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ABSTRACT

An act maps states of nature ko outcomes. Two acts [ oand g are comonpbo-
nic, by definition, if it never happens that f{s) » f{t} and gl > g{s} for
some states of nature s and L. An axiom of comonokonic independence is intro-
dueed hoare, [ weakens the yvon Neumann = Morgensbern axiom of independence as
follows: (f f» g and if f , gand h are comonobonic then ol + [ 1-ewth

}- |_1;"5_] & {!Lul:ljlh N

11 a nondenganerate, continuous and nonotonic (state independent) weak order
aver acts satisFies comonntonic independence then it induces a unique non -
(necessari ly-1 additive probability and a von Neumann-Morgenstern uLility.
Furthermore, expected utility with respect te bhe nonadditive probahility, as
definad here, represents the weak arder over achs.

*  This paper Logebher with "Integral Representation without helditivity"
preempts my previous paper entitled "Subjective Probahility without Additivity
{Temparary Title)" {1982}, The Foerder Institute for Economic Research, Tel-Ayiy
Uniwversity.
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SUBRJECTIVE PROBABILITY

AND EXPECTED UTILLITY WITHOUT ABITIVITY

By David Schmeidler

1. INTRODUCTION

Bayesian statistics techniques are applicable when the information and
uncertainly with respect ba the paramaters or hypotheses in question can he
gxpressed by a probability distribution. This prior probability is alsn Lhe
fpcus nf much of Lhe criticism against Lhe Bayesian school. My starting point
i bo join the critics in aLlacking a certain aspect af the prior probability:
The probability atbached to an uncertain evenl doss not reflect the hedaristic
amount of informalion that led te Lhe assignmant of that probahility. Far
sxample, when the information on the occurrence of Lwo avenbs is symmekric bhey
are assinnoed oqual prior probabilities. LF the events are complenentary the
probabilities will be 1/2, independently of whether Lhe symmeteic information is
meanar or abundant,

There are two {unwritten?) rules for assigaiag prior probabilities Lo
events in case of uncertainty. The first says Chat symmetric informabion with
respect to the occurence of evenks results in equal prababilties. The sacand
says that if the space is partitioned into k symmetric (1.e., pouiprahahla)
events Lhen the probability of each event is 1/k. | agree with the First rule
and ohject Lo the second. In the example above, if each of Che symmetric and
complementary uncertain events is assigned the index 3/7, the rumber, 1/7,

1/7 =1 = (3/7 + 3/7), would indicate the decisinn maker's canfidence in the
arobabiltiy assessment. Thus, allowing nonadditive {(nob necessarily additive)
nrobabilities enables transmission or record of informalion that additive proba-

Bi1itirs cannat represent.
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The idea of nonadditive probabilities is not new. MonaddiLive {ahjective)
probabilties has been in use in physics for a long time {(Fyaman 1963},  The
ponadditivity describes the diffaction of elementary particles from mechanical
hehavior toward wave like behavior. Daniel Ellsherg (1261) presented his
arguemants against necessarily additive {subjective) probahilities with the help
of the Following "mind experiment: There are two urns with hundred black and rad
halls each. In urn 1 there are fifty balls of each color and there is no addi-
fianal information aboul urn I1. One ball 15 chosen at random From each uren,
There are four events. denoted TR, 1B, TIR, TIB, where 13 denntes the event
Fhat the Ball chosen from urn T is red, etc. 0On each of the events a het is
nffered:  BINO i Lhe event occurs and zera if it does nat.  According Lo R)isherq
most decision makers are indifferent hetween betling on TR and hebling 1% and
are similarly indifferent hetween bets on TIR and TIH. Tt may bee Lhat ke
majority are indifferent among all four hels.  However, there ds a nonneqligible
proportion of decision makers wha prefor avery bt from uen 1 (IR or 1R) Lo every
het Erom gen 1T, (TIB or 1IRY. These decision makars cannob represent Lheir
heliefs with respect Lo ocourence of uncertain events Lhrough an additive probabi-
lity.

