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Abstract

An interactive framework for soft segmentation and mat-
ting of natural images and videos is presented in this pa-
per. The proposed technique is based on the optimal, lin-
ear time, computation of weighted geodesic distances to the
user-provided scribbles, from which the whole data is au-
tomatically segmented. The weights are based on spatial
and/or temporal gradients, without explicit optical flow or
any advanced and often computationally expensive feature
detectors. These could be naturally added to the proposed
framework as well if desired, in the form of weights in the
geodesic distances. A localized refinement step follows this
fast segmentation in order to accurately compute the cor-
responding matte function. Additional constraints into the
distance definition permit to efficiently handle occlusions
such as people or objects crossing each other in a video se-
quence. The presentation of the framework is complemented
with numerous and diverse examples, including extraction
of moving foreground from dynamic background, and com-
parisons with the recent literature.

1. Introduction
The segmentation of natural images and videos is one

of the most fundamental and challenging problems in im-
age processing. One of its applications is to extract the
foreground object (or object of interest) out of the cluttered
background, and, for example composite it onto a new back-
ground without visual artifacts (see also [4] for additional
applications in video). For complex images, as well as sub-
jective applications, there can be more than one interpreta-
tion of the foreground or objects of interest (in absence of
higher level knowledge), thus making the task ill-posed and
ambiguous. It is often imperative then to incorporate some
user intervention, which encodes prior information, into the
process. Specifically, the user can draw rough scribbles la-
beling the regions of interest and then the image/video is
automatically segmented. The user is allowed to add more
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scribbles to achieve the ideal result, although of course, the
goal is to minimize as much as possible the user effort.

Closely connected to the segmentation of objects of in-
terest, image and video matting refers to the process of
reconstructing the foreground/background components and
the alpha value (transparency) of each pixel. This is im-
portant for applications such as extracting hair strands or
blurry edges, as well as for compositing. Being inherently
under-constrained (solving for three components, F (fore-
ground), B (background), and α transparency, with only
the observed color), the matting problem also requires pri-
ors, such as user interactions, which could be in the form of
scribbles as in the segmentation task, or a complete trimap.

In this paper, we propose a fast weighted-distance-based
technique for image and video segmentation and matting
from very few and roughly placed user scribbles (often
just one scribble for the foreground and one for the back-
ground). The distance (geodesic) computation is linear in
time, and thereby optimal (with minimal memory require-
ments as well). The weights are based on simple proper-
ties such as spatial and temporal gradients, while more so-
phisticated features can be naturally included as well. The
proposed framework can handle diverse data, including dy-
namic background, moving cameras, and objects crossing
each other in the video.

Following a brief literature review, Section 2, we de-
scribe the framework for segmenting and matting still im-
ages, Section 3. Examples and comparison with the litera-
ture are presented in this section as well. Then, we extend it
to video applications, where a long video can be processed
with little user interaction, Section 4. We explain how to
add constraints to the distance computation to handle mov-
ing objects occluding each other, e.g., people/objects cross-
ing each other. We illustrate our method with additional
video examples in Section 5, and conclude and discuss fu-
ture research in Section 6. Before proceeding, let us explic-
itly present the key attributes of the proposed framework:
1. It is based on weighted distance functions (geodesics),
thereby solving a first order geometric Hamilton-Jacobi
equation in computationally optimal linear time. This
makes the proposed framework natural for user-interactive
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processing of images and videos.
2. It produces very good, state-of-the-art results, with very
few user provide scribbles and very simple attributes defin-
ing the weights in the distance computation. We often use
just a couple of rough scribbles for still images (one for the
foreground and one for the background) and scribble one
frame every 70 or so for videos.
3. It applies to a large class of natural data, and since it
avoids off-line learning, it is not limited to pre-observed and
classified classes and to the availability of ground-truth and
hand segmented data.
4. It can handle dynamic background in video as well as
crossing objects of interest.
5. The framework is general so that additional attributes
can be naturally included in the weights for the geodesic
distances if so required for a particular type of data.

