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Abstract. We prove a regularity result for the anisotropic elasticity equation
Pu := div

`

C · ∇u) = f , with mixed (displacement and traction) boundary

conditions Lk on a curved polyhedral domain Ω ⊂ R
3 in weighted Sobolev

spaces Km
a (Ω), for which the weight given by the distance to the set of edges.

In particular, we show that there is no loss of Km
a –regularity. Our curved

polyhedral domains are allowed to have cracks. We establish a well-posedness
result when there are no neighboring traction boundary conditions and |a| < η,
for some small η > 0 that depends on P and Lk and the domain Ω. Our results
extend to other strongly elliptic systems.

1. Introduction

Let Ω ⊂ Rn be a bounded domain with smooth boundary. Then it is well known
(see for example [8, 14, 26, 66]) that the equation

(1) ∆u = f ∈ Hm−1(Ω), u = 0 on ∂Ω,

has a unique solution u ∈ Hm+1(Ω). In particular, u will be smooth on Ω if f
is smooth on Ω. This well-posedness result is especially useful in practice for the
numerical approximation of the solution u of Equation (1), see again [8, 10, 14]
among the extensive literature on the subject.

In practice, however, it is rarely the case that Ω is smooth. For instance, if ∂Ω
is not smooth, then the smoothness of f on Ω does not imply that the solution u of
Equation (1) is also smooth on Ω. Therefore there is a loss of regularity for elliptic
problems on non-smooth domains. Wahlbin [69] (see also [7, 43, 70]) has shown
that this loss leads to some inconvenience, namely that a quasi-uniform sequence
of triangulations on Ω will not give optimal rates of convergence for the Galerkin
approximations uh of the solution of (1).

The loss of regularity can be avoided, however, if one removes the singular points.
A conformal change of metric will achieve that by “sending the singular points to
infinity.” It can be proved then that the resulting Sobolev spaces are the “Sobolev
spaces with weights” considered for instance in [8, 9, 10, 34, 18, 22, 40, 50, 52, 62]
and in many other papers. If f > 0 is a smooth function on a domain Ω, we define
the mth Sobolev space with weight f by

(2) Km
a (Ω; f) := {u, f |α|−a∂αu ∈ L2(Ω), |α| ≤ m}, m ∈ Z+, a ∈ R.
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2 A. MAZZUCATO AND V. NISTOR

We can then extend the regularity result for Equation (1) to polyhedral domains
Ω ⊂ R3, and more generaly to domains Ω ⊂ R3 with a “polyhedral structure”,
which will be defined in Section 3, provided the usual Sobolev spaces replaced by
the Babuška–Kondratiev spaces Km

a (Ω) := Km
a (Ω;ϑ). Here ϑ is the distance to the

edges. In fact, in order to define a suitably large class of smooth functions and
differential operators on Ω, we will need to replace ϑ with a weight rΩ, defined
in Equation (14), which behaves like the distance function to the edges ϑ, but is
sufficiently smooth at the singular points. The resulting class of smooth functions
and operators are exactly the class of C∞ functions and differential operators on
a suitable desingularization of Ω denoted ΣΩ, but can be characterized directly,
without us having to define ΣΩ explicitly.

A domain Ω ⊂ R3 with a “polyhedral structure” is a polyhedral domain whose
faces can be subdivided into smaller faces by introducing artificial vertices and
artificial edges. The resulting smaller faces are the faces of this polyhedral structure
and are all essentially polygonal domains. Furthermore, there can be interior faces
or “cracks,” (this happens exactly when ∂Ω 6= ∂Ω). Since we allow for cracks in our
domains, the Sobolev spaces at the boundary need to take into account whether
Ω is on one side or on both sides of the boundary. To this end, we introduce the
oriented boundary ∂νΩ to consist of the inward unit normal vectors at the smooth
points of Ω. The connected components of ∂νΩ are called the oriented faces of Ω.
Then the natural map κ : ∂νΩ → ∂Ω is an at most two-to-one cover of the set
∂Ω r ∂singΩ of smooth boundary points of Ω. (The map κ is two-to-one exactly
at the points at which Ω is on both sides of the boundary, namely at the “crack
points.”) Then the spaces Ks

a(∂νΩ) := Ks
a(∂νΩ;ϑ) on the boundary are defined

similarly for s ∈ Z+; for s ∈ R+ they are defined using partitions of unity. The
usual trace theorems hold for these spaces at the boundary.

The introduction of domains with “a polyhedral structure” is motivated by our
desire to consider mixed boundary value problems. For this reason, we decompose
the oriented boundary ∂νΩ of Ω as a disjoint union ∂νΩ = ∂DΩ ∪ ∂NΩ such that
both ∂NΩ and ∂DΩ consist of a union of open faces of (the polyhedral structure
on) Ω. We impose Dirichlet or ”displacement” boundary conditions on ∂DΩ, and
Neumann or ”traction” boundary conditions on ∂NΩ. We collectively refer to the
boundary operator on the face Dk as Lk. In particular, our results include the case
where different types of boundary conditions are imposed on each side of an interior
face, a ”crack”, via a non-tangential limit. Situations that require mixed boundary
conditions on domains with cracks arise in engineering problems, when for instance
only part of a face of Ω is externally loaded (traction boundary condition), while
the other part is mechanically fixed (zero displacement boundary condition).

Our main focus is the system of classical linear elasticity P = div(C · ∇). How-
ever, our regularity and well-posedness results apply more generally to a differential
operators P : C∞(Ω)µ → C∞(Ω)µ (or µ × µ system) with smooth coefficients on
a neighborhood of Ω, under certain conditions. We will consider regularity and
well-posedness for the following boundary value problem:

(3) Pu = f in Ω, u = gD on ∂DΩ, and Dν
P = gN on ∂NΩ.

Above, DP
ν is the Neumann boundary operator associated to P by the Green’s

formula (see Lemma 6.1). It is well defined at every point of the oriented boundary
∂νΩ, i. e., away from the singular points, the corners and edges of Ω, and acts on
Km

a (∂νΩ) for every a ∈ R and m ≥ 0. If m = 0 the boundary value problem (3)
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must be understood in a weak, or variational sense. When P = ∆, the Laplace
operator, DP

ν is the usual directional derivative in the direction of the unit outer
normal. We remark that our domains may not be Lipschitz or even extension
domains, although they can always be decomposed into a finite union of connected,
Lipschitz subdomains.

1.1. Main results. Our first main result is that the boundary value problem (3)
is regular on Km

a (Ω), for all a ∈ R and m ≥ 0, when P and the boundary operators
satisfy an assumption of regularity upon freezing the coefficients on each face of Ω
(Definition 6.6). This regularity assumption holds, for example, if P and Lk satisfy
a coercivity condition.

Theorem 1.1. Let Ω ⊂ R3 be a bounded domain with a polyhedral structure and
let P : C∞(Ω)µ → C∞(Ω)µ be a uniformly strongly elliptic operator with coeffi-
cients in C∞(Ω). We assume that on each oriented face of Ω we are given either
Dirichlet or Neumann boundary conditions. Let m ∈ Z, m ≥ 1, and a ∈ R. If P
and the boundary conditions satisfy the assumption of regularity upon freezing the
coefficients then

(4) ‖u‖Km+1
a+1 (Ω) ≤ C

(
‖Pu‖Km−1

a−1 (Ω) + ‖u|∂DΩ‖Km+1/2

a+1/2
(∂DΩ)

+ ‖DP
ν u‖Km−1/2

a−1/2
(∂NΩ)

+ ‖u‖K0
a+1(Ω)

)
.

for a constant C = C(Ω) > 0 independent of u.

In particular, if u ∈ K1
a+1(Ω)µ, Pu ∈ Km−1

a−1 (Ω)µ, u|∂DΩ ∈ K
m+1/2
a+1/2 (∂DΩ)µ, and

DP
ν u ∈ K

m−1/2
a−1/2 (∂NΩ)µ, then u ∈ Km+1

a+1 (Ω)µ.

The proof of this result employs a characterization of the weighted Sobolev spaces
in terms of special partitions of unity near the boundary, and rescaling, which
blows up the singularity. The proof also gives the result for m = 0 (using a weak
formulation). Since the faces of Ω are not necessarily straight, dilations are used in
the tangent bundle of Ω near the singular points.

We prove that the regularity theorem applies to coercive operators P , such as the
Laplace operator and operator of anisotropic elasticity (under the usual assumptions
on the elasticity tensor). Let BP the canonical bilinear form associated to P ,
Equation (28). By a coercive operator, we mean an operator P for whichBP (u, u) ≥
C1‖u‖2

K1
1(Ω)

− C2‖r
−1
Ω u‖2

L2(Ω), u ∈ K1
1(Ω)µ, u = 0 on ∂DΩ. This condition allows

us to bootstrap regularity using the well-known Nirenberg trick. We would like to
stress that Theorem 7.2 does not constitute a Fredholm (or “normal solvability”)
result, because the inclusion Km+1

a+1 (Ω) → K0
a+1(Ω) is not compact for allm and a [1].

For example, if Ω is a polygon, then P = −∆ with Dirichlet boundary conditions
is Fredholm precisely when a is different from kπ/α, where k ∈ Z, k 6= 0, and α
ranges through the angles of the polygon [40, 41].

We need to impose a stricter condition on P to obtain well-posedness, that is, ex-
istence and uniqueness of solutions of the problem (3). We will say that P is strictly
positive if the Dirichlet form BP (u, v) associated to P with the given boundary con-
ditions is positive definite (Definition 6.11). For example, the Laplacian P = −∆,
and the elasticity operator P = − div(C ·∇) when the elasticity tensor C is positive
definite (see Section 10.1), are both strictly positive with mixed Dirichlet-Neumann
boundary conditions, provided ∂DΩ 6= ∅ and ∂NΩ contains no adjacent faces. In
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order to prove this result, we first establish in Sections 9.1 and 10 weighted forms of
the Poincaré and Korn’s inequalities for domains with polyhedral structure. These
inequalities, together with Theorem 1.1 lead to the following well posedness result.

Theorem 1.2. Define P̃ (u) = (Pu, u|∂DΩ, D
P
ν u|∂NΩ). Assume that P is strictly

positive and all the assumptions of Theorem 1.1 are satisfied. Then there exists
η > 0 such that

P̃ : Km+1
a+1 (Ω)µ → Km−1

a−1 (Ω)µ ⊕K
m+1/2
a+1/2 (∂DΩ)µ ⊕K

m−1/2
a−1/2 (∂NΩ)µ

is an isomorphism for m ∈ Z+ and |a| < η.

1.2. Earlier results. Theorem 7.2 was known in two dimensions, i. e., for polygo-
nal domains, [40, 41, 47]. In two dimensions, the weight ϑ is taken to be the distance
to the vertices of the polygonal domain considered. In three dimensions, related
results were obtained before by Mazya and Rossmann [48] using properties of the
Green function. See also [3, 5, 16, 18, 23, 38, 39, 49, 56], to mention just a few pa-
pers. An elementary proof of the regularity theorem, Theorem 1.1 for P = −∆ and
the Dirichlet boundary conditions was given in [2]. There is an extensive literature
concerning linear elasticity and cracks for domains with corners. Results related to
ours can be found in [4, 58, 61, 20, 21, 32, 33, 24, 42], mainly for the Lamé systems
in polygonal domains. The Finite Element Method provides ample motivation for
our research [6, 19, 22, 28, 27, 57]. A treatment of boundary value problems in
the presence of cracks can be found also in [37] using the edge pseudo-differential
calculus. In contrast with our case, there a crack is a smooth immersed manifold
of codimension 1. The observation that P =the elasticity operator with suitable
mixed displacement-traction boundary conditions is strictly positive is, however, a
crucial new element in this paper.

Other distincitive features of our paper is that we obtain well posedness results
for domains with cracks in full generality and we consider curved faces. In order
to deal with curved faces, we introduce for each face D a desingularization ΣD so
that the outer unit normal vector function ν extends by continuity to a smooth
function ν : ΣD → S2 ⊂ R3. The set ΣD is a smooth manifold with corners and is
compact if Ω is bounded. In case D is not curved (i. e., it is contained in a plane),
we can replace ΣD with D in our considerations. More pathological domains will
be considered in the plane in [44].

Contents of the paper. The paper is organized as follows. In Section 2, we
consider the special case of convex polyhedral domains, as an introduction and
warm-up for the general case of domains with polyhedral structure, which is treated
at length in Section 3. Section 4 deals with the appropriate class of smooth functions
and differential operators on Ω. In Section 5, we define the Babuška-Kondratiev
spaces Km

a (Ω) and their boundary counterparts Km
a (∂Ω), we study their properties

and stablish a trace theorem. Section 6 discusses the boundary value problems, the
assumptions on the operator and boundary conditions, and introduces the notion
of regularity upon freezing the coefficients, coercivity and positivity. Section 7
is devoted to the proof of the regularity theorem, while Section 8 addresses our
main result, that is, the well-posedness of the boundary value problem (3) for
positive operators. Finally, Sections 9 and 10 contains applications to the Laplace
and elasticity operators. The weighted Poincaré and Korn’s inequalities, used to
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establish positivity of these operators with mixed boundary conditions, are proved
there.

Notation and conventions. Here are some of the most important notations and
conventions that will apply throughout this paper: Ω ⊂ R3 will be a fixed domain
with a polyhedral structure; in all our results, we shall further assume either that
Ω is bounded or that it is a cone (a wedge is a cone); Bk ⊂ Rk will denote the open
unit ball (disk if k = 2) in Rk and by Sk−1 we will denote its boundary. Our Hilbert
and Banach spaces are taken to be real, unless mentioned otherwise. Even when
we need to consider complex Hilbert spaces and operators between such spaces,
they will arise by complexification. By C we denote a generic constant that may
be different at each occurrence. Also Z+ = {0, 1, . . .}.

Acknowledgements: We would like to thank Constantin Bacuta, Francesco
Costanzo, Alan Demlow, and Ludmil Zikatanov for useful discussions.

2. Weights and smooth functions in the case Ω convex

Let Ω ⊂ R3 be an open subset. In this section, we shall introduce two basic
constructions, the “weight function” rΩ and the function space C∞(ΣΩ), in the
case when our domain Ω is a polytope (the convex hull of finitely many points).
These two basic constructions are significantly more difficult in the general case, so
it is reasonable to treat first the case of a polytope, which will give the reader the
necessary intuition. The reader can thus skip the general constructions of the next
section until after a first reading.

A central role in our analysis is played by the “canonical weight function” rΩ :
Ω → [0,∞). To define it, we need to introduce first some auxiliary functions ρQ

and r̃e, where Q ranges through the vertices of Ω and e ranges through the edges
of Ω. We first define

(5) ρQ(x) = the distance from x to Q.

(The definition is the same in the general case.) Let next re(x) be the distance to
the line containing e = [AB]. We then define

(6) r̃e = (ρAρB)−1re.

Finally, we define the canonical weight rΩ as the product

(7) rΩ(x) =
∏

Q

ρQ(x) ×
∏

e

r̃e(x),

where Q ranges through the vertices of Ω and e ranges through the edges of Ω.
Both the set of vertices and edges of Ω are finite because, we recall, in this section
Ω is assumed to be the convex hull of a finite set of non-coplanar points.

An important general property of the canonical weight function is the following.
Let ϑ(x) be the distance from x ∈ Ω to the union of all edges of Ω. Then ϑ(x)/rΩ(x)
extends to a continuous function on Ω, and hence there exists a constant C > 0
such that

(8) C−1ϑ(x) ≤ rΩ(x) ≤ Cϑ(x),

for all x ∈ Ω. (This will be proved in the general case in Lemma 4.3.)
We now turn to the definition of the space C∞(ΣΩ), which is a space of smooth

functions on Ω containing C∞(Ω). Let us choose, for each edge e of Ω, a plane Pe
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containing one of the open faces D of Ω such that e ⊂ D. If x is not on the line
defined by e, we then define θe to be the angle in a cylindrical coordinates system
(re, θe, z) determined by the edge e and the plane Pe. More precisely, let q ∈ e be
the foot of the perpendicular from x to e. Then θe(x) is the angle between xq and
Pe. Similarly, for each vertex Q and edge e adjacent to Q, we define φQ,e(p) to be
the angle between the segment xQ and the edge e.