The most compeYling justificabion for representation of beliefs about
uncertain events through additive peior probability has bheen suggested by Savage
Building on previous works by Ramsey, de Finetti and von Heumann-Morgenstern,
Savage suqugested axioms for decision theary that lead Lo the criterion of maxi-
mization of expected utility. The expectation operation is carried out with
respect to a prior probahility derived uniquely from the decision maker's pre-
forences over acks. The axiom violated by the preference of the select minarity
in the example above is the "sure thing principle,” f.e., Savage's PZ.

Tn this paper a simplified version of Savage's model is used. The
simplitication consists of the introductinon of objective or physical probabili-

ties. An ack in this model assigns to each state an ohjective tottery over
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deterministic outcomes. The uncertainty concerns which state will occur. Such
a model containing objective and subjective probabilities has been suggested by
is Anscombe and Aumann (1963). They speak about roulette Totteries [ohjective} and
horse lotterties (subjective). In the presentation here the version in Fishburn
{1970) has been used. There can also bhe found the von Neumann-Morgenstern, (H-M},
utility theorem used here.

The concept of objective prohability is considered here as a physical con-
cept like acceleration, momentum, or temperature; fto construct a lottery with
given objective probabilities {a roulette lottery) is a technical problem con-
captually no different from building a thermometer. When a person has
constructed a "perfect" die, he assigns a probability of 1/6 to each outcome.

This probability is objective in the same sense as the temperature measured by
the thermometer. Another person can check and verify the calibration of the
thermometer. Similarly, he can verify the perfection of the die hy measuring
its dimensions, scanning it to verify uniform density, e#tc. ... Rolling the die
many times is not necessarily the exclusive test for verification of ohjective
probability.

On the other hand subjective or personal probability of an event is
interpreted here as the number used in calculating the expectation {integral) of
a randam variable. This dafinition includes objective or physical probabilitfes
as a spacial case where there is no doubt as to which number is to he used.

This interpretation does not impose any restriction of additivity on
probabilities, as long as it is possible to perform the expectation operation
which is the subject of this work.

Subjective probability is derived from person's preferences aver acts., In the
finscomde-Aumann type model usually five assumptions are imposed on preferences to
define unique additive subjective probability and von Neumann-Morgenstern utility
aver outcemas. The First three assumptions are essentially von Neumann-Morgenstarn's
-- weak preorder, independence, and continuity -- and the fourth assumption s

equivalent to Savage's P3, i.e., state-independence of preferences. The



additional assumption is non-degeneracy: Without it uniqueness is nol quaranteed.

The example quoted earlier can be embedded in such a model. There are
four states: (1B, IIRY, (IR, LIR), (IR, TIB), (IR, [IR). The putcomes are sums
of doliars. The net of $100% on LIB is an act which assigns the degenerafe
abjective lottery of receiving $100 with prebability one to each state in the
pvent 110 and zero dollars with probahility one to each state in the event TIR.
fhe bet on TIR is similarly interpreted. Indifference between these two acts
(bets) and the independence condition implies indifference hetwesn either of
Fhem and the act which assigqns ko each stake Lhe ohjective lattery of recedving
00 with provahility 1/2 and receiving zero dollars with probability 1/2.  In the
spirit of the example this last act is indiffarent Lo het on IR {or IR), indif-
farence nob shared by the select minority.

Dur first objective consists of restatament, ar more spectfically of
weakening, of the independence condition auch that, Lhe new assumption together
with the other Lhree assumptions can be consistently imposad on the preference
celation aver ackts. In particular the spacial preferances of Lhe example hecome
admissible. T4 is obyious that Lhe example's preferences hetween bats (acts} do
nol admit additive subjective probability. Do thoy define in tome consistent way
a unigue nonadditive subjeclive probabilily, and iF s0, is ELhere a way Lo define
the expected utility maximization criterion far the nonadditive case?

An affirmabive answer to this problem is presented in Lhe last section.

Thus Lhe new model rationalizes nonadditive (personal) probabilities and adwits
the computation of expected utility with respect Eo these prababhilbities. It not
only formally extends the additive wodel hut also it makes Lhe expectad ubility
criterion applicable to cases where additive expected wbility 15 nob applicable.

