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ABSTRACT 

Two agents are involved in our model. The first agent is to announce 

a schedule of rewards (or, equivalently, charges) which is a function of 

the amount produced by the second agent. Then the second agent will decide, 

using utility maximization, how much to produce. Knowing only the form'of 

the second agent's utility and production functions--not the exact values 

of their parameters--the first agent seeks to choose a schedule which 

maximizes the minimum (over all possible utility and productivity parameter 

values) of a quantity related to his residual gain (residual gain being 

that part of output remaining after rewards have been paid out). We show 

that in a broad class of cases the only such maximum is a schedule which 

takes one-half of production. It should be noted that this result is 

valid even when schedules are allowed to have certain kinks and/or dis

continuities, so that such discontinuities and kinks do not yield any 

special incentive properties in our model. 

This problem is motivated by situations in which the first agent 

may be thou&~t of as the government and the residual gain (revenue from 

taxation) is to be used for a paramount national or social objective, 

e.g., defense to ensure national survival; in this case the second agent 

represents the country's labor force to be rewarded so as to stimulate 

a degree of effort maximizing the residual available for national defense. 

Another possible interpretation is with first agent as a landlord, the 

second as sharecropper, with value added as the "product" and the problem, 

seen from the landlord's point of view, being that of maximizing his share 

of value added. 

i 



INTRODUCTION 

Our analysis covers at least two models, one from the private and one 

from the public sector. We first discuss the former: a landlord owns 

land which can produce a single good, amounts of which are denoted y. The 

land is worked by a sharecropper. The landlord must choose and announce 

a schedule of rental fees (charges) for the use of his property. The 

schedule takes the form of a "reward" function p(y) prescribing that if y 

t 
units of the good are produced from the land, then p(y) units are to be 

kept by the sharecropper, and y - p(y) units (the "residual gain") paid 

to the landlord. 

The sharecropper's state of satisfaction depends on two factors: 

ii 

the levelof effort expended in producing the good and the amount of reward 

tor 
received. The reward is determined by the output y through the reward 

function p. We shall also make assumptions which imply that effort expended 

is a (single-valued) function of output y. Thus, indirectly, the share-

cropper's state of satisfaction is determined by the level of output y. 

We denote by u(y) the level of satisfaction obtained by producing y units 

of output, and call u the ("indirect") utility function of the sharecropper. 

It is postulated that the sharecropper will produce b units where b 

is a point at which u assumes its global maximum. We call b the worker's 

optimal output. (Thus "optimal" does not mean "Pareto optimal.,,)ttt 

.1. 

lIn a more realistic interpretation, y is the total value added, resulting 
from the operation of the land by the sharecropper. 

tt It is assumed that the landlord is unable to observe the level of the 
worker's effort. It is for this reason that the reward is postulated to be 
a function of output as the variable the landlord can observe. 

ttt 
See Remark 1. 6. 
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It will be convenient to assume until the end of Section 1 (but not in any 

proofs) that u has a unique global maximum b, so the optimal output b is 

uniquely determined. Since the utility of producing y units will depend 

on the reward r = p(y) received by the sharecropper for producing y units, 

as well as on the effort he must expend, the utility u(y) depends on p. 

On the other hand, the landlord's choice of p depends on u because the 

landlord will use his knowledge about the sharecropper to select p so as 

to maximize his profit . 
.J. 

In previous work, lone of us has investigated the extent to which 

these opposed interests (in our model they are the interests of the 

utility-maximizing worker and of the residual gain-maximizing landlord) 

result in a determinate outcome. In that work it was shown that, among 

linear (fixed share) reward schemes, a 50-50 split is best for the landlord 

under certain assumptions concerning production and utility functions . 

Also, a conjecture concerning rewards other than linear ones was stated. 

Here we confirm that conjecture and obtain further results. After making 

some restrictive assumptions concerning production and utility functions 

(less restrictive than those in the earlier work) we will prove that if 

the landlord is motivated solely by his own interests and knows nothing 

about the sharecropper's utility function, and he has at his disposal a 

class of reward functions ("piecewise smooth" functions) which is much 

broader than the linear reward functions,then his best action is still to 

share with the sharecropper, 50-50, the proceeds of production. 

Another model encompassed by our analysis is that of a community 

threatened by an outside danger. The community's total output of goods 

t An early version was presented by Hurwicz at the Conference on the 
Economics of Internal Organization at the University of Pennsylvania, 
September 19-21, 1974. See also Hurwicz [1977]. 
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and servicE's y (which we shall treat as if it were one-dimensional) must 

be divided, between consumption and defense of the community's existence. 

This is done by announcing a reward function p (y) to be applied to individual 

output,t i.e., an individual worker who produces y units will retain p(y) 

for his own consumption and y - p(y), the "residual gain," will go toward 

the community's defense. As in the previous model, each worker is assumed 

to maximize a utility u which is indirectly determined by the level of 

output. Here the community, like t,he landlord of the previous example, 

wants to pick p so as to maximize its residual gain, but the choice of 

such a p depends on u. And the worker's utility, maximized with respect 

to y, depends on p. This example differs from the first in two important 

respects: first, it is natural to assume that the workers, whose paramount 

desire is that the community survive, will want the community to maximize 

the residual gain available to cope with the danger~twhereas the sharecropper 

is presumably not interested in the landlord's '"ximizing his residual gain. 

Second, the lack of information on the part u I ;"he community about which u' s 

are to be faced is due to the variety of workers as well as to their desire 

for privacy. 

For simplicity we will use, in tlJf", remainder of this paper, the terms 

landlord and worker. 

The reader interested in other formuJations of incentive problems in 

sharecropping may refer to works by BanH',ul1 nnd Srinivasan (1()71), Bell and 

Zusman (lC(h), Cheung (J969), and StifJltz (19'(4). [.roach-f' to incentive 

problems which are related to our model can be found in works by Keren 

(1969), Leibenstein (1966), Marschak (1976), and Mirlees (1973). Models 

with analogous structure have been studied by Moi",eev (19'(5) and Vatel and 

Erezhkov (1973). 

tAgain, value added might be a more appropriate interpretation of y. 

ttThe "paradox" is that, despite this desire, the worker's individual 
effort is assumed to be at a level maximizing his own utility rather than 
the community's welfare. But concern for the community's survival would 
presumably make the worker vote in favor of adopting a reward function p 
maximizing the residual gain. 
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1. DEFINITIONS, A SPECIAL CASE, AND AN OUTLINE OF THE PAPER 

1.1 Definitions: utilities U and u, disutilities ~ E ¢, optimal output b 

and profit 7T. 

We let z denote the worker's effort and r the reward which the worker 

receives. t We the worker's utility function can be written in the assume 

form U(r,z) r-ljJ(z). * We assume the production function y = f( z) to be = 

invertible ,tt setting \jJ 0 
-1 that the reward r is so f = ~ and recalling 

given by p(y), we have 

u(y) = U(P(y),f-l(y)) = p(y) - ~(y). 

It is to be noted that the "indirect" utility function u is determined by 

the "direct" utility function U, the production function f, and the 

reward function p. 

We call the term ~(y) appearing in the representation u(y) = p(y) - ~(y) 

the disutility term and call ~ the disutility for short. We assume that 

the landlord knows nothing about which disutility ~ appears in the worker's 

utility function except that ~ is a member of a certain set ¢. Many of 

our definitions and results will depend on what we choose ¢ to be, i.e., 

on what we assume the landlord knows about the worker. 

If the production function f were of the constant returns to scale 

type, f(z) = cz for some c > O,and the disutility term ljJ (in the direct 

utility function U) were quadratic, ljJ(z) = dz
2 

for some d > 0, then we 

would have ~ (y) = 1jJ 0 f-l(y) = 2 ay where a 2 
= die . We denote by ~ the a 

function ~ a (y) = ay2 for y .:::. 0. We refer to the disutilities ~a for a > ° 
t 
r, y, and utilities are real numbers throughout the paper. z is a real 

number in our examples, but much of our analysis is applicable to a multi
dimensional z (see next footnote). 

ttIn fact, we need only assume that for each y > 0, the set {ljJ(z): f(z) = y} 
has a mininum. With this assumption it is more-plausible to view z as 
ranging over a multidimensional or other space, and our results are applicable 
provided that the function ~ 0 F has the assumed properties. 

* See Proposition 7.4 for the case U(r,z) = r Y - ~(z), y~l. 
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as quadratic disutilities. 

Given a reward function p and disutility ~ we define b(P,~) to be 

th 1 b 1 .. ( d' t ) . th t t > 0 f ego a maXlmlzer assume unlque Wl respec 0 y _ 0 

u(y) = p(y) - ~(y), and we call b(P,~) the worker's optimal output. Since 

P will be understood from the context we will suppress it and write b(~), 

the optimal output of the worker characterized by~, Given p and ~ we 

define the landlord's residual gain (or, for short, gain), to be 

n(p,~) = b(~) - p(b(~)), We may write n for n(p,~). One would expect 

the landlord to choose a reward schedule p so as to maximize his gain n. 

In general, "maximizing TI" is an inadequate criterion for choosing 

(see 1.11). but we next discuss a special case where it is adequate, 

1.2 The special case of linear rewards 

t Let us consider the special case where the landlord must choose his 

reward function p from among the linear reward functions, i.e., those of 

the form Pk(y) = ky for some k > 0, and where the set ~ of disutilities 

is that of the quadratics, ~ = {~ : a > O}, 
a 

1.3 Lemma. For any real numbers k > 0 and a > 0 we have 

and 

1-2 

Proof. The optl'mal output b(p rn) l'S defl'ned to be the global maximizer k'TQ' 

of u(y) = ky - ay2 with respect to y ~ 0 and that quadratic function assumes its 

, t k maXl.mum a 2a The gain n(pk'~Q') is defined to be 

t This assumption is made mainly for simplicity of exposition and is not 
needed in any proofs (see Remark 2.3). We drop this uniqueness assumption 
in Sections 3, 4, and 5, where our main results are proved. 
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k(~) 
2a 

= -l k(l - k). 
2a 

The next lemma is obvious but we will need to refer to it often. 

1-3 

1.4 Lemma. The maximum of k(l - k), with respect to k, occurs only at k 

Thus the inequality t ~ k(l - k) has only one solution, namely, k = ~. 

The next result follows from the previous two lemmas. It was first 

proved in [Hurwicz, 1977]. 

1.5 Theorem. For each a > 0 the maximum of TI(Pk'~a)' with respect to k ~ 0, occurs 

only at k 
1 = 2' Thus if the landlord is restricted to choosing linear reward 

functions Pk' k ~ 0, and faces guadratic disutilities ~a' a > 0, he can 

maximize gain only by choosing the reward function p*(y) = ~ for all y > O. 

We will use the symbol p* throughout the paper for the reward function de-

fined by p*(y) = ~ for y ~ O. 

1.6 Remark. Because this paper deals with the objective of maximizing 

t,he residual gain of the landlord it is important to note that, in general, 

the "joint welfare" of the landlord and the worker is not being maximized. 