Since Ω is convex in this section, the functions θe and φP,e are defined and
smooth on Ω (in this paper, by Ω we shall always mean an open subset of R3,
possibly with additional properties). We shall denote by θ = (θe1 , . . . , θer ) the
vector variable that puts together all the θe functions. Similarly, we shall denote by
φ = (φQ1,e1 , . . . , φQp,ep) the vector variable that puts together all the φQ,e functions.
We then introduce the space C∞(ΣΩ) as the space of functions u : Ω → C of the
form

u(x, y, z) = f(x, y, z, θ, φ) = f(x, y, z, θe1 , . . . , θer , φP1,e1 , . . . , φPp,ep),

f ∈ C∞(Ω × [0, π]r × [0, π/2]p).

The point of introducing the space C∞(ΣΩ) is that, for example, θe is a smooth
function on Ω which is not in C∞(Ω) but θe ∈ C∞(ΣΩ). By definition, C∞(ΣΩ)
consists of smooth, bounded functions on Ω.

One can show as in [1] that there exists a smooth manifold with corners ΣΩ,
canonically associated to Ω, such that C∞(ΣΩ) consists of the smooth function on
ΣΩ. The relevant properties of the function space C∞(ΣΩ), especially in relation to
the Babuška–Kondratiev spaces Km

a (Ω) will be discussed in the general framework
of domains with a polyhedral structure in Section 5.

3. Domains with polygonal and polyhedral structures

In this section, we shall introduce the class of domains Ω with polyhedral struc-
ture and will extend to this class of spaces the definitions of the weight functions
ρA, r̃e, and rΩ, as well as the definition of the space C∞(ΣΩ) ⊂ C∞(Ω).

The class of domains with a polyhedral structure is a class of domains that
extends the class of polyhedral domains. The more general class of domains with a
polyhedral structure is needed in order to be able to deal with domains with cracks
(or slits) and with mixed boundary conditions when Dirichlet boundary conditions
are used on a part of a face and Neumann (or natural) boundary conditions are
used on the remaining part of that face.

3.1. Domains with a polygonal structure. The definition of a “domain with a
polyhedral structure” is based on that of a “domain with a polygonal structure.”
Recall that throughout this paper, we shall denote by Bk ⊂ R

k the open unit ball
(disk if k = 2) in Rk and by Sk−1 we shall denote its boundary. Thus S0 = {−1, 1},
S1 is the unit circle, and S2 is the unit sphere.

Definition 3.1. A domain with polygonal structureD in a two dimensional smooth
manifold M is an open subset D ⊂ M together with a distinguished finite subset
V ⊂ ∂D such that, for each x ∈ ∂Ω, we are given a neighborhood V ′

x of x in M
satisfying
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Figure 1. Domains with polygonal structures

(i) there is an open subset ω′
x ⊂ S1, ω′

x 6= S1, not necessarily connected, and a
diffeomorphism φ′x : V ′

x → B2 such that, in polar coordinates (r, θ), we have

φ′x(V ′
x) = {(r, θ), r ∈ (0, 1), θ ∈ ω′

x};

(ii) φ′x(x) = 0;
(iii) if x 6∈ V , then ω′

x consists of one or two intervals of length π .

In this paper, we will mostly need the case when M = R2 or M = S2. We
continue with some simple remarks and some examples.

Remark 3.2. The points in V are called the vertices of D. Note that the set D does
not determine its polygonal structure, because we can always increase the set V .
However, if there is a polygonal structure on D, then the one with the minimum
set of vertices is unique. These are the true vertices of D. The other vertices of D
will be called artificial vertices. The true vertices are the ones for which ω′

x is not
an half circle. The artificial vertices, and polygonal structures in general, are useful
for the study of mixed boundary value problems. Our domains with a polygonal
structure are not required to be bounded or connected.

Here are some examples.

Example 3.3. A polygonal domain (in the usual sense of the term) is a typical
example of a domain with a polygonal structure. It follows from our definition that
each component of ∂DrV is a smooth curve γ without self-intersections such that
γ ⊂ γ ∪V . The curves γ will be called the open sides of D. For example, a domain
with smooth boundary in R2 is a domain with a polygonal structure if we set V = ∅
and the sides are the connected components of the boundary.

See Figure 1 for the pictures of two domains with a polygonal structure. The
true vertices are represented by thick points whereas the artificial vertices are rep-
resented by a cross (i. e., ×).

In order to treat curved domains in three dimensions, we need to introduce the
desingularization ΣD of a domain D with a polygonal structure. In case only
straight faces are considered (i. e., each face is contained in a plane), then we can
replace ΣD with D, and the following construction of ΣD becomes unnecessary.
Let us consider first ω = (a1, b1) ∪ . . . ∪ (ak, bk) ⊂ S1. We define Σω to be the
disjoint union [a1, b1]⊔ . . .⊔ [ak, bk], that is, the disjoint union of the closures of the
intervals comprising ω (by ⊔ we denote the disjoint union). If ω = S1 r {eit}, then
Σω := [t, t+ 2π] ⊂ R.
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We now turn to the construction of ΣD. The main idea is that we separate the
edges of the cracks and, for any vertex x ∈ V ⊂ ∂D, we use the diffeomorphisms
φx = φ′x of Definition 3.1 to attach [0, ǫ)×Σωx to D. More precisely, we first define
∂νD to be the set of inner normal unit vectors. The set ∂νD maps canonically to
∂D r V and the map is one-to-one, except at the crack points, where it is two-to-
one. We define Dν := D∪∂νD. If there are no crack points, then Dν = DrV (we
removed the vertices). Let S be the disjoint union of the sets Dν and [0, ǫ) × Σωx

for x ranging through the set V of vertices of D. We assume that ǫ is chosen
small enough so that the sets φ−1

x ((0, ǫ] × ωx) are disjoint. The map φ−1
x extends

to a continuous map (0, ǫ) × Σωx → Dν . We use φ−1
x to identify the points of

(0, ǫ) × Σωx to their image in D r V . This defines an equivalence relation on the
set S. The quotient set with respect to this equivalence relation is the desired
desingularization ΣD. The space ΣD has a natural structure of a manifold with
corners (of codimension at most two) and we obtain a canonical map

(9) κ : ΣD → D.

In caseD is contained in a plane, we can replace ΣD with D in our considerations
below. The desingularization ΣD was used already in the framework of manifolds
with corners by Melrose [52]. See also [1, 2, 15].

3.2. Domains with a polyhedral structure. We now introduce domains with
a polyhedral structure. The simplest example is that of a convex polyhedron, but
in general we allow curved boundaries and cuts (or cracks).

Recall that a smooth stratification S0 ⊂ S1 ⊂ . . . ⊂ X of a topological space
X is an increasing sequence of closed sets Sj = Sj(X) such that each point of X
has a neighborhood that meets only finitely many of the sets Sj , S0 is a discrete
subset, Sj+1 rSj, j ≥ 0, is a disjoint union of smooth manifolds of dimension j+1,
and X = ∪Sj . A continuous map f : X → Y of stratified spaces is a continuous
map satisfying f(Sj(X)) ⊂ Sj(Y ). If X is a stratified space and Y is a manifold of
dimension k, then X × Y is stratified canonically by Sj+k(X × Y ) := Sj(X) × Y .

If X is a stratified space, we define CX :=
(
[0, 1) ×X

)
/
(
{0} ×X

)
, with strat-

ification Sj+1(CX) being defined as the image of [0, 1) × Sj(X) in CX and with
S0(X) consisting of the point of CX that is obtained by collapsing {0} ×X .

We shall need the following examples of stratified spaces. If ω ⊂ S1 is a disjoint
union of finitely many open intervals, then we stratify ω by S0(ω) = ∂ω and S1(ω) =
ω. Similarly, in two dimension, if D is a domain with a polygonal structure, then
D is given the natural stratification V ⊂ ∂D ⊂ D.

We are now ready to introduce the “domains with a polyhedral structure.”

Definition 3.4. A domain with a polyhedral structure is an open subset Ω ⊂ R
3

together with a smooth stratification ∂0Ω ⊂ ∂1Ω ⊂ ∂2Ω := ∂Ω satisfying:

(i) for each x ∈ ∂Ω, we are given a fixed neighborhood Vx of x in R3;
(ii) for each x ∈ ∂jΩr∂j−1Ω, we are given an open, non-empty subset ωx ⊂ S2−j;
(iii) we are given diffeomorphisms φx : Vx → Bj ×B3−j , φx(x) = 0, such that

φx(Vx ∩ Ω) = {(y, rx′), y ∈ Bj , r ∈ (0, a), x′ ∈ ωx } ≃ Bj × (0, a) × ωx,

with a ∈ (0,+∞];
(iv) if j = 0 (i. e., if x ∈ ∂0Ω), then ωx ⊂ S2 is domain with a polygonal structure;
(v) if j = 1 (i. e., if x ∈ ∂1Ω r ∂0Ω), then ωx is an open subset of S1 with finitely

many components;
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Figure 2. Domains with polyhedral structure

(vi) the inverse of φx extends to a continuous map Bj × Cωx → Ω of stratified
spaces that is a homeomorphism onto its image.

From now on and throughout this paper, Ω ⊂ R3 will be a fixed domain with a
“polyhedral structure” that is either bounded or is an infinite cone (a wedge is a
cone).

The set ∂0Ω consists of the vertices of Ω. The connected components of ∂1Ω\∂0Ω
are the (open) edges of Ω and the connected components of ∂2Ω\∂1Ω are the (open)
faces of Ω. The set ∂2Ωr∂1Ω is the set of smooth boundary points and ∂singΩ = ∂1Ω
is the set of singular boundary points. Our definition is very closely related to that
of Whitney stratified spaces [71].

Although Ω is not necessarily a Lipschitz domain, it can be written as a finite
disjoint union of Lipschitz domains, as shown in the next lemma in the case of a
bounded domain. The same proof applies for an infinite cone or wedge.

Lemma 3.5. Let Ω ⊂ R3 be a bounded domain with polyhedral structure, then there

exist finitely many disjoint Lipschitz domains Ωj such that Ω =
⋃N

j=1 Ωj .

Proof. Clearly, the interior of Ω can be triangulated, that is, divided into a finite
number of tetrahedra with disjoint interiors. We need only cover a neighborhood
of the boundary. By definition, Ω has a finite number of vertices Q and edges
e. Therefore, there exists a finite number of neighborhoods VX of Definition 3.4
that covers ∂Ω. The neighborhoods VX ∩Ω are diffeomorphic images (through the
diffeomorphisms φ−1

X ) of

Bj × [0, a) × ωX , j = 0, 1, 2,

where ωX is a domain with polygonal structure on S2−j. If X is a smooth point,
then j = 2 and ωX = {1} or ωX = {−1, 1}, so that VX ∩ Ω is the disjoint union of
at most two connected Lipschitz domains. If X is a vertex Q, then j = 0 and ωX is
a domain on the sphere S2. We identify B0 with {1}. Using spherical coordinates
(θ, φ) for ωX , it is easy to see that each connected component of VX∩Ω is a Lipschitz
domain, provided 0 < θ < π (for example for a crack, ωX can be S2 with a segment
removed, so that 0 < θ < 2π, and the VX ∩ Ω is the union of two domains). By
splitting the interval (0, 2π) into disjoint subintervals of length less than π , we
again can write VX ∩ Ω as a finite disjoint union of Lipschitz components. Finally,
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if X belong to en edge e, then j = 1 and ωX is an open interval in S1, while we
identify B1 = [−1, 1] Again VX ∩ Ω can be triangulated by construction. �

Remark 3.6. Let Ω be a domain with a polyhedral structure and x ∈ ∂Ω r ∂1Ω.
Then the boundary of Ω is smooth near x. We distinguish two possibilities: Ω is
only on one side of the boundary close to x or Ω is on both sides of the boundary
close to x. We have x ∈ ∂Ω in the first case and x 6∈ ∂Ω in the second case. There
will be one inward unit normal to ∂Ω at x in the first case and two inward unit
normals to ∂Ω at x in the second case. We shall denote by ∂νΩ the set of inward
unit normal vectors to the smooth part of the boundary of Ω and call it the oriented
boundary of Ω. We shall also denote by

(10) κ : ∂νΩ → ∂Ω r ∂singΩ,

the canonical projection from the oriented boundary of Ω to the boundary of Ω.
This map is one-to-one at the points where Ω is on one side of the boundary and
two-to-one at the points where Ω is on both sides of the boundary. An oriented
face of Ω is a connected component of ∂νΩ. Thus an oriented face of Ω is a face of
Ω together with a choice of an inward unit vector. Then we can talk of a unique
outer normal unit vector ν(w) at any point w ∈ ∂νΩ:

ν : ∂νΩ → S2, ν(w) = −w,

(recall that, by definition, w is an inward normal unit vector at the boundary).
As in the case of domains with a polygonal structure, we define the set

Ων := Ω ∪ ∂νΩ

and endow it with the natural topology that makes it a smooth manifold with
boundary (usually non-compact). We have ∂νΩ = ∂Ω r ∂1Ω if Ω has no cracks.

Let D be an oriented (open) face of our fixed domain with a polyhedral structure
Ω. It is not true in general that D is a domain with a polygonal structure, because
there may be no two dimensional manifold containing the closure of D. However,
it is not difficult to check that there exists a domain with a polygonal structure
D′ ⊂M , for some manifold M and a diffeomorphism D → D′. This also allows us
to define ΣD = ΣD′, up to a diffeomorphism.

We need to define ΣD for D an oriented face of Ω for the following reason. The
outer unit normal ν : D → S2 extends by continuity to a smooth function on ΣD.
(It does not extend to a continuous function on D, though.)

4. Differential operators and C∞(ΣΩ)

In this section we introduce the relevant space of functions and differential op-
erators on Ω. It turns out that the space of smooth functions on Ω is too small,
whereas C∞(Ω) is to big for our purposes. We want a space of smooth functions that
is small enough, but contains the analogues of the polar, spherical, and cylindrical
coordinates functions.

4.1. The space C∞(ΣΩ) in general. Let us first recall the diffeomorphisms φx :
Vx → Bj ×B3−j of Definition 3.4 satisfying

φx(Vx ∩ Ω) = {(y, rx′), y ∈ Bj , r ∈ (0, a), x′ ∈ ωx } ≃ Bj × (0, a) × ωx.

Also recall that for j = 0, 1, the sets Σωx were already defined (ωx ⊂ S2−j). For
j = 2, the set ωx consists of one or two points, and then we define Σωx = ωx.
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Finally, given a smooth function f : Ω → R, we shall say that f ∈ C∞(ΣD) if, and
only if, f ◦ φ−1

x extends to a smooth function on Bj × [0, a) × Σωx, for all x.
To better explain this definition, let us fix a vertex Q of Ω and look closer at

the part of the neighborhood VQ close to a fixed edge e that contains Q. Let
ωQ ⊂ S2 be the domain with a polygonal structure introduced in Definition 3.4
(so φQ : VQ ≃ (0, ǫ) × ωQ). Let A be the vertex of ωQ corresponding to the
fixed edge e. Then, according to the definition of 3.1, we can find a diffeomorphism
φA : VA → (0, ǫ)×ωA, ωA ⊂ S1. We denote by (φ, θ) ∈ (0, ǫ)×ωA the corresponding
coordinates. Let ρQ(x) denote the distance from x to Q. Then, in the open set
corresponding to (0, ǫ) × (0, ǫ) × ωA, the condition that f ∈ C∞(ΣΩ) is equivalent
to the fact that f(x, y, z), when written in spherical coordinates (x = ρ sinφ cos θ,
y = ρ sinφ sin θ, and z = ρ cosφ), extends to a smooth function on (ρ, φ, θ) ∈ [0, ǫ)×
[0, ǫ)×ΣωA. (If Ω coincides with a straight polyhedral domain in a neighborhood of
Q, then the diffeomorphisms φQ and φA become the identity, and then we are simply
requiring that f extend to a smooth function of the usual spherical coordinates
(ρ, φ, θ) ∈ [0, ǫ)× [0, ǫ)× [0, α], where ωA = (0, α).) By definition, C∞(ΣΩ) is closed
under addition and multiplication (i. e., it is an algebra).

Let us also notice that if f is smooth in the neighborhood Vx of some x ∈ ∂Ω,
then f ◦ φ−1

x is already a smooth function on closure of the set (0, a) × ωx, and
hence it trivially extends to a smooth function on [0, a) × Σωx.

If U ⊂ Ω is an open set and f : U → R is smooth, we shall say that f ∈ C∞(ΣU)
if it is the restriction of a function in C∞(ΣΩ). The definition of C∞(ΣU) depends
on Ω, although this is not shown in the notation.