Before Lurning to a precise and delailed presentation of the mode1, another

heuristic ohservabion is made. The nomenclabure used in economics

distinguishes between risk and uncertainty, Decisions in a risk situation are
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precisely the choices among roulette lotteries. The prababilities are objec-
tively given; they are part of Lhe data. For this case the ecanomic theory went
beyond von Heumann-Moryenstern utility and defined concepts of risk aversion,
risk premium and certainty equivalence. Translating these concepts ta the case
of decisions under uncertainty we can speak about uncertainty aversion, uncer-
tainty premium, and risk egquivalence. Returning to the example, supposs khat
hebbing $100 on  TIR is eguivalent to hetbing $100 on a risky event with an
(objective) prabability of 3/7. Thus, the subhjrctive probahility of an event is
its risk equivalent (P{TIR] = 3/7).  In this example the mumber 1/7 cowmputed
parlier expresses the uncertainty premium in Lerms of risk.  Hole that nonaddibive
prohahility may net exhibit consistently efther uncertainby aversion or unooer-
tainky atbraction. This 1s cimilar to Che case of decisions in risk sikuabions
where von Nenmann-Morgenstarn utility (of money b may he neither concave nor con-

WK .
P, AXTOMS ARD BAGKGROIND

Lok % he a sek and let ¥ be the set of distrivutinng aver ¥ with Finilke

supporks
¥ o= [ y: %o+ 00,17 | y(x} # 0 for finitely many x's in % and Exfﬁ-ytx}::] ]

For notational simpticity we identify X with the subseb { ¥ “ | ylx) =1 for
come ¥ i X} of Y.

Let 5 bhe a sat and leb & he an algebra of subset of 5. Rath sets, X
and S are assumed to be nonempby. Oenote by L the selt of all & - =measurable
finite step functions from 5 to ¥ and denoke by LC the canstant funchions in
LD. et L he a convex subset of YS which includes LC. Note that Y can he
congidered a subset of some linear space, and YS, in turn, can then he

considersd as a subspace of the linear space of all funckiens from 5 to  the

First linear space. Whereas it is obvious how Lo perform convex combinations in ¥



it should be stressed that convex combinations in > are performed pointwisa.
t.e., for § and 1 in YS and o in [0,17, af ¢ {l=ajg = h where
his) = affsy + {(1-wlg(s) on 5.

In the neabayesian nomenclature elements of X are (deterministic) out-
comes, elements of ¥ are random outcomes or (roulette) Yotteries and elements of
L are acts (or horse lotteries). Flements of 5 are states {of nature) and ele-
ments aof & are evenis.

The primitive of a neabayesian decision mode) is a hinary {proference) rela-

tion nver Lo to be denoted hy -} . MNext are stated several properties (axioms)

nf the preference relation, which will he used in Lhe saquel .

(1) Meak order. (a) For all f and g in L: €3 qgorgd o (b) For

a1l f,q and h odin Lr IF F g and g 3 h then £ h,

e relation % on L induces a relation also denoted hy 3 on Y: R
: g g . | . o
3 bz ahere  yo  denotes the constant function y on & {f.e. {y]7h. As
¢ . a " " '
usual, ~ and  ~ donote Lhe asynmetric and symmetric parks, respectively, of } .

Definikion. Two acts f and g in ¥ are said to be comonotonic if far no s
and t in 5, F(s) } fFit) and gt} > gls) .

hoeconstant act f i.e., f = ES for some y in ¥, and any act g are comnono-

tonic, An act f statewise equivalent to a constant act i.e., (s} ~ vy for all

“

s in &, and any act g are camanotonic. If X 18 a set of minbers, then any

tua Y-valupd functions f and g are comonotonic iff (f{s} - F(t)¥{gfs) - {gft)) = O

for all s and t in 5,
CYearly, LIR and  [[B of the Introduction are ﬂgﬁ_cuwnnntnnic.

{Comnnntonicity stands for caommaon ponotonicity .}

Maxt our new axiom for neobayesian decision theory is introduced.

(i1} Comenotonic independence . For all pairwise comonotonic acts F,q and
h in L and for all o din 10,10 : fAoqgimplies
af + {1-a)h } @y + {l-a) .



i

comonatonic independence is clearly a less restrictive condition than M-M's inde-

aendence condition skabed helow.

