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THE COMBINED USE OF A NONLINEAR CHERNOFF FORMULA
WITH A REGULARIZATION PROCEDURE
FOR TWO-PHASE STEFAN PROBLEMS

R. H. Nochetto (1), C. Verdi (2

(1) Jnstitute for Mathematics and its Applications (Minneapolis - U.S.A.)

(2) Dipartimento di Meccanica Strutturale, Universita di Pavia and
Istituto di Analisi Numerica del C.N.R. (Pavia - Italy)

ABSTRACT

The approximation of two-phase Stefan problems in 2-D by a nonlinear
Chernoff formula combined with a regularization procedure is analyzed.
The first technique allows the associated strongly nonlinear parabolic
P.D.E. to be approximated by a sequence of linear elliptic problems. In
addition, non-degeneracy properties can be properly exploited through the
use of a smoothing process. A fully discrete scheme involving piecewise
linear and constant finite elements is proposed. Energy error estimates are
proven for both physical variables, namely enthalpy and temperature.

These rates of convergence improve previous results.

1-INTRODUCTION

The simplest heat transfer phenomenon involving phase change can be modelled

by the following strongly nonlinear parabolic P.D.E.

%%—AB(U)‘—"O in Q= Qx]0.T|
B(u)=10 on 9 x ]0.T | (1.1)

u=uy att =0.




_2.-
Here B is a nondecreasing Lipschitz continuous function, whose graph has a flat part:
v denotes enthalpy and 6 := B(v) stands for temperature. We refer to Magenes [7]
_ for mathematical details and references. We only would like to emphasize that our
present results easily extend to more general situations including a nonlinear source
term. nonhomogeneous Dirichlet and/or (linear) Neumann boundary conditions. as

well as different functions B (e.g.. porous medium equation).

Our main concern is the efficient numerical approximation of (1.1). To this end.
we combine a nonlinear Chernoff formula with a smoothing technique. The latter con-
sists of replacing B by a strictly increasing Lipschitz continuous function B¢; € > O'is
the regularization parameter. Perturbing B8 changes the nature of the problem in that
there is no longer free boundary. This is not only a computational trick but also
allows non-degeneracy properties to be exploited in improving the final rates of con-
vergence, as shown in Nochetto [10. 12]. In order to use the regularity property

u L . . . . - C . .
I aate Ing(O) < C €, special care is requuredA in defining the initial regularized

enthalpy. This issue is fully discussed here and a general recipe in 2-D is presented
whenever initial non-degeneracy holds (see section 3.1): this is actually the only 2-D

argument in the paper.
Once the problem has been regularized, it can be discretized in time by the fol-
‘Iowing nonlinear Chernoff formula
Ul=wuy: forn=1..T|r
0" - A0" =B (U") (1.2)
n

U" = Un—l_*_'uI@n_Be(Un-—])]:

here u stands for a relaxation parameter satisfying 0 < u < LB’] (Lg > 0:
Lipschitz constant of B). Nonlinear Chernoff formulae were introduced as approxi-
mations to nonlinear semigroups of contractions [2]. and first used in numerical
analysis in [1, 17]: no error estimates were proven there. The accuracy of such
schemes (without regularization) was recently investigated by Magenes. Nochetto &
Verdi [9]. Magenes [8] and Nochetto & Verdi [15]. A further discretization in space is
achieved by making use of continuous piecewise linear finite elements for ® " and
piecewise constants for U ", as in [15. 19]. At this stage, the resulting scheme can be
easily implemented on a computer. Numerical experiments show that, for two-phase
Stefan problems, location of the true free boundary as weil as approximation of solu-

tions nearby are more accurate when using a smoothing process as an intermediate
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step. In other words, the nonlinear Chernoff formula without regularization seems to
produce a stronger artificial diffusion [15]. We refer to Paolini. Sacchi & Verdi [16]
where; performances of various linear and nonlinear algorithms are compared. This
computational evidence motivates the present analysis.

In this paper we improve previous rates of convergence proved by Nochetto &
Verdi [15] (see Corollary 1). Our new results coincide with those ones obtained for
the standard nonlinear scheme by Jerome & Rose [6] and Nochetto [10. 12], who did
not consider the effect of numerical integration. The topic was later on analyzed by
Elliott [4]. Nochetto & Verdi [14] and Verdi [18]. but the final rates are worse than
the present ones. In addition, whenever non-degeneracy holds. we can further improve
the rates of convergence; however the final orders are still sublinear and, therefore,
not sharp according to the ;pproximation theory. Moreover, we can obtain an L2
error estimate for enthalpy (see Corollary 2). A similar but optimal result was proven
in [12] for the standard nonlinear scheme.