4.2. The canonical weight function. As mentioned earlier, we shall need a
canonical weight function rΩ ∈ C∞(ΣΩ) that has the same type of growth as the
function ϑ given by

(11) ϑ(x) := the distance from x ∈ Ω to the singular points of ∂Ω.

The reason we want to replace in some reasonings the function ϑ with rΩ is that
the function ϑ is not smooth enough. (This is the case both in two and in three
dimensions.)

Let us treat first the case of a domain D ⊂ R2 with a polygonal structure, which
is easier. In that case ϑ(x) is the distance from x to the set of vertices of D. The
smoothed version is then defined by

(12) rD(y) =
∏

Q∈V

ρQ(y),

where Q ranges through the vertices of D. In particular, if D is an angle with
vertex A, then rD = ρA. Also, the definition of rD shows that rD/ϑ extends to a
continuous function D → (0,∞).

We now turn to the case of domains in space. Recall that in this paper, Ω ⊂ R3

is a fixed domain with a polyhedral structure that is either bounded or a cone.
Also, recall that ρQ(y) denotes the distance from y to Q. The constructions below
are simpler in the case of straight polyhedral domains, which is the case that is
typically considered in the literature .

Let e be an open edge of Ω. We first want to extend the definition of the function
r̃e of Equation (6) from the case of a convex polyhedral domain to the general case.
For this purpose, we shall assume that either Ω is bounded or that it is a cone
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of the form {rx′, x′ ∈ ω, 0 < r < ∞}, for some domain ω ⊂ S2 with a polygonal
structure, ω 6= ∅, ω 6= S2.

If Ω = {rx′, x′ ∈ ω, 0 < r <∞}, that is, if Ω is a cone that is not a wedge, let A
be the vertex of ω to which e corresponds and let ρω

A(x′) be the euclidean distance
from x′ ∈ S2 to A (measured using straight lines). Then we define

(13) r̃e(rx
′) := ρω

A(x′) (e corresponds to A), x′ ∈ S2.

Note that we do not require ω to be connected. On the other hand, if Ω =
{(r, θ, z), 0 < θ < α} in polar coordinates, that is, if Ω is a wedge with edge e,
then we define r̃e = r, the distance to e.

For a bounded Ω, we want our definition of r̃e to coincide around each vertex
with the definition given above for a cone. Away from the vertices but close to the
edge, we want r̃e to be equivalent to the distance to the edge. Otherwise, we want
r̃e to be smooth and bounded away from zero. This can be achieved easily using a
partition of unity.

We can now define the canonical weight function rΩ by the same formula as for
a convex polyhedral domain, namely

(14) rΩ(y) =
∏

Q

ρQ(y) ×
∏

e

r̃e(y),

where Q ranges through the vertices of Ω and e ranges through the edges of Ω.
These products make sense since we have assumed that Ω is either a cone or a
bounded set. In particular, when Ω = {(r, θ, z), 0 < θ < α} in polar coordinates
(that is, if Ω is a wedge), we have rΩ = r, the distance to the unique edge of Ω. On
the other hand, Ω is a cone with a smooth base and vertex Q, we have rΩ = ρQ.

We next prove that the various functions that we have introduced are in C∞(ΣΩ).

Lemma 4.1. Let Q be a vertex of Ω, then ρQ ∈ C∞(ΣΩ).

Proof. Let (ρQ, x
′), x′(y) = y/ρQ(y) ∈ S2, be the generalized polar coordinates

around Q. Let φQ : VQ → Bj × B3−j = B3 be the given diffeomorphism of

Definition 3.4 (in this case j = 0, because Q is a vertex). Then φ−1
Q extends to a

differentiable map S2×[0, ǫ) → ∂B3
Q(1)×[0, 1), for some small ǫ > 0. Consequently,

ρQ ◦φ−1
Q is differentiable. Finally, let b ∈ Ω, with b 6= Q. Then Q will not belong to

Vb and hence ρQ is smooth on Vb. Consequently, ρQ ◦ φ−1
b extends to differentiable

function on [0, a) × ωQ. �

We also have the following.

Lemma 4.2. Let e be an edge of Ω, then r̃e ∈ C∞(ΣΩ). In particular, rΩ :=∏
e r̃e ×

∏
Q ρQ ∈ C∞(ΣΩ).

For the purpose of the following proof, let us say that two functions f1, f2 : U →
[0,∞), defined on some open subset U ⊂ Ω are equivalent if the quotients f1/f2
and f2/f1 extend to functions in C∞(ΣU), i. e., are restrictions of some functions
in C∞(ΣΩ).

Proof. We shall use ideas and notation that will be used in other proofs as well.
Let φx : Vx → Bj × B3−j be as in definition 3.4. Let Ux := Vx ∩ Ω. Lemma

4.1 tells us that it is enough to show what r̃e ∈ C∞(ΣUx) for all x. (Recall that
C∞(ΣU) denotes the set of restrictions to U of functions in C∞(ΣΩ).) Let φx :
Vx → Bj × {rx′, r ∈ (0, a), x′ ∈ ωx} be as in Definition 3.4.
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Assume first that x = Q is a vertex. Fix spherical coordinates (ρ, θ, φ) in a
neighborhood of an edge e of Ω corresponding to a vertex A of ωx. The vertex Q
then corresponds to ρ = 0 and the edge e corresponds to φ = 0. For x′ in is a
sufficiently small neighborhood of A, r = ρ sinφ is equivalent to re. More precisely,
the quotients re/r and r/re are non-zero, smooth functions of (ρ, θ, φ), for φ small
enough. (For the purpose of later proofs, the set defined by x′ close enough to the
vertices will be denoted W1.)

For x′ away from the edges, we have that rΩ and ρ are equivalent, in the same
sense. Similarly, ρx and ρ are equivalent. It follows that re/ρA and r/ρ = sinφ are
equivalent. Since sinφ is in C∞(ΣUx), it follows that re/ρA is in C∞(Vx). If A is
the only end point of e, then r̃e = re/ρA is in C∞(Vx). Let then B be the other
end point of e. Then ρB is smooth on Vx. Consequently, r̃e := (re/ρA)/ρB is in
C∞(Vx) as well. (For the purpose of later proofs, the set defined by x′ far from the
vertices will be denoted W2.)

Assume now that x is an edge point. This case is slightly easier. Again, let us
chose φx : Vx → B1 × B2 as in definition 3.4. Let (z, r, θ) be the corresponding
cylindrical coordinates (z parametrizes B1 = (−1, 1)). Then re is equivalent to r
on Vx in the same sense as above (their quotients are smooth functions of (z, r, θ)).
Since ρA and ρB are smooth function on Vx, it follows that r̃e := re/(ρAρB) is in
C∞(ΣUx). The case when there are fewer end points is completely similar.

This is enough to complete the proof since there are no restrictions at the smooth
boundary points of ∂Ω. �

Lemma 4.3. Let ϑ(p) be the distance from p to the union of the edges of Ω. Then
there exists C > 0 such that

C−1ϑ(y) ≤ rΩ(y) ≤ Cϑ(y)

for all y ∈ Ω.

Proof. Using the notation and the proof of the previous lemma. Let x be a vertex.
We have seen in the proof of the previous lemma that, up to equivalence, we can
replace rΩ with ρxrωx in each of the sets Vx. In the new coordinate system given
by the diffeomorphism φx, the function ϑ is replaced with a function ϑ′ such that
the quotients ϑ/ϑ′ and ϑ′/ϑ are bounded. We can therefore replace ϑ with ϑ′. But
the quotient ρxrωx/ϑ

′ is homogeneous of degree zero. This reduces the problem to
the case of the domain with a polygonal structure ωx. It is clear then from the
definitions that the quotients rD/ϑ

′ and ϑ′/rD are bounded on ωx ⊂ S2.
The case of an edge point is completely similar. Since away from the edges the

quotients rΩ/ϑ and ϑ/rΩ are continuous and Ω can be covered with finitely many
sets of the form Vx, the proof is complete. �

4.3. Rescaled tangent bundle. For x ∈ Ω, we shall denote by

(15) αx(z) = x+ rΩ(x)(z − x)

the dilation of center x and ratio rΩ(x), where rΩ is the canonical weight. Recall
that ∂νΩ denotes the set of inner normal unit vectors y to Ω and we have a canonical
map κ : ∂νΩ → ∂Ω.

Let us fix a connected component D ⊂ ∂νΩ (i. e., an oriented face of Ω). Let
κ : ∂νΩ → ∂Ω be the canonical projection of Equation (10). Let also TyD be
tangent space to D at y, which we identify with Tx∂Ω, the tangent space of ∂Ω at
x = κ(y). Then the dilation α−1

x of Equation (15) maps TyD to itself. We consider
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the orthogonal projection π̃y of κ(D) onto TyD. We shall denote by B2
y(r), the ball

of radius r and center 0 in TyD.
By πy : D → TyD ≃ R2 we shall denote the composition α−1

x ◦ π̃y ◦κ, the rescaled
projection of D onto its tangent plane (where x = κ(y) as before). We consider
these maps for all faces D of Ω.

Lemma 4.4. Assume Ω is compact. Then there exists r > 0 such that, for all faces
D and all y ∈ D, the rescaled projection πy := α−1

x ◦ π̃y : D → TyD, x = κ(y), is a
diffeomorphism from a small neighborhood of y in D to B2

y(r), the ball of radius r
and center 0 in TyD.

Proof. For every y ∈ D, there exists a small ry > 0 such that the rescaled projection
πy := α−1

x ◦ π̃y : D → TyD is a diffeomorphism from a small neighborhood of x in
D to B2

y(ry). Let us chose for every y ∈ D the largest ry with this property. We
need to show that there exists r > 0 such that ry > r. By continuity, ry is lower
semi-continuous (i. e., the set ry > ǫ is open for every ǫ > 0). It is therefore enough
to show that ry is bounded from below close to the boundary of D.

To this end, let us notice that the property that ry be bounded from below is
invariant under any change of coordinates, even non-linear change of coordinates
(they can change however the lower bound), because Ω is compact. Using the
diffeomorphisms φx of Definition 3.4, we therefore see that we can reduce ourselves
to the case of the dihedral angle

Dα := {(r, θ, z), 0 < θ < α}

or of the cone

Cω := {tx′, t ∈ (0,∞), x′ ∈ ω}.

By Lemma 4.3, we can replace rΩ with ϑ. Then ry = 1 and hence it is bounded
away from 0. This completes the proof. �

The following lemma is very important for our treatment of curved faces.

Corollary 4.5. Assume that Ω is compact. Let π−1
y : B2

r (y) → D be the inverse
of the diffeomorphism of Lemma 4.4. Then, after decreasing r > 0, if needed, the
map χy : B2

y(r) × [0, r) → Ων := Ω ∪ ∂νΩ

χy(z, t) := π−1
y (z) + t rΩ(x)y = π−1

y (z) − t rΩ(x)ν(y), x = κ(y),

defines a diffeomorphism onto a neighborhood Wy of y in Ων such that B2
y(r)×{0}

maps to the boundary ∂νΩ of Ων and B2
y(r) × (0, r) maps to Ω.

Let Hy be the half-space determined by the unit vector y ∈ ∂νΩ. Let D be the
oriented face of Ω containing y. Then ∂Hy = TyD. The set B2

y(r) × [0, r) will be
regarded, in what follows, as a subset of the (closure of) Hy.

4.4. Differential operators. In this subection we introduce the differential oper-
ators that will be used in this paper. We continue to denote by rΩ the canonical
weight function introduced in (14). These constructions are a direct extension of
the results in [1, 2], so we shall omit the proofs that are very close to those in these
two papers.

In this section, by x, y, and z we shall denote the Euclidean coordinates of the
point (x, y, z) ∈ R

3. We shall need the following differentiability properties.
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Lemma 4.6. The functions ∂xrΩ, ∂yrΩ, and ∂zrΩ are in C∞(ΣΩ). If u ∈ C∞(ΣΩ),
then the functions rΩ∂xu, rΩ∂yu, and rΩ∂xu are also in C∞(ΣΩ).

Proof. Using the notation introduced in the proof of Lemma 4.2, it is enough to
prove that the resulting functions are smooth functions of (ρ, θ, φ) on a set of the
form W1, that they are smooth functions of (ρ, x′), x′ ∈ S2, on a set of the form
W2, and that they are smooth functions of (r, θ, z) ∈ [0, a) × ωx × B1 on a set of
the form Vp with p and edge point.

Assume first that we are on a set of the form W1. The equations

r∂x = cos θ cosφ (sinφ∂φ) + cos θ sinφ(ρ sinφ∂ρ) − sin θ ∂θ

r∂x = sin θ cosφ (sinφ∂φ) + sin θ sinφ(ρ sinφ∂ρ) + cos θ ∂θ(16)

r∂z = − sinφ (sinφ∂φ) + cosφ(ρ sinφ∂ρ),

together with r = ρ sinφ, show that ∂xr, ∂yr, ∂zr, r∂xu, r∂yu, and r∂xu are also
in C∞(ΣW1). The result for sets of form W1 then follows from the fact that r and
rΩ are equivalent on W1.

Assume next that we are on a set of the form W2. Let p be an arbitrary point
in W2. Our statement is independent of linear changes of coordinates, so we can
assume that p is on the positive Oz semi-axis. Let us assume first that rΩ = z.
Then ∂xz, ∂yz, and ∂zz are smooth functions, which take care of the first part of our
statement. Next, we have u ∈ C∞(ΣW ) if, and only if, u(x, y, z) = ũ(x/z, y/z, z)
for some smooth function ũ (smooth in the usual sense). Therefore z∂xu, z∂yu,
and z∂zu are in C∞(ΣW ) as well. The result then follows from the fact that ρ and
z are equivalent on W , because then we can replace z with rΩ. Since the point p
was chosen arbitrarily, this completes the proof on a set of the form W2.

For a set of the form Vx, with x an edge point, the proof is completely similar
(but easier) using the relations

r∂x = (cos θ) r∂r − (sin θ) ∂θ

r∂y = (sin θ) r∂r + (cos θ) ∂θ.(17)

�

Let us denote by Diffm
0 (Ω) the differential operators of order m on Ω linearly

generated by differential operators of the form

u(rΩ∂)α := u(rΩ∂x)α1(rΩ∂y)
α2(rΩ∂z)

α3 , |α| := α1 + α2 + α3 ≤ m, u ∈ C∞(ΣΩ).

For m = 0 we agree that Diffm
0 (Ω) := C∞(ΣΩ). We shall denote by Diff∞

0 (Ω) :=⋃
m Diffm

0 (Ω).
We have the following simple, but fundamental result.

Lemma 4.7. Let λ ∈ R and let ∂j and ∂k stand for either of ∂x, ∂y, or ∂z. Then

r−λ
Ω (rΩ∂j)r

λ
Ω − rΩ∂j = λ∂j(rΩ) ∈ C∞(ΣΩ), and [rΩ∂j , rΩ∂k] ∈ Diff1

0(Ω).

The proof of this lemma, as that of the following proposition, are as in [2].

Proposition 4.8. We have Diffk
0(Ω)Diffm

0 (Ω) ⊂ Diffk+m
0 (Ω) and hence Diff∞

0 (Ω)
is an algebra. If P is a differential operator of order m with smooth coefficients,
then rm

Ω P ∈ Diffm
0 (Ω).

In particular,

(18) rm
Ω ∂

α1
x ∂α2

y ∂α3
z − (rΩ∂x)α1(rΩ∂y)α2(rΩ∂z)

α3 ∈ Diffm−1
0 (Ω), |α| = m.
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5. Function spaces on Ω

In this section, we shall introduce and study the Babuška–Kondratiev spaces
Km

a (Ω) and Km
a (∂νΩ) := Km

a (∂νΩ; rΩ) = Km
a (∂νΩ;ϑ). These spaces are weighted

Sobolev spaces with weight given by the canonical weight rΩ, the distance to the
set of edges of Ω, as in Equation (2). Therefore these spaces depend on the choice
of polyhedral structure on Ω. This is significant for the study of mixed boundary
value problems.

5.1. The Babuška–Kondratiev spaces. We define as usual

(19) W k,p,a
BK (Ω) = {u : Ω → R, r

|α|−a
Ω ∂αu ∈ Lp(Ω), for all |α| ≤ k}, k ∈ Z+.

