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A METHOD FOR SOLVING THE DISPERSIONLESS
KP HTIERARCHY AND ITS EXACT SOLUTIONS I1

YUJI KODAMA+t aNnp JOHN GIBBONS]

Abstract. We give an algebraic method to construct an infinite number of exact solutions of the K P
hierarchy in terms of the hodograph transform. These solutions are obtained from a unique decomposition
of the matrices in the higher commuting flows. The method presented here can be also applied to any
hydrodynamic type equations with additional symmetries.

1. This paper is an extension of the prevmus paper [1] concerning a solution method
of the dispersionless K P equation,

(1) (Ur, ~UUx)x =Un,

where U = U(T1,T3,:-+) and Ty = X. We constructed several solutions of (1) using re-
ductions to finitely many dependent variables and the hodograph'traﬁsform. However, we
discussed only the first few reductions (N < 2). In this letter, we study the general reduc-
tion and give an explicit scheme for constructing exact solutions of the reduced equations
of the dispersionless K'P hierarchy. The scheme presented here is totally algebraic. The
main result in this letter is that in the case of N dependént variables (N-reduction), these
solutions are obtained from a unique decomposition-of the higher flows into the first N
independent flows.

2. The dispersionless K P hierarchy can be derived from the following scheme [2]: Let
k be an asymptotic series with respect to a parameter P;

v, U»
2 k= e
(2) P+ Iz + BT
where U; = Uy(Th,T3,---) with infinitely many independent variables T,,. Consider the

following evolution equations for k = k(U;; P) with respect to T,’s,

3) Ok BQn 9k 0Qn Ok
0T, ~ 8P 8X OX 9P’

where @, is the part, polynomial in P, of k" /n; we denote @, := (k" /n), = nth degree
polynomial in P. It should be noted that (3) are Benney’s moment equations [3]. Now
the equations in (3) are compatible, i.e. sz/aT T, = 8*k/0TwOT,, and give the
dispersionless K P hierarchy.

0Qn  0Qm
) T 9T, Om}=0.
The dispersionless K P equation (1) is obtained from (4) with n = 2 and m = 3. It should
be also noted that (3) gives an infinite number of equations for {U;}$2,
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3. We now, as in [1], reduce (3) into a set of equations with finitely many dependent
variables, say {W;}}, and call it N-reduction, that is, k = k(Wl, -+ ,Wn; P), so the
reduced equations are '

aw oW

(5) 6_T,.,=A"ﬁ ; for .n.=1,2,..

where W € R¥, A; = I = N x N identity matrix and Ap = An(W) is an N x N matrix
function of W. There are several examples of reductions:

' Example 1 (Lax reduction [4]). This reduction is given by

1 pN+L 1 N+1 N+1 N-1
—_— —_— = W, P
6) N+1( )+ “Nrit N+1P + T+ Was

which includes the dispersionless KdV equation (N = 1), Wi, = W1Wy x, the disper-
sionless Boussinesq equation (N = 2), .

o a%(y"‘é%(_%é)%@)

and higher order dispersionless Lax equations (N > 3).
Example 2 (Zakharov reduction [5]). This reduction is given by

(8.)' k= P+ZP

=1

which can be obtained from the classical limit of the M component vector nonlinear
Schradinger equation. For M = 1 [1, 6], the reduction gives the classical shallow wa-
~ ter equations [7],

) O (h\_ (Vi i\ O (I
Mm\W/) \1 wjox\wn/
 Many other reductions can Be found, but there seems to be no systematic method for
classifying them [g]. '

3. Let us discuss some of the properties of the reduced equatlons (5). Here we assume
that the matrix A, is diagonalizable.

PROPOSITION 1. The system (5) may be reduced to Riemann invariant form.

Proof. From (3) with the reduction k = k(W; P) and W € RV, we have, for n = 2,

(10) | VKA - PD =G5t



where Vk = (0k/OWy,.-. ,0k/0WxN). From (10), we see that the eigenvalues of A,
say Pj,---,Py, must be roots of 9k/3P = 0, and the left eigenvectors are given by
Vk; = VE(W; P;). That is, the characteristic polynomial of Ay must divide the function

0k/OP = 0. Then the Riemann invariants are given by k; = k(W; P;), and
Ok; Ok; .
(11) a—Tz—P,EY ) for 2—1,- ,N,

and for the T,,-flow we have, similarly

Ok; ok; 3=131N,
P — L f
(12) 8T, ax Or{n=1,2,...,
where the characteristic speeds v} are given by the polynomial Q,/3P at P = P;, i.e.
n Qn
(13) v = v (F) = 3}3-|p=p‘. ad

REMARK. It may be shown that the polynomials v™{ P) satisfy the following recurrence
(14) v = Pyt Hyo" 4 Hp 0!,
where the H,, are the conserved densities of (3) which can be obtained by the inverse of
K(P);
(15) P=k-——-— - e
This is frequently useful for computations [9].

PROPOSITION 2. The matrix A, is given by the polynomial v*(P) = 8Q,/8P with
Ay substituted for P, i.e. A, =v™(Ay).
Proof. Define a matrix K consisting of the left eigenvectors Vk;, i.e.
Vk
(16) k= |=w@y=(2k
- ) R V=17 7
Vky

Then we have KA; = DK with the diagonal matrix D = diag (P;,---, Px), and using
Vk,'An = 'U?Vk,r, we obtain

o 0
A, =K1 .. K
(17) O vy
= K~W™(D)K = v*(K'DK) = v"(Aj) O

This gives a direct proof that the A, all commute. From (17), we note that A4, is an
(n — 1)st degree polynomial in A;. Thus we obtain:
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PROPOSITION 3. For !> 1, any matrix Ay lies in the span of {4;}L,, ie.