This paper is organized as follows. In section 2 we state assumptions and nota-
tion and formulate continuous and discrete problems. In section 3 we first analyze the
choice of the regularized and discrete initial enthalpies and then show a strong stabil-
ity of the discrete scheme. Finally, in section 4 we demonstrate the main results of

this paper, namely, energy error estimates for both enthalpy v and temperature 6.

2 - FORMULATION OF THE PROBLEM

In this section we shall establish the hypotheses concerning the data and formu-
late precisely the continuous and the regularized problems as well as the nonlinear

Chernoff formula.

2.1 - Basic assumptions and notation
Along the work we shall always assume the following hypotheses.

(Hy) Qc R?is aconvex polygon.
Set @ := Q x]0. T [ where0 < T < +oco is fixed.

(Hg) B:R — R is a nondecreasing and Lipschitz continuous function such that
B(s)=0 for0<s <1,

0</g<B(s)SLg<+co forae s ¢[01].



(Huy)  60:=B(ug) € W¢= (Q):
Fo:=1{x € Q:0p=0} s a Hdlder continuous curve:
meas({x € Q:0< 6g(x) < €})= O(¢) (non-degeneracy property).

Now we introduce some notation concerning the time discretization. Let
7:= T /N be the time step (N positive integer ) and set t" :=nr,
1" = ]t""1L t"] for 1<n < N. We also set

T

2" =z (- t")., 7" = ! fz('.t)dt
/n

for any function z : @ — R which is continuous (resp. integrable) in time, and
92" = Z -7 . 1<n<&N

for any given family { z” }o. In addition, we introduce some notation concerning
the triangulations. Let { T, }, be a family of decompositions of Q into closed trian-

gles; as usual, h stands for the mesh size. We assume that
(Hy,) thefamily {T, b, is regular [3. p. 132].

Since quasi-uniformity |3, p. 140] is not required. local refinements are allowed.
Let us now define the discrete spaces we shall work with
Vili={x € CoQ):x 7 islinear YT €Ty, x=0o0n 3Q}.
V0= {w:¥ 7 isconstant VT € T, b
and denote by /, the linear interpolant operator in V,!. We shall also need a pair of

operators associated with those spaces. The first one, denoted by P,l. is the discrete
H ¢ -projection operator. So. for any z € HE (Q). Pz € V,lis defined by

<Y Pz Vx>=<Vz.Vx>. Vx€ V' . (2.1)
Hereafter, < -.-> denotes either the inner product in L2(Q) or the pairing between
H=1(Q) and H{ (Q). Moreover we have
Nz — Pylzlly, g S C HE*lzI0, 0 0<sr <1, (2.2)
for any z € H¢ (Q) [ H2 % (Q). Finally, the second operator is the L 2-projection
operator P,0 onto V0. which, for any z € L 2(Q). is defined by

<Pz > =<z.y>. Yve Vv, (2.3)



and satisfy

Nz — P/,OZ “H_'(Q) < C h,+sllz ”H‘(Q) 0 < S.r < 1 . (24)

forallz € H*(Q).

2.2 - The continuous problem

Let us now state the suitable variational formulation of the differential problem

(1.1).

Problem (P): find {u.0 } such that
vEL=O.T:LYQ) N HY(O.T:H Q). €L} 0.T:HJ(Q)). (25)
B(x.t)=B(u(x.t)) forae (x.t)€ Q. (2.6)
u(-.0)= uy. (2.7)

<%%.¢>+<V9-V¢>>=0~ Vo € Hf (). ae.t €]0.T[. (2.8)

Existence and uniqueness are well known for (P) (see. e.g.. [7] and the refer-

ences given therein). Moreover, assuming that the hypotheses (Hg) and (H, ) hold.

we have that:

%‘tieLw(o.r;H-l(Q)). 6EL=(0.T: H¢ (Q)N HIO.T:LYQ)). (2.9

2.3 - The regularized problem

Let us denote by € the regularization parameter and introduce the following

approximation of 8

B(s) ifs <0ors>s,

B((S) = €s if 0 < s < Se . (210)

where s is the maximal solution of the equation B(s) = es:thus.s¢ =1+ Ce.

