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ABSTRACT 

The model considered in this paper is 
N ~ 

y(t) = I r x.(t-s) b.(s) ds + u(t), E[x.(s) u(t)] = 0, 
j=l _«} J J J 

where the time parameterization is continuous but the b. 's may be generalized 
J 

(1) 

as well as ordinary functions so that (1) subsumes discrete models and certain 

stochastic differential equations as well as the classical distributed lag 

model. Since economic variables are almost never observed continuously (1) is 

usually replaced with 
N QO 

Y(t) = ~ ~~ Xj(t-s) Bj(S) 

integer s and t, in which Y(t) and the 

+ U(t), E[X.(s) U(t)] = 0, 
J 

X.(t) are regular samplings or 
J 

averagings of y(t) and x.(t), respectively. The relation of the parameter­
J 

ization of this model to that of (1) is an important problem in the inter-

pretation of applied studies, which must use (2). In this paper properties 

of the relationship are established and their implications for applied work 

are discussed. 

Using projection operators in the frequency domain it is shown that if y 

and the x. are taken to be realizations of mutuully covariance stationary 
J 

stochastic processes then 
00 

B(t)· = 5 rx<s) b(t-s) ds, t integer, 
Nxl -co Nxl 

(2) 

where r (s) is an N x N matrix determined by the covariance structure of the x .. 
x J 

Since r (s) is in general non-diagonal and as a function is not symmetric about 
x 

s = 0, each B.(t) is a confounding of moving averages of all b.(s) which may 
J 1 

exhibit systematic leading or lagging biases. A series of propositions proved 

using frequency domain analytic techniques demonstrates that very stringent 

assumptions about the b. and x. 
J J 

B. (t) to approximate b. (t) well 
J J 

are necessary for r to be diagonal or for 
x 

for all j and t. Given weak restrictions on 

the x. and b., however, it is shown that each B. converges pointwise and in mean 
J J J 

square to the b. as the frequency of observation implicit in (2) increases. 
J 

Several examples of estimated r (s) corresponding to actual economic time 
x 

series for various levels of temporal aggregation are presented. These 

examples and the foregoing analysis suggest that if the x. vary significantly 
J . 

between observations or are strongly correlated with one another, or if the 

b. are not smooth, the inference about (1) from knowledge of (2) is likely to 
J 

be difficult or impossible. Recommendations for the interpretation of the 

discrete model (2) in applied work are made. 
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1. Introduction 

Consider the multivariate regression model 

yet) 
N 

= L x.*b.(t) + u(t) 
j=l J J 

(1) 

where y is the dependent variable, the x. 's are independent variables, u is 
J 

the residual and "*" denotes the convolution operator, 

00 

x. * b.(t) = f x.(t-s) b. (s) ds. 
J J _ooJ J 

y, x. (j = 1, ••• N) and u are taken to be realizations of mutually con variance 
J 

stationary stochastic processes with finite variances. In what follows we shall 

assume that the x.(t) are strictly exogenous: E[x.(t) u(s)] = 0 for all j, s 
J J 

and t. The b. are allowed to be generalized as well as ordinary functions.
l 

J 

(1) therefore subsumes special cases like 

K N 
yet) = L L x.(t-s.) b.(s.) + u(t) 

i=l j=l J 1 J l. 

(2) 

a "discrete time" model, and 

yet) = b x(t) + u(t) 

a stochastic differential equation. 

With rare exceptions the nature of economic data and estimation procedures 

preclude using (1) directly in applied work. Since data are usually available 

only as discrete time series recorded at regular intervals (1) traditionally 
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has been replaced by 

00 N 
yet) = L: L: 

s=-oo j=l 
X.(t-s) B.(s) + U(t), t integer, 

J J 
(3) 

E[X. (t)·U(s)] - 0, all j and all integer sand t. 
J 

In 'this model yet) and Xj (t) may be point samplings of yet) and Xj (t), 

yet) = yet), X.(t) = x.(t), 
J J 

t integer, 

or unit averaged data, 

t+a 
yet) = I y(r) dr, X.(t) :; 

J 

t+a 
I Xj (r) dr, 

t+a-l 
t integer, O<a<l. 

t+a-l 

Both the finite lengths of time series records and the application of tractable 

estimation procedures to (3) require that the B.(s) be functions of 
J 

small 

numbers of parameters. In most cases this implies the need for replacement of 

(3) by a model with a finite number of parameters. This paper is concerned 

exclusively with the problem of replacement of (1) by a relationship between 

the variables as measured when all observations are made either as point samplings 

or as unit averages with the same frequency. 

Sims ([9], [10]) has treated (1) when there is a single independent variable 

x. Using projection operators in the frequency domain he shows that 

00 

B(t) = r * bet) I r (t-s) b(s) ds x x (4a) 
-00 

00 

r (t) ~ -**Rx (t) "" L: -* = RX (s) Rx(t-s) x s=-oo (4b) 

-* (~ being the inverse under convolution of ~, the autocovariance function of 

x ) and derives some results about the form of r and the relation of B to b. In 
x 

Section 2 it is shown that when N > 1 the relation of B to b is formally analagous 

to (4), but the multivariate aspect of the problem introduces two new complications 

which are important in the interpretation of discrete models: first, B. (t) is 
J 

a linear combination of weighted averages of all bi(s); second, while B(t) is a 
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moving average of b(s), the average is in general not symmetric about s = t as 

is the case in (4). The more frequently x and yare sampled, the less important 

are these problems: results proved in Section 3 show that (given some weak con-

ditions) with sufficient temporal disaggregation the parameterization of (1) 

may be approximated arbitrarily well by that of (3). Based on these theoretical 

considerations Section 4 outlines conditions under which inferences about b based 
00 00 

on assumptions like Bi(t) • bi(t) or L Bi(t) = fbi(t) dt are apt to be mis-
t--oo _00 

leading or mistaken. Experiments with actual time series reported in Section 5 

suggest that increased temporal disaggregation within the range of conventional obser-

vational frequencies for macroeconomic data yields substantial improvements in the 

approximation of (1) by (3). 

2. The Discrete Model and its Properties 

In this section we consider the relation of the model (3) to (1) when Y 

and the X. are all measured as either point or unit-averaged data. If the var­
J 

iables are unit averaged, then 

t+a 
f yes) ds 

t+a-l 

N t+a 
L b. * f x.(s) ds + 

j-l J t+a-l J 

t+a 
f u(s) ds, 

t+a-l 
(5) 

a model which meets all of our assumptions about (1). It is convenient to 

proceed assuming (1), taking note of those features of our results which depend 

on whether the basic model is (1) or (5). 

In vector notation (3) is 

yet) = X'*B(t) + U(t); E[X(t)U(s)] 
lxN Nxl 

0, all integer t and s. 
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Because X is strictly exogenous, 

00 

E[X(r)Y(t)] = E{ L X(r)X(t-s)'B(s)},all integer t, rand s 
s=-oo 

~(t) = ~*B(t), all integer t. 