2. Related work
One important class of related works is based on en-

ergy formulations which are minimized via discrete opti-
mization techniques. The pioneering graph cuts technique,
[5], addresses the foreground/background interactive seg-
mentation in still images via max-flow/min-cut energy min-
imization. The energy balances between the probability
of pixels belonging to the foreground (likelihood) and the
edge contrast, imposing regularization. The user-provided
scribbles collect statistical information on pixels and also
serve as hard constraints. The Grabcut algorithm, [14], fur-
ther simplifies the user interaction. Scribbles can be in-
teractively added to improve the initial segmentation. Full
color statistics are used, modeled as mixtures of Gaussians
(here, in contrast, we use fast kernel density estimation),
and these are updated as the segmentation progresses. This
can help but also hurt by propagating segmentation errors.
Very good and fast results were demonstrated with this tech-
nique. A number of methods have been proposed extending
this framework, aiming at devising more sophisticated en-
ergy formulations and at extending it to higher dimensions
(video). The Bilayer approach, [8], segments videos with
basically static background. It incorporates an additional
second order temporal transition prior term and a motion
likelihood term. Each frame is segmented via graph cuts,
conditionally dependent on the previous two frames. Al-
though excellent results are reported for a particular type
of videos, this method makes assumptions about the dif-
ferent behaviors of foreground and background pixels and
deals with videos with mostly static backgrounds (they do
permit a moving object in the background as long as it is
different enough from the foreground). Moreover, it needs
to learn the motion statistics, which is very useful as they
have cleverly incorporated in their system, but requires the
availability of pre-segmented ground-truth training data and
of video classes (to train and apply with videos having the

same type of motion).
Interactive video cutout, [18], presents a system where

the user draws scribbles in 3D space. A hierarchical mean-
shift preprocess is employed to cluster pixels into super-
nodes, which greatly reduces the computation of the min-
cut problem. In [9], the author uses random walks for soft
image segmentation. Each pixel is assigned the label with
maximal probability that a random walker reaches it when
starting from the corresponding scribbles. The authors of
[20] propose an MRF framework to solve segmentation and
matting simultaneously. The basic idea is to minimize the
fitting error of the matte while maintaining its smoothness.
The uncertainties (0 for the scribbles and 1 for all unknown
pixels) are propagated to the rest of the image using belief
propagation. Once the alpha values are found, the F and
B components are estimated. In [12], a local linear relation
between the alpha values and image intensities is assumed,
that is, the pixel’s alpha value can be immediately deter-
mined in a local region if its intensity is known. The matting
problem is solved by minimizing a cost function combining
the prediction error, the regularization of alpha values, and
the user-supplied scribbles which indicate constraints to the
optimization problem.

Poisson matting, [15], and Bayesian matting, [7], are
two important matting techniques that use trimaps as inputs.
Poisson matting computes the alpha matte by solving the
second order Poisson equation with Dirichlet boundary con-
ditions.1 An assumption is made by neglecting the gradients
of F and B, considering the matte gradient proportional to
the image gradient. Additional operations are performed to
adjust to local regions. Bayesian matting simultaneously es-
timates F , B, and α by maximizing a posterior probability.
For each pixel in the trimaps region, it models the known
F and B colors around as mixture of oriented Gaussians in
color space (again, we use fast kernel densities instead). An
(F,B, α) triplet is computed as the one that most probably
generates the observed color of that pixel. This technique
is applied to videos in [6], where the trimap is temporally
propagated using optical flow and the matte is pulled out in-
dividually in each frame by the Bayesian matting algorithm.
Explicit optical flow is not used in our method, although it
could be incorporated as part of the weights in the geodesic
computation.