In particular, the solution just offered (k = ~) does not yield an allo-

cat ion that is Pareto optima.l for the worker and t,he landlord. It is not 

difficult to see that, among the linear solutions {Pk: k ~ a}, the only 

one t,hat is Pareto optima] gives to the worker all of the output (k = l). 
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1. 7 Outline of the paper 

The previous theorem says that if the landlord (1) must choose his 

reward schedule from the linear ones P
k

' (2) faces only quadratic dis

utilities ~ , and (3) seeks a reward schedule P which maximizes TI(p,~ ) 
a ~ 

for each a, then his only choice is p*. It is the aim of this paper to 

generalize the theorem with respect to the hypotheses (1) and (2), 

but this will require our weakening the criterion (3) of maximizing TI. 

We will still obtain the conclusion that p* is the only choice satisfying 

the weakened criterion. 

We denote by P the set of reward functions from which the landlord 

may choose. Thus, in Theorem 1.5, P = {Pk: k ~ O}, the linear rewards. 

In the remainder of Section 1, we will describe the largest class 

P of rewards to which our results apply. We will call the members of 

this largest class "permissible"; they are essentially the piecewise Cl 

functions. We will also consider various criteria which the landlord 

might apply in choosing a reward function, and will settle on what we 

call "efficiency," which requires that p maximize the infimum over <P of 

efficiency ratios (not gains). The efficiency ratio is defined to be 

the ratio of gain to the supremum of possible profits ass~~ing complete 

information, and is analogous to Savage's "regret." That p* is an efficient 

reward will imply that it is undominated. Most of the remainder of the paper is 

devoted to proving that p* is the unique efficient reward function in a very 

general setting. In order to motivate and clarify the lengthy proof that 

p* is the unique efficient reward in this general setting, we present in 

Section 2 a special case where the proof is relatively simple. The most 

crucial assumptions we make in this special case are that <P is the quadratic 

disutilities and P consists of re\Tards satisfying: If y > 0, then there 
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is a disutility ~~ (i.e., a wo~ker) such that y maximizes u(y) = p(y) - ~a(Y) 

(Le., y is the worker's optimal output), and p(y) is a Cl function in Y':' o. 
1 It is worth noting that just the assumption that p is C would not yield 

a simple proof; the proof in that case is almost as long as the proof in 

the general piecewise C
l 

("permissible") case. 

In the general case we must discard our assumption on rewards pEP 

that optimal output b(~) is unique (i.e., that for each ~E~, p(y) - ~(y) 

has a unique maximizer with respect to y .:. 0), and this requires some re-

definitions which we give in Section 3. These redefinitions all reduce to 

the former ones in case b(~) is unique for all ~E ¢. In Sections 4 and 5 

we prove that p* is the unique efficient reward when P is the largest set 

considered, the permissible rewards, and ¢ is the quadratic disutilities. 

This is done by proving the result, in Section 4, for an artificially 

contrived special case, then, in Section 5, reducing the general case to 

the one in Section 4. 

All the cases discussed in Sections 1-5 assume ¢ is the quadratic 

disutilities, ¢ = {~a: a > a}. Section 6 is devoted to seeing how much 

we can weaken this assumption on ¢. It is easily proved (6.1) that 

p* remains undominated as long as ¢ contains {~ : a > O} as a 
,"x 

subset. But p* will not remain the unique efficient reward function if 

we enlarge ¢ arbitrarily. We show this by an example (6.3). We then show 

(6.7) that p* is the unique efficient reward if ¢ ;2 { ~ a: a > O} and each 

~in ¢ satisfies the following conditions: ~,(O) = 0 and~, ~', ~"positive 

on the interval (0,00) and~"':' 0 on (0,00) (pri'1',es denote derivatives). 
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* In section 7 we study four cases, in each of which p is dominated 

by another permissible reward function. The first two cases result 

from bounding (above or below) the values of a which may appear in the 

worker's disutility term ~a. In the third case we replace ~a(Y) = ay2 

by the function ~~(y) = ayS for some S >1, and in the fourth case 

we replace the direct utility U(r,z) = r - ~(z) by U (r,z) = r Y - 1jJ(z) 
Y 

for some Y , 0:0; Y :5:l. Although p * is dominated in each case, it turns 

out that, in the first three cases, if the landlord has somewhat less 

* information available then the results of sections 5 and 6 apply and p 

is the unique (among linear rewards) efficient reward. In the fourth 

case the linear reward given by p(y) = y/4 for y ~ 0 is the unique 

(among linear rewards) effjcient reward function. 
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1.8 Which rewards p can the landlord choose? 

Empirically, we often observe (possibly with y as value added) that 

P is either the linear functions {P
k

: k > O} (in sharecropping, for example) 

or the piecewise affine functions (in income tax schedules, for example).t 

We will be more tolerant and define the most general class, of "permissible" 

reward functions, to be the piecewise cl functions, i. e., those having a 

continuous deri vati ve except on Ci c 1 o?,ed discrete set--see Figure 1 (b) . 

Before defining the .t-2rmissirJie reward functions we review some 

standard notation. For any real function f, we write 
+ 

f( t ) , f(x ) = lim 
t+x+ 

and f(x-) = lim f( t). Also, f~(x) = lim 
f( t) - f(x) and similarly for 

t+x- t+x+ t - x 

f' (x) . 
+ . 

T'1us f~(x;, the right de rivfttiic of x, may nut eq '1.1 f' (x ), the rl.ghL 

limit of ordinary deri'T3' .. J.ves of x. Clearly. f is continuous at x iff f(i< 

and f(x+) exist and equal f(x). We say f has a lu~ discontinuity at x if f(x ) 

and f(x+) both exist and are unequal. A function f of a real variable is said 

to be p.o~i_~creasin<! if x < y Ll1plies r :x) :?: f (y), nondecreasing if x < y implies 

f(x) ~ f(~ 1. w+ denotes thp set of nonnegAtiv~ ~eal- He say 8. function f 

1 + 
defined on ffi+ is C at zero if f~ exists at 0 and equals f'(O ). 

With this notation and terminology we can define "permissible" 

rigorously: 

t To explain our terminology "piecewise affine," we note that an affine 
function is one of the form p(y) = ky + SI, for constants k and SI,;~-;-affine 
function is linea.:cwhen SI, = O. He say a function p is E.iec~wise affine if 
it is affine on each one of a countable set of intervals and these intervals 
cover the real line except for a closed discrete set of points. A closed 
discrete set is one having a finite number of points in anYl 

finite interval. 
Thus the set of integers is closed discretp wh.ile the set {-: n = 1,2, ... } . n 

is not, whether or not zero is added to it. (See Figure l(a), where points 
in the discrete closed set are marked a, b, c.) 
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1.9 Definition. The function p(y): 1R -+- 1R is permissible if and only if: 
+ + 

(a) 0 ~ p(y) ~ y for all y ~ o. 

(b) p(y) is piecewise C
l

, i.e., it is continuously differentiable 

except on a closed discrete set X. Furthermore, 0 ~ X. 

(c) The discontinuities (if any) of p are jump discontinuities. 

(d) If P is discontinuous at y E X, then p(y) = max{p(y+),p(y-)}. 

Part (a) of this definition is a natural assumption to make about 

reward functions which the landlord can choose, namely, that he will never reward 

the worker with more than is produced and that the rewards are always nonnegative. 

With a more careful analysis we might be able to omit the condition p(y) ~ y: 

if we consider a reward function p such that p(yo) > Y0 for some YO' it 

is reasonable to expect that the landlord could find another penlli ssible reward 

function P with p(yO) > p(yol > YO,such that each worker produced thE: 

same amount lmder p as p, yet p would cost the landlord potentiEtlly less 

in rewards. Concerning the hypothesis p(y) ~ 0, if we allowed p(y) to be 

negative, then the landlord cou.ld "enslave" workers, for example with 

the schedule p(y) = -1 for all y, in which case the worker would always 

have to pay the landlord all of hi s output plllS one unit of the good. 

Part (c) of this definition and the assumption 0 E X have been added 

to simplify the analysis--they are probably not essentiaJ. 

!"cwt (d) of the definitioll I'ieans ti"at s.t a discontin,li'J ~,hc:: worker 

( + -gets Lhe m0ce advantageous of +he two ~imiting values p y ), p(y ). As is I:Jroved 

in the following proposition, part Cd) of the definition iDplies~.hat if 6is-

utilities are quadratic, then u(y) has a maximum for any permissible p, i.e., 

that every worker, indexed by some a, has an optimal output b(~ )(= maximizer 
a 

of u). It is easy to show that without part (d) such a maximum might not 

exist, in which case it would not be clear how to define optimum, profit, etc. 
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1.10 Proposition (Existence of optimizing outputs). 11:. p is permissible 

and the disutilities are quadratic, then for every a > 0 there is at least 

one point b(qJa) ..:. 0 such~hat u(b(cpa)) = sup {u(y): y ..:. O}, i.e., such that 

u attains its global maximum at b(cpa)' 

Proof. Since p(y) < y by part (a) of Definition 1.9, we know that 

u(y) = p(y) - ~a(Y) ~ Y 

1 
This implies that u(y) ~ 0 for y ..:. a Since part (a) with y = 0 implies 

u(O) = 0, we conclude that it suffices to prove the existence of some 

b(cp)E [o,l] such that u(b(cp )=sup {u(y): y E [O):.]}. But part (d) implies 
a a a a 

that p is upper semicontinuous, so u is upper semicontinuous, and any 

upper semicontinuous function on a compact interval such 8S [0.1 ] attains its . ex 

maximum. Q.E.D. 

It will be helpful to view our model as a game, where p (the landlord's 

strategy) must be chosen from P, cp (the worker's strategy) must be chosen 

from ¢, 7f(p,qJ) is the payoff to the landlord, and u(b(p,cpi) the worker's payoff. 

In the language of game theory, Theorem 1.5 says p* is a dominant strategy 

for the landlord when P = {Pk: k > O} and ¢ = {~a: a > oJ. 

1.12 Definition. Given sets P and ¢ and a (payoff) function 7f: px¢ -+JR, 

and p,pO E P, we say pO dominates p over ¢ for the function 7f if 7f(pO,cp) ~ 7f(p,qJ) 

for allcpE ¢ and strict inequality holds for some cp E ¢. We say pO is 

° dominant (with respect to ¢, P and 7f) if for every 0 E P, 0 dominates 0 over 

° ¢ for 7f, and we say 0 is undominated (w,r,t,¢,P and 7f) if no pEP dominates 

° p over ¢. 

In the case of linear rewards Ok and quadratic disutili ties cp a we (1.5) 

found a dominant reward function p* which "maximized profit," but in the 
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more general cases we will consider there will not exist a dominant reward 

function for the payoff function n. To see the problem more clearly, refer 

to Figure 2 where we have graphed n(p,cp ) as a function of 
a 

functions p. 