Then the regularized problem reads as follows
Problem (P.): find {u.. 0.} such that

U EL=(0.T:LA(Q) N HYO.T:HY(Q)). 6.€L0.T:H{(Q)). (2.11)
Be(x.t) = Be(ue(x.t)) forae (x.t)€ Q. (2.12)
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uel . O) = Be_l(eb) . (213)

R <aaute o> +<veev¢>=0 VéEH(}(Q), aetE]OT[ (214)

We stress that the choice (2.13) of the initial regularized enthalpy guarantees
that the regularity properties (2.11) and (2.9) hold uniformly in €. Moreover. in view
of (Hg) and (H, ). we have

- —12
”uEHLZ(O.T:Hl(Q)) =+ “UGHHI(O.T:LQ(Q)) + ”6€||L2(0.T:H7(Q)) < C € . (215)

2.4 - The nonlinear Chernoff formula

Finally we state the precise meaning of our fully discrete scheme associated with
the nonlinear Chernoff formula (1.2). Let 0 < u < L4~ ! be a fixed number (the so-

called relaxation parameter ).

Problem (P¢, ,): for any 1Sn<N. find U" € V,0 and ©" € V,! such that,

given U%€ V,° we have
<PlO" x>+ _;_ <YO" x> = <B(U"N.x>. VxeV, . (216)

and

Uu"=u n=1_4 i [ P/,O@ n __ BE(U n—l) ] ) (217)

In section 3.1 we shall analyze the choice of the discrete initial enthalpy U 0
Since the matrix of linear system (2.16) is symmetric and positive definite, the solu-
tion of (Pep ;) exists and is unique. Moreover, due to the fact that Pl®" is the
value of ©” at the barycenter of each triangle. the equation (2.17) may be regarded
as an inexpensive element-by-element algebraic correction. The fully discrete scheme

is, therefore, a linearized approximation to the original strongly nonlinear P.D.E. (1.1).

3 - PRELIMINARY RESULTS

This section is devoted to prove some auxiliary results. In fact, we first deal
with the choice of the initial enthalpies and then show that the discrete scheme is

strongly stable.
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3.1 - Error estimates for initial enthalpies
Let us start by estimating the error for the initial regularized enthalpy. Before

doing that let us set y¢ := 8"

Lemma 1. Under the assumptions (Hg) and {(H, ) there exists a positive con-

stant C independent of € such that

luo— Ye(Bol o gy S C €7 . forall1 < p <2. (3.1)

Proof. By definition of y. := B, ! it follows that
(ug— Ye(B9))(x) = 0 onlyif 0< wy(x)<s,.

The assertion is then a consequence of the initial non-degeneracy property //.

Lemma 2. Under the assumptions (Hq) (Hg) and (H,,) there exists a posi-

tive constant C independent of € such that
Nug— ye(Bo)lly-1q) S Ce loge KN (3.2)

Proof. Let & € H{ (Q) be given and set ¢ == p/(p—1) for 1 < p < 2 to be

determined. Then
61/p
(p—1)"

where we have used the 2-D Poincaré-Sobolev inequality [5. p. 158]

<ug— ye(Bg). 6> < llug— ye(GU)IIL,(QchbII“(Q) £C Nblly i (q) -

ol o g € C q” el (q) (€ > 0independent of q ) .

Therefore. taking p = 1+ |loge | 7! yields the desired result //.

Let us now analyze the choice of the discrete initial enthalpy. We first define the

initial temperature © © by
=1, 8,: (3.3)
thus @0 ¢ W= (Q) c H{ (Q). as a consequence of (H, ). The discrete initial
enthalpy is then defined by
U=y (P0Y) . (3.4)
or equivalently
Be(UY = pPle0. (3.5)

Consequently. U can be easily computed element-by-element.
y
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Lemma 3. Under the assumptions (Hg). (Hg). (H, ) and (Hy,) there exists a

positilve constant C independent of € and h such that
Ity (P’ )= ¥ (80)lly-1q) S C [e+ h] [log(e+h) | (3.6)
Proof. Let T2 be defined by
TO={T €T,:T ) Fo=2}.
Let T € T, begiven. If T ¢ T and 8, < 0in T .then P,20° < 0. Thus
Iy e(PR@ %)= ye(o)ll =7, < C 1P~ gl w7y S C h .
Suppose now that T ¢ T2 and 6,> es.in T . This implies PY®%> ¢s, and so
Iy e(Pi’® )= (o)l =(r) € C 1IP,20 = Ogll 7)< C h .
It only remains to analyze the case: T € T or0< 6y < escin T . Using (H,,). it
easily follows that
meas({x € Q:x € T € TQ or 0<90(x)< €sel) S C[h+¢q.
Collecting previous estimates results in
Iy e(Pi'® )= ye(Bo)ll (g S C [h + 7 forall1 <p <2.