(i17) Independence. for all f.g andd hoin L oand  for all o in 10,10 @

Fioogimplies af + (l-a}h ) ag o+ {1-a)h.
(iv} Continuity. For all f, 0 and h in L: If f'} g and g7 ho Lhen

thers are o and g din 1,10 sueh that  wf + (L-alh } g and

g b af + {1-pih.

Mext, two versions of state-independence are introduced. The inkuitiye

meaning nf each of these condilions is that Ehe preferences over random outeomes

do not depend on bthe stale that occurred,  The first wersion s Lhe one to he

used here, The secand vorsion is stated for comparison since it is the common one
in the literature.,

Lr U f(s) b als) on S then

(v) Montonicity. For all foand g in

Fd .

(vi) Strict Monotonicily For all f and g dn L,y and 2 in Y and

Eoin % If fYog, f(s) =y on E and g{sy =z on E, and f(s) =

;

gts) on E°, then y 3 2.

ORSERVATION IF L=l then (vi) and (i) imply (v).

Proaf. If f and g are finite step functions then there is a finite chain

h- b .
1{_1, 1y oare

For this pair {vi) and [} dmply (v).

f=h

'ﬂ, hl,...,hk = q where each pair of consecutive funckions

spnstant an Lhe set on which they differ,

Transitivity (i)h of } cancludes tha proof. Slearly (i) and (v} dmply {vi].

For the sake of completeness we 1ist as axiom:

(vii) Hondegeneraty. Mot For all f and g in L T ? 9

Lefore presenting the von Meumann-Morgenstern thegrem we point out that



f
stating the axioms of {1} weak order, (111} indepandece and (iv) continuity does
not require that the preference relation } is dofinad on a set L containing tc

Onlv the convexity of L 1s reguied by {111).
¥ 1

N-M THEDREM. tet M Dbe a convex subset of some linear space, with a
Binary relation 3 definad on it. A necessary and sufficient con-
dition for the relation - to sabisfy {1} weak order, (111} indepen-
dence and (iv) continuiby is the existence of an affine real valued
function, say w, on M such that for all f and g in M f b
PFf wlf) » wig). (Affinity of w means that wlal+(1-alg} = aw(f) +
(1-«dwig] for D <« ¢ 1. Furthermora, an affine real valued func-
Lion w' on M can replace w in the aboye statement 1F€ Chern oxist

a positive numbar o and a nomber p such that w'(f) = wqw(f) + g on

M.

THPLICATION.  Suppose that a binary relation & on some convex subset Lo of
with L L salisfies (i) weak order, {if) comonotonic independence and (iv)

contimdity. Suppose also that there 75 a convex subset Mo of Loowith L. (. ™
such Lhat any Lwo acts in M are comanotonic.  Then hy the H-W Theorem there is
an affine funchion on *, to be denoted by J, which represents the binary rolas=
tinn P an M. Lee., for all f and g in M F%k g iffF () Jig).
Clearly, iF M = LE = | y51 y & Y} oany twa acls in M are comonotonic.
Hence, if a Funckion uw  is defined on ¥y uly) = J[ysj Lhen o i3 affine
anr represents the induced preferences on Y. The affinity aof w dimplies
uly) = I gy (xulx)

When subjective prohabilily enters into the caleulation of exptected ubility
of an act, an integral with respect to finitely additive sab funchinn has Lo he
defined. Denote by P a finitely additive prabahility measure on 3 and iet a

he a realvalued E-measurable function on 5. For the special case whera & 15 &

o . . i k e
finite step function, a can be uniquely represented by g g uiki whersa
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twy Pt > eee 2oy are the values that a obtains and Ff is the indicator
of

funetion on S E

; {s €5 | afst = o y for i=1,..,k. Then

r — vk nfc .
fgadP = by PR ey -

The more general case where a 1s not Finitely valued is treated as a special

case of nonaddibive probability.

ARSCOMBE - AUMANN THEOREM.  Suppose that A preference relation } on L=l
satisties (1) weak arder, (i11) independence, {iv) continuity, fwil strick
monokbonicty and (vii) nondegeneracy. Then there exist a unique Finilaly
additive probability measure P oon I and an alfine real valued function

an ¥ such that for a1 f and g dn L, :F Fog Aff
jHH{f[-}}dﬂ » Jﬁufgtﬁﬁﬁﬂ”.

