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Abstract 

For the class of single-index models, I construct a semiparametric estimator of coefficients 

up to a multiplicative constant that exhibits 1/ v'n-consistency and asymptotic normality. This 

class of models includes censored and truncated Tobit models, binary choice models, and dura­

tion models with unobserved individual heterogeneity and random censoring. I also investigate 

a weighting scheme that achieves the semi parametric efficiency bound. 

·1 thank Professors Daniel McFadden and James Powell fovadvice and Professor Charles Manski for encourage­

ment. I have benefited from many comments I received from Professors Jonathan Feinstein, Robert Gertner, Peter 

Hall, Lung-Fei Lee, Daniel McFadden, and Kazumitsu Nawata. The points lowe to them are indicated in the paper. 

I also received extensive editorial suggestions from Dr. Steven Herzenberg on a very early version and professional 

editorial help from Patricia Haswell on this version. I am grateful to all of these individuals. This paper supersedes 

three earlier papers, "Single Index Models and their Consistent Semi parametric Estimation" (October 1985), "Esti­

mation of Single Index Models" (September 1987) (Ph.D. thesis), and "Semi parametric Least Squares Estimation of 

Single Index Models" (August 1988). 
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1 Introduction 

In this paper I define a new semi parametric least squares (SLS) estimator for the single-index model, 

establish its 1/ yin-consistency and asymptotic normality, where n here refers to the sample size, 

and present a consistent estimator of the covariance matrix. I also study a weighted SLS (WSLS) 

estimator and show that it achieves the semiparametric efficiency bound obtained by Newey (1990) 

for the single-index model.1 

We say that a probabilistic model is semiparametric if an index parameterizing the distribution 

consists of two parts, say (J and '1, where (J lies in a finite-dimensional space 0 and '1 lies in an 

infinite-dimensional space r. 
Let «(Jo, '10) E 0 x r be the true value of the parameter in the model. We call an estimator of (Jo 

semi parametric if the model is semiparametric and the definition of the estimator does not involve 

knowledge of '10. We call a model and an estimation method parametric if the model specifies '10 

and thus restricts the distribution to a finite-dimensional space. 

For example, the regression model 

y = x'/3o + f, 

with E( fix) = 0 and independent and identically distributed (i.i.d.) sampling, is semiparametric, 

for /30 corresponds to (Jo and the joint distribution of x and f corresponds to '10. An example of a 

semiparametric estimator is the ordinary least squares estimator. 

The regression model has played a prominent role in econometric analysis. Careful inspections 

of economic problems, however, have revealed limitations of the regression model and induced 

efforts to overcome the inadequacies of the basic model. 2 Recognition of the simultaneous equation 

problem, nonnegativity restrictions, probabilistic choices, disequilibria in markets, the selectivity 

bias problem, and the time-dependence of economic decisions led to the construction of more 

appropriate econometric models.3 All of these models were initially specified as parametric models.4 

IThe optimal weighting scheme involves knowing the conditional variance of y given x and hence is infeasible. In 

this paper I do not investigate the use of estimated weights. 

2 A statistical problem with the least squares estimator, nonrobustness, lead Koenker and Basset (1978) to study 

the least absolute deviation estimator. 

3Some of these models had more impact on empirical studies than others. 

4To be precise, they are specified as parametric models up to an ancillary parameter, such as the marginal 

distribution of exogenous regressors. 
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For the simultaneous equation model, Theil (1953a, b) and Basmann (1957) developed a semi­

parametric estimator, the two-stage least squares method. Analogous development has been on­

going for other models since Manski (1975) initiated research in semiparametric estimation for the 

discrete choice model. 

Some of the models mentioned above are single-index models (see section 2). Under some 

regularity conditions, the SLS estimator for single-index models is consistent with rate 1/ vn, the 

typical rate achieved by parametric estimators under LLd. sampling. The 1/ Vn convergence rate of 

the SLS estimator implies that the estimator is not infinitely inefficient compared with conventional 

parametric approaches even though the model is not restricted within a finite-dimensional space, 

as it is for the parametric maximum likelihood (ML) estimation method. I call the estimator 

semiparametric least squares because the objective function resembles that of the nonlinear least 

squares (NLS) estimator. 

In the next section, I define the single-index model, and show that it includes censored Tobit 

models, binary choice models, and duration models, among others. Section 3 gives a geometric 

motivation for the proposed estimator. In the fourth section, I formally define the SLS estimator, 

discuss the identification of the parameters of the model, and show that under some regularity 

conditions, the estimation technique identifies the true parameters up to a multiplicative constant 

in the linear single-index model. Section 5 provides proofs of consistency and asymptotic normality 

of the SLS and the WSLS estimators. The section 6 addresses some efficiency issues, and the section 

7 presents a consistent estimator for the covariance matrix. The section 8 investigates the small­

sample properties of the SLS estimator by analyzing a Monte Carlo experiment. The final section 

discusses some directions for future research. 

2 Single-Index Models 

Let L, M, and n be positive integers and let n denote the sample size. 

DEFINITION 2.1 (Single-Index Models) The model 

Yi = c.p(h(Xi; ( 0 )) + fi for i = 1, ... , n, 

where 
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(1) (x~, Yi) for i = 1, ... , n is an U.d. sample; 

(2) Yi E R and Xi E RL are observed, (i E R is an unobserved disturbance, and 80 E RM is an 

unknown parameter to be estimated; 

(4) the function h : X X e -+ R for some X x e c RL X RM is known up to a parameter 8; and 

(5) the function <p: R -+ R is not known 

is a single-index model. 

The single-index model is semi parametric for two reasons: first, the function <p : R -+ R is 

not known and second, the conditional probability of ( conditioned on x is not specified except 

for E( (Ix) = o. If the function <p is known, then it is well known that the least squares method 

consistently estimates 80 under some general conditions. Thus the lack of knowledge of <p makes 

the estimation of 80 nontrivial. 

Brillinger (1983) first proposed studying limited dependent variable models within this frame­

work. He calls this model a generalized linear model, for he considers a case where hex; 8) = x'8. 

Since a class of models with the same name already exists in a different context (for example, 

see McCullagh and NeIder (1983)), we refer to this class as single-index models, following Stoker 

(1986). 

A.s an illustration of a single-index model, consider the following latent dependent variable 

model. In this model we do not observe y* but y, which is a transformation of y*. Formally, 

{ 

y* = h(x;80 ) + v 

y = r(y*). 

We assume that x and v are independentS and that the sampling of (x', y) is i.i.d. Furthermore, 

we assume that x E RL and 80 E RM. 

The function r : R -+ R mayor may not be known. If the function r : R -+ R takes the form 

{ 

s if s > 0 
res) = 

o if s ::; 0, 

!lIn general, the distribution of" can depend on h(x;9o). 
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then the censored Tobit model results. If the function r : R -+ R takes the form 

{

l ifs>O 
res) = 

o if s :5 0, 

then the binary choice model results. In both cases the transformation function r is known but 

E(ylx) is not known unless the distribution of the error term is specified. Knowing the transfor­

mation function r alone does not allow least squares estimation. 

The reduced form has the form of a single-index model, as the following calculation shows: 

1
+00 

E(ylx) = -00 r(h(x;80 ) + v)dFv, 

where Fv is the distribution function of the random variable v. By defining ( to be the difference 

between the observable y and the conditional expectation, or 

(= Y - E(ylx), 

we can transform this class of latent variable models into the single-index model defined in Defini­

tion 2.1. 

Applications of single-index models are not restricted to censored Tobit models and binary 

choice models. Since the transformation function r is completely unspecified, single-index models 

can also be regarded as an alternative to the errors-in-variable formulation of regression models. 

For example,6 suppose y* is unobserved true profit of a firm and we observe only reported profit y. 

We could assume that reported profit is true profit plus an error term. This is the errors-in-variable 

formulation. An alternative is to use the model y = r(y*). With this modeling strategy, we allow 

reported profit to differ systematically from true profit and yet we are able to consistently estimate 

the relative determinants of firm profitability. 

Another model that can be regarded as a single-index model is the truncated Tobit model. 

Here, unlike in censored Tobit models, we do not observe x when the corresponding dependent 

variable y is censored. Let leA) be a function that takes value 1 when a logical statement A is true 

and value 0 when A is false. When the logical statement is indexed by i and no confusion ensues, 

l(Ai) will be abbreviated as Ii. Then, truncated Tobit models can be written as 

y = hex; (0 ) + u, 

81 thank Professor Robert Gertner for suggesting this example. 
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where u has density 

J(u> -h(x;Bo»Fv(du)[1- Fv(-h(x;Bo)))-l. 

Therefore, E(ylx) equals 

h(x;Bo) + 100 

uFv(du)[1- Fv(-h(x;Bo»t1 

-h(x;6o) 

and has the form c,o(h(x; Bo». 

The class of single-index models also includes duration models as a special case if (1) censoring 

is random, (2) exogenous variables are time-independent, and (3) individual heterogeneity is inde­

pendent of exogenous variables. To see this, let the conditional density function of a duration spell 

t and the unobserved heterogeneity a given x without censoring be 

f(t,a) = h(tjh(xj(}o))h(a), 

where h(a) denotes a density for individual heterogeneity. Let fe be the density for censoring. 

