∈ T , and can be written as:

Sk(z, y) ≈ 1

N(N − 1)
(f2

mk − fmk)

Thus we have shown how the Goodall similarity measure is related to the separability

statistic fmk. Similar relations can be shown for other similarity measures.

It may be argued that any similarity measure defined for categorical instances (such

as the ones listed in Table 4.5 and others discussed in [24]) maybe used as a potential

separability statistic in addition to the ones listed in (4.6). But the statistics proposed

in this chapter are canonical and the similarity measures can be viewed as functions of

one or more of the proposed statistics.

4.5 Mapping Data to Continuous Space

In this section we describe the process of mapping categorical data into a continuous

space using the separability statistics discussed in Section 4.4.

For each categorical test instance in D, we first obtain the corresponding separability

statistics as shown in (4.6) with respect to the reference set T , using one or more values

for k. The characteristic of this mapping is that test instances that belong to the

reference class have lower values for each statistic than test instances that belong to the

novel class. We denote the mapped test data set with ~D.

The reference data set T can also be mapped into a continuous space with respect

to itself in the same manner as described above. We denote the mapped reference data

set with ~T . If the instances in T belong to a few dominant modes, one would expect

the reference instances to map to similar values for each of the separability statistics.

Before further processing of the mapped data sets ~D and ~T , it is desirable to nor-

malize the data, since the different statistics can take different ranges of values. Each

column of the mapped data set ~D is z-normalized to bring all statistics to the same

scale. The mapped training data set ~T is also normalized but in a slightly different

manner; the difference being that the z-normalization of each column in ~T is done using

the column means and standard deviations obtained from the mapped test data set.
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This is important, because if the z-normalization of ~T is done with respect to itself,

the reference instances might have different normalized values for the statistics than the

similar instances in the test set, which is not desirable.

Figure 4.2 highlights the significance of the normalization, as described above, using

the Mushroom data set. The plot 4.2(a) shows the mapped data using the raw statistics

fmk and nxk. The range of fmk statistic is [2.0e+04,5.5e+04] while the range of nxk

statistic is [-0.53,-0.16]. If the reference and test data sets are normalized independently,

the reference instances are mapped to different values than the test instances belonging

to the reference class as can be seen in Figure 4.2(b). If both reference and test data sets

are normalized with respect to the test data set, the reference instances are normalized

in the same fashion as the test instances belonging to the reference class, as can be seen

in Figure 4.2(c) which is a scaled down version of the raw data in Figure 4.2(a).

4.6 Visualization

The separability statistics described in Section 4.4 allows for the visual exploration of

any categorical data set. The data is first transformed as discussed in Section 4.5. Since

the resulting data space is continuous, it is suitable for visualization. In particular, it

allows the analyst to visually explore aspects such as separation between modes, size

and the number of modes.

There are multiple ways to visualize the transformed continuous space, the simplest

of which involve looking at pairs of dimensions or projections along specific subsets.

Other mechanisms can be used to visualize continuous space such as tours in the GGobi

system [171] and those in the Orca system [170]. We refer the reader to the recent work

by Wickham et al [187] and Lawrence et al [114] for a discussion of high-dimensional

data visualization systems. In this paper, we will discuss two ways, one which utilizes

dimensionality reduction and another with histograms.

4.6.1 Two-dimensional Scatter Plots.

In order to reduce the number of dimensions to two for the purpose of visualization, we

will use the well-known principal components analysis (PCA) technique [49]. The role

of PCA here is to give more emphasis to the statistics that exhibit more separability
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Figure 4.2: Plots of Mushroom1 data set using statistics fmk and fxk.
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and filter out those that are close to unimodal. For this paper we have chosen PCA for

its simplicity, however, there are other dimensionality reduction techniques that may

be better suited for this task; we will not discuss other techniques since they are out of

the scope of this paper.

To illustrate the use of our proposed framework for visualization, we will consider an

example with a real data set. The data set has been partitioned into a labeled reference

data set and a test data set. The test data set is then mapped to continuous space

using the procedure discussed in Section 4.5. The resulting space ~T is 4-dimensional

and each column is normalized; PCA is applied to the data set and the leading two

principal components are preserved. The data set ~T is then projected on to the two

leading principal components resulting in a 2-dimensional data set, with the number of

rows being the number of test instances.

We can now visually explore the two-dimensional space; in this case we will use a

scatter plot. The idea is that instances that have similar values for the statistics will

end up in the same region of the plot, while those that have different values will be in

different regions. The key observation is that the instances that have different values

are likely to be from a different class than the reference data set.

Figure 4.3 shows the scatter plot for the KDD1 data set, which has 29 attributes,

some of which take hundreds of values. Note that the labels of the test data set were

examined only after the data was mapped to this space. The test data set contained

instances from the reference class as well as instances that did not belong to the reference

class. It is evident that the separability statistics were effective in distinguishing the

classes. In particular, note that the instances belonging to the reference class were

mapped to the same region, even though some of these instances came from the test

class for which the label was unknown during the analysis. Another advantage of a

dimensionality reduction technique is that it returns a linear combination of the statistics

which is optimal in some sense. The weights from the linear combination can then be

used to design a similarity measure for the data set (this aspect will be further discussed

in Section 4.7.1).

As mentioned in Section 4.3, binarization is an alternative way to transform cate-

gorical data into a continuous space. Figure 4.4 shows the a scatter plot for first two

principal components of the binarized KDD1 data set. We note that the visualization
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Figure 4.3: Visualization of the KDD1 data set mapped into RBA feature space.

obtained from binarized data does not reveal as insightful information regarding the

original categorical data, when compared to the mapped data using RBA features.

4.6.2 Histograms

Since the separability statistics are directly capturing important characteristics of the

underlying data, it is very useful to examine their distribution using a histogram. In this

section, we will discuss exploring the distribution of a single statistic. As stated earlier,

if a statistic assigns different values to a set of instances compared to the reference

class, they are likely to be from a different class than the reference data set. Therefore,

the distribution of the statistic will be unimodal (with low variance) when all instances

are from the same class. One way to examine the distribution of a statistic is using a

histogram. The histogram will essentially show to what extent the distribution departs

from a low variance unimodal behavior.

Figure 4.5 shows histograms of the four statistics for the KDD1 data set (the labels

were examined only after the histogram was constructed). In this case, it is apparent
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Figure 4.4: Visualization of the KDD1 data set mapped into binarized feature space.

that the distribution of all the statistics are multi-modal with high variance. If we were

to generate this plot without knowing the labels, we would observe that the fm and dm

statistics exhibited a high degree of multi-modality, while the other two statistics were

somewhat multi-modal. Therefore, fm and dm would be considered the best separating

statistics for this data set. Looking at Figure 4.5, taking the labels into account we see

that this is indeed the case. Based on these histograms, the conclusion for the KDD1

data set would be that the reference class can be distinguished from other classes using

properties related to the dm statistic (more matching values) and the fm statistic (more

matches on frequent values).

4.7 Utility of Separability Statistics for Anomaly Detec-

tion

In this section we illustrate the utility of the separability statistics in semi-supervised

anomaly detection. Here the objective is to separate anomalies from normal instances

in a given test data set, with respect to a reference (training) data set which is assumed
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Figure 4.5: Visualization of KDD1 data set using histograms.

to contain only normal instances.

We use a nearest neighbor based anomaly detection technique (kNN) [149, 173]

which assigns the anomaly score of a test instance as equal to the distance of the test

instance to its kth nearest neighbor in the reference data set. The distance can be

computed using any distance measure. If a measure computes similarity, the anomaly

score of a test instance is inverse of the similarity to its kth nearest neighbor.

We experimented with two kNN based anomaly detection techniques using the sep-

arability statistics. In the first variation (denoted as kNNEuc), we assign an anomaly

score to each test instance in ~D using ~T as the reference data, using Euclidean distance

as the distance measure.

In the second variation of kNN (denoted as kNNPCA), we use Principal Compo-

nent Analysis (PCA) to project the mapped data sets, ~D and ~T , to a lower dimensional

space. PCA is performed on the mapped test data set ~D. The top principal com-

ponents that capture 90% of the variance in the test data are chosen. Both test and

reference data sets are projected along these top principal components. Anomaly scores

are assigned to test instances using Euclidean distance in this projected space. Both
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cr1 cr2 cn1 cn2 kd1 kd2 kd3 kd4 sk1 sk2 ms1 ms2 cen bal ttt aud
d 6 6 42 42 29 29 29 29 10 10 21 21 10 4 9 16
|T | 904 944 3055 3055 1000 1000 6007 6007 2182 1429 3208 2916 2120 106 316 73
|D| 759 715 1100 550 1100 1100 1100 1100 1298 1177 1100 1100 2321 308 341 77

Table 4.6: Description of public data sets used for experimental evaluation. Each test
data sets contains normal and anomalous data instances in ratio 10:1.

cr1 cr2 cn1 cn2 kd1 kd2 kd3 kd4 sk1 sk2 ms1 ms2 cen bal ttt aud Avg

ovr 0.16 0.06 0.38 0.14 0.88 0.97 0.90 0.90 0.68 0.44 1.00 0.96 0.11 0.04 0.23 0.43 0.52
gd4 0.45 0.65 0.10 0.06 0.79 0.93 0.90 0.90 0.12 0.08 0.78 0.93 0.07 0.07 0.52 0.29 0.48
of 0.54 0.58 0.64 0.16 0.82 0.94 0.85 0.78 0.68 0.42 1.00 0.96 0.19 0.04 0.29 0.43 0.58
esk 0.51 0.54 0.39 0.14 0.88 0.96 0.90 0.90 0.68 0.30 1.00 0.96 0.23 0.04 0.23 0.43 0.57
iof 0.14 0.46 0.51 0.16 0.70 0.87 0.73 0.81 0.25 0.17 1.00 0.95 0.09 0.07 0.87 0.29 0.51
lin 0.00 0.00 0.29 0.26 0.86 0.96 0.90 0.88 0.75 0.60 1.00 0.97 0.09 0.21 0.45 0.29 0.53
lin1 0.42 0.65 0.28 0.24 0.91 0.95 0.82 0.09 0.72 0.39 1.00 0.97 0.18 0.00 0.23 0.29 0.51
gd1 0.00 0.00 0.20 0.22 0.81 0.90 0.00 0.01 0.69 0.30 1.00 0.81 0.12 0.25 0.35 0.43 0.38
gd2 0.54 0.71 0.62 0.22 0.78 0.89 0.18 0.11 0.69 0.55 1.00 0.96 0.16 0.04 0.32 0.43 0.51
gd3 0.01 0.00 0.24 0.18 0.81 0.91 0.00 0.11 0.69 0.41 1.00 0.96 0.16 0.14 0.32 0.43 0.40
smv 0.00 0.00 0.07 0.16 0.00 0.00 0.00 0.00 0.34 0.07 0.00 0.00 0.07 0.21 0.35 0.00 0.08
gmb 0.57 0.68 0.67 0.24 0.72 0.91 0.79 0.85 0.20 0.20 1.00 0.90 0.15 0.04 0.35 0.43 0.54
brb 0.12 0.52 0.43 0.14 0.91 0.96 0.90 0.90 0.66 0.36 1.00 0.96 0.10 0.18 0.87 0.29 0.58
anb 0.00 0.02 0.15 0.14 0.58 0.78 0.69 0.22 0.51 0.09 1.00 0.88 0.21 0.14 0.39 0.29 0.38
euc 0.55 0.65 0.18 0.14 0.89 0.96 0.90 0.90 0.66 0.26 1.00 0.96 0.18 0.11 0.35 0.71 0.59
pca 0.55 0.72 0.18 0.14 0.90 0.96 0.90 0.90 0.71 0.42 1.00 0.95 0.18 0.11 0.39 0.71 0.61
stt 0.54 0.65 0.38 0.16 0.91 0.98 0.90 0.90 0.71 0.73 1.00 0.96 0.18 0.14 0.45 0.71 0.64

fxk fmk dmk fmk fxk fxk dmk dmk fxk fxk dmk dmk fxk fmk fmk dmk

Avg 0.30 0.40 0.34 0.17 0.77 0.87 0.66 0.60 0.57 0.34 0.93 0.88 0.15 0.11 0.41 0.40

Table 4.7: Performance of similarity measures and separability statistics on public data
sets using kNN (k = 10).

variations combine the four statistics when computing distance between instances.

The motivation behind using PCA is that the statistics that can discriminate be-

tween normal and anomalous data instances in the test data tend to have higher vari-

ance than the statistics that do not discriminate between normal and anomalous data

instances. By using PCA, we can capture the statistics with greater discriminative

power.

To evaluate the performance of any technique, we count the number of true anomalies

in the top n portion of the sorted anomaly scores of the test instances, where n is the

number of actual anomalies. Let o be the number of actual anomalies in the top p

predicted anomalies. The accuracy of the algorithm is measured as o
n
.

We compare the two variants described above with 14 different categorical similar-

ity measures on several publicly available data sets. Four of these similarity measures
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are listed in Table 4.5. The other ten measures have been developed in different con-

texts, and have been evaluated in [24]. The details of the data sets are summarized

in Table 4.6. Fourteen of these data sets are based on the data sets available at the

UCI Machine Learning Repository [8], while two are based on network data generated

by SKAION Corporation for the ARDA information assurance program [89]. Nine of

these data sets were purely categorical while seven (kd1,kd2,kd3,kd4,sk1,sk2,cen) had

a mix of continuous and categorical attributes. Continuous variables were discretized

using the MDL method [54]. Another possible way to handle a mixture of attributes

is to compute the similarity for continuous and categorical attributes separately, and

then do a weighted aggregation. In this study we converted the continuous attributes

to categorical to simplify comparative evaluation.

For each test data set there is a corresponding normal reference data set, and a

labeled test data set. The results are summarized in Table 4.7. The row stt denotes the

performance of kNN when using the best separability statistic as the only attribute.

The best statistic is indicated in the last row. We make several observations from the

results in Table 4.7.

The performance of the similarity measures depends on the data set, which is ex-

pected, since the measures are data-driven. This also indicates that the ability of the

underlying statistic to distinguish between normal and anomalous data instances de-

pends on the data set. Since each similarity measure is a function of one statistic, we

observe that the similarity measure which uses the best statistic for a given data set, is

generally the best performer.

The performance of kNNEuc technique (using all separability statistics) is one of

the best on average. This result shows that when all statistics are used together, the

performance can often be better than using them individually, though in several cases

the performance deteriorates considerably when all statistics are used (such as for cn2

and sk2).

The kNNPCA technique performs better on average than all 14 data driven simi-

larity measures and the kNNEuc technique. This shows that PCA is able to capture

a better combination of the separability statistics automatically than captured by the

similarity measures. Moreover, it also shows that using all statistics may not be opti-

mal for several data sets, and an optimal subset is required to be selected. For some
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data sets we observe that kNNPCA does not perform as well as using a single best

discriminating statistic which is shown in the row stt (the corresponding statistic is

shown in row ind). This shows that PCA might not always be able to determine the

best combination of the statistics.

The performance of the best statistic (row stt) is the best for most of the data sets.

In some cases, such as sk1 and ms2, the combination of statistics (using Euclidean

distance or PCA) outperforms the single best statistic.

4.7.1 Designing a Better Similarity Measure

The results in Table 4.7 show that for many data sets, a combination of the separability

statistics can result in better performance than using them individually. PCA is one

way to obtain such a combination, but as the results indicate, it might not always

provide the optimal combination. If a labeled validation data set is present, one can

visually inspect the histograms for different statistics, and select the ones that provide

maximum separation between the normal and anomalous data instances. We argue

that using this approach we can arrive at an optimal subset of separability statistics. A

similarity measure can then be designed to use this subset.

To verify the above hypothesis we conducted the following experiment. We selected

data sets sk1 and sk2 from Table 4.7. For each data set, the test data is split into equal

sized validation and test sets. We first map the validation set into continuous space

and analyze the histograms for each separability statistic, making use of the labels for

the validation instances. We then select a subset of the statistics that best separate the

normal points and anomalies. Figures 4.6 and 4.7 show the per-statistic histograms for

sk1 and sk2 data sets, respectively.
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Figure 4.6: Histograms of separability statistics for data set sk1.
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Figure 4.7: Histograms of separability statistics for data set sk2.

We observe that for sk1, statistics 1 and 3 (dmk and fxk) show maximum separability

between normal and anomalous data instances in the corresponding validation data set.

