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ABSTRACT 

Econometric models for consumer demand systems with zero demand quantities 

are specified which consider observed demands as the result of optimal behavior. 

Our approach utilizes the concept of virtual prices to transform binding zero 

quantities into nonbinding quantities and to provide a rigorous justification for 

structural shifts in the observed (positive) demand equations across demand 

regimes. Switching conditions, which determine the occurrence probabilities of 

different demand regimes, are provided in terms of notional llatent) demand equa­

tions. This approach can estimate demand relationships derived from either 

direct or indirect utility functions. The econometric model is used to estimate 

a system of demand equations based on a household sample survey from Indonesia. 
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A number of recent studies have used household level data to estimate 

demand relationships [Pitt (1983a, 1983b), Deaton and Irish (1982), Strauss 

(1982), and Pitt and Rosenzweig l1983)J. Many of these studies have made use of 

household budget surveys from developing countries. The poor infrastructure of 

these countries results in market separation sufficient to provide the price 

variability required to estimate demand relationships at the level of the house-

hold from a single cross-section. These micro data sets offer a number of 

important advantages. For example, demographic variables such as family size 

and age composition are major determinants of household budget patterns but their 

effects are not easily measured with aggregated data. Using budget surveys from 

Bangladesh, Indonesia, and Sierra Leone, respectively, Pitt (1983a, 1983b), and 

Strauss were able to incorporate demographic and other household specific 

variables into their analyses. Strauss I data also enabled him to estimate an 

economic model of household-firm behavior for farm households. A particularly 

rich sample survey from Indonesia enabled Pitt and Rosenzweig to study the 

relationship between food prices, food consumption, health and the efficiency of 

household farm production. It is obvious that these kinds of issues are best 

analyzed with micro data sets. Unfortunately, many studies using micro data 

have suffered from the lack of an unrestrictive and theoretically consistent 

approach to dealing with a common attribute of these data sets, the non·· (or 

otherwise bounded) consumption of goods. As micro data sets become increasingly 
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available, it is important that this econometric problem be resolved so that the 

interpretation of results is unclouded by econometric inconsistency. 

Household budget data, which typically contains information on the consump­

tion of very disaggregated commodities over relatively short periods, often 

contain a significant proportion of observations for which expenditure on one or 

more goods is zero. Such samples contain limited dependent variables in that 

certain demand values occur with finite positive probabilities. The estimation 

of demand systems with limited dependent variables differs from the well-known 

limited dependent variable models of Tobin (1958) and Amemiya (1974) in that 

demand systems involve complex structural interactions and cross-equation 

restrictions. 

As is well known, systems of demand equations can be derived directly by 

maximizing a utility function subject to a budget constraint, or indirectly from 

a cost or indirect utility function with Roy's identity. Furthermore, demand 

functions that add up, are homogeneous of degree zero, and have symmetric, 

negative definite compensated price responses are integrable into a theoretical­

ly consistent preference ordering (Hurwicz and Uzawa (1971)). Moreover, the 

stochastic specification of demand systems with limited dependent variables must 

also be compatible with demand theory. This issue has been addressed in a 

recent article by Wales and Woodland (1983) where a system of demand equations 

with limited dependent variables was derived by maximizing a random utility 

function subject to a budget constraint. In this direct utility function ap­

proach, the Kuhn-Tucker inequalities determine the limited demand quantities. 

In this article, we propose a more useful approach based only upon the "notional" 

demand equations which does not require specification of the underlying utility 

function. This is a great convenience since it is easier to think of specifica­

tions for demand equations (or cost and indirect utility functions) than for 
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direct utility functions and also because it circumvents the frequent intract­

ability of the Kuhn-Tucker conditions.lI In particular, our approach permits 

the specification of systems of demand equations with limited dependent variables 

derived from popular flexible functional forms for the indirect utility func­

tion, such as the translog. Contradicting the claims of Wales and Woodland (p. 

273) that an indirect utility approach is inappropriate for dealing with non­

negativitiy constraints, we will show that such an approach is not only possible 

but more useful than the direct utility approach. Our approach is in the tradi­

tion of the theory of consumer demand under rationing set forth in Tobin and 

Houthakker (1950-51), Pollak (1969, 1971), Howard (1977), Neary and Roberts (1980), 

and Deaton (1981), and utilizes the concept of the "virtual price" originated by 

Rothbarth (1941). 

This article is organized as follows. In Section 2, we formally present the 

consumers' problem with binding non-negativity constraints and relate it to the 

consumers' problem under rationing. In Section 3, we set forth rules which 

discriminate among all possible consumption regimes. Section 4 provides the 

stochastic version of the demand equations and the likelihood function. In 

Section 5, our results are compared with the existing literature on limited 

dependent variables. In Section 6 we apply the econometric model to estimate a 

system of demand equations based on household survey data from Indonesia. 

Conclusions are set forth in the last section. 
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2. Demand Systems With Zero Demands. 

As in traditional demand theory, assume that there exists a set of func-

tional relationships which relate the demand for goods as functions of prices 

v, 

(2.1) i=l , ... ,K 

which are defined on v > 0,2/ where K is the number of goods and v is a 

vector of prices normalized by total expenditure M, v = p/M. The equations 

(2.1) are meaningful demand functions only if they are consistent with maximiz-

ing a well-behaved utility function subject to a budget constraint py = M and 

the nonnegativity constraints y ~ O. The existence of such demand equations 

are guaranteed by some regularity assumptions on the utility function U(y), 

e.g., U(y) is strictly quasi-concave, increasing and continuously differenti-

able. When q. > 0 for all 
1 

tional problem 

i, it corresponds to the solution of the tradi-

(2.2) max {U(Y)lv~y = 1, y ~ O} 
y 

However, if some elements of the vector q in (2.1) are negative, the corre­

sponding nonnegativity constrained problem (2.2) will have a boundary solution. 

If the utility function U(y) possesses the interior property that the utility 

for a commodity combination in which one or more quantities is zero is lower 

than for any combination in which all quantities are positive, then the demand 

equations for all goods will be positive for all positive price vectors v. 

Zero consumption of certain goods can occur with behavioral interpretation only 

if the utility function does not possess this interior property.~ In our analy-

sis, we will rule out these utility functions and assume, furthermore, that the 

utility function is not only well-defined on the nonnegative commodity space 



-5-
• 

with behavioral meaning but can also be extended mathematically into regions 

with negative quantities such that the equations l2.1} are the unique solution 

of the following problem: 

(2.3) max {U(y)lvy = l}. 
Y 

The equations (2.1), which are the solutions to the utility maximization problem 

without nonnegativity constraints (2.3), are referred to as notional demand 

eguations. This conceptualization is convenient and operationally relevant in 

that most flexible demand systems which do not correspond to utility functions 

with the interior property have negative notional demands when some nonnegativ­

ity constraints are binding. 

The notional demands qi are latent variables. For a given vector of 

normalized prices v, the observed demand quantities vector x is the (non­

negative) solution to (2.2). If some of the xi are zero, the vector x may 

not necessarily equal D(v) = [Dl(v), ... ,DK(v)]I. However, there exists a 

vector of normalized prices v* such that x = D(v*). These prices v* are 

known as virtual prices (Rothbarth (1941)). Neary and Roberts have shown that 

if the preference function is strictly quasi-concave, continuous and strictly 

monotonic, any allocation can be supported with virtual prices. Strict mono-

tonicity also implies that support prices will always be strictly positive. 