Then the density function of a duration spell t with random censoring is 

feet) - fc(t) {too h(s, hex; Bo»ds + [1 - Fc(t)]h(t, hex; Bo)), 

where Fe denotes the distribution function of the censoring point. Therefore the conditional 

expectation of the duration spell conditioned on the regressors has the form c,o(h(x; Bo)) as desired. 

Because single-index models abstract from the specific structures of each model, they do not 

take advantage of particular restrictions within each model other than those already exploited by 

the formulation of the single-index model. For binary choice models, the unknown function c,o is 

the cumulative distribution function. Thus it is a nondecreasing function with range between 0 and 

1. For censored Tobit models, 

l
h(X;6o) 

c,o(h(x; Bo)) = -00 Fv(s)ds, 

and thus c,o is a non decreasing function that is an integral of the cumulative distribution function 

of the error term. Nevertheless, in the single-index framework, both functions are specified only 

as measurable functions with some finite moments. We shall see that the abstraction results in 

a loss in identification for some models in the single-index class. Typically, Tobit models allow 

identification of all parameters, and binary choice models allow identification of parameters up 

6 



to a multiplicative positive constant. In both cases we shall see that in the linear single-index 

model formulation, slope coefficients are identified only up to a multiplicative constant that is 

not necessarily positive. However, even in those cases analysis often simplifies considerably once 

unknown coefficients are estimated up to a scalar. SLS provides a convenient initial estimator in 

those cases. In other more complicated cases, such as the unknown transformation model or the 

duration model with unobserved heterogeneity, the single-index approach provides a convenient 

framework in which to consider estimation. 

3 Geometric Motivation for the SLS Estimation Method 

Recall the definition of the single-index model: 

Yi = cp(h(Xi; (0 )) + (i for i = 1, ••. , n. 

SLS estimation is based on the following three observations: 

(1) The variation in Y results from both the variation in h(x;90 ) and the variation in (. 

(2) Nevertheless, on the contour line h(x; (0 ) = c, where c is a given constant, the variability in 

Y results only from the variation in (. 

(3) Observation (2) does not necessarily hold on a contour line defined by h(x; 9) = c for 9 =I 90 • 

Along this contour line, the value of h( x; ( 0 ) changes and therefore the variability in y again 

results from the variation in both h(x; (0 ) and (. 

These three observations indicate a way to identify 90 • The conditional variance7 

Var[ylh(x;9) = c] = E{[Y - E[ylh(x;9) = c]F} 

measures the variability in yon the contour line h(x; 9) = c for each c. Therefore a sensible way to 

estimate 90 is to first construct a sample analog of 

E {W(x)[y - E[ylh(x;9)]F} 

7In this paper I use the conditional variance as a measure of variability, but that choice is not unique. One may 

be able to use other measures, such as absolute deviation, and derive other estimation methods. This possibility is 

pursued in Hall and Ichimura (1991). 
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as the objective function, where W : RL -+ R is a weighting function, and then find 8 that minimizes 

the objective function. 

4 The Estimator and the Identification Conditions 

The heuristic argument in the previous section suggests minimizing an objective function 

J(8) = E{[Y- E(Ylh(x;8))F} 

with respect to 8 to define an estimator of 80 • Since J(8) is unknown, it must be estimated in order 

to define a feasible estimator. 

If E[ylh(x;8)] is known, then a sample analog of J(8) is 

Since E[ylh(x; 8)] is not known, we replace it with a kernel estimator. (For discussion of the kernel 

estimator, see Parzen (1962), Nadaraja (1964), Watson (1964), and Prakasa Rao (1983).) Thus, 

we define the SLS estimator as follows: 

DEFINITION 4.1 (5LS Estimator) The SLS estimator minimizes the square root of 

where 

if 

and 

~ 2::#i yjI(xj E Xn)J( ([h(Xi; 8) - h(xj; 8)]/an) 
E(Xi' 8) = 2::#i I(xj E Xn)J( ([h(Xi; 8) - h(xj; 8)]/an) 

LI(Xj E Xn)J( ([h(Xi; 8) - h(xj; 8)]/an) :/; 0, 
#i 

~ {Ymax if Yi ~ (Ymax + Ymin)/2, 
E(Xi, 8) = 

Ymin otherwise, 

where Xn = {xllix - x'II ~ 2an [or some x' EX}, Ymax = maXi Yi, and Ymin = mini Yi; 
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(3) J( : R - R is a one-dimensional density function; and 

(4) an > 0 and an - O. 

When all the denominators of kernel regression estimators are 0, we assume that {) = o. 

Some remarks on this definition are in order. First, clearly any objective function that is strictly 

a monotonic transformation of In(fJ) defines the SLS estimator. The current version is convenient 

for proving consistency. 

Second, for each finite n, there is a positive probability that {) = O. As I show later, the 

probability goes to 0 if na~ - 00 and the density of h( Xj 8) is uniformly bounded and bounded 

away from 0 on X. 

Third, the trimming term I(x E X) is introduced to guarantee that the density of h(xj 8) is 

bounded away from o. This condition helps to establish uniform convergence of E(x,8) and its first 

and second derivatives to their respective limits in probability. These convergence results will be 

used to establish consistency and asymptotic normality of the estimator.8 

Fourth, E( x, 8) is defined as the usual kernel regression estimator using (x j, Yj) such that 

Xj E X n • Because Xn is taken to be a set that includes X in such a way that all boundary points 

in X are interior to X n , in a neighborhood of x, with probability approaching 1, there are data 

in all directions to take a local average. The construction helps to prove uniform convergence of 

E(x,8). We take a monotonically convergent sequence of sets {Xn}~l rather than a fixed set that 

includes X in oreder to reduce bias.9 This point is elaborated further in section 5. 

Fifth, the boundary conditions could be defined differently, but the current version makes the 

objective function lower-semicontinuous. 

Sixth, conceivably one could use any estimator of E[Ylh(xj8)] in place of a kernel estimator. 

There are at least two advantages to using a kernel estimator.10 First, the objective function is 

differentiable with probability approaching 1 if a differentiable kernel function is used. Second, 

when a kernel estimator is used, a derivative of the objective function converges to a derivative of 

the limiting function. 

81 thank Professor Lung-Fei Lee for pointing out the importance of the trimming in establishing asymptotic 

properties of the estimator. 

91 thank Professor Peter Hall for this idea. 

1°1 thank Professor Daniel McFadden for suggesting the use of a kernel estimator. 
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Lastly, if tp is known, minimizing 

1 n 

- ~]Yi - tp( h( Xij 0)) F 
n i=l 

yields an estimator that is 1/ In-consistent and asymptotically normal under some general condi­

tions. This is the NLS approach. One might be tempted to regard SLS as the same as NLS except 

that tp is replaced by its estimate, say [p. This is not the case. The estimator of 00 in SLS involves 

estimation of E[Ylh(xjO)] = E[tplh(xjO)] but does not involve estimation of tp. In general, the two 

functions tp(h(xjO)) and E[tplh(xjO)] are different. 

The single-index model does not preclude heteroskedasticity. To take heteroskedasticity into 

account, we define the WSLS estimator. 

DEFINITION 4.2 (WSLS Estimator) The WSLS estimator minimizes the square root of 

where 

if 

and 

LI(Xj E Xn)W(Xj)J(([h(XijO) - h(xjjO)]/an)"# 0, 
#i 

~ {Ymax if Yi ~ (Ymax + Ymin)/2, 
EW(Xi,O) = 

Ymin otherwise, 

where Xn = {xlllx - x'II ~ 2an for some x' EX}, Ymax = maxi Yi, and Ymin = mini Yi; 

(3) weights {W(xi)}f=l satisfy 0 < W(Xi) < W, for some constant W; 

(4) J( : R -+ R is a one-dimensional density function; and 

(5) an > 0 and an -+ O. 
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We assume that 0 = 0 when EW(Xi'O) = 0 for all i = 1, ... ,no 

Two remarks on the weighting scheme in this definition are in order. First, in the NLS frame­

work, heteroskedasticity is corrected by reweighting. That is, if <p(h(Xii 0)) is known, then the NLS 

weighting scheme is 

In this model the scheme W(Xi) = q-2(Xi), where q2(Xi) gives the conditional variance of Yi given 

Xi, is the optimal weights. Since in the single-index model <p(h(Xii 0)) is not known, we introduce 

weighting also in the kernel regression estimator (see also section 6). 

Second, because I treat W(Xi) as a known function in this paper, an optimal estimator is 

infeasible. Rather, the point of introducing a weighting scheme is theoretical: it is intended to 

clarify the roles played by weights that are different from the roles played by weights in NLS 

estimation problems. As we shall see in section 6, the semi parametric efficiency bound for the 

single-index model is not achieved if we use the NLS weighting scheme only. 