Similarly, for sk2, statistics 3 and 4 (fxk and nxk) show maximum separability between

normal and anomalous data instances in the validation data set. We then apply the

Euclidean distance based kNN technique on the test data set using the best subset of

statistics.

sk1 sk2

Val. Test Val. Test

ovr 0.71 0.69 0.71 0.69
gd4 0.16 0.14 0.12 0.16
of 0.78 0.74 0.82 0.74

esk 0.68 0.72 0.73 0.70

dmk 0.71 0.69 0.71 0.69
fmk 0.16 0.18 0.43 0.41
fxk 0.75 0.78 0.79 0.69
nxk 0.56 0.53 0.79 0.49

euc 0.73 0.61 0.84 0.78
pca 0.75 0.63 0.84 0.78

eucs 0.84 0.82 0.84 0.82

Table 4.8: Anomaly detection performance for sk1 and sk2 data sets (k = 10). Row
eucs shows the results using the best subset of statistics.

Table 4.8 summarizes the performance of kNN using different similarity measures

and the performance of kNN using the best subset of statistics on the two data sets.

The results show that while none of the statistics individually perform as well (maximum

accuracy is 0.78 for fxk in sk1 and 0.69 for fxk in sk2), the combination of the two best

statistics (from the histograms as well as results of statistics on the validation data set),
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has accuracy of 0.82 for both data sets.

The results also indicate that the other two combination methods, viz., Euclidean

and PCA, are slightly worse than the optimal combination, but still outperform all

similarity measures as well as the individual statistics.

Thus, given a validation data set, a better subset of statistics can be selected by

either using the histograms or by observing the results of individual statistics on the

validation data set.

4.8 Concluding Remarks and Future Research Directions

This chapter presents a framework to analyze categorical data. It is clear from the

discussion in the previous sections that there is a tremendous gap between exploratory

data analysis techniques for continuous and categorical data sets. The RBA framework

is an attempt towards bridging this gap. By mapping categorical data to continuous

space, we open up the possibility of utilizing exploratory techniques that are available

for continuous data to be applied to categorical data. The key strength of the proposed

framework is its ability to analyze a given test data set with respect to a reference data

set. We have demonstrated how this property can be used for visualization as well as

anomaly detection. In both applications, the framework is used to distinguish between

instances belonging to the reference class(es) against the instances belonging to a novel

class. Visualization allows an analyst to understand the data, set optimal parameters

(such as number of nearest neighbors k), as well as choose or design optimal similarity

measures using the proposed statistics. We believe that this framework can be extended

in several directions, and discuss some future directions for research here.

The separability statistics, discussed in Section 4.4, are inspired from different simi-

larity measures that have been proposed for categorical data. Many other such canonical

statistics can be developed, which can be used to distinguish between instances that be-

long to the reference class against the other instances, e.g., a statistic that captures the

correlation between different attributes.

Note that each of the separability statistics as well as their combinations can serve

as distance/similarity measures. We showed that one can select an appropriate subset

of separability statistics (or their linear combination, e.g. using PCA) in a supervised
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setting. This opens up the possibility for devising entirely new distance/similarity mea-

sures for categorical data sets.

In this chapter we have used two standard visualization techniques, viz., histograms

and 2-D plots of data projected on top two principal components. Other visualization

and exploratory techniques that are applied to continuous data (see Table 4.2, [114],

[170]), can also be applied to the mapped data.

We have demonstrated the discriminative power of the framework in the context of

anomaly detection, but one can extend it for other data mining tasks such as classifica-

tion and clustering. Moreover, the concept of analyzing a test data set with respect to

a reference data set can also be extended to other type of data such as multivariate con-

tinuous data or sequence data. Specifically, using a set of separability statistics (similar

to the ones proposed in Section 4.4), any type of data can also be analyzed in the same

framework. We will show an application of RBA in analyzing symbolic sequence data

sets in Chapter 6.

Another possible extension to the proposed framework is to analyze a given data

set with respect to itself. If the data mostly contains instances belonging to one or a

few dominant modes, and a few anomalies, the anomalies should, in principle, appear

different than the normal instances in the mapped space. Thus, the framework can be

used for tasks such as unsupervised anomaly detection or noise removal.
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Detecting Anomalies in Symbolic

Sequences
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Chapter 5

Anomaly Detection Techniques

for Symbolic Sequences – A

Comparative Evaluation

A large number of anomaly detection techniques for symbolic sequences have been pro-

posed as shown in Table 5. The techniques can be classified into three broad categories

based on the underlying approach. Kernel based techniques assign an anomaly score to a

test sequence based on its similarity to the normal sequences. Window based techniques

calculate the probability of occurrence of every fixed length window in the test sequence.

Markovian techniques calculate the probability of occurrence of each symbol in the test

sequence conditioned on the preceding few symbols in the test sequence. As Table 5

shows, these techniques have been developed in the context of different domains. For

example, Sun et al [169] proposed a probabilistic suffix trees (PST) based technique to

detect anomalous sequences in a data base of protein sequences. Forrest et al proposed

several techniques to detect anomalous sequences in a data base of operating system

call sequences [58, 87, 59]. While the techniques were proposed and evaluated in specific

domains, no systematic evaluation is available regarding their relative performance. In

particular, it is unclear if the techniques are the best ones for the domain they were

proposed for or if another techniques (originally proposed for an entire different domain)

might perform better.
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The reason such an evaluation is necessary is because of the difference in the nature

of anomaly detection problem in different domains. The difference can exist due to

following reasons:

1. The composition of the sequences collected within each domain can be very dif-

ferent. In system call intrusion detection domain, the maximum alphabet size for

the symbols that make up the sequences is close to 160. For protein sequences

and sequences collected from aircraft flights, the alphabet sizes are close 20 and

1000, respectively. The average lengths of the sequences in different domains also

varies from close to 100 (for protein sequences) to as long as 1000 (for system call

sequences). Moreover, in some domains, the sequences are of relatively similar

lengths, such as protein sequences, while in others, such as system call intrusion

detection, the lengths of sequences can vary significantly.

2. The relation between the normal sequences varies across domains.. The normal

sequences can either belong to a single mode or to multiple modes. For example,

for protein sequences, the normal sequences correspond to a single protein family,

and hence belong to a single mode. For network intrusion detection, the sequences

correspond to different types of network activities, and hence the normal sequences

belong to different modes.

3. The nature of anomalies in the anomalous sequences can be different across do-

mains. A sequence maybe anomalous because it is comes from a different gener-

ative mechanism than the normal sequences. On the other hand, an anomalous

sequence may come from the same generative mechanism as the normal sequence,

but deviate from the normal for a short span or duration. For example, the anoma-

lous sequences in a protein data set belong to a different family than the normal

sequences, and hence can be thought of as being generated by a very different

generative mechanism. The anomalous sequences in the intrusion detection data

sets correspond to scenario when the normal operation of a system is disrupted for

a short span. Thus the anomalous sequences are expected to appear like normal

sequences for most of the span of the sequence, but deviate in very few locations

of the sequence.
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Application
Domains

Kernel
Based

Window Based Markovian Techniques

Techniques Techniques Fixed Variable Sparse

Intrusion
Detection

[58],[87], [59],[74] [59],[68],
[147],[116],
[115],[133]

[59], [52]

Proteomics [169]
Flight
Safety

[29] [165]

Table 5.1: Anomaly Detection Techniques for Symbolic Sequences.

In this chapter, we provide an experimental evaluation of a large number of anomaly

detection techniques for symbolic sequences on a variety of data sets/ to explain the

performance of a variety of anomaly detection techniques on different types of sequence

data sets. We also propose two novel anomaly detection techniques that show consis-

tently superior performance over existing techniques across most data sets. The analysis

presented in this chapter allows relative comparison of the different anomaly detection

techniques and highlights their strengths and weaknesses.

We also propose a novel artificial data generator that can be used to generate vali-

dation data sets to evaluate anomaly detection techniques for sequences. The generator

allows to generate data sets with different characteristics by varying the associated pa-

rameters to study the relationship between the anomaly detection techniques and the

different characteristics of the data.

The rest of this chapter is organized as follows. Section 5.1 describes the different

techniques that are evaluated in this chapter. Section 5.2 describes the various data

sets that are used for evaluation. Section 5.3 contains the experimental results. Section

5.4 contains conclusions from the experimental findings.

5.1 Anomaly Detection Techniques for Sequences

All techniques discussed here solve the semi-supervised problem as discussed in Chapter

3. Each sequence is defined using a finite alphabet, Σ. We evaluated a variety of

techniques that can be grouped into following three categories:
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5.1.1 Kernel Based Techniques

Kernel based techniques make use of kernel K by using the pairwise similarity between

sequences. In the problem formulation stated in Definition 1 the sequences can be of

different lengths, hence simple measures such as Hamming Distance cannot be used.

One possible measure is the normalized length of longest common subsequence between

a pair of sequences. This similarity between two sequences S1 and S2, is computed as:

nLCS(S1, S2) =
|LCS(S1, S2)|
√

|S1||S2|
(5.1)

Since the value computed above is between 0 and 1, the distance between S1 and S2

can be computed as [172]:

d(S1, S2) = 1 − nLCS(S1, S2) (5.2)

Other similarity measures other than nLCS can be used as well, e.g., time series bitmaps

[109], string kernels [], such as the spectrum kernel [118]. We use nLCS in our exper-

imental study, since it was used in [29] to detect anomalies in discrete sequences and

appears promising.

Computing Kernel For a given test data set, a kernel matrix K ∈ ℜm×n is computed

such that:

K[i][j] = nLCS(Si, Sj), Si ∈ S, Sj ∈ T (5.3)

Nearest Neighbors Based (kNN)

In the nearest neighbor scheme (kNN), for each test sequence Si ∈ S, the distance to

its kth nearest neighbor in the training set T is computed using the kernel matrix K.

This distance becomes the anomaly score A(Si) [172, 149].

Clustering Based (CLUSTER)

This technique clusters the sequences in T into a fixed number of clusters, c, by using

the kernel matrix K. The test phase involves measuring the distance of every test

sequence, Si ∈ S, with the medoid of each cluster. The distance to the medoid of the

closest cluster becomes the anomaly score A(Si).
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5.1.2 Window Based Techniques

Window based techniques try to localize the cause of anomaly in a test sequence, within

one or more windows, where a window is a fixed length subsequence of the test sequence.

One such technique called Threshold Sequence Time-Delay Embedding (tSTIDE) [59]

uses a sliding window of fixed size k to extract k-length windows from the training

sequences in T. The count of each window occurring in T is maintained. During

testing, k-length windows are extracted from a test sequence Si. Each such window ωi

is assigned a likelihood score P (ωi) = f(ωi)
f(∗) , where f(ωi) is the frequency of occurrence

of window ωi in T, and f(∗) is the total number of k length windows extracted from T.

For the test sequence Si, |Si| − k + 1 windows are extracted, and a likelihood score

vector of length |Si| − k + 1 is obtained. This score vector is then combined to obtain

the anomaly score for the sequence, A(Si), in the following way:

L(Si) =
1

|Si| − k + 1

|Si|−k+1
∑

i=1

log P (ωi) (5.4)

A(Si) = −1 ∗ L(Si) (5.5)

If likelihood score for any window is 0, it is replaced with 10−6 since log 0 is undefined.

Other alternatives to combine the score vector to obtain A(Si) are discussed in Section

5.1.4.

5.1.3 Markovian Techniques

Such techniques estimate the conditional probability for each symbol in a test sequence

Si conditioned on the symbols preceding it. Most of the techniques utilize the short

memory property of sequences [151]. This property is a higher-order Markov condition

which states that for a given sequence S = 〈s1, s2, . . . s|S|〉, the conditional probability

of occurrence of a symbol si is given as:

P (si|s1s2 . . . si−1) = P (si|si−k+1 . . . si−1), i > k (5.6)

In the following, we investigate four Markovian techniques. Each one of them com-

putes a vector of scores, each element of which corresponds to the conditional proba-

bility of observing a symbol, as defined in (5.6). This score vector is then combined
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to obtain A(Si) using equations similar to (5.4) and (5.5), by replacing P (ωi) with

P (si|si−k+1 . . . si−1).

Fixed Length Markovian Technique

A fixed length Markovian technique determines the probability P (sqi) of a symbol sqi,

conditioned on a fixed number of preceding symbols1. One such technique uses an

extended Finite State Automaton (FSA) to estimate the conditional probabilities. We

will refer to this technique as FSA in subsequent discussions.

FSA extracts (n + 1) sized subsequences from the training data T using a sliding

window. Each node in the automaton constructed by FSA corresponds to a unique sub-

sequence of n symbols that form the first n symbols of such (n+1) length subsequences.

An edge exists between a pair of nodes, Ni and Nj in the FSA, if Ni corresponds to

states si1si2 . . . sin and Nj corresponds to states si2si3 . . . sinsjn. At every state of the

FSA two quantities are maintained. One is the number of times the n length subse-

quence corresponding to the state is observed in T. The second quantity is a vector of

frequencies corresponding to number of times different edges emanating from this state

are observed. Using these two quantities, the conditional probability for a symbol, given

preceding n symbols, can be determined.

During testing, the automaton is used to determine a likelihood score for every n+1

subsequence extracted from test sequence Si which is equal to the conditional probability

associated with the transition from the state corresponding to first n symbols to the state

corresponding to the last n symbols. If there is no state in the automaton corresponding

to the first n symbols, the subsequence is ignored.

FSAz We propose a variant of FSA technique, in which if there is no state, learnt

from the training set, corresponding to the first n symbols of a n + 1 subsequence, we

assign a low score (e.g. 0) to that subsequence, instead of ignoring it. The intuition

behind assigning a low score to non-existent states is that anomalous test sequences are

more likely to contain such states, than normal test sequences. While FSA ignores this

information, we utilize it in FSAz.

1A more general formulation that determines probability of l symbols conditioned on a fixed number

of preceding n symbols is discussed in [133].
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Probabilistic Suffix Trees (PST )

A PST is a compact tree representation of a variable Markov chain, which uses classical

suffix trees as its index structure [151]. We evaluate a PST based anomaly detection

technique [169], that learns a PST from the training sequences and then assigns a

conditional likelihood score to each symbol of the test sequence.

In a PST , each edge is labeled using a symbol, and each node represents the sub-

sequence obtained by traversing the path from root to the node, as well as the number

of times the subsequence is observed in the training sequences. Each node also stores

the conditional probability of observing each symbol in the alphabet, given the sub-

sequence represented by the node. The PST is grown (training phase) by scanning

the training sequences. The maximum depth of the tree is fixed at k, which is a user

defined parameter. Several pruning criterion are applied to the PST to ensure that the

PST contains only those paths that occur significantly enough number of times in the

training sequences. The pruning can be done by applying thresholds to the frequency

of a node label, or to the conditional probability of a symbol emanating from a given

node. If no pruning is applied, the PST is equivalent to the FSAz.

During the testing phase for the PST based technique the test sequence is scanned

and the PST is traversed simultaneously. For a symbol sqi in the test sequence Si,

its conditional probability is estimated by finding the longest suffix of the k length

subsequence that precedes sqi (in Si) and occurs as a path in the PST . Thus, different

symbols are conditioned on a different sized history.

Sparse Markovian Technique

Sparse Markovian techniques are more flexible than variable Markovian techniques, in

the sense that they estimate the conditional probability of sqi based on a subset of

symbols within the preceding k symbols, which are not necessarily contagious to sqi. In

other words the symbols are conditioned on a sparse history.

[116] use RIPPER classifier to build one such sparse model. In this approach, a

sliding window is applied to the training data T to obtain k length windows. The first

k − 1 positions of these windows are treated as k − 1 categorical attributes, and the

kth position is treated as a target class. RIPPER [44] is used to learn rules that can
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predict the kth symbol given the first k − 1 symbols. To ensure that there is no symbol

that occurs very rarely as the target class, the training sequences are duplicated 5 times.

For testing, k length subsequences are extracted from each test sequence Si using

a sliding window. For any subsequence, the first k − 1 events are classified using the

classifier learnt in the training phase and the prediction is compared to the kth symbol.

RIPPER also assigns a confidence score associated with the classification, denoted as

conf(sqi) = 100T
M

, where M is the number of times the particular rule was fired in the

training data, and T is the number of times the rule gave correct prediction. [116] assign

the likelihood score of symbol sqi as follows:

• For a correct classification, P (sqi) = 1.

• For a misclassification, P (sqi) = 1
conf(sqi)

= M
100T

.

Hidden Markov Models Based Technique (HMM)

Techniques that apply HMMs for modeling sequences, transform an input sequence

from the symbol space to the hidden state space. The key assumption for the HMM

based anomaly detection technique [59] is that the normal sequences can be effectively

represented in the hidden state space, while anomalous sequences cannot be.

The training phase involves learning an HMM with σ hidden states, from the normal

sequences in T using the Baum Welch algorithm.In the testing phase, the optimal hidden

state sequence for the given input test sequence Si is determined, using the Viterbi

algorithm.For every pair of consecutive states, 〈sH
qi , s

H
qi+1〉, in the optimal hidden state

sequence, the state transition matrix provides a likelihood score for transitioning from

sH
qi to sH

qi+1. Thus a likelihood score vector of length |Si| − 1 is obtained.