Futhermore. 1f thern exist P oand u  as ahove, Lhen the preference relalion
they induce on L satisfies conditians (i), (i14)), (iw), {vi} and {viil.

Finally, the funckion w is unigue up to a positive Tingar Lranstormatinn.

3. THENREMS

There are three apparent differences hetween the statemenl of the main
rasylt Below amd Lhe A=A Thearam above:

1} TInstead of skrict wonotonicity, monotonicity is used. It has hoen

shown in the Observation Chab it does not make a differance. However for the

'
[

fortheoming extention monotonicity is Lhe natural condition. 71 Independence 15
replaced with comonotonic independence. 3} Finitely additive probability
measure P 15 replaced with a nonadditive probability v . A real valued set

function v on © o is termed nonadditive probability if it satisfies Lhe nor-
malization conditions w(s) = 0 and «(8) = 1, and monotonicity i.e., for all E
and G in I ¢ E G implies w(E) & w(G).

P e

An additional difference is implicit in the definition of jcadv Tor v



nonaddilive probability and a = EﬁzlqiE? a finite step function with
-k N " - N
Y iy 2 e Yoy and [Eijizl a partition of S. let e ,, =10 then
define

, _ vk iaqk
Jsadv = ] TTE“i - '3‘1+-1‘-I V{ij=le]

For the special case of v additive the definition above coincides with

the usual one mentioned in the previous sectian.

THE THEOREM. Suppose that a preference relation & on L = L
satisfies (1) weak order, {ii) cananotonic independence {iv} con-

Linuity, {v) monotonicity and (vii) nondegeneracy. Then Lhere pyist
unique nonadditive probahility v on x an an affine realvalued Func-

tion w oon ¥ such that for all f and o an L

Py GFF fo wlPO )Yy o Jo ufg(-))dv.

FI%NUPHUPH, it there exist v and o as above, w  nonconsbant, Ehen
the preference relation they induce on L“ satisfies £i1, (i),
(ivh, (v) and (vii)., Finally, the funcbion u s unigque up to

positive Tinear transformations,

PROOF . From the Implication of the H<M Theorem we gel a M=M abitity u  repro-
senting the preference relation } induced on Y. Wy nondegenerachy there are

* . . . * : . . . . .
F* and f_ dn Lg with % Ft . Monotonicity, (v}, implies existence of a

. - * W n 1 . ,
state s in 5 such that f {s) = ¥ S fk{S} =Y, . Since w5 given
; . :
s i - r F
up to a positive linear transformation, suppose from now on Uiy Y= 1 and

u{y#] = _1. Nenote ¥ = u{¥). Hence ¥ is a convex subset of the real line

including the interval [-1,1].

Far an arhitrary f 1in Ln denote

Me = L of + (l-a)y® | y €Y and « € 10,17}
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Thus MF is the convex hull of the union of £ and Lc . T is easy to

¢ep that any two acts in MF are comonatonic. fence, there is an affine real -

valued Function on Hf, which represents the preference relation } restricted

t5}

ta M.. After rescaling, this function, Jg . satisfies Jf[y = 1 and

£
Jriyi] = -1. Clearly, if hE!ﬂrrﬁ MH then Jf[hj = J {h)., So, defining
JIf) = Jf(F] for f in Ly » we get a real valued funcbion on L which
represent the preferences } b Ln . It alsp satisfies For all ¥ in
)

funckinns on 5. Let H:Ln * Hﬂ(Kj he defined by U{FI(s) = u(f(s}} Tfar 5

= yfiy). Let Hﬂ{ﬁj dennke the s-weasuarable, K-valued Finite step

in & and f din L, . The function U is onbo, and if U{f) = U{g) then, hy
monotonicity f ~ g , which in turn implies JIFY = Jlg).