This coupled with the 2— D Poincare-Sobolev inequality already used in Lemma 2

gives the desired estimate //.

3.2 - Strong stability of the discrete scheme

In order to show the stability of the discrete solutions, we combine the equa-

tions (2.16) and (2.17) of the nonlinear Chernoff formula and rewrite (2.16) as fol-

lows

<gU". x> +<vO", yx>=0. Vxe€ V1. (3.7)
The relaxation parameter constraints 0 < u < Lz~ ! and (Hg) imply that the func-
tion

o= 1 — u B satisfies 0< a(s) <1, foraes € R . (3.8)

Lemma 4. Under the assumptions (Hg) and (H, ) there exists a positive con-

stant C independent of €. h and 7 such that

N
Y7 <yU".9B(U")> + ,ax VO "l g < C. (3.9)

n=1



Proof. The proof proceeds along the same lines as those in [9. Lemma 2]. Namely.

we take x:=790" € V,! as a test function in (3.7). sum over n for
n = 1...m < N . and observe that

0" — _ n __ n +___ n 2 n-1
P,,@ B(U )+ v 2# G(U ) M e(U )

for 0< n < N. where UT1:= U % This equality is a consequence of the second
equation (2.17) of the nonlinear Chernoff formula for 1 < n < N whereas the case

n = 0 results from the definition (3.5) of U O Now. since
<aU".x>= <gUuU". P> . ¥x € L}Q).

the first term in (3.7) can be split as follows. By (3.8) we get

er <pu". _aU" + __aae(u ")> 2

> Tl 7 oY gt o ”ao’f(u "Wig -

n=1
On the other hand. recalling that U~!:= U 0 the remaining contribution becomes

I <6U"'% dae(U"71)> !\’2— oy (18U " 1123y + NBee(U "I fyq) ] -

n=2 n=1

Collecting these two estimates yields

T r<gU".30"> > ; T r<gU”.3B(U")> .
n=1 n=1

The second term in (3.7) is easily bounded as follows

- n n 1 12 1
"}_:17 <VvVe".ave >>7nv@" I3~ 5 1V @ Ml q) -

Then, (3.3) and (H, ) lead to the asserted estimate /]

Remark 1. Note that (Hg) and the definition of B imply

N N
T r13B(U " )lyg S C and T 73U "l}yg S Cel (3.10)

n=1 n=1
The last bound may be regarded as a discrete analogue of the middle estimate in

(2.15). Moreover. based on the first bound. we can easily derive

max U "1l 20, S C . (3.11)

1Sp <N
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4 - THE MAIN RESULTS

We are now in a position to prove the energy error estimates for both enthalpy

and temperature. We start with the effect of the regularization procedure and then

conclude with the fully discrete scheme.

4.1 - Error estimates for the regularized problem

The following error estimate was proven in [12] for a rather general P.D.E.
(e.g.. including convection) via a parabolic duality argument. However, due to the

simple structure of (1.1), we can provide a different and simplified proof as follows.

Let us first introduce the notation

g =0—0, and ef=v—u,.

Theorem 1. Under the assumptions (Hg). (Hg) and (H, ) there exists a posi-

tive constant C independent of € such that

€ Yz € €
led Nl 20, + €llefll 20, + ||[e9 w07 ey +

+lle, Ny w g . y-1ay S C | € meas(A)" + ¢|loge ' ™]. (4.1)

where Ac:={(x.t)€ Q:0Su(x.t) s}
Proof. Taking the difference between (2.8) and (2.14) and integrating the resulting

expression on ]0,t [. we get

!

<ef(t)— e (0).0> + <V [ed (s)ds. Vo> =0. Vo€ HJ(Q). (4.2
)

We then take & = eg (t) € H{ (Q) as a test function and integrate on ]0.t|. for
any 0 < t( £ T . to obtain

L) Lo

bf<e,, (t)eé (:)>dt+_|r[ve9 (£)dtii2y g = <eS (0)h[ §(t)de>. (4.3)

Now. observe that for a.e. (x .t) € Q we can write

efeg = |u— Ue”B (u)= Belue)]+ [u— u{][B(u)— Belu )] 2

? 2 %u—ue!2+m—8 Belw)= Belud 17+ [u= ud[Blu)= Blu)] >

> € _ 2 2 _ 2 _ 2
/4 |U uEv +4LB 6 e€| [2LB+€]!B(U) BE(U)1 *

Moreover, definition (2.10) of B clearly implies
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Belu)—B(u)=0 in@\ A, and O0<B(u)-B(v)<ev.

