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Introduction. The main purpose of this article is to give some overview of
matrix problems and results in symbolic dynamics. The basic connection is that a
nonnegative integral matrix A defines a topological dynamical system known as a
shift of finite type. Questions about these systems are often equivalent to questions
about “persistent” or “asymptotic” aspects of nonnegative matrices. Conversely,
tools of symbolic dynamics can be used to address some of these questions. At the
very least, the ideas of conjugacy, shift equivalence and strong shift equivalence give
viewpoints on nonnegative matrices and directed graphs which are at some point
inevitable and basic (although accessible, and even elementary).

My motivation for this article was to try to communicate some of this to matrix
theorists. The earlier sections are more descriptive. The later sections move more
to current frontiers and are oriented more to presenting open problems.

Trying to stay close to matrices, I’ve neglected huge parts of symbolic dynam-
ics. Also even some matrix matters get short shrift. I've barely mentioned state
splitting (3.4) and resolving maps (Sec. 10), which are important for constructions
[AM,BMT,A2| and applications [ACH,AFKM,MSW]|. Marker methods are a key to
some inverse spectral results, but to avoid a nontrivial excursion into nonmatrix
matters I just recommend some references (Sec.8). For more general background,
one can dig into [DGS|,[BMT],[PT1],[P2] and their references. Unfortunately, at
present there is no single book which gives an appropriate introduction (although
one by Adler, Lind and Marcus could appear any year now).

This article is a followup to the talk I was invited to give at the November
1991 I.M.A. Workshop on Combinatorial and Graph-theoretic problems in Linear
Algebra. The talk was on joint work with David Handelman [BH1,2] on solving
inverse spectral (and other) problems for nonnegative matrices, using tools from
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SECTION 1. SHIFTS OF FINITE TYPE

1.1 Subshifts. For the purposes of this paper, a topological dynamical system
will be a continuous map 7T from a compact metric space X into itself. We can
represent this as (X, T') or just 7. Except in Section 9, T' is a homeomorphism.

The system which is the full shift on n symbols (know more succinctly as the
n-shift) is defined as follows. We endow a finite set of n elements—say, {0, 1, ...,n—1}—
with the discrete topology. (This finite set is often called the alphabet.) We let X
be the countable product of this set, indexed by Z. We think of an element of X as
a doubly infinite sequence x = ...x_129x1... where each x; is one of the n elements.
X is given the product topology and thus becomes a compact zero dimensional
metrizable space. A metric compatible with the topology is given by (for z not
equal to y)

dist(z,y) =1/(k+ 1), where k = min{|i|: z; # y;}.

That is, two sequences are close if they agree in a large stretch of coordinates around
the zero coordinate.

A finite sequence of elements of the alphabet is called a word. If W is a word
of length j — 4 + 1, then the set of sequences = such that z;...z; = W is called a
cylinder set. The cylinder sets are closed and open, and they give a basis for the
product topology on X.

There is a natural shift map S sending X into X, defined by shifting the index
set by one: (Sz); = x;y;. It is easy to see that S is bijective, S sends cylinders
to cylinders, and thus S is a homeomorphism. The full shift on n symbols is the
system (X, S).

A subshift is a subsystem of some full shift on n symbols. This means that
it is a homeomorphism obtained by restriction of the shift to some compact set
Y invariant under the shift and its inverse. The complement of Y is open and is
thus a union of cylinder sets. Because Y is shift invariant, it follows that there is
a (countable) list of words such that Y is precisely the set of all sequences y such
that for every word W on the list, for every ¢ < j, W is not equal to y;...y;. If Y is
a set which may be obtained by forbidding a finite list of words, then the subshift
is called a subshift of finite type, or just a shift of finite type (SFT). For example,
we get an SF'T by restricting the two-shift to the set Y of sequences in which the
word 00 never occurs.

1.2 Vertex shifts. We will define vertex shifts, which are examples of shifts
of finite type. For some n, let A be an n x n zero-one matrix. We think of A as
the adjacency matrix of a directed graph with n vertices; the vertices index the
rows and the columns, and A(%, j) is the number of edges from vertex i to vertex
j. Let Y be the space of doubly infinite sequences y such that for every k in Z,
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1.3 Edge shifts. Again let A be an adjacency matrix for a directed graph, but
now allow multiple edges: so, the entries of A are nonnegative integers. Let the
set of edges be the alphabet. Let Y be the set of sequences y such that for all k&,
the terminal vertex of yj is the initial vertex of yx4+1. Again, we can think of Y as
the space of doubly infinite walks through the graph, now presented by the edges
traversed. The shift map restricted to Y is an edge shift and it is a shift of finite
type: a sufficient list of forbidden words is the set of edge pairs ¢j which do not
satisfy the head-to-tail rule.

In the sequel, unless otherwise indicated an SFT defined by a matrix A is
intended to be the edge shift defined by A. We denote this SF'T by S4.

1.4 Codes. Suppose (X,S) and (Y, T) are subshifts. A map f from X to Y is
called a code if it is continuous and intertwines the shifts, i.e. fS =T f . We think

of a code as a homomorphism of these dynamical systems.

Now suppose F' is a function from words of length 2n 4+ 1 which occur in S-
sequences into some finite set A. Then the rule

(fz)i = F(¢i—n..-Titn), foralliin Z,

defines a code f, called a block code, into the full shift on the alphabet A. This
block code defines a code from S into any subshift 7" which contains the image of
f- The “Curtis-Hedlund-Lyndon Theorem” asserts that every code is given by a
block code. The argument is easy: given f, one obtains F' and n above for ¢ = 0
as a consequence of uniform continuity, and the formula for all 7 follows because f
intertwines the shifts.

If a code f is surjective, then it is called a quotient or factor map. If it is
injective, then it is called an embedding. If it is injective and surjective, then it
is an isomorphism or conjugacy of subshifts. This notion of isomorphism is our
fundamental equivalence relation.

To expand on this a little, think of a code f from S4 to Sp as a map of infinite
paths in graphs. If we think of x; as our location on this path at time i, then
we think of (fz); as our location on the image path at time i. The rule F' above
determines that location (fx);, knowing the location x; with memory of the last n
locations and anticipation of the next n locations. The same rule F' works for any
1. If f is an isomorphism, then in a strong sense the structure of these infinite path
spaces is essentially the same.

1.5 Higher block presentations. Let S be a subshift. Suppose n is a positive
integer and j, k are nonnegative integers such that j + &£+ 1 = n. Given this we will
define a code f with domain the subshift S by the rule



clearly one-to-one.) The system T doesn’t depend on the choice of j (although the
map does). T is called the n-block presentation of S.

An easy exercise is to construct a one-block isomorphism between the n-block
presentation of S and the subshift obtained by passing to the 2-block presentation
n — 1 times.

For an important example, let S be the edge shift defined by a matrix A. Let G
be the graph with adjacency matrix A. A symbol in the alphabet of the two block
presentation is a word uv, where v and v are edges and the terminal vertex of u
equals the initial vertex of v (i.e. wv is a path of length 2 in G). We can define
a new graph G’ whose vertices are the edges of G, and where there is an arc from
u to v if the terminal vertex of u equals the initial vertex of v. If we give such
an arc the name uv, then we see that the two-block presentation of S, is the SFT
presented by the matrix which is the adjacency matrix of G’. That is, for SFT’s
defined by matrices, passing to the two-block presentation amounts to passing from
the defining graph to its edge graph (remember, all our graphs are directed—the
edge graph in this category is the directed graph we’ve just described, it rarely has
a symmetric adjacency matrix).

Similarly, we can think of the n-block presentation of S4 as given by a graph
G(n) whose vertices are the paths of length n — 1 in G. Here (for n > 2) there is
an edge from vertex a(1)...a(n — 1) to a vertex b(1)...b(n — 1) iff a(2)...a(n — 1) =
b(1)...b(n — 2). (For n = 2, there is an edge from vertex a(1) to vertex b(1) iff the
terminal vertex of a(1) equals the initial vertex of b(1).) Note, if the original subshift
contains infinitely many points, then as n goes to infinity the size of the adjacency
matrix for G(n) must go to infinity. In particular matrices of very different size
may define isomorphic SFT’s.

1.6 One-block codes. Suppose f is a code from S to T. Then there is some
n such that for all z, (fz)o is determined by the word z_,...z, of length 2n + 1.
Define an isomorphism from S to its (2n+ 1)-block presentation S’ as in §1.5, using
j =k =n. Let h be the inverse of this isomorphism. Then fh is a code from S’ to
Sp, and fh is a one-block map. Often, given a code from S, by passing to a higher
block presentation in this way we can assume that the code is just a one-block map.

For example, if there is a map from S4 to Sp, then there is a one-block map
from S¢ to Sp, where C' is a matrix giving some higher-block presentation of A.
That is, by passing to an iterated edge graph H of the graph with adjacency matrix
A (H has adjacency matrix C), there is a graph homomorphism from H to the
graph with adjacency matrix B which (applied at every edge along a path) gives a
map from the set of infinite A-paths to the set of infinite B-paths.

1.7 Isomorphic SFT’s. Any SFT (Y, S) is isomorphic to a vertex shift. To



U = Up...U, t0 v = v1...0, if uv, = ujv and this word of length n + 1 occurs in a
sequence in Y. This graph defines a vertex SFT (X, T). An isomorphism f from Y
to X is given by the rule (fy); = Yi---Yitn—1-

Also, any SFT is isomorphic to an edge shift, because the two-block presentation
of a vertex shift is an edge shift.