Clearly, as discussed in the previous section, the function 

J(O) = E{W(x)[y - E[Ylh(XiO)]J2} 

takes the minimum value E(W( X )(2) when 0 = 00 • For identification we should also ask whether 

00 is the only 0 that achieves the minimum value. This holds only under further assumptions. The 

general condition is that for all 0 i:- 00 there is a positive probability in X such that 

Since the condition involves an unknown function <p and the distribution of x given h( Xi 0), it is 

not immediately obvious whether the condition holds under some general conditions. I provide 

sufficient conditions for identification in the linear single-index model. 

The linear single-index model specifies 

where 0 = (01, ... ,OL)' and 0 E 0 C RL. 

We assume that the unknown function <p is smooth and not everywhere constant: 
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ASSUMPTION 4.1 The unknown function cp : R -+ R is (1) differentiable and (2) not constant on 

the support of x' Po. 

In the following analysis I make assumptions on regressors that are not necessary for usual 

regression analysis. To allow some of the regressors to be deterministically related to other re­

gressors, I denote xl, for f. = 1, ... , L, to be a function of the more fundamental regressors. That 

is, xl = xl(zt, ... , zL'), for f. = 1, ... , L, is a known function from RL' into R. I call xt, ... , xL 

nominal regressors and zl, ... , zL' underlying regressors. To simplify the exposition, we assume 

that the underlying regressors are all either continuous or discrete, but we could allow regressors 

to be mixtures of continuous and discrete types by restating the assumptions all conditional on the 

continuous parts of mixed regressors. 

Now we place some restrictions on nominal regressors that amount to placing joint restrictions 

on the functions xl : RL' -+ R for f. = 1, ... , L and the random variables zl, ... , zL'. We arrange 

regressors so that the first L1 nominal regressors, xl, . .. ,XLI, and the first L~ underlying regressors, 

zl, ... , zL~, have continuous marginal distributions. 

ASSUMPTION 4.2 (1) xl : R L ' -+ R for f. = 1, ... , L has a partial derivative almost everywhere 

in z with respect to all continuous underlying regressors zl' for f.' = 1, ... ,L~. 

(2) For discrete nominal regressors, axl(z)faz l ' = 0 forf. = L1 + 1, ... ,L, and f.' = 1, ... ,L~ 

almost everywhere in z. 

(3) For each f.', the set 

{( 1 Ll )'1 l a lfa l' Sl" ... 'Sl' Sl' = x z for some z E Z for each f. = 1, ... , L 1 } 

has positive measure with respect to z and that the intersection of their linear orthogonal 

sets is a singleton of a zero vector in RLl; that is, 

L~ n {(s1,,··· ,sF1 )'14 = axlfazl' for some z E Z for each f. = 1, ... , Ld.l = {O}, 
l'=l 

where Z is the support of z and A.l denotes the linear space that is orthogonal to a set A. 

(4) For each () E 0 there exists an open interval I and at least L - L1 + 1 constant vectors 

cl = (cL+1, ... ,ci)' forf. = 0, . .. ,L - L1 such that 

12 



(i) C1 - cO for l = 1, ... , L - L1 are linearly independent; 

(ii) I is included in the following set 

L-Ll n {tit = (Jtx 1(z) + ... + (h1x L1 (z) + (h1+1 CL+1 + ... + 8Lcl 
l=O 

for some z E Z(c1)}, 

where 

and 

(iii) c.p is not periodic on I; that is, ifc.p(t) = c.p(t + p) for all t E I, then p = o. 

Assumption 4.2(4) places restrictions on the size of the parameter space e and on the support 

of continuous nominal regressors. 

THEOREM 4.1 (Identification of Linear Single-Index Models) Let 

y = c.p(x'80 ) + £. 

be a linear singlfrindex model. 

(1) If there exists a continuous nominal regressor whose coefficient is not 0 and if Assumptions 

4.1 and 4.2(1-3) are satisfied, then tIle coefficients corresponding to all continuous nominal 

regressors are identified up to a scalar constant. 

(2) If furthermore Assumption 4.2(4) is satisfied, then .80 is identified up to a scalar constant. 

PROOF. 

Suppose 8* = (1,82, ... ,8L), E e minimizes the objective function E{W(x)[y- E(ylx'8*)F}. Since 

80 also minimizes the objective function, 

E{W(x)[y - E(ylx'80 W} = E{W(x)[y - E(ylx'8*W}. 

Since the left-hand side equals E[W( x )£2] and the right-hand side equals 

E[W(x )£2] + E{W(x )[c.p - E( c.plx'8*W}, 
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we have 

E{W(x)[<p - E(<plx'O*W} = o. 

Moreover W(x) > 0 implies 

<p(x'OO) = E(<plx'O*) a.e. in z. 

Let t = x'O*; then 

where "'It = Oot - 001 0;. Taking partial derivatives with respect to zl, .•• , zL~, we have for almost 

allz 

By Assumption 4.1, there is a positive probability that <p' '# O. Thus 

holds with positive probability. Assumption 4.3(3) then implies "'12 = ... = "'ILl = O. This completes 

the proof of part (1). 

Now we assume without loss of generality that the coefficients of the continuous random variables 

are proportional to the true coefficients; that is, 

(Oi, ... ,OlJ' = r(Oot, ... ,OOLI)' for some r,# O. 

<P(XlOOl + ... + xLOOL) = E(<plt) 

<p(t/r + (OOL I +l - 011+1/r)xLI+l + ... + (OOL - 01/r)xL). 

The last equality implies that the right-hand side is constant for all (XLI +1, ... ,xL) values. Then 

Assumption 4.2(4) implies that 
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• 
Note that if all regressors are discrete, then a special configuration of the discrete support is 

necessary in order to identify the parameter, as Example 4.1 shows. 

EXAMPLE 4.1 Consider a linear single-index model with L = 2; that is, 

(1) the support of x, X, consists of isolated points in R2, 

(2) infx,x'Ex IIx - x'II> 0, and 

(3) the set of slopes defined by joining any two points in X is not dense in R2, 

then there exists fO > 0 and TO ::j; ()02/()01 such that the u-algebra generated by x coincides with 

that generated by the sets 

{x E XI- fO < Xl + TOX2 < fO}. 

PROOF. 

By assumption (3) in the statement of the example, there exist TO and an open neighborhood of 

TO, U(TO), such that for any T in U(TO), there does not correspond any slope defined by connecting 

two points in X; that is, for each point x* = (xi, X2)' EX, defining 

Also, writing c = infx,x'Ex IIx - x'II and 

B(x*) = {(Xl, X2) E R21(Xl - xi? + (X2 - x;)2 < c2}, 

XnB(x*) = {(xi,xi)'}· 

Since the set A( x*) U B( x*) includes a rectangular set of the form 
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for some small but positive £0, we have the desired result. 

• 
As a direct corollary to this example, no r E U(ro) is distinguishable by SLS estimation from 

the slope of interest, 802/801 . Clearly, 802 /801 is not in U(ro) in general. Therefore we assume that 

there exists a continuous variable with a nonzero coefficient. 

Note, however, that if all regressors are discrete, then for each point in X, E(Ylx) can be 

estimated with rate 1/ viii, which is the usual convergence rate for parametric models. In that case, 

therefore, researchers might as well take a nonparametric approach rather than a semi parametric 

one. 

Assumption 4.1(1) is assumed for convenience. One could assume the existence of one-sided 

derivatives instead, at the cost of a longer proof. Without Assumption 4.1(2), clearly one cannot 

identify 80 • 

Assumptions 4.2(1) and 4.2(2) are regularity conditions. Assumption 4.2(3) excludes exact 

multicollinearity problems. Example 4.2 shows that the assumption is easy to check. 

EXAMPLE 4.2 Consider the same model as in Example 4.1 except that Xl = Z, X2 = z2, and z has 

support on the unit interval, [0,1]. Thus, in this example L = Ll = 2, L' = L~ = 1, and the set 

specified in Assumption 4.2(3) is {(l,z),lz E [0,1]}.L, which is {O} as required. 

Assumption 4.2(4) rules out the situation described by Examples 4.3 and 4.4.11 

EXAMPLE 4.3 Consider the same model as in Example 4.1 except that Xl has support on [0, ro], 

TO > 0, and X2 has discrete support {0,1}. Consider any T = 82/(h that is greater than TO. Then 

the line defined by Xl + TX2 intersects with the support of (Xl! X2)' at most once, and therefore 

conditioning on the line is the same as conditioning on (Xl, X2)'. That is, E(yl8lxl + 82X2) = 
cp(x180l + X2802) for all (81,82), such that 82/81> roo 

EXAMPLE 4.4 Consider the same model as in Example 4.3 except that now the parameter space is 

restricted to [0, TO] so that the problem raised in Example 4.3 is not an issue. Suppose cp is periodic 

witll periodicity p. Since the support of X2 is {O, 1}, it is easy to verify that 

111 thank Professors Jonathan Feinstein and Kazumitsu Nawata for the examples. 
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for all O2 /01 such that 

for any i = 1,2, .... 

5 Asymptotic Properties of the SLS and WSLS Estimators 

In this section I prove that the SLS and the WSLS estimators are consistent and asymptotically 

normal. Since WSLS includes SLS as a special case, we study the asymptotics of WSLS. 

We assume that (xi, yd for i = 1, ... , n are observed. 

ASSUMPTION 5.1 Observations (xi, Yi) for i = 1, ... , n are U.d. 