N
(18) Anpi=) pi Ai,
i=1

where p} = pi(W) are scalar functions of (WYl

Proof. Use the Cayley-Hamilton theorem; A3 has only N linearly independent powers,
specifically if Fiy(P) = det(PI — A;), then Fn(A2)=00 '

We note that the decomposition (18) may be rewritten in the following form of the poly-
nomials v*(P) = 8Q, /0P, ' '

N
(19) oNH(P) = Z pH{W)i(P), mod Fy(P).

This formula, together with the recurrent formula (14), is more useful for calculating the
coefficients {pi(W)}Y,.

We now state our main result:
THEOREM. The solution of {(5) can be given in the form,
(20) W(T11T27"'):WO(TIO:T%),"' sT}c\'T)a

where W(Ty,--- ,Tn) = W(Ty,--- ,Tw,0,---), and
m -
(21) T =T+ > wiTne
=1
with the same scalar functions pi(W) defined in Proposition 3.

Proof. From (18), the (N + I)th flow can be written as

oW N oow
_ E [ i > .

This implies that W is a constant vector along the characteristic, which are straight lines,
given by

dlyy;  dT;

(23) -1 pi(W)

,fori=1,---,N.




The integrals of (23) are
(24) T =T, + pi(W)Tnyt, Y121,

which gives (21) on taking a sum over {. Here T} gives the initial position of the charac-
teristics at Ty =0foralli>1[]

We note that the vector function WO(T?, ... ,T%) in (20) satisfies

0
=An(W°)%T-,-;~F , for n=1,---,N.

ow?

(25) 7S

From (5), (21) and (25), one can verify that the functions uj(W) satisfy the following
systems,

al Al Ot
(26) Z(Ai-aTi—A;Angjé)=0, Vixz1,

=

or equivalently,

N i H
(27) Z (uf(P)%‘- — u*(P)v"(P)%) =0, mod Fy(P).
i=1 b _

As a Corollary of the Theorem, one can construct exact implicit (hodograph) solutions
of (25), using the translational invariance of (5}, i.e. Tn4i — Tn4i+ Ci where (] is an
arbitrary constant:

COROLLARY. The hodograph solutions of (25) are

(28) ! => Ci(W), fori=1,-+-,N.

{=1

Thus the coefficients g} in the decomposition of the higher flows (18) give a solution
of (5). This statement can be applied to any hydrodynamic type equations with addi-
tional symmetries {10]. Namely, by decomposing the matrix A,, of the additional sym-

M
metry into the first M independent matrices, say Ay, -+ , Ay, A, = ZainAi, the
i=1

hodograph solutions are given by TP = oi,(W). The decomposition is unique provided
dim (Span{4;}2,)=M (M <N for N x N commuting matrices).

A formula equivalent to (18) was obtained by Tsarev [10] in somewhat different way.
His formula for the hodograph solutions is

(29) X +2(WT =v; (W), for :=1,.-+- /N,
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where A;(W) and »;(W) are the eigenvalues of two commuting diagonalizable Hamiltonian
systems of hydrodynamic type. Although the formulas (18) (or (19)) and (29) are formally
equivalent, it seems that calculation with (29), that is, in terms of the eigenvalues of
matrices (A; and v;), is harder than the calculation with (18) or (19) based on the symmetric
functions of eigenvalues (v™(P)). In particular, for the Lax reductions, the method using
(19) yields a much more effective way of constructing solutions in terms of conservation
laws (see [8] and a future communication [9]).

4. We apply the theorem to an example and show how to construct its exact solutions.
As a typical example, we take an N = 2 reduction, i.e. W € R®. In this case, the matrix
Ajin the T3-flow is given by

Ay = v%(Ay) = A2 + U4 I
(30) = ('tT‘Ag)A-z + (Ul — det Ag )I

where we have used A3 = (trA;)A; — (det 4;)I (Cayley-Hamilton). Therefore we obtain
the solution [1],

X% =U; —det A, ,
(31) 1 € 2}

Tzu = t'r‘Az .

From A, in the Ty-flow, 4, = v4(A;) = A3 + 2U; A2 + U, I, which can be decomposed into

(32) Ay ={2U; + (tr As)? — det A3} Ag + {Us — tr Ay det 451,
we obtain

X®=U, —trd;det A, ,
(33) . 2 rAag 62 2

TO = 2U; + (trds)? — det 4, |

and so on. (Note that the characteristic polynomial F3(P) = P? — ¢tr A, P + det A,.)

Before ending this letter, we discuss the equations (26) which the hodograph solutions
satisfy. For the case of an N = 2 reductlon, the equations (26) give, after setting TP =

#I(W)’

axo oT?
= —det A,—=2
(30) G A2Ex
oTY  9xX° o 98
9T, ~ 8x | “?x

It is interesting to note that if tr A3 = 0, which corresponds to the Lax reduction, then 79
and X° give a conserved density and flux, respectively (see [8] for 3 x 3 case). This fact
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can be generalized to the case of the Lax reduction with arbitrary N using the recurrence
(14). This will be discussed in a future communication [9].
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