Even if one is only interested in SFT’s defined from graphs, it is useful to
consider general n-step SF'T’s, because working with these gives access to topological
and combinatorial arguments which can in turn yield results about the graphically
defined SFT’s. The vertex shifts are sometimes more simple to work with than
the edge shifts. The edge shifts are very useful. Omne reason is conciseness: an
edge shift presented by a small matrix (perhaps though with large entries) may
be presentable as a vertex shift only by a large matrix. Also, the set of zero-
one matrices (the matrices which define vertex shifts) is not closed under various
operations under which the set of nonnegative integer matrices is closed. Working
only with zero-one matrices rules out some very useful matrix arguments (e.g. [F2])
and interpretations. For one of these, first a little preparation.

If S is a subshift, then we let S™ denote the homeomorphism obtained by it-
erating S n times. The homeomorphism S™ is isomorphic to a subshift 7' whose
alphabet is the set of S-words of length n. An isomorphism from S™ to T is given
by the map f which sends a point = to the point y such that for all k£ in Z,

Y = Tkn---L(k+1)n—1-

Now, let an edge shift S be defined by a matrix A. Then the subshift S™ is
conjugate to the edge shift defined by A™. The number of edges from vertex ¢ to
vertex j in the directed graph with adjacency matrix A™ is just the (i, j) entry of the
matrix A”. This is also the number of paths of length n from ¢ to j in the directed
graph with adjacency matrix A. We can use bijections of these edges and paths
to replace symbols y; of the construction of the previous paragraph with edges in
the directed graph defined by A™. Then that construction provides the claimed
isomorphism.

1.8 Topological Markov shifts. An SFT is also called a topological Markov
shift, or topological Markov chain. This terminology is appropriate because an
SFT can be viewed as the topological support of a finite-state stochastic Markov
process, and also as the topological analogue of such a process. (This viewpoint
was advanced in the seminal 1964 paper of Parry [P1].)

Roughly speaking, in a Markov process the past and future are independent if
conditioned on the present (or more generally if conditioned on some finite time
interval). We can say precisely why an SFT is a topological analogue of this.
Suppose the SFT is n-step (given by forbidding a certain list of words of length at
most n = 1). Also suppose that r and v are points (doublv infinite sequences) in



must also be a point in the SFT. That is: the possibilities for the future (sequences
in positive coordinates) and the past (sequences in negative coordinates) are inde-
pendent conditioned on the near-present (i.e., the word in a certain finite set of
coordinates).

1.9 Applications of SFT’s. For completeness I'll mention in the most cursory
fashion two ways in which SFT’s appear in a natural and useful way.

First, imagining very long tapes of zeros and ones, consider infinite strings of
zeros and ones (i.e., points in the full shift on two symbols). It is natural to think of
a block code as a machine which takes an input tape and recodes it, and to suppose
that somehow the study of block codes may be relevant to efficiently encoding and
decoding data. This turns out to be the case [ACH,MSW], in fact I understand
that some constructions arising from symbolic dynamics have actually been built
into IBM hardware.

Second, imagine a homeomorphism (or diffeomorphism) h on some space X.
One way to study A is by symbolic dynamics. Crudely, cut X into n pieces. Name
the pieces 1,2,...,n. To any given point z in X there is associated a sequence y
in the full shift on n symbols, where y is defined by setting y; to be the piece
containing h‘(z), for each integer i. This gives some set of sequences y. The
sequence associated to h(z) is the shift of y. This establishes some relation between
the topological dynamics of the shift space and the dynamics of h. Sometimes a
relation of this sort is very useful (for example for analyzing h-invariant measures or
periodic points), when the shift space which arises is a shift of finite type [Bow1,2].

A variation on the last theme going back to Hadamard is the study of geodesic
flows with symbolic dynamics [AF].

SECTION 2. MATRIX INVARIANTS

Throughout this section A will represent a matrix with integral entries. Unless
otherwise indicated, we also assume that A is nondegenerate (every row has a
nonzero entry and every column has a nonzero entry) and that the entries are
nonnegative. (This is because if A were nonnegative with ith row or column zero,
then A would define the same SFT as would the principal submatrix obtained by
deleting row ¢ and column ¢ — it is only the “nondegenerate core” of A which carries
information about the SFT defined by A.) We let S4 denote the shift of finite type
defined by A.

By a matrix invariant of A we will mean something determined by A which is
the same for matrices A and B which determine isomorphic shifts of finite type.
Some of these matrix invariants correspond to dynamically important invariants of
the associated shift. The matrix invariants usually have an algebraic flavor, often
being defined for (not necessarily nonnegative) integral matrices. Then one has an



2.1 Mixing properties. The nonnegative matrix A is primitive if some power
has all entries greater than zero. A is irreducible if for every position (i, ) there is
n > 0 such that A"(Z,j) > 0. Otherwise A is reducible.

The associated SFT S is mixing if and only if A is primitive. It has a dense
forward orbit if and only if A is irreducible. The most important class to understand
is the class of mixing SF'T’s. Then one understands other SFT’s by how they are
built up from the mixing SF'T’s. This is analogous to the situation with nonnegative
matrices, which one understands by first understanding the primitive case. (Caveat:
often the general case of a problem for SFT’s follows very easily from the mixing
case, but sometimes the generalization is quite difficult.) In the sequel we will
sometimes make the simplifying assumption that A is primitive. Sometimes this is
only for simplicity and sometimes we are avoiding serious difficulties.

2.2 Entropy. The premier numerical invariant of a dynamical system S is its
(topological) entropy, h(S). For a subshift S,
1 W, (S
h(S) = lim sup “28H#Wn(5)
n n
where W, (S) is the set of words of length n occurring in sequences of S. That is,
the entropy is the exponential growth rate of the S-words. For a full shift on n
symbols, the entropy is log(n). For an SFT defined by a matrix A, the entropy is
the log of the spectral radius of A. This is easy to prove because the number of
words of length n is the sum of the entries of A™.

What numbers can be entropies of mixing SFT’s? Equivalently, what numbers
can be spectral radii of primitive integral matrices? This was settled by Lind [L]:
a number is the spectral radius of a primitive integral matrix if and only if it is a
Perron number. A Perron number is a positive real number which is an algebraic
integer which is strictly greater than the modulus of any other root of its minimal
polynomial.

2.3 Periodic points. The periodic points of a topological dynamical system
are often involved in its dynamics in a crucial way. Let Fix(S) denote the set of
fixed points of a map S, i.e. the set of points z such that Sz = x. Suppose that for
every positive integer n, the set Fix(S™) is finite. (This will be true for any subshift
S, for which a fixed point of S™ is a periodic sequence of period dividing n.) Then
the sequence #Fix(S™) contains all the information one has from restricting S to
its periodic points and forgetting the topology. The favored choice in dynamics for
compiling this information is the (Artin-Mazur) zeta function of S,

n

© n
(s(z) =exp Y #L(S)Zn_
n=1



then the zeta function is defined as an analytic function on the open disc of radius
1/a around the origin in the complex plane. For subshifts, such a number a always
exists, not larger than the cardinality of the alphabet. For an SFT defined by a
matrix A, a is the spectral radius of A.

If S is an SFT defined by a matrix A, then the number of fixed points of S is
simply the trace of A: a fixed point is a sequence consisting of one edge repeated
forever. Similarly, for all positive integers n

#Fiz(S™) =tr(A").

From this one can compute

Cs(z) = expi tT(An)z" = [H(l - az)] T [det(I — zA)]™!

n

where the product is over the eigenvalues a of A, repeated according to multiplicity.
(So the inverse zeta function of an SFT is a polynomial with integral coefficients and
constant term 1.) The first equality follows from the definition of the zeta function
and the previous equation. The last two equalities hold for any square matrix A
with real entries, as we now argue. The last equality follows from dividing the
equation

det(zI — A) = H(z —a)

a

by z* (where A is k by k) and then replacing 1/z with z. The second equality
follows from three facts:

(1) tr(A™) = >, a™,

(2) for any complex number a,

exp (Z %) =1/(1—az)

n=1

(to see this take the derivative of the log of each side),

(3) exp(Xo2, 30, @) = [T, exp(5, @27,

Problem. What are the nonzero spectra of primitive integral matrices?



2.4 Isomorphism. Matrices A and B are elementary strong shift equivalent
over a semiring S if there are matrices U, V' with entries from S such that A =UV
and B = VU. The matrices U,V need not be square. If the semiring is not
specified, then it is understood to be the nonnegative integers. A and B are strong
shift equivalent over S if they are linked by a finite chain of elementary strong shift
equivalences— that is, strong shift equivalence is the transitive closure of elementary
strong shift equivalence.

Two shifts of finite type S4 and Sp are isomorphic if and only if the matrices A
and B are strong shift equivalent [W1]. It is not trivial to prove isomorphism gives
strong shift equivalence, so we refer to [W1] or [PT1,Sec.V.3] for this direction.
However the other direction is easy. Suppose A = UV, B = VU. Let G4, Gp
be the directed graphs with adjacency matrices A, B and let these graphs have no
vertices in common. Let U be the adjacency matrix for a set of arcs with initial
vertices in G 4 and terminal vertices in G p; similarly V' describes arcs from Gp
to G4. Let lower case letters a, b, u,v represent arcs corresponding to A, B,U,V.
From the matrix equations we may choose bijections of arcs and paths of length 2,

{a} +— {uv}, {b} +— {vu}
respecting initial and terminal vertex. We view a point of S4 as an infinite path

...a_1apa1... of edges a; and apply the first bijection at each a; to get the following
picture.

(Here, for example, ugvg is the path corresponding to ag.) We apply the second
bijection to give a correspondence v;u;41 <— b; and get a larger picture:



This picture gives a rule which sends a point of S4 to a point of Sp. It is easy
to check that the rule defines an isomorphism of the two SFT’s.

