
MULTIPHASE IMAGE SEGMENTATION

VIA MODICA-MORTOLA PHASE TRANSITION

By

Yoon Mo Jung

Sung Ha Kang

and

Jianhong Shen

IMA Preprint Series # 2124

( June 2006 )

INSTITUTE FOR MATHEMATICS AND ITS APPLICATIONS

UNIVERSITY OF MINNESOTA

400 Lind Hall
207 Church Street S.E.

Minneapolis, Minnesota 55455–0436
Phone: 612/624-6066 Fax: 612/626-7370

URL: http://www.ima.umn.edu



Multiphase Image Segmentation via Modica-Mortola Phase

transition

Yoon Mo Jung, Sung Ha Kang, and Jianhong Shen ∗

Abstract

We propose a novel multiphase segmentation model built upon the celebrated phase transition model
of Modica and Mortola in material sciences and a properly synchronized fitting term that complements
it. The proposed sine-sinc model outputs a single multiphase distribution from which each individual
segment or phase can be easily extracted. Theoretical analysis is developed for the Γ-convergence behavior
of the proposed model and the existence of its minimizers. Since the model is not quadratic nor convex, for
computation we adopted the convex-concave procedure (CCCP) that has been developed in the literatures
of both computational nonlinear PDEs and neural computation. Numerical details and experiments on
both synthetic and natural images are presented.

1 Introduction

The literature on segmentation has been the most wealthy and inspiring. From Geman and Geman’s mixture
random-field models [23] to Mumford and Shah’s piecewise smooth variational image models [36], segmen-
tation has been extensively studied by several major stochastic and deterministic machineries of modeling,
analysis, and computation. New segmentation models incorporating more complexities or flexibilities have
been further proposed by a number of authors in recent years, e.g., the data-driven Monte-Carlo Markov
chain model (DDMCMC) of Tu and Zhu [51], the graph-cutting and spectral method of Shi and Malik [47],
and the variational texture segmentation models by Sandberg, et al. [42], and Shen [45] (based on the
texture models of Meyer [32] and Osher et al. [40]), just to name a few.

In this paper, we focus on the variational-PDE approach that is closely connected to the Mumford-Shah
type of models. Computationally, such models have been implemented in various approaches: the finite-
difference or finite-element methods, e.g., by Chambolle [5, 8, 9] and Morel and Solimini [35], as well as
the influential level-set approach by Chan and Vese [15, 13] (based on the level-set technology of Osher
and Sethian [38, 39, 43]). In the level-set approach, in particular, several multiphase computational models
have been recently designed by Chan and Vese [16], Chung and Vese [17], as well as Lie et al. [28, 49]. We
emphasize that the current work is more or less related to those ideas explored in [17] and [28], but it is
carried out in a completely different framework.

An alternative approach to modeling and computing segmentation is via the theory of Γ-convergence
elliptic approximations, as first developed by Ambrosio and Tortorelli [2, 3] for the Mumford-Shah model.
This method has been extensively studied and extended for segmentation, inpainting, and several other
applications in image analysis and processing (see, e.g., [20, 21, 29, 30, 46]). We propose a new multiphase
segmentation model in the framework of Γ-convergence and phase transition, and develop the relevant math-
ematical analysis and computational strategies. More specifically, we propose to adopt the celebrated phase-
transition model of Modica and Mortola [34] with a sinusoidal potential. The new model is a self-contained
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segmentation model, and is different from Ambrosio and Tortorelli’s formulation [2], which approximates
and computes the Mumford-Shah model.