5.1.4 Combining Scores

For each of the window based and Markovian techniques, a likelihood score vector is

generated for a test sequence, Si. A combination function is then applied to obtain

a single anomaly score A(Si). In Section 5.1.2, we presented one such combination

technique, average log score, which was originally used in the PST technique [169].

L(Si) can be computed in other ways, such as average score [115], minimum score,

maximum score, and using a threshold [133, 59]. For the threshold method, a user
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defined threshold is employed to determine which scores in the likelihood score vector

are anomalous. The number of such anomalous scores is the anomaly score A(Si) of the

test sequence. Setting the threshold often requires experimenting with different possible

values, and then choosing the best performing value.

5.2 Data Sets Used

In this section we describe various public as well as the artificially generated data sets

that we used to evaluate the different anomaly detection techniques. We used public

data sets that have been used earlier to evaluate sequence anomaly detection techniques.

To further illustrate certain aspects of different techniques, we constructed different

artificial data sets. The artificial data sets were constructed such that we can control

the nature of normal as well as anomalous sequences and hence learn the relationship

between the various techniques and the nature of the data.

For every data set, we first constructed a set of normal sequences, and a set of

anomalous sequences. A sample of the normal sequences was used as training data for

different techniques. A disjoint sample of normal sequences and a sample of anomalous

sequences were added together to form the test data. The relative proportion of normal

and anomalous sequences in the test data determined the “difficulty level” for that data

set. We experimented with different ratios such as 1:1, 10:1 and 20:1 of normal and

anomalous sequences. Results on data sets with other ratios are consistent in relative

terms, although most techniques perform much better for the simplest data set that

uses a ratio 1:1. Since in real sequences anomalies are rare, we report results when

normal and anomalous sequences were in 20:1 ratio in test data. In reality, the ratio

of normal to anomalous can be even larger than 20:1. But we were unable to try such

skewed distributions due to limited number of normal samples available in some of the

data sets.

5.2.1 Public Data Sets

Table 5.2 summarizes the various statistics of the data sets used in our experiments. All

data sets are available from our web site2. The distribution of the symbols for normal

2http://www.cs.umn.edu/~chandola/ICDM2008

http://www.cs.umn.edu/~chandola/ICDM2008
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Source Data Set |Σ| l̂ |SN| |SA| |T| |S|

PFAM

HCV 44 87 2423 50 1423 1050
NAD 42 160 2685 50 1685 1050
TET 42 52 1952 50 952 1050
RUB 42 182 1059 50 559 525
RVP 46 95 1935 50 935 1050

UNM
snd-cert 56 803 1811 172 811 1050
snd-unm 53 839 2030 130 1030 1050

DARPA
bsm-week1 67 149 1000 800 10 210
bsm-week2 73 141 2000 1000 113 1050
bsm-week3 78 143 2000 1000 67 1050

Table 5.2: Public data sets used for experimental evaluation. l̂ – Average Length of
Sequences, SN – Normal Data, SA – Anomalous Data, T – Training Data, S – Test
Data.

and anomalous sequences is illustrated in Figures 5.1(a),5.1(b) (RVP), 5.1(c),5.1(d)

(snd-unm), and 5.1(e),5.1(f), (bsm-week2). The distribution of symbols in snd-unm

data is different for normal and anomalous data, while the difference is not significant

in RVP and bsm-week2 data. We will explain how the normal and anomalous sequences

were obtained for each type of data set in the next subsections.

Protein Data Sets

The first set of public data sets were obtained from PFAM database (Release 17.0) [15]

containing sequences belonging to 7868 protein families. Sequences belonging to one

family are structurally different from sequences belonging to another family. We choose

five families, viz., HCV, NAD, TET, RVP, RUB. For each family we construct a normal

data set by choosing a sample from the set of sequences belonging to that family. We

then sample 50 sequences from other four families to construct an anomaly data set.

Similar data was used by [169] to evaluate the PST technique. The difference was that

the authors constructed a test data for each pair of protein families such that samples

from one family were used as normal and samples from the other were used as test. The

PST results on PFAM data sets reported in this chapter appear to be worse than those

reported in [169].
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Figure 5.1: Distribution of Symbols in Training Data Sets of Different Types.
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Intrusion Detection Data Sets

The second set of public data sets were collected from two repositories of benchmark

data generated for evaluation of intrusion detection algorithms. One repository was

generated at University of New Mexico3. The normal sequences consisted of sequence

of system calls generated in an operating system during the normal operation of a

computer program, such as sendmail, ftp, lpr etc. The anomalous sequences consisted

of sequence of system calls generated when the program is run in an abnormal mode,

corresponding to the operation of a hacked computer. We report results on two data

sets, viz, snd-unm and snd-cert. Other data sets were not used due to insufficient

anomalous sequences to attain a 20:1 imbalance. For each of the two data sets, the

number of sequences in the normal as well as anomaly data was small (less than 200),

making it difficult to construct significant test and training data sets. The increase the

size of the data sets, we extracted subsequences of length 100 by sliding a window of

length 100 and a sliding step of 50. The subsequences extracted from the original normal

sequences were treated as normal sequences and the subsequences extracted from the

original anomalous sequences were treated as anomalous sequences if they did not occur

in the normal sequences.

The other intrusion detection data repository was the Basic Security Module (BSM)

audit data, collected from a victim Solaris machine, in the DARPA Lincoln Labs 1998

network simulation data sets [121]. The repository contains labeled training and testing

DARPA data for multiple weeks collected on a single machine. For each week we

constructed the normal data set using the sequences labeled as normal from all days

of the week. The anomaly data set was constructed in a similar fashion. The data is

similar to the system call data described above with similar (though larger) alphabet.

5.2.2 Altered RVP Data Set

To better understand the performance of the anomaly detection techniques to the na-

ture of anomalies in the test data, we created a data set from the original RVP data

from the PFAM repository. A test data set was constructed by sampling 800 most nor-

mal sequences not present in training data. Anomalies were injected in 50 of the test

3http://www.cs.unm.edu/~immsec/systemcalls.htm

http://www.cs.unm.edu/~immsec/systemcalls.htm
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sequences by randomly replacing k symbols in each sequence with the least frequent

symbol in the data set. The parameter k controls the deviation of the anomalous se-

quences from the normal sequences. The objective of this experiment was to evaluate

how the performance of a technique varies with k.

5.2.3 Artificial Data Sets

As mentioned in the introduction, two types of anomalous sequences can exist, one

which are arguably generated from a different generative mechanism than the normal

sequences, and the other which result from a normal sequence deviating for a short span

from its expected normal behavior. To study the relationship between these two types

of anomalous sequences and the performance of different techniques, we designed an

artificial data generator which allows us to generate validation data sets with different

types of anomalies.

We used a generic HMM, as shown in Figure 5.2 to model normal as well as anoma-

lous data. The HMM shown in Figure 5.2 has two sets of states, {S1, S2, . . . S6} and

{S7, S8, . . . S12}.

S1

S2

S3

S4

S5

S6

S11

S10

S9

S8

S7

S12

a1

a2

a3

a4

a1

a2a6

a5 a3

a4

a6

a5

λ

1 − λ

Figure 5.2: HMM used to generate artificial data.

Within each set, the transitions corresponding to the solid arrows shown in Figure

5.2 are assigned a transition probability of (1−5β), while other transitions are assigned

transition probability β. These transitions are shown as dotted line for only one state,

S5. No transition is possible between states belonging to different sets. The only

exception are S2S8 for which the transition probability is λ, and S7S1 for which the
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transition probability is 1− λ. The transition probabilities S2S3 and S7S8 are adjusted

accordingly so that the sum of transition probabilities for each state is 1.

The observation alphabet is of size 6. Each state emits one alphabet with a high

probability (1 − 5α), and all other alphabets with a low probability (α). Figure 5.2

depicts the most likely alphabet for each state.

The initial probability vector π of the HMM is constructed such that either π1 =

π2 = . . . = π6 = 1 and π7 = π8 = . . . = π12 = 0; or vice-versa.

After manually constructing the HMM, as described above, it is used to generate

random sequences of desired lengths. Normal sequences are generated by setting λ to

a low value and π to be such that the first 6 states have initial probability set to 1
6

and rest 0. If λ = β = α = 0, the normal sequences will consist of the subsequence

a1a2a3a4a5a6 getting repeated multiple times. By increasing λ or β or α, anomalies can

be induced in the normal sequences.

This generic HMM can be tuned to generate two types of anomalous sequences.

For the first type of anomalous sequences, λ is set to a high value and π to be such

that the last 6 states have initial probability set to 1
6 and rest 0. The resulting HMM

is directly opposite to the HMM constructed for generating normal sequences. Hence

the anomalous sequences generated by this HMM are completely different from the

normal sequences. Such anomalous sequences are motivated from the anomalies found

in protein data sets.

To generate second type of anomalous sequences, the HMM used to generate the

normal sequence is used, with the only difference that λ is increased to a higher value

than 0. Thus the anomalous sequences generated by this HMM will be similar to the

normal sequences except that there will be short spans when the symbols are generated

by the second set of states. Such anomalous sequences are motivated from the anomalies

found in system call intrusion detection data sets.

By varying λ, β, and α, we generated several evaluation data sets (with two different

type of anomalous sequences). We will present the results of our experiments on these

artificial data sets in next section.
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5.3 Experimental Results

The experiments were conducted on a variety of data sets discussed in Section 5.2. The

various parameter settings associated with each technique were explored. The results

presented here are for the parameter setting which gave best results across all data sets,

for each technique.

5.3.1 Sensitivity to Parameters

The performance of CLUSTER improved as c was increased from 2 onwards, but

stabilized for values greater than 32. The best overall performance was observed for

c = 32. For kNN , the performance was comparable for a wide range of k (2 ≤ k ≤ 32)

but deteriorated for higher values of k. The best overall performance was observed

for k = 4. For tSTIDE as well as the Markovian techniques (FSA, FSAz, PST ,

RIPPER), the performance was sensitive to the choice of window length or the length

of the history. For low values of this length (≤ 5) or for values higher than 10, the

performance was generally poor. The best performing setting was window size of 6 for

tSTIDE and history length of 5 for the Markovian techniques. For PST , an additional

parameter is Pmin which controls the threshold under which the counts for a given

subsequence are considered insignificant. We observed that performance of PST was

highly sensitive to this parameter. If Pmin was set to very low (≈ 0), PST performed

similar to FSAz, while if Pmin was set to be higher than 0.1, the performance was poor.

The best performance of PST was observed for Pmin = 0.01. For HMM , the number of

hidden states σ is a critical parameter. We experimented with values ranging from 2 to

|Σ|. Our experiments reveal that the performance of HMM does not vary significantly

for different values of σ. The best overall performance of HMM was observed for σ = 4

for public data sets and σ = 12 for the artificial data sets.

We experimented with various combination functions for different techniques, and

found that the average log score function has the best performance across all data

sets. Hence, results are reported for the average log score function. Results with other

combination techniques are available in our technical report [39].
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5.3.2 Accuracy vs. AUC

We evaluated the different techniques using the two evaluation metrics described in

Chapter 3, Accuracy and AUC. Both metrics show similar relative performance for the

different techniques. We will compare the performance using the accuracy metric.

5.3.3 Results on Public Data Sets

Tables 5.3 and 5.4 summarize the accuracy and AUC results on the 10 public data

sets. CLUSTER and kNN show good performance for PFAM and UNM data sets

but perform moderately on DARPA data sets. FSA and FSAz show consistently good

performance for all public data sets. tSTIDE performs well for PFAM data sets but

its performance degrades for both UNM and DARPA data sets. PST performs average

to poor for all data sets including the PFAM data sets for which it was originally used.

The HMM technique performs poorly for all public data sets. The reasons for the poor

performance is that HMM technique makes an assumption that the normal sequences

can be represented with σ hidden states, which might not be true for the public data

sets.

PFAM UNM DARPA

snd- snd- bsm- bsm- bsm-
hcv nad tet rvp rub unm cert week1 week2 week3 Avg

cls 0.54 0.46 0.84 0.86 0.76 0.76 0.94 0.20 0.36 0.52 0.62
knn 0.88 0.64 0.86 0.90 0.72 0.84 0.94 0.20 0.52 0.48 0.70
tstd 0.90 0.74 0.50 0.90 0.88 0.58 0.64 0.20 0.36 0.60 0.63
fsa 0.88 0.66 0.48 0.90 0.80 0.82 0.88 0.40 0.52 0.64 0.70
fsaz 0.92 0.72 0.50 0.90 0.88 0.80 0.88 0.50 0.56 0.66 0.73

pst 0.74 0.10 0.66 0.50 0.28 0.28 0.10 0.00 0.10 0.34 0.31
rip 0.52 0.20 0.36 0.66 0.72 0.72 0.70 0.20 0.18 0.50 0.48

hmm 0.10 0.06 0.20 0.10 0.00 0.00 0.00 0.00 0.02 0.20 0.07

Avg 0.69 0.45 0.55 0.72 0.63 0.60 0.64 0.21 0.33 0.49

Table 5.3: Accuracy results for public data sets.

Overall, one can observe that the performance of techniques in general is better

for PFAM data sets and on UNM data sets, while the DARPA data sets are more

challenging.
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PFAM UNM DARPA

snd- snd- bsm- bsm- bsm-
hcv nad tet rvp rub unm cert week1 week2 week3 Avg

cls 0.98 0.96 1.00 1.00 0.99 0.99 1.00 0.74 0.90 0.91 0.94
knn 1.00 0.98 1.00 1.00 0.99 1.00 1.00 0.75 0.92 0.91 0.95
tstd 0.99 0.97 0.98 1.00 1.00 0.97 0.92 0.62 0.73 0.80 0.90
fsa 0.98 0.97 0.92 0.99 0.99 0.99 0.96 0.88 0.90 0.97 0.96
fsaz 1.00 0.98 0.98 1.00 1.00 0.97 0.96 0.88 0.91 0.97 0.96
pst 0.99 0.54 0.98 0.97 0.91 0.93 0.88 0.35 0.42 0.54 0.75
rip 0.70 0.45 0.37 0.97 0.96 0.98 0.94 0.79 0.70 0.84 0.77

hmm 0.58 0.50 0.71 0.55 0.24 0.04 0.03 0.43 0.50 0.77 0.43

Avg 0.90 0.79 0.87 0.93 0.88 0.86 0.84 0.68 0.75 0.84

Table 5.4: AUC results for public data sets.

5.3.4 Results on Altered RVP Data Set

Figure 5.3 shows the performance of the different techniques on the altered RVP data

set, for different values of k from 1 to 10. We observe that FSAz performs remarkably

well for these values of k. CLUSTER, tSTIDE, FSA, PST , and RIPPER exhibit

moderate performance, though for values of k closer to 10, RIPPER performs better

than the other 4 techniques. For k > 10, all techniques show better than 90% accuracy

because the anomalous sequences become very distinct from the normal sequences, and

hence all techniques perform comparably well.
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5.3.5 Results on Artificial Data Sets

Tables 5.5 and 5.6 summarize the accuracy and AUC results on 6 (d1–d6) artificial data

sets.The normal sequences in data set d1 were generated with λ = 0.01, β = 0.01, α =

0.01. The anomalous sequences were generated using the first setting as discussed in

Section 5.2.3, such that the sequences were primarily generated from the second set of

states. For data sets d2–d6, the HMM used to generate normal sequences was tuned

with β = 0.01, α = 0.01. The value of λ was increased from 0.002 to 0.01 in increments

of 0.002. The anomalous sequences for data sets d2–d6 were generated using the second

setting in which λ is set to 0.1.

d1 d2 d3 d4 d5 d6 Avg

cls 1.00 0.80 0.74 0.74 0.58 0.64 0.75
knn 1.00 0.88 0.76 0.76 0.60 0.68 0.78

tstd 1.00 0.82 0.64 0.64 0.48 0.50 0.68

fsa 1.00 0.88 0.50 0.52 0.24 0.28 0.57
fsaz 1.00 0.92 0.60 0.52 0.32 0.38 0.62
pst 1.00 0.84 0.82 0.76 0.68 0.68 0.80

rip 1.00 0.78 0.64 0.66 0.52 0.44 0.67
hmm 1.00 0.50 0.34 0.42 0.16 0.66 0.51

Avg 1.00 0.80 0.63 0.63 0.45 0.53

Table 5.5: Accuracy results for artificial data sets.

d1 d2 d3 d4 d5 d6 Avg

cls 1.00 0.95 0.97 0.98 0.94 0.95 0.97
knn 1.00 0.96 0.98 0.98 0.96 0.95 0.97
tstd 1.00 0.96 0.98 0.98 0.96 0.95 0.97
fsa 1.00 0.96 0.98 0.98 0.96 0.95 0.97
fsaz 1.00 0.96 0.98 0.98 0.96 0.95 0.97
pst 1.00 0.96 0.98 0.98 0.96 0.95 0.97
rip 1.00 0.96 0.98 0.98 0.96 0.95 0.97

hmm 1.00 0.96 0.98 0.98 0.96 0.95 0.97

Avg 1.00 0.96 0.98 0.98 0.96 0.95

Table 5.6: AUC results for artificial data sets.