We introduce a parameter space 0. 

ASSUMPTION 5.2 0 is a subset of RM and is compact. Moreover, 00 is in the interior of0. 

Let a Lebesgue density of t = h(xjO) be J(tjO) and define 

~To(X) = {t E Rlt = h(xj 0) and x EX}. 

We also define a subset X of the support of x that satisfies that satisfies the following assumptions. 

ASSUMPTION 5.3 (1) X is compact. 

(2) infxex J(h(xjO)jO) > O. 

(3) J(tj 0) and E[Ylh(xj 0) = t] are three times continuously differentiable with respect to t, and 

the third derivatives satisfy Lipschitz conditions for all t E To(X) uniformly in 0 E 0. 

ASSUMPTION 5.4 The dependent variable y has the mth-order absolute moment, where m ;:: 2, 

and the conditional variance of y given x is uniformly bounded and bounded away from 0 on the 

subset X chosen in Assumption 5.3. 

ASSUMPTION 5.5 The function h(xj 0) satisfies a Lipschitz condition on X x 0. 

We allow kernel function ]( that satisfy the following assumptions. 
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ASSUMPTION 5.6 (1) ](s) is twice continuously differentiable, and the second derivative satisfies 

a Lipschitz condition. 

(2) J ](s)ds = 1. 

(3) J s](s)ds = O. 

(4) ](s) = 0 fors < -1 and s > 1. 

Note in particular that Assumption 5.6(1) implies boundedness and Lipschitz properties of ](s) 

and ]('(s). We place restrictions on the bandwidth sequence as we need them. 

Let Ew(x,O) be the probability limit of Ew(x,O). The consistency proof reduces to showing 

uniform convergence of the kernel regression estimator, and thus the following lemma (proven in 

the Appendix) is useful. 

LEMMA 5.1 Under Assumptions 5.1-5.6, if an -+ 0 and na~+l/(m-l) I( -log an) -+ 00, where m ;::: 2 

is the highest absolute moment of y, then for any € > 0, 

Pr { sup IEw(x,O) - Ew(x,O)1 > €} 
(x',8')'eXx9 

converges to 0 as n -+ 00. 

THEOREM 5.1 (Consistency) The WSLS estimator is consistent if Assumptions 5.1-5.6 hold, the 

bandwidth sequence satisfies an -+ 0 and na~+l/(m-l) I( -log an) -+ 00, where m ;::: 2 is the highest 

absolute moment of y, and 00 is identified. 

PROOF. 

By the definition of WSLS, 

{ 
1 ~ 1 } 

Pr JJ (0) S JJ (00 ) = 1. 

On the other hand, note that for any open set U(Oo) that includes 00 , 

{ 
1 ~ 1 } 

Pr JJ (0) S JJ (00 ) = Pr{JJ(8)SJJ(Oo) and 8EU(Oo)} 

+pr{JJ(8) S JJ(Oo) and {) E 0 \ U(Oo)} 

< Pr {8 E U(Oo)} + Pr { inf JJ (0) S JJ (OO)} . 
8e9\U(8o) 
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Therefore, 

Pr { inf Jj (8) ~ JJ (80)} -+ ° 
8ee\U(8o) 

implies consistency. To see that it indeed converges to 0, note that 

pr{ inf JJ(8)~JJ(80)} 
8ee\U(8o) 

= pr{ inf [JJ(8)-jJ(8)+jj(8)-Jt(8)+Jt(8)]~Jj(80)} 
8ee\U(8o) 

< pr{ inf [JJ(8)-iJ(8)]+ inf [iJ(8)-Jt(8)] + Jt(80)-JJ(80) 
8ee\U(~) . 8ee\U~o) 

~ Jt(80) - inf Jt(8)} 
8ee\U(8o) 

{ 

1 _1 _1 1 1 1 
< Pr sup IJJ(8) - JJ(8)1 + sup IJJ(8) - J2(8)1 + IJJ(80) - h(80)1 

8ee 8ee 

~ inf Jt(8)-Jt(80)}, 
8ee\U(8o) 

where 

and 
1 n 

J(8) = - L E {W(Xi)J(Xi E X)[Yi - EW(Xi' 8W} . 
n i=l 

For each open set U(80 ), the identification condition guarantees that there exists f > Osuch 

that 

inf Jt(8)- Jt(80) > f. 
8ee\U(8o) 

Therefore it is sufficient to show that for each f> 0, 

{ 
1 _1 } 

Pr sup IJJ(8) - JJ(8)1 > f -+ 0, 
8ee 

{ 
_1 1 } Pr sup IJJ (8) - J2 (8)1 > f -+ 0, 

8ee 

and 
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Clearly, result (3) follows from results (1) and (2). Lemma 5.2 establishes result (1), and Lemma 5.3 

establishes result (2) .. 

• 
Note that the consistency proof holds even when we replace the kernel regression estimator with 

any nonparametric estimator that satisfies the uniform convergence result of Lemma 5.1. 

LEMMA 5.2 Under Assumptions 5.1-5.6, if an - 0 and na~+1/(m-l) I( -log an) - 00, where m 2: 3 

is the highest absolute moment of the dependent random variable y, then for any € > 0, 

Pr {~~~ \JJ (fJ) - JJ (0)\ > €} 
con verges to 0 as n - 00. 

PROOF. 

Since 

Lemma 5.1 implies the result. 

LEMMA 5.3 Under Assumptions 5.1-5.5, for any € > 0, 

Pr {~~~ \jJ (0) - J!(O)I > €} 
con verges to 0 as n - 00. 

PROOF. 

Since 

it is sufficient to show that for any € > 0, 

as n - 00, where 

pr{sup .!. t1f;(Xi,Yi,0) > €} - 0 
Bee n i=l 

1f;(Xi,Yi,O) = W(Xi)J(Xi E X)[Yi - EW(Xi,0)]2 

-E {W(Xi)J(Xi E X)[Yi - EW(Xi' 0)]2}. 
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This type of uniform convergence result is well established in the literature. We can, for example, 

use the approach of Andrews (1987) to show the result. Under our assumptions, Assumptions A1, 

A2, and A4 of Andrews (1987) are satisfied, and therefore the result holds. 

• 
Next we turn to proving asymptotic normality of the WSLS estimator. Denote a sequence of 

random functions In«(J) by op(an) if In«(J)/an«(J) converges in probability to 0 for a sequence of 

random functions an«(J) uniformly in (J E 0, and denote a sequence of random functions In«(J) by 

o p( an) if In( (J)/ a n( (J) is stochastically bounded for a sequence of random functions a n( (J) uniformly 

in (J. Also, we use the sup-norm, denoted lal, for any finite-dimensional vectors and matrices aj 
that is, lal is a maximum absolute element of a. 

It is convenient to organize the proof around the following lemma. 

LEMMA 5.4 Let In((J) be twice continuously differentiable with probability approaching 1 uni­

formly in (), and let the following conditions hold when In((J) is differentiable: 

(1) {j converges in probability to ()o and 

{j = arg inf In(())j 
Bee 

(2) there exists a random vector Lln that converges in distribution to a normal random vector 

with mean 0 and variance-covariance matrix ~, such that 

(3) there exists a positive-definite matrix V such that 

(4) for any f. > 0, there exists a neighborhood of (Jo, Uo, such that 

as n - 00. 

Then ..;n(e - ()o) converges in distribution to a normal random vector with mean 0 and variance­

covariance matrix V-I ~v-l. 
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PROOF. 

The proof consists of two steps: the first step shows that the estimator is 1/ yIn-consistent, and 

the second step shows that the estimator is asymptotically normal. 

Step 1 

With probability close to 1, by Taylor expansion, for e between 0 and 00 , 

By assumption (1) in the statement of the lemma, 

Then the Taylor expansion formula and assumptions (3) and (4) imply that 

• ,8Jn (Oo) • ,. • 2 
(0 - (0 ) 80 + 1/2(0 - (0 ) V(O - (0 ) + op(IO - 00 1 ) ~ o. 

Multiply both sides by n(l + v'n18 - (01)-2 and define 

Then 
• 8Jn ( ( 0). •• 

c~(O)Fn 80 (1 + y'1iIO - (01)-1 + 1/2c~(O)V cn(O) + op(l) ~ o. 

If v'n10 - 001 - 00, then the inequality implies c~(8)V cn{l1) ~ op(l). Since V is positive-definite, 

Icn (8)1 = op(l), or Fnl8 - 001 = op(l). This is a contradiction. Therefore v'n10 - 001 = Op(l). 

Step 2 

Step 1 and Taylor expansion imply 

Rewriting, we have 

In(O) = 1/2[(0 - (0 ) + V-I 8Ja~Oo)]'V[(0 - (0 ) + V-I 8Ja~Oo)] 

+In(Oo) - 1/28J8~~o) V-I 8Ja~o) + open-I) ~ o. 

Next evaluate I n ( 0) at 

0- = 0 _ V-I 8Jn (Oo) 
o 80· 
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Applying the same argument as above, we have 

Since e minimizes In(fJ), 

Therefore, 

Multiplying both sides by n, since V is positive-definite, 

c . ) -1 c 8Jn(00) ( ) 
V n( 0 - 00 = - V V n 80 + op 1 . 