Strong shift equivalence and shift equivalence (below) were introduced by Williams
[W1]. These are crucial ideas in the subject.

2.5 Eventual isomorphism. Two matrices A and B are shift equivalent over
a semiring S if there are matrices U,V over S and a positive integer £ (called the
lag) such that the following equations hold.

At=Uv B =VU
AU=UB BV =VA.

Again, S is the nonnegative integers if the semiring is not specified.

Two systems S and T are eventually isomorphic if S™ and 7™ are isomorphic
for all but finitely many n. If a pair U,V give a shift equivalence of lag ¢ from
A to B, then A% and B! are strong shift equivalent. Also the pair A”U,V gives
a shift equivalence of lag [ + n from A to B. Consequently, if A and B are shift
equivalent, then the SFT’s S4 and Sp are eventually isomorphic. The converse also
holds because the shift equivalence of AP and BP implies the shift equivalence of A
and B if p is a sufficiently large prime [KR1].

Regardless of the semiring S, strong shift equivalent matrices must be shift
equivalent. This follows from manipulating a chain of ¢ elementary strong shift
equivalences to produce a lag ¢ shift equivalence.

At first glance, shift equivalence may appear to be a more obscure and com-
plicated equivalence relation than strong shift equivalence. In fact, it is just the
opposite. (We will say more about this below.) Williams introduced the idea of
shift equivalence with the intent of reducing strong shift equivalence to a manage-



Problem. Suppose A and B are irreducible matrices shift equivalent over 7, .
Must they be strong shift equivalent over 7,7

It is not hard to show that the answer is yes to this question if and only if it is
yes to the question for primitive matrices.

The classification of reducible SFT’s will not follow easily from the classification
of irreducible SFT’s. However, work in progress by Kim and Roush indicates that
one will be able to classify shift equivalent reducible SFT’s in terms of the classi-
fication of irreducible SFT’s and the range of the dimension representation [KRW]
on their automorphism groups.

2.6 Flow equivalence. Two homeomorphisms are flow equivalent if they are
cross sections of the same flow. If the matrices A and B are irreducible and neither
is a permutation matrix, then S4 and Sp are flow equivalent if and only if

(i) det(I — A) = det(I — B), and

(ii) the cokernels of I — A and I — B are isomorphic.

(Here, for example, if A is n x n then the cokernel of I — A is the abelian group

which is Z™ modulo the image of T — A.) This was ultimately proved by Franks [F2]
following the earlier work of Bowen&Franks [BF| and Parry&Sullivan [PS].

The classification up to flow equivalence of SFT’s defined by reducible matrices
is difficult and interesting. Cuntz [C] has introduced algebraic invariants in a special
case from the viewpoint of associated C*-algebras. Danrun Huang, beginning from
the work of Franks and Cuntz, has gone much further on this problem [Hu]. Huang’s
work is very much in the vein of discerning the right invariants and then showing
they are complete by way of matrix constructions realizing prescribed algebraic
actions subject to positivity constraints.

We won’t be concerned with flow equivalence in this paper, except to flesh out
certain algebraic patterns below.

2.7 Relations.

For matrices over 7 :
strong shift equivalence = shift equivalence =

same zeta function = same entropy.
Also, for irreducible matrices at least,

shift equivalence = same flow equivalence class.

None of these implications can be reversed.



3.1 Shift equivalence and the dimension group. Suppose A is a n X n
integral matrix. Then A acts on Z™ and from this we can form the direct limit group
G(A), on which A induces an automorphism A’. This gives a pair (G(A), A’). Two
integral matrices A and B are shift equivalent over Z if and only if there is a group
isomorphism f from G(A) to G(B) such that fA' = B'f.

This was pointed out by Krieger [Krl,2] who also did something much deeper,
giving a K-style construction of this group from certain compact subsets of the shift
space. We will skip the (easy) proof of the previous paragraph and any explanation
of the topological theory (see [BMT] for more).

We remark that G(A) is called a dimension group (and therefore (G(A), A')
has been called the “dimension pair”) for historical reasons. Krieger’s topological
construction was adapted from K-theoretic constructions in operator algebras—in
fact, G(A) is Ky of an associated C*-algebra [CuK2|. It is natural to think of K of
aring R as a “dimension group”, because K| is concerned with (stable) isomorphism
classes of finitely generated projective R-modules and for R a field the isomorphism
class of such a module is given by its (vector space) dimension.

We will give a concrete description of (G(A), A’). Of course A acts on Q".
Let V4 be the rational subspace of @™ which is the image of A™. (So, if A is not
nilpotent, then V4 is the largest invariant subspace on which the action of A is
nonsingular.) Now we can give the following presentation for G(A):

G(A) = {vin V : for some k > 0,vA" is in 7"}.

With this presentation, the automorphism A’ is just multiplication by A. (We have
arbitrarily chosen the action here to be on row vectors. The choice does matter, as
a matrix need not be shift equivalent to its transpose [PT1]. However matrices A
and B are (strong) shift equivalent if and only if their transposes are.)

For example, if A = [2], then in this presentation G(A) is the dyadic rationals—all
rational numbers p/q where p and ¢ are integers and ¢ is a power of 2. If |[detA| = 1,
then G(A) is just Z".

Note: if (G(A), A’) and (G(B), B') are isomorphic, then the actions obtained
by tensoring with @ are isomorphic. In other words, the restrictions of A and B
to V4 and Vg are isomorphic as linear transformations of rational vector spaces.
(In particular these restrictions have the same characteristic polynomial, which is
just the characteristic polynomial of A divided by the appropriate power of the
indeterminate. Equivalently, det(I —tA) = det(I —tB).) Another way to say this is
that A and B have the same Jordan form away from zero (i.e., the nonnilpotent parts
of the Jordan forms of A and B are the same modulo conjugation by a permutation
matrix).



To see this easily, suppose there is a shift equivalence. Note that because |detA| = 1,
we must have |detU| = 1 (where U is the matrix in the defining equations for shift
equivalence). If AU = UB, then

U Y A-I)U=(B-1I).

Since every matrix on the left side is integral and A — I is divisible by 2, the matrix
on the right side must have every entry divisible by 2, a contradiction. (For an
alternate proof, note that cok(l — A) £ Z/2 @ Z/2 and cok(I — B) = Z/4, so that
A and B do not even define flow equivalent SFT’s.)

The general solution to the decision problem for shift equivalence is very difficult
[KR1,3]. But there are many classes of tractable examples. For example, if A has
a single nonzero eigenvalue k, then A is shift equivalent over Z to the one by one
matrix [k]. If p(¢) is the minimal polynomial of an algebraic integer A, then the shift
equivalence classes over Z of integral matrices with characteristic polynomial p(t)
are in bijective correspondence with the ideal classes of the ring Z[1/A] ([BMT)).
Such algebraic aspects of shift equivalence turn out to correspond to coding relations
among corresponding shifts of finite type ([BMT|, [KMT], [As2]).

3.2 (Strong) Shift equivalence over 7Z,. If A and B are shift equivalent
over Z, then they are strong shift equivalent over Z. The same is true for matrices
over any principal ideal domain [E2],[W2] or Dedekind domain [BH2].

It is not known whether primitive matrices shift equivalent over Z, must be
strong shift equivalent over Z . This is still unknown if Z is replaced by the rationals
@Q, or even the reals R! So the order requirement complicates the situation for strong
shift equivalence drastically.

For shift equivalence, there are also complications but they are fewer. The best
news is that two primitive matrices are shift equivalent over Z, if they are shift
equivalent over Z . (This is still true by the same proof if Z is replaced by any unital
subring of the reals.) This was first proved geometrically by Parry and Williams
[PW], also see [KR1]. (Caveat: irreducible matrices may be shift equivalent over Z
but not over Z, as an example of Kaplansky and myself shows [B2].)

It is easy to sketch a proof of this. Suppose A and B are primitive and a pair
U,V gives a shift equivalence of lag ¢ (AU = UB etc.). The idea is, for large n
the matrices A"U, VA™ are positive (possibly after replacing U,V with —U, —V)
and they give a shift equivalence of lag 2n 4 £. To understand positivity, remember
that the Perron Theorem implies that for large n, A™ is “approximately” (a™)RL
where R is a positive right eigenvector, L is a positive left eigenvector, LR = 1,
and a is the spectral radius of A. Here “approximately” means that the error is
growing at an exponentially smaller rate. Thus it suffices to show that LU and VR



One puts the requirement of nonnegativity into the dimension group context as
follows [Krl]. An ordered group is a group G with a set G, (called the positive
set) such that G is closed under addition and every element of G is a difference
of elements of G. An isomorphism of ordered groups is a group isomorphism
mapping the positive set of the domain group onto the positive set of the range
group. Now one just adds to the “dimension group” structure an order structure on
the group to reflect shift equivalence over Z rather than Z. With this structure,
the isomorphism A’ above is an isomorphism of the ordered group (G(A), G+ (4)).
The “dimension pair” now becomes a “dimension triple” (G,G,, A’).

We’ll describe this in terms of the explicit presentation described in §3.1. Given
a nonnegative matrix A, define the positive set

G4 (A) = {vin G(A) : for some k > 0,vA" has all entries nonnegative}.

Multiplication by A induces an ordered-group automorphism A’ on (G(A), G+(4)).
Now matrices A, B over Z are shift equivalent if and only if there is an isomorphism
of their ordered groups intertwining A’ and B’.

For more on dimension groups, see [E1].

3.3 The dimension module of an SFT. Here we make explicit a reformula-
tion of the dimension data, which will seem trivial (but correct) from a homological
viewpoint [Br]. This reformulation is by no means due to me (see [Wal, pp.92,120]).