Consequently, we get
Lo
{(e"‘(t). e (1)> dt > £ lleffg, y7q)+

1

+4LB

lleg “1.27(0.:0:L7(Q)) — Cemeas(A) .

To bound the right hand side of (4.3). we make use of Lemma 2: namely

ty

Ly
i <e,f(0). feg(t)dt>| < Cé&|loge! +%.||[Ve(f (t) deliZyg, -

Collecting the previous estimates and inserting them into (4.3). we obtain the desired

error bounds. In fact, it would only remain to estimate lle‘fIIL,,(o.T:H_.(Q” which is

an easy consequence of (4.2). This concludes the proof //.

4.2 - Error estimates for the fully discrete scheme

In this subsection we analyze the accuracy of the nonlinear Chernoff formula
(Pe.n +) in approximating solutions v, and 0, of the regularized problem. So. our aim
is to derive bounds in energy norms for the errors ef™ and e/ . which are defined
by

ef 7 (£) = 0c(t) = ©". el 7(t) = u(t) = U" fort€l" 1<n<N.

Theorem 2. Under the assumptions (Hgq). (Hg). (H,) and (Hy,) there exists

a positive constant C independent of €. h and v such that
!
h.7 Y h.r h.7
led ™Il 20+ €llel Tl 0, + ll{eg I w0 gy +

2
h. h h T , 1
+ lle, 1“[‘”(0.T:H"(Q)) £C IT + = + ~ + (e+h) log(e+h) "] .

(4.4)

Proof. Since no confusion is possible, we omit the subscripts €. h and 7 in all func-
tions occurring in“the discrete and continuous formulations. Let us start by writing

the set of discrete equations satisfied by the continuous solution; namely
<gu". 6> +<vy0". yo>=0. Y€ HJ(Q). 1Sn<N . (45)

which is obtained after integrating (2.14) on /" . We now take the difference between
(4.5) and (3.7). sum over n from 1 to /i < N and multiply the resulting expression

by 7. Hence we obtain the following error equation



-12-

)

<el.x>+<V Yreg.vyx>=<elx>. Vxe . (4.6)

n=1

The next step is to choose suitable test functions x. Let us start by estimating the
first three terms in (4.4). To do so, we take x = 7 [P,/ — ©'] = 7 P,feqg € V!

and sum over / from 1 to m < N . After reordering we get

}: f<e,,(t) 0(t)- PO > dt +
1—1['

+Zr <V Zeg" v Pleg > =1+l =

i=1 n=1

= F [<u(t)-ui. Pleg(t)> dt + (4.7)
i=1y

+ 3 [<e, (t).[1=PY8(t) +[1— PO > dt +
=1/
+<el Y rPleg>=:111+IV+V .
/=1
The rest of the proof consists of estimating separately each term in the previous

expression. To begin with, notice that (2.12) and (2.17) combined with (3.8) yield
v—ub=ov) and U'—uPlO" = a(U"Y), (4.8)

whence
e, (t)=w[0(t)— PO ]+ [a(u(t))— a(U" )], (4.9)
and

0(t)= PO = [B(u(t)) = B(U = LU= U (410)

for t € /". The first task is to rewrite term /. In view of expressions (4.9) and

(4.10). / can be split as follows

m

I =u z]fne t)— PO I}y g dt +
=1y

+ 3 [<a(u(t)- (U, Bu(t))= B(U™")> dt —

=1

-1 Zlf<a(u(t J—«(U ™). U= Ui > dt =+ I+ 1.
=1y

The fact that B'(s) 2> ¢ > 0and 0 < o'(s) < 1forae. s € R resultsin

Iy > ezlflla(u(t) = a(U Ty g dt =118
i=1y
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By virtue of the stability estimate (3.10), the remaining term | 3 can be bounded as

follows

1

1 - in2, < 1 gm r?
L 71U g < 5 /8 +C

| € =17 _T_
RERI 2 €

!
It is easily seen now that

2
Iy+ 122 Cellellfag,m (2q)
and
K 2 2
/1 > T ||86|IL2(0.I"':I.7‘QH— Che.

These estimates together with the previous ones provide the following bound for
term /
2 2 2, 72
2 C “IeOIIL7(OJ"':L7(Q))+ elle, '|L7(0.l'":L’(Q))]— Ch+ —2—]

—A+B-C[h+ T
= [h2+ Zp).