8~ for different 

2 
and k - k 

attai"s its maximum at k 1 = 2 ' so the graph of n( p* ,cpa) dominates (is above) 

1 
that of n(Pk,CPa) for k f 2' for all a > O. But other rewards p lead to 

h f ~( ) h th k dODO, th h grap so" P'CPa suc as ose mar e p, p In e grap . In each of 

th th d f t ' d' * f f 1 ese cases e rewar unc Ion omlnates p or extreme values 0 8a 

1 , 00, * 8a lS near 0 and p domlnates p (specifically, pO dominates p* when 

when 8~ tends to +00) but each of pO 

1 

00 
and p is dominated by p for other 

values of 8a' 

Although we cannot expect p* to be dominant in general, we should at 

least expect it to be undomi n at ed, i. e, , there should not exist p E P such 

that n(p,cp ) > n(p*,q:> ) for all a, 
a - a This follows from our results. 

One criterion we could ask p* to 
-'r 

in general setting is meet a more 

that it maximize the infimum of gains 

(1.13) inf {n(p, ): cp E ¢}. 

Unfortunately, this will yield no worthwhile result, since the infimum in 

(1.13) is always zero for the pIS and ¢'s we will consider.
tt 

This problem 

is not unfamiliar in game theory and statistics, and one response to it 

(Savage, 1954, p.163) has been to use "regret" instead of "payoff." The 

regret is usually computed by fjnoing the best payoff assuming complete 

tAnother criterion, maximization of expected profit with respect to a probabil
ity distribution which is assurned given, has been used by others such as 
Stiglitz and Mirlees. 

ttThis is because as a + 00, the maximum of u(y) = p(y) - ay2 occurs at points 

b(cpQl) converging to zero and then n = b(cpa) - P(b(<pQl)) converges to zero. 
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Graphs of n(o,cpa) as a function of 80.' for various p's. 
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information and subtracting the payoff from it. We use the regret approach 

in this paper. However, we will use division instead of subtraction 

because of the multiplicative relationships between quantities in our 

model. Inthis form, regret can be interpreted as a measure of efficiency 

of a policy. We acknowledge that the regret principle does have certain 

disadvantages (see, for example, Chernoff, 1954). 

In order to compute our version of regret, we define the "best payoff 

assuming complete information" by: 

A 1 
It follows from Theorem 1.5 that in the case P = {Pk: k ~ O}, TIp(~a) = 8a 

for a > O. '" 1 In all other cases we consider, TIp(~a) = 4a for all a > 0 

(see 2.2). Thus a landlord who knows ~ can do twice as well (in fact, 

appropriate virtually the "total surp1us'~-see the proof of Lemma 2.2) 

when not confined to linear reward functions. On the other hand, it will 

be seen below that in terms of our efficiency (regret) criterion the landlord 

derives no advantage from being permitted to use nonlinear reward functions 

when he is ignorant of~. Notice that TI/~ measures the "efficiency" of 

the reward system. 

1.14 Definition. A reward function pO is ~~~ciE:~~i th~spect to P and 

¢ if pO E P and pO maximizes 

among all PEP. 

As mentioned above, we will show that in several cases p* is the unique 

efficient reward in P. In turn, this lmiqueness implies that p* is undominated; 
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in fact it implies that p* is undominated for both payoff functions nand 

n/n. To see this for n/n, suppose on the contrary that p dominates p*, i.e., 

(1.15) n(p,cp)/iT(cp) ~ n(p*,cp)/TI(CP) for all cpE <P. 

Then, certainly 

inf {n(p,cp)/TI(Cp): cpE <p} > inf {n(p*,cp)/n(cp): CPE <p} 

so p* could not be the unique efficient reward. To see that p* is undominated 

for n, note that the truth of(1.15)remains nnchanged if we multipJy through 

by 7f(cp), which is positive for all cp we consider. 
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2. A SOMEWHAT SPECIAL CASE 

Although it is our goal to prove our claim that p* (defined by 

p*(y) = y/2 for y ~ 0) is the unique efficient reward, in as general a 

setting as possible, we feel that it will be helpful to present here a some-

what special (but broader than linear) case. The proof in this special case is 

rather simple, but the general proof (see Section 4) parallels it quite 

closely, thus we feel that an understanding of this special case will greatly 

facilitate following the rather lengthy proof in the general case. None of 

the results from this section except Lemma 2.2 are used in subsequent sections. 

2.1 Theorem 

Suppose the set ~ of disutilities is that of the quadratics, 

~ = {cp : ex > O} 
ex 

where cP (y) 
ex 

2 
= exy for y ~ 0, and P is the set of reward functions P satisfyi~ 

( ) . C1 . f 0 2.1.1 P y 1S a funct10n or y ~ 

2.1.2 p(O) = 0 

-2.1.3 Given an amount of production y > 0, th,,=re is an ex > 0 such 

that y maximizes u(y) = p(y) -CPOl(y) with respect to y > o. 

2.1.4 For every ex > 0 there is a unique maximizer b(CPex) of u(y) = Ply) - CPex(Y) 

with respect to y > 0, and b(cp ) > 0 for ex > O. 
ex 

Then p* is the unique efficient reward fllDction wi th r~s peC't to_.J:. and ~. 

Before proving 2.1 vIe will compute TIp(cpex). This computation will be 

used again in a later section. 



2.2 Lemma. lor any set P of rewards such that prO) > 0 for all pEP, 

A 1 
TI (rn ) < --4 for all a > O. 

P Ta - a 

for all a > O. 

If P is defined by 2.1.1-2.1.4, then TI (CfJ ) p a 
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1 
= 40, 

Proof. First, we claimthat if prO) > 0 and if b = b(cp ) is an optimal - a 

output, i.e., b maximizes u(y) = pry) - cpa(y) with respect to y ~ 0, then 

the landlord's gain is no greater than b - ab
2 

(a term we might call the 

"total surplus"). This is because 

2 2 
b - ab = [b - p(b)] + [p(b) - ab 1 

and the first bracketed term is the landlord's gain while the second is the 

worker's utility. Utility at b must be nonnegative since u(b) ~ u(O) by 

? 
the assumption of utility maximization and u(O) = prO) - aC- > O. Non-

negativity of utility implies that b - ab
2 

> b - p(b), as cLc:cime::l. 

2 
Simple calculus shows that the maximur.1 of b - ab occurs at b = 1/2a 

and is 1/4a. Thus we conclude that if each pEP satisfies p(O) > 0, then 

,~ (rn ) < 41
. 

p Ta - a 

Now suppose P is defined by 2.1.1-2.1.4. Then we claim that given 

u > 0 vIe can, by an appropriate choj ce of p E F, get the WOY'Kcr with dis-

utility cp to a 
1 produce near ~ and the gain La 

to be &rbi tr8)';, -.:,r cJ ose to 

1 1 2 
~Ci - a(2a) = 

1 
4a· This will prove ~ (cp a) = 4~· The CfJ we chcose is 

illustrated in Figure 3 below: p itself ir 3(8) and its derivative p' 

2 
in 3(b). The function p is, for some E > 0, equal to ay + Ey on the 

interval [0,1 ;aE] and to y _ (1 ~aE)2 on the interval [1 ;aE,oo). 

Fecalling that 

pry) - ay2 = JY (p'(t) - 2at) dt, 
o 
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cp~(y) = 

~--~---- p' (y) 

1 - E 1 y 1 - E 1 y 

20. 20. 20. 20. 

(a) 

Figure 3 



2 one can easily see from Figure 3(b) that the maximum of p(y) - ay occurs 

1 
at b = 2a The gain for this b is 

b - P (b) 
2 

= b _ (b _ (1 - E) ) = 
4a 

2 (1 - E) 
4a 
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1 
and as E ~. v tL.L;:': converges to 4a. All that reli.aifl" L. to show that the p 

deft ned above and pictured in H'igure 3 satisfies conditions 2.1.1-2.1.4. 

Conditions 2.1.1-2.1.2 are clear, and using graphs like those in Figure 3 

one easily checks that conditions 2.1.3-2.1.4 are satisfied (but note that 

the fixed a which is used to define p here is different than the variable 

a appearing in the conditions 2.1.1,4). 

~ 1 c •• f'or p* to be t' p unique E ffi ci ent ", ward me8.ns, 

in this case, that it is the only reward which maximizes 

inf {TI(p'~a)/TI(~a): a > O}. Thus we must prove that if pEP and p satisfies 

then p = p*. By 1. and the previous lemma, (0) is equivalent to: 

inf {4aTI(p,~ ): a > o} > ! 
a - 2 

Since TI(p,~ ) = b(~ ) - p(b(~ )), this is in turn equivalent to: a a a 

4a[b(~ ) - P(b(~ ))] > !2 for all a > O. a a-

Thus the proof will be completed if we can show that pEP and (1) imply 

p = p*. 

Since b(~ ) maximizes p(y) - ay2 with respect to y ~ 0 and p is C\ a 

the first-order conditions hold: 
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p'(b(a)) = 2ab(a) for all a > O. 

(The equality holds because b(a) > 0 by asswnption 2.1.4, so b(a) is not a 

corner solution.) We substitute 2a = p' (b(a) )/b(a) in (1) to get 

for all a > O. 

By hypothesis 2.1.3 each y > 0 is equal to b(~a) for some a > 0, so we conclude 

(2 ) 1. < p' (Y)[l _ 2ixl] 
4 - y 

for all y > O. 

Take the limit as y ~ 0 in (2), and use our asswnption that p(O) = 0, to get: 

~ .::. p' (0)[1 - p' (0)], 

so, by 1.4 , 

1 
P'(O)=2' 

Since p' is continuous, and never zero by (2), (3) implies 

(4 ) p'(y) > 0 for y 2.. o. 

Next, we claim 

for y 2.. o. 

The inequality (5) says marginal reward is never below average reward. It 

would follow from standard argwnents (as would the rest of this proof) if 

we had asswned convexity of p. To prove (5) we suppose, seeking a contra-

diction, that for some y > 0, p'(y) < p(y)/y. Apply this to (2) to get 

1. < p' (y)[l _ 2ixl] < p' (y)[l _ p' (y)] 4- y 



which is impossible by Lemma 1. 4. Next, we claim that 

(6 ) £?ill 
y 

is nondecreasing. 

This is because, by (5), 

.eL( £?ill) = 
cl.y y 

1 -( p' (y) 
y 

21U) 
Y 

> O. 