If p = 2, we denote Kk
a(Ω) := W k,2,a

BK (Ω), which coincides with the definition in the
Introduction (Equation 2).

Let D be an oriented face of Ω, then

Wm,p,a
BK (D) = { u : D → R, rk−a

Ω Pu ∈ Lp(D), P a differential operator

of order k ≤ m on D },

m ∈ Z+. We let Kk
a(∂νΩ) :=

⊕
Wm,2,a

BK (Dk) for all faces Dk of Ω. Note that we
require no compatibility conditions for the resulting functions on the faces Dk.

Lemma 4.3, Lemma 4.7, and Equation 18 give immediately the following lemma.

Lemma 5.1. We have Km
a (Ω) = {u, ϑ−aPu ∈ L2(Ω), for all P ∈ Diffk

0(M)}. A

similar result holds for Km
a (∂νΩ) and for W k,p,a

BK (Ω).

Next,Lemma 4.7 and Equation 18 together with a straightforward calculation,
show the following.

Lemma 5.2. The multiplication map Wm,∞,b
BK ×Km

a (Ω) ∋ (u, f) → uf ∈ Km
a+b(Ω)

is continuous. We also have C∞(ΣΩ) ⊂ Wm,∞,0
BK (Ω) and rb

Ω ∈ Wm,∞,b
BK (Ω), and

hence the map Km
a (Ω) ∋ u → rb

Ωu ∈ Km
a+b(Ω) is a continuous isomorphism of

Banach spaces. The same result is true if we replace Ω with ∂νΩ.

From this lemma we obtain right away the following result.

Proposition 5.3. Let k ≥ m. Each P0 ∈ Diffm
0 (Ω) defines a continuous map

P0 : Kk
a(Ω) → Kk−m

a (Ω). The family r−λ
Ω P0r

λ
Ω is a family of bounded operators

Kk
a(Ω) → Kk−m

a (Ω) depending continuously on λ.
Similarly, if P is a differential operator with smooth coefficients on Ω, then

r−λ
Ω Prλ

Ω defines a continuous family of bounded operators Kk
a(Ω) → Kk−m

a−m(Ω).

We define the spaces K−k
a (Ω), k ∈ Z+, by duality. More precisely, let

◦

Kk
a (Ω) be

the closure of C∞
c (Ω) in Kk

a(Ω). Then we define K−k
−a(Ω) to be the dual of

◦

Kk
a (Ω),

the duality pairing being an extension of the bilinear form (u, v) 7→
∫
Ω
uv dx. With

this definition, we can drop the requirement that k ≥ m in Proposition 5.3.
We define K−k

−a(∂νΩ) as the dual of Kk
a(∂νΩ). The spaces Ks

a(∂νΩ), s 6∈ Z will
be defined using partitions of unity.
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5.2. Partitions of unity. We now introduce a smooth partition of unity PΩ on
Ων := Ω∪∂νΩ, where either Ω is a cone or Ω is compact. The partition of unity PΩ

will be constructed out of a uniformly locally finite family of non-negative functions
FΩ by the usual procedure: let g :=

∑
f , f ∈ FΩ, which is defined since the family

FΩ is locally finite. Then we consider the family

(20) PΩ := {f/g, f ∈ FΩ},

which will be defined in our case since g > 0.
We need to consider first the same construction for the case of a domain D ⊂ S2

with a polygonal structure, yielding a uniformly locally finite family FD and then,
by the procedure of Equation (20), a partition of unity PD. Let V ⊂ ∂D be the
set of vertices of D. For each A ∈ V , let φA : VA → B2 be the diffeomorphism of
definition 3.1 and ρA be the distance function to A. Let ψ : R → [0, 1] be a smooth
function such that ψ = 1 on [0, 1] and ψ has support in [−1, 2]. Then for each vertex
we consider the family of functions ψn(y) := ψ(log2 ρA(y) − n), for all values of n
for which these functions are supported in VA. We also consider a smooth partition
of unity ξk of ωA consisting of at least two functions. Let FA := {(ξk ◦ θ ◦φA)ψn}.

If D is in fact an angle with vertex A, then the family FA will suffice. Otherwise,
let F0 be a smooth partition of unity on D defined in a neighborhood of D (we
require that the functions φ ∈ F0 be smooth functions defined on R2 with compact
support that add up to 1 on D). We may assume the family F0 to be finite and
that the supports of the functions in F0 be small enough so that if a vertex A is
in the support of some ψ ∈ F0, then the support of ψ is completely contained in
VA. Then we define FD to consist of all the functions in FA for all A and all the
functions in F0 that are zero in the neighborhood of all vertices.

Lemma 5.4. Assume that D is compact. Then there exists a constant κD > 0
such that no point y ∈ D belongs to the support of more than κD of the functions
ψ ∈ FD.

Proof. It is enough to prove this result for each of the sets FA, because the family
F0 is finite. By refining the partition of unity ξk on the components of ωA ⊂ S1,
we can assume that no more than two supports of the functions ξk overlap (at any
given point). Then, by construction, a point y ∈ VA can belong to at most 6 of the
supports of the functions ψ ∈ FA. �

We will denote by PD the partition of unity associated to the family FD as
explained in the beginning of this subsection (see Equation (20) and the discussion
surounding it). Let rD be the canonical weight function of D, Equation (12).

Lemma 5.5. There exists a constant C > 0 such that

(21) |r
|α|
D ∂αψ(y)| ≤ C for all y ∈ D and all ψ ∈ FD or ψ ∈ PD.

A point y ∈ D belongs to at most κD of the supports of the functions ψ in our
partition of unity PD. Moreover, for any ψ ∈ PD, the support of ψ contains no
vertex, intersects at most one side of D, and has diameter ≤ CrD(y), for any y in
the support of ψ and a constant C independent of ψ.

Proof. Only the estimate (21) needs a proof. In view of Lemma 5.4, it is enough
to prove the statement for ψ ∈ FD. We need only check that (21) holds close to
a vertex Q. Let us fix polar coordinates (r, θ) in a neighborhood W of Q. The
functions rD and r are equivalent in this neighborhood of Q in the usual sense that
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their quotients are in C∞(ΣW ), and hence we can assume that rD = r. Then we

use the fact that (r∂r)
i∂j

θψ are bounded, by construction, and the relations (17),

which allow us to express r|α|∂αψ as a combination of (r∂r)
i∂j

θψ with coefficients
that are smooth functions in r and θ (up to r = 0). �

For a polyhedral domain, we proceed in a similar way. On a set of the form
Bj×(0, a)×ωx, we consider a product type family, coming from a partition of unity
ζk on a neighborhood of Bj , a dyadic (infinite) partition of unity ψn = ψ(log2 r−n)
for r ∈ (0, a), and a partition of unity ξl of ωx. The partition of unity on ωx is
as before: at least two function if ωx is an interval, and a partition of unity of the
form Fωx if ωx is a domain with a polygonal structure. Only the former case must
be considered if Ω is a dihedral angle and only the later case must be considered if
Ω is a cone. Let φx : Vx → Bj × (0, a) × ωx be as in Definition 3.4. This leads to
the family Fx := {(ζk ⊗ φn ⊗ ξl) ◦ φx}, which is a partition of unity subordinated
to the component of Vx corresponding to x. By slightly decreasing the sets Vx, we
can assume that all derivatives of φx are bounded on the closure of Vx.

Assume now that Ω is compact (recall that we always assume this, unless Ω is
an infinite cone or a dihedral angle), then ∂Ω can be covered by finitely many open
sets of the form Vx. We fix such a covering corresponding to a finite set of points
xj ∈ ∂Ω.

As in the case of a polygonal domain D earlier, we now consider a smooth
partition of unity F0 on Ω defined in a neighborhood of Ω. We may assume the
family F0 to be finite and that the support of the functions in F0 be small enough
so that, if an edge e intersects the support of some ψ ∈ F0, then the support of ψ
is completely contained in one of the neighborhoods Vxj . Finally, we let FΩ be the
union of all the sets Fxj and of the set of funtions in F0 that do not intersect the
edges.

Lemma 5.6. Assume that Ω is compact. Then there exists a constant κΩ > 0 such
that no point y ∈ Ω belongs to the support of more than κΩ of the functions ψ ∈ FΩ.

Proof. It is enough to prove this for each of the sets Fx, with x ∈ ∂Ω mapping in
∂Ω to one of the finitely many points xj . Assume x is a vertex and let κx be the
constant bounding the multiplicity of the partition of unity associated to ωx used
in the construction of Fx. Such a constant exists by Lemma 5.4. Then we can take
κ (for Vx) to be 3κx. The proof when x is an edge point is completely similar (in
fact, slightly easier). �

We again see that the family FΩ is locally finite and hence g :=
∑
ψ, ψ ∈ FΩ

is well defined and smooth. By decreasing the supports of the functions in F0,
if necessary, we can assume that g > 0. Then we replace ψ with ψ/g to obtain
a partition of unity that will be denoted by PΩ. Let rΩ be the canonical weight
associated to Ω, Equation (14).

Lemma 5.7. There exists a constant C > 0 such that

(22) |r
|α|
Ω ∂αψ(y)| ≤ C for all y ∈ Ω and all ψ ∈ FΩ or ψ ∈ PΩ.

A point y ∈ Ω belongs to at most κΩ of the supports of the functions ψ in our
partition of unity PD. Moreover, for any ψ ∈ PΩ, the support of ψ intersects no
edge, intersects at most one face of D, and has diameter ≤ CrΩ(y), for any y in
the support of ψ and a constant C independent of ψ.
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Proof. Again, we need only prove the estimate (22). In view of Lemma 5.6, it is
enough to prove the statement for ψ ∈ FΩ. Let x ∈ ∂Ω map to one of the finitely
many fixed points xj in ∂Ω. If x is not a vertex, the proof is the same as that of
Lemma 5.5.

Assume now that x is a vertex. Let φx : Vx → Bt ×B3−t be the diffeomorphism
of Definition 3.4. Since all the derivatives of φx (for all x) are bounded on the
closure of Vxj , we can replace the function ψ with ψ ◦φ−1

x = ζk ⊗φn⊗ξl. Moreover,

on W := (0, a) × ωx, the function rΩ ◦ φ−1
x and ρrωx(x′) are equivalent (i. e., their

quotients are in C∞(ΣW )). We can therefore replace the first function with the
later and assume that r(tx′) = trD(x′). We can also assume that Ω is the cone
C := {rx′, r ∈ (0,∞), x′ ∈ ωx}.

We shall proceed as in the proof of Lemma 4.6. Let us first fix spherical coor-
dinates y = ρx′ = (ρ, θ, ϕ) in a neighborhood of an edge e of Ω corresponding to a
vertex A of ωx. The vertex x then corresponds to ρ = 0 and the edge e corresponds
to ϕ = 0. For x′ is a sufficiently small neighborhood of A, r = ρ sinϕ is equivalent
to rD. We then use Equation (16) that expresses r∂x, r∂y , and r∂z in spherical
coordinates to see that (r∂)αψ is bounded uniformly.

Finally, let us assume that our point y = ρx′ ∈ C := {rx′, r ∈ (0,∞), x′ ∈ ωx}
is such that x′ is away from the vertices. Then, as in the proof of Lemma 4.6, we
introduce a coordinate system with x′ in the direction of the positive axis. �

5.3. Definition of Sobolev spaces using partitions of unity. As in [1], it is
important to define the spaces Ka

m(Ω) using partitions of unity. Similar construc-
tions were used in [17, 63, 64, 67]. This construction is possible because the spaces
Km

3/2(Ω) are the usual Sobolev spaces associated to the metric r−2
Ω gE , where gE is

the Euclidean metric.
We will need to use the partition of unity PΩ defined in the previous subsection.

The partition of unity PΩ is a particular case of a construction that, in the case of
non-compact manifolds, goes back to Aubin. It was subsequently used by Gromov
and in [1, 63, 64, 67] and other papers.

In order to introduce the spaces Km
a (Ω) using partitions of unity, we shall use

the diffeomorphisms χy defined in Corollary 4.5 for any y ∈ ∂νΩ. Let us fix y
and denote by D the oriented face of Ω containing y. We agree to rotate TyD to
identify it with R2 when computing the Sobolev norms. The same applies to the
half space Hy defined by y (this half space has TyD as a boundary and y as an inner
unit normal vector. These identifications are not unique, but differ by orthogonal
transformations that do not change the Sobolev norms.

Let J be the set of indices j such that the support of ψj intersects ∂νΩ. Let
us chose a point yj in the support of ψj for each j. If j ∈ J , then we shall chose
yj ∈ ∂νΩ. We can assume that the supports of the functions ψj are small enough
so that they are contained in the range Wyj of the diffeomorphism χyj of Corollary
4.5.

We let xj = κ(yj). We shall denote by θj := ϑ(xj) and define αj(x) = αxj (x) :=
θj(x−xj)+xj the dilation of ratio θj and center xj , where ϑ is the distance to the
edges of Ω. Also, we let χj = χyj and Hj = Hyj .
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We are now in a position to characterize the spaces Ka
m via partition of unity.

(Note the half spaces Hi below.)

(23) νm,a(u)2 :=
∑

j

θ3−2a
j ‖(ψju) ◦ αj‖

2
Hm

:=
∑

j 6∈J

θ3−2a
j ‖(ψju) ◦ αj‖

2
Hm(R3) +

∑

j∈J

θ3−2a
j ‖(ψju) ◦ χ

−1
j ‖2

Hm(Hj)
.

We agree that ‖(ψju) ◦αj‖Hm(Hj) = ∞ if (ψju) ◦αj 6∈ Hm(R3) (or if (ψju) ◦χ
−1
j 6∈

Hm(Hj), respectively).

Proposition 5.8. We have u ∈ Km
a (Ω), m ∈ Z, if, and only if, νm,a(u) < ∞.

Moreover, νm,a(u) defines an equivalent norm on Km
a (Ω).

For polyhedral domains, this characterization is well-known and the proof is
standand (see [11, Lemma 2.4], [1, 2], or [67]); for m < 0 one also has to check
that both definitions are compatible with duality. We sketch a proof for general
domains with polyhedral structure.

We proceed in the same way to study the spaces Ks
a(∂νΩ), s ∈ R. Let again J

be the set of indices j for which xj ∈ ∂Ω. We set

(24) µs,a(u)2 :=
∑

j∈J

θ2−2a‖(ψju) ◦ χ
−1
j ‖2

Hs(∂Hj)
, s ∈ R+.

Then we have an analogous description of the spaces Ks
a(∂νΩ), s ∈ Z. We have

u ∈ Ks
a(∂νΩ) if, and only if, µs,a(u) < ∞. Moreover, µs,a(u) defines an equivalent

norm on Ks
a(∂νΩ), s ∈ Z. Therefore, we define

(25) Ks
a(∂νΩ) := {u, µs,a(u) <∞}, s ∈ R,

with the induced norm.
Recall that ∂νΩ is the set of inward unit normal vectors. It is an at most two-

to-one cover of the smooth part of ∂Ω. Its connected components are called the
oriented faces of Ω. Recall that the set Ων := Ω∪∂νΩ is naturally endowed with the
structure of a smooth manifold with boundary ∂νΩ. However, a smooth function on
Ων may not extend to a smooth function on Ωr ∂singΩ, because a smooth function
on Ων may have different limit values at the crack points, depending on the side
from which we approach these points.

Let S ⊂ ∂Ω be a union of oriented faces D of Ω. Then we let

Km
a (S) := ⊕D⊂SK

m
a (D), D ⊂ S, D an oriented face.

Let ∂NΩ ⊂ ∂νΩ and ∂DΩ ⊂ ∂νΩ be a unions of oriented faces of Ω such that
∂NΩ ∩ ∂DΩ = ∅. The proof of this result is as in [1, 2].

Theorem 5.9. The space C∞
c

(Ων) is dense in Km
a (Ω), m ∈ Z+. Then the restric-

tion to ∂DΩ extend to a continuous, surjective map

Km
a (Ω) ∋ u→ u|∂DΩ ∈ K

m−1/2
a−1/2 (∂DΩ)

for m ≥ 1. The kernel of this map is the closure of C∞
c

(Ων r ∂DΩ) in Km
a (Ω).
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6. The boundary value problem

Let P be a second order operator on Ω and Lk be a boundary operator on the
face Dk of Ω, which is either the restriction (Dirichlet) of the Neumann operator
DP

ν associated to P , defined for each k in Equation (29) below. We assume that P
and Lk have smooth coefficients that extend to smooth functions in a neighborhood
of Ω.