We hereby emphasize that the similarities are inherent between image segmentation and the phase tran-
sition problem in material sciences and fluid mechanics. First of all, different phases in material sciences are
characterized by the few key phase variables such as densities and tensions (e.g., ice versus water), while in
image and vision analysis, distinct “object” segments are similarly characterized by some key visual features
such as intensities, orientations, or more general Gabor features (e.g., in texture segmentation [42], [14]).
Secondly, the difficulties in dealing with sharp interfaces emerging from both material phase transitions and
image segmentation share the very same roots — the characteristic complexities in handling free bound-
aries and their geometry. Under such observations, it is beneficial for the imaging community to borrow
the successful ideas in contemporary material sciences, e.g., the diffuse-interface model of Cahn-Hilliard [7],
and its rigorous mathematical analysis in the framework of Γ-convergence approximation by Modica and
Mortola [34] (as initially conjectured by De Giorgi).

Finally, as for all the major segmentation efforts in existence, the phase-field based segmentation model
proposed herein is also nonlinear and nonconvex, and its robust computation (for local minima) is nontriv-
ial. In the current work, we employ the so-called convex-concave (splitting) procedure (CCCP) as in the
literatures of both computational nonlinear PDEs [4, 22, 53] and neural computation [54], and develop the
corresponding computational schemes for the proposed energy functional.

The paper has been organized as follows. The new model is developed in Section 2. The relevant
Mumford-Shah segmentation model and its related literature are briefly reviewed in Subsection 2.1, and the
proposed Modica-Mortola sine-sinc model is established in Subsection 2.2. We analyze the major mathe-
matical properties of the model in Section 3, including the Γ-convergence behavior in Subsection 3.2 and
the existence and compactness theorems in Subsection 3.3. Computational schemes are presented in Sec-
tion 4, where we develop the convex-splitting or the CCCP algorithm in Subsection 4.2, and demonstrate the
numerical performance on generic image examples in Subsection 4.3. The conclusion is drawn in Section 5.

2 Multiphase Segmentation via Modica-Mortola Phase Transition

In this section, we first motivate and develop the new model based upon the phase transition model of Modica
and Mortola in material sciences and fluid dynamics [34], and discuss its connections to the Mumford-Shah
segmentation model and some related works. Mathematical analysis will be further developed in the next
section.

Let Ω be a bounded Lipschitz domain (e.g., a rectangle), and uo : Ω −→ R+ ∪ {0} be a given image.
First recall that the classical Mumford-Shah segmentation is to minimize the energy functional

Ems[u,Γ|uo] = H1(Γ) + α

∫

Ω\Γ
|∇u|2dx+ λ

∫

Ω

(u− uo)2dx, (1)

where Γ ∈ Ω denotes the edge set of the ideal image u, and H1 represents the 1-dimensional Hausdorff
measure. This functional is well defined on the admissible space:

Ams = {(u,Γ) : u ∈ H1(Ω \ Γ),H1(Γ) <∞,Γ is relatively closed in Ω},

provided that the given image uo ∈ L2(Ω). In the language of machine learning [18, 41], Ams represents the
hypothesis space or model space of all piecewise smooth functions on Ω.

2.1 Piecewise constant segmentation model

In order to identify individual objects, conceptually one has to carry out a post-processing step after the
Mumford-Shah model outputs the edge set Γ. That is, one has to identify the individual connected com-
ponents (or object patches) Ωi’s of Ω \ Γ. If each patch Ωi is to be called a phase, then segmentation
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automatically bears the nature of multiple phases, since a generic image often contains multiple objects
projected from the 3-D world.

On the other hand, there also exist attempts to directly represent and compute different phases. Normally
phase separation or identification relies upon the clustering of certain visual features such as frequency, local
orientation, and local density, etc. A simple but commonly adopted phase feature is the image intensity value
of a pixel. In the Mumford-Shah setting (1), this leads to the piecewise constant reduced Mumford-Shah
(RMS) model,

Erms[u,Γ|uo] = H1(Γ) + λ

∫

Ω

(u− uo)2dx,

defined on the following admissible space,

Arms = {(u,Γ) : Du
∣∣
Ω\Γ = 0, H1(Γ) <∞, Γ is relatively closed in Ω} ⊆ Ams.

