The road towards CUORE: latest Cuoricino results and CUORE-0

Chiara Salvioni
Uniwersytet Studiorum, Como, Italy & INFN Milano Bicocca

on behalf of the CUORE collaboration
Looking for Neutrinoless Double Beta Decay

Bolometers & TeO₂

Cuoricino

Towards CUORE

The nearest step: CUORE-0
When thinking about the questions still open in the field of neutrino physics, there are three important -and complementary- tools of investigation:

\[ \sum \equiv \sum_{i=1}^{3} M_i \]

- **Cosmological measurements** - Model dependent

\[ \langle M_\beta \rangle \equiv \left( \sum_{i=1}^{3} M_i^2 |U_{ei}|^2 \right)^{1/2} \]

- **Single Beta Decay** - Direct determination
- **Neutrinoless Double Beta Decay** - Model dependent

- **Laboratory measurement**
Double Beta Decay: rare, second order weak decay

\[(A,Z) \rightarrow (A,Z+2)\]

The observation of 0ν-DBD would give an answer to the questions regarding:

- The absolute \(\nu\) mass scale
- The \(\nu\) mass hierarchy
- The \(\nu\) nature

Lepton number non conservation
\(\nu\) Majorana particle
\(\nu\) absolute mass
What we are looking for:

What kind of information we obtain:

\[ T_{1/2}^{0\nu} \sim \frac{1}{G^{0\nu} |M^{0\nu}|^2 <m_{ee}>^2} \]

0\nu-DBD half life

\[ m_{ee} = \left| \sum_{i=1}^{2} U_{ei}^2 m_i \right| \]

Effective Majorana mass

Where we are working now and where we want to go:
Experimentally, one can approach the search by following two different paths:

**Source ≠ detector**

- Event shape reconstruction
- Low energy resolution

**Source = Detector**

- No event topology
- High energy resolution

The calorimetric approach
The experimental parameters to play on are evidenced by introducing the sensitivity $S_{0\nu}$ as the half life corresponding to the minimal number of detectable events above background, for a given confidence level:

$$S_{0\nu} \propto \frac{a}{A} \sqrt{\frac{M \cdot T}{b \cdot \Delta E}} \times \varepsilon$$

- Isotopic abundance
- Detector mass [kg]
- Measurement time [y]
- Efficiency
- Energy resolution [keV]
- Background level [counts/keV/kg/y]
- Atomic mass

$$m_{ee} \propto \sqrt{\frac{1}{T_{1/2}}}$$

Not all of the parameters can be tuned effectively…
The basic principle is very simple.

With this technique, we measure all of the energy deposited by a particle in form of an increase in the temperature of the absorber.

- Signal $\Delta T = E/C$
- Time constant $C/G$

Low temperatures & Dielectric diamagnetic crystals
In this configuration, $\Delta T \sim 0.2 \text{ mK/MeV}$, $\tau_r \sim 50 \text{ ms}$ and $\tau_d \sim 500 \text{ ms}$.
Why use $^{130}$Te as 0ν-DBD source and TeO$_2$ as energy absorber?

Decay: $^{130}$Te $\rightarrow$ $^{130}$Xe + 2e$^-$

High natural isotopic abundance ($\sim$33.9%), which makes enrichment not a priority

High transition energy ($Q_{\beta\beta} = 2530$ keV), between the 2615 keV $^{208}$Tl $\gamma$ line and the Compton edge, almost above the background of natural radioactivity

The 2ν-DBD for $^{130}$Te was measured by geochemical experiment, MIBETA and NEMO3 with $T_{1/2}^{2\nu} = (7.6\pm1.5\pm0.85) \times 10^{20}$ y

Using TeO$_2$ allows one to have bolometric absorbers with low heat capacity as well as to grow with good radiopurity large crystals resistant to thermal cycles
Active mass:
- 40.7 kg of TeO$_2$
- 11.3 kg of $^{130}$Te
  ($\sim 5 \times 10^{25}$ nuclides)