To an SFT defined by a matrix A, we associated a “dimension pair” (G(A4), A").
The action of A’ gives an action of the group Z on G(A). Whenever a group H acts
on an abelian group K by automorphisms of K, the group K acquires a ZH-module
structure, where ZH is the integral group ring of H [Br|. An isomorphism of such
H-actions is equivalent to a ZH-module isomorphism. So instead of referring to
the “dimension pair” (G(A), A’) we can just refer to the dimension module. Here
we mean the ZZ-module G(A). The ring ZZ is isomorphic to the ring Z[t,t~1] of
integral Laurent polynomials in one variable.

Since “dimension pair” and “dimension module” carry the same information,
to some extent passing from the latter to the former is just a matter of cleaner
terminology. But it is also a matter of a better functorial setup— “thinking right”
as the group cohomologists say. We’ll see more of this in Sections 5 and 7.

We encode the order information of the “dimension triple” by making the ZZ-
module an ordered module in the natural way. First, ZZ is an ordered ring in a
natural way, with the semiring 7,7 (formal nonnegative integral combinations of
the set Z) the positive set. (If we think of ZZ as the Laurent polynomials Z[t,t~!],
then the positive set is Z, [t,¢7!], the Laurent polynomials whose coefficients are

\ N\NT - I D ey A/ . B B L 1T M o Ya'lal \



3.4 Strong shift equivalence and state-splitting. Let A be an nxXn matrix.
Let A’ be an (n + 1) X n matrix related to A as follows: row ¢ of A is the sum of
row ¢ and row (n + 1) of A, otherwise the rows of A and A’ are equal. Now define
an (n+ 1) x (n+ 1) matrix B related to A’ as follows: column (n + 1) of B equals
column 7 of A’, and the first n columns of A’ equal those of B. Then there is an
elementary strong shift equivalence (U,V) between A and B with A’ = V. For

9

1 0 0
1) ov=( )
4 0 1 1

In this case, or in the case where the roles of row and column are reversed, we say

example,

0
(0 9 ;
(0 0) - (o

that B is obtained from A by an elementary state-splitting (the state ¢ is split into
two new states) and A is obtained from B by an elementary amalgamation. One
of the fundamental tools introduced in Williams’ paper [W1] is the following: if
two SFT’s S4 and Sp are topologically conjugate, then there is a finite sequence
of state splittings and amalgamations which begins with A and ends with B. (In
fact this can be chosen to be a finite sequence of row splittings followed by a finite
sequence of column amalgamations [P2].)

3.5 The Masking Lemma. As one application of Williams’ theorem that
strong shift equivalence of nonnegative integral matrices is equivalent to isomor-
phism of the SFT’s they represent, we state a case of Nasu’s Masking Lemma.
(This is more or less his original statement [N], but his argument gives a much
more general result [BH1, App.1].)

THEOREM (NAsU). Suppose A and B are square nonnegative integral matrices,
and there is a subsystem of S4 which is conjugate to Sg. Then there is a matrix
A’ which defines an SFT conjugate to S, such that A’ contains B as a principal
submatrix.

I have no idea how one would prove this from scratch. With Williams’ theorem,
the basic idea is very simple. First one passes from A to a higher block presentation,
which has as a principal submatrix a matrix B’ defining an SFT conjugate to Spg.
Williams’ result gives a strong shift equivalence from B to B’. Now one simply
experiments with 2 x 2 block forms and sees that each elementary strong shift
equivalence along this chain can be extended. For details, see [N] or [BH1].

3.6 Algebraic topology. Wagoner [Wal-5] has introduced ideas of algebraic
topology into the study of shift equivalence, strong shift equivalence and other mat-
ters beyond the scope of this survey. Essentially, these let one make arguments and
constructions by way of topological objects constructed as quotient spaces of certain
infinite simplices from the relations of (strong) shift equivalence. (Incidentally in



SECTION 4: ZETA FUNCTIONS AND SPECTRA

Recall the zeta function of §2.2,

(s(z) = exp (Z Mz") :

n
n=1

At first glance this may seem an unnecessarily tortured way to encode the informa-
tion of the periodic points. We’ll consider some justification for this, particularly
from the viewpoint of matrices and shifts of finite type.

4.1 “Higher mathematics”. The zeta function comes to us from more ex-
alted zeta functions in algebraic geometry and number theory. The zeta function
was introduced by Artin and Mazur [AM]. They used its natural relationship to
certain algebraic geometric systems to obtain constraints on the periodic points of
large sets of diffeomorphisms by proving rationality of the zeta function. The po-
tential connections with such systems, and other algebraically defined systems, are
one reason to use the zeta function to count periodic points. Algebraic topology
also appears as a powerful tool for analyzing zeta functions even of systems which
do not arise from algebra [F2,Fril].

4.2 Rationality constraints. Given a system S, consider the sequence f,, =
#Fix(S™), n = 1,2, .... Assume each f, is finite. We can capture the information
in this sequence in a generating function or a zeta function,

g(z) = Z fnzn
(=) = exp (Z %)

These functions do carry the same information. Also, if the zeta function is a ratio
of polynomials, then so is the generating function (it is the derivative of the log of
the zeta function, multiplied by z). But the converse is false.

The generating function is rational if and only if the sequence f, eventually
satisfies some recursion relation. It turns out [BowL| that the zeta function is
rational if and only if there are integral matrices C, D such that for all n,

fn=trC"™ —trD".

It is sometimes the case in dynamics that one can prove the rationality of the zeta
function for interesting systems, precisely by finding such matrices [F1,Fril,Fri2].
The rationality of the zeta function then sharply and transparently captures this
constraint.

4.3 Product formula. The zeta function can be written as a (usually infinite)
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4.4 Why not the characteristic polynomial? If A is a matrix then its
characteristic polynomial x 4 (z) = det(zI—A) is almost the zeta function of S = Sy;
if Ais n x n, then

(5'(2) = det(I — zA) = z"det(z7'I — A) = z"xa(z7").

However, the characteristic polynomial contains extraneous, noninvariant informa-
tion; only the nonzero spectrum matters for the traces of powers of A. Also, some-
times working with det(l — zA) rather than det(zI — A), one avoids extraneous
but nontrivial complications of sign (e.g., §4.5). Still, sometimes for practicality
one works not with the zeta function but with the characteristic polynomial of A
away from zero—this is the unique polynomial with nonzero constant term which
can be obtained from the characteristic polynomial by dividing by a power of the
indeterminate.

4.5 Cycles. Let A (for simplicity) be a nonnegative integer matrix. One can
check that det(I —zA) is a sum of terms (—z)*, where there is one term for each set
of pairwise disjoint simple cycles in the directed graph with adjacency matrix A,
and k is the sum of the lengths of the cycles in the set. Here a cycle is simple if it
visits no vertex twice, and two cycles are disjoint if they have no vertex in common.
(I learned this viewpoint from [W3] and [Aral; these authors consider matrices with
more general entries, corresponding to graphs labelled by polynomials—sometimes
commuting, sometimes not—where the viewpoint is especially useful and the terms
acquire coefficients which are products of the labels along the cycles.) So there is
some nice connection between the structure of simple cycles and the zeta function.

4.6 Matrices with polynomial entries. We discuss this in the next section.

SECTION 5. GRAPHS VIA POLYNOMIAL MATRICES

5.1 Introduction. Recall, a n X n matrix over Z, can be considered as the
adjacency matrix of a directed graph with n vertices. Using such matrices to rep-
resent SFT’s (as edge shifts) allows a more concise presentation of SFT’s than one
has using only zero-one matrices (for vertex shifts), and gives access to additional
arguments.

There is a still more general way to present a directed graph (hence an SFT), by
using matrices with entries in ¢Z , [t] (polynomials in one variable ¢, with nonnegative
integer coefficients, with every term divisible by ¢t—i.e., the only constant term
allowed is zero). This allows still more concise presentations, additional access to
matrix arguments and algebra, and a concordance of formal patterns which make

it a convincing candidate for the “right” general way to present a directed graph
(or SFT).



preparation by Kim, Roush and Wagoner, which we will not preempt with further
discussion here, develops very interesting and useful new constructions of conju-
gacies by methods which appeal in a fundamental way to this polynomial matrix
setting.

I thank Hang Kim and Fred Roush for suggesting to me that these polyno-
mial matrices may also be important for studying the inverse spectral problem and
related problems for nonnegative matrices.

5.2 The construction. The basic idea is extremely simple. Let A be ann xn
matrix over tZ, [t]. From A we will construct a directed graph. Its vertex set will
include a set of n vertices (say 1,2, ...,n) which index the rows and the columns of
A(t). If for example, A(1,2) = 3t? + t*, then there will be three paths of length
2 and one path of length 4 from vertex 1 to vertex 2. At each interior vertex on
one of these paths (a path of length k£ has k — 1 interior vertices), there is just
one incoming edge and one outgoing edge. These interior vertices are disjoint from
1,2, ...,n. This recipe produces a graph which can have many more than n vertices
(hence the conciseness of the presentation). For example, the matrix

0, t2
2t3, t+1¢3

A(t) = [

produces the directed graph

Note as in [BGMY] (fondly referred to as the “bigamy” paper) that the distin-
guished set of n vertices (corresponding to the indices of the rows and the columns
of A) is a “rome”: any sufficiently long path in the graph hits the rome. Given a
rome in a directed graph, one can reverse the procedure and produce a presenting
matrix A over tZ[t], where A is n X n if the rome has cardinality n. If B is a
matrix over Z, which is the adjacency matrix of a directed graph, then the matrix
tB is one matrix over tZ [t] which presents the graph in the new formalism.

Another viewpoint is to think of A as giving a directed graph G’ with labelled
edges. The number of edges from i to j is the (i, j) entry of A evaluated at ¢t = 1.
An edge is labelled by a power of t. The power corresponds to the length of a path.