• 
THEOREM 5.2 (Asymptotic Normality) Under Assumptions 5.1-5.6, if dependent variable V 

has first m absolute moments, where m ~ 3, 00 is identified, and the bandwidth sequence satisfies 

na~ -+ 0 and na~+3/(m-l) /( -log an) -+ 00, then the WSLS estimator converges with rate 1/ fo 
and the asymptotic distribution of fo( e - (0 ) is normal with mean 0 and variance-covariance 

matrix V-I ~V-l, where 

V E [we )8Ew(x, (0) 8Ew(x, (0) I x] 
x 80 80' x E , 

~ = E [W(x)q2(x) 8Ew~:,(0) 8E~~,Oo) I x E x], and 

8Ew(x, (0) 
80 

= cp'(h(x; (0)) [8h~~ (0) _ Ew ( 8h~~ (0) I hex; (0), x E x)] , 
where q2(x) = Var(vl x ). 

Note that the variance-covariance matrix is similar to that of the conventional NLS estimator 

when cp(h(x;O» is used. They are not quite the same because cp is not known. The WSLS approach 

may utilize only the variation along the known function hex; 0), and therefore conditional variance, 

instead ofthe second moment, of cp'8h(x; (0)/80 shows up in the formula. Thus we can identify two 

sources of inefficiency with the WSLS estimator: heteroskedasticity and the semiparametric nature 
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of the problem. In fact, I show in the next section that the optimally weighted WSLS estimator 

achieves the semi parametric efficiency bound for the single-index model. 

Following lemmas (proven in the Appendix) are useful for the proof of asymptotic normality of 

WSLS estimator. 

LEMMA 5.5 Order h(xijO) from smallest to largest, and call the ordered index, h(xijO), h(i). Let 

Si = h(i+1) - h(i) for i = 0, ... , n and let h(o) and h(n+1) be the lower and the upper endpoints 

respectively, of the support of h(xij 0). If Assumption 5.3 holds, then the second moment of Si is of 

order O(n-2) uniformly in i. 

LEMMA 5.6 Under Assumptions 5.1-5.6, if an - 0 and na~+2/(m-l) I( -logan) - 00, where m ~ 2 

is the highest absolute moment of y, then for any € > 0, 

P { 
1

8Ew(X,0) 8Ew(X,0)1 } r sup - > € 
(x',6')'eXx9 80 80 

converges to 0 as n - 00. 

LEMMA 5.7 Under Assumptions 5.1-5.6, if an - 0 and na~+3/(m-l) I( -log an) - 00, where m ~ 2 

is the highest absolute moment ofy, then for any € > 0, 

{ 
82 Ew(x,O) 82 Ew(x, 0) I } 

Pr sup 8080' - 8080' > € 
(x',8')'eXx9 

con verges to 0 as n - 00. 

LEMMA 5.8 Under Assumptions 5.1-5.6, if an - 0 and na! - 0, 

converges to 0 as n - 00. 

LEMMA 5.9 Under Assumptions 5.1-5.6, if an - 0 and na! - 0, 

converges to 0 as n - 00. 
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LEMMA 5.10 Under Assumptions 5.1-5.6, if na! - 0 and na~+3/(m-l) I( -logan) - 00, and 

dependent variable y has first m absolute moments, where m ~ 3, then 

P {_I ~W.I[ (h( "0)) _ E ( .0)] [aEW(Xi'OO) _ aEW(Xi'OO)] > f} 
r ..;n (;t "cp x" 0 W x" 0 ao a8 

converges to 0 as n - 00. 

PROOF. 

We first show that the objective function is twice continuously differentiable with probability ap­

proaching 1 as n - 00. We then verify the three conditions in the lemma above. 

Step 1 

Since none of the denominators of the kernel regression estimators are zero if the maximum 

spacing of h( Xi, 8) is less than an, it is sufficient for our purpose to prove that 

sup Pr{m~si > an}, 
Oef> ' 

where Si is defined in Lemma 5.5, goes to 0 as n - 00. Since 
n 

Pr{m~si > an} ::s: LPr{si > an}, 
, i=l 

and, under our assumption, na~ - 00, by Markov's inequality, it is sufficient to show that the 

second moments of Sj are O(n-2) uniformly in i, which is shown in Lemma 5.5. 

Step 2 

To see that 

note that 

(4) 

(5) 

(6) 

(7) 
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Clearly, term (4) converges in distribution to N(O, V). Lemmas 5.8-5.10 show that terms (5), (6) 

and (7) all converge in probability to 0 under our assumptions. 

Step 3 

To see that 

note that 

(8) 

(9) 

Clearly, Lemma 5.6 implies that the right-hand side of line (8) converges in probability to V and 

Lemma 5.1 and Lemma 5.7 imply that the expression on line (9) converges in probability to the 

zero matrix. 

Step 4 

To see that for any € > 0 there exists a neighborhood of eo, Uo, such that 

as n - 00, note that 

(10) 

(11) 

(12) 

(13) 
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.!. "W,IE~ ( . 0) 0 EW(Xi,O) _ 0 EW(Xi' ( 0 ) 

I
n [ 2~ 2~ 1 

+ :~& n (;;: I I W XI, 0000' oOof)" (14) 

Clearly, Lemma 5.1, 5.6, and 5.7 imply that (10)-(14) all converge in probability to 0 in a neigh-

borhood of 00 , U(Oo). 

• 
6 Weighting in WSLS 

I will distinguish between outer weighting, the weighting that corresponds to the NLS weighting 

scheme, and inner weighting, the weighting used in kernel regression estimators. Outer weighting is 

introduced for the same reason that weighting is introduced in parametric heteroskedastic models: 

to adjust the error terms to homoskedastic ones. Inner weighting has a similar role. Recall that a 

kernel regression estimator, like any other nonparametric estimator, is a local average of data. Thus 

if the conditional variance of y given X depends only on h(x;Oo), then the conditional variances 

of Yj given Xj such that h(xj; ( 0 ) is near hex; ( 0 ) are almost constant. On the other hand, if the 

conditional variance depends on X other than hex; ( 0 ), then even for the data near hex; ( 0 ), the 

variance of Y given x is heteroskedastic. Thus the regression may be estimated more efficiently 

using weighted kernel estimators.12 

But increasing efficiency is not the only role of the inner weighting; it also reduces bias. To see 

this, note that 

W( )oEw(x;Oo) -+ W( ) '(he '0» [Oh(Xi;Oo) _ E(W(x)oh(x;Oo)/oO) I h(x;Oo),x EX)] 
x 00 x <p x, 00 E(Wlh(x;Oo),x EX) 

in probability and that the right-hand side has conditional mean 0 given h(x;Oo) for x E X. Note 

also that if only the outer weighting is used, then the right-hand side does not have mean 0 unless 

W(x) is a function of x only through h(x;OO).13 

Indeed, the asymptotic variance-covariance matrix of the WSLS estimator, when W(x) = 

1/(f2(x) is used, coincides with the efficiency bound obtained by Newey (1990) for the single-index 

model, but if only outer weighting is used, W(x) = 1/(f2(x) does not lead to the efficiency bound 

unless W(x) depends on x only through h(x;Oo). 

12This point is further pursued in Ichimura and Newey [1990]. 

13Therefore when the conditional variance of y given x is a function only of h(x; 80), such as in binary choice 

models, there is no need for inner weighting. 
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By the same reason the inner weighting reduce bias, trimmings used in kernel regression es­

timators reduce bias. To see this, note that if we take {Xn}~1 such that n~=1 Xn = X, where 

X -::I X, then 

W( )8Ew(x jeo) -+ W( ) '(he .e)) [8h(x ij eO) _ E(W(x)8h(xjeo)j8e) I h(xjeo),x EX)] 
x 8e x cp x, 8e E(Wlh(xj eo),x EX) 

in probability and that the conditional mean of the right-hand side given h(xj eo) for x E X is not 

zero. 

7 Estimation of the Covariance Matrix 

In order to perform hypothesis tests and construct confidence intervals we need a consistent estima­

tor of the covariance matrix. Recall that the asymptotic variance-covariance matrix is V-I 1:V-1 , 

where V and 1: are defined in Theorem 5.2. 

THEOREM 7.1 Under Assumptions 5.1-5.6, if an -+ 0 and na!+2/(m-l) j( -logan) -+ 00, where 

m ~ 3 is the highest absolute moment of dependent variable y, then 

(1) V can be estimated consistently by 

and 

(2) 1: can be estimated consistently by 

Note that the bandwidth used in the variance-covariance estimator may differ from that used 

to construct the SLS or WSLS estimator. 

PROOF. 

To show part (1), it is sufficient to show that 

.! ~ 8Ew(Xi,O) 8Ew(Xi'O) _ .! ~ 8Ew(Xi' eo) 8Ew(Xi' eo) 1= 0 (1) 
n ~ ao 80' n ~ 8e 80' p' ,=1 ,=1 
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But this follows from consistency of 8 and Lemma 5.6. To show part (2), it is sufficient to show 

that 

But this also follows from consistency of 8 and Lemmas 5.1 and 5.6. 