We will prove several regularity and well-posedness results for the boundary
value problem

Pu = f in Ω, Lku = gk on Dk.

These results hold under different types of additional assumptions on P and on
the boundary operators Lk. We begin this section by formulating these various
additional assumptions on P , L, and Ω, in increasing generality. As usual, we
concentrate on domains Ω ⊂ R3 with polyhedral structure.

Recall that we are assuming Ω to be bounded or a cone. Some of these result
extend to the more general case when Ω has a finite covering with neighborhoods
of the form Vp.

6.1. The three types of assumptions on P and Lk: an informal statement.

In addition to assuming that P is a second order operator with smooth coefficients
on Ω and Lk is Dirichlet or Neumann, we shall consider increasingly stringent
assumptions on the operator P and the boundary operators Lk. We shall mostly
consider the following three conditions, which we formulate informally first:

• The regularity upon freezing the coefficients assumption: P is uniformly el-
liptic and at any point of ΣDk the pair (P ;Lk) satisfies an Hm+1–regularity
estimate on the half-space determined by that point;

• The coercivity assumption: P is a second order operator, the boundary
conditions are the natural (i. e., Neumann) boundary conditions on ∂NΩ
and the Dirichlet boundary conditions on ∂DΩ := ∂Ω r

(
∂NΩ ∪ ∂singΩ

)
,

and the Dirichlet form BP associated to P satisfies the following G̊arding
inequality

(26) BP (u, u) ≥ C1‖u‖
2
K1

1(Ω) − C2‖r
−1
Ω u‖2

L2(Ω)

for all u satisfying Dirichlet boundary conditions on ∂DΩ and some con-
stants C1 > 0, C2 independent of u;

• The “positivity assumption”: the operators P and Lk satisfy the same con-
ditions as in the “coercivity assumption” and, in addition, the form BP is
positive-definite, that is, (26) holds with C2 = 0.

We shall prove full regularity in the space Km
a (Ω), m ≥ 1 and any a ∈ R,

under the regularity upon freezing the coefficients assumption. Then we show
that the coercivity assumption implies the regularity upon freezing the coefficients
assumption. Clearly, the positivity assumption is then the strongest, and we shall
establish a well-posedness result under this assumption (positivity), provided |a| <
η, for some small enough η > 0.

In the next subsection, we shall explain in detail these assumptions. We begin
by fixing notation and by making some preliminary remarks.
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6.2. The form of the operator. Let Dk be the faces of Ω. We shall consider a
differential operator P : C∞

c (Ω)µ → C∞
c (Ω)µ. Thus, for µ > 1, we obtain a system.

Let P = [Ppq], 1 ≤ p, q ≤ µ, be the matrix notation for P , with

(27) Ppq = −
3∑

i,j=1

∂ja
ij
pq∂i +

3∑

i=1

bipq∂i + cpq.

We assume that all the coefficients of the differential operators Ppq are smooth real

valued functions in x ∈ Ω (that is, these coefficients extend to smooth functions
in a neighborhood of Ω). Our results also extend to some operators with complex
coefficients, but that is not needed for the case of the elasticity operator, which our
main interest. We also assume, for simplicity, that aij

pq = aji
pq. We shall denote by

BP (u, v) the bilinear form:

(28) BP (u, v) :=

∫

Ω

aij
pq∂iup∂juqdx+

∫

Ω

bipq∂iupuqdx+

∫

Ω

cpqupuqdx,

1 ≤ p, q ≤ µ, 1 ≤ i, j ≤ 3, where Einstein’s summation convention (summation over
repeated indices), was used. We will also denote by DP

ν the Neumann operator
associated to P :

(29) (DP
ν u)p := νia

ij
pq∂juq,

where ν = (νi) is the outer unit normal vector to ∂Ω. Then, P , BP , and DP
ν are

related as usual by the following divergence formula.

Lemma 6.1. We have (Pu, v)L2(Ω) = BP (u, v) − (DP
ν u, v)L2(∂νΩ) for any real

valued u ∈ H2(Ω)µ and v ∈ H1(Ω)µ.

Proof. We partition Ω into a finite number of disjoint Lipschitz domains by Lemma
3.5, to which the usual Gauss-Green formula applies [51, 72]. �

A typical example is P = −∆, in which case BP (u, v) :=
∫
Ω ∇u · ∇vdx and

DP
ν u = ∂νu (normal derivative).

6.3. The boundary conditions. We assume that, for any oriented face Dk of our
polyhedral structure on Ω, we are given mk ∈ {0, 1}. We then let

(30) Lk : C∞(Ω)µ → C∞(Dk)µ

to be Lk(u) = u|Dk
, if mk = 0, and Lk(u) = DP

ν u, if mk = 1. For notational
simplicity, we shall assume that m1 = . . . = mr = 1 and mr+1 = . . . = mN = 0.

We shall denote by ∂NΩ the union of the open oriented facesDk for whichmk = 1
and by ∂DΩ the union of the open faces Dk for which mk = 0. Then we shall denote
Ks

a(∂NΩ) := ⊕mk=1Ks
a(Dk) and, similarly, Ks

a(∂DΩ) := ⊕mk=0Ks
a(Dk).

The operator P and the boundary conditions Lk give rise, for any m ≥ 1 and
any a ∈ R, to continuous, linear maps

(31) [P ;Lk]m : Km+1
a+1 (Ω)µ → Km−1

a−1 (Ω)µ ⊕
(⊕

k

K
m+1/2−mk

a+1/2−mk
(Dk)µ

)

=: Km−1
a−1 (Ω)µ ⊕K

m−1/2
a−1/2 (∂NΩ)µ ⊕K

m+1/2
a+1/2 (∂DΩ)µ,

[P ;Lk]m := (Pu,L1u, . . . , LNu) = (Pu,DP
ν u|∂NΩ, u|∂DΩ).
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In order to deal also with the weak formulation of our boundary value problems,
we will need to consider the map [P ;Lk]m for m = 0 as well. This is achieved as
follows. Let

(32) Ha := {u ∈ K1
a+1(Ω)µ, u = 0 on ∂DΩ}.

The bilinear form BP defines a continuous, linear map B∗
P : K1

a+1(Ω)µ → H∗
−a by

the equation

(33) 〈B∗
Pu, v〉 := BP (u, v).

This allows us to define

(34) [P ;Lk]0 : K1
a+1(Ω)µ → H∗

−a ⊕K
m+1/2
a+1/2 (∂DΩ)µ,

[P ;Lk]0(u) := (B∗
P (u), u|∂DΩu), a ∈ R.

Then [P ;Lk]m extends [P ;Lk]m+1 for all m ≥ 0. For m ≥ 1 this is directly seen
from the definition. For m = 0, the meaning in which [P ;Lk]0 extends [P ;Lk]1 is
the following. Let us define

nat : K0
a+1(Ω)µ ⊕K

1/2
a−1/2(∂NΩ)µ → H∗

−a

by nat(f, u)(v) =
∫
Ω fvdV +

∫
∂Ω uvdS for any v ∈ H−a. The extension of nat to

a map K0
a+1(Ω)µ ⊕K

1/2
a−1/2(∂NΩ)µ ⊕K

3/2
a+1/2(∂DΩ)µ → H∗

−a ⊕ K
1/2
a+1/2(∂DΩ)µ with

still be denoted nat (instead of nat⊕ id). Then nat is continuous and Lemma 6.1
gives

nat ◦ [P ;Lk]1 = [P ;Lk]0.

If u ∈ K1
a(Ω) is such that B∗

P (u) = nat(f, g), then we shall write Pu = f ,
DP

ν u = g.
We shall write (P,Lk) when we refer to the pair consisting of P and a fixed Lk

(for instance, in the regularity condition upon freezing the coefficients). On the
other hand, we shall write {P ;Lk} when we refer to the family consisting of P
and all boundary conditions Lk (for instance, in Equation (31) and in the following
definition).

Definition 6.2. We say that {P ;Lk} satisfies a regularity estimate on Km+1
a+1 (Ω)

(or, simply, that {P ;Lk} is Km+1
a+1 –regular), m ≥ 1, if there exists C > 0 such that

(35) ‖u‖Km+1
a+1 (Ω) ≤ C

(
‖Pu‖Km−1

a−1 (Ω) +
∑

k

‖Lku‖Km+1/2−mk
a+1/2−mk

(Dk)
+ ‖u‖Km

a+1(Ω)

)
,

for all u ∈ K1
a+1(Ω). For m = 0, we require instead

(36) ‖u‖K1
a+1(Ω) ≤ C

(
‖B∗

P (u)‖H∗

−a
+ ‖u|∂DΩ‖K1/2

a+1/2
(∂DΩ)

+ ‖u‖K0
a+1(Ω)

)
.

Remark 6.3. This definition shall be understood in the sense that the undefined
terms are taken to be ∞. More precisely, assume that u ∈ K1

a+1(Ω), Pu ∈ Km−1
a−1 (Ω),

and Lku ∈ K
m+1/2−mk

a+1/2−mk
(Dk) for each oriented face Dk of Ω. Our definition then

states that u ∈ Km+1
a+1 (Ω) and satisfies Equation (35). All the relations similar to

Equation (35) will be understood in this sense in what follows.
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Remark 6.4. Suppose that {P ;Lk} satisfies a regularity estimate on Kj+1
a+1(Ω), 0 ≤

j ≤ m, then Equation (35) together with its analogue for m = 0 and the continuity
of the map nat show, by induction, that there exists C > 0 such that

‖u‖Km+1
a+1 (Ω) ≤ C

(
‖Pu‖Km−1

a−1 (Ω) +
∑

k

‖Lku‖Km+1/2−mk
a+1/2−mk

(Dk)
+ ‖u‖K0

a+1(Ω)

)
,

for all u ∈ K1
a+1(Ω) (the last term was replaced with a weaker one).

If Ω is a smooth domain and the family Lk reduces to a single boundary condition
L (with only Dirichlet or only Neumann boundary conditions), we shall simply say
that (P,L) = (P,Lk) satisfies a regularity estimate on Hm+1(Ω) if {P ;Lk} satisfies
a regularity estimate on Km+1

a (Ω) = Hm+1(Ω). (In this case the weight is 1, so the
spaces Km+1

a (Ω) are independent of a.) Then (P,L) satisfies a regularity estimate
on Hm+1(Ω) if, and only if, there exists a constant C > 0 such that

(37) ‖u‖Hm+1(Ω) ≤ C
(
‖Pu‖Hm−1(Ω) + ‖Lu‖Hm+1/2−mL(∂νΩ) + ‖u‖Hm(Ω)

)
,

for all u ∈ Hm+1(Ω) [45, 66]. In this paper, this condition will be used for Ω = R
3
+

with the usual (Euclidean) metric. (The term “coercive estimate” is often used
instead of our term, “regularity estimate.” We feel however that the term “coercive”
is overused, and hence we prefer “regularity estimate” for our paper.)

Definition 6.2 and Proposition 5.3 allow us to make the following simple remark.

Remark 6.5. The condition that {P,Lk} satisfy a regularity estimate on Km+1
a+1 (Ω) is

independent of perturbations of P of the form r2−k
Ω Q, with Q a differential operator

with smooth coefficients of order k = 0, 1. In particular, the condition that {P,Lk}
satisfy a regularity estimate on Km+1

a+1 (Ω) is independent of a.

6.4. The “regularity upon freezing the coefficients” assumption. Recall
that ∂νΩ, the oriented boundary of Ω, is the set of inner normal unit vectors to
the smooth part of the boundary of Ω. In particular, we have a natural map
κ : ∂νΩ → ∂Ω ofEquation (10), which assigns to a normal unit vector y its starting
point. This map is one-to-one at the points where Ω is on only one side of the
boundary, and two-to-one otherwise. The identity map ν : ∂νΩ → S2, ν(y) = −y,
extends to a smooth map ν : ΣD → R3 for any oriented face D of Ω. The map κ
also extends to the continuous map κ : ΣD → D ⊂ Ω defined in Equation (9).

Let Dk ⊂ ∂νΩ be an arbitrary oriented face of Ω and ν : Dk → S2 be the outer
unit normal function. Then ν extends to a smooth function ΣDk → S2. This allows
us to associate to each y ∈ ΣDk the half-space Hy ⊂ R

3 with outer unit normal
vector ν(y) = −y and the Neumann operator DP

ν(y) by the formula (29). We then

obtain the boundary differential operator

Lky : Hm+1(Hy) → Hm−1/2−mk(∂Hy),

Lkyu = u|∂Hy , if mk = 0, and Lkyu = DP
y = DP

ν(y)u if mk = 1. The norms on

the Sobolev spaces on Hy and on ∂Hy are determined by the Euclidean structure

on R3 ⊃ Hy. Let κ : ΣDk → D be the canonical map as above and x = κ(y). As
before, by freezing the coefficients of P at x and dropping the lower order terms,
we obtain the operators Py = Px, x = κ(y), for any y ∈ ΣDk. (Unlike Hy and Lky,
the operators Py depend only on x = κ(y).)
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Recall that P is called uniformly elliptic if there exists a constant CP > 0 such
that

(38) ‖(ζp)‖ ≥ CP ‖(ηq)‖,

where ζp := aij
pq(x)ξiξjηq, x ∈ Ω, ‖ ‖ is the norm on Rµ, (ξi) is an arbitrary vector

in R
3 and (ηp) is an arbitrary vector in R

µ. Similarly, P is called uniformly strongly
elliptic if there exists a constant CP > 0 such that

(39) aij
pq(x)ξiξjηqηp ≥ CP

∑

q

η2
q ,

where x ∈ Ω, (ξi) is an arbitrary vector in R
3 and (ηp) is an arbitrary vector in R

µ.

Definition 6.6. Let Ω be a domain with a polyhedral structure. We say that
{P ;Lk} satisfies the regularity assumption upon freezing the coefficients if P is
uniformly elliptic and, for any m ∈ Z+, any k, and any y ∈ ΣDk, the pair (Py, Lky)
satisfies a Hm+1(Hy)–regularity estimate.

In other words, {P ;Lk} satisfies the regularity assumption upon freezing the
coefficients if P is uniformly elliptic and, for any m ∈ Z+, any k, and any y ∈ ΣDk,
there is Cy > 0 such that

(40) ‖v‖Hm+1(Hy) ≤ Cy

(
‖Pyv‖Hm−1(Hy)+

‖(Lkyu)v‖Hm+1/2−mk (∂Hy) + ‖v‖Hm(Hy)

)
,

for all v ∈ H1(Hy).
Recall the diffeomorphism χy : B2

y(r) × [0, r) → Wy ⊂ Ων := Ω ∪ ∂νΩ of

Corollary 4.5, B2
y(r) × [0, r) ⊂ Hy, the closed half-space determined by the vector

ν(y) = −y. We define the Sobolev spaces on Hy and Ty∂
νΩ = ∂Hy using the

Euclidean structure (metric) on these spaces.
The following lemma is crucial for proving our regularity results in the Km

a –
spaces.

Lemma 6.7. Assume that Ω is compact and that the family {P ;Lk} satisfies the
regularity assumption upon freezing the coefficients. Then there exists CP > 0
independent of y such that

‖u ◦ χy‖Hm+1(Hy) ≤ CP

(
rΩ(y)2‖(Pu) ◦ χy‖Hm−1(Hy)+

rΩ(y)mk‖(Lku) ◦ χy‖Hm+1/2−mk (∂Hy) + ‖u ◦ χy‖Hm(Hy)

)
,

for any y ∈ Dk and any u with support in Wy := χy

(
B2

y(r) × [0, r)
)
.

Proof. The diffeomorphism χy : B2
y(r) × [0, r) → Wy ⊂ Ων of Corollary 4.5 allows

us to define a second order differential operator Qy on B2
y(0; r) × (0, r) and the

boundary condition My by the formulas

Qy(u ◦ χy) := rΩ(x)2(Pu) ◦ χy and My(u ◦ χy) := rΩ(y)mk(Lku) ◦ χy,

where x = κ(y).
The family Qy depends continuously on y ∈ ΣDk. Let ξ2 + ζ2 = 1 be two real

valued smooth functions with compact support and Q̃y := ξQyξ + ζ∆ζ, which is
defined if ξ = 0 on the complement of B2(0; r) × (0, r). We can also assume that
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ξ = 1 on B2(0; r′) × (0, r′), for some 0 < r′ < r. Changing coordinates preserves
regularity, and hence

‖v‖Hm+1(Hy) ≤ Cy

(
‖Q̃yv‖Hm+1(Hy) + ‖Myv‖Hm+1/2−mk (∂Hy) + ‖v‖Hm(Hy)

)
.