Modules:
- 11 modules each with 4 crystals 5x5x5 cm$^3$
- 2 modules each with 9 crystals 3x3x6 cm$^3$
  2 enriched in $^{128}$Te (82%)
  2 enriched in $^{130}$Te (75%)

- Inner shield: 1 cm Roman Pb, $A^{(210}\text{Pb}) < 4 \text{ mBq/kg}$
- External shield: 20 cm Pb + 10 cm borated polyethylene
- Nitrogen flushing to avoid Rn contamination

Started in 2003, data taking ended in June 2008
Sum calibration spectrum (for 5x5x5 cm$^3$ crystals)

Calibration performed with a $^{232}$Th source ~ 3 days every month

Average FWHM [keV] of the 2615 keV line of $^{208}$Tl for 5x5x5 cm$^3$ crystals = 7 keV

Distribution of energy resolution FWHM
The physics result: statistics updated to **August 2007**

No peak appears @ $Q_{\beta\beta}$ value.
An upper limit for the $^{130}$Te $0\nu$-DBD is set.

- $M \cdot T = 15.53$ kg $^{130}$Te $\cdot$ y
- Background level $b = (0.18\pm0.01)$ c/keV/kg/y

$^6$Co sum peak
$2505$ keV
$\sim 3$ FWHM from $Q_{\beta\beta}$

$^{130}$Te $0\nu$-DBD

$T_{1/2}^{0\nu} (^{130}$Te$) > 3.1 \times 10^{24}$ y @ 90% C.L.

$m_{ee} < 200$-680 meV

$[NME$ from the review table of QRPA calculation in Rodin et al

Latest article: "Results from a search for the $0\nu\beta\beta$-decay of $^{130}$Te", Physical Review C 78, 035502 (2008)
CUORE (Cryogenic Underground Observatory for Rare Events): a next generation experiment for investigating the inverted hierarchy region

It will be a high granularity detector with 741 kg of TeO$_2$ (230 kg of $^{130}$Te)

13 layers, each with 4 “big” crystals (5x5x5 cm$^3$)

19 towers arranged in a cylindrical structure

988 bolometers working in a closed pack array put in a LHe-free dilution refrigerator

Start of data taking: 2012
M. Barucci, L. Risegari, and G. Ventura
Dipartimento di Fisica dell’ Università di Firenze e Sezione di Firenze dell’ INFN,
Firenze I-50125, Italy
S.Di Domizio1,2, A.Giachero1,3, P. Ottonello1,2, M.Pallavicini1,2 and D.Torazza1,2
1 Dipartimento di Fisica dell'Università di Genova e
2 Sezione di Genova dell'INFN, Genova I-16146, Italy
3 Laboratori Nazionali del Gran Sasso, I-67010, Assergi (L’Aquila), Italy
Laboratori Nazionali del Gran Sasso, I-67010, Assergi (L’Aquila), Italy
E.Andreotti, L.Foggetta, A. Giuliani, M. Pedretti, C.Rusconi and C.Salvioni
Dipartimento di Fisica e Matematica dell'Università dell'Insubria e
Sezione di Milano dell’ INFN, Como I-22100, Italy
A.De Biasi, G. Keppel, V. Palmieri and V. Rampazzo
Laboratori Nazionali di Legnaro, Via Romea 4, I-35020 Legnaro (Padova)
F. Alessandria
Sezione di Milano dell’INFN, Milano I-20133, Italy
C. Arnaboldi1,2, C. Brofferio1,2, S. Capelli1,2, L. Carbone2,
M.Carrettoni1,2, M.Clemenza1,2,
O. Cremonesi2, E. Ferri1,2, E. Fiorini1,2, L.Gironi1,2, S.Kraft1,2,
C.Maiano1,2, C.Nones1,2,
A. Nucciotti1,2, L. Pattavina1,2, M. Pavan1,2, G. Pessina2, S. Pirro2,
E. Pre vitali2,
D.Schaeffer1,2, M. Sisti1,2 and L.Zanotti1,2
1 Dipartimento di Fisica dell’Università di Milano-Bicocca e
2 Sezione di Milano dell’INFN, Milano I-20126, Italy