Wo now define a real valued Function T en B (K). Given a in B(K)
Tet £ in L, he cuch that D{f) = a. Then define tia) = Jf). [ is well

dafined since as mentioned earlier ) is constant over H'l{ﬂlt

U
HW}-- S . i, HU
.‘x
J / 1
L
i

We now have a realvalued Funclhion [ on Hﬂ[K] which satisfias Lhe
Following three conditians.
1) For all a in %: T(laS*) = o
2} For all pairwise comenotonic functioms a,b and c in BU(KJ and o in
rn,11 : if L{a) > I(5) then T{aea + (1-c)e) » [{ab + {1-adc).

1) IF afs) = b{s) oan S for a and b in HD{K], then ffa) = 1{n).

To see thak 1) is satisfied let y in ¥ be such that ufy) = w. Then

= o and U{ys} = uS* . Hence I{aS") = «. Similarly 2) is satisfied



¥

necause comonotonicity is preserved hy 1) and represents } which

satisfies comonotonic independence. Finally 3} holds because 1 preserves

mongtonicity.

The Corollary of Section 3 and the Remark following it in Schmeidler {1984},
say that i a realvalued function I on Hﬂ(Kj satisfies conditions 1Y, 7} and
3} then the nonadditive probability v on & defined by, w(E) = I{F") satis-

fies for all a and b in Hn{K}:
* Ha) = L(h} iF7  feady 3 [ohdv.

Hence, for all f and g in L.:

oy e AR L uth) dv s fg B(a) dv.

and Lhe proof of the main part of the theorem s conp letod.,

[n order to prove the opposite direction note firgt thal in Schmeidler
(1984} is shown and referenced, that if 1 on HH{K} is defined hy * then it
satisfies conditions 1), 2) and 3).  {Unly 2) requiras some praof .} Secondly,
the assumphions of Lhe opposite direction say that 0 s defined as a com=-
bination of U and 1 in the diagram. Hence the preference relation on Ly
induced Gy J  sakbisfies all the required conditinns. (I preserves monataoni-
city and commotonicity, and jsadv is a {sup) norm continuous funchkion of a.)

Finally, uniqueness properbies of the expected utility representation will

be proved, Suppose that there exist an affine realvalued function ow' on Y

and a nonadditive probability ' on & s.t. for all f and g din Lo

i f } g AfF Jou'{fls))dv’ > [qu'fgds)ddv’.

NoLe that monotonicity of v' can be derivad instead of assumed. When con-
sidering ** for all f and o 1in LE we tmmediataly obtain from the uni-
queness part of the N-M Theorem, that u' is a positive linear transforwation of

y. On the other hand it is ohvious that the ineguality in ** is preservad
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under positive linear rransformations of the utiltity. Hence, order Lo prove
| I

that v' = v we may assume without loss of generality thal wu® = u. For an

arbitrary € din L let £ in 1L he such that D{fY = E%, {For example,

0
A

f{g} = y“ an E and Ff{s) = y*JZ + y*f? on E Then ISU{f]du = w[E) and

jqU(F}dv‘ < v'(EY.) Let y in Y be such that uly) = vfEY. {For example,
y = U[E}y* - (]_u{E}}{y*fz + y*IE}.j Then f ~ FS which in turn Toplies  uly)
u'(y) = JS u'{ys}dv‘ = v'{£Y. The last egquality is implied by *% .

r]'F.IT"I

In arder to extend the Theorem to more genaral acts we have 1o specify pre-
ciesly the setb of acts L on which the extension holds and we have Lo
coreespondingly extend the definition of inteqral with respect ta nomadditive
probability. W start with Lhe latler.

NDenoba by [ tLhe set of realvalued, bounded E-measurable functinng on 5.
Aiven A in B and a nonadditive probabilty v en & owe define.

0 w
jsadu = [ (elarad=1)da + Ju(a>a)da
-0 0

Each of khe integrands above is monotunic, honded and identical ly zera for

la) » & for some sumbar X, A more detailed axpnsition and references appear in

Schmeidler {1984), 1t should be mentioned hers bhat this definition coincides, o

course, with the one at the beginning of this sectinn whea a ohkains finttely

many values.

for the next definition existence of weak order ) over L. is presuo-

posed. An act F:S + ¥ is said to be t-measurable if for all y in ¥ Ekhe

sets {f{ﬁ)} y1 and (f(s) }-y} belong to I, 1t is said to he hounded iF Chers

are y and z in Y such thabt ¥ % fls) %—z on S, The set of all &-
measurable bounded acts in ?S is dentoed by L(4). [t clearly contains L .