• 
8 Monte Carlo Results 

In this section we look at the small-sample properties of the SLS estimator via a Monte Carlo 

experiment. The construction of the experiment is identical to that of Cosslett (1986). He considers 

a binary choice model with two regressors: 

yi = ao + /1toxli + /hOX2i + fi. 

As usual, the observed indicator Yi takes the value 1 if the latent variable Yi is positive and the 

value 0 otherwise. 

The true parameter values are ao = 0, /310 = -2, and /320 = 1. In Cosslett's specification, 

exogenous variables take two distributions and the errors take three distributions, giving rise to six 

models. The exogenous variables Xl and X2 are independently distributed. The two distributions of 

the exogenous variables are standard normal and standard exponential. Three mixtures of normal 

distributions are considered for the error distributions: (1) standard normal, (2) 0.75· N(O, 1) + 

0.25· N(O,25), and (3) 0.75· N(-0.5,1) + 0.25· N(1.5,25). According to Cosslett's calculation, 

the second distribution has standard error 2.65, skewness 0, and kurtosis 6.61. Similarly, the third 

distribution has standard error 2.78, skewness 1.29, and kurtosis 6.29. 

We take Cosslett's models in order to facilitate comparison of the performance of the SLS estima­

tor with that of other estimators presented in his paper, including the maximum score estimator,14 

maximum rank correlation estimator,15 nonparametric maximum likelihood estimator,16 and its 

smoothed version along with the conventional probit ML estimator. My results are not directly 

USee Manski (1975, 1985). 

15See Han (1987). 

16See Cosslett (1983). 
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Performance of parametric and semi parametric estimators: 

A Monte Carlo experiment 

Table 1: Xl and X2 normal 

Error 1 Error 2 Error 3 

Estimatort Bias RMSEt Bias RMSEt Bias RMSEt 

SLS 0.077 0.45 0.174 0.56 0.178 0.56 

Probit -0.04 0.29 -0.11 0.49 -0.11 0.50 

MS -0.22 0.76 -0.34 1.16 -0.36 1.27 

MRC -0.05 0.34 -0.11 0.49 -0.11 0.52 

SML -0.08 0.43 -0.20 0.67 -0.20 0.70 

SML-1 -0.05 0.31 -0.11 0.48 -0.10 0.47 

t SLS = semi parametric least squares, MS = maximum score, 

MRC = maximum rank correlation, SML = smoothed maximum likelihood. 

t Root mean square error. 

Table 2: Xl and X2 exponential 

Error 1 Error 2 Error 3 

Estimatort Bias RMSEt Bias RMSEt Bias RMSEt 

SLS 0.187 0.53 0.288 0.70 0.259 0.69 

Probit -0.03 0.35 -0.23 0.72 -0.69 1.24 

MS -0.37 1.29 -0.51 1.87 -0.55 1.64 

MRC -0.05 0.43 -0.13 0.71 -0.27 1.32 

SML -0.10 0.53 -0.23 0.84 -0.29 1.01 

SML-1 -0.06 0.39 -0.23 0.73 -0.43 1.38 

t SLS = semi parametric least squares, MS = maximum score, 

MRC = maximum rank correlation, SML = smoothed maximum likelihood. 

t Root mean square error. 
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comparable with Cosslett's, however, because we used different random number generators and 

different optimization methods. Cosslett's method of optimization is grid search, initially between 

-2.5 and -1.5 and further when the objective function is still improving at the boundaries. This 

particular method of optimization may choose values close to the truth more often than we really 

would when we did not know the truth. My experiment employs a different grid search method 

that treats different parameter values identically. 

The first-stage grid search is done between -50 and 50 with grid width 1, and the seven values 

that performed best are selected. In the second stage, the grid search is done around the seven 

selected values with grid width 0.1, and the five values that performed best are selected. In the 

third stage, the grid search is done around the five selected values with grid width 0.01. The final 

stage is performed around the five selected values with grid width 0.001. 

An IBM 8760 was used for the computation. Each calculation took about 1.8 seconds of cpu 

time. Computational speed with this algorithm increases roughly with the square of the sample 

size. The results are presented in Tables 1 and 2. The results for other estimators are from Cosslett 

(1986). 

Ruud (1983) showed that probit ML estimators are consistent when regressors are jointly nor­

mal. Thus, MLE in Table 1 is consistent and asymptotically normal. Furthermore, clearly the 

probit estimator in Table 2 with error 1 is consistent and efficient. Therefore error 2 and 3 in 

Table 2 are the only cases where the probit estimator is not consistent. In those two cases, the 

SLS estimator performs the best in terms of the estimated mean square error. Note that optimal 

weighting is not used in the experiment. Even when the SLS estimator does not perform the best, 

the ratios of its MSEs to those of the best cases do not go below 0.64. The MSEs lie between 0.45 

and 0.70. Compared with those of other estimators, the estimated mean square errors of the SLS 

estimator are less affected by the differences in distributions. 

9 Concluding Remarks 

We have established 1/ y'n-consistency and asymptotic normality of the SLS and WSLS estimators 

for the single-index model. A consistent estimator of the covariance matrix was also presented. 

Since SLS estimation does not require specifying a parametric error distribution, the method allows 

economists to focus on specifying systematic effects of an econometric model and frees them from 

31 



distributional worries for a broader class of models than before. We also investigated a weighting 

scheme that achieves the semiparametric efficiency bound obtained by Newey (1990) for the single­

index model. 

While the results extend the applicability of semiparametric estimation, a number of related 

issues were not addressed. Some of these issues are analyzed in other papers. In this section 

I summarize the results of these other papers and point out some problems that have not been 

investigated. 

Ichimura and Lee (1991) studied an extension to the multiple-index model. Hall and Ichimura 

(1991) analyzed an extension of the single-index model to a generai moment condition other than 

conditional mean zero. 

The estimators presented in this paper treat a particular sequence of bandwidths and a kernel 

function as given. A practical implication is that any sequence of bandwidths and kernel function 

that satisfy certain assumptions will give rise asymptotically to the same estimators. As we showed, 

the choice does not affect the asymptotic distribution, and hence we are left with an array of 

estimators. 

One approach to the bandwidth selection problem is to define an estimator that is independent 

of the choice of bandwidth sequence. For example, one may choose the bandwidth, a, and the 

estimator, B, that minimize the objective function. This method is investigated by Haerdle, Hall, 

and Ichimura (1991), who show that if the optimization is restricted to the 1/ Vn neighborhood 

of 80 for 8 and to [GIn-lis, G2n- I/S] for a, where GI and C2 are any given real number that 

satisfy CI < C2 , then a/ao - 1 asymptotically as n - 00, where ao is the optimal bandwidth for 

estimating t.p when 80 is known. Whether there is a way to choose a bandwidth sequence that is 

optimal for the estimation of 80 is an open question. 

Another potential problem with the method is computational burden. The computation time 

is roughly n times more than with smooth parametric nonlinear regression estimation, where n is 

the sample size. While the present method requires considerably fewer assumptions regarding the 

shape of the error distribution, the asymptotic properties are derived assuming that the systematic 

part is correctly specified, as usual. In practice, since empirical research requires trial and error 

before the final specification is reached, the computational burden implies more casual specification 

of the systematic part, which might lead to a larger bias than would the casual specification of the 
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parametric error term that we successfully avoided. Therefore it would be desirable to have a 

method with less computational burden.17 

Another approach can be taken to the basic problem studied in this paper, namely, that forms 

of the error distributions in econometric models are too often casually assumed without any jus­

tification. Rather than asking what the error terms are and how they might be distributed in a 

specific context, I proposed an estimator that does not require knowledge of the error distribution 

in a model; in other words, I took a semi parametric approach. We could instead have faced the 

problem directly and tried to model the errors. Specifically, we could have tried to derive the error 

distribution within a specific model based on the uniform distribution, rather than casually assume 

it. This alternative approach has produced the Gaussian distribution, exponential distribution, 

Wiener process, and Poisson process in other disciplines. Although the two approaches are very 

different in their attitude toward the error terms, ultimately they should be complementary, for 

the semiparametric approach offers a way to test the assumptions behind the derived distribution 

while holding an alternative set of estimates ready should the specification be rejected. 

170f course this point may be moot given a fast computational technology, and it may be risky to stress the point 

too much: as Feller (1968) writes, "Only yesterday the practical things of today were decried as impractical, and the 

theories which will be practical tomorrow will always be branded as valueless games by the practical men of today." 
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Appendix 

In this appendix we prove Lemma 5.1, 5.6, 5.7, 5.10, 5.8, 5.9 and 5.5 in this order after estab­

lishing some preliminary lemmas. 

Since EW(Xi'O) can be written in the ratio form, AndBni, where 

and 

uniform convergence of EW(Xi' 0), 8Ew(Xi' 0)/80, and 8 2 EW(Xi' 0)/8080' will be proven by show­

ing uniform convergence of Ani and Bni and their first and second derivatives with respect to O. 