(Of course by inverting we get the zeta function of the associated SFT.) We can
picture the argument in terms of the graph G’ described in §5.2. We choose, if
possible, some arc from ¢ to j labelled by t**1, with k£ > 0; then we delete this arc,
add a vertex i/, add an arc labelled ¢ from i to ¢/, and add an arc labelled t* from
i’ to j. It is clear that a finite sequence of such moves produces the graph G, with
every edge labelled by t. So we are done if we show the invariance of det(/ — A)
under one such elementary move.

This is a simple computation. With 7,7, and A as above, we may assume
i' = 1,1 = 2. Let A’ be the matrix derived from A by the elementary move above.
Adding t times row 1 of (I — A’) to row 2 does not change the determinant. The
resulting matrix M has determinant equal to det( — A), because the upper left
entry is 1, every other entry in the first column is zero, and the lower right diagonal
block is I — A.

Below, by the zeta function of a matrix (over Z or tZ,[t]) we will mean the
inverse of the quantity (*) above. By its spectral radius we will mean the spectral
radius of B in (*)—i.e., 1/a, where a is the smallest positive root of (*).

5.4 Shift equivalence and flow equivalence.

In this part let B be the adjacency matrix for a graph which is also presented
by a matrix A over tZ[t]. Let B have size N. Let L = Z[t,t '] be the ring of
Laurent polynomials over Z. Let LY represent the N-fold direct sum.

The matrix I — tB maps LY into itself. It is well known [Wal, pp.92,120] that
the group cokernel(] — ¢B) is isomorphic to the dimension group G(B) of §3.1. It
is not hard to check that an isomorphism is determined by the map which sends an
element [t"e;] of cok(I —tB) (where e; represents the usual canonical basis vector) to
the vector e;(B’)~" (where B’ is the isomorphism of G(B) in §3.1). Moreover, if we
let cok(I —tB) be an L-module in the obvious way, then under this correspondence
the action of t~1 on cok(I — tB) corresponds to the action of B’ on G(B). So,
the L-module cok(I — tB) is a version of the dimension module of §3.3. (Similarly,
we could use the module cok(I — ¢t~1B); then the action of ¢t would correspond to
the action of B.) For integral matrices C' and D, there is a module isomorphism
between cok(I — tC) and cok(I — tD) if and only if C and D are shift equivalent
over /.

To summarize: the L-module cok(l — tB) is the shift-equivalence-over-Z class.
Also det(I — tB) is the (inverse of the) zeta function.

Obviously we would like these facts to hold for A in place of tB. They do!
(This was observed independently by, at least, Wagoner and myself.) One proof
that cok(/ — tB) and cok(I — A) give isomorphic modules follows the pattern of
the proof of §5 3 for det(I — A). Again check each elementary step Note that the
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will sketch how shift equivalence and flow equivalence are nicely unified in this
polynomial setting. Recall, det(I — B) and cok(I — B) are complete invariants of
flow equivalence for Sp within the class of irreducible SFT’s. Obviously we can get
these from det(/ — ¢tB) and cok(l — tB) by setting ¢ = 1. Can we recover these
invariants from det(I — A) and cok(/ — A) by setting t = 17 Yes.

A satisfying way to express this is the following. Given A, form the L-module
cok(I — A). This is the shift equivalence class and one invariant of it is det(I — A).
Now, in the language of group cohomology [Br|, apply the coinvariants functor to
this Z[t, t!] module to get a Z-module. This Z-module (abelian group) cok(I—A(1))
is the Bowen—Franks group. This group and det(/ — A(1)) are complete invariants
of flow equivalence. The latter invariant is obtained by applying the coinvariants
functor to det(I — A).

In other words, at least in this primitive case we get the flow equivalence class by
applying the coinvariants functor to the shift equivalence class. It will be interesting
to see how well this viewpoint carries over to more general situations.

5.5 Powers. Let B be a nondegenerate adjacency matrix for a graph which is
also presented by a matrix A over tZ[t]. Also, let n be a positive integer greater
than 1. Recall (§1.7) that the matrix B™ over Z, presents an SFT isomorphic to

(S)™.

In contrast, the SFT T, presented by the polynomial matrix A™ will never be
isomorphic to (Sp)™. It turns out that the SFT T is a quotient of 7;, by a map which
is everywhere n-to-1! (In particular, A and A™ present SFT’s of equal entropy.) To
see this, let A have size k, and let 1,2, ...,k represent the vertices comprising the
natural rome in the graph G,, presented by A™. Similarly, let 1,2, ..., k represent
the vertices comprising the natural rome in the graph G, presented by A. An entry
A™ (i, j) represents the paths in G,, from vertex ¢ which end at vertex j and whose
interior vertices do not intersect the rome in G,,. This entry also represents the
paths from 7 to j in G; whose interior vertices hit the rome in G exactly n — 1
times. This correspondence gives us a map from paths in G,, to paths in G;. It is
easy to check this map determines a code from T, to 77 which is everywhere n-to-1.

The inverse zeta function of Tj, is det(I — A™); this polynomial is divisible by
the polynomial det(I — A), which is the inverse zeta function of Sp. The ratio is
det(I + A + ...+ A"~ 1). Tt is possible for the latter polynomial to be trivial (so
det(I — A) = det(I — A™)). An example for n = 2 (i.e., det(I + A) = 1) is given by

L[t



- ¢2 t 0 0 0 07
t 0 0 0 t 0
0 0 t2 t 0 0
A=
0 0 t 0 t 0
0 0 0 t2 0 t
[ 0 t 0 0 0 0.

Finally, we indicate briefly how the shift equivalence data for (Sg)™ may be
recovered from the polynomial matrix A. In this polynomial setting, as in §5.4 we
think of the shift equivalence class of (Sg)™ as the isomorphism class of a certain
ordered L-module. We derive a representative M of this class from the ordered
L-module cok(I — A) as follows. As an ordered abelian group, we let M equal
cok(I — A). We define the action of L on M by defining the action of t on M to be
the action of t" on the original module cok(I — A).

5.6 Small presentations. If a matrix is n X n, then we say it has size n. What
is the smallest size of a matrix with a given nonzero spectrum? With a given shift
equivalence class? These are difficult questions with unhappy answers.

For example, consider the 4-tuple (v/2,i, —i,€), where € is small and positive.
This will be the nonzero spectrum of a primitive real matrix, but as € goes to zero
the minimum size of such a matrix goes to infinity [BH1, Ap.3]. The problem
of determining the minimum size at which a primitive matrix can realize a given
nonzero spectrum is notoriously difficult [BH1, Ap.3].

For an example over the integers, consider the 3-tuple (5,1,1). There is an
infinite collection of primitive integral matrices which have nonzero spectrum (5,1,1)
but which are pairwise not shift equivalent. (This follows from the general results
of [BH2]. Tt is also given by a barehanded construction in [B2,Example 3.4], which
works for tuples (M,a,a) when M and a are positive integers with M > a+3 .) In
particular, as one runs through the possible shift equivalence classes, the sizes of
the realizing primitive matrices must go to infinity (since the entries of primitive
integral matrices with bounded spectral radius and size are uniformly bounded).

It is a plausible and exciting prospect that one can obtain much more control
on the size of a presenting matrix over tZ, [t]. As a quick example, we remark that
it is easy to convert the above-mentioned primitive matrices (those constructed in
[B2,Example 3.4]) into polynomial matrix presentations of size 4. That is, we get
infinitely many shift equivalence classes with the same zeta function, all presented
by polynomial matrices of size 4. (Of course, the degrees of the polynomials in these
matrices must become unbounded.)

The striking theorems below of Handelman and Perrin (§5.8 and §5.9), and the



Problem 1. Suppose C is a primitive integral matrix and A is a matrix over
tZ, [t] , where C is strong shift equivalent over Z, to the adjacency matrix for the
graph presented by A. Given C, what is the minimum size possible for A?

Problems 2 & 3. Suppose an integral matrix C of size n is shift equivalent
over Z to a primitive matrix. Find good bounds for the minimum size of a matrix A
over tZ [t] such that A presents a graph with primitive adjacency matrix B, where

( Problem 2) B is shift equivalent over Z to C
( Problem 3) B and C have the same nonzero spectrum.

We remark that for problems 1 and 2, the minimum number of generators for
the group cok(l — C) is a lower bound for the size of A. There are additional and
independent constraints involving the sequence trC™ and the spectral radius of C.
For example, if C has spectral radius less than 2 and ¢rC > k, then the size of A is
greater than k.

5.7 Sparse matrices and labelled graphs.

Suppose for the moment, for concreteness and simplicity, that U is a unital
subsemiring of the reals (e.g., @ or Ry). Suppose C is a square matrix whose
entries lie in tU[t]-i.e., they are polynomials over U with zero constant term. Then
we can think of C' as presenting a labelled graph much as above. If C' has size
k, then there are k distinguished vertices in the graph. A monomial term ct” in
C(i, 7) contributes a path of n arcs from vertex i to vertex j, whose interior vertices
connect to no additional vertices. The first arc on the path is labelled ¢ and the
others are labelled 1.

Let B be the matrix which is the adjacency matrix of this graph. So, B is
N x N, where N is the total number of vertices in the graph. B(%, j) is zero if there
is no arc from ¢ to j, otherwise it is the label on the arc from ¢ to j. Now B might
be quite sparse, and so we can think of C as a concise presentation of B. Also, it is
an easy exercise following §5.3 to check that det(I — C') = det(I — ¢tB). (Similarly,
one can prove an analogue of §5.4.)