After this paper was submitted for publication, a few ad-
ditional matting techniques have been published. The spec-
tral matting technique, [10], automatically computes a set
of soft matting components via a linear transformation of
the smallest eigenvectors of the matting Laplacian matrix
[12]. These components are then selected and grouped into
semantically reasonable mattes either in an unsupervised or
supervised fashion. The main drawback of this algorithm

1Note that in contrast with this, we solve a first order Hamilton-Jacobi
equation, which is computationally more efficient.



is its high computational cost – it takes several minutes to
compute the matting components for small sized images. In
addition, it is not intuitive where to place the constraints.
The authors of [19] proposed an improved color sampling
method for natural image matting, and demonstrated very
good performance. The authors in [17] implemented an in-
terface for interactive realtime matting. The user roughly
tracks the boundary with a self-adjustable brush. Like in
[19], the matte is pulled out in local regions, solving a soft
graph-labeling problem. Flash cut, [16], extracts the fore-
ground layers of flash/no-flash image pairs, using the prior
information that only the foreground is significantly bright-
ened. This information is incorporated in an graph cut
energy framework. The segmentation algorithm is shown
to tolerate some amount of foreground motion and camera
shake.

Our work is inspired by [23], where the authors, fol-
lowing [11], show how to use distance functions for image
colorization. As here, these distances are optimally com-
puted in linear time [22]. This was then extended in [13]
for segmentation. In contrast with this work, we use sig-
nificantly less scribbles per image (thanks in part to a more
efficient modeling of the corresponding probability distri-
bution functions), see Figure 1, extend the work to video,
and also produce explicit mattes (F , B, and α).

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1. Figures (a)-(d) show the user inputs and results from
[13]. Figures (e)-(h) correspond to the new inputs and results for
the same images, leading to better results with less scribbles.

3. General framework: Still images
As discussed in the introduction, our algorithm starts

from two types of user-provided scribbles,F for foreground
and B for background, roughly placed across the main re-
gions of interest. Now the problem is how to learn from
them and propagate this prior information/labeling to the
entire image.

We use the geodesic distance from these scribbles to

(a) (b) (c)

(d) (e) (f)

Figure 2. (a) A hard segmentation (white curve) is quickly found
by a few scribbles. (b) Automatically generated trimap, a narrow
band around the white curve, and new automatically generated
local scribbles (borders of the band). (c) Obtained segmentation
and alpha matting. (d) PF (x). Dark indicates low probabilities
and white high probabilities. (Note that this is not the final alpha
matte.) (e) DF (x). (f) DB(x). Blue indicates low distances and
red high distances.

classify the pixels, labeling them F or B. The geodesic dis-
tance d(x) is simply the smallest integral of a weight func-
tion over all paths from the scribbles to x. Specifically, let
ΩF be the set of pixels with label/scribble F and ΩB those
corresponding to the background scribble B. The weighted
distance (geodesic) from each of the two scribbles for every
pixel x is then computed as

Dl(x) = min
s∈Ωl

d(s, x), l ∈ {F ,B}, (1)

where

d(s1, s2) := min
Cs1,s2

∫ 1

0

|W · Ċs1,s2(p)|dp, (2)

where Cs1,s2(p) is a path connecting the pixels s1, s2 (for
p = 0 and p = 1 respectively). The weights W are set to
the gradient of the likelihood that a pixel belongs to the fore-
ground (resp. background), i.e., W = ∇PF (x). This likeli-
hood is obtained from the samples on the provided scribbles
in Luv color space, i.e., PF (x) = Pr(x|F)

Pr(x|F)+Pr(x|B) , where
Pr(x|F) is the color PDF of ΩF , obtained via the fast ker-
nel density estimation ([21]) (same process for the back-
ground PDF). A pixel is close in this metric to a scribble
in the sense that there exists a path along which the like-
lihood function does not change much, Figure 2(d). Fol-
lowing [22], we can efficiently compute the distances, in
optimal linear time, and assign each pixel to the label with
the shorter distance. The user can progressively add new
scribbles to achieve the desired result, although often a sin-
gle scribble for the foreground and one for the background
(regardless of how cluttered it is), is sufficient. If a refine-
ment step is needed, a narrow band is spanned across the



current boundaries (see Figure 2(b)), and its borders serve
as new F and B scribbles, thereby reducing the computa-
tional cost just to a few pixels in the band, while at the same
time refining the likelihood functions and locally adapting
them to the region of interest.