From Table 5.5, we observe that PST is the most stable technique across the artificial

data sets, while the deterioration is most pronounced for FSA and FSAz. Both kNN

and CLUSTER also get negatively impacted as the λ increases but the trend is gradual

than for FSAz. The performance of HMM on the artificial data sets is better than

for public data sets since the training data was actually generated by a 12 state HMM
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and the HMM technique was trained with σ = 12; thus the HMM model effectively

captures the normal sequences.

5.3.6 Relative Performance of Different Techniques

Kernel based techniques are found to perform well for data sets in which the anomalous

sequences are significantly different from the normal sequences; but perform poorly when

the different between the two is small. This is due to the nature of the normalized LCS

similarity measure used in the kernel based techniques. Our experiments show that

kNN technique is somewhat better suited than CLUSTER for anomaly detection,

which is expected, since kNN is optimized to detect anomalies while the clustering

algorithm in CLUSTER is optimized to obtain clusters in the data.

FSAz is consistently superior among all techniques, especially for data sets in which

the anomalous sequences are minor deviations from normal sequences. The performance

of FSAz is poor when the normal sequences contain rare patterns. FSAz is consistently

superior to FSA. Performance of tSTIDE is comparable to FSAz when the anomalous

sequences are significantly different from the normal sequences, but is inferior to FSAz

when the difference is small. tSTIDE is less affected by the presence of rare patterns

in the normal sequences than FSAz. for all PFAM data sets but is relatively poor on

DARPA and UNM data sets. tSTIDE performs significantly better on artificial data

sets. PST performs relatively worse than other techniques, except for cases where the

normal sequences themselves contain many rare patterns. RIPPER is also an average

performer on most of the data sets, and is relatively better than PST , indicating that

using a sparse history model is better than a variable history model.

For the public data sets, we found the HMM technique to perform poorly. The

reasons for the poor performance of HMM are twofold. The first reason is that HMM

technique makes an assumption that the normal sequences can be represented with σ

hidden states. Often, this assumption does not hold true, and hence the HMM model

learnt from the training sequences cannot emit the normal sequences with high confi-

dence. Thus all test sequences (normal and anomalous) are assigned a low probability

score. The second reason for the poor performance is the manner in which a score is

assigned to a test sequence. The test sequence is first converted to a hidden state se-

quence, and then a 1+1 FSA is applied to the transformed sequence. We have observed
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from our experiment using FSA that a 1 + 1 FSA does not perform well for anomaly

detection. The performance of HMM on artificial data sets (See Table 5.5) illustrates

this argument. Since the training data was actually generated by a 12 state HMM and

the HMM technique was trained with σ = 12; thus the HMM model effectively cap-

tures the normal sequences. The results of HMM for artificial data sets are therefore

better than for public data sets, but still slightly worse than other techniques because

of the poor performance of the 1 + 1 FSA. When the normal sequences were generated

using an HMM , the performance improves significantly. The hidden state sequences,

obtained as a intermediate transformation of data, can actually be used as input data

to any other technique discussed here. The performance of such an approach will be

investigated as a future direction of research.

5.4 Conclusions and Future Work

Our experimental evaluation provided us with valuable insights into strengths and weak-

nesses of different anomaly detection techniques. None of the techniques was found to

be consistently superior to all other techniques, indicating that the performance of a

technique depends on the nature of the sequence data set. The use of artificial data

generator allowed us to arrive at conclusions that were not evident from the results on

public data sets.

A significant result of this study is that several techniques have been shown to be

quite effective in application domains for which they were not originally intended for.

Techniques such as tSTIDE and FSA, which were originally evaluated on system call

intrusion detection data, show promising results on protein data sets. Interestingly,

tSTIDE performs relatively poorly on system call intrusion detection data sets.

Results on the public data sets (Table 5.3) reveal that FSA-z and FSA, are the

most consistent techniques while PST and RIPPER generally perform poorly. But

the results on artificial data sets (Table 5.5) identify scenarios where the latter two

techniques might be better suited than the former two.

Kernel based techniques are found to perform well for data sets in which the anoma-

lous sequences are relatively different from the normal sequences; but perform poorly
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when the different between the two is small. This is due to the nature of the normal-

ized LCS similarity measure used in the kernel based techniques. Future work should

investigate other similarity measures that are able to capture the difference between

sequences that are minor deviations of each other. Our experiments show that kNN

technique is somewhat better suited than CLUSTER for anomaly detection.

Consistent with the observations of other researchers [59], we found the HMM

technique to perform poorly. When the normal sequences were generated using an

HMM, the performance improves significantly. The hidden state sequences, obtained as

a intermediate transformation of data, can actually be used as input data to any other

technique discussed here. The performance of such an approach needs to be investigated

and is suggested as a future direction of research.



Chapter 6

Reference Based Analysis

Framework for Symbolic

Sequences

The results on different data sets in Chapter 5 reveal that no one technique is clearly

superior to others. Most techniques show consistency in performance on public data sets

belonging to one domain but show different performance for data sets from a different

domain. This indicates a relationship between the techniques and the nature of the

data. In the artificial data sets generated from the data generator as well as the altered

RVP data sets, we further studied this relationship by modifying the nature of the data

using one or more tunable parameters. These observations motivate a deeper study of

the relationship between a technique and a data set.

In this chapter, we study the relationship between the anomaly detection techniques

and the nature of data. Using the RBA framework, introduced in Chapter 4, we char-

acterize symbolic sequence data. We visualize the symbolic sequences using these char-

acteristics which is useful to understand various aspects of the sequence data such as

how different are the normal sequences from the anomalous sequences and how similar

are the normal sequences to each other. We then show how different anomaly detec-

tion techniques evaluated in Chapter 5 rely on one or more of such characteristics to

detect anomalies. Using these characteristics, we propose two novel anomaly detection

79
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techniques for symbolic sequences, called WIN1D and WIN2D, which show consistently

superior performance over the existing techniques across the different data sets.

The rest of this chapter is organized as follows. In Section 6.1, we show how the

RBA framework can be used to analyze symbolic sequences. Specifically, we show

how the RBA framework can be used understand the relationship between different

anomaly detection techniques and the nature of sequence data in Sections 6.2 and 6.3. In

Section 6.4 we present two novel RBA based anomaly detection techniques for symbolic

sequences.

6.1 Characterizing Sequence Data Using RBA

The RBA framework is highly applicable to the case of semi-supervised anomaly detec-

tion, where the normal class is the reference class, and the anomalous instances are the

data instances that do not belong to the reference (or normal) class.

The key step in the RBA framework is to identify a transformation of a given data

instance into a set of separability statistics using a reference data set. We describe

different transformations here that can be used within the RBA framework to analyze

symbolic sequences and how the transformations can be used to characterize a given

test sequence data set in the following subsections.

6.1.1 1-D Frequency Profiles

The first transformation is motivated from window based techniques (See Chapter 5)

that rely on the frequency of a k length window in a given sequence for anomaly de-

tection. In this section we refer to a k length window as a k-window for brevity. Each

k-window is associated with a frequency (denoted as fk), i.e., the number of times it

occurs in the training sequences.

A 1-D frequency profile for a test sequence can be constructed as follows. First, all

k-windows from the test sequence are extracted and their frequencies fk are computed

from the training sequences. The frequencies are “binned” into a fixed number (p) of

bins. Since windows with fk = 0 are of special interest, the first bin stores the windows

with exactly fk = 0. The other p − 1 bins divide the range between 1 and max into

equal width intervals, where max is the maximum frequency of any window in the given
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data set. The values in each bin are normalized to lie between 0 and 1 by dividing them

by the total number of windows in the given sequence. Thus each test sequence can be

mapped into a ℜp space.

Characterizing a Sequence Data Set Using Average 1-D Frequency Profiles

To characterize a given test data set, we aggregate the 1-D frequency profiles. We

construct the average 1-D frequency profiles for the normal test sequences and anomalous

test sequences separately. It should be noted that the average profile might not be the

best representation of the profiles. For example, let the test set contain 4 anomalous

sequences. Using four bins (p = 4), let the frequency profiles for the four anomalous

sequences be (1.00, 0, 0, 0), (0, 1.00, 0, 0), (0, 0, 1.00, 0), and (0, 0, 0, 1.00). The average

frequency profile for the anomalous sequences will be (0.25, 0.25, 0.25, 0.25) which does

not provide an accurate representation of the actual profiles. But if the individual

frequency profiles are similar to each other, the average profile will be representative.

A test sequence data set can be characterized with respect to a normal data set

by taking the difference between the average 1-D frequency profiles for normal and

anomalous test sequences. We will describe how this characteristic can be used to

explain the behavior of window based techniques in Section 6.2.

6.1.2 2-D Frequency Profiles

The second transformation is motivated from Markovian techniques that rely on the

frequency of a k length window as well as the frequency of the k− 1 length prefix of the

window, in a given sequence for anomaly detection. Thus, each k-window is associated

with a tuple (fk, fk−1), where fk is the frequency of occurrence of the k-window and

fk−1 is the frequency of occurrence of the k − 1 length prefix of the given k-window in

the training sequences.

A 2-D frequency profile for a test sequence can be constructed as follows. First, all

k-windows from the test sequence are extracted and the associated tuples (fk, fk−1) are

computed from the training sequences. The fk frequencies are binned into p bins in the

same manner as the 1-D frequency profiles. Similarly, the fk−1 frequencies are binned

into p bins. Thus, every tuple (fk, fk−1) is assigned to a “cell” (or grid) on a p× p grid.

The values in each cell are normalized to lie between 0 and 1 by dividing them by the
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total number of windows in the given sequence. Thus each test sequence can be mapped

into a ℜp×p space.

Note that the column aggregation of the 2-D frequency profile for a test sequence

will give the 1-D frequency profile for the given test sequence.

Characterizing a Sequence Data Set Using Average 2-D Frequency Profiles

To characterize a given sequence data set, using the 2-D frequency profiles, we follow

the same procedure as for 1-D frequency profiles. The frequency profiles for normal

and anomalous sequences are aggregated separately to obtain an average normal 2-D

frequency profile and an average anomalous 2-D frequency profile, respectively.

A test sequence data set can be characterized with respect to a normal data set

by taking the difference between the average 2-D frequency profiles for normal and

anomalous test sequences. We will describe how this characteristic can be used to

explain the behavior of Markovian techniques in Section 6.2.

6.1.3 Average Sequence Similarity

The third transformation of sequences is motivated from the kernel based techniques

which utilize the similarity between a test sequence and the normal sequences to assign

an anomaly score to the test sequence.

Let K denote the kernel matrix for a test data set S computed using (5.3) (See

Section 5.1). Let K̃ correspond to row sorted version of K, such that ith row of K̃

consist of the similarity between Si ∈ S and training sequences in T sorted in increasing

order. For a given test sequence Si, the average of the ith row of K̃ is defined as a

separability statistic, also referred to as average sequence similarity.

Characterizing a Sequence Data Set Using Average of Average Sequence

Similarity

A given test sequence data set can be characterized using the average sequence similarity

statistic by computing the average of the average sequence similarity for the normal

test sequences and anomalous test sequences. We use the difference between these two
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quantities as another characteristic for the test sequence data set and show how the

performance of kernel based techniques can be explained using it in Section 6.3.

6.2 Relationship Between Performance of Techniques and

Frequency Profiles

In this section we relate the performance of the window based (tSTIDE) and Markovian

techniques (FSA, FSAz, PST , and RIPPER) to the 1-D and 2-D frequency profiles

defined in Section 6.1.1.

6.2.1 tSTIDE

The performance of tSTIDE can be explained using the 1-D frequency profiles de-

scribed in the previous section. The anomaly score assigned by tSTIDE is inversely

proportional to the frequency of the k-windows in a given sequence. Hence the differ-

ence in the 1-D frequency profiles for normal and anomalous test sequences determines

the relative performance of tSTIDE on a given test data set.

For example, the average 1-D frequency profiles for rvp data set in Figure 6.1(a) are

significantly different, and hence the performance of tSTIDE is 90% (See Table 5.3).

For bsm-week1 data set in Figure 6.1(b), the difference is not significant, and hence the

performance of tSTIDE is relatively poor (=20%).
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Figure 6.1: Average 1-D frequency profiles for 6-windows.
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6.2.2 FSA

The tSTIDE technique distinguishes between normal and anomalous test sequences

in terms of the frequency of the k-windows, fk. Often, fk alone is not distinguishing

enough (see Figure 6.1(b)). The FSA technique addresses this issue by considering

the frequency of a k-window as well as the frequency of the k − 1 length suffix of the

k-window.

The performance of FSA can be explained using the 2-D frequency profiles described

in previous section. FSA assigns anomaly score to a sequence using the values fk and

fk−1 for every k window. Hence the difference in the average 2-D frequency profiles for

normal and anomalous sequences determines it relative performance on the given data

set.

For example, the average 2D frequency profiles for the bsm-week1 data set are shown

in Figures 6.2(a) and 6.2(b) for normal and anomalous sequences, respectively. The color

of each cell represents the magnitude of the relative proportion of k-windows falling in

that cell. We compare the two profiles with the 1D frequency profiles shown in Figure

6.1(b). The absolute difference between normal and anomalous frequency profiles is

shown in Figure 6.2(c) with marker “+” indicating that normal test sequences had higher

value for that cell than the anomalous test sequences, and marker “△” indicating that

normal test sequences had lower value for that cell than the anomalous test sequences.

Figure 6.3 shows the plots (differences only) for other public data sets. Note that if the

2D profiles are collapsed onto the y-axis, we will get the corresponding 1D profiles. We

note that even though the normal and anomalous sequences are not differentiable when

only fk is considered, the difference is significant when both fk and fk−1 are considered.

This is the reason why FSA performs better than tSTIDE on the bsm-week1 data set.

Comparing tSTIDE and FSA The key distinction between tSTIDE and FSA is

that the former technique makes use of the frequencies of k-windows while the latter

makes use of the frequencies of k-windows and the frequencies of their k− length suffixes.

This distinction is illustrated in Figure 6.4 which shows the scores assigned by tSTIDE

and FSA to windows, w(fk, fk−1). These scores are also referred to as likelihood scores

and are the inverse of the anomaly score of the windows. Since fk ≤ fk−1, the entries

above the lower diagonal are ignored.
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Figure 6.2: 2D Average frequency profiles for bsm-week1 data set (k = 6).
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Figure 6.3: Absolute difference in 2D frequency profiles for public data sets (k = 6).
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Figure 6.3: Absolute difference in 2D frequency profiles for public data sets (k = 6).
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Figure 6.4: Likelihood scores L(fk, fk−1), assigned by different techniques.
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FSA ignores the k-windows for which fk−1 = 0, i.e., the bottom left corner of Figure

6.4(b). It is clear that the scores assigned by tSTIDE are independent of fk−1 and are

linearly proportional to fk. Thus only high frequency windows will be assigned a high

likelihood score by tSTIDE. But for FSA, k-windows with low fk can still be assigned

a high score, if the corresponding value of fk−1 is also low. This key difference accounts

for a key strength and weakness of tSTIDE and FSA.

Consider a scenario in which the training data set is not pure but contains one

anomalous sequence, such that most of the k-windows (for a given value of k) do not

occur in any other training sequence. Let there be a truly anomalous sequence in the

test data set which is similar to the one anomalous training sequence. Most of the k-

windows extracted from this test sequence will have fk = 1. tSTIDE will assign a high

anomaly score to this test sequence. Though the value of fk−1 cannot be guaranteed, it

is likely that fk−1 ≈ 1. Thus FSA will assign a high likelihood score to the k-windows

of the anomalous test sequence, and hence assign it a low anomaly score. Thus tSTIDE

is a better technique in this scenario.

Now consider a different scenario, in which the training data set contains a sequence

that consists of k-windows that do not occur in any other training sequence, but are

normal. Let the test data contain one truly normal sequence similar to this training

sequence. tSTIDE will assign a high anomaly score to this test sequence because the

windows extracted from this sequence will have fk = 1. But, similar to the argument

for the previous scenario, FSA will assign a low anomaly score. Thus FSA is a better

technique in this scenario.

To summarize, tSTIDE is more robust when the training data might not be pure,

i.e., it might contain anomalous sequences. FSAz is a better choice when the training

data has rare but normal patterns (windows) that have to be learnt.