2 In the frequency domain, 

So long as SX(w) is non-singular for all w £ [-~,TI], 

H(w) = Sx(w)-lSXY(w) = [F[Sx](w)]-IF[SXY](w) 

= [F[S ](w)]-IF[S £](w) F{[F[S ](w)]-IS £}(w), 
x x x x 

where F is the "folding operator,,,3 

F[S ](w) = x 

00 

L 
k=-oo 

S (w+2~k). 
x 

B(t) is the inverse Fourier transform of 

[F[S ](w)]-IS (w)B(w) 
x x 

at integer t. Defining 

from which 

r (w) = [F[S ](w)]-IS (w), x x x 
NxN 

r (t) = ~_-* * R (t), 
x -Je x 

B(t) = r * bet), t integer. 
x 

Rx and Rx are the autocovariance matrices of X and x, respectively, 

[~] ij (t) = E[Xi(S)Xj(s+t)], integer t and s, 

[Rx] ij (t) = E[xi (s)xj (s+t)], real_t and s. 

-* under convolution of Rx, ~ is the inverse 

(6a) 

(6b) 

(7a) 

(7b) 
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N 00 

L L 
k=l s=-oo 

C
t 

0. 15 •. 
, 1. ,J 

(15 = Kronecker c). 

For integer t 

(7) differs from (4) in several important respects. r (t) is a non-dia­x 

gonal, non-symmetric matrix, and as a function it is not even symmetric about 

t = O. Each Bi(w) is a weighted average of all b.(w), and B.(t) is a convolution 
J 1. 

not just of b.(s), but of all b.(s), j = 1, 
1. J 

,N. Figure 1 illustrates the 

relation of B to b for a variety of b's and possible covariance structures for x. 

In particular, these sketches show that (a) one sided b's do not imply one-sided 

B's, as in the univariate case; (b) because of the confounding of all b. in each 
J 

Bi (a problem which does not arise when N = 1) Bj may be far from zero even though 

bj = O. We shall refer to this confounding as "contamination." Contamination is 

analagous to the classical omitted variables problem of econometrics: it arises 

whenever some of the xi(t) at integer t explain some variance of xj(s) (i ~ j and 

s not an integer) which cannot be explained by x.(t) at integer t. In fact, the 
J 

absence of such explanation is necessary and sufficient for the absence of con tam-

ination. 

Proposition 1. Consider the regression relationships 

x. (t+r) = 
J 

N 00 

L 
i=l s=-oo 

t integer, 0 < r < 1, j = 1, .•. , N. 

rx(t) is diagonal for all t if, and only if, crij = 0 for i ~ j. 
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Proof. Write C(r,s) with typical element c i'(s) and 
r J 

Fourier tranform C(r,w). 

- -1 ~ 
C(r,w) = [F[Sx] (w)] k=~~ e-ir (w+Z 1k), S (w+Zrrk), -~ < w < ~, 

x 

where C(r,w) is periodic in w with period Zrr. c i'=O for i # j 
r J 

if and only if C(r,w) is diagonal for all rand w, and r (t) is 
x 

diagonal for all t if and only if [F[S ](w)]-lS (w) is diagonal x x 

for all w. 

irw-e C(r,w) = ~ -irZrrk -1 
k=~~ e [F[Sx] (w+Zrr k)] Sx~'+Zrr k). 

Necessity is clear: if [F[S ](w)]-lS (w) is diagonal for all w, 
x x 

irw-e C(r,w) must be also. But it is also true that 

1 irw-
= f e C(r,w) 

o 

[F[S ](w)]-lS (w) 
x x 

1 irw-6 e C (r ,w ) dr. 

Hence if C(r,w) is diagonal for all rand w, r (t) is diagonal. 
x 

Two specific cases may be identified in which "contamination" 

4 is no problem. 

Proposition Z. Suppose that, for all integer n, t € [0,1], 

and all i and j, 

R (n+t) 
x
ij 

= t'R (n+l) + (l-t)'R (n). x
ij 

x
ij 

I t I , I t I < 1 

It I > 1 
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Proof. The assumptions are equivalent to 

whence 

The Proposition 2 situation has the advantage that r (t) = 0 
x 

for It I ~ 1, as well as r (t) = 0 for i ~ j. It is worth noting x .. 
1.J 

that no x vector with one or more mean-square differentiable5 compon-

ents satisfies the conditions of Proposition 2. 

Proposition 3. If S (w) is non-singular in (-IT, IT) but S (w) = 0 
x x 

for Iw I > IT, then r (t) = diag( sinTIt/TI t, 
x 

Proof. By explicit calculation, 

r (w) = 1.J whence 
[

0 .• , Iw I <TI 

x ij 0, Iwl>7r 

. .. , sin TIt/ TIt ). 

r (t) xij 

Propositions 2 and 3 illustrate two types of x processes which 

guarantee that r (t) is diagonal for all t. They differ in that 
x 

the x processes of Proposition 2 are locally rough but imply r 's 
x 

with no side lobes, while those of Proposition 3 are so smooth that 

they are mean-square differentiable of all orders but imply r with 
x 

significant side lobes. These results suggest the difficulty of 

establishing general conditions under which side lobes in [r ] .. (t) x 1.1. 

are small. A weaker result which is directly applicable is the 

following. 
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Proposition 4. If Y and all of the Xj in (3) are unit averages, 

then 

-Z [r ]i,(t) dt = 0i" x J J 

Proof. From a well-known property of the Fourier transform, 

_Z [r ],,(t) dt = [f ],,(0). 
x ~J x ~J 

When Y and the Xj are unit averages, the multivariate regression model 

is (5) • Denoting unit averaged y and x, by y and x" respectively, 
J J 

we apply the relations 

where 

Hence 

where 

y (w) = D (w) Y (w ), x, (w) = D (w) i, (w ) 
J J 

D(w) = sin(w/Z). 
w/Z 

E(w) = diag( D(w), ••• , D(w) ). 

Since D(Z 'IT k) = 0k,O' F[S_] (0) = 
x 

S (0), whence 
x 

[f ](0) = [S (O)]-lS (0) IN' 
x x x 

Proposition 4 shows that when Y and the X, are unit averaged, then 
J 

r has certain desirable properties. Although 1[r ]i,(t)dt = 0 for 
x -~ x J 

i ~ j, [r ]i' can in principle show large oscillations between integer 
x J 

t (where it must be zero if t ~ 0) and there is no guarantee that IBi(t) - bi(t) I 
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is smaller when the X. are unit averaged that when they are point 
J 

data. 

Fortunately it is possible to find reasonable sufficient condi-

tions for Bi(t) ~ bi(t). In deducing these conditions, as well as in 

subsequent sections, the following metric will be found very 

useful. 

Definition. For any complex matrix A, I IAI I is the square root 

of larges t eigenvalue of A' A. We shall refer to II A II as the "norm" 

of A. 

Obviously I IAI I is also the square root of largest eigenvalue 

of AA' and if A is Hermitian positive definite, I IAI I is the largest 

eigenvalue of A. Its usefulness arises from the properties 

(i) IIAII > 0, if A 1- 0, and 11011 = 0; 

(ii) II cA II = I c I • II A II ; 

(iii) 

(iv) 

IIA+BII 

IIABII 

< IIAII + IIBII; 

< IIAII • IIBII· 

We shall also make frequent use of the notation 

Ai (w) = i' th largest eigenvalue of Sx (w) • 

The following Lemma presents certain "regularity" conditions which 

the matrix S must satisfy in order to show that IIB(t) - bet) I I is x 

small; these conditions will be assumed in several succeeding develop-

ments. 