By (2) and (4), p(y)/y is bounded above by 1, so for some finite L, 

as y -+ 00 

We claim that there do not exist YO and 0 > 0 such that 

(8 ) p' (y) > £?ill + 0 
Y 

for v > v . • • 0 

If (8) held, then by (7) we could pick YO large enollch so that 

o p'(y»L+-
2 for Y > YO' 

But this is impossible for it would imply 

Yo 
L = lim £?ill = lim 1:. I p'(t) dt + lim! r p'(t) dt 

y-+oo Y y-+oo Y 0 y-+oo Y YO 

> 0 + lim l 
y-+oo y I

y 
. 0 

(L + 2) dt = 

Yo 
L + 0 

2' 

Thus there is no 0 > 0 satisfyi ng (8). This and (5) imply that for some 

sequence {y } -+ 00, 
n 

(10) lim p' (y ) 
n 

n 

p (y ) 
= lim _E-

n Yn 

Apply this to (2) and use (7): 

2-5 
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!< pI (y )[1 
p(Yn) 

L[1 - L]. lim ] = 4- n Yn n 

By Lemma 1.4 L 
1 

Now (3) , ( 6 ) , and (7) imply p (y) /y 1 
desired. , = 2· - as 2' 

2.3 Remark. Hypothesis 2.1.3 is quite strong--it is what simplifies the 

proof of 2.1. See Figure 4 in Section 3 for an example where it does not 

h ] d h 
.,..,1 o. , even tough p 1 s l._ • The existence and lmiqueness of optimal output 

b(cp )--2.1.4--would follow if' we strengthened 2.1.2 to 0 < p(.v) < y for all y: 
C( - -

existence is proved above in 1.10 and uniqueness could be derived from 

Lemma 4.1 below. 
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3. NONUNIQUENESS OF OPTIMAL OUTPUT b (cp) AND 'ERE REDEFINITIONS IT NECESSITATES 

Until Section 6 we will discard our assL®ption that b(~) is unique, i.e., 

that for each pEP and ~ E ¢, p(y) - ~(y) has a unique maximizer with 

respect to y ~ O. This will require a more complicated notation. It also 

happens that until Section 6 we will only consider cases in which the set 

of disutilities ¢ is the quadratics, and this will allow us to simplify our 

notation somewhat since we will be able to use b(a) in place of b(cp). In a 

this section we will discuss the effects of these changes. 

Notice that in the two special cases we have considered thus far, 

optimal output b(~ ) has been unique: in 1.2 , the linear case, this was a 
2 

because the utility u(y) = ky - ay was quadratic so had a unique maximizer, 

and in 2.1 it followed from our assumption (2.J. 3) that all possible positive 

amounts of production were covered--see the remark at the end of Section 2. 

Proposition 1.10 shows that if p is permissible, then for each a > 0 

the utility function u(y) = p(y) - ~a(Y) has at least one maximizer, but 

what if it has more than one? In that case the worker 'wouJd have some leeway 

in deciding how much optimally to produre. To expla in this situation it will 

help to introduce some notation. Fix a permissible p, and for a > 0 let 

B(a) denote the set of global maximizers, with respect ~o y, of 

u(y) 2 
= PlY) - ay By definition, B is a rorrespondence and since there 

may be more than one such maximizer for a given a, it is not necessarily 

a function. A listing of choices by each worker, of how much to produce, 

is a selection b(') from the correspondence B('), and we call such a function b(') 

an "optimal selection" which is compatible with p (see 3.1 below). 

To see visually what is happening, consider the reward function in 

Figure 4(a), whose derivative is graphed in Figure 4(b). The correspondence 



w 

( a) 

B 

Figure 4 

( c ) 
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~w = 20. Y 
2 



B(o) related to p is graphed in Figure 4(c). The reward function p(y) is 

meant to be equal to y /2 on the intervals (0, b
l

) and (b 4 ,(0) and to dip as 

1 indicated on (b
l

,b4 ). Thus, by 1.3 , B(a) = {So.} on the intervals (O,bl ) 

and (b4,00), since the dip in (h
l

,b4) is not large enough to change the 

behavior outside (b
l

,b4). To understand these graphs it is helpful to 
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keep in mind the first-order condition which says that if b maximizes the C
l 

function p(y) - ay2, then p'(b) = 2ab, i.e., the graphs of w = p'(y) and 

w = 2ay intersect over the point y = b. Also, keep in mind that since the 

p in the figure is Cl , 

p(y) - ay = (p' (t) - 2at) dt. 2 fY

o 

2 so maximizing p(y) - ay is equivalent to maximizing the area between the 

graphs of w = p' (y) and w = 2ay. Notice that for a = 0.1 ' as marked in 4 (b) 

and 4(c), there is a unique maximizer, marked b
l

, but for a = 0.2 , there 

are two maximizers, naJnely, b2 and b
3

. 

When we made assumptions implying that u(y) had a unique maximizer for 

each a, B(o) was a function so there was only one optimal selection b(o) 

compatible with p. In the more general ca,3e the gain 7T = b(a) - p(b(a)), 

which was previously a function of p and a, wi -I J be a function of p and 

b( o} and a. That i3 to say thE- landlord' f, gain will depend not only on 

the a-value of thp workt~r faced but also ~n which one of the worker's 

utility-maximizing b's he decides to produce. This alters the dpfinition 

of the efficiency ratio 7T/TI- and of an efficient reward function. We now 

give these broader definitions, to be used until Section 6, all of which 

reduce to the former definitions in case disutilities are quadratic and 

u(y) = p(y) - ay2 has a unique maximizer for each a. Since we will be 
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dealing only with permissible reward functions until Section 6 (see 1.9 

for the definition of permissible) we will not explicitly refer to the set P of 

r'ewards. 

3.1 Definition. The function b(o): E+ ~ E is 0 tObl 'th th d + c mpa l e Wl e rewar 

function p if, for every a > 0, b(a) is 1:1 global maximizer for u(y) = 

p(y) - ay2 with respect to y, i.e., 

(3.2) p(b(a)) - arb(a)]2 > Ply) _ ay2 for all y ..:::. o. 

~iven a permissible reward function p and b(o) compatible with p, we define 

the landlord's residual gain or, briefly, gain, from a worker indexed 

TT TT(p,b(o),a) = b(a) - p(b\a)); 

qnd for a > 0 we define i by 

fda) = sup {TT(p,b(o),a): p is permissible, b(o) is compatible 

with p, And a > O}o 

VIe define the efficiency ratio of a permissible reward function p at 

t(o) and a > 0 to be: 

e(p,b( 0) ,a) = TT(p,b( 0) ,a)/rr(a) 

(notice we have introduced the new notation e), and we say a permissible 

reward function p is efficient if for every b( 0) compatible with p we have 

inf {e(p,b( 0) ,a): a > O} > inf {e(p,b( 0) ,a): a > O} 

for every permissible 6 and b(o) compatible with p. (Of course, this 

definition of efficient is with respect to the set ~ of quadratic dis-

utilities and the set P of permissible rewards.) 
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4. FIRST STEP IN THE GENERAL PROOF: REDUCING TO A SIllPLER CASE 

In this section we begin the proof that in our most general case, p* 

(defined by p*(y) = y/2 for y .:.. 0) is the unique efficient reward function. 

Here and in Section 5 we will prove this theorem for the case where P, 

the set of reward functions from which the landlord may choose, is that 

of the permissible functions (defined in 1.9--these are essentially the 

piecewise Cl functions) and "There <P, the set. of disutiJity functions which 

the landlord may face, is that of the qm.tdratics, ¢ = {cpa: a > O} where CPa 

2 
is defined by cpa(Y) = ay for a > O. In Section 6 we will extend the 

result to larger sets <P. 

As one would expect from the special case proved in 2.1, the proof 

that p* is the llnique efficient reward with respect to P and ¢ = {cpa: a > O} 

easily reduces to :::;howing that if pEp and h(·) is crr.Jpatible wHh p, then 

the hypothesis 

(1-1.1*) l < 2a[b(a) - p(b(a))] 4 - for all a > 0 

implies p = p*, i.e., p(y) = y/2 for all Y':" O. We shall refer to (4.1*) 

as the "maximali ty hypothesis." In this section we ,.ill establish this 

key implication for an artificia.lly constructed set P of reward functions. 

Then, in Section S, we will reduce the general case Ip = permissible 

rewards) to the one we have considered here. 

We begin with a lemma which will also bE' used in Section 5. Thus 

we state and prove it for any permissible reward function. 

tion compatible with p, anj~_he maximali~_ hypothesis is satisfied: 

(* ) l < 2a[b(a) - p(b(a))] 4- for all a > O. 



Then (i) b(.) is nonincreasing, (ii) b(~) > 0 for all ~ > 0 , 

(iii) beet) - 0 as ~ - co z (iv) + as (l - 0 • 

Proof: (i) Let et < a ; we must prove b(~) ~ b(a) • By compati-

bility (3.2) applied to b(S) and y = beet) , then to b(O') and 

y = b(a) , we have 

2 2 
P (b (a» - a b (a) ~ p (b (et» - S b (0') 

2 2 
P (b (et») - a b (a) ~ p (b (S » - 0' b (a) 

Adding these together and rearranging, we get 

which is of the form 

(*) 
2 2 2 2 

[S s - ~ s ] - [S t - at] ~ 0 

where s = b(a), t = b(S) • The expression (*) can be rewritten as 

2 2 
(S - et) (s - t ) ~ 0 

Since S > a , this implies s ~ t , or beet) ~ b(a) , as desired. 

(ii) To prove b(a) > 0 for all ~ , recall our maximality 

hypothesis: 
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i ~ 2ctfb (a) - p (b (e.¥»] 

Since p is nonnegative by 1.9a, we must have b(~) > p(b(a» ~ 0 • 

(iii) If iii is false then since b is nonincreasing there 

is an M > 0 such that b(~) t M as ~ - =. By (3.2)for y: 0 , 

2 
(**) 0 (0) s: 0 (b (~» - a [b (ey) ] for all r:t • 

Take the limit as ~ - = in (**) and use 1.9c to get 

+ 2 p(O) s: p(M ) - Lim ~ b(~) . 
~ 

But the Limit is += since b(a) - M > 0 , a contradiction. 

(iv) We assume, on the contrary, that b(a) - M < = + as a - 0 . 

By the maximality hypothesis, 

t ~ Lim 2a[b(~) - p(b(~»] 
01-0+ 

so we must have 

+= : Lim [b(~) - p(b(a»] = M - O(M-) 
et"'"0 

which is impossible for M < m 

(v) If p is Cl at b(a) then since b(a) is a maximum with 

respect to r ~ 0 of p (r) 
2 

- otr and b (ey) is an interior maximum 
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by (it), the first-order conditions must hold, namely o'(b(a» - ~b(~)=O. 

This compl etes the proof of the Lemma. 
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The rest of this section is devoted to proving the following. 

4.2 Theorem. Suppose p is a reward functio~, b(·) ~.eo~atible with P, 

and they satisfy: 

4.2.1 P is permissible (defined in 1.9); 

4.2.2 P is continuous and nondecreasing; 

4.2.3 There is a countable set of disjoint intervals [CQ"dQ,J with 

Q, = 1,2, ... such that CQ, > 0 for all Q, and if y > 0 and y i- b(a) 

for all a > 0, then y E [cQ"dQ,l for some Q,. (Some or all of 

the intervals [cQ, ,dQ,J may be empty (if CQ, > dQ,)!) 

4.2.4 For every Q, = 1,2, ... , 

p(y) 2 
= (3~y + k~ 

If P and b satisfy the maximality hypothesis 

(4.1*) ! < 2a[b(a) - p(b(a))] 4-

then p(y) = y/2 for all y > O. 

for all a > 0, 

Before beginning the proof of 4.2 we wi 11 try to explain and motivate 

the conditions 4.2.2-4.2.4. 

The conditions 4.2.2-4.2.4 are implied by the conditions on p given 

in the "somewhat special case," 2.1. For pxample, if (by 2.1.')) b(o) is 

onto (0,00), then 4.2.3 and 4.2.4 are satisfied with [cQ"dQ,l empty for all Q,. 

It is also possible to show tbat if b( 0) is onto, then p is nondecreasing. 