Here Du denotes the vectorial Radon measure of the total variation (TV) of u.
The TV constraint requires any admissible u to be constant on any connected component of Ω \ Γ. For

practical convenience, let us assume that there are finitely many such patches, say K number of different
patches. Then the entire image domain is partitioned to

Ω \ Γ =

K−1⋃

k=0

Ωk.

On each patch Ωk, one must have u|Ωk := Ck , k = 0, . . . ,K − 1 for a set of distinct intensity values
C = (C0, . . . , CK−1). Then the RMS energy Erms can be rewritten as

Erms[C,Γ|uo] =
1

2

K−1∑

k=0

H1(∂Ωk) + λ
K−1∑

k=0

∫

Ωk

(Ck − uo)2dx.

Notice that the factor 1
2 is due to the double counting by any two adjacent patches. With successful level-set

implementation, this reduced Mumford-Shah model has also been frequently referred to as the Chan-Vese
model, honoring its rediscovery from the viewpoint of robust active contours in their well known paper [15].

The main mechanism of the proposed model is also to identify multiple phases by piecewise constant val-
ues. As already mentioned above, the core idea of our approach is unsurprisingly similar to those considered
in [17, 28, 49]. But there are two major differences:

(i) All the aforementioned prior works are in essence still built upon the framework of Mumford and Shah
(or its reduced form as discussed above), while our proposed model is not strictly a Mumford-Shah
type model (though some equivalence will be established immediately below).

(ii) All the aforementioned prior works have employed the celebrated level-set technology of Osher and
Sethian [39], while our new model adopts the phase field framework in material sciences and fluid
mechanics. A level set function offers remarkable efficiency and robustness for representing and com-
puting free boundaries, yet (strictly speaking) does not participate in the modeling process, while a
phase field function is indispensably part of the model itself.

To proceed, we label each phase component with an integer, and define a signature function z by

z(x) = k, if x ∈ Ωk, k = 0, . . . ,K − 1.

In practice, phase extraction is of course the very opposite process from getting the signature function z.
That is, one has to first obtain the signature function z before different phase patches Ωk can be identified and
extracted. For convenience, we shall also call z a phase field. We then propose the multiphase segmentation
model in this ideal scenario by minimizing

E[C, z|uo] =

∫

Ω

|Dz(x)|+ λ
K−1∑

k=0

∫

Ω

(Ck − uo)2χ{z=k}dx.
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As in the reduced Mumford-Shah or the Chan-Vese model [13, 36], the intensity distribution variable C can
be conditionally solved by : from any given phase field z,

Ck = 〈uo〉Ωk =
1

|Ωk|

∫

Ωk

uo(x) dx, i = 0, . . . ,K − 1. (2)

Then the ideal model only depends on the phase field z:

E[z|uo] =

∫

Ω

|Dz(x)|+ λ

K−1∑

k=0

∫

Ω

(Ck − uo)2χ{z=k}dx. (3)

The admissible class for the ideal phase field is simply A = {z ∈ BV (Ω) : z(x) ∈ Z a.e. }.
The main challenge of the proposed model arises from its mixture of the continuous TV Radon measure

and the discrete constraint. Thus in the next subsection, this ideal model will be further polished in the
framework of phase transitions and Γ-convergence.

Here we first emphasize that this ideal energy is somewhat equivalent to the piecewise constant Mumford-
Shah functional. With the help of the signature function and the formulae for Ck’s, Erms only depends on
Γ or z and can be rewritten as

Erms[Γ|uo] =
1

2

K−1∑

k=0

H1(∂{z = k}) + λ
K−1∑

k=0

∫

Ω

(Ck − uo)2χ{z=k}dx. (4)

For any fixed number of phases K, the two functionals (3) and (4) are then equivalent, in the sense of

Erms[Γ|uo] ≤ E[z|uo] ≤ KErms[Γ|uo],

since ∫

Ω

|Dz| =
∫

Γ

∣∣[z]
∣∣dH1 and 1 ≤

∣∣[z]
∣∣ < K.