Lemma 5. Suppose the eigenvalues of S (w) are positive for all 
x 

w such that Iwl<w* ~ nTI, and 
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sup S (UI) 
i,j,lwl>w* xi' 

i;' j ...... S ....=.o.-:-(w""":')+ 
xii 

d = - , d < 1 (8) 
N 

Let gO(w) = sup Ilg(w+2n1l k) II. Then 
k;'O 

(i) For all we:["iIl *, w*], 

1 go (w) k¥cf I (w+2n 11 k) 
II[ [' S (w+2n1lm)]- L Sx (w +2n 11k) g (w+2n1lk)_< A (w) (9) 

m=-~ x k;'O N 

(ii) For all w: w* 4wl-=-= n 11, 

gO(w) (l+d) 

< (I-d) k~O sup 
i=l, 

( S (w+2n 11 k) J 
~ xii 

. .. , 

Proof. (10) cannot exceed 

(i) 

k¥O' {II [m=~~ Sx(w+2n1l m)]-lsx(w '2ntrk)g(w+2n 11 k) II} 

..:: go (w) k¥O '{II [m=~~ Sx (w+2nnm)] -1 Sx (w+2n 11 k) II} 

~ -1 
The largest root of [ L S (w+2n 11 m)] is the inverse of 

m=-~ x 
~ 

the smallest root of [ L S (w+2nnm)], which in turn is larger than 
I1F-~ x 

AN(w). Hence II [m=~~ Sx(w+2nn m)]-lll..:: l/AN(w). (9) follows from 

properties (iii) and (iv) of the norm. 

(ii) Define the metric M(A) = sup Nla
i

. I for any square matrix 
i,j J 

A with typical element a ..• Consider any matrices Al and A2 with 
NxN 1J NxN NxN 

positive diagonal elements, for which 
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The result obviously generalizes to any countable sequence of such 

matrices Ai with finite sum. We can therefore define 

00 

Vj = diag(Sxll (w+2n Tf j), ••• , SxNN(w+2n Tf j) ), V = j=~oo Vj 

and write 

where M(S) ~ d, M(Sk) ~ d. (10) is therefore bounded by 

the latter inequality using the facts that M(S) ~ d => II S II < d 

(see Fadeev and Fadeeva( [1], p. 110», and II S II < d => II (I+S) -111 

(see Noble ([7], p. 431». 

Lemma 5 could have been proved assuming only (8) with w* = 0, 

< _1_ 
- l-d 

or by assuming that A 1 (w) fA N (w) is uniformly bounded. 6,7 The former 

alternative disallows Xj which are highly correlated at low frequencies, 

a condition violated in most applications. The latter precludes cases 

like r 
I 

-2 
w 

l 
o I 

I 
S (w) = i 

x -4 I 
I... 0 w J 

for large w, 

in which the problem reduces to the univariate case and smallness of 

Ilb(t) - B(t>1 I is easily shown given sufficient conditions on b; more 

generally, it would prevent consideration of cases in which some of the 
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x. processes were k'th order mean-square differentiable but others 
J 

were not. Any of these assumptions precludes S for which it is not 
x 

possible to bound I S (w ) / S (w) I . 
x ij xii 

Proposition 6. Suppose b is of bounded variation in an open 

interval including the point t. Define 
o 

b(t ) = 1/2 lim [b(t + £) + b(t - E)]. 
o £-+{) 0 0 

Let £ be some positive constant and suppose there exist Wo and w*, 

w~ *, such that 

(i) 

(ii) 

(iii) 

(iv) 

(vi) 

Then 

111Ib(t)ldtll = A < 00' , 
_00 

(w) S 
Xij d d < 1; sup = -

i,j,lwl>w* 
S (w) N' 
xii 

i,&j 
4 'IT 

inf A N(w) > A£ ! A (w)dw; - Iw I> 'IT 1 Iw.1 <w* 

S (w+2 'IT m) 
Wo x .. 

~ 
1.1. 

! sup 
00 

w* k,&O i=l, ... , N ~ S (w+2 'IT m) m=-oo xii 

1 f b(w)eitwdw II ~-4£ • 
2'IT Iw I> 'IT 

. 'IT (I-d) £ 
dw ~ 8A(1+d) 

Proof. A standard result (given (1) and bounded variation of 
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T . t '" W_ iwt 
fb(t)e- lW 

dt ~ b(tO) = lim fb(w)e Odw. 
-T W-+OO -W 

(See Titchmarsh ([11], p. 13).) Hence 

bet ) - B(t ) = L '7 b(w)eiwtodw - -±. f B(w)eiwtodw. 
o 0 2 Tf -00 2 Tf ..,.. 

J. f b (w )eiwt0dw + -±. f (b (w) - B(w)ei wtOdw • 
2Tf 2Tf-Tf 
Iw I >Tf 

The norm of the first term is bounded by £/4. The second is 

(11) 

1 1 -1 00 - - iw to Z; -Tf [F[Sx](w)] {k=~oo Sx (w+2 Tf k)[b (w) - b (w+2 Tf k)]}e dw 

= 21 f [F[S ](w)]-1 L: fS (w+2Tf k)[b(w)-b(w+2Tfk)]}e:iJ.ll t Odw • (12) 
Tf - Tf X k'&O x 

The integration in (12) may be divided into three parts: across SI = 

[-w*, w*]j S2 = ~:w*<lwl ..::w O}; S3 =' 1o:WO < Iwl ~ Tf}. Across SI' 

the norm of (12) is dominated by 

L: Al (w+2 Tf k) 
2A w. * =k,&:....;O~~:--:-__ A w * 

J dw~-: inf \N(w) J*L: Al(w+2Tfk)dw~£/4; 
2Tf -w* AN(w) " Iw I~w* -w k'&O 

across S2' by 

S (w+2 Tf k) 
xii 

2A(I+d) i.. L: sup 
2Tr(I-d) 2 k'&O i:l, 

00------ dw ~ £/4; 
••• , N L: S (w+2 Tf m) 

m=-oo xii 

across S3' by 

-t- sup II b (w) I I Sf L: sup 
Tf Iw I>wo 3 k'&O i=l, ••• , N 

S ~ +2 Tfk) 
x .. 

--..;~::.:~::...------ chl 
00 

L S ~+2Tf m) 
m=-oo x .. 

~~ 

N 
~I;SluPI> Ilb~)11 ~£/4. 

w w 0 
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These conditions for B(t) = bet) invlove the convariance struc-

ture of all xi and both global and local properties of b. In a sense 

which is made exact in Lemma 5 the spectral density matrix of x must 

be "well conditioned" at all frequencies with variance concentrated in 

an interval which includes w = a and is a subset of (-n, n). Unless 

S (w) falls off drastically near ~ condition (iii) of Proposition 6 x 

requires that Is (w)1 be less than lIN for all i ~ j in an interval 
xii 

(w*, co), w*«n. Since this implies 

co 
r S 

k=-co 
co 
r S m=-co 

it is clear 

xij 
(w+2 n k) 

xii 
(w+2 n m) 

that if I SX
ij 

< ~, Iwle:(w*, ~ 

(w) IS x (w) I (which can be estimated) is not 
ii 

bounded by lIN near n, the conditions of Proposition 6 cannot be met; 

however, since Proposition 6 is concerned with sufficiency, failure of 

I
Sx (w)/Sx (W)I to be bounded in this way does not preclude smallness 

ij ii 

of IIB(t) - b(t)1 I. The conditions on b(w) prevent rapid oscillation 

in any bi(t), a "rapid" oscillation being one which is shorter than 

several periods. This smoothness condition ensures that the off-diagonal 

elements of r and the side lobes of the diagonal elements -- both x 

of which oscillate with period 2 (see, e.g., Fig. 4) -- become unimpor-

tant when convoluted with b. These smoothness requirements are all 

relative to the frequency of observation which is implicit in the desig-

nation of the frequency n. This suggests that for any choice of e:, 

there might be some level of temporal disaggregation such that llb(ta) - B(to)1 I 