R. Ardito and G. Maier
Dipartimento di Ingegneria Strutturale del Politecnico di Milano, Milano I-20133, Italy
F.Bellini, C.Cosmelli, I.Dafinei, R.Faccini, F.Ferroni, C.Gargiulo,
E.Longo, S. Morganti,
M. Olcese and M.Vignati
Dipartimento di Fisica dell’Università di Roma La Sapienza e
Sezione di Roma dell’INFN, Roma I-00185, Italy
M.M.Deninno, N.Moggi, F.Rimondi, and S.Zucchelli
Dipartimento di Fisica dell’Università di Bologna e Sezione di Bologna
dell’INFN, Bologna I-40126, Italy
M.Martinez
Lab. of Nucl. and High Energy Physics, University of Zaragoza, 50009 Zaragoza, Spain
A. de Waard and G. Frossati
Kamerling Onnes Laboratory, Leiden University, 2300 RAQ, Leiden, The Netherlands
J. Beeman1, A.Bryant2,3, M.P.Decowski2,3, S.J.Freedman2,3,
E.Guardincerri2,
E.E. Haller1,4, R.Kadel5, L.Kogler2,3, Yu.G.Kolomensky3,5, A.R. Smith2 and N. Xu5
1Mater ials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
2Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
3Department of Physics, University of California, Berkeley, CA 94720, USA
4Department of Materials Science and Engineering, U. of California at Berkeley, CA 94720 USA
5Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
M.J. Dolinski1,3, K.Kazkaz1, E.B. Norman1,2 and N.D.Scielzo1
1 Lawrence Livermore National Laboratory, Livermore, CA 94550 USA
2 Department of Nuclear Engineering, University of California, Berkeley, CA 94720
3 Department of Physics, University of California, Berkeley, CA 94720, USA
H.Z. Huang, S. Trentalange, C. Whitten Jr.
Department of Physics and Astronomy, University of California, Los Angeles, CA 90095-1547.
T.D. Gutierrez
California Polytechnic State University, San Luis Obispo, CA 93407 USA
F.T. Avignone III, I. Bandac, R.J. Creswick, H.A. Farach,
C.Martinez, L.Mizouni and C. Rosenfeld
Department of Physics and Astronomy, University of South Carolina,
COLUMBIA S.C. 29208 USA
L.Ejzak, K.M.Heeger, R.H.Maruyama and S.Sangiorgio
University of Wisconsin, Madison, Wisconsin, 53706 USA
Y.Ma, X.Cai, D.Fang, W.Tian and H.Wang
Shanghai Institute of Applied Physics (Chinese Academy of Sciences),
Shanghai, China
From Cuoricino to CUORE: remembering the sensitivity $S^{0\nu}$,

$$m_{ee} \propto \frac{1}{(a \cdot \epsilon \cdot G)^{1/2} |M_{nucl}|^{0\nu}} \sqrt[4]{\frac{1}{M \cdot T}} \sqrt[4]{\Delta E \cdot b}$$

Difficult to modify: requires fundings and R&D efforts

From “Qino to Q” we gain a factor $\sim (200/10)^{1/4}$; however further improvements are not easy to reach

CUORE will take data for 5 years: but afterwards, to get a factor 2 on that, one should run for other 75 years…

The improvements on this factor have a negligible influence

The background level is the only factor here that can be tuned with a real impact on the $m_{ee}$ sensitivity

Another issue: the reproducibility of the detectors…

Distribution of detector pulse heights
The expected sensitivity for CUORE, in 5 years:

<table>
<thead>
<tr>
<th>$b$ [c/keV/kg/y]</th>
<th>$\Delta E$ [keV]</th>
<th>$T_{1/2}$ [y]</th>
<th>$m_{ee}$ [meV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>$10^{-2}$</td>
<td>5</td>
<td>$&lt; 2.1 \cdot 10^{26}$</td>
<td>48-72</td>
</tr>
<tr>
<td>$10^{-3}$</td>
<td>5</td>
<td>$&lt; 6.5 \cdot 10^{26}$</td>
<td>27-41</td>
</tr>
</tbody>
</table>