In most applications (especially in medical imaging), for instance, K ≤ 5.
The difference between the two functionals (3) and (4) is also obvious, since the former weighs the jumps

while the latter does not. For example, consider a rectangular domain Ω and two disjoint disks Ω1,Ω2

in Ω with radius 1/2. If we assign z = 0 on Ω0 = Ω \ (Ω1 ∪ Ω2), z = 1 on Ω1 and z = 2 on Ω2, then∑2
k=0H1(∂Ωk) = 1

2

∑2
k=0H1(∂{z = k}) = 1

2 (2π + π + π) = 2π, but
∫

Ω |Dz(x)| = 1π + 2π = 3π. Thus,∫
Ω |Dz| is a weighted length of Γ. Recall that the total variation Radon measure can be decomposed into:

Dz = ∇z + [z]
∣∣
Sz
H1xSz + Cz,

corresponding to the Lebesgue continuous gradient, the jump set Sz = Γ (or reduced boundary) with
[z] = z+ − z−, and the singular Cantor measure. Now if the signature z is ideally piecewise constant, both
the Lebesgue and Cantor components must vanish, and one has

∫

Ω

|Dz| =
∫

Sz

∣∣[z]
∣∣dH1,

which clearly shows the weighing nature of
∫

Ω
|Dz|.

Weighing the object boundaries certainly makes the proposed ideal model depending upon the labels. But
for a fixed number K of phases, the energies are more or less equivalent as just discussed. More importantly,
it allows us to invoke the celebrated phase-transition approach in material sciences and fluid dynamics, in
order to successfully overcome the major challenge in reconciling the two very opposite characteristics of the
segmentation problem: continuum vs. discreteness.
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2.2 The sine-sinc model via Modica-Mortola phase transition

The objective functional (3)

E[z|uo] =

∫

Ω

|Dz(x)|+ λ

K−1∑

k=0

∫

Ω

(Ck − uo)2χ{z=k}dx

itself does not appear too complicated but becomes immensely baffling under the discrete constraint z ∈ Z.
This is a very common scenario in integer or discrete programming. For example, it is difficult to minimize
this functional by any ordinary PDE approaches such as Euler-Lagrange equations or gradient-descent time
marching.

We thus introduce its relaxed version via the celebrated model of Modica and Mortola [34] on phase
transitions in material sciences and fluid mechanics. Recall that in the classical literature on phase transitions,
the mixture of two immiscible and incompressible fluids are often modelled so that in equilibrium they
separate into two phases with a minimal interface area. Cahn and Hilliard [7] first proposed to use a thin
layer of continuous interface (i.e., diffuse interface) to model this separation. Later on Modica [33] proved
that the Cahn-Hilliard model Γ-converges to the classical model. In another well known paper [34], Modica
and Mortola established that the diffuse-interface energy

Fε[z] =

∫

Ω

[
ε|∇z|2 +

1

ε
sin2 πz

]
dx, Γ-converges to

4

π

∫

Ω

|Dz(x)|,

for phase fields that ultimately only take integer values. Some details will be further discussed in Section 3.
Notice that in the Modica-Mortola model, the discrete constraint z ∈ Z has been softly enforced due to

the sine potential regulated by the transition bandwidth ε in the denominator. In the present work, we adopt
this Modica-Mortola diffuse-interface energy Fε to approximate the ideal total variation energy in E[z|uo].
This model thus well integrates both the TV regularity and the integer constraint z ∈ Z.

For the data-fitting term, instead of the ideal indicator χ{z=k} or Kronecker’s delta, we also propose
to use a properly relaxed version to facilitate model analysis and computing. More specifically, we choose
sinc2(z − k) to match the sine potential in Modica and Mortola’s phase transition energy,

G[z|uo] =
K−1∑

k=0

∫

Ω

|Ck − uo|2sinc2(z − k) dx.