< e:, an idea which is pursued in the next section. 
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3. Limiting Behavior of the Discrete Model 

Consider models corresponding to (1) when x and yare recorded 

n times per period: 

Y(.!):: 1: 1. nB(~) • X(t-s) + U(!.) , t integer. (13) 
n s::-~ n n n n 

It is clear that (for ordinary b) each coefficient of X in (13) 

will approach 0 with increasing n. If at the same time nB(~) ~ b(~) 
n n 

for large n, then one could make inferences about (1) from (13) when 

n is large in an obvious way. nB(~) is a convolution of b with r n(t), 
n x 

where (from (6), with proper redifinition of TI), 

n -1 r (w):: [F [ S J(w)] S (w), x n x x 

~ 

F [S ](w) :: k-L S (w+2nTIk). n x __ 00 x 

The investigation of the convergence of the parameters of (13) to the 

function b(t) of (1) is complicated by the fact that the set of parameters 

Sn(t
l

, t 2) :: fB(s): s£[tl ,t2]} increases approximately in proportion 

with n. We must therefore be concerned not only with the local conver-

gence problem, conditions under which lim nB(t) :: b(t) for integer t, 
n-+<x> 

but also with global properties of nB: how well does nB approximate 

b(t) as a function in the limit? The first question can be treated 

using Proposition 6. 

Corollary 7. Suppose that b is an absolutely integrable function 

of bounded total variation. Define 

A 1 
b(t) :: 2" lim[b(t + £) + b(t - E)]. 

£-+0 
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Suppose there exist w* > 0 and d < 1 such that 

(i) inf "N(w) > 0; 
Iw lsu* 

(ii) sup Is (w)/S (w) I < diN; 
i,j, Iw I >w* x ij xii -

i,&j 

(iii) For all w
o

' inf S (w) > 0, i = 1, ••• , N. 
Iw ISUo xii 

Then 

lim: Ib(t) - nB(t)11 = 0 for all integer t. 
n-+o:> 

Proof. Given any integer t, and E > O. Since 

nB(t) = 21 IJ7T [F [S ](w)]-lF [S b](w) eitwdw, 
7T -n7T n x n x 

it suffices to show the existence of Wo and n* such that for all n ~ n*, 

(iii' ) 47T 
inf " N (w) ~ AE .IA 1 (w) dw ; 

I w I < w * I w ~ >n 7T 

Wo xii (w+2n 7T k) '11(1 d) 
(iv') f L sup -=------ dw < -E 

w* k'&O i=l, ••• , N 'f S (w+2n7T m) - 8A(1+d) 
m=-oo xii 

(v' ) su~ I I b (w) II ~ 2~; 
Iw I>w O 

(vi' ) 1 f b (w ) e i tw dw I I ~ -4E 
• 

27T Iw I >n 7T 

(Note that conditions (i) and (ii) of Proposition 6 are satisfied by 

hypothesis.) The absolute integrability of b and the Riemann-Lebesgue 

Lemma guarantee the existence of Wo such that condition (v') is ful-

filled. inf " N (w) > 0, and the finite variance of the xi implies 
Iw I <w* 

00 00 N 
f '1. (w)dw < f L". (w)dw = 

-00 _00 i=l 1 

00 

ftrS (w)dw = 
x 

-00 

N 
L var(xi) 

i=l 
< 00; 
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hence there exists nl such that (iii') is satisfied for all n > n • 
- 1 

Since inf S (w) > 0 but lim ess sup S (w) = 0, there exists n
2 Iw I < Wo Xii '\r+OO w>'V Xii 

such that (iv') is satisfied for all n > n • - 2 The basic convergence 

result for Fourier series applies to all bi(t) and insures that (vi') 

is met for all n exceeding some n3 . Defining n* = sup(nl , n2 , n
3
), 

the result follows. 

It is straightforward to show that if conditions (i) through (iii) 

obtain when x is not unit averaged, they are also valid for averaged x. 

Hence Corollary 7 applies when X and Yare both unit averaged. 

The conditions on b are exactly those required to ensure the 

convergence of its Fourier transform. The requirements on x will be 

met if A N(w) is strictly bounded away from zero on every finite inter­

val and if for all i ; j, lim Is (w)/S (w) 1=0. In the univariate case 
-+00 x.. x· i w 1J 1 

these conditions reduce to S (w) being bounded strictly away from zero 
x 

on every finite interval. 

Corollary 7 stipulates conditions under which the assumption 

• n 
bi(t) = Bi(t), i = 1, ••• , N, and given integer t, is valid for n 

sufficiently large. It does not address the question of how well the 

limiting shape of nBi(t) approximates that of bi(t). One solution of 

the latter problem is provided by the next proposition. 

Proposition 8. Given the assumptions of Corollary 7, 

co 

lim.! L 
n-+oo n t =-co 

Proof. The assumptions on b guarantee that it is square as well 
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as absolutely integrable. n s s The Fourier transform of B(-) - b(-) , s 
n n 

integer, is 

[F [S ](w)]-lF [S b](w) - F [blew) n x n x n 

-1 00 

=-[Fn[Sx] (w)] k=~oo S (W+2nTIk) E b(w+2nTIj), Iwl < nTI 
x j;'k 

It is easy to show that for any square integrable function f, 

loot t nTI 
- E f(-)'f(-) = J f (w)'f (w)dw n t=-oo n n -nTI n n 

where f is the Fourier transform of f(1), j=-oo, 
n n 

• •• , 00. 

Taking note of the decomposition 

00 

=k=~ooSx(w+2nTIk) E b(w+2nTIj) + E S (W+2nTIk)b(w) 
j;'O k;'O x 

- E S (w+2nTIk)b(w+2nTIk) 
k;'O x 

it suffices to show 

nTI 
lim J [k=~ooSx(w+2nTIk).E b(W+2~TIj)]'[Fn[Sx](w)]-1' 
n400-nTI J;'9 

(a) 

-1 00 -

• [F [S ](w)] k_E S (W+2nTIk) E b(w+2nTIj)dw = 0; n x __ 00 x j;'O 
nTI - l' 

lim J b(w)'[ E S (w+2nTIk»)'[F [S ](w»)-
k~O x n x n400-nTI T 

(b) 

• [F [S )(w»)-l[ E S (w+2nTIk»)b(w)dw = 0; 
n x k;'O x 
nTI - l' 

lim J E S (w+2nTIk) b(W+2nTIk»)'[F [S )(w»)-
n400-nTI k;'O x n x 

(c) 

• [F [S ) (w) )-1[ L S (w+2nTIk)b(w+2nTIk) )dw = 0. 
n x k;'O x 

nTI 
(a) states that 11m J [ E b(w+2nTIj»)'[ E b(w+2nTIk»)dw = 0. 

n -nTI j;'O k;'O 

s 
the function defined by connecting the values of bi(~) (s integer) with 

straight lines. 
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where Ti is the total variation in bi. Hence 

lim -z [cn(t)-b(t)]'[cn(t)-b(t)]dt = O. 
n-+<><> (14) 

b(w+2n nj); where D (w) = d· (sin(w/2n) n ~ag w/2n 

sin(w/2n)) 
, w/2n . 