The point we wish to make is that matrices over polynomial rings may be a good
way to present sparse matrices. In particular, one can hope for more satisfying
results on the intractable problem of determining the smallest size nonnegative
matrix with a given nonzero spectrum, by allowing polynomial matrix presentations.

Problems 2R & 3R. Suppose a real matrix C of size n is shift equivalent over
R to a primitive matrix. Find good bounds for the minimum size of a matrix A
over tR [t] such that A presents a graph with primitive adjacency matrix B, where

( Problem 2R) B is shift equivalent over R to C
( Problem 3R) B and C have the same nonzero spectrum.

Of course, in problems 2R and 3R above, in place of R we could consider any



real number. The matrix A he constructs presents a graph with primitive adjacency
matrix.

5.9 Perrin’s theorem. One can ask, given a Perron number )\, what is the
smallest matrix A over ¢tZ. [t] with spectral radius A? Dominique Perrin has ex-
plained to me that for any Perron number A there is a matrix A over tZ [t] which
has size 2 and has spectral radius A! This follows from his construction in [Pe].
Given )\, the nonnegative integral matrix B on page 364 of [Pe] has spectral radius
A", for some positive n. The desired matrix A is obtained by noticing that the
labelled graph for t" B has a rome consisting of the two vertices 1 and k.

To be honest, there is a nontrivial imperfection to Perrin’s striking result: the
adjacency matrix for the corresponding graph will be irreducible but not necessarily
primitive, and the period of the matrix (which will be the integer n above) may be
large.

Problem. Can one prove Perrin’s result, but with the realizing matrix A
corresponding to a graph of period 1?7

5.10 A theorem on extensions.

Lind [L] proved that every Perron number (positive algebraic integer with mod-
ulus strictly greater than that of any conjugate) is the spectral radius of a primitive
integer matrix (the converse is obvious from the Perron theorem). He did not bound
the size of such a matrix. Using the polynomial matrix presentation, we’ll produce
a realizing matrix whose size is the degree of the Perron number. Basically the
proof just lifts a corollary [BMT 5.14] of work of Lind and Handelman into the
polynomial matrix setting.

As in [BMT], we say a matrix is IEP if it is square, every entry is an integer,
and it is eventually positive (i.e., all sufficiently large positive powers of the matrix
have every entry strictly positive).

LEMMA. Let B be an IEP matrix of size m. Then there is a primitive matrix
C of size m over tZ . [t] with the same spectral radius as B such that the dimension
module for B is a quotient of that for C.

Proof. Following the lines of Lind’s proof [L] (but avoiding most of the difficul-
ties via the IEP hypothesis), one can construct a primitive matrix A with spectral
radius equal to that of B such that the dimension module for B is a quotient of
that for A. This was done in [BMT, 5.14]. The matrix A constructed there is the
adjacency matrix of a (Z4)-labelled graph in which m vertices (denoted there as
v(i,n), 1 < i < B ; [ there corresponds to m here) comprise an obvious rome. Using
this rome we pass to the size m matrix presentation over tZ [t].

[



(2) Suppose C is an n x n integral matrix whose spectral radius ) is a simple root
of the characteristic polynomial which is strictly greater than the modulus
of any other root. Then there is a directed graph with primitive adjacency
matrix B (over Z. ) which can be presented by a matrix A over tZ . [t], such
that the following hold

B has spectral radius \

the dimension module for C' is a quotient of the module for B

if X\ is irrational, then A has size n

if X\ is rational, then A has size at most n + k,

where k is the smallest integer such that \* > n + k.

Proof. First we prove (2) using results of Handelman. If ) is irrational, then C
is similar over the integers to an IEP matrix [H1]. If X is rational, then C is shift
equivalent over the integers to an IEP matrix of size at most n + k (k as defined in
(2)) [H2]. In either case, the lemma provides the desired matrix A.

Now we prove (1). If X is rational, then )\ is a positive integer, and we let
A = [tA]. If X is irrational, then we let C' be the companion matrix of the minimal
polynomial of A and appeal to (2). This finishes the proof.

[

SECTION 6. MORE WILLIAMS’ PROBLEMS

6.1 Introduction. The equations defining (strong) shift equivalence can be
used to define (strong) shift equivalence for morphisms in any category. Always,
strong shift equivalence implies shift equivalence. By a Williams’ problem we mean
the problem of whether the converse is true.

It turns out that shift equivalence and strong shift equivalence arise in several
natural ways from problems in symbolic dynamics. We’ll consider them in this
section. In each case we get a Williams’ problem. Often there is a dynamical
interpretation for strong shift equivalence and shift equivalence (isomorphism and
eventual isomorphism) which gives the problem direct dynamical meaning. Usually
shift equivalence turns out not to imply strong shift equivalence (but understanding
the difference is fundamental).

First we recall a definition. If G is a semigroup, then the integral semigroup
ring ZG of G is the free abelian group with generator set G, with the multiplication
defined on G by the semigroup operation and then extended to ZG by the distribu-
tive law. We picture an element of ZG as a formal integral combination of elements
of G. We let Z_ G denote nonnegative integral sums of elements of G. We make ZG
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6.2 Markov shifts and matrices of Laurent polynomials. By a Markov
shift we will mean an irreducible shift of finite type (SFT) together with a shift-
invariant Markov measure with full support. It turns out that the analysis of Markov
shifts is intimately related to understanding matrices of integral Laurent polynomi-
als, and in particular their shift equivalence classes.

A Markov shift can be defined by an irreducible stochastic matrix P. Let A
be the zero-one matrix such that A(%, j) is zero if and only if P(7,j) is. Then Sy
is the underlying SFT. We view P as giving labels to the edges in the graph with
adjacency matrix A—that is, P is a function from arcs into the reals. P determines
the Markov measure on the SF'T S, as follows. Let £ be the positive left eigenvector
for P whose entries sum to 1. Then for any 7, the measure of the set of points which
see a given word ag...ax, in coordinates i, ...,i+ k is £(vg) P(ao)P(a1)...P(ax), where
vg is the initial vertex of the arc ayg.

A code between Markov shifts S(P) and S(Q) is a code between their underlying
SFT’s which sends the P-measure to the @-measure. (For more on these codes and
their relatives, we recommend [P2] and [MT1].)

It is natural to try to generalize the ideas of (strong) shift equivalence to this
category by using the (strong) shift equivalence equations on stochastic matrices.
To see why this fails, suppose we have P = UV and Q = VU with P and Q
stochastic. We would like to build up some elementary isomorphism between S(P)
and S(Q) with these equations. We could try to follow the construction of §2.3.
But now we don’t know how to break up UV -paths into arcs. An entry of UV can
be interpreted as a sum of terms (weights) on paths. Such a weight has the form
U(i,7)V (4, k). But UV (i, k) could be the sum of, say, several such small terms or
just a few larger terms. It turns out that what one really needs to know are the
path weights with multiplicities—information which is lost on multiplying the real
matrices.

The solution [PT2] is to regard the entries of the stochastic matrix P as lying
not in the reals R but in a larger ring, ZR" , the integral group ring of the group
R% of positive reals under multiplication. (Parry and Tuncel [PT2] actually used
an isomorphic ring with a more analytic flavor.) It turns out [PT2] that in a
natural way, P and @ are strong shift equivalent over Z R if and only they define
isomorphic Markov shifts. Also, P and () are shift equivalent as matrices over Z R*
if and only if all but finitely many powers of the Markov shifts are isomorphic (i.e.,
they are eventually isomorphic) [MT1].

Finally there is a crucial simplification. Given P, Parry and Schmidt [PSc]
showed it is possible to pass in a canonical way from R* to a finitely generated
subgroup of R’ —that is, to consider only matrices over a certain finitely generated
subgroup of R* . This group must be isomorphic to Z" for some n. After choos-



of these things, we recommend [MT1].)

Much of the structure for SF'T’s generalizes here. For example, the information
carried by the periodic points is perfectly encoded in the stochastic zeta function
of Parry and Tuncel [PT2] , given by the formula

2" = [det(I — zP)]~".

() = expy” )

Here the entries of P lie not in R but in its integral group ring (or, if one prefers, in
the isomorphic ring Z[exp] of Parry and Tuncel, see [PT2] or [MT1, Defn. 4.2]). The
equation above makes sense at the level of formal power series. (In earlier work of
Parry and Williams [PW], a “stochastic zeta function” was offered which was given
by the same formula but with the entries of P still regarded as lying in R. This
gives an invariant, but one which does not capture all the desired information. We
have appropriated the term “stochastic zeta function” for the Parry-Tuncel function
because we regard it as the correct end product of this line of development.)

For SFT’s, the dimension module (§5.3) was a certain Z[t,t']-module. The
dimension module of a Markov shift is a R[t,¢~']-module, where R may be taken
to be the ring of Laurent polynomials in n variables (by identifying the variables
with generators of the canonical subgroup mentioned earlier)—it is a version of
Tuncel’s dimension module [Tu]. The variable-length graphs still work—but now
they are labelled by elements of ¢tR [t] rather than tZ [t]. Recall if A is a matrix
over tZ . [t] presenting an SFT, then the shift-equivalence-over-Z data for the SFT
is encoded as the isomorphism class of the Z[t,t~']-module cok(I — A). In the
stochastic case, the entries of A lie in ¢tR[t], and the shift-equivalence-over-R data
is encoded as the isomorphism class of the R[t,¢™!]-module cok(I — A). (There is
even a notion of stochastic flow equivalence, for which one invariant [P2,Ara] can
be interpreted in the following way: apply the coinvariants functor to the R[t,¢1]-
module cok(] — A) to obtain the R-module cok(I — A(1)), which is an invariant of
stochastic flow equivalence. Here A(1) denotes the matrix obtained by substituting
1 for t in A. Similarly the element det(I — A(1)) is an invariant of stochastic flow
equivalence [P2,Ara].)