The previous comment about 4.2.3 and 4.2.4 shows that they generalize 

the conditic:>TI 2.1.3 that b(o) is onto. Tbpy do so by imposing a special, 

quadratic structure on ~,onthe interYals [cQ"dQ,l which b(·) may miss. 

The purpose of tbis special structure is best explained by Figure 5. 
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Figure 5(a): Graph of p. 
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Figure 5(c): Graph of p'. 



Figure 5a is the graph of a reward function p satisfying 

conditions 4.2, 5b is a selection b(.) compatible with p, and SC is 

a graph of the derivative p' of p. It is useful to use lemma 4.lv, 

the first-order condition, to understand figure 5(', and that figure in 

turn will help clarify 5a and·5b. The first-order condition 4.lv means 

that given ~ , if P is cl at b(a) then b(a) is a y-value at 

which the graph of w = p' (y) intersects the straight line w = 2~y . 

A few such straight iines are drawn in 5c, labeled eI., i = 1,2,3,4 
~ 

(Le. ew i 
marks the line w = 2~.y) 

~ 
and the corresponding a i values 

are marked on 5b. 

Notice that the y's which b(') misses, i.e. those y's such 

that y ~ b(a) for all ~ > 0, are all in the interval [2,4]. 

The interval [2,4] is where b(.) "jumps" in 5b, at 

can see most easily from figure 5c , maxima of p(y) 

et = r:t 4' As one 

2 
- ex y occur at 

4 

every point of the interval [2,4]. Condition 4.2.4 is designed to 

ensure that if b "jumpSU at (3 then the value it takes at the jump 

could be any point on the interval between the limiting values b«(3+), 

in our example (3 = a 
4 

One other comment may serve to ex-

plain 4.2.3 and 4.2.4 further: We shall see in section 5 that the 

conditions 4.2 are typical in that each permissible p is "equivalent" 

to one satisfying 4.2. This equivalence is analogous to the fact that 

a consumer's utility function with indifference curves given by t.he 

solid line in figure 6a is equivalent to a convex one, as in 6b. 

By equivalence of the utility funct.ions we mean that if a utility-
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maximizing choice from 8 budget. set. such as the shaded area is consistent 

with 6a, then it. is consistent with 6b. 
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(a) 

Figure 6: xl' x2 = commodities 
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Now to return to the proof of Theorem 4.2. We assume 4.2.1-4.2.4 

and the maximality hypothesis 4.1* and separate the proof into five lemmas: 

4.3 Lemma. If p is Cl _?-t b(o,), then 

t 2- p' (b(o,))[l - p(~~~-rJ. 

Proof. By the first-order condition 4.1v, p'(b(o,)) = 2o,b(o,). Now the 

Lemma follows if we substitute 20, = p'(b(o,))/b(o,) into the maximizing 

hypothesis 4.1*, which is permitted since b(o,) > 0 by 4.1ii. 

4.4 Lemma. If p is Cl at y and y > 0 then 

(i) p' (y) ~ illl 
y 

Proof: First consider the case when y is in the range of b(.), i.e. 

y = b(~) for some ~. Let us assume, by way of contradition, that 

(ii) p'(y) < p(y)/y 

Then we claim 

(iii) t ~ o'(y)[l - p(y)/y] < 0' (y)[l - p'(y)] 

The first inequality follows from 4.3, writing y in place of b(~) , 

the second from (ii) and the fact that p' (y) = 20tb (~) > 0 by 4.Hi. 

Now (iii) contradicts (take r = p' (y» ,so we have proved the lemma 

if y = b(et) . 
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We are left with the case y is not in the range of b, i.e., y f b(a) 

for all a, in which case (by 4.2.3 and our assumption y > 0), y E [c£,d£J 

for some £ and p(y) 2 
= S£Y + K~ for some constant K£_ 

c£, and d£ by B, K, c, and d for the remainder of th,e Lemma's proof. If 

we substitute 2By for p'(y) and By2 + K for p(y), (i) reduces to 

(i v) By -=::. K/y for y E [c, d J . 

Recall that B > 0 since b ( .) is defined only on posi ti ve reals, and c > 0 

by 4.2.3. Thus if K < 0, (iv) follows easi1y. So suppose K > O. Then 

the left side of (iv), By, is increasing in y while the right side, K/y, 

is decreasing. Thus it suffices to prove (iv) for y = c. We need to prove 

(v) Bc > K/c. 

Since c > 0 hy 4.2.3 and p is piecewise C
l 

by 1. 9, there is a sequence 

such that p is C1 
at b(a n) for all n and a {- B, b(a n) t '- . Then since 

n 

p'(b(a )) = 2a b(a ), we have n n n 

2a b(a ) = p'(b(a )) > p(b(a ))/b(a ) 
n n n - n n 

from the first paragraph of the proof. 1'!'Jking the limit on n gives 

( vi) 2Bc> p(c) 
c 

and substituting p(d = Bc 2 + K in (vi) gi'Jes (v), as desired" 

4.5 Lemma. The functicm p(y)/y is nondecreasing in y > O. 

Proof. Ifp 
1 is C at y, then by 4.4 

d dY(P(Y)/y) = (l/y)(p'(yl - p(y)/y) > 0, 

{a } 
n 



so p(y)/y is nondecreasing on intervals where it is Cl • But since 

is continuous and is C
l except on a discrete closed set (1.9b) p 

this implies p(y)/y is everywhere nondecreasing. 

4.6 Lemma. t ~ p(y)/y ~ 1 for all y > 0 . 

Proof: We have assumed (1.9b) that 0 is not in X , 

closed set where p is not Cl . Thus P is Cl in 

neighborhood of 0 in 1R+ ' and, using the assumption 

that p(O) 

(i) 

= 0 , we have 

Lim .PJz2. = 
y-+O+ y 

Lim p' (y) = 
Y-OO+ 

p' (0) 

the discrete 

a one-sided 

(1.9 a with y'= 0) 

Since p is C
1 in such a one-sided neighborhood and b(~) - 0 as 

~ -+ ~ by 4.liii, for a sufficiently large p is Cl at b(a) 

Thus by 4.3 

(ii) i ~ p'(b(a»[l - p(b(~»/b(~)] for ~ sufficiently large. 

We can take the limit as ~ in (ii) and apply (i) to get 

t ~ p' (0) [1 - p' (0) ] 

Now 1. 4 implies p' (0) 
1 

Since by Lemma 4.5 p(y)/y is non-= -2 . 

decreasing, this and (i) imply 1/2 ~ p(y)/y for all y. 
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The other inequality, p(y)/y ~ 1 , is part (1.9a) of the defini-

tion of permissibility. But since we feel that this part of the definition 

can be omitted, we will here prove the inequality independently. If 

for some then by Lemma 4.5 p(y)/y > 1 for all 

y > yO' Since by 4.liv b(~) - ~ as ~ - 0 we can find ~O with 

b(~O) > yO ,so p(b(aO»> b(~O) . This is impossible because of the 

maximizing hypothesis (4.4): 

t s 2~[b(~) - p(b(~»] for all a > O. 

4.7 Lemma. p (y) y/2 for all y. 

Proof: By Lemmas 4.5 and 4.6, p(y)/y converges to some number L as 

If 
1 

L="2 then 4.5 and 4.6 imply 1 
p(y)/y ="2 for all 

which is what the theorem claims. So let us prove 1 
L = '2 

y , 

We claim there is a sequence {~1'~2""} such that {b (~ )} - ~ 
n 

and p is C
l at b(~) 

n 
and p'(b(~» - L • 

n 
Let us prove this. 

it is false then by 4.4 there is some o > 0 and some y = yo such 

that 

(i) p' (b(~» > L + 0 for all a such that b(~) > yo and p 

is C
l at b(~) 

If 

We make larger, if necessary, so that yo f. [c ,d ] 
I J, 

for all t . 

Next we will show 

(ii) p' (y) ~ L + 0 if y > yo and p is at y : 

If y = b(~) then (ii) follows from (i) so we need only prove (ii) 



for Y € [c.t,d.t] for some .t. Since p'(y) = 2~.ty for y € [c.t,d.t] 

it suffices to prove 

p is piecewise 1 C we can choose a sequence and 

Qln ' S.t ' so 

n. Then 

(iv) 

bean) t c ,and such that 
1. 

2~ b (r:I ) = p' (b (0/ » > L + 6 n n n 

p is 

and we can take the limit on n in (iv) to get 

Thus (1i) follows from (i). 

at b (t.Y ) 
n 

for all 

By 4.2.2, P is continuous and since (l.9b) it is differentiable ex-

cept on a discrete closed set, and p(O) = 0 , we have 

-- JY p(y) p'(t)dt 
o 

This and (ii) imply 

L = Lim .EJn. 
y-- y 

L· 1 J
YO 

'()d + . 1 JY = Lm - p t t LLm -
Y-- Y 0 Y-- Y Y o 

p' (t)dt 

1 Y 1 
~ 0 + Lim - J (L + 13)dt = Lim - (L + 13)(y - YO) = L + 13 

Y-- Y yo Y-- Y 
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a contradiction. Since (ii) yields a contradiction, a sequence 

{OIl ,f¥2"··} such that {b (f¥ )} - (X) 
n 

with 2f¥ b (~ ) = p' (b (~ » - L , n n n 

must exist. 

We use this sequence {~1'~2' ••• } in the maximizing hypothesis 

(4.1*) 

(v) -41 
S 20' [b(a ) - p(b(O' »] = 2~ b(~ )[1 -n n n n n 

P (b (~ » n 
b (a) ] 

n 

Since p(y)/y - L as y - (X) , we know p(b(~ »/b(~ ) - L as 
n n 

n - (X). Use this and the fact that 2~ b(~ ) - L as n - (X) to con
n n 

c1ude from (v) that 

By 1. 4 we conclude 
1 

L - 2 • 

This completes the proof of 4.2. 
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5. PROOF OF MAIN THEOREM 

5.1 Theorem. Suppose cD i.s the set of quadratic disutili ties, 

cD = {cp ( y ): a > o} 
a 

where cp (y) 
- a 

2 
= ay for y ~. 0, and P is the permissible reward functions 

(defined i.n 1.9). Then p* i3 the unique efficient (as defined in 3.1) 

reward function with respect to cD and P. 

5-1 

Proof. To prove the theorem we must show that if p is a permissible 

reward function, b(o) is compatible with p, anrl. 

(i) inf {e(p*,b*(o),cx): a > o} > inf {e(p,b(o),a): a > o}, 

where b*( 0) is the unique (by 1. 3) optimal selection compatible with p*, 

then p = p*. First we claim that, with P = the permissible rewards, 

(ii ) 11- (cp ) 1 
= 40, for all a > O. 

p a 

This was proved in 2.2 for P = rewa.rds satisfying 2.1.1-2.1.4, and to prove 

it in case P = permissible rpl-Tards one uses the same proof, except that 

one needs only prove that the rew"ird funct ion p defined in that proof 

and pictured in Figure 3 is permissible, a trivial task since that p is 

1 
everywhere C 

Combining (ii) with the cesult from Lemma 1.3 that n(p*,b*(o),a) = 1/8a, 

and the definition (3.1) of effjcjency, OlJe sees that (i) is equivalent to 

the maximizing hypothesis previ.ousl,v denoted (4.1*): 

(5.2) l < 2a [b ( a) - p (b ( a ) ) 1 
4 - fur all a > o. 