From (14) and the square integrability of b, 

nn 
lim f 
n-+<><> -nn 

2 00
- - 2 00 -[Dn (w) j=Eoob(w+2nn j) - b(w)]'[Dn (w)k=Eoob(w+2nn k)-o(w)]dw=O (15) 

Now observe that 

nn 
f [D 2(w)b(w) - b(w)]'[D 2(w)b(w) - b(w)]dw 

n n 
(16) 

-nn 
rnn 

.::. f b(w)'[D 2(w)-I]'[D 2(w)-I]b(w)dw + f b(w)'[D 2(w) ~]'[D 2(w)_I] 
n n Iwl>rnn n n 

rnn 

.b(w)dw 

The square integrability of b assures that the second term converges to 

o as n-+<><>. The first is bounded by 

00 

f b(t)'b(t)dt· sup [D 2(w)-I]'[D 2(w)_I] 
00 Iwl<Tn1T n n 

which also coverges to O. (15) and the convergence of (16) to zero 

taken together imply 

n1T 2 00 _ 2 2 00 -

lim f [D (w). r b(w+2n1T j)-D (w)b(w)]'[D (w). r b(w+2n1T j) 
n-+<><> -n1T n J=--OO n n J=-OO 

-D 2(w)b(w)]dw = O. 
n 
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Defining S = {w: w* < Iwl ~ n~} and applying Lemma 5, expression n 

dominated by 

~. [k~O Al (w+2n 

'kf b(w)'b(w)dw (17a) -w* AN(W) 
2 

+ l+d ! 

rk~O 
S (w+2n ~k) 

j xii 
l-d S sup 

( Vb) n 00 

i=l, •.• , N L S (w+2n~ m) 
m=-oo xii 

• b (w) 'b (w) dw 

We wish to show that both (17a) and (17b) converge to 0 as n~. 

w* Choosing some nO >-;, we see that for all n ~ nO the integrand in (17a) 

is bounded by the function 

L AI(w+2n~ k) 
k7'O b(w) 'b(w) 

which is integrable over [-w*, w*]. The finite variance of x assures 

that lim L AI(w+2n~k) = 0 a.e., and b(w)'b(w) is uniformly bounded; 
n~ k7'O 

the integrand therefore converges pointwise to zero for alomst all 

w£[-w*, w*]. By the Lebesgue Convergence Theorem (Royden ([8], p. 88», 

(17a) converges to zero. (17b) may be written 

l+d ! L 

l-d Iwl>w* k7'O 

S (w+2nn k) 1 2 
xii 

sup -==------- b(w) 'b(wh (w)dw 
00 (m) n i=l, .•. , N L S w+2nn 

m=-oo xii 

where X (w) is I for Iwl~nn and 0 elsewhere. The integrand is bounded 
n 

by N2b(w)'b(w), which is integrable. Since S (w) > 0 for all w, 
xii 
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N 
S (W+2mrk) 

xii xii 
E sup < E E co co 

r (w+2n.k) } 

k;'O i=l, ••• , k;'O N E S (w+2nmn) i=l E S (w+2nmn) m=-co x m=-co x 

~ 0 a.e. 
n-+«> 

ii ii 

The Lebesgue Convergence Theorem therefore assures that (17b) con-

verges to O. 

The proof of (c) is analagous. We define 

and b (w) = 
n 

b{w) on (-co, co) 
{F [b'b] (w)}1/2 

n 

and rewrite the expression as 

- -1-1 S (w+2mrk)b (w+2mrk)]' [F [S ] (w)] [F [S ] (w)] [E S (w+2mrj) 
x n n x n x j;'O x 

·b (W+2nnj)]F [b'b] (w)dw 
n n 

Taking note that lib (w+2nnk)I I ~ 1, this is dominated by 
n 

* tEAl (w+2nnkj- 2 w k;'O co _ - , 
f A (w) m=~cob(W+2nmn)'b(W+2nmn) dw 

-w* l+d N ~ . f SXii (W+2nnk) j ] 
+(l-d) sf E sup -co;;;;.;;;....-----

n k;'O i=l, ••• , N E S (W+2nmn) 
m=-oo Xii 

co - -• _E b(w+2nmn)'b(w+2nmn)dw m--oo 

(18a) 
2 

(18b) 

For n ~ nO > w*/n the integrand in (18a) is domin ated by the integrable 

function\: E Al (w+2nnk

J 
2 

k;'O F[b'b](w) 
_ AN(w) • 

Since E A
l

(w+2nnk) converges pointwise to zero for alomst all WE[-W*, w*] 
k;'O 

(18a) converges to zero by the Lebesgue Convergence Theorem. Similarly, 
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(18b) also goes to zero. 

As seen in the proof, the conditions on b in Proposition 8 

ensure that it can be approximated arbitrarily well in the mean 

by a naive, linear interpolator if the points between which b is 

interpolated are chosen at sufficiently fine intervals -- this is 

the consequence of the total variation in b being finite. If in 

additlon b is absolutely and square integrable, it fulfils all the 

requirements for convergence of nB to b. These conditions are fairly 

weak: indeed, it is difficult to imagine a regression model with 

an ordinary b which violates the conditions of Proposition 8.8 

The conditions on x in Corollary 7 and Proposition 8 are satisfied if 

if the eigenvalues of S (w) are bounded strictly away from zero on 
x 

every finite interval, and if in the regression relationships 

the bij are ordinary, absolutely integrable functions. Of all these 

requirements, the last is perhaps the most likely to be violated. 

The limiting behavior of 1 t r InB(~) - b(~)1 is not easily treated, n =-~ n n 

but the following proposition may be useful. 

Proposition 9. If II_Z Ib(t)ldtl I 

and Al (w) = O(lwl-a ), a > 1, then 

lim 1 r nB(~) = _~ b(s) ds. 
n t=-~ n &, 

n-+<x> 

Proof. The claim is equivalent to 

A < ~, S (0) is non-singular 
x 

lim {[F [S ](O)]-lF [S b](O) - b(O)} = 0 
n x n x 
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a sufficient condition for which is 

limll [F [S ](O)]-l{F [S b](O) 
n x n x 

n~ 

F [S ](O)b(O)} II n x 

For large n, this expression is dominated by 

L Al(2n~k)1 I [b(O) - b(2n~k)] I I 
k"O 

o 

When the data are unit averaged one may apply Proposition 4 

in lieu of 9. 

4. Interpretation of Discrete Models in Applied Work 

Given the assumptions set forth in Section 1, the model (3) exists 

and the relation of its parameterization to that of (1) is 

B(t) = -Z rx(s) b(t-s) ds. 