6.2.3 FSAz

One issue with FSA is that it ignores the k-windows for which fk = fk−1 = 0. But

often, such windows can differentiate between normal and anomalous sequences. The

plots of differences between the 2D average frequency profiles for normal and anomalous

sequences, shown in Figure 6.3, show that for several data sets, anomalous test sequences

have a higher proportion of such windows than the normal data sets. Our proposed
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technique, FSAz, utilizes this information by assigning a likelihood score of 0 to such

sequences, instead of ignoring them. This makes FSAz perform better than FSA for

most data sets.

6.2.4 PST

An issue with FSA (and FSAz), as noted earlier, is that they estimate the conditional

probability of a symbol, based on its fixed length history, even if the history occurs

once in the training sequences. Thus such estimates can be unreliable, and hence make

the techniques highly susceptible to presence of anomalies in the training set. PST

addresses this issue by conditioning the probability of a symbol on its k length history,

only if the history occurs a significant number of times in the training sequences. If the

frequency of the history is low, i.e., the conditional probability estimate is unreliable, it

uses the longest suffix of the history which satisfies the reliability threshold.

The score assigned by PST to a k-window is lower bounded by the score assigned

by FSAz. The actual score assigned by PST not only depends on fk, fk−1, but also

on δ, which is a threshold on fk−1. The value of δ is determined using user-defined

parameters and the training sequences (See Section 5.1.3). For a given k-window, if

fk−1 ≥ δ the score assigned by PST is same as FSAz. Otherwise, PST chooses the

longest suffix of the k window of length j (2 ≤ j ≤ k), such that fj−1 ≥ δ. If f1 < δ,

PST assigns the score equal to the probability of observing the last (kth) symbol of the

given window.

For example, Figures 6.5(a)–6.5(e) show the difference in the frequency profiles for

normal and anomalous test sequences for the rub data set for different values of k.

To assign a score to a k-window for k = 6, the PST technique will first consider the

frequency profile for k = 6. Let us assume that the k-window to be scored has fk−1 < λ.

In this case PST will substitute the score with the score of a window of length k − 1 in

the frequency profile for k − 1 length windows. If for the k − 1 window, fk−2 ≥ λ, the

corresponding score will be used, otherwise the frequency profile for k− 3 is considered,

and so on.

Using this understanding of PST , we can explain why PST performs significantly

poorly than FSAz for most of the public data sets. Let us consider the data set rub.

Figure 6.5(a) shows difference in the frequency profiles of normal and anomalous test
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sequences for k = 6. The distinguishing cells in the profile are mostly located in the

bottom left corner, and there is a single distinguishing cell in the upper right corner.

Both PST and FSAz will assign similar scores to the k-windows belonging to the cell

in the upper right corner. For the cell in the bottom leftmost corner, FSAz will assign

a 0 score, and for other cells FSAz will assign a higher score. Thus FSAz will be

able to distinguish between normal and anomalous test sequences, which supports our

experimental finding that the performance of FSAz on this data set is (0.88). For

PST , all k-windows belonging to the cells in the bottom left corner will have fk−1 < λ,

and hence will be substituted with scores for shorter suffix of the k-windows. Thus the

scores for windows to the bottom leftmost cell in Figure 6.5(a) will be scored same as the

shorter windows (of length j < k) in Figures 6.5(b)–6.5(e) for which fj−1 ≥ δ. But it is

evident from the plots that normal and anomalous test sequences are not significantly

distinguishable for higher values of fj−1. This is reason why PST performs poorly for

this data set (0.28).

While the above mentioned behavior of PST is an obvious disadvantage for most of

the data sets, it can also favor PST in certain cases. For example, PST performs well in

comparison to FSAz on the artificial data set d6. The frequency profiles of normal and

anomalous test sequences for d6 are shown for different values of k in Figures 6.6(a) –

6.6(e). We observe that the frequency profiles for normal and anomalous test sequences

are not distinguishable for k = 6 and hence FSAz performs poorly (0.38). But when

frequency profiles for lower values of j ≤ 3 are considered by the PST , the profiles for

normal and anomalous sequences are relatively more distinguishable (even for larger

values of fj−1) and hence PST performs better (0.68).

6.2.5 RIPPER

The motivation behind RIPPER is same as PST , i.e., if the fixed length history of a

symbol in a test sequence does not have a reliable frequency in the training sequences,

the symbol is conditioned on a subset of the history. The difference being that the

subset is not the suffix of the history (as is the case with PST ), but a subsequence of

the history.

RIPPER, like PST , assigns score to a k-window which is lower bounded by the

score assigned by FSAz. The actual score assigned by PST depends on the RIPPER
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Figure 6.5: Absolute difference in frequency profiles for rub data set.
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Figure 6.6: Absolute difference in frequency profiles for d6 data set.
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rule that is “fired” for the k − 1 prefix of the given window. If the target of the fired

rule matches the kth symbol of the given window, the likelihood score is 1, else the

likelihood score is the inverse of the confidence associated with the rule. It is difficult to

analytically estimate the actual scores assigned by RIPPER, but generally, the scores

assigned by RIPPER are higher than FSAz but lower than PST .

As mentioned earlier, the scores assigned by RIPPER are same as FSAz for higher

values of fk. For lower values of fk the scores depend on the distribution of k-windows

in the training data set as well as how the underlying classifier (RIPPER) learns the

rules and what is the order in which the rules are applied. Generally speaking, it can

be stated that the scores assigned by RIPPER to such windows is greater than 0 but

lower than the score assigned by PST to such windows.

The above mentioned behavior of RIPPER results in its poor performance in cases

in which the cells with lower values of fk are distinguishing and the anomalous test

sequences have higher proportion of windows in that cell than the normal test sequences.

RIPPER assigns a higher overall likelihood score to the anomalous test sequences and

hence is not able to distinguish them from normal sequences. For all PFAM data sets

the distinguishing cells have lower fk value, resulting in poor performance of RIPPER.

For UNM data sets, the distinguishing cells have higher values for fk and hence the

performance of RIPPER is very close to that of FSAz.

6.3 Impact of Nature of Similarity Measure on Perfor-

mance of Anomaly Detection Techniques

Kernel based techniques (kNN and CLUSTER) are distinct from the window based and

Markovian techniques because they rely on the similarity between a test sequence and

training sequences to assign anomaly score to the test sequence. Thus their performance

can be explained using the average similarity to training sequences characteristic, as

described in Section 6.1.3.

One distinction between normal and anomalous sequences is that normal test se-

quences are expected to be more similar (using a certain similarity measure) to training

sequences, than anomalous test sequences. If the difference in similarity is not large, this

characteristic will not be able to accurately distinguish between normal and anomalous
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sequences. This characteristic is utilized by kernel based techniques (kNN and CLUS-

TER) to distinguish between normal and anomalous sequences.
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Figure 6.7: Histogram of Average Similarities of Normal and Anomalous Test Sequences
to Training Sequences.

For example, Figure 6.7(a) shows the histogram of the average (nLCS) similarities

of test sequences in the artificial data set d1 to the training sequences. The normal test

sequences are more similar to the training sequences, than the anomalous test sequence.

This indicates that techniques that use similarity between sequences to distinguish be-

tween anomalous and normal sequences will perform well for this data set. From Table

5.5, we can observe that the performance of CLUSTER as well as kNN is 100% on

d1. A similar histogram for data set d6 is shown in Figure 6.7(b), which shows that

average similarities of normal test sequences and the average similarities of anomalous

test sequences are very close to each other. This confirms the observation in Table 5.5

that CLUSTER and kNN should perform poorly for this data set.

We quantify the above characteristic by computing the average sequence similarity

for each test sequence. Let the average of the average similarities for normal test se-

quences be denoted as sn, and average of the average similarities for anomalous test

sequences be denoted as sa. If for a given data set, the difference sn − sa is large, kNN

and CLUSTER are expected to perform well on that data set, and vice-versa.

Tables 6.1 and 6.2 show the values of sn, sa, and sn−sa, for the real and artificial data

sets, respectively. The performance of both kNN and CLUSTER is highly correlated

with the difference sn − sa.
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snd- snd- bsm- bsm- bsm-
hcv nad tet rvp rub unm cert week1 week2 week3

sn 0.53 0.48 0.67 0.82 0.75 0.99 0.99 0.97 0.98 0.97
sa 0.38 0.38 0.37 0.36 0.37 0.50 0.38 0.88 0.81 0.73

sn − sa 0.15 0.10 0.30 0.46 0.38 0.49 0.61 0.09 0.17 0.24

Table 6.1: Values of sn, sa for the public data sets.

d1 d2 d3 d4 d5 d6

sn 0.87 0.87 0.86 0.86 0.86 0.86
sa 0.45 0.63 0.63 0.73 0.76 0.78

sn − sa 0.42 0.24 0.23 0.13 0.10 0.08

Table 6.2: Values of sn, sa for the artificial data sets.

6.4 Using RBA Features for Anomaly Detection

A key aspect of the RBA framework is that it maps data instances into a multivariate

continuous space, where normal and anomalous instances can be distinguished from each

other. Thus, applying the RBA framework is equivalent to extracting features from the

sequence data set. In this section, we propose two novel techniques based on these

features to detect anomalies in a given test data set. We denote the novel techniques

as WIN1D and WIN2D, since they utilize the 1-D and 2-D frequency profiles discussed

in Sections 6.1.1 and 6.1.2, respectively.

The motivation behind these two techniques is the fact that several existing tech-

niques implicitly utilize the difference between the relative frequencies of the k-windows

to distinguish between normal and anomalous sequences (See Section 6.2).

The algorithm for the first technique, WIN1D, is as follows:

WIN1D(k, p, nn,S,T)

1. For each training sequence Tj ∈ T, calculate its 1-D frequency profile with

respect to T (denoted as T̃j) with window size k and number of bins as p.

2. For each test sequence Si ∈ S, calculate its 1-D frequency profile with respect

to T (denoted as S̃i) with window size k and number of bins as p.

3. For each “mapped” test sequence, S̃i, calculate its anomaly score as equal

to the distance to its nnth nearest neighbor in T̃1 using Euclidean distance

1T̃ is the set of “mapped” training sequences using the 1-D frequency profiles.
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metric.

The algorithm for the second technique, WIN2D, is as follows:

WIN2D(k, p, nn,S,T)

1. For each training sequence Tj ∈ T, calculate its 2-D frequency profile with

respect to T (denoted as ˜̃Tj) with window size k and number of bins as p.

2. For each test sequence Si ∈ S, calculate its 2-D frequency profile with respect

to T (denoted as ˜̃Si) with window size k and number of bins as p.

3. For each “mapped” test sequence, ˜̃Si, calculate its anomaly score as equal

to the distance to its nnth nearest neighbor in ˜̃T2using Euclidean distance

metric.

The inputs to both techniques are the training data set, T, test data set, S, window

size, k(≥ 2), number of bins, p(≥ 2), and number of nearest neighbors to analyze, nn.

6.4.1 Results on Public and Artificial Data Sets

We evaluate the performance of the proposed techniques on the public and artificial

data sets described in Chapter 5.

Sensitivity to Parameters

We first investigate the sensitivity of the different parameters on the performance of

WIN1D and WIN2D. The techniques gave best overall performance for window size

k = 6, which was also the best performing window size for the existing window based

and Markovian techniques. The performance of both techniques was not sensitive to

the number of nearest neighbors. The techniques gave best performance when the

number of bins used to construct the profile, p, was low (≈ 3). For larger values of

p, the dimensionality of the mapped data increased, and hence the performance of the

distance based anomaly detection technique deteriorated.

For the results provided in subsequent section, the optimal parameter settings were

found by testing on a validation set for different combinations of the parameters (p, k, nn)

2 ˜̃T is the set of “mapped” training sequences using the 2-D frequency profiles.
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and using the combination the provides best average results across all data sets. The

results are shown for p = 5, k = 6, and nn = 5.

Comparison with All Existing Techniques

The first set of results show how WIN1D and WIN2D compare against the state of

art techniques, discussed in Chapter 5, on the different public and artificial data sets.

The comparison of average performance of the proposed techniques with the existing

techniques is shown in Figure 6.8. Notably, WIN1D, which is based on tSTIDE,

shows better performance than tSTIDE, and WIN2D, which is based on FSAz, shows

better performance than FSAz on both public and artificial data set. Overall, WIN2D

performs significantly better than all existing techniques on average across all public

and artificial data sets.
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Figure 6.8: Comparison of average accuracies for WIN1D and WIN2D, and existing
anomaly detection techniques.

The reason the proposed techniques perform better than the existing techniques is

because of the way the windows are utilized by the proposed techniques. For example,

let us consider tSTIDE and WIN1D. Both of these techniques use the frequency

of k-windows to distinguish between the normal and anomalous test sequences. But

tSTIDE weights the windows in a test sequence by their frequencies and the sums

the total weights to get an inverse of the anomaly score. On the other hand, WIN1D

bins the windows based on their frequency, and then uses the normalized bin counts as
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features. By using a nearest neighbor approach, WIN1D “learns” weights on different

windows to achieve best separability between the normal and anomalous test sequence.

Same holds true for FSAz and WIN2D.

Comparison with Best Existing Technique

The strength of the RBA based techniques, WIN1D and WIN2D, is that they distin-

guish between normal and anomalous test sequences in a multi-dimensional space, while

most of the existing techniques operate along one or a limited subset of the dimensions.

In the second set of results we assess if this strength allows the RBA based techniques

to outperform the existing techniques.

In Table 6.3, we compare the accuracy results for WIN1D and WIN2D against the

best existing technique for each public data set. The results show that both WIN1D and

WIN2D are strictly better or comparable with the best existing technique for almost

all of the public data sets. The same inference can be drawn from the AUC results for

the public data sets in Table 6.4.

For artificial data sets, the performance of WIN2D is still significantly better than

the best existing technique for each data set as shown in Tables .6.5 and 6.6. Notably,

for the artificial data sets, the performance of WIN1D is relatively worse than the best

existing technique.

For artificial data sets, PST was found to be the best technique while both FSA

and FSAz were found to perform poorly for many artificial data sets (See Chapter

5, Section 5.3). The reason was that the artificial data sets were designed to break

FSA and FSAz, while PST , which utilizes the frequencies of varying length suffixes

of the k length windows, was able to distinguish between the normal and anomalous

test sequences. By using WIN2D, the behavior of PST is captured and improved, and

hence WIN2D outperforms PST on the artificial data sets.

6.5 Conclusions and Future Work

In this chapter we showed how the RBA framework can be used in the context of

anomaly detection for symbolic sequences. Visualizing symbolic sequences is challeng-

ing, especially when the sequences are of varying length. Using the RBA framework we
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PFAM UNM DARPA

snd- snd- bsm- bsm- bsm-
hcv nad tet rvp rub unm cert week1 week2 week3 Avg

WIN1D 0.92 0.74 0.52 0.90 0.88 0.82 0.88 0.30 0.60 0.66 0.72
WIN2D 0.92 0.76 0.82 0.92 0.92 0.84 0.88 0.50 0.60 0.66 0.78

Existing Best 0.92 0.74 0.50 0.90 0.88 0.82 0.88 0.50 0.56 0.66 0.74

Table 6.3: Comparing accuracy of WIN1D and WIN2D against best existing technique
for public data sets.

PFAM UNM DARPA

snd- snd- bsm- bsm- bsm-
hcv nad tet rvp rub unm cert week1 week2 week3 Avg

WIN1D 1.00 0.98 0.98 1.00 1.00 0.99 0.98 0.75 0.92 0.92 0.95
WIN2D 1.00 0.99 0.99 1.00 1.00 0.99 0.98 0.91 0.93 0.92 0.97

Existing Best 1.00 0.98 0.98 1.00 1.00 0.99 0.96 0.88 0.91 0.97 0.97

Table 6.4: Comparing AUC of WIN1D and WIN2D against best existing technique for
public data sets.

d1 d2 d3 d4 d5 d6 Avg

WIN1D 1.00 0.92 0.58 0.52 0.34 0.64 0.67
WIN2D 1.00 0.96 0.81 0.76 0.71 0.74 0.83

Existing Best 1.00 0.84 0.82 0.76 0.68 0.68 0.80

Table 6.5: Comparing accuracy of WIN1D and WIN2D against best existing technique
for artificial data sets.

d1 d2 d3 d4 d5 d6 Avg

WIN1D 1.00 1.00 0.91 0.89 0.76 0.87 0.90
WIN2D 1.00 1.00 0.98 0.98 0.96 0.98 0.98

Existing Best 1.00 0.96 0.98 0.98 0.96 0.95 0.97

Table 6.6: Comparing AUC of WIN1D and WIN2D against best existing technique for
artificial data sets.
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provide a visualization scheme for symbolic sequences.