Furthermore, the virtual prices corresponding to demands which are positive are 
* 4/ the actual market prices themselves, that is, if x,' > 0, then v. = v .. -, , 

As each good may be consumed at some price vector but not at others, there 

are many possible patterns of consumed and non-consumed goods. Each pattern 

constitutes a single demand regime, and for each regime there exists a unique 

vector of virtual prices which support the observed demand vector x. Consider, 

for example, the regime with zero quantities demanded for the first L goods 



-6-

and positive quantities for the remaining K-L goods. The vector of normalized 

* virtual prices corresponding to this regime is characterized by v. = v. for 
1 1 

i = L + 1, ... ,K, and the observed demand equations are 

* * (2.4) xi = 0 i (v 1 ' ... , v L ' v L + 1 ' ... , v K) , i=L+l, ... ,K 

(2.5) i = 1, ... ,L. 

* * The virtual prices vl ' ... ,vL can be solved as functions of the observed prices 

vL+l '''' ,vK' i.e., 

(2.6) * vi = ~i(vL+l,· .. ,vK), i = 1, ... ,L. 

Hence, the observed demand quantities (2.4) can be written as 

The demand equations (2.7) are conditional (restricted) demand equations, condi-

tional on the first L goods having zero demands. For each regime, the ob­

served set of conditional demand equations (2.7) depends on the notional demand 

equations (2.1) The virtual prices provide the link between the conditional and 

the notional demand equations. These virtual prices replace the actual prices 

of those goods which are not consumed and hence do not appear in the demand 

equations of the remaining goods. The equations (2.7) are the estimable equa­

tions, and the unknown parameters of the utility function U(y) or the cor­

responding notional demand equations (2.4) and (2.5) can be identified by 

estimating this conditional demand system.~ 



-7-

3. Criteria for Discriminating Among Demand Regimes. • 

In the traditional consumer problem (2.2), the determination of the demand 

regime, that is, which goods are consumed and which are not, is simply reflected 

by the corresponding Kuhn-Tucker conditions, However, an explicit statement of 

these conditions requires knowledge of the direct utility function. The problem 

with this Kuhn-Tucker approach is that for many popular demand systems the 

underlying utility function does not have a closed-form expression, hence 

econometric implementation is problematical. Below we will demonstrate that 

alternative criteria for discriminating among demand regimes can be derived 

solely from the notional demand equations C2.l). These regime switching condi­

tions will be used to determine regime: occurrence probabilities for use in the 

econometric modeling discussed in Section 4 of this article. 

In the simple case of an interior solution, that is, all demand quantities 

are positive, it is clear that the notional demands must obey 

Without loss of generality, consider the regime for which the demanded quanti­

ties of the first L goods are zero and the quantities of the remaining K-L 

goods are positive. Denote ~ = (vL+l ' ... ,vK). This regime is characterized 

by the conditions 

Dl(vl'~12(vl'V},""~lL (v"v),v) ~ 0 

D2(~ 21 (v2,v},v2'~ 23(v2'v}, ... ,~ 2 L(v2'V) ,v) < 0 

(3.1) 

DL(~Ll (vL '~)""'~LL-l(\ ,v),\ ,v} ~ 0 

OJ (~ 1 ( ~ ), ••• ,~ L (v), v ) > 0, i = L + 1, ..• , K 
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where ~j(v), j = 1, ... ,L are the solutions to l2.5} (as in (2.6)) and the 

virtual prices ~12lvl'v},. "'~lLlvl'v} are the solutions to the equations 

(3.2) i=2,3, ... ,L 

and the other ~·s are similarly defined. In order to simplify notation, 

henceforth the arguments of the functions ~ will be omitted. The demand 

equations (3.1) are conditional notional demand equations. For example, the 

first equation Dl(vl'~12" "'~lL'v) is the notional demand for good 1 condi­

tional on the zero demands for the goods 2,3, ... ,L. The second equation, 

D2(~ 21 ,v2'~ 23""'~ 2L ,v) is the notional demand for good 2 conditional on 

goods 1,3,4, ... ,L all having zero demands. This conceptualization of condi-
t ~ , 

tional demand is essentially the same as that set out in the rationing litera~ 

ture, except that the "ration" above is always zero. 

For the simple two-good case, the regime having observed demands 

x = (0,x2), x2 > 0, is characterized by the condition Dl (vl ,v2) ~ O. The 

condition D2(~ 1 ,v2) > 0 always holds because Dl (~l ,v2) = 0, and vlDl (~l ,v2) 

+ v2D2(~1,v2} = 1 and therefore D2(~1,v2) = 1/v2. Figure 1 clearly demon­

strates that this single condition is sufficient and necessary for the consump­

tion pattern x = (0, __ 1 ). v2 
The role of conditional notional demands in determining the demand regime 

is best illustrated geometrically in the three-good case. Figure 2 illustrates 

the consumers· problem in this instance. The budget constraint is the tri­

angular region (simplex) bounded by A*, B*, and C*. The hyperplane defined 

by these three points is the budget hyperplane. The line A3B3, which contains 

the segment A*B*, is the locus of points in the budget hyperplane at which the 

demand for good 3 is zero, i.e., Y3 = O. Similarly, Y2 = 0 along B2C2 

and Yl = 0 along A1Cl . 
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It is obvious that an interior solution requires that an indifference sur-

face be tangent to the budget hyperplane within the region A*B*C*. An observed 

demand will be zero only if an indifference surface is tangent to the budget 

hyperplane outside of the interior of A*B*C*. Such a tangency occurs at the 

point Z having notional demands ql > 0, q2 > 0, and q3 < O. Define 

indifference contours as the loci of points providing identical levels of 

utility consistent with the budget hyperplane. Zl' Z2' and Z3 are such 

contours associated with point Z. It is clear that these contours are convex 

and never cross since they are merely cross-sections of the unrestricted indif-

ference surfaces. 

Equations (3.1) state that the demand regime (Yl > 0, Y2 > 0, Y3 = 0) 

is uniquely characterized by the conditions 

Dltvl,v2'~3) > a 
(3.3) D2tvl,v2'~3) > a 

D3tvl,v2'V3J < 0, 

that is, the demands for goods and 2 conditional on the nonconsumption of 

good 3 must both be positive and the notional demand for good 3 is non-

positive. Geometrically, this means checking where the tangency of the notional 

indifference contours (such as Z3) occurs along the conditional budget line. 

Since the line A3B3 represents q3 = Y3 = 0, it is therefore the conditional 

(on Y3 = 0) budget line. Note that the contour Z3 is tangent to this condi­

tional budget line above point B* where the conditional notional demand for 

good 2 is negative, thus violating (3.3). Therefore, even though the uncondi-

tional notional demand for good 2 is positive, its conditional demand is 

negative and therefore point Z is not consistent with the demand regime 
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This is not the case for a point such as W in Figure 3, having notional 

demands lql < 0, q2 > 0, q3 < OJ. Its conditional notional demands, given by 

the tangency of the indifference contour W3 and the conditional budget line, 

correspond to the conditions (3.3) and thus to the specified demand regime. 

This analysis is readily extended to models with more than three goods. A 

mathematical proof is provided as an appendix. Intuitively, evaluating condi­

tional notional demand functions to determine which of a set of nonnegativity 

constraints are binding should be equivalent to evaluating the Kuhn-Tucker 

conditions for the direct utility function underlying those demand functions. 

This important conjecture is also established in the appendix. 
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4. Econometric Model Specification. 

In order to estimate the notional demand equations, a functional form needs 

to be specified which includes a finite number of unknown parameters plus 

stochastic components. These stochastic components reflect random preferences 

or other unexplained factors. Let 8 be the vector of unknown parameters and 

e the vector of random components. The stochastic notional demand equations 

are 

These demand equations can be derived either by maximizing the direct utility 

function subject to the budget constraint as in (2.3) or from an indirect 

utility function through Roy's identity. Let H(v;8,e) be an indirect utility 

function defined as 

(4.2) H(v;8,e) = max W(q;8,e)lvq = l}. 
q 

Applying Roy's identity, the notional demand equations are 

(4.3) q . = a H ~ v;8 ,e) / ~ . K v. a H (v;8 ,e ) 
1 v. J=l J -ov. 