(6) and (7) imply that r (s) is in general not a diagonal matrix and x 

as a function of s is not symmetric about s = O. Consequently B i(t) 

is a moving average not only of bi(s) but also of bj(s) (j~i) and 

this average is not necessarily centered exactly about s = t. The 

"contamination" of Bi(t) by bj(s) can be so strong that Bi(t) is a 

confounding of all bj(s) which in no way resembles bi(t). Such a 

situation is exemplified in Figure 2, protraying an r (s) estimated from 
x 

actual data for which one off-diagonal element is as fmportant as the 

on-diagonal ones. In circumstances like those of Figure 2 no inference 

about bet) from knowledge of B(t) is possible. Even when certain bi(t) = 0, 

the corresponding B.(t) can be large in absolute value and have reasonable 
1. 

shapes: see Fig l(d). 
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One interesting model in which inferences about b based on B 

are straightforward is 

yet) = x{t)'b + u{t) (19) 

a case subsumed by (1) when b is a vector multiple of Dirac delta func-

tions. (7) then implies 

yet) = X{t)'b + U(t), 

10 a result which is perhaps intuitively obvious. 

If the basic model is not (19) but the apparently similar one 

a 
yet) = f x{t-s)' b{s) ds + u{t), a < 1, 

o 
(20) 

no such simple relation exists. Investigation often proceeds as if 

the discrete model corresponding to (19) were 
a 

yet) = X(t)' f b(s) ds + U(t), 
o 

(21) 

the assumption being that since "all effpcts die out within a period" 

(21) may be used in lieu of (20). We have seen that such a procedure 

is formally unjustified. Perusal of Figure 2 suggests that in applied 

contexts, unless a is small than inferences based on the assumption that 

(20) implies (21) can be wrong. The true discrete relation corresponding 

to (20) may be well approximated by 

M 

yet) = s=~~ X(t-s)' B(s) + U(t) 
1 

(22) 

with Ml and M2 small in absolute value, but because of contamination 

a 
B(O) ~ fb(s) ds. Misspecification of (22) by omission of leading and 

o 

lagging terms does not imporve matters. This example shows that the 

considerations raised here apply not only to those models traditionally 

classified as "distributed lags" but also to situations where effects 
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take less than one period. 

Since hypotheses about model structure are usually concerned with 

b rather than B, it is important to recognize those circumstances in 

which inferences about the real time structure based on the observable 

one will be difficult. The results of Sections 2 and 3 in general and 

Proposition 6 in particular suggest three relations between the properties 

of the model (1) and the accuracy of the approximation Bi(t) ; bi(t). 

First, Bi(t) is close to bi(t) only if all components of b~) 

are smooth in the sense made exact by conditions (v) and (vi) of 

Proposition 6. If any component of b(s) shows rapid oscillations then 

it cannot be assumed that Bi(t) ; bi(t) for any i. Furthermore, Corollary 

7 implies that when b.(s) exhibits a discontinuity at s = t then the 
1 

limiting approximation achieved with increased temporal disaggregation 

is 

(23) 

This consideration is especially relevant in models with one-sided bi's 

which are discontinuous at t = 0 and then decline: as in the univariate 

case (see Sims ([9], p. 554)) the corresponding Bi will not decline 

monotonically, because of (23). The reason this smoothness is required 

is that the off-diagonal elements of r (s) and the side lobes of its x 

on-diagonal terms oscillate about 0: this oscillation becomes unimport-

ant only if b(s) is smooth. Any hypothesized b can, of course, be exam-

ined directly to see if it meets the various conditions imposed in develop-

ments 6, 7 and 8. 

Second, the more highly correlated are the independent variables 
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(in a sense made exact in Lemma 5) the greater is IBi(t) - bi(t)1 

likely to be for all i and t. Lemma 5, the following discussion, and 

Appendix B indicate two alternative conditions on S which are sufficient 
x 

for smallness of IBi(t) - bi(t)l. Both conditions involve the ratio of 

the largest to the smallest eigenvalue of S (w). In the first condition, 
x 

I
s (w)/S (W)I 
x ij xii 

< lIN, for all w€(w*, ~) (24) 

and the eigenvalue ratio must be bounded for all w€[-w*, w*]. 

Since (as shown in Section 2) (24) implies 

I
SX (w)/Sx (W)I < lIN, W€(w*,TI), 

ij it 

it may be possible to reject the first condition by examination of 

the estimated spectral and cross-spectral densities of X. In either 

case, the bound on IIB(t) - b(t)1 I is linearly related to the bound on 

the eigenvalue ratio over the relevant range. If (24) does not obtain, 

this bound cannot be less than the ratio of the larges to smalles eigen-

value of the matrix 

cov (x) = E xx' = E XX' 

because (denoting the largest eigenvalue of a symmetric matrix by I IAI I 

and the smalles by «A» ), 

"E xx' " «E xx'» 
= II-Z Sx(w)dwll 

« j s (w)dw» 
-~ x 

< -z II Sx (w) II dw 

-z «S (w) ) )dw 
x 

::. sup 
w 

IISx(w) II 
«S (w) » 

x 

Even when (24) is true (25) will probably obtain when the supremum is 

taken over WE(-W*, w*) and S (w) is concentrated near w = O. Given 
x 

a sample of T observations of X, this ratio may be approximated by the 

corresponding ratio for the matrix 

T 
L (X(t) - X) • (X(t) - X)'. 

t=l Nxl IxN 

(25) 
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When some subset of the N independent variables is highly correlated 

then off-diagonal elements of r (s) can be large and contamination is x 

apt to be severe. Results discussed in the next section suggest, e.g., 

that the estimable parameters of an annual or quarterly model in which 

several highly correlated interest rates appear as independent variables 

bear virtually no resemblance to the real time parameterization. 

Third, for IBi(t) - bi(t)1 to be small all xi(t) must show substan­

tial power at all low frequencies and exhibit little of their movement 

over periods of length two or less: this is condition (iii) of Proposi-

tion 6. 11 The first requirement is satisfied by most economic time series. 

The second depends on the variable and the frequency of observation, and 

if one has a choice in the level of temporal disaggregation of a model 

under consideration this criterion ought to be investigated by examining 

the eigenvalues of an estimated spectral density matrix of the independent 

variables. Even when no such choice exists, it may be worthwhile to 

estimate spectral densities of closely related, more frequently recorded 

series to see if the spectral shape of such variables precludes investiga-

tion of the hypotheses about b under consideration. 

5. The Practical Benefits of Temporal Disaggregation 

The three relations just outlined all involve the frequency of obser-

vation. In any model, if observations are not made often enough then the 

criteria of Proposition 6 cannot be met for any interesting 8; on the other 

hand, Corollary 7 and Proposition 8 assert that under reasonable condi-

tions the real time model may be approximated by a discrete one with any 

desired degree of accuracy. The chief impediments to the application of 

the latter two developments are the impossibility of verifying their assump-

ti.ons in any given case and the (related) difficulty that one must work 

with finite n. 12 
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To provide insight into gains likely to be realized from temporal 

disaggregation in actual investigation, r (s) for N = 2 was estimated 
x 

using records of the 4 - 6 month prime commercial paper rate (PCPR) and 

the new issue rate for 3 month u.s. Treasury Bills (USTBR). The inter-

est rate series were chosen because weekly, accurate observations are 

available and because it was hoped that their co11inearity would illust­

rate contamination problems apt to be encountered in applied work. 13 

Estimated spectral densities, eigenvalues and the ratios A
1

(w)/AN(w), 

Is (w)/S (w)1 for selected frequencies are presented in Table 1. 
xij xii 

In Figures 2 and 3 the estimated r matrices for n = 1 (corresponding x 

to one year) and n = 4 (one quarter), respectively, are graphed. As one 

might suspect, when these two highly correlated series are observed only 

once a year the contamination is very severe: B2 reflects a convolution 

with b1 just as important in magnitude as that with b2 • (See Figure 2 

and Table 2.) Temporal disaggregation to quarterly observations changes 

the shape of r in three ways. First, r (s) is more concentrated about x x 

s = O. Second, the contamination problem is greatly reduced: as reflected 

both in Figure 3 and Table 2, diagonal elements of r are larger relative x 

to off-diagonal ones. Third, at the finer level of disaggregation e1e-

ments of r (s) do not show the pronounced shift (backward for the first 
x 

row, forward for the second) of r for annual data. x 

The effect of using unit averaged data can be appreciated by com-

paring Figure 3 with Figure 4, which presents r (s) for unit averaged x 

data, n = 4. r in the latter case shows substantial imporvement over 
x 

the former, its integral being given by Proposition 4. 