What we know from Cuoricino:

- $\sim 40\%$ $^{208}$Tl via multi-Compton events from $^{232}$Th in the cryostat shields;
- negligible effect from the 2505 keV $^{60}$Co tail due to Cu cosmogenic activation;
- muon induced background excluded;
- $\sim 10\%$ due to degraded $\alpha$s from $^{232}$Th & $^{238}$U contaminations in the crystal surface;
- $\sim 50\%$ due to degraded $\alpha$s from $^{232}$Th & $^{238}$U contaminations in the copper surface.

What we have already gained from R&D:

A reduction of $\sim$ a factor 4 in the contribution due to contaminations on the crystal surface and of $\sim$ a factor 2 for the Cu surface.

Extrapolating the contributions to CUORE:

- $\sim 10^{-3}$ c/keV/kg/y contribution due to intrinsic contaminations
- $2 \cdot 10^{-2}$ c/keV/kg/y contributions due to surface contaminations
An upcoming test using the same setup of the already disassembled Cuoricino: the Three Towers run

**Legnaro cleaning**
- Tumbling: mechanical barrel polishing
- Electropolishing: removal of $\sim 100 \ \mu m$ of material
- Chemical etching: removal of $\sim 10 \ \mu m$ of material
- Magnetron sputtering: removal of a few $\mu m$
- Ion beam cleaning: removal of a few nm

**LNGS cleaning**
- Electropolishing
- Chemical etching
- Passivation

**LNGS alternative cleaning**
- Chemical etching
- Passivation
- 50 $\mu m$ PET coverage of Cu components
On the road towards CUORE, it is necessary to reduce the aspects which contribute in making the performances of the detectors not reproducible.

Concerning this aspect, the thermal and mechanical coupling between the thermistor and the crystal absorber is one of the most delicate points in the assembly procedure.

The coupling is performed — until now manually— by depositing spots of bicomponent epoxy glue, with 50 μm height, between the crystal and the sensor: the process is not trivial!

Moreover, study of thermistors with different shape which could greatly simplify the assembly procedure.

Development of a “gluing line” totally automatic able to produce a coupling fast, sure, low radioactivity, reproducible and independent from the actions of operators.
• The hut of CUORE is under construction.

• The crystals are in production: the first batch will arrive in November 2008.

• Starting from 2009, the cryogenic system will be manufactured and then installed underground. Also: clean room.

• During 2010 all the components (lead shields, wires, detector suspensions and detector calibration system) will be integrated and tested. Also: front-end & DAQ, Faraday cage.

The beginning of CUORE data taking is foreseen in 2012.
CUORE-0: the first CUORE tower to be assembled & installed in the Hall A dilution refrigerator (ex-Cuoricino)

CUORE-0 has its reasons!

• CUORE-0 will test with high statistics the assembly procedure, which has been largely improved during the R&D years (gluing, holder, zero-contact approach, wires, …)

• It will be possible to verify the background reduction expected, approximately 1/3 of the Cuoricino background in the DBD energy region: it should be close to the CUORE target in the energy degraded alpha region

• CUORE-0 will be a powerful experiment that will overtake soon the Cuoricino sensitivity

CUORE-0 will be constructed and operated in 2009.
The recently closed Cuoricino experiment demonstrated the feasibility of a large mass bolometric experiment, with good energy resolution and background.

The latest result from Cuoricino data analysis, updated to August 2007, gives for $T_{1/2}^{0\nu}$ a lower limit of $3.1 \times 10^{24}$ y, corresponding – with given NME- to an upper limit for $m_{ee}$ of 200-680 meV.

CUORE is on its way: the construction began.

The first CUORE tower, CUORE-0, will be assembled and operated in 2009: it will be a fundamental test for the future but also a powerful experiment in itself.

CUORE will have the capability to explore the inverse hierarchy region and will start taking data in 2012.