Thus, to prove Theorem 5.1 we mu~;t c;how that (5.2) implies p = p*. 
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To complete the proof of 5.1 we will study P and b('), assumed to 

c,atisfy (5.2) for the remainder of thjs section, and construct a closely 

related function a which wi11 also satisfy (5.2) with the same b(·). 

Then we will invoke Theorem 4.2 to conclude a = p*, and this in turn will 

imply p = p*. 

5.3 Discontinuities of b(o): Definitions of 8~, c~, d~ 

Since the optimal selection b(o) is nonincreasing (4.1i), it has at 

most countably many discontinuities, say, at {8~: ~ = 1,2, ... }, and these 

must be jump discontinuities. (See Figure 5b, for example.) The set {8~} 

may be finite or even empty, and we cannot assume 8
1 

< 82 .... 
For each ~ 

we define 

For each ~ which does not correspond to a 8~, let [c~.d£] be empty (for 

example, c£ = 2, d£ = 1). Then since b is nonincreasing the intervals 

[c£,d~] are disjoint. We list for future reference three properties 

which follow from these definitions, properties of monotone functions, 

and Lemma 4.1. 

(5.3.4) 

for all £ (use 4.lii and 4.liii to prove this). 

If Y > 0 and y is not in the range of b(o) (i.e., y f b(a) 

for all a), then y E [c~,d~] for some 

to prove this). 

(use 4.liii and 4.1iv 



5.4 Lemma. For each 9, s1]ch that [C9"d9,J is nonempty, 

(5.4*) and 

(5.4**) 

Proof: We denote 131,' c1,' d.t by· e, c, d respectively 

proof. Choose sequences Yn' 0 with Yn ~ a, 0 t 13 n m 
+ -c = b (13 ), d = b (13 ) it follows that 

b(y ) t c and b(o) ~ d 
n m 

From the compatibility of b (3.2), applied to b(y) 
n 

(i) p(b(o » - y [b(o )]2 s p(b(y » _ y [b(v )]2 m n m n n Tn 

(it) p(b(o » - 0 [b(o )]2 ~ p(b(y » _ 0 [b(y )]2 
m m m n m n 

. 
for this 

Since 

and b (0 ) 
m 

Taking the limit as n - 00 in (i), and as m - 00 in (ii), we get 

(i I) 

(ii I) 
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Use the compatibility of b again, for b (0 ) 
m 

and b (y ) 
n 

(iii) p(b(o » - e [bee )]2 ~ p(c) - 0 c
2 

m m m m 

(iv) 

Then take limits as m - ~ in (1') and (iii) to get: 

In 1.9d we assumed p(c-) ~ p(c) , so (i") and (iii') imply 

(v) 
+ 2 2 2 + 2 p(d ) ~ Sd ~ p(c-) - Bc ~ p(c) - Sc ~ p(d ) - Sd 

Since the expressions o(d+) - Sd
Z 

on the extreme left and right of (v) 

are equal, all the inequalities in (v) are actually equalities. In 

particular, equality of the middle expressions in (v) shows p(c-) = p(c) , 

which is (5.4**). Equality of the expressions on the left of (v) is 

(vi) 

Now once we prove 5.4***, that + P (d ) = p (d) , (vi) will imply 5.4*, 

so it remains only to prove + p (d ) = p (d) . Take limits as in 

(ii') and (iv): 



(H") 
+ 2 2 

p(d ) - ad ~ p(c) - 8c 

(iv' ) 
2 2 

p(d) - ad ~ p(c) - 8c 

We have assumed + p(d ) ~ p(d) so, as before, all four expressions in 

(H") and (iv') are equal, in particular + p (d ) = P (d) • 

5.5 Construction, elementary properties of a 

(5.5.1) 
{ 

2 . 2 
a;y + p(dt ) - Stdt if y € [ct,dt ] 

a(y) = 

p(y) otherwise. 

One easily computes that p(d
t

) = O(d
t

) for all t. In fact we 

also have p(c!) = a(ct ) for all t . To see this, write (5.4*) as 

This agrees with the definition of a(c
l

) . By definition of 0 , 

o = p outside the intervals [cL,d
t
]. Summarizing, we have con

structed 0 so that 

(5.5.2) 

5.6 Proposition. o(b(~» = o(b(~» for all ~ > 0 • 

Remark: This is the "close relation" mentioned above between p and 

0: it says that they give the same rewards to workers who behave 

according to the optimal selection b(') • 
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Proof: If b (~) t (c ,d,e) 1, 
for all t we're done by 5.5.2. So 

suppose c" < b (et) < d,e . Then ~ = 13 t 
, so we must prove 

0' (b (13 p, ) ) = P (b (13 1. » . Let 0 be .a sequence with 0 t 131, , so 
m m 

b (0 ) I d,e . By compatibility \3.2) applied to b(6 ) and y = b (13 1.) , 
m m 

P (b (0 » - 0 [b (0 )] 2 ~ P (b (13 ~ » - 6 [b (13 )] 2 m m m N m J, 

Now take the limit as m'" CD and use P(de+) = p(d,e) from (5.4***) t.o get: 

But by compatibility applied to b(I3,e) 

so 

and y = d 
t 

S holds in (i), 

Now notice that by the definition of 0' , for c
l 

S y S dt 

Finally, put y = b(S1.) in (iii) and apply it to (ii) to get 

P (b (13 • » - S [b (13 )] 2 
IJ p J, 

Now cancel -S£[b(8,e)]2 to complete the proof. 

5.7 Proposition: The optimal selection. b(') which is compatible with 

P is also compatible with 0' • 



5.7 

Proof. We must prove that for each ~ > 0 , 

By 5.6 we need only prove 

(i) 
2 2 

P (b (a» - et [b (a) ] ~ 0' (y) - ~y for y ~ 0 

If Y t. (cL,d
t

) for all 1 , then O'(y) = p(y) by 5.5.2 and (i) 

follows since b(·) is compatible with p. So we may assume 

for some 1, • First suppose Then since 

2 
- O'r is a nondecreasing function of r , 

(ii) 

It follows from the construction of 0' (5.5.1) that 

(iii) 

Combine (ii) and (iii) to get 

Thus it suffices to prove (i) in case y = d ,which we have already 
t 

done. The remaining case, ~ ~ a
1 

' is handled Similarly, with c
L 

in place of d
t 

. 
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5.8 Proposition: cr is nondecreasing. 

Proof: Suppose y < z and assume by way of contradiction that. 

cr(y) > cr(z) • These two inequalities imply 

(*) 
2 2 

cr(y) - Cty > cr(z) - (lZ 

Now z is not in the range of b(·) , since if z = b((l) for some 

then the fact (5.7) that b (et) = z maximizes 
2 

cr(r) - Ctr with 

respect to r would contradict (*). Since z is not in the range of 

b(.) it follows from 5.3.4 that z € [ck,dkl for some k. On 

[ck,dkl , cr is increasing by construction so o(y) > o(z) and y < z imply 

and 

Since {at} is countable we can construct a sequence {y } with 
n 

Thus for sufficiently large n, 
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" 

But this is impossible as explained in the first three sentences of 

the proof (take z = b (y )) . 
n 

5.9 Proposition: a is continuous. 

+ -Proof. Since a is nondecreasing, a(y ) and a(y ) exist for all y, 

so it suffices to prove a(y-) = aryl = a(y+). We will prove only 

5-9 

a(y-) = a(y), the other equality being similar. Thus we can assume y > 0 , 

and since a is nondecreasing it suffices to prove a(y-) ~ a(y). 

If y E (c~,d~J for some ~, then a(y-) = a(y) because of the continuity 

of a on (c~ ,d~ L So we may assume y r/:. (c~ ,d~l for all ~, 

Because the intervals (C~,d~J are dis,ioint and y r/:. (CQ"dQ,J for all Q" 

there is a sequence {Yn} with Yn > 0 for all n, Yn t y and Yn ~ (CQ"d~J 

for all nand Q,. Since y > 0, it follows from 5.3.4 that. for each n 

n there is en with y = b (8 ) . The sequence n 'n 

since {Yn} is increasing. The sequence {en} 

so an l a for some e . To summarize: 

a la, b (a ) t Y n n 

{ Q } is decreasing P n 

is bounded by 4.1iii, 

Since b (13 ) 
n 

maximizes 2 a (r) - 8 r 
n with respect to r by 5.7, 



" 
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(*) 0' (b (/3 » - 6 [b (/3 )] 2 ~ 0' (y) _ Q y2 
n n n f..'n 

Take the limit on n in (*): 

- 2 2 O'(y ) - 6y ~ O'(y) - 6y , 

5.10 Reviewing the hypotheses of Theorem 4.2 

Recall our plan to apply Theorem 4.2 to a. At this point we have 

proved that a satisfies all the hypotheses of Theorem 4.2 except permissibil-

ity: We have proved (5.8 and 5.9) that a is continuous and Dondecreasing, 

and that is hypothesis 4.2.2. Hypotheses 4.2.:~ and 4.2.4, properties of 

the intervals [ci,dil, are covered by the definitions and properties listed 

in 5.3. The maximality hypothesis 4.1 follows since we have assumed it for 

p and a = p at the points b(a) by 5.6. An unnumbered hypothesis, that a 

is compatible with b(·), was shown in 5.7. 

Our next goal, then, is to prove that a is permissible, which is 

Theorem 5.13. We will see in the proof of 5.13 that the only nontrivial 

1 
part is proving that a is C wherever p is. That is intuitively reasonable: 

a is got from p by changing p on the intervals [ci,dil to be whatever 

quadratic function smoothly connects the points (ci,P(c
i

)) and (di,P(di )). 

Thus, if anything, we have "smoothed out" p. 
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The technical difficulties arise when the endpoints {cp,d£: 1 = 1,2, .•. } 

which give nonempty intervals, have a cluster point. If we could assume 

this set of endpoints was a set of isolated points things would be much 

easier, but that is an unjustifiable assumption. Thus we need to prove 

two messy lemmas, which will be used in the proof of Theorem 5.13. 

5.11 Lemma: SUEEose Q is cl at y > 0 I Q {y2 = cr ~y2 I and 

y t (C£,d,t] for all t . Then cr~(y) = 0' (y) If 0 is cl 
at 

y~ 0 and y t [cp"d p,) for all 1, , then cr ~ (y) = 0' (y) . 

Proof: We will prove only the first statement of the lemma; the proof of 

the second is similar. Assume p is Cl at y > 0, u(Y) = p(y) and y ~ (c.Q"d.Q,J 

for all .Q,. 

Define D(t) = cr(t) - cr(y) 
t - y 

Let 

p'(y) we must find 0 > 0 such that 

E > 0 • To prove 

(*) 0 < y - Z < 0 implies ID(z) - o'(y)1 < E • 

Our 0 will have to satisfy four conditions; after each condition 

we indicate why it is satisfied for all sufficiently small 0 

(i) o < y - b (c:r) < 0 implies ID(b(c:r» - p' (y)1 
E 

<-
2 

Use 

p(b(c:r» = cr(b(c:r» for all ~ and the fact that p is differentiable 

at y. 