CORDLLARY fa) Suppose that a preference relation } nyer Ln

=

”



14

satisFies (1) weak order, {ii} comonotanic independence, {iv} con-
tinuity and (v menotonicity. Then it has a unique extantion Lo all
af L{*} which satisfies the same conditions {over L($}).

{h) If the extended relation, to he alsn denoted hy } , 1% non-
degenarakbe then there exist a umique nonadditive probabilty v on 2
and an affine realvalued functien u  {unigue up to positive Tingar
transformations} such that for all f and g in L{}] o f } q iff

Ju(fC v > qulgle)dv,

Proof: The case of degeneracy is obvious, S0 assume nandagenorate preferences.

Constder Lhe diagram below:

Mhe inner triange 18 thab of the proof of the Theoren. B{kY is the set of X
valund, f-measurable, bounded functions on 5 and 1 denates idenbity.

' is the natural extention of U and 1s alsa anto, Because Hﬂ{K] is [sup)
narm dense in B(¥) and T satisfies condbion 3}, 1' is Lthe uaigue extenkian of
1 that sabisFies on B{K) the three coaditions that T satisfies on “n{K]'

The fFunctional J' is defined on L{%) by: J'(F) = T°(U'(F)). Clearly
extends J. Hence, the relation % on L{H) defined by: £ ¢ g IFF J'(F) >
gxtends bthe pelalion } an Lﬂ . and saltisfies the desirad properties.

Ry the Corollary of section 3 in Sch. (1984) there exisl a nonaddibive
orobability v on % s.L. for all 7 and g in Lf}] 1Y o= T'ig) 9FF
fSU‘(f]du g jSU'{g]du.

Hence, the expected uLility representalion of the preference relation nas

heen shown. To complete the proof of (b), unigueness of v and undgquenass up

J'(g)
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to a positive YVinear transformation of u have to he established. Haowever, it
follows from the corresponding part of the Theorem. The uniqueness properties

also imply that the extension of § From Ln ta L{}] is unique. k.0,

Remark 1. TInstead of first stating the Theorem for L, and then extending it

to  L{+), one can state directly the extended theorem. More precisely a pre-
ference relation on L, Lg CLL.CZ?S is defined s.t. in addition to the con-
ditions (i)}, (i1}, {iv), (v) and (vii) it satisfies L = L{#). Then it can he
reprsented by expected utility with respect to nonadditive prabahility.
However the first part of the Corollary shows that in this case the preference

relation of L(%) is overspecified: The preferences over L, dictate those

over L{») .

Remark 2. If & does not contain all subsets of 5, and #X% = 3 then Li{+)

contains finite step functions that do not belong to Loe Let y and z din ¥

be such that y ~ z but y # z, and let E (S but E qE L. DNefine f(s) =y

C

gn E and f{s) =z on E”. Clearly f é; Lﬂ' The condition #% > 3 is

requirad to gquarantee existence of y and 2z as above.

Remark 3. It is an elementary exercise to show that under the conditions of the

Theorem, v s additive {iff 7 sabtisfies (i1i1) independence {instead of ar in
addition to [ii) comonotonic independence). Also an extention of an independent
relation, as in the Corollary (a), is independent. Hence our results formally

axtend the additive theory.

We now intreduce formally the concept of uncertainty aversion alluded ta in
the Introduction. A binary relation & on L {5 said to reveal uncertainty
aversion if for any three acts f, g and h in L and any o in [0,17: If

fah and g 3h then of + (1 - «lg } h. Equivalently we may state: If

f 39 then of + {1 - a)g » g. For definition of strict risk aversion the



. . f c s
conclusion should be a strict preference » . However some restrichions have ta
!

be jmpesed then on f and g. One such an obvious restrickbion in that £ and
g are nob comonotonic. We will return Lo Ehis question in a subsequent remark,

Intuitively, uncertainty aversion means Lhat "smoothing" or averaging uti-
lity distribubions makes the decision maker hetter of. Another way 15 Lo say
that substituting objective mixing for subjective mixing makes the decisinn
makar hekbtar of. The definition of uncertainity aversion may hecome more

transparent when its full mathemalical characterizabion is presented.