Once this distance has been obtained, the alpha channel
inside the band is explicitly computed as

ωl(x) = Dl(x)−r · Pl(x), l ∈ {F ,B}, (3)

α(x) =
ωF (x)

ωF (x) + ωB(x)
, (4)

where Pl(x) is locally recomputed using the feature vec-
tor (L, u, v, τ), τ ∈ [0, 1] parameterizes the band along the
boundary (leading to local PDF estimations), and is peri-
odic with period 1 if the curve is closed (see Figure 2(b)).
r controls the smoothness of the edges. When r = 0,
α(x) = PF (x); when r → ∞, α(x) becomes hard seg-
mentation (typically 0 ≤ r ≤ 2 in our examples). This al-
pha matte combines the weighted distance (measuring how
“close” the pixel is to the scribble) and the probability based
on the fast kernel density estimation (measuring how prob-
able is its color). Note that regularization, e,g, anisotropic
diffusion of α, can be applied inside the band as well if
needed. Since this is done locally, virtually no computa-
tional cost is added.

After the matte α is computed, we follow the method in
[20] to estimate the Fx and Bx components (in Luv space)
for each pixel x inside the band. We randomly sample the
foreground and background colors in the neighborhood of
x and use the pair that gives the minimal fitting error:

(Fx, Bx) = arg min
Fi,Bj

‖Fiαx +Bj(1− αx)− Ix‖, (5)

where i ∈ N(x) ∩ ΩF , j ∈ N(x) ∩ ΩB, Fi, Bj are fore-
ground and background colors sampled on the (band bound-
ary) scribbles within the window N(x) centered at x, and
Ix is the observed color.

With these components, we can now paste the object
onto a new background if desired, with no noticeable vi-
sual artifacts by the simple matting equation C∗x = Fxαx +
B∗x(1−αx), where the composite color C∗x is a linear com-
bination of foreground color Fx and the new background
color B∗x for every pixel x in the image.

Figure 3 shows our results for still images. Note how
simple scribbles can handle cluttered and diverse images.
Figure 4 presents comparisons with the work in [20] , Pho-
toshop Extract Filter [1], Photoshop CS3 Quick Selection
& Refine Edge tools [3] , Corel Knockout2 [2], and Spec-
tral Matting [10] (note how our proposed approach needs
significantly less scribbles).

Figure 3. Left column: original images with user-provided scrib-
bles. Blue for foreground and green for background. Middle col-
umn: Computed alpha matte. Right column: Foregrounds pasted
on blue backgrounds (blue (constant) backgrounds are selected
since they often permit much more careful inspection of the results
than pasting on cluttered backgrounds).

4. Interactive video segmentation and matting
The above described framework is now extended to

videos, modeled as 3D images, in which every pixel has six
neighbors, four spatial and two temporal (except the ones on
the frame borders). The scribbles, drawn on one or several
frames, propagate throughout the whole video by weighted
distances in spatio-temporal space. In particular, spatial and
temporal gradients of the likelihood function are used to de-
fine the weight W in the geodesic computation in Equation
(2). Note that there is no explicit use of optical flow in the
framework (or motion models as in the works described in
Section 2), thereby not only simplifying the computations
but also permitting to deal with dynamic background and
not limiting the work to pre-specified motion classes. As
we will see in the experimental section, this simple model
is already very useful for numerous scenarios. We now in-
troduce some additional extensions to make it more general.