The RBA based mapping for the symbolic sequences is motivated from the existing

techniques that use fixed length windows as a unit of analysis. In this chapter we have

shown how, using the RBA based features, one can understand the performance of the

different existing techniques. Moreover, the framework can also be used to identify

the fundamental differences between techniques. For example, tSTIDE and FSA are

shown to be highly different from each other since they handle k-windows in distinct

manner. The framework also allows to identify the weaknesses of each technique. For

example, the poor performance of PST on most of the real data sets could be explained

using the framework. The same framework can also be used to construct scenarios in

which a given technique would perform well or poorly.

The analysis of the various distinguishing characteristics can also aid in choosing

optimal values of parameters for different techniques. For example, Figure 6.5 shows

the magnitude of difference between normal and anomalous sequences in rub data set

for different values of window size k. The maximum difference occurs when k = 5 or 6.

Our results indicate that all techniques that depend on window size as a parameter give

optimal performance for these values of k. Similarly, for kNN and CLUSTER, the

difference in the corresponding characteristic for normal and anomalous test sequence,

can be calculated for different values of the parameter k. The value of k that results in

maximum difference in terms of the characteristic, is likely to give best performance on

that data set. One could argue that given a labeled validation data set, a technique can

be evaluated for different parameter values to obtain the optimal value. But using the

proposed framework, the analysis needs to be done only for a characteristic, without

having to test every technique that depends on that characteristic.

The most significant outcome of applying the RBA framework to symbolic sequences

is that the features obtained from the mapping can be used to develop powerful anomaly

detection techniques, which outperform the existing techniques. Moreover, the RBA

based techniques are shown to better than the best existing technique for most of the

data sets. Thus instead of using different existing techniques which are optimal for

different data sets, RBA provides one best technique across a variety of data sets. This

is a significant step towards the ultimate goal for the anomaly detection research, which

is to find a technique that can perform well across all application domains.
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Detecting Anomalies in Time

Series Data
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Chapter 7

Detecting Anomalies in a Time

Series Database

In this chapter, we investigate the problem of detecting anomalies in a given time

series, with respect to a reference set consisting of normal time series. This problem

formulation is highly applicable in domains of aircraft health management [165], credit

card fraud detection [55], detecting abnormal conditions in ECG data [119], detecting

shape anomalies [183], detecting outlier light curves in astronomical data [146, 191], etc.

For example, in aircraft health management, during an aircraft’s flight, multiple

sensors measure flight parameters that indicate system health. This data is collected

as time series. A fault in the aircraft’s flight, such as failure of a component, is man-

ifested as anomalies in one or more of the sensor readings generated by the aircraft.

Figure 7.1(a) shows a set of reference time series corresponding to measurements from

a healthy rotary engine disk of an aircraft, and Figure 7.1(b) shows a test set of time

series corresponding to measurements from healthy (solid) and cracked (dashed) disks.

Detecting when an engine disk develops cracks is crucial. This task requires finding

anomalies in the test time series. Online detection of these anomalies allows preventive

measures that can save lives. Off-line detection of the anomalies is critical for fault

diagnosis.

Many anomaly detection techniques that solve the above mentioned problem for

time series data have been proposed, such as kernel based techniques [146, 191, 183]

103
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Figure 7.1: Reference and test time series for the NASA disk defect data [164].

and segmentation techniques [156, 128, 32]. In addition, a number of techniques have

been proposed for related problems. For example, Keogh et al [101] have developed

a number of techniques for discord detection, where discords are defined as unusual

subsequences in a long time series [100, 103, 62, 27, 191]. Ma and Perkins [124] have

proposed a technique to detect anomalous observations in a long time series.

However, most of these techniques have been studied in the context of specific do-

mains, such as detecting faults in operational data [156, 128, 32], detecting outlier light

curves in astronomical data [146, 191], and detecting shape anomalies1 [183]. While

each published study shows the effectiveness of the particular technique in the target

domain, there has not been any attempt to analyze the problem in its entirety. The

reason such analysis is essential is that the nature of the time series and the nature of

anomalies in different domains differs fundamentally. While a technique is shown to be

effective for a particular domain, the same technique is not guaranteed to perform well

in a different domain where a different type of time series data is encountered.

For example, Figure 7.2 shows the normal and anomalous time series plots for four

different publicly available data sets taken from varied domains. The valve data set

corresponds to current measurements recorded on a valve on a space shuttle. The

motor data set corresponds to functioning of an induction motor. The shapes data set

corresponds to time series obtained from different physical shapes. The power data

set corresponds to the weekly power usage by a research plant. We observe that the

nature of normal time series as well as anomalous time series is different for the four

data sets. For the valve data set in Figure 7.2(a), the anomalous time series are mostly

1The shapes are converted into time series using techniques such as distance from centroid [197].
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Figure 7.2: Normal (blue) and anomalous (red dotted) time series for different data sets
[99]. (Best viewed in color)

similar to the normal time series except for two short regions. For the shapes data set

in Figure 7.2(c), the anomalous time series is completely different from the normal time

series. The normal time series for the motor and power data sets in Figure 7.2(b) and

7.2(d), respectively, are periodic. The anomalous time series for the motor data set is

also periodic but is noisier than the normal time series. The anomalous time series for

the power data set contains one different cycle. While the normal time series for valve,

shapes, and power data sets are similar to each other, the normal time series for the

motor data set are out of sync with each other. Even for this limited sample of data sets,

we observe remarkable difference in the nature of normal and anomalous time series.

This underlying difference in the data makes the problem of anomaly detection different

for each domain. Thus it is highly important to understand how the performance of a

technique is related to the nature of the underlying data.

Our objective in this chapter is to get deeper insights into the behavior of different

techniques to help us answer the following question – Which anomaly detection technique

is optimal for a given time series data set? We investigate different ways of solving this

problem. First way is to use distance or similarity kernels for time series data. Second
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is to extract fixed length windows from a test time series and assign anomaly scores

to the windows. Third is to learn a predictive or forecasting model from the training

data and use the model to detect anomalies in a test time series. Fourth is to learn

a state space model for the normal time series and detect anomalies by passing a test

time series through the state space model.

We adapt several machine learning techniques (such as one class support vector

machines, nearest neighbor density estimation, support vector regression) to detect

anomalies in time series data. Our work is novel in the sense that these adaptations

have not been tried before for the problem of detecting anomalous time series in a

given database of time series data. We evaluate these novel adaptations along with

existing state of the art anomaly detection techniques for time series data [191, 32].

One of our novel adaptations, that uses one class SVMs, is shown to perform better

than the existing anomaly detection techniques. To understand the performance of

existing anomaly detection techniques for symbolic sequences discussed in Chapter 5,

we discretized the continuous time series data and applied the symbolic techniques on

the discretized data. We evaluate the different techniques on a large variety of time

series data sets obtained from a broad spectrum of application domains. The data

sets have different characteristics in terms of the nature of normal and anomalous time

series. We evaluate the techniques using varied metrics, such as accuracy in detecting

the anomalous time series, sensitivity to parameters, and computational complexity. We

provide useful insights regarding the relative performance of different techniques based

on the experimental evaluation and relate the performance of different techniques to the

nature of the underlying time series data.

In Chapter 3 we discussed the related research done in the area of anomaly detection

for time series data (See Section 3.5). Only a limited set of techniques have been

proposed to solve the semi-supervised anomaly detection techniques, though related

techniques have been proposed to detect anomalous observations in a time series [60, 2,

154, 63, 188, 144, 195, 124, 105] or to detect anomalous subsequences in a time series

[101, 100, 103, 119, 62, 27, 191]. We have adapted some of these techniques to handle

the semi-supervised anomaly detection problem.

The rest of this chapter is organized as follows. Section 7.1 describes various char-

acteristics of time series data which can affect the performance of different anomaly
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detection techniques. Section 7.2 describes the different anomaly detection techniques

for time series data. Section 7.3 describes the different data sets used for evaluating the

different techniques. Section 7.4 summarizes our experimental results on the different

data sets. We provide conclusions based on the experimental results and the future

directions of research in Section 7.5.

7.1 Nature of Input Data

We use the training data, X, to “learn” a model for normal behavior and assign an

anomaly score to each test time series, yj, based on the model. The performance of

any technique depends on the nature of normal as well as anomalous time series. The

normal time series in the training and test database can vary among themselves due to

one or more of following factors:

• The normal time series might contain noise. The noise might be generated as random

noise, or a different process.

• The normal time series might not be synchronized, i.e., the data collected for different

time series might have different start times. The normal time series in the motor data

set (Figure 7.2(b)) are examples of such time series.

A key characteristic of the anomaly detection problem is the cause of anomaly within

an anomalous time series. Broadly, two types of anomalies can be defined:

Process Anomalies: The generative process for the normal and anomalous time series

are completely different, e.g., the anomalous time series in the shapes data set (See

Figure 7.2(c)) is an example of process anomaly.

Subsequence Anomalies: The normal time series are generated from a single gener-

ative process. In the anomalous time series, majority of the observations are generated

by the same process, but a few observations are generated by a different process (See

Figures 7.2(d) and 7.2(a)). Such anomalous observations are also referred to as discor-

dant observations [2] when they occur individually, or as discords [101] when they occur

as a subsequence.
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7.2 Anomaly Detection Techniques for Time Series Data

We investigate following different ways of solving the problem of detecting anomalies in

time series data:

1. Kernel Based Techniques These techniques make use of a distance kernel de-

fined for every pair of time series. We evaluate a nearest neighbor based technique,

called KNNC (k-nearest neighbor for continuous time series) [191], that utilizes this

distance kernel. KNNC assigns an anomaly score to a test time series as equal to its

distance to its kth nearest neighbor in the training database, X. We also evaluated a

discrete version of KNNC, called KNND (where ’D’ stands for discrete) [38], where

the continuous time series were first discretized into a sequence of symbols, using the

Symbolic ApproXimation (SAX) technique [120].

For KNNC, we evaluate three distance measures, viz., Euclidean Distance, Dynamic

Time Warp (DTW ) [19], and Cross Correlation [146].

For KNND, we evaluate four similarity measures: Simple Matching Coefficient

(SMC), weighted Simple Matching Coefficient (wSMC) using the weight for each pair

of symbols [120], normalized longest common subsequence length (nLCS) [28], and a

similarity measure using time series bitmaps (BITMAP) [109].

2. Window Based Techniques These techniques extract fixed length (w) windows

from a test time series, and assign an anomaly score to each window. The per-window

scores are, then, aggregated to obtain the anomaly score for the test time series. The

score assignment to a window and the score aggregation can be done in different ways.

We denote the window based techniques for continuous time series as WINC, and

for discretized sequences as WIND. We evaluated two variants of WINC: WINCSV M

and WINCkNN . WINCSV M learns a one class support vector machine [158] from the

windows extracted from the training time series, and then assigns a score of +1 or -1 to

each test time series based on the prediction of the one class SVM. The anomaly score

for the test time series is equal to the inverse of the average score of all its windows.

WINCkNN assigns an anomaly score to each window of a test time series equal to

the Euclidean distance between the window and its kth nearest neighbor in the set of

windows extracted from the training time series. The anomaly score for the test time
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series is equal to the average score of all its windows. Both variants of WINC estimate

the density of w-dimensional windows using the windows extracted from the training

time series and then determine if the windows extracted from a test time series lie in

the dense regions or not.

We evaluated two variants of WIND: WINDkNN and tSTIDE. WINDkNN is

similar to WINCkNN with the only difference being that the score for each window

from a test sequence is a likelihood score (inverse of anomaly score), and is equal to

the similarity between the window and its kth nearest neighbor in the set of windows

extracted from the training sequences. The similarity is measured using weighted Simple

Matching Coefficient (wSMC) measure. For tSTIDE (proposed by Forrest et al [59]

for symbolic sequences), the likelihood score for each window is equal to the number of

times the window occurs in the set of windows extracted from the training sequences

divided by the total number of windows extracted from the training sequences. For both

variants of WIND, the anomaly score for the test time series is equal to the inverse of

the average score of all its windows.

3. Predictive Techniques These techniques learn a predictive model from the train-

ing time series. Testing involves forecasting the next observation in a test time series,

using the predictive model and the test time series observed so far, and comparing

the forecasted observation with the actual observation to determine if an anomaly has

occurred.

We evaluate three predictive techniques: AR (using Auto Regressive models [63]),

SV R (using Support Vector Regression [134]), and FSAz (using Finite State Automata

based technique for symbolic sequences [38]). For AR and SV R, the anomaly score for

each observation in a test time series is equal to the difference between the forecasted and

the actual observation. The anomaly score of the test time series is equal to the average

anomaly scores for all of its observations. For FSAz, a likelihood score is obtained for

each symbol in the discretized test sequence which is equal to the conditional probability

of observing the symbol in the training sequences, given the previous few symbols. The

anomaly score for the discretized test sequence is equal to the inverse of the average

likelihood scores for all of its symbols.

For comparison, we also evaluate an existing segmentation based technique for time
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series anomaly detection, called BOX [32]. This technique segments the training time

series into fixed number of segments (k) and then learns a sequence of discrete states

that define the transition between different segment. A Finite State Automaton (FSA)

is defined using these states. The FSA is used to predict the anomalous nature of the

test time series.

7.3 Data Sets

Table 7.1 summarizes the different data sets for the cross-domain experimental evalua-

tion. We used 19 data sets grouped into 8 categories with distinct characteristics. For

each data set we report the different characteristics as discussed in Section 7.1. The

last column denotes the cycle length when the normal time series are periodic. For non-

periodic time series, the last column denotes the length of a definitive pattern in the

time series. For example, for the valve data set (see Figure 7.2(a)), the “bump” between

time instances 100 and 400 can be considered as a pattern. For some non-periodic data

sets (disk1–3, shape1–2), it was not possible to define a characteristic pattern. Note

that we adapted the actual data sets to create suitable evaluation data sets. The general

methodology to create the data sets was the following:

For each data collection, a normal database, N, and an anomalous database, A,

of time series is created. A training (reference) database, X, is created by randomly

sampling a fixed number of time series from N. A test database, Y, is created by

randomly sampling m normal time series from N − X and n anomalous time series from

A. All time series were normalized to have a zero mean and unit standard deviation.

The ratio n
m+n

determines the “baseline level” of accuracy for the given test database,

e.g., if baseline accuracy is 0.50, a “dumb” technique that declares all time-series to

be anomalous will perform correctly 50% of the time. Thus a real technique should

perform significantly better than the baseline to be considered effective. The different

data sets are:

• Disk Defect Data Set (disk) [164]. The normal time series corresponds to blade

tip clearance measurements obtained from a simulated aircraft engine disk and the

anomalous time series correspond to the measurements obtained to a disk with a crack.

Different data sets (disk1 – disk3) correspond to different speeds at which the disk is
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|Y|
Name (#) L |X| |YN| |YA| λ A P S l

disk (3) 64 10 500 50 0.09 s × √
–

motor (4) 1500 10 10 10 0.50 p
√ × 250

power (1) 672 11 33 8 0.19 s
√ √

96
valve (1) 1000 4 4 8 0.67 s × √

300
shape1 (1) 1614 10 10 10 0.50 p × × –
shape2 (1) 1614 30 30 10 0.25 p × × –

l-ecg (4) 2500 250 250 25 0.09 s
√ × 250

s-ecg (4) 360 500 500 50 0.09 p × × 50

Table 7.1: Details of different data sets used in the experiments. # - number of data
sets in each group, L - length of sequences, X - Training database, Y - Test database,
YN - Normal test time series, YA - Anomalous test time series, λ - Baseline Accuracy,
A - Anomaly Type (Process - p, Subsequence - s), P - Periodic (Yes -

√
, No - ×), S -

Synchronized (Yes -
√

, No - ×), l - Cycle/Characteristic Pattern Length.

rotating.

• Motor Current Data Set (motor) [99]. The normal time series correspond to the

current signals from the normal operation of a induction motor. The anomalous time

series correspond to signals obtained from a faulty motor. Different data sets (motor1

– motor4) correspond to different types of faults in the motor.

• Power Usage Data (power) [99]. The normal time series correspond to weekly time

series of power consumption at a research facility in 1997 for weeks with no holidays

during the weekdays. The anomalous time series correspond to power consumption

during weeks with a holiday during the week.

• NASA Valve Data (valve) [99]. The normal time series consists of TEK solenoid

current measurements recorded during the normal operation of a Marrotta series valves

located on a space shuttle. The anomalous time series correspond to the faulty opera-

tion of the valve.

• Shape Data (shape1 and shape2) [99]. The normal time series correspond to

one or more shapes, while the anomalous time series correspond to other shapes. For

the shape1 database, the normal time series correspond to a pencil shape, while the

anomalous time series correspond to other similar shapes (e.g., fork). For the shape2

database, the normal time series correspond to shapes of cups, glasses, and crosses,

while the anomalous time series correspond to distinctly dissimilar shapes.
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• Electrocardiogram Data (l-ecg and s-ecg) [72]. Each data set corresponds to an

ECG recording for one subject suffering with a particular heart condition. The ECG

recording is segmented into short time series of equal lengths. Each short time series

is added to the normal database if it does not contain any annotations of a heart con-

dition2, and is added to the anomalous database if it contains one or more annotations

indicating a heart condition. The l-ecg databases contain 10 second long time series.