PROPOSTTLON, Suppose that < on L = L{#} s the extension of 4
on L, according to the Corollary, Let v be the derived nonad-
ditive subjective probability and T = I' is Lhe funetinnal on 8,
1{a) = [endv.  Then the Fol lowing conditions are equivalenk:
i) % reveals uncerbainby aversion.

(iiy For all & and b in B: T{a ¢ b} s [{a) + 1{b).

(i1i) for 11 a and N in B and for all e in (0017
[lag + {1 = a)b) = alfa) + (1 - alb .
(iv) For all a and b din B and For all o in o1
Tioa + (1 - adb) = min(ifa),1(h]}.

(v} For all o in R theset { ach | T{a)y = o} is convex,

{vi) There exists an = in R s.L. the set {2« B | Lia) » w b s
COnvex.,

{vii) For all a and b in B and for all « in fn,171:

If I(a)

I[b) then TY{aa + {1 = alb) = 1lal.
{viii) For all a and b in B: If 1{a) = 1(b) then
Tia + k) = [{a) + [(b}
(ix) v is convex. L.e., for all E and F din I:

V{EY + w(F) = w[EF) + w(E + F)



{x) For all a in B: Ifa) = min{ fgﬂdp | p = corelv) 1, where
caraly) = [ p:x + R | p 1is additive, pfs) = w(%) and For all

£ in &, plEY = v(E) }.

proof. For any functional on  B: (iii) implies (iw), (iv) implies (viil, [iv}
is equivalent to (v} and (v} implies (vi). The positive homogeneity nf degresz
ane of 1 resalts in, {11} equivalent to (1§} and (i1} equivalent to {viii).
{vi) implies {v) hecause for all g in R, (i = o - a)y, Ua + p5Y) = 1{a) + 8,
andd hecause arkding ﬁﬂ* preseryes convexity.

(viii) implies {ix), Suppose, without Tass of genarality, that v{E) » w(F).
Then thers is v » b s.t. w{E) = yv(F}. Since TEE*Y = w(EY = yw{F) = HAF*Y, we

L3

TV L) DU YT R S 1 R U SO B L

have by (viii), v(E) v yw(F) & I{
(£ + F)*, which fmplies TEEY 4 ™) = w(BFY + (v = VIv(F) + vk + F).
[nserting the last equalilty in the inequality above leads Lo the fnaqualily in
{ix}. The equivalence of (ix}, (x) and {11} is stabed as Proposition 3 in Seh.,
{1984).

Last it not least, (i) is equivalent Lo (iw). This is ghyiois when con-
sidering the mapping ' from the diagram in the pronf of the Corollary.

n.E.0,

The basic result of the propesition is the eguivalence of (i), (itid, [iv),
{ix) and (x). (iv) is guasiconcavity of I and it is the translation of [i] by
U from L to B. (iii) is concavity, which usually is a stronger assumption.
Mere 1 is concaye iff it is guasiconcave. Concavity captures hest Ehe

heuristic meaning of uncertainty aversion.

i,

it 1s strict uncertainty aversion). To do it precisely null or ducmy events in



5 have to he defined. An event E in & is termed dummy if for all F in
Erow(F + £} = v(F). In (ii)-(vii), in order to state strict ineguality one has
ba assume that a and b' are nob comonatonic for any h' which differs Fram
b an a dummy set. To weite stricl inequality in (1%} one has to assume that
(f - FAyE [EE-’TJt and  (F - E]* are not dummies. In {x} a geometric condition

an the core of v has to he assumed,

Remark b.  The point af view of Lhis work is thalt if the informabion is too
vague to he represented by an additive preior, 16 still may he representod by a
nonadditive prior. AnoLher possibility is to represent vagque infarmatinn hy sot

of priors. Condition [x) and 1ts equivalence to other conditions of the

Propasition point out when the two approaches coincide.

Remark 6. The concept of uncertainty appeal can be defined by: f g implies
f } f 4 (1 - a)g. In the Proposition then all the dnequalities hawve to ho

raversed and maxima have to replace minima. Obviously, additive probahility or

the independence axiom reveal uncertainty neakrality.
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