Recall that the sinc function is defined as sinc(z) = sinπz
πz for z ∈ R. For a phase field z that almost only

takes integer values, sinc leads to desirable approximations to the indicator functions of integer phases and is
more appealing computationally. This is because (i) sinc(k) = δk (Kronecker’s delta) for k ∈ Z, the so-called
interpolating property in the celebrated theorem of Shannon interpolation [12, 19, 48]; and (ii) sinc(z) is an
entire function for z ∈ C, and when z ∈ R,

d

dz
sinc(z) = O

(
1

|z|

)
, as z → ±∞.

Thus in particular, sinc (z) ∈W 1,∞(R) and is Lipschitz continuous. As a result, the sinc-approximation will
facilitate both analysis and computation later on.

In combination, we have arrived at the relaxed version of the ideal multiphase segmentation model (3)
with a given number K of phases:

Eε[z|uo] = Fε[z] + λG[z|uo]

=

∫

Ω

[
ε|∇z|2 +

1

ε
sin2 πz

]
dx+ λ

K−1∑

k=0

∫

Ω

|Ck − uo|2sinc2(z − k) dx.
(5)
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Here the values Ck’s have been conditionally optimized by the following equation with any given phase field
z (under the least-square principle):

Ck = Ck[z] =





∫
Ω
uo sinc2(z − k) dx∫
Ω

sinc2(z − k) dx
if

∫

Ω

sinc2(z − k) dx > 0,

0 otherwise.

(6)

When z(x) only takes integer values, this Ck indeed reproduce the value introduced in (2). If the denominator
in (6) vanishes, since

∫

Ω

sinc2(z − k) dx = 0 ⇐⇒ sinc(z(x)− k) = 0, a.e x ∈ Ω ⇐⇒ z(x) ∈ Z \ {k},

we observe that the phase k is empty and redundant. Also in this case the particular value of Ck[z] is
unimportant, since the integral

∫
Ω |u− Ck|2sinc2(z − k) dx vanishes.

3 Γ-Convergence of the Model and Existence of Minimizers

In this section, we develop the necessary analysis of the proposed model. Following a brief review of the
Γ-convergence theory, we first show that the relaxed model (5) converges to the original piecewise con-
stant model (3), and then prove that optimal segmentation does exist for any fixed ε. Compactness of the
minimizers for all ε’s is also discussed in the end.

3.1 Brief review of Γ-convergence

Γ-convergence was first introduced by De Giorgi and Franzoni in [24] to facilitate analysis and approxima-
tion of PDEs and variational problems. Since then it has been widely applied to phase transition mod-
els in material sciences, the modeling of thin films or plates, homogenization of variational problems, as
well as free discontinuity problems (e.g., [6, 31]). In image processing, the most influential application is
Ambrosio-Tortorelli’s Γ-convergence approximation to the Mumford-Shah functional [2]. The definition of
Γ-convergence is as follows.

Definition 1 (Γ-convergence) Let X be a metric space and Fε : X → R̄ for ε > 0. We say that Fε
Γ-converges to F in X as ε→ 0 and write Fε Γ−→ F , if the following two conditions holds for all u ∈ X:

(i) (liminf inequality) for every sequence (uε) converging to u,

F(u) ≤ lim inf
ε→0

Fε(uε);

(ii) (limsup inequality) there exists a sequence (uε) converging to u such that

F(u) ≥ lim sup
ε→0

Fε(uε).

The most important properties of Γ-convergence are summarized by the following theorem. We refer the
reader to [1, 6, 31] for further discussion and deeper development.

Theorem 1 Γ-convergence have the following properties.

(i) (Spatial stability of the limit) the Γ-limit F is lower semicontinuous;

(ii) (Stability under continuous perturbations) if Fε Γ−→ F and G is continuous, then Fε + G Γ−→ F + G;
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(iii) (Stability of minimizing sequences) if Fε Γ−→ F and vε minimizes Fε, then every cluster point of (vε)
minimizes F .