(ii) If \ b (cr) - y \ < 0 and \z - y\ < 0 

Since b is nonincreasing, b(~) - 0 as ~ - = 
then \b(er) - z\ 

and y > 0 , we 

€ 
<-
~ 
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conclude that if 0 is small enough then for some 13 > 0 \b(~) - y\ < 0 

implies 13 • Also pick E Then \b(er) - y\ < 0 and ~ > o > 813 • 
E E 

\z - y\ < 0 imply \b(a) z\ ~ \b(a) - y\ + \y - z\ < 20 < 413 < ~ 

(iii) p is in (y - o,y) Since p is except on a 

closed discrete set. 

(iv) 

(iii) . 

implies \pl(Z) - pr(y)\ € 
<-

2 
Follows from 

Having chosen 0 small enough to satisfy (i-iv) we choose it 

(perhaps) smaller, so that 

This is possible since y I. (c.t,d.t] for all .t and the. intervals 

[c,.,dt ] are diSjoint. 

Now suppose o < y - z < 0 . If z = b(a) for some ~ we are 

done by (i), so we can assume z € [c
k 

,d
k

] for some k • Denote c
k 

by c, d
k 

by d, 13 k 
by a, for the rest of this proof. By (v) , 

y - 0 < c , and d < y since y I. (c,d] is a hypothesis. Thus 

[c,d] is contained in (y - o ,y) It remains to prove that 

(*) sup{\D(z) - pi (y)\: c s Z S d} < E 



Since a is continuous, D is continuous. Thus the supremum in (*) 

is attained at some point in [c,d] , say at zo. 

Case 1: Since y - 0 < c we can choose a sequence 

{b (0' )} with Y - 0 < b (ct ) < c for all n and b (0' ) - c • By (i) , n n n 

ID(b~~ » - pl(Y)1 
£ 

so taking the limit <- on n we see 2 n 

ID(c) - pl(Y)1 ~.t 2 < £ , and (*) holds. 

Case II: Zo = d . Since d < Y we can find a sequence {b (Of )} m 

wit h d < b (0' ) < y and b(~ ) - d Now argue as in Case 1. m m 

Case III: z € (c ,d) Since a is equal to the differentiable 
0 

function (Sz2 + constant) for z € (c,d) and ID(zO) - pI (y) 1 > 0 , 

ID(Z) - pI (y) 1 is differentiable at Zo , and since it has a local 

maximum at Zo its derivative at Zo is 0 . This imp!ies D 1 (zO) = 

A computation using the definition of D and a (z) = Sz 
2 + constant 

implies D(zO) = 2Sz0' (More simply, one can argue that at a critical 

point Zo of the difference quotient D, the line through (y,a(y» 

0 

and (zO,a(zO» must be tangent to a at Zo and therefore has slope = 

al(zO) = 2Sz0 and this slope is clearly also equal to D(zO» • So it 

remains to prove 12Sz0 - pl(Y)1 < £ • By the triangle inequality, 

Recall that b(S) € [c,d] , so [c,d] ~ (y - o,y) implies 

Ib(S) - yl < 0 • We also have IzO - yl < 0 , so (11) implies 
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By (iii) ~bove, 0 is C
1 

at bee) so by 4.1v, p' (beS» = 2Sb(e) 

Hence, using (iv) and the fact that 0 < y - b(S) < 0 we get 

(viii) 12Sb(S) - o'(y)1 10' (b (S» - 0' (y) 1 

Combining (vi), (vii) and (viii) yields 

This completes the proof of the lemma. 

5.12 Lemma. ,Suppose 0 is at y > 0 and 

E 
<-

2 

1,. Then cr is differentiable at y and cr' (y) = p '(y) • 

for all 

Proof: If y t. [cl"d..e] for all L then lemma 5.11 implies 

cr~ (y) = cr ~ (y) = 0' (y) , so 0" (y) exists and equals 0' (y) Thus 

we can restrict ourselves to the cases y = c 
L 

and y = d 
L 

. We will 

cr'(c) 
- L 

consider only the case y = c
L

• From lemma 5.11 we know 

exists and equals o'(c
L

) , so we need only prove cr~(cL) =o'(c
L

) • 

Let {an} 

cl, = b~S;) 

be a sequence with ~n l a..e 

Since 0 is piecewise C1 

then b (~ ) t c 
n p, 

we can assume o 

b(~) for all n, then by the first order condition 4.1v, n 

0' (b (c:r » = 2a b (0' ) , n n n 

since 

is 
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Now take the limit on n t and use the fact that p 

y = c
t 

t to get 

But by the definition of cr t cr~(Ct) = 2a~ct t so we conclude 

p' (c ) = cr' (c~) t as desired. 
1, + x, 

5.13 Theorem. The function cr is permissible. 

at 

Proof: Parts (c) and (d) of the definition (1.9) of permissibility 

are vacuous for cr since cr is continuous. 

Part (a) of permissibility t that 0 s: cr (y) s: y, follows from 

the corresponding properties for p and the construction of cr in 

5.5: To prove cr(y) s: y note that by 5.5.2 cr = p outside the inter

vals (cttd
t

) t and p(y) s: y for all y, so cr(y) s: y outside all the 

intervals (c-e,dt ), and in (cttd.t) the function cr(y) is an upwardly 

convex quadratic by 5.5.1. To prove 0 s: cr(y) for all y, recall that 

by 5.3.2 c
L 

> 0 for all t so by 5.5.2 cr(O) = p(O) = 0 , and 0 is 

nondecreasing. 
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All that remains is to prove that cr is continuously differentiable 

except on a discrete closed set 

property, it suffices to prove: 

at y. 

x , and 

If p is 

Since p has this 

y then cr is Cl 



If p is C1 at y then certainly 0' is differentiable at y . 
This is proved in lemma 5.11 for y = 0 , in lemma 5.12 for y > 0 

and y t (c",dt} for all 1 , and on (c1"dt ) 0' is equal to a differen-

tiab1e (even quadratic) function. Since p is piecewise C
1 it will 

suffice to prove that if p is C
1 at y then 0" (y+) and 0" (y-) 

are both defined and equal 0" (y) . The function 0' is clearly C
1 

on (cJ.,d
t

) so we can assume y t (c1"d t ) for all 1, • 

We will prove O"(y-) exists and equals O"(y) , the proof for 

+ O"(y) being similar. 

If y = d 1, for some J. then, since by construction 0' is quadratic 

on (c 1 ,d1,] ,0" (y -) = 0" (y) • So we can assume y t (c" ,d 1,] for all 

t. By lemma 5.11 and the differentiability of 0'- at y, O"(y) = 

p' (y) 

Let £ > 0 We must find 0 > 0 such that 

(i) if 0 < y - z < 0 then 100'(z) - p'(y)1 < £ • 

(This part of the proof is similar to lemma 5.11.) Since p is C1 

at y we can find o > 0 so that 

(ii) o < y - z < 0 implies I p' (z) - p' (y) I < £ . 
We can also choose 0 small enough that p is C1 in (y - e,y). 

Suppose z € (y - e ,y) . If z t (c ,d1,) , for all " then by lemma 

5.12 o"(z) = p'(z) so (i) follows from (ii). The only case remaining 

is for some t . 

so 

(iii) 0" (c,) < 0" (z) < a' (d ) • 
x- t 
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Since both O'I(C) 
t 

and 0' I (d ) 
t 

are within of pI (y) , (iii) 

implies O'I(Z) is also. This completes the proof of the theorem that 

0' is permissible. 

5.14 End of Proof of Main Theorem 5.1: It remains only to prove that 

o(y) = y/2 for y ~ O. We have just completed showing that the re-
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ward function 0' which we constructed from 0 satisfies the hypotheses 

of Theorem 4.2--see the discussion in 5.10 above. Now 

we apply that Theorem to 0' and conclude that O'(y) = y/2 for 

all y ~ O. Since b(.) is compatible with 0' by 1.3 b(a) = 

l/~ for all ~ > 0 so every positive number y is in the range of 

b (.) By 5.6 , 0' = P on the range of b(.) so we conclude p(y) = 

y/2 for y > 0 We have assumed (1.9) that 0 is cl at 0, thus 

p (y) = y/2 for y ~ O. This completes the proof of Theorem 5.1. 
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6. MORE GENERAL DISUTILITIES 

In this and the next section we revert to the less cumbersome notation 

of Section L making the assumption that, for each pEP andcp E <P, the 

indirect utility u(y) = p(y) - cp(y) has a unique global maximizer b(p,CP) 

with respect to y ~ 0. Thus, for example, we will use 'TT(p,cp ) in place a 

of the 'TT(p,b('),a) of Sections 3-5. This assumption, uniqueness of optimal 

output, is made only to simplify proofs. It is not essential in the results 

of Sections 6 and 7. We borrow one notation from Section 3 which will also 

simpl ify matters: the efficiency ratio is denoted e~(p.m): • ~T 

(6.1 ) 

We may drop the P and write e(p,cp) if P is clear from the context. 

In this sect ion we will always assume of the f3et of disutili ti es <P 

that each cp E <P satisfies cP (0) = 0. This can be done without loss of 

generality since it merely changes the scale of the 1Jtili ty function u. 

The next proposition relies mainly on an "inheritance" property of 

undominatedness. Undominated is defined in Section 1. 

6.1 Proposition. Let P = the permissible (see 1.9) rewards and assume 

<P contains the set of quadratics {cp : a > oJ. Then p* is undominated a 

(see 1.12) with respect to <P, P, and the payoff function ep ' 

Proof. Suppose, on the contrary, that p dominates p* for some 

permissible p. 

which implies 

Then, since <P contains {cp : a > oJ, we have in particular a 

for all a > 0, 



inf {e(p*,~ ): a > O} < inf {e(p,~ ): a > a}. a - a 

This contradicts Theorem 5.1 which says p* is the unique efficient reward. 

The same trick does not apply to the efficiency property, however. 

There the situation is much worse. 

y _ ~(y) with respect to y > 0, then -IT (~) = y - ~(y), where P = the 
- -- p 

permissible rewards. 

Proof: This is a slight generalization of lemma 2.2, so we will 

only outline the proof. We could show ff ~ b - ~(b) for some 

real number b, as in the first paragraph of the proof of 2.2. 
... ,. 

Since y is a maximizer of y - ~(y) , we have b - ~(b) ~ Y - ~(y) 

,.. A A A ,. 

We conclude rr ~ y - ~(y) . To prove y - ~(y) ~ rr we construct 

a function similar to the one pict11red in the proof of 2.2, using 

the fact that ~I ~ 0 on (O,~) • 

6.3 Proposition. There is a set ~ of infinitely differen-

tiable disutility functions containing [~ : a > 01 , such that a 

p* is not t.he unique efficient reward f13nction w_ith t:_espect to thi~ 

¢ and P = the permissibl~~ards. In fact, for this ¢, if p* is 

efficient, then so is every permissible reward function p. 