1 J 
i = 1, ... ,K. 

To derive the observed demand equations (2.7) and the regime switching, 

replace the actual prices v in the notional demand equations (2.1) with the 

relevant virtual price. These virtual prices are the solutions to the equations 

(4.3) with qi set equal to zero if its notional value is negative. In the 

analysis of quantity rationing, Deaton (1981) has noted that it may be difficult 

to analytically derive virtual price functions from most flexible function forms 

for the indirect utility function. In subsequent work on labor supply and com­

modity demands, Deaton and Muellbauer (1981), and Blundell and Walker (1982) 

find a generalization of the Gorman polar form of the indirect utility function 
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to be particularly convenient (albeit restrictive) in the derivation of virtual 

prices. This results from the asymmetric manner in which leisure is specified 

compared to commodity demands, and because leisure is the only rationed good. 

Our problem is somewhat different. On the one hand we consider a model in which 

there are many commodities whose demands may be restricted, which complicates 

matters. On the other hand, all of the restricted demands in our model are zero 

rather than positive as in the rationing literature. With zero restricted 

demands, the derivation of virtual prices is considerably simplified as the 

denominator in Roy's identity (4.3) drops out of the virtual price functions. 

If demands for the first L goods are zero, the virtual prices ~i are solved 

from the equations 

(4.4) i = 1, ... ,L 

and the remaining (positive) demands are 

(4.5) 
a H (~ 1 ' ••• ,~ L ' v;8 ,€ ) ~ K a H (~ 1 ' •.• ,~ L ' v;8 ,€ ) 

X. = .. / ~. lV' a 1 av. J= J v. 
1 J 

i = L+l, ... ,K. 

Since ~ K aH(v;8,€) = -aH(v;8,€) 
j = 1 v j a v . aN 

J 
is always negative, in order to observe 

this pattern of demand the following must hold 

aH (vl ,~ 12' ... ,~ 1 L ' v ;8 ,€ ) 
W > a 

I - aVl 

(4.6) 

aH (~ 1 , ... ,~ L ' v;8 ,f ) 

and < a for o V. 
1 

= L+l, ... ,K. 
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(~; ... 'WL'XL+l, ... ,XKJ. The contribution of this consumption pattern to the 

likelihood function is 

J 
00 ( 00 

(4.7) Qc(X;8) = ... J f«'1,···,wL,xL+l,···,xKl)dwl,···,C't· a a -

Note that the demand equation for xK can be dropped from the likelihood function 
K _ 

due to the linear dependence ~i=L+lvixi - 1. The probability that this regime 

occurs is 

(4.8) Pr(c) = Jo
w 

••• Jo
w 

Jooof«'1, ... ,wL,XL+l, ... ,XK)dOI, ... ,dwL)dXL+l, ... , 

dXK 

(''') JW J 00 ( 00 

for L < K - 1. For L = K - 1, P r ( c ) = J 0 0 ( 0··· J oft w 1 ' . . . ,W L' 

xL+l, ... ,XK_l)d"1, ... ,d(t)dxL+l, ... ,dxK-l). Let li(c) be a dichotomous indi­

cator such that li(c) = 1 if the observed consumption-pattern for individual 

i is the demand regime c, zero otherwise. The likelihood function for a 

sample with N observations is 

N I.(c) 
(4.9) L = .II n [Qc(X i ;8)] 1 

1=1 c 

The parameter vector 8 can be estimated by the method of maximum likelihood. 

As an illustration of the notional demand approach, consider the translog 

indirect utility function of Christensen, Jorgenson and Lau (1975), 

(4.10) 

where € is a K-dimensional vector of normal 
K 

normalization, it is convenient to set ~ a. = 
. 1 1 1= 

variables N(O,~)~ 
K 7/ 

-1 and ~€. = 0·­
. 1 1 1= 

notional share equations derived from Roy's identity are 
K 

a. + ~. l~" 1 nv J· + € • 
1 J= 1J 1 V.q. = 0 

1 1 
(4. 11 ) i = 1, ... ,K 
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K K where 0 = -1 + ~i=l~j=ll3ijlnVj. Consider the regime for which the quantity 

demanded for one of the goods is zero and positive for all others, i.e., xl = 0, 

x2 > O""')'K > 0. The virtual price ~l as a function of v2, ... ,vK, is 

The remaining 

(4.12) v·x. 
1 1 

positive share equations are 

l3 il K l3 il l3 il 
a. - a la- + ~ '-2 (13 " - 13 1 '-aJl n v· + €, - ~ 1 

1 ~ll J- lJ J~ll J 1 ~ll 
= ----~~~----~------~~----------~~ 

~ '~2 (j3 .' - 13 • 1(3 'j)l n v' - ( 1 + a 1 13 1) - 13 • 1 ' J- J - J - ':---€ 
13" 13,,' 13" 1 

i = 2, ••• , K 

_ K 
where (3.j - ~i=ll3ij' Note from the above equations that €i can be expressed 

as functions of xi and fl' The switching conditions for this demand regime 

are 

and xi > 0, i = 2, ... ,K. 

Let f(€l) be the density function of €l and g{€2""'€K-11€1) be the 

conditional density function, conditional on €l' The Jacobian transformation 

Jl(x'€l) from (€2""'€K-l) to (x2, .. ·,xK_l ), which can be derived from 

(4.12), is a function of x and fl' The likelihood function for this demand 

regime is 

( 00 

J K g(€2""'€K-11€l)f{€1)de l 
- (a 1 + ~ j = 113 1 j 1 n v j ) 

where €i,i=2""'€K_l are functions of x and €l from (4.12). Now consider 

the demand regime in which the demands for the first two commodities are zero 

and all remaining demands are positive. The virtual prices ~l and ~2 as 

functions of v3, .. ,vK are 
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l
ln~ \ 

ln~:J 
(j (j 

where B = [(j ll(j 12J. The remaining positive shares are 
21 22 

(4.13) 
K + (j l' 2 1 n~ 2 + ~. ..8 .. 1 nv . J=s 1J J 

+ E. 
1 ; = 3, ..• ,K. 

The E i ,i=3, ... ,K, can be expressed (from (4.13)) as functions of x,e l and 

E 2• The regime switching conditions are as follows. The virtual price 

~12(vl,v3, ... ,vK) is 

and the first condition is 

where 

and the second condition is 

where 

(j 21 K K s2 = -(a 1 + ~ . ..8, .1 nv .) - a 2 - ~ . ..82 . 1 nv .. 
(jll J=c- J J J=c- J J 
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13 12 13 21 
Let 111 = €l - 13

22 
€2 and 112 = €2 - ifil€l' Let g(€3,··q€K_11111,112) be the 

conditional density function of l€3'''''€K-l)' conditional on 111 and 112 

and f(111,112) be the marginal density of 111 and 112' The likelihood function 

for this regime is 

(00(00 

Js
2 

Jslgl€ 3"" '€K-1111 1 ,112}f(111 ,112}d111d112' 

The likelihood function for other regimes can similarly be derived. 