4.1. Constrained spatio-temporal distance

In still images, a single F scribble and a single B scrib-
ble always return two connected components. This can be
easily proved by the triangle inequality property of the dis-
tance function (this also helps to prove the robustness of the



Figure 4. Comparison of our results (first two rows, first column)
with [20] (first two rows, second column), Photoshop Extract Fil-
ter [1] (first two rows, third column), Photoshop CS3 Quick Selec-
tion & Refine Edge tools [3] (last two rows, first column), Corel
Knockout2 [2] (last two rows, second column), and Spectral Mat-
ting [10] (last two rows, last column). The first and third rows
are the user inputs. The second and last rows are the correspond-
ing results on blue background. ([1] and [2] require complete
trimaps.)

method with respect to the exact placement of the scrib-
bles, see [23]). If the user marks a circle of B scribble
around the object, all the exterior region will be classified
as background. However, this is no longer guaranteed in
the 3D spatio-temporal case. Consider the simple scenario
in Figure 5. Two objects with similar color/feature dis-
tributions move towards each other, cross, and split apart.
The inside of the tube has low distances to the F scribble
(shown in red). The F scribble in object A propagates to
the frames with occlusions, and then backwards to object
B (B refers now to the second object in Figure 5 and not
to the background value). Although the user might intend
to separate object A as foreground in the initial frame, ob-
ject B is mistakenly cut out because of the connectivity in
3D space (such connectivity doesn’t occur in still images).
This phenomenon happens when undesired objects in the
background touch the foreground in a certain frame, and
the error spreads temporally throughout all frames.

We address this problem with very limited extra com-
putation. To eliminate the branch formed by the undesired
object before occlusion, we simply constrain the propaga-
tion to be temporally non-decreasing, and Equation (2) is
replaced by:

d(s1, s2) := min
Cs1,s2

∫ 1

0

Wdp, s.t. t1 ≤ t2 if p1 ≤ p2,

(6)

where p1, p2 ∈ [0, 1] indicate any two positions on
Cs1,s2(p) and t1, t2 are their corresponding time coordi-
nates. In other words, d(s1, s2) is minimized among the
paths that temporally go forwards. Of course we can also
constrain the distance function in the opposite direction.
However, it becomes the same definition if we let the video
play reversely.

In the discrete scenario, the temporal links (the links that
connect temporal neighbors) are replaced by directed links,
i.e., the weight of going backwards in time is set to be in-
finity. This simple modification leads to the correct seg-
mentation before the occlusion, but confusion might still
exists after the occlusion (Figure 5(c)). We can further re-
move the wrong branch using the same approach, but now
in the opposite direction. This can be done by specifying
a point in the desired tube at a latter time, letting it propa-
gate backwards within the tubes, constrained to move only
backwards. Figure 5 illustrates the process. As a result,
the ambiguity is removed in frames where the objects are
disconnected within the frame.

Figure 6 shows the example of two people walking. The
user desired to segment the person initially on the right. The
two people are merged as a single object when they cross
each other (since they share the features that are used to
compute the weighted distance). The second column shows
the results using the distance function without the con-
straint. The wrong segment appears in every frame (again,
see Figure 5(a)). The third column shows the result by the
constrained distance function. We can see that the error is
removed before and after the intersection. Adding scribbles
in the intersection frames will manage to separate them also
there, see below, but this is left without in this figure to il-
lustrate the power of the “tubing” effect just described.

4.2. Interactive refinement

For individual frames where occlusion actually happens
and can not be fixed by the “tubing” approach described
above, the user simply provides extra scribbles to segment
the object. Since the color distribution might be inadequate
to differentiate the objects (this is what led to their merge in
the first case), we switch to another contrast sensitive weight
to be used for the geodesic distance computation in Equa-
tion (2). This shows the power of the framework, features
can be adapted to the problem at hand. For discrete images,
the new feature is defined as Wpq :=‖ Ip − Iq ‖, where p
and q are two adjacent pixels and I is the color vector in
Luv space. Figure 7 shows how the user separates the two
persons using the new weights.