The continuity of the family (Q̃y,My) shows that Cy is lower semi-continuous. Since
ΣDk is compact, if follows that Cy is bounded from below by a constant C > 0.

The result then follows since Q̃y(u ◦ χy) = rΩ(x)2(Pu) ◦ χy and My(u ◦ χy) =
rΩ(y)mk(Lku) ◦ χy for u with support in χy(B2

0(r′) × (0, r′)). �

6.5. Coercivity and positivity. We continue to assume that ∂νΩ = ∂NΩ∪∂DΩ,
where ∂NΩ and ∂DΩ are unions of oriented open faces of Ω. (Recall that ∂νΩ =
∂Ω r ∂singΩ if Ω has no cracks.) We also assume that no two adjacent faces can
belong both to ∂NΩ. Furthermore, we assume that ∂DΩ 6= ∅. We set Lu = u = 0
on ∂DΩ and Lu = DP

ν u = 0 on ∂NΩ.

Definition 6.8. We say that the operator P is coercive if there exist positive
constants C1, C2 such that

BP (u, u) ≥ C1‖u‖
2
K1

1(Ω) − C2‖r
−1
Ω u‖2

L2(Ω), u ∈ K1
1(Ω)µ, u = 0 on ∂DΩ,

where BP is the bilinear form of equation (28).

Note that our definition of coercive operators is weaker than the usual definition:
BP (u, u) ≥ C1‖u‖2

H(Ω)
− C2‖u‖2

L2(Ω), u = 0 on ∂DΩ, because of the factor r−1
Ω .

We have the following basic result. Recall that for any oriented face D of Ω, ΣD
denotes the desingularization of that face.

Proposition 6.9. Assume P is coercive. Then P is uniformly strongly elliptic and
satisfies the assumption of regularity upon freezing coefficients with a constant Cy

independent of y ∈ ΣD.

Proof. Let us fix an arbitrary oriented face Dk of Ω and let y ∈ ΣDk. Let also
(Py, Lky) be as in the assumtion of regularity upon freezing the coefficients (Defini-
tion 6.6. Assume first that y ∈ Dk and let χy : B2

x(r)×[0, r) → Ων := Ω∪∂νΩ be the

diffeomorphism defined in Corollary 4.5. Let φ ∈ C∞
c (Hy) and φt(z) = t3/2φ(tz).

We use Proposition 5.8, to conclude that P satisfies regularity upon freezing
coefficients at x for m = 0 first.

Since we are on a half-space, the classical Nirenberg argument (see e.g. [29, 54,
59, 66]) shows that regularity upon freezing the coefficients can be bootstrapped so
it holds for any m > 0. �

Remark 6.10. If P is second order strongly elliptic and the Lk are the restrictions
to the boundary (i. e., Dirichlet boundary conditions), then P satisfies a Garding
type inequality, and therefore regularity upon freezing the coefficients [59, 65, 68].

Other examples of coercive operators are the Laplace operator ∆ and the elastic-
ity operator div(C · ∇) with mixed boundary conditions (with C positive definite).

A stronger condition than coercivity will be needed in general to establish well-
posedness.
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Definition 6.11. We say that the operator P is strictly positive if the bilinear form
Bp is positive-definite on K1

1, that is, there is a γ > 0 such that

BP (u, u) ≥ γ‖u‖2
K1

1(Ω).

For example, if the elasticity tensor C = (Cij
pq) is positive definite on symmetric

matrices, then the elasticity operator div(C ·∇) is positive in the sense of the above
definition, with Dirichlet or Neumann boundary conditions provided that no two
adjacent faces are endowed with Neumann boundary conditions and ∂DΩ 6= ∅. This
result follows by an application of Korn’s inequality, which will be discussed later
(in Section 10.2). The Laplace operator −∆ turns out to be positive under the same
conditions: no two adjacent faces are endowed with Neumann boundary conditions
and ∂DΩ 6= ∅.

7. Proof of the regularity theorem

We include in this section the proof of Theorem 1.1. Its proof is reduced to the
Euclidean case using the partition of unity PΩ of Lemma 5.7 and the diffeomor-
phisms χk of Corollary 4.5.

We continue to assume that P is a second order differential operator as in Equa-
tion (27) and that Lk are either Dirichlet or Neumann boundary conditions. We
also continue to assume that ∂νΩ is written as a disjoint ∂νΩ = ∂NΩ ∪ ∂DΩ, with
∂NΩ and ∂DΩ union of oriented faces of Ω.

Let x ∈ Ω and αx be the dilation with center x and ration rΩ, as defined in
Equation (15). We have the following regularity result.

Lemma 7.1. Assume that Ω is compact. Then there exists a constant C > 0 such
that

‖u ◦ αx‖Hm+1(R3) ≤ C
(
r2Ω‖(Pu) ◦ αx‖Hm−1(R3) + ‖u ◦ αx‖Hm(R3)

)
,

for any x ∈ Ω and any u ∈ C∞
c

(B3(x, ϑ(x)) ∩ Ω), where B3(x, ϑ(x)) ⊂ R3 is the
ball of radius ϑ(x) and center x.

Proof. We have that (Pu) ◦ αx = rΩ(x)−2Qx(u ◦ αx), for

(41) (Qx)p,q = −
3∑

i,k=1

(
aij

pq ◦ αx

)
∂j∂i, 1 ≤, p, q,≤ µ.

Therefore elliptic regularity applied to the operator Qx shows that there exists
Cx > 0 such that

‖u ◦ αx‖Hm+1(R3) ≤ Cx

(
rΩ(x)2‖(Pu) ◦ αx‖Hm+1(R3) + ‖u ◦ αx‖Hm(R3

+)

)
.

Let us chose for each x the least Cx with this property. We only need to show that
we can chose Cx independent of x.

Since ∂l(a
ik
pq ◦αx) = rΩ(x)(∂laik)◦αx, the family of functions {aik

pq ◦αx} depends

continuously on x ∈ Ω in C∞(B2). Hence the family Qx of differential operators
on C∞

c (B2)µ depends continuously on x ∈ Ω. Since the function x → Cx is upper
semi-continuous and Ω is compact, it follows that the function Cx is bounded. This
completes the proof. �
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Theorem 7.2. Let Ω ⊂ R3 be a bounded domain with a polyhedral structure.
Assume that the family {P,Lk} satisfies the regularity assumption upon freezing
the coefficients. Let m ∈ Z, m ≥ 1, and a ∈ R. Assume that u ∈ K1

a+1(Ω)µ. Then
there exists C > 0 such that

‖u‖Km+1
a+1 (Ω) ≤ C

(
‖Pu‖Km−1

a−1 (Ω) +
∑

k

‖Lku‖Km+1/2−mk
a+1/2−mk

(Dk)
+ ‖u‖Km

a+1(Ω)

)
.

In particular, if u ∈ K1
a+1(Ω)µ, Pu ∈ Km−1

a−1 (Ω)µ, and Lku|∂DΩ ∈ K
m+1/2−mk

a+1/2−mk
(Dk)µ

for all oriented faces Dk of Ω then u ∈ Km+1
a+1 (Ω)µ.

Some applications of this result for the Laplace operator with mixed boundary
conditions were given in [12]. By contrast, it is known that in the framework of
the usual Sobolev spaces Hm(Ω), the smoothness of the solution of (1) is bounded
[22, 31, 33, 35, 53].

Proof. By Remark 6.5, it is enough to assume that P is homogeneous of degree 2:

P = −
3∑

i,j=1

aij
pq ∂j∂i, 1 ≤ p, q ≤ µ.

(The boundary conditions are already homogeneous.) We shall extend the coeffi-
cients of P to the whole plane to satisfy the same estimates uniformly on R3. This
extension is possible because the coeffcients of P are assumed defined and smooth
on a neighborhood of Ω,

Recall the partition of unity PΩ = {ψj} of Lemma 5.7. Also, recall that we
have fixed xj in the support of each ψj , with xj in the boundary if possible. Let
θj = ϑ(xj), with ϑ the distance to the set of edges. We denote again by αj the
dilation θjx + xj , and by χj = χyj , xj = κ(yj) the boundary diffeomorphism of
Corollary 4.5, whenever xj ∈ ∂νΩ. By decreasing the supports of the initial choices
defining the partition of unity PΩ, we can assume that the functions uj = (ψj u)◦αj,
if xj ∈ Ω, or (ψj u)◦χj, if xj ∈ ∂νΩ, are all supported in the fixed ball B3 = B(0; 1)
(of radius 1 and center the origin). We implicitly assume that the half space Hj

has been rotated and translated to agree with R3
+.

We next bound the commutator [P, ψj ] using Lemma 5.7. We have [P, ψj ] = Qj,
where Qj is a differential operator of order 1 with coefficients that depend on the

first and second derivatives of ψj , so that θ2j αj , Qjα
−1
j : Hm(B3) → Hm−1(B3) is

uniformly bounded in j. (Here, αj Qjα
−1
j (v) = [Qj (v ◦ α−1

j )] ◦ αj .) Consequently,
for m ∈ Z+,

(42) ‖([P, ψj ]u) ◦ αj‖Hm−1(B3) = ‖(αj Qj α
−1
j )uj‖Hm−1(B3) ≤ C θ−2

j ‖uj‖Hm(B3),

with C independent of j, since {ψj ◦αj} is uniformly bounded in C∞
c (B2) again by

Lemma 5.7. A similar estimate holds for χj Qjχ
−1
j , using also Corollary 4.5.
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If the support of ψj does not intersect the boundary of Ω, we conclude using also
Lemma 7.1 that

θ
3/2−a−1
j ‖(ψj u) ◦ αj‖Hm+1(B3) ≤ C θ

3/2−a−1
j

(
θ2j‖(P ψj u) ◦ αj‖Hm−1(B3)

+ θ2j ‖([ψj , P ]u) ◦ αj‖Hm−1(B3) + ‖u ◦ αj‖Hm(B3)

)

≤ C θ
3/2−a−1
j

(
θ2j ‖(ψjP u) ◦ αj‖Hm−1(B3) + ‖u ◦ αj‖Hm(B3)

)

≤ C θ
3/2−a−1
j

(
θ2j ‖(ψjP u) ◦ αj‖Hm−1(B3) + ‖u ◦ αj‖Hm(B3)

)

≤ C
(
θ
3/2−(a−1)
j ‖(ψj Pu) ◦ αj‖Hm−1(B3) + θ

3/2−a−1
j ‖u ◦ αj‖Hm(B3)

)

with constants C independent of j. By squaring and using (a+ b)2 ≤ 2(a2 + b2) we
obtain

(43) θ1−2a
j ‖(ψj u) ◦ αj‖

2
Hm+1(B3)

≤ C
(
θ
3−2(a−1)
j ‖(ψj Pu) ◦ αj‖

2
Hm−1(B3) + θ1−2a

j ‖u ◦ αj‖
2
Hm(B3)

)
.

On the other hand, if the support of ψj does intersect the boundary of Ω, we can
estimate the commutators of ψj with Lk, similarly to (42), to obtain for mk = 1

θmk‖([Lk, ψj ]u) ◦ χy‖Hm+1/2−mk (R2) ≤ ‖u ◦ χj‖Hm(R3
+).

(For mk = 0 the commutator vanishes, so the analogous equation is trivially true.)
Lemma 6.7 gives

(44) θ
3/2−a−1
j ‖(ψju) ◦ χj‖Hm+1(R3

+) ≤ Cθ
3/2−a−1
j

(
θ2j ‖(P ψju) ◦ χj‖Hm−1(R3

+)+

θmk‖(Lk ψju) ◦ χj‖Hm+1/2−mk (R2) + ‖u ◦ χj‖Hm(R3
+)

)

≤ Cθ
3/2−a−1
j

(
θ2j‖(ψjPu) ◦ χj‖Hm−1(R3

+) + θ2j ‖([P, ψj ]u) ◦ χj‖Hm−1(R3
+)

+ θmk‖(ψjLku) ◦ χj‖Hm+1/2−mk (R2) + θmk‖([Lk, ψj ]u) ◦ χj‖Hm+1/2−mk (R2)

+ ‖u ◦ χj‖Hm(R3
+)

)

≤ Cθ
3/2−a−1
j

(
θ2j ‖(ψjPu) ◦ χj‖Hm−1(R3

+) + θmk‖(ψjLku) ◦ χj‖Hm+1/2−mk (R2)

+ ‖u ◦ χj‖Hm(R3
+)

)

We now observe that rΩ(x) is comparable to θj for x in the support of ψj , so
that combining (43) with (44) (after we similarly square that relation), we conclude
by Proposition 5.8 that

‖u‖Km+1
a+1 (Ω) ≤ C

(
‖P u‖Km−1

a−1 (Ω) +
∑

k

‖Lku‖Km+1/2−mk
a−1 (Dk)

+ ‖u‖Km
a+1(Ω)

)
.

for any u ∈ K1
a+1(Ω) and a constant C that depends on m, a, and Ω. �

Remark 7.3. The last theorem could be improved in the following direction. Some-
times a vertex Q touches a smooth part of the boundary, like in the left picture
of Figure 1. In that case, we could take the canonical weight (rD or rΩ) to be
O(1) on the smooth side of the boundary near Q. This additional generality, to
be treated in a forthcoming paper [44], would make our presentation significantly
more complicated with only minimum gain.
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Proposition 6.9 and Theorem 7.2 give right away the following corollary.

Corollary 7.4. Assume P is coercive and Ω is compact, then P satisfies Km
a (Ω)

regularity for all m ≥ 1 and a ∈ R.

8. Well-posedness for strictly positive operators

Let Ω ⊂ R3 be a domain with a polyhedral structure. We assume that we have
decomposed the oriented boundary ∂νΩ of Ω as a disjoint union ∂νΩ = ∂NΩ∪∂DΩ,
with ∂NΩ and ∂DΩ unions of oriented faces of Ω. In this section, we shall assume
that P is strictly positive (see Definition 6.11).

We shall consider for each non-negative integer m the equation [P ;Lk]m(u) =
(f, gN , gD). For m ≥ 1, this is simply the boundary value problem

(45)





Pu = f ∈ Km−1
a−1 (Ω) in Ω

u = gD ∈ K
m+1/2
a+1/2 (∂DΩ) on ∂DΩ

DP
ν u = gN ∈ K

m−1/2
a−1/2 (∂DΩ) on ∂NΩ.

Recall that for m = 0, [P ;Lk]m(u) is defined in a weak sense. We have the following
result.

Theorem 8.1. Let m ∈ Z+ and let Ω ⊂ R3 be a bounded domain with a polyhedral
structure. Assume P is strictly positive. Then there exists η > 0 such that the
boundary value problem (45) has a unique solution u ∈ Km+1

a+1 (Ω)µ for any f ∈

Km−1
a−1 (Ω)µ, any gD ∈ K

m+1/2
a+1/2 (∂DΩ)µ, any gN ∈ K

m−1/2
a−1/2 (∂NΩ)µ, and any |a| < η.

This solution depends continuously on f , gD, and gN .

If m = a = 0 and gD = 0, this solutions is the solution of the associated
variational problem, which is obtained from equation (33).

Proof. First, let us notice that the surjectivity of the trace map (Theorem 5.9)
allows us to reduce the proof to the case when gD = 0.

Recall that Ha := {u ∈ K1
a+1(Ω), u = 0 on ∂DΩ}. Thus we will look for

solutions u ∈ Ha. The maps [P ;Lk]m of Equations (31) and (34) restrict to maps

Km+1
a+1 (Ω)µ ∩Ha → Km−1

a−1 (Ω)µ ⊕K
m−1/2
a−1/2 (∂NΩ), respectively Ha → H∗

−a for m = 0.