Four such databases (l-ecg1–l-ecg4) were constructed from BIDMC Congestive Heart

Failure Database and Long-Term ST Database. The s-ecg databases contain 1 second

long time series. Four such databases (s-ecg1–s-ecg4) were constructed from European

ST-T Database and MIT-BIH Arrhythmia Database.

7.4 Experimental Results

In this section we summarize the results of our extensive experiments to evaluate 10

anomaly detection techniques, discussed in Section 7.2, on 19 different publicly available

time series data sets (See Table 7.1). For each technique we tested various parameter

combinations. We report the accuracy (defined in Chapter 3) as the performance metric.

Note that, a technique performs well on a given data set if its accuracy is significantly

greater than the baseline accuracy for that data set as shown in Table 7.1. Thus for

the l-ecg data sets, if the accuracy is 50%, the performance is good since its baseline

accuracy is 0.09, while on motor data sets, a 50% accuracy is poor since its baseline

accuracy is 0.50. For brevity, we show average results for the 8 groups of data sets.

For techniques that operate on discrete sequences, we discretized the time series

using the SAX approximation technique.We experimented with different parameter set-

tings for SAX and report results for the best performing combination.

7.4.1 Kernel Based Techniques

We experimented with different distance and similarity measures for the kernel based

techniques, KNNC and KNND, as well as different values for parameter k. We ob-

served that for both KNNC and KNND, the best performance was generally obtained

when k ∈ (2, 8).

2http://www.physionet.org/physiobank/annotations.shtml
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Figure 7.3: Results for Kernel Based Techniques. “•” indicates the baseline accuracy
for each data set.

The results for KNNC using different distance measures are summarized in Figure

7.3(a). Overall, KNNC performs well for most techniques, but the performance varies

somewhat with the choice of the distance measure. The cross-correlation measure is

consistently better or similar in performance to the Euclidean measure for most data

sets, especially when the normal time series are not synchronized. The reason is that

Euclidean measure cannot capture phase misalignments present among the normal time

series while cross-correlation can. Although, on an average, cross correlation outper-

forms DTW , both these measures show complementarity. For periodic data sets (e.g.,

motor, l-ecg), cross correlation is better than DTW and for non-periodic data sets (e.g.,

disk, s-ecg), DTW tends to be better than cross-correlation. DTW addresses the issue

of non-linear alignment of time series while cross-correlation addresses the issue of phase

misalignments. The reason why DTW is poor for periodic time series is that when a

normal periodic time series is compared with an anomalous periodic time series using

DTW , the anomalous portion is ignored by DTW (to obtain a better “match”), and

hence the distance between the two time series is almost equal to the distance between

two normal periodic time series. The reason why cross-correlation performs poorly on

non-periodic time series data is that for an anomalous time series cross-correlation finds

the best “phase shifted” version of a normal time series. Even if the anomalous time

series are generated from a different process, it might be similar to some phase shifted

version of a normal time series, and hence the anomalous time series would appear

normal.

The results for KNND are summarized in Figure 7.3(b). For the BitMap (BM)
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measure, we used different values of the bitmap resolution and reported best results

for resolution 2. The similarity measure nLCS performs best; while SMC and BM

are also comparable in performance. Interestingly, the SMC measure always performs

better than the weighted SMC, and hence is omitted from Figure 7.3(b).

Comparing results in Figures 7.3(a) and 7.3(b), we observe that KNNC with cross-

correlation and KNND with nLCS perform consistently well. In some cases, approxi-

mating the time series by discretization results in loss of information, which negatively

impacts the performance of KNND (disk), though in certain cases, when the data is

noisy, the approximation removes the noise in the time series and hence results in better

performance (valve).

KNNC and KNND are linear in the size of training and testing data sets (|X|
and |Y |). KNNC with Euclidean distance measure and KNND with SMC similarity

measure are linear in the length of time series (O(L)). KNNC with DTW and KNND

with nLCS are quadratic O(L2), though the complexity can be improved by using faster

heuristics [104, 28]. KNNC with cross correlation is O(L log L). KNND with the

Bitmap measure is linear in the length of time series, but is O(b3) where b is the length

of the window used for computing the similarity.

7.4.2 Window Based Techniques

For window based techniques, we experimented with varying window lengths. For data

sets with long time series (L ≥ 1000) we used a sliding step of 50 when extracting

windows from the training and test time series. The results for the four window based

techniques are summarized in Figures 7.4(a) – 7.4(d).

The window length w is a critical parameter for these techniques, e.g., in WINCkNN

if w = 2, all windows are likely to find almost identical nearest neighbors, and hence no

difference between normal and anomalous test time series can be detected. If w is very

large, nearest neighbors for all windows are likely to be far, and hence the normal and

anomalous test time series cannot be differentiated. We investigated different reasonable

settings based on the length of a cycle or “characteristic pattern” in the normal time

series (See Table 7.1). We experimented with different multiples of the cycle length, as

well as a fixed short length of 10. Since the results for w = 10 were never competitive,

those results are not shown here.
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(c) WINDKNN
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Figure 7.4: Results for Window Based Techniques. “•” indicates the baseline accuracy
for each data set.

WINCSV M performs consistently better than other window based techniques on

most of the data sets. For WINCSV M we used a Radial Basis Function (RBF ) kernel,

with kernel width γ = 0.1. In our experiments the results did not vary significantly with

varying γ. An important parameter for one class SVM is ν [158], which is an upper

bound on the fraction of training instances that are treated as the “other” class. The

results show that for data sets with noisy training time series, a higher value of ν ≈ 0.1

gave best results, while for data sets with less noisy training time series, a lower value of

ν ≈ 0.001 gave best results. Thus ν can be set according to the nature of the underlying

time series. The performance of WINCSV M does not depend on the window size w for

most of the data sets.

We experimentally verified that the performance of WINCkNN gives good results

for values of nn ∈ [5, 30]. For WINDkNN , since continuous values are mapped to a

limited number of symbols, and hence more windows from test sequences find exact

matching windows in training sequences, and hence the performance of WINDkNN is

good only when nn ≈ 100.

Results indicate that the techniques for continuous data (WINCSV M and WINCKNN)
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are generally better than those for discretized data (WINDKNN and tSTIDE), indi-

cating that the loss of information due to discretization has a negative effect on the

performance. Another interesting observation is that the performance of window based

techniques is impacted more significantly due to the symbolic approximation than the

performance of kernel based techniques. The reason for this is that when the time se-

ries are discretized using few symbols, any short window from a test sequence, in the

discretized form, is likely to find exact matching windows in the training sequences.

For certain data sets, performance of WINCKNN depends on the choice of w, e.g., for

power data set in Figure 7.4(b), the performance improves when the window length in-

creases, while for l-ecg data sets, the performance deteriorates when the window length

increases. In general, for WINCKNN , window length has more impact on the perfor-

mance for periodic data sets and not for non-periodic data sets.

Performance of WINCSV M and KNNC is comparable on average. WINCSV M is

generally better suited when the time series are long (l-ecg), because for KNNC, com-

paring two long time series suffers from the curse of dimensionality while WINCSV M

breaks the time series into short windows, and hence does not get significantly affected

by the length of the time series. One data set where KNNC is significantly better

than WINCSV M is shape2. In this data set, the normal time series belong to three

different clusters. KNNC is well-suited to utilize this information because the normal

time series form tight neighborhoods within their clusters. WINCSV M does not utilize

this information and hence performs poorly.

The training time for WINCSV M can at worst be O(|X|3L3), but is typically

O(Nsw|X|L), if the number of support vectors, Ns, is very few. Testing for WINCSV M

is linear in |Y |, L, w, and Ns. WINCKNN and WINDKNN do not have a train-

ing phase. The testing phase is linear in |X|, |Y |, and w, but the is quadratic in

L (= O(|X||Y |L2w)). The testing time for WINCKNN and WINDKNN can be

improved by using indexing strategies that have been proposed for discord detection

[101, 100, 62, 27]. The training time for tSTIDE is linear in |X|, L, and the window

length w, while testing is also linear in |Y |, |L| and w.
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Figure 7.5: Results for Predictive Techniques. “•” indicates the baseline accuracy for
each data set.

7.4.3 Predictive Techniques

For the predictive techniques the critical parameter is the size of the history used to

obtain the forecast at a given time instance. For notational simplicity, we will consider

the size of history equivalent to the window length parameter for window based tech-

niques and denote it with w. The results for the predictive techniques are summarized

in Figures 7.5. The results of AR were poor across all data sets, and hence are not

shown.

SV R requires additional parameters for the support vector regression, such as the

tradeoff between training error and margin (C), the width of tube for regression (ǫ),

choice of kernel, and kernel parameters. We used default values for C. We experimented

with different kernels and reported best performance with the RBF kernel with γ =

1.00. The optimal value for ǫ is related to the presence of noise in the training time

series. If the normal time series are noisy (e.g., l-ecg), a higher value of ǫ ≈ 0.4 gave

best results, while if the normal time series is less noisy (e.g., motor), a lower value

of ǫ ≈ 0.05 gave best results. The reason being that a small value of ǫ results in a

tight regression tube and if a normal time series is noisy, several observations may be

considered anomalous, resulting in a high false positive rate. Whereas, a large value

of ǫ results in a relaxed regression tube, which may result in several truly anomalous

observations to be missed.

SV R technique performs better for low value of w. Results for lower values of w < 10

also gave similar performance as w = 10. The reason being that for longer history, SV R

cannot learn an accurate regression model. The results for data with shorter time series,
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such as s-ecg, are promising, though a more thorough investigation of the parameter

space is required for more accurate insights.

The performance of FSAz and SV R exhibit complementarity. For the longer data

sets (e.g., l-ecg and valve), FSAz outperforms SV R, while for shorter data sets (e.g.,

s-ecg), SV R is better. The reason is that the discretization reduces the noise in the

data, and hence FSAz is able to learn a more accurate predictive model than SV R.

In general, SV R and FSAz do not perform as well on most data sets as KNNC

and WINCSV M . This indicates that for continuous time series as well as the discretized

sequences, learning an accurate predictive model for anomaly detection is challenging.

The training time for

SV R

can at worst be O(|X|3L3), but is typically O(Nsw|X|L), if the number of support

vectors, Ns, is very few. Testing for

SV R

is linear in |Y |, L, w, and Ns. For FSAz, both training and testing phases are linear

in |X| (and |Y |), L, and w.

7.4.4 Segmentation Based Technique - BOX

For the BOX technique, we experimented with different number of boxes, k.
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Figure 7.6: Results for BOX Technique. “•” indicates the baseline accuracy for each
data set.

The results are summarized in Figure 7.4.4. The performance of BOX is highly

sensitive to the parameter k and gives best performance for k = 2 or 3. BOX is outper-

formed by KNNC and WINCSV M for most data sets. The original paper for BOX
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Figure 7.7: Average performance for all techniques for best performing parameter set-
ting.

[32], evaluated the technique on the valve data set, but we found that other techniques

(KNND and FSAz) outperformed BOX on this data set. Also, the performance of

BOX is best for k = 20 on valve data set, which was also reported as the best value by

Chan et al, while for most of the other data sets, the best performance was obtained for

k = 2. For the BOX technique, training phase is linear in |X| but has cubic complexity

in L, (= O(L3)). The testing phase is linear in |Y | and L.

7.5 Discussions and Conclusions

The average accuracies for all techniques across all 19 data sets are shown in Figure

7.7(a). For each technique we also show the average running time (training + testing),

across all data sets in Figure 7.7(b). The results reveal several interesting insights into

the performance of the different techniques. At a high level, our results indicate that

none of the techniques are superior to others across all data sets, but have certain

characteristics that make them effective for certain types of data sets, and ineffective

for certain others.

Here we summarize some high level conclusions:

• Techniques that operate on the continuous time series are generally superior to tech-

niques that operate on discrete sequences. Moreover, techniques for continuous time

series are more robust to parameters such as distance measure (KNNC vs. KNND)

or window length (WINCKNN vs. WINDKNN).
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• For the window based techniques, using one class SVMs (with RBF kernel) to esti-

mate the density of the windows is more effective than using a nearest neighbor based

approach (WINCSV M vs. WINCKNN).

• Overall, kernel and window based techniques, which are model independent, tend to

outperform predictive and segmentation based techniques, that try to build a model

for the time series data. This seems to indicate that building an AR or SVR model for

time series data is challenging. This is interesting, given that for symbolic sequences,

it has been shown that similar predictive techniques and kernel based techniques have

comparable performance [38].

• For kernel based techniques, the choice of distance or similarity measure is critical,

and for window based techniques, the choice of window length is critical. Kernel based

techniques are faster than window based techniques, though indexing techniques, that

were originally proposed to improve the time complexity of discord detection techniques

[101, 100, 62, 27], can be employed for WINCKNN and WINDKNN to make them

faster. If online anomaly detection is desired, techniques such as KNNC and KNND,

which require the knowledge of entire test time series are not suitable, while window

based and predictive techniques can be adapted to operate in an online setting.

• For periodic time series data, window based techniques perform superior to other

techniques, e.g., WINCSV M for l-ecg. The reason being that if the training time series

are periodic, they can be represented using a small set of windows which form dense

regions in the w dimensional space. Thus one class SVMs (as well as nearest neighbor

based density estimation), can learn a tight boundary around the dense regions, and

can differentiate well between the windows from a normal test time series and those

from an anomalous time series. On the other hand, for non-periodic time series data,

a larger set of windows is required to represent the training time series, and hence the

windows form sparse regions in the w dimensional space. Thus the decision surface

learnt by the one class SVMs is not discriminatory enough. This results in relatively

poor performance for WINCSV M compared to other techniques on non-periodic time

series data, e.g., shape2.

• If the time series data contains process anomalies, kernel based techniques give best



121

performance, e.g., KNND for shape2, while the performance is poor if the time series

data contains subsequence anomalies, e.g., KNNC for l-ecg. The reason is that the

kernel based techniques assume that the anomalous test time series are significantly

different from the normal time series, which is true for data with process anomalies,

but not for data with subsequence anomalies. For the latter type of data, window

based and predictive techniques are better suited since they analyze windows within

the time series and are more likely to detect the anomalous subsequences.

• We learnt several relationships between the nature of the normal and anomalous data

and the performance of different techniques. For example, KNNC with DTW measure

is suited for non-periodic time series while WINCSV M is more suited for periodic time

series. WINCSV M performs poorly for data sets in which the normal time series

belong to multiple modes (e.g., shape2), while KNNC and KNND are better suited

to handle such data sets.

The experimental evaluation indicates that the performance of each technique on a

data set relies on the parameter settings, and in many cases we observe that different

settings are optimal for different types of data sets. While we investigated many combi-

nations of parameters, exhaustive testing could not be done due to the large parameter

space. The ultimate aim of this study is to be able to choose the best technique for

a given data set. Our study is a step in this direction. For some techniques such as

WINCSV M we have discussed the relationship between the parameters and the nature

of data. For a better understanding of the problem, a richer collection of data sets, as

well as deeper understanding of the algorithms and the generative processes for the time

series data, is required. Most of the periodic time series data sets used in this chapter

have a single dominant frequency in the time series. For such data, certain techniques

like WINCSV M are well suited. It needs to be investigated in future if the performance

of different techniques varies when the time series are aggregates of multiple frequencies.

While we have shown how anomalies in time series data can be detected in a num-

ber of ways, this is not an exhaustive set of possibilities. Time series data has also

been widely studied in contexts other than anomaly detection, in research communities

such as signal processing and statistics, though not directly in the context of anomaly

detection problem. Some of this research has been, to a limited extent, and can be,
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in future, adapted to solve the anomaly detection problem. For example, signal pro-

cessing techniques such as fourier analysis can be used to transform time series data

into frequency domain, and perform anomaly detection in the frequency domain. Chen

and Zhan [193] employ wavelets to extract features from time series data and perform

anomaly detection on the extracted features. Similarly, several statistical models time

series data have been widely researched in the statistics community. In this chapter, we

have used two models, viz, auto-regression and support vector regression, for anomaly

detection and shown that such models were not able to capture the normal behavior of

the time series data.. In future, other sophisticated models, such as Gaussian Process

Regression, etc., can be adapted in a similar fashion.



Chapter 8

Anomaly Detection for

Multivariate Time Series Data

Multivariate time series data is relevant in many application domains in which data

is naturally collected as multivariate time series. For example, a single aircraft flight

generates a multivariate time series where each individual time series corresponds to

data coming from a single sensor or switch on the aircraft [165]. Similarly, in the case of

network intrusion detection, a daily network log is a multivariate time series such that

each variable measures certain aspect of the time series [91].