Proof: We will begin by exhibiting some functions ~ which, 

when smoothed out so as to be infinitely differentiable and then 

added to (~a: 0/ > o} , give a class ~ such that 
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(i) inf(e(p*,~): ~ E i} = 0 • 

Then we will show that this implies the proposition. 

Consider functions E, as in Figure 7 

The continuous function ~ is zero from 0 to b, has 

constant slope between one half and one from b to y and 
A 

has constant slope greater than one from y on. It is easily 

seen that b is the maximizer with respect to y of the utility 

u(y) = p*(y) - ~(y) and y of y - ~(y) • By lemma 6.2, 

A b - p*(b) 
= fT/fT = Y _ s(y) 

,. 
Now consider changing ~ by moving y to the right while 

,. 
keeping the s lope between b and y unchanged, and keeping b 

fixed. Clearly y - g(y) increases without bound, while 

b - p*(b) remains constant, so for such ~'s e(p*,~) goes to 

zero. Let (~: n=l,2, ••• } be a sequence of such ~'s ,with 

ai) Lime(p*,~)=O 
n-llZ) 

We can smooth each of the ~ 's slightly at their kinks - see n 

the dotted lines in the figure - to make them infinitely dif-

ferentiable while retaining the property (ii). Now let ~ 

denote the union of (g : n=l,2, ••• } and 
n Since 

e(p*,cpJ= ~ for all a > 0 by 1.3 and 2.2. we have proved (i). that 

the infimum of efficiency ratios is O. 
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Now suppose p* is efficient for this ~. Then any other 

reward function p satisfies 

(iii) inf{e(p,~): ~ e ~} s 0 

and the t'ewat'd function p is efficient if equality holds in (iii). 

But for every p and every ~,e(p,~) ~ 0 • (To prove this note 

that we have assumed ~(O) = 0 for every disutility ~ , thus 
A ,. 

y being the maximizer of y - ~(y) implies T'T=y-C!)(y)~O by 6.2, 

and T'T = b - pCb) ~ 0 by l.9a.) Since e(p,~) is always non-

n~gative, equality always holds in (iii), so evet'y p is effiCient, 

as was claimed. Q.E.D. 

Although the unique efficiency property of p* is quite 

sensitive to the size of ~ (see Secticn 7), there are some sets ¢ for which 

we can prove that p* remains the unique efficient reward 

function. 

6.4 Proposition. If p contains (cpa ot > o}, p;:: permissihle rewards, and 

e(p*,~) ~ ~ for all ~ E i , 

then p* is the unigue permissible efficient reward function 

with respect to ~ and P. 



Proof. If e(p*,~) ~ ~ for all ~ e ~ , then since e(p*,~) = ~ 
for a > 0 

Now suppose p is permissible and efficient, so in particular 

inf{e(p,~): ~ e ~} ~ inf{e(p*,~): ~ € t} = t . 

Since ~:2 tep a : f) > O} , this implies 

inf{e(p'~a): a > O} ~ ~ = inf {e(p*,cpo-) : a > A}. 

This says p is efficient with respect to (ep a: a > O} • 

Now Theorem 5.1 implies 0 = p*. Thus p* is the unique 

efficient reward function with respect to ~. 
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6.5 Which disutilities CO satisfy e p(p* ,ee) ~ j, P = permissible rewards? 

The examples S in the proof of proposition 6.3 can be altered 

slishtly to show that even if we assumed that ~'(O) = 0 and that 

~' and q:l" are all positive on (0,"") , it W)uld not follow that 

e (0*,<:1') ~ ~ • But if we assume in addition that the third derivative ~'" 
P 

is nonnegative then we obtain e(p*,ep) ~ t. We outline a proof of 
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this last assertion using a picture (Figure 8) of the graphs of the 

derivatives of the functions cp and p*. Note that the assumption cp"l ~ 0 

implies cp I is convex upwards. 

The quadratic function a(y) = oy2 is chosen so that its 

(linear) derivative a' intersects p*' at the same point as 

does ~'. (This point is the optimal output b for our ~ 

and for the disutility a, by. the appropriate first-order con-

Let " ,., 
Yl'Y2 ditions.) denote the y values (see 6.2) for a , 

T~-J.c ~a·:tcC: l~~-..c i~ Fi;ure 8 i3 meant tG be ~angeu~ 

to ~' at the point (b,~) • Since e(p*,a) = ~ by 1.3 and 2.2, we 11eed 

only prove e(o*,a) S e(p*,~) in order to show e(p*,~) ~ ~ • 

By 6.2, 

and 

e(p*,a) = 

= 

b-p*(b) = 

Y2-a (Y2) 

f~(l-p*' (t»dt 
... 
y f 1 (l-tO' (t) )dt 
o 

f~ (l-P*' (t» dt 
h 

Since the numerators are equal in these expressions, we need only 

show 
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Noticing the areas marked A and B in Figure 8, we see 

A 
,. 

io2(1-a'(t»dt fol(l-~'(t»dt = A - B , 

so we need only show A ~ B. But this is clear since the two 

triangles, one formed by a' and the dotted line and w = 1 , the 

other by a' and the dotted line and w = 0 , are of equal area 

and one contains B, the other is contained in A. We have 

sketched a proof of: 

6.6 Proposition: If ~ is a disutility function satisfying 

q?' (0) = 0 and p' , ~"positive on (0,00) and cp'" nonnegative 

... o.;.nO"-...l( ... O .. '_co .. )_ ... t.;.h;.;;e;.;.;n .... e p (p* ,~) ~ j , where P = permissible rewards. 

Combining this with 6.4 we obtain: 

6.7 Theorem. If t is a set of disutilities containing 

iep a: a > oJ and each satisfies cp' (0) = 0 and 

q?" are positive on the interval (O,CO) and cp'" ~ 0 on 

(0 I co) ,then p* is the unique permissible efficient 

CP' , 

reward function with respect to ~ and P = permissible rewards. 
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7. FOUR CASES IN WHICH p* IS DOMINATED 

In the first two cases, we maintain the assumptions implying that 

the indirect utility function is given by u(y) = p(y) - ay2, but addi-

tional information is assumed to be available to the landlord concerning 

the possible values of a, namely, that they are bounded below (in 7.1) 

or above (in 7.2) by a known, positive value O. In both cases, p* is 

7-1 

dominated by a permissible reward function (but, by the first sentence of . 

1.5, p* is not dominated by a linear reward). Of course, without this 

additional information p* is undominated and even efficient, by Theorem 5.1 

and the remark following 1.14. 

7.1 Proposition. If 0 > 0 and ¢ is given by 

¢ = {<p : 0 < a < oo}, 
a 

and P is the permissible reward functions, then the reward function p 

defined by 

p(y) 

dominates (see 1.12)p* for the payoff function TI and for the payoff function ep ' 

Proof. The Proposition will follow if we can prove: 

TI(P*'~a) < TI(p'~a) for 0 < a < 00, and 

(ii ) TI(P*,~ )/TIp(~ ) < TI(p,~ )/rrp(~ ) for 0 < a < 00. a a a a 

Since TIp(~a) > 0 for all a > 0 (see (ii) in the proof of Theorem 5.1), 

we need only prove (i). 

To compute TI(p'~a) we first compute the maximal output b(P'~a)' Since 

b(p '~a) is the maximizer of the quadratic equation p(y) - ~ a(Y)' one easily 

computes 



n 
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From this, it follows that 

(iii ) 4a - 30 

Recall from Lemma 1.3 that 

(i v) for all a > o. 

Now (i) follows from (iii) and (iv) since 

4a - 30 1 2 -1 
-Sa = (Sa (4a - 20)) [ 40 (a - 0)] 

2(4a - 20)2 

is positive for 0 < a. 

The proof of the following proposition is tedious but straightforward, 

so we omit it. 

and Pi.§.. th~ "Jlermissi"J:l.!:~. reward fl~rtction.§.., t.hen the reward p given by 

for 0 < y .2. 20 

for 20 < y 

dor.rJJ:_~§L~es p* .for the payoff function 7T and for the payoff e p ' 

In the third case of this section, the disutility term is assumed to 

have the special form cp(y) = ayB, a > 0, B > 1. Now the situation where 

t 
B > 2 and B--like a--is asslllTled to be unknown to the landlord. is covered 

t 
Professor P. N. Bardhan pointed out to us that this is a more appropriate 

assumption for modeling sharecropping. 



-. 
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by Theorem 6.7, where p* is found to be the unique efficient reward function 

(hence undominated). On the other hand, when S > 1 is known to the landlord 

(while a remains unknown), the linear reward function Pk' k = ~ , is 

dominant within the class of linear rewards. Hence, when S is known to 

the landlord, p* is dominated by P
l

/
S 

except for S = 2. 

P = {P
k

: k > O}, 

tb~ll __ ~n~!:..ewar.si.J'_~ct.;i_o~ Pk with k = ~ d()min~tes I3.J.) cth.er reward r.l1~c~.ions 

ip. P, witb _ r~_s..p~~_L to _ P, 1>, an.d. ~0e __ E~;zgff function 'IT. 

Proof. If cp(y) = ayS, then the maximal output b(P
k 

,'I') is a maximizer of 

and, assuming S > 1, (i) att.ains its maximum with respeC't to y at 

If we plug the value (ii) into the equation for gain, we get 

(iii) 

and the maximum of (iii) with respect. to 
1 

k occurs only at k = S. 

The fourth and final case broadens the scope of inquiry in that. it 

involves utility functions that are not linear with respect to reward. 

<Such functions may be more appropri ate t.o a general equilibrium analysis.) 
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However, we confine ourselves to a very narrow class of such functions, 

viz. those of the form U(r,z) = r Y ~(z), Y ~ 1; in particular, U remains 

additively separable with respect to reward versus effort. When Y is 

known to the landlord and the disutility ~(z) is a,y2 with a, unknown to the 

landlord, the reward Pk with k = ~. is dominant among linear rewards. We 

remark without proof that if the value of 'Y is not known, except that 

o ~ Y ~ 1, so that in computing efficiency we take the infimum of n/n over·a11 

Y, ° 2. Y 2. 1, as well as over all quadratic disutilities, then the unique 

efficient reward (when P = linear rewards) is p{y) = y/4, y > 0, not p*. 

of the form -" --. . _ .. 

U(r,z) = rY - ~(z) 

.2.f Section 1. If ¢ is the set of 13,11 quadra:t-ic:._~i~utili~ies?-n~ P.is 

:nY~ .SE:"i_2-,L all li(lc:ar r.:ey.r~£d.§.-,. :then t.De r-ew§t.:rd (y.nction Pk with k = ~ 

jC:rn_~nates al] oth~r .r.e."!_B:~~ .f1.l!l.C':tJOl}s in P ,wi.:tll .. :res.l?~_~t to P, ¢, and the 

Proof. The utility function 

attains its maximum wit.h respect to y (assuming Y < 1) only at 

Fer ~.hi;-; opt.ima] ou:·r '-'. the gain ;s 

:) ( ) (.:i)J/(2-Y) _ 1 \/i.Y/~2-Y) 
n Pk,Cf'a ::: 2a (1 l'-

The maximum of (i) with respect to k occurs, by the same computation used 

in the proof of Proposition 7.3, at k =~. This completes the proof. 
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