For some cases, we may specify the utility function or the demand equations 

instead of the indirect utility function. Consider the demand equations derived 

from the quadratic utility function and analyzed in Wegge (1968) 

(4.14) -1 = a 'Y 

1 
and qK = vKll vlql-" .-vK-lqK-l) where a is a lK-l) x tK-l) matrix and 

'Y is a tK-l) vector. The (i ,j)th entry of a is 

a .. = 
lJ 

and the ith element of 'Y is 

where (€l"" '€K) are random terms N(O,~) and aiO' aij are unknown para­

meters. The quadratic utility function corresponding to these demand equations 

is 

(4.15) 
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where a·· = a· .. A simple normalization that can be adopted for parameter 
1J J1 

identification is var{e 1) = 1. Wales and Woodland (1983) have derived the 

likelihood function for this demand system with limited dependent variables from 

the Kuhn-Tucker conditions. Below, we derive the likelihood using the 

virtual price approach. It is important to note that a ij is a function 

depending on vi' Vj and vK only, and not on the other prices, and that 

1i is a function of vi and vK only. Consider the demand regime where 

xl = 0 and all other xi's are positive. Evaluating a and 1 at the 

virtual price vector (~1,v2, ... ,vK)' we have 

0 ) 

x2 
al v = ~ 1 

= 11 = ~ 1 . 1 
vl 

xK- l 

This implies that the positive demand equations are 

(4.16) 

-1 (1 

[

C!22, ... ,a 2 ,K_l 1 2 

= a K _ 1 ,2 ' ••. ,a K ~ 1 , K - 1 : 

1K-1 

and the first regime condition is 

(4. 17) 

where denotes the first row of -1 
a 

likelihood function for this regime is 
( o la 22 , ... ,a 2K- l 

Lro9(12, ... ,1K_llwl)f(W1)d(Vlldet: : I· 

a K _ 1 ,2 ' ••• ,a K - 1 , K - 1 
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Now consider the demand regime x1_ = 0, x2 = 0 and xi > 0, 

At the virtual prices ~ltv3, ... ,vK) and ~2lv3,.·.,vK}, 

which implies that 

(4.18) 
(a33, ... ,a3K-l 1-1[13 I 
l iK_1,3,ooo,lK_l,K_l ;K-1Jo 

Since, at the virtual price ~12(vl ,v3,···,vK), 

t4.19) 
= 1 I _ 

v2 - ~12' 

i = 3, ... ,K. 

the solution of xl from (4.19) provides the first regime switching condition, 

which is 

-1 
a 11 a 1 3 ' • • • ,a 1 K - 1 

(4.20) a 31 a33,···,a 3K- l < o. 

Similarly, the second regime switching condition is 
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(4.21) 

( 

l
a 22 , ... ,a 2K- l 

lK-12 •. ··.aK-l.K-l 
< 0 

Denote the random vari ates on the 1 eft hand sides of (4.20) and l4. 21) by (')1 

and (.)2 respectively. The log likelihood function for this regime is 

( ) 

l
a33 •... ,a3K-l j 
. . I 

a~ _ 1 ,3' ... '~K - 1 K - 1 

where 13, ... ,1K_l are functions of x from (4.18). The likelihood function 

for other regimes can be similarly derived. Note that the explicit expressions 

for the virtual prices cannot be derived analytically in the quadratic case. 

Nevertheless, this example has demonstrated that it may not be necessary to 

explicitly solve for the virtual prices in order to derive the observed demand 

equations and the regime conditions. 
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5. Relationship of This Approach With Tobit Models. 

The econometric model of consumer demand with limited dependent variables 

set out above is not the familiar Tobit model (Tobin (1958)) nor the simul­

taneous equations Tobit model of Amemiya (1974). However, there are both 

structural differences and similarities among these models. 

Consider the two-good case. The notional demand equations are 

and 

These two equations are functionally dependent because they satisfy the budget 

constraint 

Thus there are at most three different regimes for the observed quantities 

Regime 1: Both xl > 0, x2 > O. 

The positive demand equations are xl = 01(vl ,v2;O,e) and the conditions 

are 01 (v1 ,v2;o ,e) > a and 02(v1 ,V2 ;O,e} > O. 

Regime 2: xl = 0, x2 > O. 

The positive demand equation is 

condition is 01(v1,v2;O,e) ~ O. 

Regime 3: xl > 0, x2 = O. 

= _1 and the regime v2 
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and the regime 

condition is D2lvl'V2;8,e) ~ O. 

Because of the budget constraint l5.3), the condition D2(vl ,v2;8,e) < a is 

equivalent to the condition Dl (v"V2;8,e) ~ ~ and the condition 
1 

Dl (vl ,v2;8,e) ~ a is equivalent to the condition 02(v l ,V2 ;8,e) ~~. Combining 
Z 

the three regimes 

(5.4) = 01 tv, ,v2 ;8,e) 

= a 

1 
if 01 (v, ,V2 ;8,e) ~ v , 

if _1_ > 01 tVl ,v2 ;8,e) > a v, 
if 0, (v, ,vZ;8 ,e) ~ a 

which is, in effect, the two-limit Tobit model of Rosett and Nelson (1975). If 

good 2 was always consumed in positive amounts, we have a standard Tobit model. 

With appropriate separability assumptions, the K goods case can be reduced to 

a set of independent two-limit Tobit equations. This approach significantly 

reduces the computational burden but such strong restrictions on preferences may 

not be realistic. In the unrestricted case, consumer demand equations are more 

closely related to the multivariate and simultaneous equations Tobit models of 

Amemiya (1974). As an example, consider the case where one of the commodities 

is always consumed, say xK > O. Following Wales and Woodland (1983), the Kuhn­

Tucker conditions for utility maximization are 

and 

VKU i (x;8,e) - vi Uk(x;8,e) ~ a 
V~x = 1 

X.(VKU.(x;8,e) - v.UK(x;8,e) = a 
1 1 1 

i = 1, ... ,K-l 

i = 1, ... ,K-l. 
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K-1 ) . . t· th After substituting xK = (1 -!:. 1v.x. Iv into the remalnlng equa lons, ese 
1 = 11K 

conditions can be rewritten as 

(5.5) i = 1, ... ,K-l 

and 

(5.7) Fi (xl, ... ,xK_l ;8,e) = 0, otherwise. 

This system, which relates the dependent variables x1, ... ,xK_1 in a direct 

interactive way, is similar to the formulation of simultaneous equations with 

limited dependent variables of Amemiya even though the equations in the latter 

model are usually expressed in linear form. Furthermore, the former system may 

not have the conventional meaning of simultaneity. Our approach differs from 

that approach in that we specify the IIreduced form ll equations first and incor-

porate the structural differences of different regimes through the use of virtual 

prices. In general, the observed system is a switching multivariate equations 

model where the regime criteria consist of multivariate inequality rules. 
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6. An Illustration: Analyzing Energy Price Policy in Indonesia. 

In this section we discuss the application of the econometric model set out 

above to estimate a system of demand equations derived from the quadratic utility 

function (4.15). The data used in the estimation are taken from the 1976 National 

Socia-Economic Survey of Indonesia (SUSENAS 1976) carried out by the Biro Pusat 

Statistik (Central Bureau of Statistics). This survey provides detailed informa­

tion on the expenditure pattern of 51,816 households. The survey was conducted in 

three subrounds--January-April, May-August, and September-December, with approx­

imately one-third of the sample surveyed in each subround. 

The purpose of this exercise is not only to illustrate our approach to 

estimating demand systems with limited dependent variables, but also to analyze the 

change in welfare among consumers resulting from increases in the price of energy 

in Indonesia. This is an important issue in the Indonesian government's delibera­

tions on reducing the large subsidies provided consumers of energy. The measure of 

welfare gain and loss used is the compensating variation associated with any price 

change. We will only briefly sketch the compensating variation results and their 

policy implications here as they are discussed at length in Pitt and Lee (1983). 