Since Bni is Ani with Yj = 1, only Ani and its first and second derivatives are considered. Let Ai 

be the probability limit of Ani and note the inequality 

We refer to the second term of the right-hand side and analogous expressions for the first and the 

second derivatives with respect to 0 as bias terms. Note further that, for any sequence of positive 

numbers {Mn}~l' 

where 

and 

sup IAni - E(Ani)1 
8ee 

We refer to the first and the second term of the right-hand side of inequali ty (15) and their analogous 

terms for the first and the second derivatives with respect to 0 as centered terms and tail terms, 

respecti vely. 
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Lemmas .2-.4 show that the bias terms, converge to 0 with rate a;, Lemmas .5-.7 establish the 

convergence rates of the tail terms, and Lemmas .8-.10 show the convergence rates of the centered 

terms. 

The following lemma, which can be proven using integration by parts formula, is used in the 

proofs of Lemmas .2-.4. 

LEMMA .1 Assumption 5.6 implies 

(1) J ]('(s)ds = OJ 

(2) J sJ('(s)ds = -lj 

(3) J s2 ]('(s)ds = OJ 

(4) J J("(s)ds = OJ 

(5) J sJ("(s)ds = OJ 

(6) J s2 J("(s)ds = 2j 

(7) J s3]("(s)ds = O. 

The following three lemmas can be proven directly by change of variable formula and Taylor 

expansions. We prove Lemma .4 only, because the other two can be proven analogously. 

LEM MA .2 Let f be a Lebesgue density of a random variable x and 9 be a function 9 : R - R. When 

E[g( x)/ anJ([( t - x)/ an]] exists, if'I/J = gf is twice continuously differentiable, the second derivative 

satisfy Lipschitz condition, a kernel function satisfies Assumption 5.6, and t is an interior point of 

the support of x then for an > 0 and an - 0, 

/E[g(x)/anJ([(t - x)/an]] - g(t)f(t)/ = O(a~). 

LEMMA .3 Let f be a Lebesgue density of a random variable x and 9 be a function 9 : R - R. 

When E[g(x)/a~J('[(t - x)/an]] exists, if'I/J = gf is twice continuously differentiable, the second 

derivative satisfy Lipschitz condition, a kernel function satisfies Assumption 5.6, and t is an interior 

'poinf' of the support of x then for an > 0 and an - 0, 

IE[g(x)/a~J('[(t - x)/anll - [g(t)f(t)],1 = O(a~). 
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LEMMA .4 Let f be a Lebesgue density of a random variable x and 9 be a function 9 : R -+ R. 

When E[g(x)/a~K"[(t - x)/an]] exists, if 1/J = gf is three times continuously differentiable, the 

third derivative satisfy Lipschitz condition, a kernel function satisfies Assumption 5.6, and t is an 

interior point of the support of x then for an > ° and an -+ 0, 

PROOF. 

Note that 

IE[g(x)/a~]("[(t - x)/an]] - [g(t)f(t)]"1 = O(a~). 

Ii: g(x)a;3]("[(t - x)/an]J(x)dx - [g(t)f(t)]"1 

= Ii: 1/J(t - ans)a;2I("(s)ds - 1/J"(t)l· 

By Taylor expansion, for some value t between t and t - ans, 

Therefore equation (16) equals 

Ii: [1/J(t) - an1/J'(t)s + a~/21/J"(t)s2 - a~/61/J"'(t)s3 
+a~/6[1/J"'(t) - 1/J"'(t)s3]a;2 ]("(s)] ds - 1/J"(t)l. 

(16) 

Lemma .1, a Lipschitz condition on 1/J"', and the fact that It - tl :$ anlsl imply that there exists a 

constant c such that the last expression is not greater than, 

I 

LEMMA .5 Let m ~ 2 be the highest absolute moment of y and suppose Assumptions 5...1 and 5.6 

hold. If £OnanM;::,-l -+ 00, then 

Pr { sup 1_1_ tYni(X, (}) - E[Yni(X, (})]I > con} --+ 0, 
(x,6)EXx0 nan i=l 

where 
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PROOF. 

Note that 

Pr { sup 1_1 tOni(X,O) - E[Oni(X,O)]1 > con} 
(x,6)eXxE> nan i=l 

:s; Pr {t sup IOni(X,O) - E[gni(X,O)lI > nancon} 
i=l (x,6)eXxe 

:s; 2E[ sup Oni(X,O)]/(anCOn) 
(x,6)eXxe 

:s; CE[lYiII(Yi ¢ [-Mn, Mn])]/(ancOn), 

where C is some large constant. By Holder's inequality and Chebyschev's inequality 

E[YiI(Yi ¢ [-Mn, MnDl < [E(lydmW/m[Pr{IYil ~ Mn}p-I/m 

< [E(lydm)]/M:-1 

This implies the result. 

Proofs of the next two lemmas are analogous to the previous one and hence omitted. 
• 

LEMMA .6 Let m ~ be the highest absolute moment of Y and suppose Assumptions 5.4 and 5.6 

hold. If H(x, Xi, 0) is uniformally bounded on X x X x E> and clna;M:-1 -+ 00, then 

where 

LEM MA .7 Let m ~ 2 be the highest absolute moment of y and suppose Assumptions 5.4 - 5.6 hold. 

If H(x, Xi, 0) is uniformally bounded on X X X x E> and c2na~M:-l -+ 00, then 

where 
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We use Bernstein's inequality to prove Lemmas .8-.10. For completeness we list the inequality 

here: 

Bernstein's inequality 

Let Yin, ... , Ynn be independent random variables with 0 means and bounded ranges, that is, 

I Yin I $ cn· Write urn for the variance of Yin. Suppose Vn ~ urn + ... + u!n. Then for each TIn > 0, 

Pr{IYin + ... + Ynnl > TIn} $ exp [~TI~/ (Vn + ~CnTln)] . 
LEMMA .8 Suppose (logan )(l + Mneon)/(nane5n) - 0, a~/eon - 0 for large v, and X C RK and 

o C RM are compact, then 

Pr { sup It[gni(X, 8) - E[gni(X, 8)]]1 ~ con} -- 0, 
Xx€> i=l 

where 

PROOF. 

Without loss of generality assume that 181 $ 1 for all 8 E 0 and Ixi $ 1 for all x E X. Partition 

o into Nt cubes with the length of a side a~c and X into N2 cubes with the length of a side 

a~c where C is a small and positive number and v is a large constant. Then Nt = c-M(a;Mv) 

and N2 = .s-K(a;;Kv) and space X X 0 is partitioned into N = Nt X N2 = .s-(M+K)a;;(M+K)v 

of J( + M-dimensional cubes, B£', for k = 1, ... , N , which become smaller and smaller as n 

becomes larger. Now pick a point (x£,,8f) from each Bf for k = 1, ... , N. 

Pr { su~ It[gni(X, 8) - E[gni(X, 8)]]1> neon} 
Xx€> ,=1 

< Pr Wl [~!It[gn;(x, 0) - E[gn;(x, 0)]]1> nel}n 1 } 
< t, Pr {~!It[gn;(x, 0) - E[9n;(X, 0)]]1 > neOn} 

< t, Pr {It [9n;( xk', of) - E[9n;( xk', ok')] 11 > n~on } 

+ t, Pr {~"!It [9n;(X, 0) - 9n;(4, ok')ll > n:on} 
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+ t. Pr { ';;'{ I t. [E[gn;( X, 0)1 - E[gn;( x~, O~) 111 > "';'n } (19) 

We show that terms (17)-{19) all converge to o. To show that term (17) converges to zero, note 

that 

pr{lt. [9n i(xf, 8r:) - E[9ni(xf, 8r:)]]/ > n~on} 

= pr{It.[W;In;Y;I(Y; E [-M., M.])[(([h(x~, O~) - h(x;, O~)l/a.) 

] N N ( N)] ] I nan COn } - E[YiWi1niI(Yi E [-Mn' Mn )[(([h(Xk , 8k ) - h Xi, 8k Ian)] > 2 . (20) 

Applying Bernstein's inequality with 

where [(1 and [(2 are some positive constants, the right-hand side of equation (20) is bounded by 

where [(3 is some positive constant. Therefore term 17 is bounded by 

= 26-(M+1()a;;(M+K)v exp[-(I(3nane5n)/(1 + Mncon)] 

(M K) [ [(3nan
c2 

] = 26- + exp -(M + [()v log an _ In . 
1 + Mneon 

(21) 

Hence term (17) converges to zero if -(log an)(l + MneOn)/(nanc5n) = 0(1), which holds under our 

assumption. 

To show that term (18) converges to zero, note that 

Pr {Suplt[9ni(X, 8) - 9ni(xf, 8r:)] I > neon} 
B N . I 4 

Ic 1= 

< Pr {tsupI9ni(X, 8) - 9ni(xf, 8r:)1 > nc
on

} 
. IBN 4 
1= Ic 

{I~ N N N N / ncon } < Pr ~ sUi 19ni(x, 8) - 9ni(Xk , 8k )1- E[sui 19ni(x, 8) - 9ni(Xk , 8k )11 > -S-
1=1 BIc BIc 

(22) 

+ Pr { E[~1Ign;(x, 0) - g.;(x~, Bf)1l > ';n} (23) 
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Note that by Markov's inequality, term (23) is less than ](4a~-1 leon, for some large constant number 

](4. Thus when a~-1 leon = 0(1), term (23) is 0 for large enough n. 