14 
It is a matter of conjecture whether these results are typical; 
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the three improvements noted in r as annual data were replaced with x 

quarterly are not a logical consequence of temporal dissaggregation 

which will necessarily be observed when any set of variables is observed 

more frequently. The results at least suggest that important gains can 

be realized from temporal disaggregation in the range of conventional 

) measurement frequencies for macroeconomic data. In the case presented 

here contamination is so severe in the annual, discrete model that testing 

hypotheses under the assumption B ~ b is foolish. In the quarterly model 

contamination is present but not overwhelming: for some distributed lags 

reasonable inferences about some properties of b might be made on the basis 

of a good estimate of B. Contamination appears less a problem with 

unit averaged data and presumably further imporvements would be realized 

with monthly data. 
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Table 1 

Values of Al(w)/AN(w) and sup 
i,j;i;'j 

Is Is I at selected frequencies, 
x ij xii 

USTBR and PCPR. 2TI corresponds to the frequency 1 cycle per year. 

Frequency A1(w)/A 2(w) sup I s Is I 
i,j ;i;'j xij xii 

OTI 344.81 1.1007 

0.5TI 14.86 0.9866 

2.0TI 5.31 0.8056 

3.5TI 2.93 0.5467 

5.0TI 9.57 1.3139 

8.0TI 6.45 0.6624 

13.0TI 34.67 2.8585 

Table 2 

Quarterly x, 
Annual X, point data Quarterly X, point data Unit averaged data 

[-4421 

.4440 

'003~ 
.8243 

[-8867 

.1264 

'027~ 
.9630 

[ 1.0000 

.0000 

'OOO~ 
1.0000 
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Figure 1. Bi corresponding to some bi for N - 2. Bl and bl are portrayed on the left, B2 and b2 on 

the right. The x's indicate B's corresponding to a frequency of observation fourtimes greater than that 
-2 which generated the B's designated by the circles. In (a) and (b), Sxll(w) = Sx2~(w) = inf(9,w ); however 

in (a) xl and x2 are uncorrelated, while in (b) their correlation is inf(.9~ .gewl ). The essential dif­

ference between the (a) and (b) situations is the absence of the contamination in (a) which is present in 
-2 Iwl/8 (b). In (c) and (d) Sxll(w) = Sx22(w) - inf(l,w ) and the correlation between xl and x2 is inf(.96, .96 ): 

the potential for contamination is greater than in (a) and (b). In addition, bl(t) is poorly behaved and b
2 

shows strongly the effects of contamination. In l.l(d), b2(t) = O. 
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Footnotes 

1. Generalized function are defined and discussed briefly by Jenkins 

and Watts ([5], p. 26). For a more elaborate introduction, 

Lighthi11 [6] is an excellent reference. 

2. Unfortunately, there is no standard notation for frequency domain 

statistical analysis; the conventions used here are set forth in 

Appendix A. 

3. See any standard reference on spectral analysis for a derivation 

of this result, e.g., Fishman ([2], pp. 50). We shall think of 

these functions as defined only on the interval (-~, ~), but they 

can be defined on the entire real line, in which case they are 

periodic. 

4. Propositions 2 and 3 are the multivariate analogues of Proposi­

tions A and E proved by Sims [9]. 

5. Mean-square differentiability of a stochastic process is discussed 

by Hannan ([4], p. 6 ). 

6. Developments 6 through 8 would also follow under either of these 

alternative assumptions. Corresponding versions of these Proposi­

tions for the latter assumption are presented in Appendix B. 
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7. Lemma 5 remains valid when the data are all unit average instead 

of point sampled, so long as (8) and (9) are defined as the appro-

priate limits when both numerator and demoninator are zero. S (w) 
x 

is pre- and post-multiplied by 

di [ 
sin(w/2n) 

ag _ w/2n' .•• 
sin(w/2n) l 

w/2n ~ 

If (10) is satisfied it is met a fortiori after this modification 

of S . 
x 

8. The most commonly arising case in which b is not a vector of 

ordinary function is bet) ~ bl(t) + b2 (t) where b
l 

is a vector of 

ordinary functions and b2 (t) is a linear combination of Dirac delta 

dunctions which are zero for non-integer t. The underlying model 

may then be written 

yet) = -Z bl(s) x(t-s) ds + 
~ 

L 
s=-~ 

S2(s) x(t-s) + u(t). 

Since rx(s) is IN for s = 0 and 0 for s a non-zero integer, B(s) = Bl (s) 

+ S2(s), and nB(s/n) = nB(s/n) + S2(s/n). If b
l 

meets the conditions 

n for b in Proposition 8, then Bl converges in mean square to b
l 

(s), 

but of course n S2 (s/n) is either identically 0 or approaches 

infinity. If b
2 

has delta function components relfecting impulses 

at t I j/n, j integer. nB will reflect serious contamination for 

all n. 

If the basic model is a differential equation which can be cast 

in the form (1) with b having compenents which are linear combin-

ations of first and higher order derivatives of the Dirac delta 

function, then (as Sims [10] has pointed out for univariate x) 

B does not in general look like the corresponding difference 
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8. continued 

operator. The analysis of differential equations in the multivari-

ate model is similar: as inspection of figures 2, 3, and 4 reveals, 

the B's are a hopeless confounding of multiples of derivatives of 

the elements of r (s) at integer s, and the problem does not improve x 

with increasing n. 

9. See the discussion in Section 5, especially Table 1. 

10. The result depends on X and Y being measured at exactly the same time, 

of course. If they are not -- say X is recorded in the middle of 

the quarter and Y and the end -- then (19) implies a two-sided 

lag distribution between X and Y whose relation to b depends on 

the shape of r • x 

11. Some evidence is provided by Granger [3]. 

12. Certain awkward problems arise if Corollary 7 and Proposition 8 

are applied literally to some economic time series. Stocks 

like money and inventories are defined unambiguously at all points 

in time, but what about GNP at 2 A.M. (Eastern Standard Time) or 

housing starts on Sunday? In fact, of course, there are many economic 

variables which become conceptually difficult when temporally dis-

aggregated beyond, say, weekly averages -- not to mention problems 

associated with actual measurement of these magnitudes. It is 

~ 

precisely in such cases that b is periodic and b is a linear com-

bination of delta functions. There is then a level of temporal 
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12. continued 

disaggregation for which (1) and (3) are identical, but time series 

records are rarely detailed enough to aviod the problem in this 

way. What is relevant is how rapidly r improves over the range x 

of conventina1 observational frequencies, a question to which the 

experiments reported here are addressed. 