Five expenditure categories are distinguished in this analysis. These 

categories, aggregates of the more than 150 individual consumption items provided 

by the SUSENAS survey, are food and beverages, apparel, fuel, housing and other 

nondurables. Price indices for the five expenditure aggregates are constructed 

from price data derived directly from the 1976 SUSENAS tapes, from retail prices 

used in the construction of cost of living indices specific to 39 cities, from 

other household surveys and from other market price information collected by 

various Indonesian government agencies. The poor infrastructural and market 

separation of island Indonesia result in sUbstantial price variation in cross­

section. The construction of each price index as well as the other data used in 



TABLE 1 

Parameter Estimates of the 
Quadratic Utility Function* 

Maximum Likelihood Estimate Asymptotic t-ratio 

cl0 .2482 1.57 

cll .1551 7.07 

c12 .1769 1.24 

c13 .0259 0.20 

c20 .0502 0.16 

c21 -.0577 -1.07 

c22 -.0420 -0.11 

c23 -.0042 -0.01 

c30 .0703 0.49 

c31 .0697 3.32 

c32 .0922 0.85 

c33 .0165 0.17 

c40 .0949 0.70 

c41 .0569 2.58 

c42 .0649 0.57 

c43 .0123 0.11 

c50 -.1034 -1.37 

c51 -.0671 -5.68 

c52 -.0534 -0.75 

c53 -.0283 -0.38 

all -.0142 -32.27 

a21 .0439 22.43 

a31 -.0069 -17.51 

a41 .0126 7.86 

a51 .0132 31.92 

... Continued 



Maximum Likelihood Estimate Asymptotic t-ratio 

a22 .0384 1.65 

a32 -.0087 -5.52 

a42 -.1646 -14.53 

a52 -.0824 -22.93 

a33 .0059 11.07 

a43 -.0029 -4.00 

a53 -.0002 -.057 

a44 -.1990 -15.53 

a54 .0131 5.90 

a55 -.0178 -22.25 

a2 .6434 3.80 

a3 .8345 12.69 

a4 1.0095 15.02 

a5 .4766 20.25 

P 21 -.1153 -1. 15 

P 31 -.0150 -0.29 

P 41 - .1755 -2.74 

P 51 -.3336 -5.97 

p32 -.0216 -0.11 

p42 -.0146 -0.06 

p52 .0250 0.12 

p43 .0046 0.06 

p53 -.0136 -0.18 

p54 .0299 0.42 

* For the parameters Cij' i refers to goods and has the values: i=l, food; i=2, 
apparel; i=3, housing; i=4, fuel; i=5, other nondurables. The values of j .are: 
j=O, intercept; j=l, household size; j=2, Jan-April; j=3, May-August. The para­
meters aij' variances ai and correlation coefficients Pij have subscripts 
which refer only to goods as in i above. 
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this analysis is described in Pitt and Lee. 

The parameters of the quadratic utility function were estimated using a sample 

of 767 households randomly drawn from the 1976 SUSENAS survey. Zero levels of 

consumption were often observed for both the clothing and housing expenditure 

categories. The zero levels of housing expenditure represent an imputed market 

valuation of housing of zero. This would correspond to housing of such simple 

construction or poor quality that no market exists for its sale, construction or 

rental. 

The presence of two commodities for which zero demand is observed means that 

there are four demand regimes (as defined in Section 2): a regime where all five 

goods are consumed, two regimes in which either clothing or marketable housing is 

not consumed, and a regime in which both clothing and marketable housing are not 

consumed. There are households in the sample corresponding to all four regimes. 

In order to allow for the effects of season and household composition on 

demands, the parameters aio of the utility function (4.15) were assumed to be 

linear functions of seasonal dummy variables and the size of the households (SIZE), 

as follows: 

(6.1) a. = c· + c' l SIZE + c' 2 Jan-April + c' 3 May-August, 
10 10 1 1 1 

i = 1,5 

The maximum likelihood estimates of the parameters of the quadratic utility 

function were obtained using the quadratic hill-climbing methods of Goldfeld and 

Quandt (1972) and are presented in Table 1. The normalization adopted for para­

meter identification is var (e l ) = 1. The asymptotic t-ratios reported in the 

table suggest that the seasonal component of demands (c i2 ,c i3 ) is not significant. 

However, household size (c il ) is significant in the relations (6.1) for the cases 

of food, housing, fuel and other nondurables. The positive signs of the coef­

ficients cll ' c31 ' c41 mean that the marginal utility of food, housing and fuel 
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are higher the larger is household size given an allocation of the five commodities. 

All but two of the quadratic terms of the utility function (a. .) a re s ta tis tic a 1 -
lJ 

ly different from zero at the .01 level of significance. All of the variance 

~ are significantly greater than zero as expected and some of the correlation 

coefficients of the stochastic terms are also statistically significant. 

Table 2 presents compensating variation estimates by income class for urban 

and rural households in Indonesia. For Indonesia as a whole, the compensating 

variation associated with a 25% increase in the energy price in 1976 is Rp 162 

(US$0.39) per month per household or .795% of average household expenditure. 

While the upper income class has the largest absolute compensating variation, 

the middle income class has the largest proportionate compensating variation. The 

lowest income class has both the lowest absolute and proportional welfare loss, as 

measured by compensating variation. 

The patterns across income classes for urban and rural households separately 

are rather different. Compensating variation as a percentage of base (actual) 

expenditures declines with income among urban household but increases with income 

among rural households. As Pitt and Lee demonstrated, there is also substantial 

inter-regional variation in these results. As there were 26,648,000 households in 

Indonesia in 1976, a suitably distributed transfer of Rp 51,804 million (US$124.8 

million) would have been sufficient to make Indonesian households indifferent 

between the actual level of energy prices and a level of energy prices 25% higher, 

assuming that there were no other changes in prices and income. This transfer 

seems small indeed compared to the economic subsidies provided petroleum fuels. In 

fiscal 1981/82, this subsidy was Rp 2.8 trillion (US$4.4 billion or Rp 1.50 tril­

lion in 1976 prices). 

Finally, in Table 3 the demand effects of compensated fuel price increases of 

25% and 50% are presented. As is required by demand theory, fuel demand falls in 



Income Group 

Urban Households Lower 

Middle 

Upper 

Average 

Rural Households Lower 

Middle 

Upper 

Average 

Total Households Lower 

Middle 

Upper 

Average 

TABLE 2 

Compensating Variations for a z5 Percent Increase 
in Fuel Prices (Rupiah per month per household) 

Average House-
hold Size 

6.09 

5.43 

4.54 

5.L7 

5.15 

4.45 

3.61 

4.74 

5.22 

4.66 

3.98 

4.83 

Share of 
Households 

in Class 

3.68 

7.8Y 

5.88 

17.44 

44.35 

29.49 

8.71 

82.56 

48.03 

37.38 

14.59 

100.00 

Base Expenditures 
{R~) 

16090. 

27257. 

52948. 

33560. 

11 g]2. 

21186. 

34224. 

17612. 

12287. 

22467. 

41767. 

20393. 

Compensated 
Expenditures 

(R~} 

16231. 

27453. 

53276. 

33789. 

12061. 

21371. 

34543. 

17760. 

12380. 

22655. 

42089. 

20555. 

Compensating 
Variation 
__ CRPl 

14l. 

196. 

327. 

229. 

9U. 

186. 

319. 

148. 

94. 

188. 

322. 

162. 

Percent 
C.V. 

.877 

.72u 

.618 

.682 

.748 

.877 

.931 

.841 

.761 

.837 

.771 

.795 



TABLE 3 

Effects of Compensated Fuel Price 
Increases on Demand 

(percent change) 

Compensated 25 Percent Fuel Compensated 50 Percent Fuel 
Price Increase Price Increase 

Urban Rural Total Urban Rural Total 

Fuel -2.200a -6.436 -5.359 -4.360b -12.632 -10.529 

Food +0. 167 +0.518 +0.448 +0.344 +1.057 +0.915 

Appare 1 -1.694 -3.694 -3.313 -3.341 -7.234 -6.491 

Housing -0.068 +0.587 +0.403 -0.118 +1.267 +0.878 

Other 
Nondurables +1.518 + 7.472 +5.562 +3.049 +14.950 +11.313 

a) These values can be converted into compensated arc elasticities 
through division by 25. 

b) These values can be converted into compensated arc elasticities 
through division by 50. 
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response to a compensated increase in its price. The arc price elasticity of 

demand for fuel corresponding to a compensated 25% increase in fuels price is 

-.214. It is only slightly less in absolute value for a 50% price increase. 