We shall denote all these maps by P̃m,a.
Our assumption that P is strictly positive implies that there exists γ > 0 such

that (
Pu, u

)
= BP (u, u) ≥ γ‖u‖2

K1
1(Ω)

for any u ∈ H0. In particular, BP satisfies the assumptions of the Lax-Milgram
lemma, and hence P̃0,0 = B∗

P : H0 → H∗
0 is an isomorphism. This proves the result

for m = 0 and a = 0.
Recall the function rΩ introduced in 14. The operators r−a

Ω P̃m,ar
a
Ω will all act

on the same space and by Proposition 5.3, these operators depend continuously on
a. Let m = a = 0. Then r−a

Ω P̃m,ar
a
Ω = P0,0 is an isomorphism, and hence we can

conclude that there exists η > 0 such that P̃0,a is an isomorphism for any |a| < η.
We now prove the result for |a| < η and m ∈ Z+ arbitrary. Corollary 7.4 then

gives that

P̃ : Km+2
a+1 (Ω)µ ∩Ha → Km

a−1(Ω)µ
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is surjective. Since this map is also continuous (Proposition 5.3) and injective (from
the case m = 0), it is an isomorphism by the open mapping theorem. The proof is
now complete. �

9. Poincaré ’s inequality and applications to the Laplace operator

In this section we will establish a weighted Poincaré inequality from which we will
obtain solvability of some mixed boundary value problems for the Laplace operator
∆. We continue to assume that Ω ⊂ R3 is a domain with a polyhedral structure,
and we continue to decompose the oriented boundary of Ω into two disjoint sets

(46) ∂νΩ = ∂DΩ ∪ ∂NΩ

with ∂DΩ a union of closed faces. In particular, we assume that ∂DΩ 6= ∅.
Precisely, we will show that P = α2/rΩ(x)2 − ∆, α > 0 large enough, with

arbitrary mixed (Dirichlet or Neumann) boundary conditions, or P = −∆ in the
case that ∂NΩ contains no adjacent faces, satisfy the conditions of Theorem 8.1.
The fact that P is strictly positive will be a consequence of a weighted form of
Poincaré inequality.

9.1. Poincaré inequality. We begin with some prelinaries lemmas that settle the
case of domains with polygonal structure.

With a little abuse of notation, we shall write u(r, θ) := u(r cos θ, r sin θ) for
a function u(x1, x2) expressed in polar coordinates. Below, dx = dx1dx2 . . . dxn,
n = 2 or 3. The following two lemmas are standard. See [12] or [55], for example.

Lemma 9.1. Let C = CR,α := {(r cos θ, r sin θ) ∈ R2, 0 < r < R, 0 < θ < α},
0 < α ≥ 2π. Then

∫

C

|u|2

r2
dx ≤

(
2α

π

)2 ∫

C

|∂θu|2

r2
dx ≤

(
2α

π

)2 ∫

C

|∇u|2 dx

for any u, ∇u ∈ L2(C) satisfying u(r, θ) = 0 if θ = 0, in the trace sense.

Observe that no condition is imposed on u(r, α) in the above lemma and that
we allow α = 2π, but we distinguish the limit θ → 0+ from the limit θ → 2π− in
order to consider domains with cracks.

In [12], a weighted Poincaré inequality for a curvilinear polygon was derived
from Lemma 9.1. In fact, that proof applies to a general domain D with polygonal
structure provided the oriented boundary ∂νD is used in place of the usual boundary
∂D.

Lemma 9.2. Let D ⊂ R2 be a domain with a polygonal structure. Let rD(z) be
the canonical weight function on D and let ∂DD be a non-empty closed subset of
∂νD such that ∂ND := ∂νD \ ∂DD is a union of oriented open sides of D, no two
of which are adjacent. Then there exists a constant CD > 0 such that

‖u‖2
K0

1(D) :=

∫

D

|u(z)|2

rD(x)2
dz ≤ CD

∫

D

|∇u(z)|2dz

for any u ∈ H1(D) satisfying u = 0 on ∂DD.

We will clarify further the need for the oriented boundary in the proof of Poincaré
inequality for domains in R3 in Theorem 9.6.

We will also need a version of Lemma 9.1 in spherical coordinates. The proof
exploits the usual, unweighted Poincaré’s inequality on domains on the unit sphere.
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We include a proof, since domains with polygonal structure are not extension do-
mains for the standard Sobolev spaces when cracks are present. This observation
holds also for domains with polyhedral structure. Recall that a domain Ω ∈ Rn is
called an extension domain for Hs(Ω) if there exists a bounded extension operator
from Hs(Ω) to Hs(Rn) (see e.g. [72]).

For simplicity, we state and prove Poincaré’s inequality for planar domains in
R2. The same proof applies for domains on the sphere, where ∇ is to be intended
as the covariant derivative.

Lemma 9.3. Let D ⊂ R2 be a connected, compact domain with polygonal structure.
Let u ∈ H1(D) be such that u ≡ 0 in trace sense on a set A of positive measure in
∂D. Then, there exists a positive constant c = cD independent of u, such that

(47) ‖u‖L2(D) ≤ cD ‖∇u‖L2(D).

Proof. We begin by establishing a version of Rellich’s Theorem for domains with a
polygonal structure that will be used in the course of the proof, that is, we show
that the imbedding H1(D) →֒ L2(D) is compact. To this effect, we write D as a
finite union of Lipschitz domains D1, . . . , DN , following Lemma 3.5. Let {un} ⊂
H1(D), ‖un‖H1(D) ≤ 1, ∀n. On each subdomain Dj, Rellich’s Theorem applies.
Therefore, by a diagonal argument, we can construct a subsequence unk

such that
its restriction to Dj converges to a function uj strongly in L2(Dj), j = 1, . . . , N .
By the uniqueness of the limit, uj = uk on Dk ∩ Dj, so that the uj extend to a
function u on D such that unk

→ u strongly in L2(D) as k → ∞.
Next, we let A = {u ∈ H1(D), u|A ≡ 0}. By changing the trace of u on sets of

measure zero in ∂D, we can always set u(x) = 0, ∀x ∈ A. Assume by contradiction
that (47) does not hold. Then, for each n ∈ N, there exists un ∈ A, ‖un‖H1(D) = 1,
such that

(48) ‖∇un‖L2(D) ≤
1

n
‖un‖L2(D) ≤

1

n
.

By the Banach-Alaoglu Theorem, there exists a subsequence unk
converging weakly

to u in H1(D). In particular, ∇unk
→ ∇u weakly in L2(D). By Rellich’s Theorem,

unk
→ u strongly in L2(D). From (48), it follows then that ‖∇unk

‖L2(D) must

converge to 0. Therefore, ∇u = 0 in L2(D), so that u is constant in D. As
‖un‖H1(D) = 1 by construction, ‖u‖L2 6= 0. Finally, since the trace operator

is weakly continuous in H1, we must also have u|∂D = lim
k→∞

unk
|∂D weakly in

L2(∂D). In particular, u|A ≡ 0. But u ∈ H1(D) and constant on D, hence u ≡ 0
on the whole of D, a contradiction. �

We can now state and prove our last preliminary lemmas. We will write x =
(ρ, x′), x′ ∈ S2 = ∂B3, in spherical coordinates in R3, and again with abuse of
notation set u(ρ, ω) = u(x1, x2, x3). Recall that the canonical weight is comparable
to ρ near a vertex away from any edge, and it is comparable to the distance to the
edge close to it. We address these cases in two separate lemmas.

Lemma 9.4. Let ω be a domain with polygonal structure on the unit sphere. Let
C = CR,ω = {(ρ, x′), 0 < ρ < R, x′ ∈ ω}. Then, if u, ∇u ∈ L2(C), and u(R,ω) = 0
on a subset of positive measure on ∂ω in trace sense, then

∫

C

|u|2

ρ2
dV ≤ C

∫

C

|∇x′u(ρ, x′)|2dSdρ ≤ C

∫

C

|∇u(x)|2dV,
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where ∇x′ is the covariant derivative on S2.

Proof. Let (ϕ, θ) be spherical coordinates on ω. Then, the standard Poincaré in-
equality on the sphere gives:

∫

ω

|u|2 dS ≤ C

∫

ω

(
u2

ϕ +
1

sin2 ϕ
u2

θ

)
sinϕdϕdθ := C

∫

ω

|∇x′u|2 dS.

Then, we have

(49)

∫

C

|u|2

ρ2
dV =

∫ R

0

∫

ω

|u|2dSdρ ≤ C

∫ R

0

∫

ω

(
u2

ϕ +
1

sin2 ϕ
u2

θ

)
dSdρ

≤ C

∫ R

0

∫

ω

(
u2

ρ +
1

ρ2
u2

ϕ +
1

ρ2 sin2 ϕ
u2

θ

)
ρ2dSdρ = C

∫

C

|∇u(x)|2dV,

since |∇u|2 = u2
ρ +

1

ρ2
u2

ϕ +
1

ρ2 sin2 ϕ
u2

θ. �

We observe that in the most extreme case, ω is the sphere S2 with a segment
removed. Its oriented boundary consists of two copies of this segment, and it is
enough for u to vanish in trace sense on one copy. More precisely, it is enough that
u vanishes on a one-sided, non-tangential approach to the boundary.

We last replace ρ in the above lemma with the canonical weight, which is com-
parable to the distance from the singular set, as it is this function that appears in
the definition of the weighted Sobolev spaces.

Lemma 9.5. Assume that the hypotheses of Lemma 9.4 hold, and assume further
that 0 < R < ǫ, where ǫ is sufficiently small. Then, if rC is the canonical weight
associated to C = CR,ω,

(50) ‖u‖K0
1(C) :=

∫

C

|u|2

r2C
dV ≤ C

∫

C

|∇u(x)|2dV.

Proof. We continue to denote by (ρ, ϕ, θ) spherical coordinates on C. For each ver-
tex A of ω, we construct an open set UA ⊂ C as follows. By the definition of a
domain with polygonal structure, there is an open set VA ⊂ S2 and a diffeomor-
phism φA such that φA(ω ∩ VA) = {(r, θ), r ∈ (0, δ), θ ∈ ̟A}, where ̟A is a
disjoint, finite union of intervals in [−1, 1], and δ is independent of A. We let then
UA = {(ρ, x′), 0 < ρ < R, x′ ∈ ω ∩ VA}, and write U = C \

⋃
A UA. On U , we

observe that C−1 ρ ≤ rC ≤ C ρ for some positive constant C, since ǫ is small, and
use Lemma 9.4:

∫

U

|u|2

rC2

dV ≤ C

∫

C

|u|2

ρ2
dV ≤ C

∫

C

|∇u(x)|2dV.

Next we parameterize each UA by the coordinates (ρ, r, θ), 0 < ρ < R, 0 < r < δ,
θ ∈ ̟A. If ǫ > δ are chosen small enough, then on UA we have C−1 rρ ≤ rC ≤ C rρ,
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with C uniform in A, so that applying Lemma 9.2 to the domain φA(ω ∩ VA)
∫

UA

|u(x)|2

r2Ω
dV ≤ C

∫ R

0

∫

φA(ω∩VA)

|u(ρ, r, θ)|2

ρ2r2
drdθ dρ

≤ C

∫ R

0

∫

φA(ω∩VA)

|∇(r,θ)u|
2

ρ2
drdθ dρ

≤ C′

∫ R

0

∫

ω∩VA

1

ρ2

(
u2

φ +
1

sin2 φ
u2

θ

)
dφdθ dρ

≤ C′

∫ R

0

∫

ω∩VA

[
u2

ρ +
1

ρ2

(
u2

ϕ +
1

sin2 ϕ
u2

θ

)]
dϕdθ dρ

≤ C′

∫ R

0

∫

ω∩VA

|∇u|2 dV.

By summing all the inequality for UA and for U , we finally obtain (50). �

We now turn to the proof of the desired weighted Poincaré inequality in three
dimensions. The proof reduces to the case covered by Lemmas 9.1, 9.4 and 9.5, by
applying the diffeomorphism φp of Definition 3.4.

Again, we denote with ∂DΩ the part of the oriented boundary ∂νΩ with Dirichlet
conditions, and recall that a dihedral angle is a cone in our notation.

Theorem 9.6. Assume that Ω is compact or a cone. Assume also that ∂DΩ 6= ∅
and that ∂NΩ = ∂νΩ \ ∂DΩ is a union of open oriented faces of Ω, no two of which
have an edge in common. Then there exists CΩ, depending only on Ω, such that

‖u‖2
K0

1(Ω) :=

∫

Ω

|u(x)|2

r2Ω
dx ≤ CΩ

∫

Ω

|∇u(x)|2 dx ,

for any u ∈ H1(Ω) that satisfies u = 0 on ∂DΩ.

Proof. The idea of the proof is to cover the domain Ω with a finite number of open

sets Ω̃ on which the integration simplifies and we can reduce our proof to the usual
Poincaré inequality. The result will follow by adding the corresponding inequalities.
Also, by Theorem 5.9 and standard density arguments, we can assume that u is a
smooth function.

We shall write dx = dV = dx1dx2dx3 for the volume element. Also, recall that
rΩ is the canonical weight function, which is comparable to ϑ(x), the distance from
x ∈ Ω to the edges of Ω.

Let us consider the inequality

(51) ‖u‖2
K0

1(
eΩ)

:=

∫

eΩ

|u(x)|2

rΩ(x)2
dV ≤ C

∫

eΩ
|∇u(x)|2 dV, u = 0 on ∂DΩ

for subdomains Ω̃ ⊂ Ω. The statement of the theorem is exactly the inequality

(51) for Ω̃ = Ω. The proof of our inequality for Ω will be obtained by adding the

inequality (51) for suitable subdomains Ω̃. These domains will be either of the form
Vp∩Ω or a single interior domains that is at a positive distance from the edges. On
the domain that is away from the edges, we can use the usual Poincaré inequality.
If Ω̃ = Vp ∩ Ω, we notice that the inequality (51) is preserved under the change of
coordinates φp with constants uniform in p. Vp is the open neighborhood of a point
p ∈ ∂νΩ of Definition 3.4
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Depending whether p is a vertex Q or belongs to an edge e, we denote

ΩQ = φQ(VQ ∩ Ω), Ωe = φp(Vp ∩ Ω).

With abuse of notation, we still denote a point in the transformed space by x =
(x1, x2, x3). By modifying slightly the definition of φp, we can take ΩQ to satisfy
all the hypotheses of Lemma 9.5 uniformly in Q, while Ωe can be characterized in
suitable cylindrical coordinates, by

Ωe = {(r, θ, z), 0 < r < δ, 0 < θ < θe, 0 < z < ze := |e| − 2ǫ},

where |e| is the length of the curve φp(e), and ǫ, δ are chosen small enough uniformly
in e. Moreover, r is the distance to the singular set on Ωe. In these cylindrical
coordinates, the image of the edge e corresponds to the the z-axis (in particular,
r = 0 on e).

For Ω̃Q = φ−1
Q (ΩQ) we use Lemma 9.5. In fact, by hypothesis u = 0 on at least

one side of the oriented boundary ∂νΩ̃Q, so that u ◦φ−1
Q = 0 on on at least one side

of ∂νΩQ. Therefore, (50) holds for ΩQ, and hence for Ω̃Q with uniform constants,
by making a change of variables.

We next prove the inequality (51) for Ω̃e = φ−1
p (Ωe). We write Ωe = Wδ×(0, ze),

where Wδ = {0 < r < δ, 0 < θ < θe} in suitable cylindrical coordinates (r, θ, z).
The hypothesis on ∂Ω\∂DΩ imply that in trace sense u(r, 0, z) = 0 or u(r, θe, z) = 0,
and we can always arrange the coordinate system locally in Ωe so that u(r, 0, z) = 0.

It is also crucial that on Ω̃e, c
−1r ≤ rΩ ≤ Cr, with C uniform in e, since r is exactly

the distance to the singular set on Ωe. By Fubini’s Theorem and Lemma 9.1, we
have:

(52)

∫

eΩe

|u|2

rΩ
dV ≤ CΩ

∫

Ωe

|u ◦ φ−1
p |2

r2
dx1dx2dx3

= CΩ

∫ ze

0

∫

Wδ

|u ◦ φ−1
p |2

r
drdθdz ≤ CΩ

∫ ze

0

∫

Wδ

(
|∂θ(u ◦ φ−1

p )|2

r

)
drdθdz

≤ C′
Ω

∫ ze

0

∫

Wδ

|∇x1,x2(u ◦ φ−1
p )|2 dx1dx2

≤ C′
Ω

∫ ze

0

∫

Wδ

(
|∇x1,x2(u ◦ φ−1

p )|2 + |∂z(u ◦ φ−1
p )|2

)
dx1dx2dz

= C′
Ω

∫

Ωe

|∇(u ◦ φ−1
p )|2dx1dx2dx3 ≤ C′′

Ω

∫

eΩe

|∇u|2dV,

which is exactly (51) with Ω̃e = Ω̃.