Even in the primitive case, shift equivalence does not imply strong shift equiva-
lence for matrices over R, [B3]. (A matrix over R, is primitive if some power has
every entry nonzero.) Thus even in the primitive case we must be concerned with
order in the classification of matrices up to shift equivalence over R;. We can ex-
press the order information in the module framework by considering the R [t,t~1]-
module cok(] — A) as an ordered module. Here the positive set of cok(I — A) is the
set of vectors which have all entries in R, [t] after multiplication by a sufficiently
large power of A. Now shift equivalence of matrices over tR[t] is equivalent to
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To think of this in a finite way, consider an irreducible matrix A over R, as a matrix
with entries in Z, [z1, 2], ..., Tn, 2, }] and let p(t) be its characteristic polynomial.
Factor p(t) in Z[z1,2] ", ..., Zn, 2, }][t]. There will be one factor such that for any
substitution of positive reals for the variables 1, ..., x,, this factor will have the
largest root. You may regard that factor as the beta function. What are the beta
functions of irreducible matrices over R? There is not even a good conjecture at
present. Progress to date has rested on a blend of techniques from algebra, geometry
and analysis [H3-6,deA] .

Problem. What are the beta functions of primitive matrices of Laurent poly-
nomials?

Problem. What are the zeta functions arising from primitive matrices of Lau-
rent polynomials? (That is, which polynomials can arise as det(I — tA) for some
primitive matrix A whose entries are Laurent polynomials with nonnegative integral
coefficients?)

6.3 Boolean matrices. The Boolean semiring B is the set {0, 1}, with addition
and multiplication defined as the quotient of these operations on the nonnegative
reals by the map sending 0 to 0 and sending all positive numbers to 1. So, 1 is a
multiplicative identity, 0 is an additive identity, 1+ 1 = 1, 0 x 0 = 0. Relations
among nonnegative matrices project to relations among Boolean matrices (matrices
over B). For example, if A and B are shift equivalent nonnegative matrices, then
their Boolean images are shift equivalent over B; and if A and B are to be strong
shift equivalent, then their Boolean images must be. So it makes sense to look
at Williams’ problem for matrices over B, if only to check necessary conditions on
Williams’ problem for matrices over Z; (or R4, or @4 ).

Kim and Roush have completely classified all Boolean matrices up to shift equiv-
alence and also up to strong shift equivalence [KR5]. Their general result is lovely,
but for simplicity we will just state the answer for primitive Boolean matrices (those
for which some power is the matrix with every entry 1). They are all shift equiv-
alent! And two such matrices are strong shift equivalent if and only if they have
the same powers with zero trace (there are only finitely many such powers). In
particular, shift equivalence does not imply strong shift equivalence in this setting.

One useful spinoff of their work is an intriguing tool for controlling the sign
patterns of nonnegative matrices. As remarked in [KR5, p.154], if A and B are two
nonnegative matrices whose Boolean projections are strong shift equivalent, and
their entries lie in a nondiscrete unital subring S of the reals, then B is strong shift
equivalent over S, to a matrix with the same block sign pattern as A. For example,
this with the classification result [KR5] shows that a matrix over the nonnegative
rationals @ with positive trace is strong shift equivalent over @, to a matrix with



shift equivalence and strong shift equivalence for SF'T’s over infinite alphabets. Here
a crucial feature is that the morphisms are required to be uniformly continuous.

6.5 Sofic shifts. There are also notions of shift equivalence and strong shift
equivalence available for sofic shifts (these are the subshifts which are quotients
of SFT’s) [BK]. Again strong shift equivalence corresponds to isomorphism and
shift equivalence corresponds to isomorphism of all large powers. The equations
of (strong) shift equivalence are now applied to elements of an integral semigroup
ring, where the semigroup is the semigroup under multiplication of infinite zero-
one matrices with all row sums at most one and with all but finitely many entries
zero. Now, instead of considering matrices over a commutative integral group ring,
we are looking at the (noncommutative) integral semigroup ring of a nonabelian
semigroup. Because of this noncommutativity, it is a serious problem even to define
an appropriate zeta function [B4]. Nevertheless, Kim and Roush showed that shift
equivalence in this setting is decidable [KR4], which matches their result in the
SFT setting [KR3]. A key reduction in their proof is an analogue of the Parry-
Schmidt result [PSc| for Markov chains, which allowed one to restrict to modules
over smaller rings: in the sofic case, for considering shift equivalence (but not strong
shift equivalence), Kim and Roush observed by appeal to work of Nasu [N] that for
two given systems it suffices to consider modules over the integral semigroup ring
of a certain finite semigroup (the zero-one matrices of a certain bounded size).

For an explanation of these ideas, we refer to [BK,Sec.1] and [KR4]. Our aim
here is primarily to indicate by yet another example that the basic ideas of shift
and strong shift equivalence return in various guises to describe symbolic dynamical
structures.

SECTION 7. GENERAL MATRICES

In this section we’ll consider shift equivalence and strong shift equivalence a bit
more generally. This has algebraic and order aspects. We justify the investigation
by the symbolic dynamical relevance of (strong) shift equivalence in various set-
tings, and because these relations are algebraically natural in general (e.g., sr ~ rs
generates a definition of Ky(R) via projections in GL(R)).

First we consider the algebraic aspect. Let R be a unital ring (unital means
that R has a multiplicative identity). We define shift equivalence and strong shift
equivalence of matrices over R by the same equations we use for R = Z. Does shift
equivalence imply strong shift equivalence?

If R = 7, the answer is yes. This was proved in old unpublished preprints by
Williams and by Effros [E2],[W2]. They offer related but different arguments, both
of which go through for any principal ideal domain. The answer is still yes for a
Dedekind domain [BH2]. On the other hand the following is open.
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two elements in R,. We have already looked at shift and strong shift equivalence
for R=7 and R, = 7Z,. There Williams’ problem is open in the irreducible case.
Even for matrices of size 2, after all this time, it is settled (in the affirmative) only
if the determinant is not less than —1 [Bal,CuKr,W1].

Problem [Bal]. Suppose A and B are primitive size 2 matrices over Z_ which
are shift equivalent over Z,, with detA < —1. Must A and B be strong shift
equivalent over Z+7

There are additional ideas [Ba2] but the problem is tough (as can be attested
by the calibre of some of the mathematicians who have spent months or years on
Williams’ problem for matrices over Z—Williams, Parry, Franks, Krieger, Marcus,
Baker, Handelman, Kim&Roush....).

A sane response is to back off and consider Williams’ problem for matrices
over the nonnegative rationals or reals. Here Kim and Roush proved that shift
equivalent matrices over @, are strong shift equivalent—if each has exactly one
nonzero eigenvalue, with multiplicity one (equivalently, the inverse zeta function
is 1 — at, where a is the nonzero eigenvalue) [KR6]. (It is some indication of the
difficulty of the problem that this seemingly simple case was open for so long.) They
have also added to Baker’s viewpoint [Ba2] the development of approximation and
homotopic techniques [KR8,9].

But still: strong shift equivalence remains very poorly understood.

Problem. Does shift equivalence over R, imply strong shift equivalence over
R for strictly positive matrices over the reals?

SECTION 8. INVERSE PROBLEMS FOR NONNEGATIVE MATRICES

In [BH1,2], Handelman and I studied certain inverse problems for nonnegative
matrices, using tools from symbolic dynamics. As we took pains to explain and
motivate the problems there, in this section the discussion will be brief, and we
refer to [BH1,2] for more.

8.1 The inverse spectral problem. Let A = (di,...,d,) be an n-tuple of
complex numbers. An old problem asks, when is A the spectrum of a nonnegative
real matrix of size n? (A is the spectrum of a matrix A if the characteristic poly-
nomial is xa(t) = [[;(t — d;). So A includes the information about multiplicities
and we don’t care about the order in which the d; are listed.)

Necessary conditions on A are discussed in [BH1]|, especially in Appendix 3.
The best reference to the literature on this problem is still [BePl|, for a more re-
cent discussion see [Mi]. To my knowledge the problem first appears in print in
Suleimanova’s 1949 paper [Su] (if we neglect the glorious work of Perron and Frobe-
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§2.3), and it is appropriate to ask when an n-tuple A of nonzero complex numbers
can be the nonzero part of the spectrum of some nonnegative matrix. This is also
natural from just the matrix viewpoint and certainly occurred to matrix theorists
working on the problem (e.g. Charles Johnson). I would guess this viewpoint was
never seriously pursued because constructions which could make much use of the
relaxed condition were unavailable.

Aside from motivating the pursuit of the nonzero spectrum, symbolic dynamics
enters the picture by providing some tools which let one exploit the extra room
provided by passing to arbitrarily large matrices subject to a given nonzero spec-
trum. In some cases there are matrix constructions for which codes need not be
mentioned, but whose inspiration comes from coding constructions. There are also
the ideas around strong shift equivalence, which provide some direct constructions,
and which let one translate coding constructions into matrix results. In this vein
there is especially one result, the Submatrix Theorem, which plays an essential role
in [BH1,2| and for which the only proof known (so far) relies in a fundamental way
on coding ideas independent of matrices. These ideas are the marker methods of
the proof of Krieger’s Embedding Theorem [Kr3]. Because the Embedding The-
orem has been a basic and useful tool in the study of shifts of finite type (read:
asymptotic theory of nonnegative integral matrices), it may be that the Submatrix
Theorem will have other applications in the study of “asymptotic” aspects of more
general nonnegative matrices.