The table also demonstrates that for the total of rural and urban households, 

food, housing and other nondurables are substitutes for fuel while apparel is a 

complement. Other nondurables and apparel consumption are the proportionately 

most sensitive to a fuel price increase. There is some difference between rural 

and urban households. Rural household demand for all five goods is more sensitive 

to a change in the fuel price than are urban households. In particular, rural 

household fuel elasticities are triple those of urban households. 
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7. Conclusions. 

In this article, we have considered the specification and estimation of 

models of consumer demand where the demanded quantities for certain commodities 

are zero for some consumers. The models specified recognize that the observed 

demands are the result of optimal choice. Our approach generalizes the previous 

econometric work of Wales and Woodland (1983) in that demand relationships 

derived from either direct and indirect utility functions can be estimated. Our 

approach utilizes the concept of virtual prices originated in the quantity 

rationing literature. Virtual prices transform binding zero consumption quantit­

ies into nonbinding quantities, and provide a rigorous justification for struc­

tural shifts in the observed lpositive) demand equations across demand regimes. 

Switching conditions, which determine the occurrence probabilities of different 

demand regimes, are provided in terms of notional (latent) demand equations. The 

relationship between this approach and the conventional single equation and 

simultaneous equation Tobit models is also considered. 

We have used the approach described in this article to estimate a complete 

system of demand equations using a household budget survey for Indonesia. A 

demand system for five commodities was estimated with a sample of 767 households. 

The computational cost of estimating this demand system, in which there were 

at most two nonconsumed goods for each household, was quite moderate. How-

ever, because the econometric model is highly nonlinear and the censoring 

problem is multivariate in nature, computational difficulty and cost may 

increase rapidly with the number of conconsumed commodities. 

Finally, although this article has concentrated on the anlysis of consumer 

demand, the approach can also be applied to the analysis of production at the 

level of the firm where the derived demand for certain inputs may be zero. An 



example of this problem is found in Pitt l1983c}, where an industrial census from 

Indonesia is used to estimate a multi-input production structure. In the second 

stage of a two-stage cost minimization problem, firms choose among a set of 

alternative fuels to meet an energy requirement determined in the first stage. 

As these fuels are close substitutes, most firms in the sample do not consume all 

of them. However, as estimation of production structures with binding nonnegativ­

ity constraints differs somewhat from the estimation of consumer demand systems, 

its discussion will appear elsewhere. 
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Footnotes 

1. This point is observed in the approach of Burtless and Hausman (1978) 

in studying the effects of taxation on labor supply. 

2. In this article, we use the convention that v > 0 means vi > 0 for 

all i, and v ~ 0 means vi ~ 0 for all i. 

3. Survey sampling errors, such as reporting errors, may introduce zero 

quantities in observed samples. Such measurement error problems will not be 

considered in this article. A relatively simple model with reporting errors 

is in Deaton and Irish (1982). 

4. Sometimes only the components of p* which are subject to rationing 

are referred to as virtual prices. In this article, virtual prices are 

those price vectors which support boundary points of the simplex 

{yly ~ 0, v~y = l}. 

5. Browning (1983) has shown that the unconditional cost function can 

theoretically be recovered from a conditional cost function. The necessary 

conditions for the conditional cost function are also sufficient for the 

recovery of the unconditional cost function when the rationed quantities are 

positive. Our approach starts with the unconditional functions. Identifi­

cation in this article refers to parameter identification given functional 

forms for the unconditional functions. 

6. One can also specify other distributions if they are of interest. 

Normality is of interest because of its additive property. 

7. It is necessary to specify ~i~l€i = 0, since, for the homogeneous 
K case ~i=l~ij = 0 so that D = -1 in the share equations (4.11) and the 

sum of the shares is unity. 



-30-

. References 

Amemiya, T., (1974), "Multivariate Regression and Simultaneous Equation Models 

When the Dependent Variables are Truncated Normal ", Econometrica 42:999-

1012. 

Blundell, R., and I. Walker, (1982), "Modelling the Joint Determination of House­

hold Labour Supplies and Commodity Demands", Economic Journal 92:351-364. 

Browning, M.J., (1983), "Necessary and Sufficient Conditions for Conditional Cost 

Functions", Econometrica 51:851-856. 

Burtless, G., and J.A. Hausman, (1978), liThe Effect of Taxation on Labour Supply: 

Evaluating the Gary Negative Income Tax Experiment", Journal of Political 

Economy 86:1103-1130. 

Christensen, L., D. Jorgenson and L.J. Lau, (1975), "Transcendental Logarithmic 

Utility Functions", American Economic Review 53:367-383. 

Deaton, A.S., (1981), "Theoretical and Empirical Approaches to Consumer Demand 

Under Rationing", in Essays in the Theory and Measurement of Consumer 

Behavior, edited by A.S. Deaton (Cambridge: Cambridge University Press). 

Deaton, A.S., and M. Irish, (1982), "A Statistical Model for Zero Expenditures in 

Household Budgets ll
, University of Bristol, manuscript, April. 

Goldfeld, S.M., and R.E. Quandt, (1972), Nonlinear Methods in Econometrics 

(Amsterdam: North-Holland). 

Howard, D.H., (1977), "Rationing, Quantity Constraints, and Consumption Theory", 

Econometrica 45:399-412. 

Hurwicz, L., and H. Uzawa, (1971), liOn the Integrability of Demand Functions", in 

Preferences, Utility and Demand, edited by J.S. Chipman, L. Hurwicz, M.K. 

Richter and H.F. Sonnenschein (New York: Harcourt Brace Jovanovich), pp. 114-

148. 



-31-

Neary, J.P., and K.W.S. Roberts, (1980), liThe Theory of Household Behavior Under 

Rationing", European Economic Review 13:25-42. 

Pitt, M.M., (1983a), "Food Preferences and Nutrition in Rural Bangladesh", The 

Review of Economics and Statistics LXV:105-114. 

Pitt, M.M., (1983b), II Equity , Externalities and Energy Subsidies: The Role of 

Kerosene in Indonesia", Journal of Development Economics, forthcoming. 

Pitt, M.M., (1983c), "Estimating Industrial Energy Demand With Firm-Level Data: 

The Case of Indonesia", Energy Journal, forthcoming. 

Pitt, M.M., and M.R. Rosenzweig, (1983), "Agricultural Pricing Policies, Food 

Consumption and the Health and Productivity of Farmers", in Agricultural 

Household Models: Extensions and Applications, edited by I. Singh, L. Squire 

and J. Strauss (World Bank), forthcoming. 

Pitt, M.M., and L.F. Lee, (1983), liThe Income Distributional Implications of 

Energy Price Policy in Indonesia", manuscript, September. 

Pollak, R.A., (1969), "Conditional Demand Functions and Consumption Theory", 

Quarterly Journal of Economics 83:60-78. 

Pollak, R.A., (1971), "Conditional Demand Functions and the Implications of 

Separable Utility", Southern Economic Journal 37:423-433. 

Rosett, R.N., and F.D. Nelson, (1975), "Estimation of a Two-Limit Probit Regres­

sion Model II , Econometrica 43:141-146. 

Rothbarth, E., (1941), liThe Measurement of Changes in Real Income Under Condi­

tions of Rationing", Review of Economic Studies 8:100-107. 

Strauss, J., (1983), "Determinants of Food Consumption in Rural Sierra Leone ll
, 

Journal of Development Economics 11:327-353. 

Tobin, J., and H.S. Houthakker, (1950-51), liThe Effects of Rationing on Demand 

Elasticities", Review of Economic Studies 18:140-153. 



-32-

Tobin, J., (1958), IIEstimation of Relationships for Limited Dependent Variables ll
, 

Econometrica 26:24-36. 