13. 1042 observations of the two series, from July, 1951 through 

June 1971, were used to estimate 1664 equally spaced ordinates of 

the spectral density matrix. The same number of ordinates of r (w) 
x 

were then estimated using (6a) with the estimated S in place of S . x x 

The inverse Fourier transform of r (w) yielded the series plotted 
x 

in Figures 2 through 4. (It was implicitly assumed that S (w) = 0 x 

for frequencies greater than 1 cycle/2 weeks.) 

14. Experiments with PCPR and the narrowly defined money stock M1 yielded 

similar r . x 
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Appendix A 

The following are notational conventions employed throughout. 

All assertions are proved in basic references on Fourier transforms 

(e.g., Titchmarsh ([11])) or spectral analysis (e.g., Fishman([2])). 

For any absolutely integrable function f of bounded total var-

iation, define its Fourier transform 

- T 
-itw few) = lim f f (t) edt, -00 < w < 00 

T-+<x> -T 

The inverse Fourier transform of f is defined 

f (t) 
1 W_ 

lim 2n f few) 
itwd e w, _00 < t < 00 

W-+<x> -W 

If f is continuous at t, f(t) = f(t); if not, f(t) 1 2" lim [ f ( t+£) 
E-+<x> 

+ f(t-E)]. (The existence of the limit is the consequence of the 

bounded variation of f in a neighborhood of t.) 

For any function f(t) defined only for integer t such that E If(t) 1<00, t=-oo 

define its Fourier transform 

few) 
T 

lim t=~T f(t) 
T-+<x> 

-itw 
e -TI < W < TI. 

The inverse Fourier transform of f is defined 

f (t) 

and f(t) = f(t). 

1 
2TI 

TI 

f f (w) e i twdw , i t nteger, 
-TI 

The complex conjugate of any complex number a is denoted a. (In 

a few instances, x and y have been used to denote the unit averages of 

realizations of stochastic processes x and y; this alternative use is, 

hopefully, clear from context.) If x is a vector of complex numbers, 
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then x' = (xl' ... , ~). 
NxI 
Ifx is a covariance stationary stochastic process 

we denote its Fourier (or Cramer) representation 

ferential operator with the properties 

(1) x(t) 1 oo! _ ( ) itwd = -- x w e W; 21T -00 

Likewise if x and yare two such processes, 

x(w) • 

with 

x(w) 

= s .. (w) if w=~ and ° otherwise. 
XY1J 

mean 0, 

is a dif-
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Appendix B 

Proofs of the convergence results of Chapter 1 assuming only that 

Al(W)/AN(W) is uniformly bounded --

Lemma 5'. Suppose the eigenvalues of S (w) are all positive for 
x 

all w. Then 

II [ ~ S (w+2mn)]-1[ L S (w+2'rrk)] II 
m=-oo x k~O x 

Proof. 
00 -1 

The largest eigenvalue of [ L S (w+2nm)] is the inverse m=-oo x 

00 

of the smallest eigenvalue of L S ( +2~m), and m=-oo x 

Hence 

II L S (w+2nk) II < 
k~O x 

L Al (w+2nk) ;, the result follows from properties 
k~O 

(iii) and (iv) of the norm. 

Proposition 6'. Suppose b is bounded variation in an open in-

terval including in the point to' Define 

Let € be some positive constant and suppose there exists WO€(O, n) such 

that 

(i) A < 00' , 

(ii) Al (w)/AN(w) < d < 00 almost everywhere; 

(iii) inf A (w) 
w<w 1 
-0 

> 
2dA 

- n€ f Al (w) dw; 
Iwl>n 
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(iv) sup Ilb(w) II ~ ;~; 
Iwl>w o 

(v) Ilb(tO) 1 r b(w)eitOwdwll ~ E/4, to integer. 27T J 

I WI~7T 
Then 

Proof. 
i t 1 7T_ 

Ilb(t
o

) - B(t
O

) II < II J b(w) e w 0 dwll +"bll J b(w) - B(w» 
I w I >7T -7T 

(B .1) 

By (v) the first term of (B.l) is bounded by E/4. The second is the 

norm of 

"- -21 j [F[S ] (w) ]-lkLOS (w+27Tk)b(w)eiwtOdw _..-l j [F[S ] (w) rl 7T -7T X , X 27T -7T X 
- . t 

. r S (w+27Tk)b(w+27Tk)e1w Odw 
k;O x 

(B.2) 

Applying Lemma 5' the norm of the first term of (B.2) is bounded by 

1 7T 
- J 27T -7T 

r Al (W+27Tk) 

< d f k;~ lib ~)IIdw 27T -7T ~ 
m=~cx> Al (w+27Tm) 

The norm of the second term of (B.2) is bounded by 

d 
27T 

=E.... - 27T sup I b (w) I < £. 
I w I >7T - 4 

Corollary 7'. Suppose that b is an absolutely integrable function 

of bounded total variation. Define 
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1 
bet) = Ilim[b(t+£) + bet-E)]. 

£-+0 

Suppose 

Then 

(i) for all w* > 0, inf Al(w) > 0; 
Iwl<w* 

(ii) < 00 a.e. 

limllb(t) - nB(t)1 I o for all integer t. 
n-+«> 

Proof. Given any integer t, and £ >. It suffices to show the 

existence of Wo and n* such that for all n > n*, 

(iii' ) 2dA 
inf Al(w) > -

I 1
< - 7T£ 

W _wO 
J Al(w) dw; 

Iwl>mr 

(iv') sup IIb(w)II~7T£/2d; 
Iwl>wo 

A 

(v' ) II b (t) 

Just as in the proof of Corollary 7, such existance is the consequence 

of the Riemann-Lebesgue Lemma, finite variance of x and the basic con-

vergence result for Fourier series. 

Proposition 8'. Suppose the b
i 

are square and absolutely integ-

00 

rable functions of bounded total variation, L t=-oo IR (t)1 < 00 for all 
xi 

i, and the roots of S (w) are all positive a.e. Let there exist d < 00 

x 

such that Al(w)/AN(w) < d a.e. Then 

1 00 

[nB(!.) b (!.)] [nB(!.) t lim - L 
, 

- b(-)] = O. n t=-oo n n n n n-+oo 

Proof. Proceed as in the proof of Proposition 8. (a) converges 

to 0 exactly as before, and use Lemma 5' to bound (b) and (c) by 



47 

l::i. 
Al (W+2nnk) J 2 

n'IT 
J b(w)'b(w)dw (B.3) -n'IT 

AN (W+2n'ITm) 

and 

r E A1 (w+2n
n
k) J 2 

n'IT k;&O ()Q 

J E b(W+2n'ITm)'b(w+2n'ITm)dw (B.4) -n'IT ex> m=-ex> 
m=Eex> AN(w+2n7fID) 

respectively. «B.3) is the analogue of (17), (B.4) the analogue of 

(18).) Observing that 

and 

E Al (w+2n'ITk) 
k;&O 

< 

lim 
n~ 

E Al (w+2n'ITk) 
k;&O 

dk~O Al (W+2n'ITk) 
< 1 a.e. 

o a.e., 

one can use the Lebesgue Convergence Theurem exactly as in the proof 

of Proposition 8 to prove that (B.3) and (B.4) converge to O. 
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