To show that term (22) converges to zero, use Bernstein's inequality again, this time with 

M e v-I 
Cn = nCu • an , 

for large c> o. Then term (22) is less than 

and Vn = ncoa~(V-l) 

(24) 

where ](5 is some positive constant number. When v > 4 term (24) is smaller than term (21) 

asymptotically, and hence it converges to zero. 

To show that term (19) converges to zero just note the inequality 

Pr { ~'11 Elgn;( X, 0) - gn;( xt' ,ot') 11 > 'On } 

< Pr { E[~! Ign;(x, 0) - gn;(Xt', ot')11 > ,on} (25) 

By the same approach taken for proving that term (23) converges to zero, term (25) converges to 

zero. This completes the proof. 

• 
The proof of the following two lemmas follows the same arguments and thus omitted. 

LEMMA .9 Suppose (logan )(l + Mneln)/(na;e~n) -- 0, a~/eln -- 0 for large v, and X C R[( and 

o C RM are compact, then 

Pr { su~ It[gni(X, 0) - E[gni(X, 0)]]1 ~ e1n} -- 0, 
XxEl 1=1 

where 

LEMMA .10 Suppose (logan )(l + Mne2n)/(na~e~n) -- 0, a~/e2n -- 0 for large v, and Xc R[( and 

o C RM are compact, then 
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where 

We now turn to the proofs of the lemmas in the text. 

Proof of Lemma 5.1 

By Lemmas .2, .5, and .8, we need to show that there exists a positive sequence {Mn} that 

satisfies anM:-1 -+ 00 and (-logan)Mn/(nan) -+ O. For any positive sequence ibn} which 

converges to 0, Mn = nanbn/( -log an) satisfies the second condition. For this sequence {Mn}, the 

first condition is satisfied if 

na~+1/(m-l)bn/( -logan) -+ 00. 

But if we set bn = [( _logan)/na~+1/(m-l)p/2, under our assumption bn -+ 0 and the first condition 

is also satisfied. This completes the proof. 

Proof of Lemma 5.6 

By Lemmas .3, .6, and .9, we need to show that there exists a positive sequence {Mn} that 

satisfies a;M:-1 -+ 00 and (-log an)Mn/{ na;) -+ O. For any positive sequence {bn} which 

converges to 0, Mn = na;bn/(-logan) satisfies the second condition. For this sequence {Mn}, the 

first condition is satisfied if 

na;+2/(m-l)bn/( -log an) -+ 00. 

But if we set bn = [( -log an)/na;+2/(m-l)p/2, under our assumption bn -+ 0 and the first condition 

is also satisfied. This completes the proof. 

Proof of Lemma 5.7 

By Lemmas .4, .7, and .10, we need to show that there exists a positive sequence {Mn} that 

satisfies a~M:-l -+ 00 and (-logan)Mn/(na~) -+ O. For any positive sequence ibn} which 

converges to 0, Mn = na~bn/(-logan) satisfies the second condition. For this sequence {Mn}, the 

first condition is satisfied if 

na~+3/(m-l)bn/( -log an) -+ 00. 

But if we set bn = [( -log an)/na~+3/(m-l)p/2, under our assumption bn -+ 0 and the first condition 

is also satisfied. This completes the proof. 

Proof of Lemma 5.10 
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By Lemmas .2 and .3 we need to show that there exists a positive sequence an, {cOn} and {cIn} 

that satisfy 

(i) y'na~ -+ 0, 

By Lemmas .5, .6, .8, and .9, this amounts to finding positive sequences {Mn }, {cOn}, and {cIn} 

that satisfy the four conditions above and 

( .) 2Mm - I 
VI cInan n -+ 00, 

To see that there exist such sequences let 

cIn = and Mn = 

where 0 < u < 1 and bIn is a positive sequence that diverges to infinity. Then cOn, CIn, and 

Mn satisfy conditions (v)-(x) since na~+2/(m-2) I( -logan) -+ 00. The first four conditions are 

satisfied by taking bIn to diverge slower than o([anJ-loganJ 1) and o([na~/(-logan)P/4). This 

completes the proof. 

Proof of Lemma 5.10 

Note first that 
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and 

Thus 
oAni oAi OBni OBi 

OEW(Xi,OO) _ OEW(Xi, 00 ) = 00 _ 00 _ Ani 00 + Ai 00 . 
00 00 Bni Bi Bni Bni Bi Bi 

Therefore, to prove the lemma, it is sufficient to show that 

1
_1 ~W.I . [OAndOO _ OAdOO ] 1- (1) r.:: L...J " €, B. B. - op , 
yni=l ru , 

(26) 

and 

(27) 

Equation (26) and (26) can be shown analogously and hence we show only (26). Note that by 

Taylor expansion, for some value fli between Bi and Bni, 

oAdo() 
Bi 

= [OAni _ OAi] ~ + [OAni _ OAi] [_1 _~] 
O() O() Bi O() O() Bni Bi 

oAi [1 1 ] 
+ O() Bni - Bi 

= [OAni _ OAi] ~ + [OAni _ OAi] [_1 _~] 
00 00 Bi O() O() Bni Bi 

oAi 1 [ ] oAi 1 [ ]2 
- 00 B~ Bni - Bi + 00 fJ~ Bni - Bi , , 

Hence, to show (26), it is sufficient to show 

= op(l), 

= op(l), 

= op(l), 

= op(l). 

(28) 

(29) 

(30) 

(31) 

Equations (29) and (31) can be proven in the same way we proved Lemma 5.10. To show equa­

tions (28) and (30) we calculate the means and the variances explicitly. Clearly, the means of the 
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terms inside the norms are zero. To calculate the variance of the left-hand side of equation (28), 

note that 

1 ~ [8Ani 8Ai] 1 1 1~" (n) 
~ L..J WiIi f i 8e - 8fJ B· = ( _ 1) ~2 L..J L..J fi'I/Jij , 

Y n i=l ' n y n an i=l j-:f;i 

where 

.,.~~) = W;Ii [ .W'I . [8hi _ 8hj ] J(' (h(Xij fJo) - h(xjj fJo)) _ 2 8Ai] 
'PI, Bi y, ,nJ 8fJ 8fJ an an 8fJ . 

The variance of 

equals 

( -~)2 4E{tI:tI:fifk'I/J~j)'l/Ji;)} 
n nan i=l j-:f;i k=ll.-:f;k 

n - 2 E[ 2.,Jn) (n)] 1 E[ 2(.,Jn»)2] 
(n - l)a! fi 'Pij 'l/Jik + (n _ l)a! fi 'Pij 

1 E[ . ..,,(nl.,,(n)] + (n - 1)a! f,f, 'Pij 'Pji , 

where i, j, and k are all different. By Lemma .3, since i, j, and k are all different, 

= E { f~ E { a~ 'I/J~j) Ii} E { :; 'I/J~Z) Ii} } 
= O(a!). 

If an - 0 and na! - 00, then the variance converges to zero. Chebyshev's inequality tJten implies 

equation (28). Equation (30) can be shown analogously. This completes the proof. 

Proof of Lemma 5.9 

The proof is analogous to that of Lemma 5.8 and hence omitted. 

Proof of Lemma 5.5 

The density of (h(1)' ... , h(n») is 

if 11 < h(1) < h(2) < ... < h(n) < h 

and zero otherwise, where Ie is the density of h(x; fJ). Thus the density of (Sl' ... , sn) is 
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if Si > 0 for i = 1, ... , nand SI + S2 + ... + Sn < Ii - ll, and zero otherwise. Therefore, 

E(sl) = 

By integration by parts, 

/o"'-11-61-... -6 i
_
1 

lo(sl + ... + Si + ll)sl[l- Fe(SI + ... + Si + ll)]n-idsi 

= ~ /"'-fl- 6
1 -"'-6i-1 [1 _ Fe (SI + ... + Si + h.) ]n-i+ 1 sidsi. 

n - ~ + 1 10 

Approximate Fe from below on [0, Ii - II - SI - ... - Si-l] by a continuous piecewise linear 

functions CkSi + c~ for k = 1, ... , J( < 00 • Let tk denote knots for k = 1, ... , J( - 1. We can 

take c~ = Fe(SI + ... + Si-l + h.) and cK(1i - II - Si - ... - si-d + cK = 1, 0 < Ck, c~ < 00 

because Ie is bounded away from zero and bounded from above. Then 

lah.-fl
-6

1 
-"'-6i-1 [1 _ Fe( SI + ... + Si + h.)]n-i+2 Sidsi 

< {t1 [1 _ C1 Si _ c~t-i+l sidsi + lt2 [1 - C2 Si - c~]n-i+I sidsi 
10 t1 

l
1i.-h-61- ... -6 i + ... + - [1- CKSi - CK]n-i+ISidsi 

tK-1 

Since each term of the right-hand side of the equation can be bounded by 
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Let c· = max Cj and c. = min Cj, then 

Summing over all knots we have 

Completing the rest of the integral we have 

E(s~) < 2 
, - c~(n+l)(n+2r 
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