Vartia, Y.O., (1983), IIEfficient Methods of Measuring Welfare Change and 

Compensated Income in Terms of Ordinary Demand Function ll
, Econometrica 51: 

79-98. 

Wales, T.J., and A.D. Woodland, (1983), IIEstimation of Consumer Demand Systems 

With Binding Non-Negativity Constraints ll
, Journal of Econometrics 21:263-

285. 

Wegge, L., (1968), liThe Demand Curves From a Quadratic Utility Indicator ll
, Review 

of Economic Studies 35:209-224. 



· -33-

Appendix: Proof that the Conditions (3.1) Uniquely Characterize Demand Regimes 

Inductive argument will be used to prove that the conditions (3.1) are valid 

conditions for the determination of the corresponding demand regime. First, 

consider the simple two-goods case. From the budget constraint v~x = 1, it is 

clear that one of the goods must be consumed. Consider the regime in which 

demand for the first good is zero and positive for the second, i.e., xl = a and 

x2 > O. The solution of the unconstrained problem (2.3) gives the notional 

demand equations 

(A.l ) i = 1,2. 

If both ql and q2 are positive, the constrained problem (2.2) will have an 

interior solution x, > a and x2 > 0, which is a contradiction. Because of 

the constraint v,ql + v2q2 = 1 and v > 0, only one of the components of 

q = (ql,q2) can be negative or zero. As U(y) is quasi-concave, the set 

S = {yl v~y = "U(y) > U(--' ,a)} v, 

is convex and therefore necessarily a connected set. Since U(ql,q2) > U(0'~2) 

and U(O,~) > U(&-,O) (as (xl ,x2) = (O,~»), it follows that q, must either 
212 

be negative or zero. This situation is clearly illustrated in Figure'. There-

fore xl = a is characterized by D,(v"v2) ~ 0, and since x2 = D2(~,(v2),v2)' 

x2 > a is c~aracterized by D2(~1(v2),v2) > o. 
Now consider the K goods case where x, = a but x· > a for 

1 
i = 2, ... ,K. 

Given the consumption pattern x, = 0, xi> a for all i = 2, ... ,K, we want to 

show that the conditions (3.') are necessary. By the construction of the virtual 

price vector for xl = 0, x· > 0, 
1 

i = 2, ... ,K, 

; = 2, •.. ,K. 
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Hence Di(~1,v2, ... ,vK) for i = 2, ... ,K are necessarily positive. It remains 

to be shown that Dl (vl,v2""'vK) ~ O. Define the function V(Yl,r) as 

(A.2) V(Yl,r) = max {U{Yl'Y2"" 'YK)lv2Y2 + ..• + vKYK = r} 
Y2""'YK 

As noted by Neary and Roberts (1980), the function V{Yl,r) will be quasi-

concave on (Yl,r) when the utility function U is quasi-concave. With this 

construction, it is obvious that the optimal problem in (2.3) can be reduced to a 

two-commodity problem 

(A.3) 
= max {V(Yl,r)lvlYl + r = l}. 

Yl,r 

Let (ql,r*) be the optimal solution of the latter problem in (A.3). It follows 

that 

(A.4) 
* ql = Dl(vl,l) 

= Dl (v l ,v2,oo.,vK) 

and 

(A.5) 

* * where Dl and D2 denote the solution (ql,r) as a function of the normalized 

price vector (vl,l) where 1 is the normalized price for the aggregate good 

r. To prove that ql < 0 is necessary, it is sufficient to prove that (0,1) 

is the optimal solution of the constrained problem 

(A.6) max {V(Yl,r)lvlYl + r = 1, Yl ~ 0, r ~ O}. 
Yl,r 

For all (Yl,r) ~ 0 and vlYl + r = 1, we have 
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-If this were not so, there would exist a vector (Yl,r) and a vector Y = 

(Yl'Y2"" 'YK) such that v2Y2 + ... + vKYK = r, vlYl + r = 1 and U(y) > 

U(a,x2, ... ,xK). It follows that there exists a small >.., 1> >.. > a and a 

vector z, Z = AX + (l-A)y, such that v .. z = 1, z:: a and U(z) > U(x) by 

the strictly quasi-concavity of U. As this would be a contradiction, the in­

equality in (A.7) must hold. By the construction of V from (A.2), it follows 

that V(a,l):: U(a,x2, ... ,xK). Hence (0,1) is the optimal solution of (A.6). 

* It follows from the two-goods case that it is necessary that Dl(vl ,1) ~ 0, i.e., 

Dl (v l ,v2, ... ,vK) ~ a. Furthermore, that these conditions are sufficient to 

determine the demand regime xl = 0, xi > a for i = 2, ... ,K, can be shown as 

follows. We note that the solution of the optimum problem 

(A.B) max {V(Yl,r)lvlYl + r = l} 
Yl,r 

is given in (A.4) and (A.5). The condition Dl (v l ,v2, ... ,vK) ~ 0 implies that 

the optimal solution of the constrained problem in (A.6) for the two-good case is 

(0,1) * since Dl(vl,l) .2. 0 . Hence it follows from (A.6) and (A.2) 

v(a,l) = max {V(Yl,r)/vlYl + r = 1, Yl ::0, r> O} 

(A.9) 
Yl'r 

> max {U(Yl'Y2"" 'YK)/vlYl + v2Y2 + ... + vKYK = 1, Y ~ Of. 
Yl ' ... 'YK 

By construction (as in (A.2)), we have 

(A.la) v(a,l) = max {U(O'Y2'''''YK)IV2Y2 + ... + vKYK = 11. 
Y2'''''YK 

The virtual price vector (~1(v2'" .,vK),v2, .. · ,vK), supports the quantities 

(a,D2(~ 1 ,v2"" ,vK),··· ,DK(~ 1 ,V2'··· ,v K)) and 



(A.11) 

Since 
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U ( 0,°2 (~ l' v 2' ... , v K ) , ... ,OK (~ 1 ' v 2' ... , v K )) 

= max {U(Y1 ""'YK)I~lY1 + v2Y2 + ... + vKYK = l}. 
Y1"" 'YK 

> max {UlO'Y2" "'YK)lv2Y2 + ... + vKYK = 1}, 
Y2"" 'YK 

it follows from this inequality and the relations in (A.9), (A.10) and (A.11) 

that 

U (0, 02 (~ 1 ' v 2' ... , v K) , ... , OK (~ l' v 2' ... , vK) ) 

> max {U(Y1" "'YK)/vlYl + v2Y2 + ... + vKYK = 1, Y ~ a}. 
Yl""'YK 

K 
But since 0i(~1,v2, ... ,vK) > 0, i = 2, ... ,K and .1: viOi(~1,v2, ... ,vK) = 1, 

1 =2 
it follows that 

U ( a , 02 (~ 1 ' v 2 ' ... , v K) , ... , DK (~ 1 ' v 2 ' ... , v K ) ) 

max {U(Yl'" "YK)/vlYl + v2Y2 + ... + vKYK = 1, Y ~ a}. 
Yl , ... 'YK 

= 

Therefore the solution vector x = (xl"" ,xK)~ of the constrained optimal 

problem (2.3) is simply (0,02(~l'v2, ... ,vK), ... ,OK(~l'v2, ... ,vK)) and the 

demand regime is xl = 0, xi> a for all i = 2, ... ,K. 

Consider the more general demand regime where the quantities of the first 

L goods are zero and all others are positive. We want to show that the condi­

tions in (3.1) characterize this regime. To simplify the notation, denote 

v = (vL+l '··· ,vK), Y = (YL+l'" "YK) and x = (XL+l '· .. ,xK), which are sub­

vectors of the corresponding vectors v, Y and x. That the conditions (3.1) 
-are necessary for the regime xl = 0,. ",xL = 0, x > a can be proven as fol-

lows. The virtual price vector (~ltV), .. "~L(v),v) supports the demand 
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quantities and therefore xi = Dil~l(V)' ... '~L(v),v), i = L+1, ... ,K. It then 

follows that 

i = L+1, ... ,K. 