Finally, we add the inequalities (52) for all Ω̃ = Ω̃e and the inequalities (50) for

all Ω̃ = Ω̃Q, and the usual Poincaré inequality for

U = Ω \
⋃

e,Q

(ΩQ ∪ Ωe),

with ǫ and δ replaced by ǫ/2,δ/2, where Q ranges over all the vertices and e ranges
over all edges of Ω. This concludes the proof for u smooth, and hence by density
for u ∈ H1(Ω). �

From the above Poincaré type inequalities we obtain the following corollary from
[12].
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Corollary 9.7. Let Ω be a domain with a polyhedral structure and assume that
∂DΩ 6= ∅, that ∂NΩ ⊂ ∂νΩ is a union of open oriented faces of Ω no two of which
have an edge in common. Then the norms ‖ · ‖H1(Ω), ‖ · ‖K1

1(Ω), and the seminorm

| · |H1(Ω) are equivalent on H1
D(Ω) = {u ∈ K1

1(Ω), u = 0 on ∂DΩ}. In particular,

H1
0 (Ω) =

◦

K1
1 (Ω).

Proof. The weighted Poincaré inequality of Theorem 9.6 immediately gives that for
u ∈ H1

D(Ω), ‖u‖K1
1
≤ C |u|H1 ≤ C ‖u‖H1 . The reverse inequality follows observing

that rΩ(x) ≥ 1/α, for some large enough constant α > 0, so that the K1
1 norm is

stronger than the H1 norm. �

9.2. Well-posedness and regularity for the Laplace operator. Let ∆ be
the Laplace operator on R3. Here, we illustrate an application of the results of
the previous sections to the solvability of the mixed boundary value problem (45)
(Pu = f in Ω, u = gD on ∂DΩ and u = gN on ∂NΩ) for P = −∆ and P =
α2/rΩ(x)2 − ∆. Recall that rΩ(x) is comparable to ϑ(x), but rΩ ∈ C∞(ΣΩ).

We first observe that the Laplace operator with Dirichlet or Neumann boundary
conditions satisfies the assumption of regularity upon freezing the coefficients of
Definition 6.6 (see, e.g. [65] Proposition 11.12), and therefore full regularity in
weighted Sobolev spaces follows from Theorem 7.2.

We now set P = α2/rΩ(x)2 − ∆, with α a positive constant such that

(53) α/rΩ(x) ≥ 1, ∀x ∈ Ω,

(in fact, we can always arrange that rΩ ≤ 1) and impose arbitrary mixed (Dirichlet
or Neumann) boundary conditions on the faces Dk of Ω. Then,

BP (u, u) = ‖u/rΩ‖
2
L2(Ω) + ‖∇u‖2

L2(Ω) ≡ ‖u‖K1
1(Ω),

so that P is positive on K1
1(Ω), which correspond in our notation to a = 0.

Next, we set P = −∆ and impose again Dirichlet boundary conditions on ∂DΩ
and Neumann boundary conditions on ∂NΩ, but we assume in addition that ∂NΩ
contains no adjacent faces. Then, from the weighted Poincaré inequality 51 we
obtain that

BP (u, u) = ‖∇u‖2
L2(Ω) ≥ C(Ω) ‖u/rΩ‖

2
L2(Ω) + ‖∇u‖2

L2(Ω) ≡ ‖u‖K1
1(Ω),

that is, P is positive on K1
1(Ω).

Therefore, by applying Theorem 8.1, we obtain solvability of the boundary value
problem (45) on Ka+1

m+1 for any m ≥ 0 and |a| small enough. We summarize this
result in the following theorem.

Theorem 9.8. Let m ∈ Z+ and let Ω ⊂ R3 be a domain with a polyhedral
structure. Let P = α2/rΩ(x)2 − ∆ with arbitrary mixed (Dirichlet or Neumann)
boundary conditions or P = −∆, but such that ∂DΩ 6= ∅ and that ∂NΩ contains no
adjacent faces. Then there exists η > 0 such that the boundary value problem (3) has

a unique solution u ∈ Km+1
a+1 (Ω)µ for any f ∈ Km−1

a−1 (Ω)q, any gD ∈ K
m+1/2
a+1/2 (∂DΩ)q,

any gN ∈ K
m−1/2
a−1/2 (∂NΩ)q,and any |a| < η. This solution depends continuously on

f , gD, and gN .

This result is in contrast to the case of (unweighted) Sobolev spaces Hm(Ω),
for which solvability of the boundary value problem holds only for a finite range
of values of m. For example, if Ω is a polygon in R

2, the Poisson’s equation with
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homogeneous Dirichlet boundary conditions and L2 data admits a solution inH2(Ω)
if Ω is convex, but the solution may fail to be H2 otherwise. For a proof we refer
in the vast literature on the subject to [36] and also to the book by Grisvard [31].

10. A weighted Korn’s inequality and applications to linear

elasticity

The purpose of this section is to highlight the applicability of our main result
Theorem 8.1 to systems of uniformly elliptic operators, specifically those appearing
in linear elasticity. Singular domains, and especially domains with cracks, arise
naturally in elasticity, as a result of large applied stresses.

We first derive a weighted form of Korn’s inequality, which will imply that under
certain conditions on the elasticity parameters, the matrix operator P = div(C ·∇)
of linear elasticity is positive on K1

1(Ω). The assumptions on Ω and its oriented
boundary ∂νΩ of the previous section continue to hold here. We then study the
regularity and solvability of the boundary value problem (45) on Ka+1

m+1(Ω).
We begin by introducing the equations of linear elasticity and the elasticity

tensor.

10.1. Linear elasticity. Linear elastostatics is modeled by the following 3 × 3
system of equations:

(54) (PC u)i :=
3∑

j,k,l=1

∂xj

“
Cijkl ∂xl

uk

”
:= div(C · ∇u)i = fi, i = 1, 2, 3,

for an unknown vector field u = (u1, u2, u3) on Ω, where f are volume forces. For
convenience, throughout this section, we use the convention of summation over
repeated indices.

Above, Ω represents a bounded elastic body in R3 and u is the displacement
at the point x under the elastic deformation of Ω by the given volume forces f .
C = [Cijkl] is a fourth-order tensor field, called the elasticity tensor, with coefficients

Cijkl ∈ C∞(Ω) and symmetries:

Cijkl = Cklij = Cjikl = Cijlk .

The components of C, sometimes referred to as elastic moduli, encode the elastic
response of the medium to deformations. For example, if a material is isotropic,
then C has the simple form:

C
iso
ijkl = λ(x)δijδkl + µ(x)

[
δikδjl + δilδjk

]

with λ, µ the so-called Lamé parameters, and δ is the Kronecker symbol δij = 1 if
i = j and δij = 0 otherwise. In general, there can be up to 21 independent elastic
moduli.

The system (54) is obtained from the laws of balance of energy and momentum
by linearising around an unperturbed or natural state of the elastic body, and
therefore holds in the regime of small deformations. (For a derivation, we refer for
example to [46]). The principal part of PC is the matrix operator

P = C[∂, ∂] = [Cijkl ∂xj∂xk
],

We will consider two types of boundary conditions: Dirichlet or displacement
boundary conditions u = g on ∂DΩ, and natural or traction boundary conditions
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(∂P
ν u)i = (ν · (C · ∇u)i := νj Cijkl ∂luk = (gN )i, i = 1, 2, 3, on ∂ν

N (Ω). The traction
ν · (C · ∇u) is the normal vector component of the stress at the boundary.

Remark 10.1. In domains with cracks, linear elastostatics can model small pertur-
bations around cracks in equilibrium. If the crack is a material surface, and not
just a surface of discontinuity for the displacement and the stress, then the laws
of balance of momentum implies that the traction has to be continuous across the
crack . Therefore, the most physically motivated boundary problems in this case
are transmission problems, which however we do not consider in this paper.

Definition 10.2. The elasticity tensor C is called (uniformly) strongly elliptic if
there is a constant c > 0 such that, for any x ∈ Ω, Cijkl(x)V

iW jV kW l ≥ c|V|2|W|2

for all vectors V,W in the tangent space TxΩ. Similarly, C is called positive-definite
if , for any x ∈ Ω, Cijkl(x)E

ijEkl ≥ 0 for any symmetric two-tensor E = [Eij ] in
T 2

xΩ.

In the isotropic case, C is strongly elliptic if, and only if, µ > 0 and λ+ 2µ > 0,
while C is positive definite if, and only if, µ > 0 and 2µ+3λ > 0. In practice, it is not
too restrictive to assume that C is positive definite, since this assumption implies
that the elastic stored energy function is positive and convex in the strain (see again
[46]). If C is a positive-definite elasticity tensor, then the elasticity operator C[∂, ∂]
with mixed displacement-traction boundary conditions is positive in the sense of
Definition 6.11, provided ∂N (Ω) does not contains two adjiacent faces. This result
is a consequence of Korn’s inequality and will be proved in Lemma 10.5 below.

10.2. A weighted Korn’s inequality. For u ∈ H1
loc(Ω)3, we shall denote by ǫ(u)

the deformation tensor

(55) ǫij(u) := (∂iuj + ∂jui)/2.

We have ǫ(u) := (ǫij(u)) ∈ L2
loc(Ω)9 and set ‖ǫ(u)‖2

L2(Ω) :=
∑

ij

∫
Ω
|ǫij(u)|2dx.

The usual Korn’s inequality states that as a system ǫ(u) is H1- regular (that is,
coercive) or even positive, depending on the boundary conditions. It is in fact a
special case of Gärding inequality for systems.

If ∂Ω is smooth, this result is classical (see e.g., [30], [25], and again [46] with
references therein). We will use here Korn’s inequality for Lipschitz domains [60],
[13].

Proposition 10.3. Let Ω be a connected, bounded, Lipschitz domain and u ∈
H1

loc(Ω)3. There exists C > 0, depending only on Ω, such that

(56) ‖u‖2
H1(Ω) ≤ C

(
‖ǫ(u)‖L2(Ω) + ‖u‖L2(Ω)

)

for all u ∈ H1(Ω)3. Assume ∂DΩ 6= ∅. Then there exists C > 0, again depending
only on Ω, such that

(57) ‖u‖2
H1(Ω) :=

∑

ij

∫

Ω

|∂iuj|
2 dx ≤ C‖ǫ(u)‖2

L2(Ω)

for all u ∈ H1
loc(Ω)3 that satisfy u = 0 on ∂DΩ.

Inequality (57) is referred to as ”first Korn’s inequality”, while (56) is ”second
Korn’s inequality”. Second Korn’s inequality can be equivalently formulated as

|u|H1(Ω) ≤ C‖ǫ(u)‖L2(Ω),
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for all u ∈ H1(Ω)3 that satisfy
∫
Ω
(∂iuj − ∂jui)dx = 0 for all i, j.

Combining Proposition 10.3 with the weighted Poincaré inequality of Theorem
9.6, we obtain the following corollary.

Corollary 10.4. Let Ω be a domain with polyhedral structure. Assume Ω is
compact, ∂DΩ 6= ∅, and ∂NΩ is a union of open faces, no two of which are adjacent.
Then, there exists C = C(Ω) > 0 such that

(58)
‖u‖2

K1
1(Ω) :=

∫

Ω

|u(x)|2

rΩ(x)2
dx+

∫

Ω

|∇u(x)|2 dx+

≤ C ‖ǫ(u)‖2
L2(Ω)

for all u ∈ K1
1(Ω)3 that satisfies u = 0 on ∂DΩ.

Proof. We begin by writing Ω as a finite disjoint union of connected, bounded
Lipschitz domains Ωj , j = 1, . . . , N , as in Lemma 3.5. In each domain Ωj , inequality
(57) holds. Then, from the weighted Poincaré inequality we have:

‖u‖2
K1

1(Ω) ≤ C ‖∇u‖2
L2(Ω)

≤ C ‖u‖2
H1(Ω) =

∑

j

‖u‖2
H1(Ωj)

≤ C̃
∑

j

‖ǫ(u)‖2
L2(Ωj)

= C̃ ‖ǫ(u)‖2
L2(Ω),

since the domains Ωj are disjoint. �

10.3. Solvability and regularity for the elasticity system. In this section, we
apply the weighted Korn’s inequality to study the existence, uniqueness, and reg-
ularity of solutions to the elasticity system (54) with mixed traction-displacement
boundary conditions.

Lemma 10.5. If C is a positive-definite elasticity tensor, the bilinear form BP of
equation (28)

BP (u, v) =

∫

Ω

∇u · C · ∇v dvol =

∫

Ω

C
ijkl(x)∂j ui(x) ∂l uk(x) dx,

is coercive on H1(Ω), more precisely:

(59) BP (u, u) ≥ CΩ ‖ǫ(u)‖2
L2(Ω).

Proof. We fix x ∈ Ω, and let F = (∇u)(x), a 3 × 3 matrix. We denote by E
its symmetric part: E = (∇u(x) + ∇u(x)T )/2, a symmetric matrix. From the
symmetry properties of C and the assumption that C is positive definite, we have

C
ijkl(x)FijFlk = C

ijkl(x)EijElk ≥ c |E|2.

But, by hypothesis c is uniform in x ∈ Ω, so that (59) follows by integrating over
Ω. �

By combining the above lemma with the inequality (58), we immediately have
that then the elasticity operator −C[∂, ∂] with mixed-boundary conditions is posi-
tive in the sense of Definition 6.11, provided no two adjacent faces of Ω have traction
boundary condtions:

BP (u, u) ≥ CΩ ‖ǫ(u)‖2
L2(Ω) ≥ C′

Ω‖u‖
2
K1

1(Ω), u = 0 on ∂DΩ 6= ∅.
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Similarly, by combining the above lemma with the inequality (56) instead, we can
conclude that α2/rΩ(x)2−div(C ·∇), where α satisfies again (53), is positive in the
sense of Definition 6.11, with arbitrary displacement-traction boundary conditions:

α2 ‖u/rΩ(x)‖2
L2(Ω) +BP (u, u) ≥ CΩ ‖ǫ(u)‖2

L2(Ω) + ‖u/rΩ(x)‖L2(Ω)

≥ CΩ ‖∇(u)‖2
L2(Ω) + ‖u/rΩ(x)‖2

L2(Ω) ≤ C′
Ω‖u‖

2
K1

1(Ω).

Above we have used that α2 ‖u/rΩ(x)‖L2(Ω) ≥ ‖u‖L2(Ω) and that the bilinear form

of equation (28) for the operator 1/rΩ(x)2 −div(C ·∇) is exactly ‖u/rΩ(x)‖2
L2(Ω) +

BP (u, u), provided ∂DΩ 6= ∅.
Finally, solvability and regularity for the boundary value problem follows by

applying Theorem 8.1. We summarize these results in the following theorem.

Theorem 10.6. Let m ∈ Z+ and let Ω ⊂ R3 be a domain with a polyhedral
structure. Let C be a positive-definite elasticity tensors. Set P = 1/rΩ(x)2 −
div(C · ∇) with arbitrary mixed (displacement or traction) boundary conditions or
P = − div(C ·∇), but such that ∂DΩ 6= ∅ and that ∂NΩ contains no adjacent faces.
Then there exists η > 0 such that the boundary value problem (3) has a unique

solution u ∈ Km+1
a+1 (Ω)µ for any f ∈ Km−1

a−1 (Ω)q, any gD ∈ K
m+1/2
a+1/2 (∂DΩ)q, any

gN ∈ K
m−1/2
a−1/2 (∂NΩ)q,and any |a| < η. This solution depends continuously on f ,

gD, and gN .
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[11] I. Babuška and V. Nistor. Boundary value problems in spaces of distributions and their

numerical investigation. Work in progress.
[12] Constantin Bacuta, Victor Nistor, and Ludmil T. Zikatanov. Improving the rate of conver-

gence of high-order finite elements on polyhedra. I. A priori estimates. Numer. Funct. Anal.
Optim., 26(6):613–639, 2005.



ELASTICITY 41

[13] James H. Bramble. A proof of the inf-sup condition for the Stokes equations on Lipschitz
domains. Math. Models Methods Appl. Sci., 13(3):361–371, 2003. Dedicated to Jim Douglas,
Jr. on the occasion of his 75th birthday.

[14] S. Brenner and R. Scott. The mathematical theory of finite element methods, volume 15 of
Texts in Applied Mathematics. Springer-Verlag, New York, second edition, 2002.
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