8.2 Submatrix theorem. Let S be a unital subring of the reals. Given square
nonnegative matrices A and B over S, with A primitive, the Submatrix Theorem
produces (subject to “obvious” necessary conditions on the nonzero spectra) a ma-
trix A’ with B as a principal submatrix, where A’ is strong shift equivalent over
S to A. If we are interested only in invariants of strong shift equivalence (such as
the nonzero spectrum), then this provides tremendous control over submatrices for
constructions.

If the ring S is discrete, then it must be the integers. The necessary trace
condition for the Submatrix Theorem is different in this case, and to avoid discussing
it we just refer to [BH1, Thm.1.10].

Recall (§2.3) the polynomial det(I — tC) determines the nonzero spectrum of a
matrix C' and vice versa.

SUBMATRIX THEOREM (NON-DISCRETE CASE) [BH1]. Let S be a dense unital
subring of the reals. Suppose that A and B are nonnegative matrices with entries
from S, such that A is primitive. Then there exists a primitive matrix C with entries
from S such that B is a proper principal submatrix of C and det(I—tC) = det(I—tA)
if and only the following three conditions hold:

(1) The spectral radiiie of B i strictlv emaller than that of A



8.3 Spectral conjecture. Handelman and I [BH1] conjectured that certain
“obvious” necessary conditions are sufficient for an n-tuple A = (dy, ..., d,) of com-
plex numbers to be the nonzero spectrum of a primitive matrix whose entries lie
in a given unital subring S of the reals. (The general case follows easily from the
primitive case [BH1].) It seems to us that the supporting evidence [BH1] is fairly
overwhelming. (Not that we can prove it.) For example, the conjecture is true if S
is the reals, or if S is nondiscrete and ) d; is nonzero [BH1].

Those necessary conditions on A are a Perron condition, a Galois condition,
and a trace condition. The Perron condition is that there be a positive real number
which is listed just once in A and which is strictly larger than the modulus of any
other entry. The Galois condition is simply that the degree n polynomial [[(¢ — d;)
must have its coefficients in S. The trace condition is different if S = 7, so here we
will just state the trace condition when S is nondiscrete. For k > 0, let ¢(k) denote
the sum of the kth powers of the entries of A. Then the trace condition is that for
all positive integers m and k, two things hold:

(1) t(k) 20, and
(2) if t(m) > 0, then t(mk) > 0 .

8.4 Generalizing the spectral conjecture. Again let S be a unital subring
of the reals. Suppose A is a square matrix over S. The Spectral Conjecture asserts
that there exists a primitive matrix B over S with the same nonzero spectrum as A
if two necessary conditions, a Perron condition and a trace condition, are satisfied.
(Here the Galois condition is automatically satisfied.) The Generalized Spectral
Conjecture of [BH2] asserts that under these same necessary conditions, one can
require the primitive matrix B to be shift equivalent over S to A. Handelman
and I take this opportunity to make a further generalization: we conjecture that
under these same necessary conditions, there exists a primitive matrix B strong
shift equivalent over S to A.

But, remember, at this moment we do not know if two matrices shift equivalent
over S must be strong shift equivalent over S (Sec.7)—i.e., it may be that this
generalization is equivalent to the Generalized Spectral Conjecture of [BH2].

SEcTION 9. ONE-SIDED SHIFTS

Let A be a square nonnegative integral matrix. Then A defines a one-sided SFT
T4. This is defined just as the two-sided SFT S 4 was, with one difference: now the
sequences are £ = xoz1... (that is, the coordinates are indexed only by nonnegative
integers, not by all the integers). Here the shift map is still continuous and (if A is
nondegenerate) surjective, but usually it is not invertible. (In fact, it is invertible
only when the space of sequences is finite. When A is nondegenerate, this means
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words of length NV to the alphabet of T such that for all  and for all ¢ > 0,

(fx)z = F(xi...xHN_l).

Williams classified these systems up to isomorphism [W1]. (There is an exposition
of this in [BFK]|, which also has a good deal more about these systems.) The
classification is beautifully simple, so we will describe it.

Given the matrix A, if possible choose two equal columns 7 and j; then add row
j to row 7, and then erase row j and column j. This produces a smaller matrix A;.
The matrix A; may also have a pair of equal columns, which we can “amalgamate”
as before to get a yet smaller matrix. If B is a matrix obtained by a (finite) sequence
of column amalgamations in this way from A, then we call B an amalgamation of
A. If B has no pair of equal columns (i.e. cannot be further column-amalgamated),
then B is called a total amalgamation of A.

Williams [W1] proved that the total amalgamation of A is independent (up to
conjugation by a permutation matrix) of the choices of columns at each step, and
that T4 is isomorphic to T'g if and only if the total amalgamations of A and B are
the same (up to conjugation by a permutation matrix). So for one-sided SFT’s the
classification has a clean and simple solution.

However there is another fundamental problem which seems much harder in the
one-sided case. Recall a matrix is nondegenerate if it has no zero rows or columns,
and a primitive matrix is a square nonnegative matrix some power of which has
every entry strictly positive.

Problem. Suppose B is a square nondegenerate nonnegative matrix and A
is a primitive matrix. Give necessary and sufficient conditions under which the
one-sided SFT T is isomorphic to a proper subsystem of the one-sided SFT T'y4.

Let us immediately express this problem in purely matrix terms. With no loss
of generality, we may (and should) assume that B is a total amalgamation. Then
Tp is isomorphic to a proper subsystem of T4 if and only if for some matrix C
presenting a higher block presentation of T4, the matrix C has a proper principal
submatrix D such that B is a total amalgamation of D.

The solution of the corresponding two-sided case is Krieger’s embedding theo-
rem [Kr3]. There, simple necessary conditions on entropy and periodic points are
sufficient for the proper embedding: the entropy of S4 must strictly exceed that of
Sp, and for every positive integer n the number of orbits of cardinality n for Spg
cannot exceed the corresponding number for S 4.

These necessary conditions do not suffice in the one-sided case. For example, a
point with k& preimages must be sent to a point with at least k& preimages. Similarly
there are constraints counting preimages of preimages, etc.; and these are mixed
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systems [W1,BFK]. So it is plausible that in the one-sided case a proof of the
embedding theorem may be much more closely tied to graphs and matrices (and
therefore could lead to better algorithms for constructing the embedding codes
which exist by Krieger’s theorem in the two-sided case). There have only been a
few papers on one-sided SFT’s ([W1],[BFK],[As1]), so we have a situation common
in symbolic dynamics: there’s not too much to learn, but there is something to
invent.

The problem above is posed for embedding SFT’s only (rather than general
subshifts), in contrast to the statement of Krieger’s theorem. This is to emphasize
the matrix aspect. There is almost surely no loss of generality. It is an exercise
to check that an embedding of a subshift (one-sided or two) into a shift of finite
type always extends to an embedding of some SFT containing the subshift. Every
subshift is a nested intersection of SFT’s in a well-understood way. So from the
solution of the problem above, one should be able without great difficulty to give the
solution to the general problem. (This is certainly the case for two-sided shifts—but
in that case, at present there is no real simplification of Krieger’s proof obtained by
embedding only SFT’s.)

SECTION 10. QUOTIENTS

Let S4 and Sp be (for simplicity) mixing SFT’s. When is Sp a quotient of S47
That is, when is there a code from S onto Sg? It is easy to check that a necessary
condition is the entropy inequality

h(Sa) > h(SB).

There is a fundamental dichotomy for such maps. If h(S4) > h(Sg) and f is a
quotient map from S, onto Sp, then the points with uncountably many preimages
under f comprise a residual subset of Sg. If h(S4) = h(Sp) and f is a quotient
map from S4 onto Sp, then there is a positive integer N such that no point in Sp
has more than N preimages under f [CP].

As it turns out, the case of strict inequality is relatively easy [B1]. If h(S4) >
h(Sp), then Sp is a quotient of S, if and only if the trivially necessary periodic
point condition holds: for all n > 0,

(*) tr(A™) > 0 = tr(B") > 0.

The equal-entropy case is much more rigid, subtle and algebraic. The periodic
point condition (*) is still necessary for Sp to be a quotient of S4. But also, the
dimension module of Sp must be a quotient of a closed submodule of the dimension
module of S4 [KMT]. (In the terminology of §3.1, a closed submodule is given by
restricting A’ to a subgroup H of G(A) which is the intersection of G(A) with an A'-
invariant subspace of V4. A submodule given bv restrictine A’ to some A’-invariant



Then Sp is a quotient of S 4.

This conjecture is strongly supported by the work of Jonathan Ashley [As2]. For
primitive integral matrices A and B of equal spectral radius satisfying (*), he showed
that Sp is a quotient of S4 by a closing map if and only if the dimension module
of Sp is a quotient or closed subsystem of the dimension module of S4. (Closing
maps are topologically conjugate to resolving maps, which can be constructed from
certain matrix equations and are the most useful codes for industrial applications
[ACH]. See [AM] and [BMT] for background.)

Ashley’s proof begins with a construction (the Eventual Factors Theorem of
[BMT]) which produces interrelated quotient maps of higher powers of the shifts.
This construction is derived from matrix equations which capture the quotient rela-
tion for the dimension modules. One scheme for approaching the conjecture above
is to mimic this pattern: first find matrix equations for the dimension condition,
then find an “eventual” construction from these analogous to the starting result
from [BMT], and then adapt Ashley’s arguments for coding into and out of long
periodic blocks. (Caveat: this may be a red herring.)

There are, at least, some nice matrix equations for the dimension condition. Let
A and B be primitive integral matrices of equal spectral radius. Then the dimension
module for B is a quotient of a closed submodule of the dimension module for A if
and only if there are positive integral matrices R, S and a positive integer n such
that for all positive integers k,

RA*S = B"tF.
We leave a proof to the interested reader (it may help to consult [BMT,Sec.2]).
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