Let us now analyze term // . To do so. we need the elementary identity

m

223,[Za,,]—[23,]+za . fora, € R?, 1<

i=1 n=1

N

N .

Using approximation property (2.2) of the Ritz projection P,! in conjunction with the
!

regularity estimate ll[@ W eg0.7: H2Q)) < C yields
)

l"'

1
Il = -2— “V {P,,‘eg(t) dt ”1.21(0) 7 72/;] “V PI) e6 II 2(0) /

b

-2- ”V [ee(t) dt “ 7(0) C h2 .

The a priori estimate II%% “L’(0)< C ¢ " leads to the following bound for term ///

m ',

=1 % [<—[8% ds. Pjleg(t)> dt | <
=1 t as

1 72

ou
<l Bt Wy 20.0m. 120y legll 20, m. 120 < vl A+C s

The analysis of term /V requires the following splitting

Zf(e,,(t) [1— P,16(t)> dt +
=1y
+ £]f<[/— PO u(t).[l— PR® > dt =11V +1V,.
i=17
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where we have used the orthogonality property of P, to get rid of U / in the second

integral. We now make use of the a priori bound IIGIIL;‘OAT:H;(Q” < C € to write

1 ht
g/v,|<78+c_7.
€

For IV, instead. we recall the estimate llull; 2 7. yiq) S C € " and (3.9) which

imply

h 2
6‘/2 '

v, £C
The bound for the remaining term V is a trivial consequence of Lemma 3. namely
‘nl
V< lley g [VegllL;(m <
1 '"l
2
< T 1Rv; {eg IILZ;(Q)+ C €+ h?] log(eth)] .
{
Finally, the fact that {9 € W'=(0.T: H'(Q)) provides the desired estimates

t
.
llegll o)+ €7lle, Il 2) + ”.[96”L==10.T;H‘(Q!) <

h

e%

(4.11)
+ L€+ (e+h)ilog(eth) “]=:0(e h.7).

2
<C[_h;_+

The remaining estimate lle, Il « o 7. y-1q) L o (e h.7) follows from equation

(4.6). Indeed. let ¢ € H{ (Q) be given and let x € V,' be such that
1- — .

Nop— xIlH,(Q) L Ch'™s “d’“HO'(Q)' s = 0, 1; then

. . 1]
<el. o> = <el.p— x>+ <elx>— <V L rEy. Vx> .

n=1

Finally, in view of (2.11). (3.11) and (4.11). we easily get the assertion //.

4.3 - The final error estimates
The first immediate consequence of Theorems 1 and 2 is the following estimate

in energy norms for temperature and enthalpy errors which are defined by

eg(t):=0(t)—0", e (t)=vu(t)—U" fortel", 1<n<N.

Corollary 1. Let the assumptions (Hg). (Hg). (H, ) and (Hy,) hold. Then

choosing €= C1h*"® and 7= C,h? for C, and C, being arbitrary positive



constants, we have

)
— 2/3
legll, 20, + u{e@uL,m:H.m”+||e,,||L.,,w.T:H_,(Q”_ 0 (h?¥?) . (4.12)

In Nochetto [13] the following non-degeneracy property is shown under some

qualitative assumptions concerning the data
meas( A¢) = O (¢€) . (4.13)

where A, is defined in Theorem 1. As a result, we obtain the following improvement

of the estimates (4.12), together with an L 2_error estimate for enthalpy.

Corollary 2. Let the non—degeneracy property (4.13) and the assumptions
(Hq). (Hg). (H,,) and (Hy,) hold. Then choosing €= Ch*"® and 1 = C,h*?

for C, and C, being arbitrary positive constants, we have

: t
—_ 4/5
llegll, 20, + II[eOIILx(O.T:H,(Q”+Ile‘,lltm(O_T:H-x(Q”— O (h*%) . (4.14)

lle, 1l 20,= O (h??). (4.15)

Remark 2. The non-degeneracy property (4.13) is also the basic ingredient for inter-
faces to be approximated. as shown in Nochetto [11]. Therefore. combining (4.13)

and (4.14). error estimates in measure for free boundaries can be derived.
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