To prove that the remaining conditions of (3.1) are necessary, it is sufficient 

to show that the first condition in (3.1) holds because the other conditions can 

be established in an analogous fashion. Define a utility function in the com­

modity space (Y1'Y) as 

(A.12) 

and consider the corresponding constrained optimization problem, 

(A.13) max_{V1(Y1,y)lv1Y1 + v~Y = 1, Y1 ~ 0, Y ~ o} 
Y1 ,Y 

and the unconstrained optimization problem, 

(A. 14) max_{V1(Y1,y)lv1Y1 + v~y = 1}. 
Yl'Y 

Since x = (O, ... ,O,x) is the solution of the general constrained problem in 

(2.2), it follows that 

U(O, ... ,O,x) > max iV,(Yl,y)lvlYl + v~y = 1, Y1 ~ 0, y ~ a}. 
Yl'Y 

However, note that the subvector (O,x) satisfies the constraints (A.13), so 

therefore 

Vl(O,x) = max_{V,(y, ,y)lv'Y1 + v~y =', Yl ~ 0, Y~. O} 
Yl'Y 

(A.15) 

and (O,x) is the solution to the problem (A.13). Denote the notional demand 

functions of the problem CA.14) as D1i (v1,v), i = 1,L+l, ... ,K. By construction 

(as in (3.2)) at the virtual prices ~li,i = 2, ... ,L, 



tA.16) 

As 

and 

(A.l7) 

Therefore, 

(A.18) 

-38-

max {U(y} I v1Y1 + ~ 12Y2 +_ ... + ~ lLYL + v~y = 1} 
Y 

= u t D 1 tv 1 ,~ 12 ' ... ,~ 1 L ' v) , a , ... , a , DL + 1 tv 1 ,~ 12' ... ,~ 1 L ' v) , ..• , 

DK tv 1 ,~ 12 ' ... ,~ 1 L ' v) ) 

= V 1 (D 1 (v 1 ,~ 12 ' ... ,~ lL ' v) ,D L + 1 C v 1 ,~ 1 2 ' ... ,~ lL ' v ) , ... , 
DK(v1'~ 12""'~ lL'v)), 

= 1, it follows that 

V 1 t D 1 (v 1 ,~ 1 2 ' . .. , ~ 1L ' v ) , D L + 1 t v l' ~ 1 2 ' .. . , ~ lL ' v ) , . .. , D K l v 1 ' ~ 1 2 ' .. . ,~ 1L ' v ) ) 
= max_{V1(Yl,y)lvlYl + v~Y = l}. 

Yl'Y 

i = 1,L+l, ... ,K. 

-As shown in the previous paragraph, the demand regime (O,x), x > 0, for the 

K-L+l commodity space, implies that Dl1 (v l ,v) ~ O. It then follows that 

Di(v1'~12"" '~lL'v) ~ 0, and hence the conditions are necessary for the demand 

regime x = (O, ... ,O,x), x > O. That these conditions are also sufficient can 

be established as follows. First, it can be shown that for the reduced dimension 

problem (A.13), the conditions 

CA.19) 
i = L+l, ... ,K 

will characterize the demand regime (0,QL+1 , .. ·,qK) with qi > 0, i = 

L+l, ... ,K and furthermore the optimal solution for tA.13) is the vector 
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tA.20) to, 0L + 1 (~ 1 tv) , ... ,~ L (v) ,y) , ... , OK (~ 1 tv) , ... ,~ L (v) , v) ) . 

By induction, we know that the consumption pattern (O,qL+l ,.' . .,qK} , qi > 0, 

i = L+l, ... ,K for the problem (A.13) is characterized by the conditions: 

011 (v1 ,v) 2. a 

0li(~ll(v),v) > a i = L+1, ... ,K 

where (~ll(v),v) is the virtual price vector for. the reduced dimension com­

modities system. To prove that the statement in (A.19) holds, we will show that 

i = L+l, ... ,K. 

The relation 0lltvl,v) = 0ltvl'~12""'~lL'v) has already been demonstrated in 

(A.18). By the construction of ~ll' 

But, 

V 1 (0,°1 L + 1 (~ 11 ' v) , ... ,°1 K (~ 11 ,v) ) 

= max-{Vl(Y1,;)1~11Yl + v~; = l}. 
y"y 

max_{Vl(Yl,;)I~llYl + v~; = 1} 
y"y , -) - -

~ m~x {Vl(O,y Iv~y = l} 

~ V~(O,OlL+l(~ll'V)""'OlK(~l1'v)} 

and therefore 

(A.21) max_{V1(Yl,;}1~11Yl + v~; = l} = max {VltO,y}lv~; = l}. 
Yl'y Y 

Furthermore, since 



and 

we have 

(A.22) 
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= U (0, 0, ... ,0, 0L + 1 (~l ' ... ,~ L ,v) , ... , OK (~ 1 ' ... ,~ L ,v) } 

= max {U(y)l~lYl + ... + ~LYL + v~y = l} 
y 

> m!x {U(O, ... ,O,Y)lv~y = l} 
y 

max {U(O, ... ,o,Y)lv~y = l} 
y 

= m!x {Vl(O,Y)lv~y = l} 
Y 

.:.. V 1 (0, 0L + 1 l~ 1 ' ... ,~ L ' v) , ... , OK (~ 1 ' ... ,~ L • v) ) , 

VllO,OL+l (~l""'~ L'v), ... ,OK(~ 1;""~ L'v)) 

= m~x {VllO,Y)lv~y = l}. 
y 

It follows from (A.21) and (A.22) that the vector (O,OL+l(~l""'~L'V)','" 

0K(~ l,""~ L'v)) is the solution to the problem (A.14) and therefore 

i = L+l, ... ,K. 

This proves the statement lA.19). With similar arguments, we can characterize 

all the reduced dimension commodities spaces of the form {YQ'YL+l"" 'YK}' 

Q = 1, ... ,L. Also note that the solutions for all of these reduced dimension 

problems have the form (O,xL+l ' ... ,xK) where 

Finally, it remains to be shown that the K-dimensional vector x = lO, ... ,0, 

xL+l ' ... ,xK) is the optimum solution of the general constrained problem in 

(2.2). For each of the reduced dimension problems, the solution (O,XL+l '· .. ,xK) 

is characterized by a set of Kuhn-Tucker conditions. For the problem with utility 



function 

(A.23) 

V. , 
1 

;E{l, ... ,L}, 

oVilO,XL+l , ... ,XK) 

aYl 
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th~Kuhn-Tucker conditions are 

oVi(0,XL+1,··· ,xK) vi 
aYK vK < ° 

oV i (0,xL+1, ••• ,xK) v· 
----=--..;c...-:.--~::...- ~ = ° aYK vk ' j = L + 1, ••. ,K-l 

VL+1XL+l + ... + vKxK = 1, xi > ° for all i = L+l, ... ,K-l. 

Since Vi (Yi 'YL+l'··· 'YK) = UtO, ... ,0'Yi ,0, ... ,0'YL+l'··· 'YK) for each i, 

i = 1, ... ,L, 

= 
o U ( 0, ... , ° , xL + 1 ' ... , xK ) 

oy. 
J 

j = i,L+l, ... ,K. 

The combination of the L sets of conditions in (A.23) forms the complete set of 

Kuhn-Tucker conditions for the general problem (2.2) and therefore x = (0, ... ,0, 

XL+l' ... ,XK) is the optimal solution. Thus we conclude that the conditions 

(3.1) are sufficient to imply the desired regime. 

As all other demand regimes are merely rearrangements in the order of goods 

so that the quantities of the first L goods are zeroes and the remaining ones 

are positive, the notional demand functions can completely characterize all 

possible consumption patterns. 
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