5. Additional video experimental results

We test our algorithm on three videos of 71, 79 and 78
frames respectively. We mark scribbles on two frames for



(a) (b)

(c) (d)

Figure 5. Tubes in 3D space, where t1 < t2 < t3 (a) Although
the scribbles in the first frame intend to separate A, the F scrib-
ble (red) reaches the object B by a path in 3D space where both
objects A and B overlap. (b) The scribble propagation is con-
strained to move forward and the branch between t1 and t2 is
eliminated. (c) The user specifies a pixel in A at t3 and lets it
propagate backwards. The branch of B between t2 and t3 is re-
moved. (d) Result with the proper separation of the object A.

the video in Figure 8 and just a single frame for videos in
figures 9 and 10. The results are shown in figures 8, 9 and
10 as image sequences sampled every few frames (please
see the videos uploaded with the supplementary material to
appreciate the moving camera and dynamic background).
The columns correspond to the original frames, alpha matte,
composites on a white background, and composites on a
new movie.

Finally, we compare our approach with the rotoscoping
algorithm in [4] for the video in Figure 8 (we only refer to
the segmentation/tracking part, which is the contribution of
our paper, and not the very nice special effects they show
after the segmentation is obtained). Our approach has a
number of advantages over this work: (a) We need signifi-
cantly less user interaction. In [4] the user basically needs to
draw the boundaries for all keyframes by hand (about every
10 frames for this video), while our method only requires
very few rough scribbles, see Figure 8. (b) We explicitly
compute the alpha matte, while [4] gives spline approxi-
mations of the detected boundaries (explicit computation of
the matte was not in the original goals of [4] for their ap-
plications). (c) Our method can adapt to a wide variety of
motions while the algorithm in [4] easily loses track of the
object, especially when part of the object moves out of the

Figure 6. A video example of two people crossing. Left column:
original video. Scribbles drawn on the first frame. Middle column:
Segmented results using unconstrained distance function. Right
column: Segmented results using constrained distance function.
See text for details.

(a) (b) (c)

Figure 7. (a) Original segmentation obtained by gradients of the
PDF. (b) The user adds new scribbles. (c) Segmentation results
obtained with the new geodesic distance.

frame, requiring further user intervention. To better illus-
trate the comparison, we generate the boundaries by thresh-
olding and dilating the alpha matte obtained by our method.
A few frames are shown in Figure 11.



Figure 8. Video example 1. (a total of 71 frames)

Figure 9. Video example 2. (a total of 79 frames)

6. Conclusions and future work
We presented a geodesics-based algorithm for (interac-

tive) natural image and video segmentation and matting. We
introduced the framework for still images and extended it to
video segmentation and matting. We added constraints to
the distance function in order to handle objects that cross
each other in the video temporal domain. We showed ex-
amples illustrating the application of this framework to very
different images and videos, including videos with dynamic
background and moving cameras. Another application of
our approach is to speed up available image matting algo-
rithms (e.g. [20]). A narrow band trimap is quickly gen-
erated from a few scribbles, and then a different matting
algorithm is applied. Figure 12 shows our method working
in conjunction with [20].

Figure 10. Video example 3. (a total of 78 frames)

Figure 11. Comparison with the rotoscoping algorithm in [4].
The curves indicate the boundaries. Top row: A few frames for
the work in [4], obtained by their provided interface. The small
squares are the control points of the splines. Bottom row: Results
from our approach, obtaining similar segmentation with signifi-
cantly less user intervention (see Figure 8).

Although the proposed framework is general, we mainly
exploited weights in the geodesic computation that depend
on the pixel value distributions. As such, in this form the
algorithm works best when these distributions do not signif-
icantly overlap. In principle, this can be solved with enough
user interactions, but could be tedious, and would be better
to solve this by enhancing the features used in deriving the
weights. Our current efforts are concentrated on enhancing
the features we currently use for weighting the geodesic.
Also, we are investigating how to naturally add a regular-
ization term into the model, without having to perform this
as a post-processing step as currently done. Results in these
directions will be reported elsewhere.
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