Anomaly detection for multivariate time series data is distinct from traditional

anomaly detection techniques for multivariate data as well as for univariate time se-

ries data. This is because while the former only analyze the multivariate aspect of the

data, the latter only analyze the sequence aspect for individual variables. Often, the

anomaly in a multivariate time series can be detected only by analyzing sequence of all

(or a subset of) variables.

For example, Figure 8.1 shows an example of an anomaly in a multivariate time

series. Figure 8.1(a) shows an artificially generated time series with 5 attributes. Fig-

ure 8.1(b) shows a similar multivariate time series with artificially induced anomalies

between time points 40 and 50. It is not possible to differentiate between the normal

and anomalous time series by analyzing the five univariate time series individually using

123
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the techniques available for univariate sequence data, or by analyzing the five dimen-

sional observations independently, using traditional anomaly detection techniques for

multivariate (non-sequence) data. To detect such anomalies in multivariate sequences,

multivariate aspect as well as the sequence aspect needs to be simultaneously modeled.

In this chapter we present a novel anomaly detection technique, WINSS to solve

the semi-supervised anomaly detection problem (See Chapter 3) for multivariate time

series data. The proposed technique is a window based technique that accounts for

both multivariate as well as sequence aspect of the data while detecting anomalies. The

key underlying idea is to reduce a multivariate time series into a univariate time series

by exploring the change in the correlation structure of the time series using subspace

monitoring.

The rest of this chapter is organized as follows. We discuss the concept of sub-

space monitoring for multivariate time series in Section 8.1. We present a window

based anomaly detection technique for multivariate time series using subspace moni-

toring, WINSS, in Section 8.2. The multivariate time series data used for evaluation

is described in Section 8.3. The experimental evaluation of the proposed technique is

provided in Section 8.4.

8.1 Subspace Monitoring for Multivariate Time Series

A vast literature exists for subspace monitoring for damage detection and other areas

falling under the broad purview of statistical process control [14, 98]. The original

concept of comparing two subspaces using the angles between their principal components

was proposed by Jordan et al [95] in the 19th century and was explained as canonical

correlation by Hotelling [88].

Let A ∈ ℜm×p and B ∈ ℜm×q be the matrices of orthogonal basis vectors for two

subspaces, SA and SB , respectively, of an original m × m vector space. Let q ≤ p. The
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Figure 8.1: Anomaly in a Multivariate Time Series
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q principal angles between the two subspaces, θk, 1 ≤ k ≤ q, are defined as:

cos θ1 = max
x∈ℜp

y∈ℜq

|xT AT By|
||Ax||2||By||2

=
|xT

1 AT By1|
||Ax1||2||By1||2

(8.1)

cos θk = max
x∈ℜp

y∈ℜq

|xT AT By|
||Ax||2||By||2

=
|xT

k AT Byk|
||Axk||2||Byk||2

(8.2)

subject to xT
i AT Ax = 0 and yT

i BTBy = 0, for i = 1, 2, . . . , k − 1

Axk ∈ range(A) and Byk ∈ range(B) denote the kth principal directions. Note that

the principal angles satisfy 0 ≤ θ1 ≤ . . . ≤ θq ≤ π
2 . The ordered list of principal angles

between subspaces SA and SB is also denoted as:

(θ1, θ2, . . . , θq) = [A∢B] (8.3)

Golub et al [73] have shown using Lagrange Multiplier formulation that the principal

angles and the directions between a pair of subspaces can be solved as the following

generalized eigenvalue problem:
(

0 AT B

BTA 0

)(

x

y

)

=

(

AT A 0

0 BT B

)(

x

y

)

λ (8.4)

subject to xT AT Ax = 1 and yT BT By = 1

Let the eigenvalues obtained from the problem in (8.4) be λ1, λ2, . . . , λp+q and

λ1 ≥ λ2 ≥ . . . ≥ λp+q.

Then it has been shown that:

cos θ1 = λ1, . . . , cos θq = λq (8.5)

Further, the squared cosines of the principal angles can also be shown to be equal to

the eigenvalues of the matrix (AAT )−1ABT (BBT )−1BAT .

The corresponding principal directions Axk and Byk are obtained using the kth

eigenvector corresponding to λk. Though the generalized eigenvalue approach can be

used to compute the principal angles, numerical approaches using Singular Value De-

composition (SVD) have been proposed to obtain the principal angles [73].

The comparison of the subspaces has been used for indirect comparison of multivari-

ate time series by comparing their generative models, such as vector AR models [47],

ARMA models [23], and linear dynamical systems [14].
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Measuring Change Between a Pair of Subspaces

The principal angles between a pair of subspaces can be computed using (8.4) and (8.5).

For the anomaly detection technique proposed in this chapter, it is sufficient to measure

the change between two subspaces, SA and SB, which is defined as the following [98]:

Change in subspace when SA changes to subspace B is equal to the maximum distance

between an arbitrary unit vector x̂ in SB and the subspace SA. This change δAB is given

as:

δAB =
√

1 − λmin (8.6)

where λmin is the minimum eigen value of BT (AAT )B. A and B are the m-dimensional

basis vectors of subspaces A and B, respectively. For proof see [98].

8.2 Anomaly Detection for Multivariate Time Series Us-

ing Subspace Monitoring

We propose a novel anomaly detection techniques, WINSS which consists of two steps.

In the first step each training and test multivariate time series is converted into a

univariate time series. In the second step, an existing anomaly detection technique for

univariate time series (see Chapter 7) is applied on the converted univariate data to

detect anomalies.

8.2.1 Converting A Multivariate Time Series to Univariate Time Se-

ries

Let S ∈ ℜ|S|×m be a multivariate time series of length |T and consisting of m variables.

Let a w length window of S starting at time t be denoted as Wt = S[t]S[t+1] . . . S[t+

w − 1]. Thus we can extract T − w + 1 such windows from S. Consider two successive

windows Wt,Wt+1 ∈ ℜw×m. Let Vt denote the subspace spanned by the top few1

principal components of Wt. Similarly Vt+1 denote the subspace spanned by the top few

principal components of Wt+1. Note that Wt and Wt+1 can have different number of

basis vectors. The change between the two successive subspaces, δt,t+1 can be defined

1Capturing α% of the total variance.
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|Y|
Name L d |X| |YN| |YA| λ

CMAPSS 4122 30 25 16 4 0.20
EEG 256 64 100 200 50 0.20

Table 8.1: Details of different multivariate time series data sets used in the experiments.
# - number of data sets in each group, L - length of sequences, d - number of variables, X
- Training database, Y - Test database, YN - Normal test time series, YA - Anomalous
test time series, λ - Baseline Accuracy.

using (8.6) as:

δt,t+1 =
√

1 − λmin (8.7)

where λmin is the minimum eigenvalue of the matrix V T
t Vt−1V

T
t−1Vt. Thus the multi-

variate time series S can be transformed into a univariate time series δ1,2δ2,3 . . ..

8.2.2 Detecting Anomalies in Converted Data

The transformed univariate time series captures the dynamics of the subspace structure

of a multivariate time series, such that the normal time series are expected to follow

similar dynamics, while anomalous time series are different. We use WINCSV M to

detect anomalies in the transformed univariate test data set.

8.3 Data Sets Used

To evaluate the performance of the proposed WINSS technique, we use artifically gen-

erated time series data and two publicly available multivariate time series data sets from

the domains of aircraft safety and neurosciences. The details of the public data sets are

summarized in Table 8.1.

8.3.1 Artificial Data

To generate the normal time series (Figure 8.1), we first generate four independently

generated univariate time series using a first order autoregressive model of length 100.

Let the four time series be denoted by x1,x2,x3,x4. Let ∆n = 0 denote a 100 length

vector of all zeros. We use the following mixing matrix M to generate a 5 dimensional
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multivariate time series:

M =



















1 0 0 0 1

0 1 0 0 1

0 0 1 0 1

0 0 0 1 1

1 −1 0 0 1



















The normal multivariate time series N is generated as follows:

N = [x1 x2 x3 x4 ∆n]M

To generate the anomalous time series (Figure 8.1) we use ∆a as a 100 length vector

with all zeros except for ∆a [41] = ∆a [42] = . . . = ∆a [50] = 1. The anomalous time

series A is generated as follows:

A = [x1 x2 x3 x4 ∆a]M

8.3.2 CMAPSS Data

The first data set is an aircraft simulation data set, available from the NASA Dash-

Link Archive [164]. This data set was generated with the Commercial Modular Aero-

Propulsion System Simulation (CMAPSS) simulator which is a tool for the simulation

of realistic large commercial turbofan engine data. The flights are full flight recordings

sampled at 1 Hz and consist of 30 engine and flight condition parameters. Flights are

of different lengths. The parameters for each flight are the flight conditions, health

indicators, measurement temperatures and pressure measurements.

Each normal flight corresponds to a combination of a series of flight conditions,

arranged to cover a typical ascent from sea level to 35K ft and descent back down to sea

level. For each anomalous flight, a fault is injected during the flight at a given time. For

two anomalous flights, the fault is intermittent, i.e., the flight resumes normal operation

after fault, while for the other two flights, the fault is persistent, i.e., the flight remains

in faulty state after the first occurrence of the fault.

8.3.3 EEG Data

The second data set consists of Electroencephalogram (EEG) signals captured from a

set of individuals as a response to a visual stimuli [16]. Each time series consists of 64
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variables which correspond to the readings from 64 electrodes placed on the scalp of the

individuals.

The normal multivariate time series correspond to control or healthy individuals,

while the anomalous time series correspond to individuals under alcoholic influence.

8.4 Experimental Results

In this section we provide two sets of experimental results for the proposed WINSS

technique. First set of results are on the artificially generated multivariate time series

shown in Figure 8.1. The second set of results are on the publicly available data sets.

For comparison, we also provide results for following two techniques:

1. k-nearest neighbor technique for multivariate data (kNN). This technique

ignores the sequential aspect of the data. The training and test data set is treated

as sets of multivariate observations. Each test observation is assigned an anomaly

score as distance to its kth nearest neighbor in the training set. The anomaly

score of a test time series is equal to the average anomaly score of the individual

observations.

2. Window based technique for univariate time series (WINCSV M ). This

technique aignores the multivariate aspect of the data. A univariate time series

data set (training and testing) is constructed for each variable. Each univariate

test time series is assigned an anomaly score using the WINCSV M technique (See

Chapter 7). The anomaly score of a multivariate test time series is equal to the

average anomaly score of the individual univariate time series.

For all three techniques we experimented with different parameter settings are report

the results for the best setting here. For WINSS the different parameters are: window

length, w and the percentage of total variance captured by a subspace, α. Experimental

results indicate that WINSS performs best for windows size w ≈ 10. The performance

is not sensitive to the choice of α for 0.85 ≤ α ≤ 0.95. For α > 0.95, the successive

subspaces for normal windows become unstable and hence result in a high false alarm

rate. For α < 0.85, the successive subspaces for anomalous windows do not differ

significantly and hence result in a low detection rate.
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8.4.1 Illustration on Artificial Data Set

To illustrate how WINSS detects anomalies in a multivariate time series, we use the

artificially generated multivariate time series shown in Figure 8.1. The univariate time

series obtained by applying the WINSS transformation on the normal and anomalous

time series are shown in Figure 8.2.
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(b) Transformed Anomalous Time Series

Figure 8.2: Univariate Time Series Obtained using WINSS on Artificial Data Sets

Figure 8.2 shows that WINSS assigns a high value to start and end of the anomalous

region for the anomalous time series. For the normal time series, the transformed

univariate time series is constant since there is no change in the underlying subspace,

while for the anomalous time series, the subspace changes abruptly when an anomaly

is injected as well as when the anomalous region ends.

8.4.2 Comparing With State of Art

We compared the performance of WINSS against the two adapted state of the art

techniques, kNN and WINCSV M on the public data sets using the two evaluation
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metrics, Accuracy and AUC. The results for accuracy (or precision on anomaly class)

and AUC are shown in Table 8.2.

(a) Accuracy

WINSS kNN WINCSV M

CMAPSS 0.75 0.50 0.50
EEG 0.66 0.17 0.43

(b) AUC

WINSS kNN WINCSV M

CMAPSS 0.92 0.81 0.81
EEG 0.87 0.72 0.51

Table 8.2: Results on public multivariate time series data.

The results show that WINSS is more effective than kNN and WINCSV M in

detecting anomalies in multivariate time series data. For the CMAPSS data, WINSS

detects 3 out of 4 anomalies with top anomaly scores while the other two techniques

detect only 2 out of 4. All the three techniques are able to detect those flights as

anomalous for which had persistent faults. Only WINSS was able to detect a fight

with intermittent fault as anomalous. For EEG data, the performance of kNN is worse

than random, since the anomaly is apparent only as a sequence. The performance of

WINCSV M is better on EEG, but is still outperformed by WINSS.

8.5 Conclusions and Future Work

In this chapter we proposed a novel anomaly detection technique to detect anomalies in

multivariate time series data. The proposed technique models both sequential as well as

multivariate aspect of the data and hence can detect anomalies that cannot be detected

by analyzing only one of the two aspects.

We use the concept of subspace monitoring to capture the dynamics of a multivariate

time series. While similar idea has been applied for change detection in such data [14],

we use the concept to detect anomalies under the general assumption that the dynamics

for normal time series is similar to each other and is significantly different for anomalous

time series.

After converting a multivariate time series into univariate time series, any anomaly

detection technique discussed in Chapter 7 can be applied to detect anomalies. We

provide results when using WINCSV M . Other techniques also gave similar results.

A critical aspect of the proposed technique is the computation of eigen vectors for

the moving window which could become a computational bottleneck, especially when
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the dimensionality and length of the time series becomes large. A potential solution is

to update the eigen vectors for sucessive windows incrementally using techniques such as

Matrix Perturbation [167] to avoid computation of the eigen vectors for every window,

and is suggested as a future direction of research.



Chapter 9

Conclusions

The existing research on anomaly detection for sequences is limited to developing tech-

niques that are suitable for specific application domains. In this thesis we advance the

research to the level, where we not only propose new and better techniques but also

understand the performance of the techniques across different domains. Each applica-

tion domain possesses unique characteristics in terms of the data on which the anomaly

detection techniques operate. Our study reveals that the performance of the anomaly

detection techniques is closely tied to the nature of the underlying data, and hence the

techniques exhibit varying performance across application domains. The results of our

experimental studies for symbolic sequences and time series data can help a domain

scientist find the technique which is best suited for an application domain,

The question that arises from experimental studies is that why certain techniques

that perform well on data from one domain, do not perform as well on data from

another domain. We answer this question by studying the different characteristics of

sequence data and connecting the performance of the anomaly detection techniques to

these data characteristics. The RBA framework is a simple, yet powerful tool to analyze

and characterize data and understand the performance of different anomaly detection

techniques.

An additional use of RBA framework is that the dimensions, into which the original

data is mapped, can be utilized as features that can be used to develop better anomaly

detection techniques. Since each dimension in RBA is actually utilized by one or more

anomaly detection techniques, the new technique, which uses the RBA features, is

134
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like a meta anomaly detection technique, which combines the strengths of different

existing techniques. But since RBA uses a small canonical set of dimensions (separability

statistics), one can arguably achieve better than the existing best performance on a given

data sets without having to run the several existing techniques.

In future, RBA can be extended in multiple ways. One is to extend RBA to other

types of data, such as time series. For this, one needs to devise a set of separability

statistics that can be used to characterize time series data sets. The second way is

to enhance the set of separability statistics for a given type of data, to achieve better

visualization as well as better features for anomaly detection. The third way is to im-

prove the RBA feature based anomaly detection techniques by finding the best possible,

linear or non-linear, combination of the RBA features which can distinguish between

the normal and anomalous data .

In this thesis, we propose several novel anomaly detection techniques for symbolic

sequences, univariate time series data, and multivariate time series data. All of our

techniques share a common theme of window based analysis. Window based techniques

are effective for anomaly detection in sequences due to two reasons. First, by sliding

a window across a sequence, these techniques account for the sequential nature for the

data. Second, by analyzing a subsequence of observations as a single unit of analysis,

one can detect collective anomalies which cannot be detected by analyzing an individual

observation independently. But window based techniques have an issue of redundancy,

since successive windows, often, are highly similar to each other and do not provide any

additional information. Removing this redundancy can speed up the performance of

the technique and also, possibly, improve results. This aspect of redundancy needs to

be understood and is suggested as a future direction of research.

In this thesis, we propose novel anomaly detection techniques for multivariate time

series data, which is a relatively lesser explored topic. Same principle can be applied

for handling multivariate heterogenous data, or multivariate discrete data. The only

requirement is to design a measure to compare two successive windows, and is suggested

as a future direction of research.
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