Let us briefly comment on these three properties. Property (i) reveals the necessary condition for designing
Γ-convergence approximation to a target functional. Property (ii) paves the way to extending existing Γ-
convergence schemes, which is particularly helpful in the current work. Property (iii) reveals the real essence
of the entire machinery of Γ-convergence, by which the minimization of a touchy objective F is tamed or
relaxed by a family of better behaved objectives Fε.

Directly benefiting the current work is the following remarkable theorem in the original paper of Modica-
Mortola [34], which historically has played significant roles in the theories of Γ-convergence, phase transitions,
and the Cahn-Hilliard model.

Theorem 2 (Modica and Mortola [34]) Define S = {z ∈ BV (Rn) : z(x) ∈ Z, a.e. x}, and

Fε(z) :=





∫

Rn

[
ε|∇z(x)|2 +

1

ε
sin2(πz(x))

]
dx, for z ∈ H1(Rn) ∩ L1(Rn)

+∞, for z ∈ L1(Rn) \H1(Rn),

F (z) :=





4

π

∫

Rn
|Dz(x)| for z ∈ S(Rn),

+∞ for z ∈ L1(Rn), but z /∈ S(Rn).

Then, the functional Fε Γ-converges to F as ε→ 0 in L1(Rn).

We note that the domain Rn can be replaced by any regular open bounded domain Ω, which is the case
in the current application. Theorem 2 was originally conjectured by De Giorgi and then proven by Modica
and Mortola [34] in 1977, shortly after the notion of Γ-convergence was introduced in [24]. The connection
with the Cahn-Hilliard model was established in Modica [33].

3.2 Γ-convergence of the sine-sinc model

In image processing, the image range is often bounded by uo ∈ [0, 1] in the analogue setting and uo ∈ [0, 255]
in the digital setting with 8 bits. Therefore, by default we shall assume uo ∈ L∞(Ω) for maximal technical
clarity.

In the Modica-Mortola sine-sinc model proposed in (5),

Eε[z|uo] = Fε[z] + λG[z|uo]

=

∫

Ω

[
ε|∇z|2 +

1

ε
sin2 πz

]
dx+ λ

K−1∑

k=0

∫

Ω

|Ck − uo|2sinc2(z − k) dx,

the first term Fε has already been proven to Γ-converge to F in [34]. In this subsection, we show that the
fitting term G is continuous in L1(Ω).

In what follows, we shall use the notation ω(x|z) to denote a spatial function ω(·|z) that depends on the
given phase field z = z(x). Such dependence could be local in the form of g(x, z(x)), or global in the form of
g(x, J [z]) where J [z] is a functional on z. The following general theorem gives a unified foundation for the
proof of Γ-convergence of the proposed model.

Theorem 3 Suppose that

(i) ϕ : R→ R is Lipschitz continuous with |ϕ(x) − ϕ(y)| ≤ L|x− y|,

(ii) ‖w(·|zn)− w(·|z)‖L∞(Ω) → 0 as ‖zn − z‖L1(Ω) → 0,

(iii) ‖w(·|z)‖L∞(Ω) ≤M for some positive M, for all z ∈ L1(Ω),
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then, g[z] =

∫

Ω

w(x|z)ϕ(z) dx is continuous for z ∈ L1(Ω).

Proof. Let {zn} be a sequence converging to z: zn → z in L1(Ω). Then

|g[zn]−g[z]|

≤
∣∣∣∣
∫

Ω

w(x|zn)ϕ(zn)− w(x|z)ϕ(zn)dx

∣∣∣∣+

∣∣∣∣
∫

Ω

w(x|z)ϕ(zn)− w(x|z)ϕ(z)dx

∣∣∣∣

≤ ‖w(x|zn)− w(x|z)‖L∞(Ω)‖ϕ(zn)‖L1(Ω) +M

∫

Ω

|ϕ(zn)− ϕ(z)|dx

≤ L‖zn‖L1(Ω)‖ω(x|zn)− w(x|z)‖L∞(Ω) +ML‖zn − z‖L1(Ω).

Both terms tend to zero as ‖zn − z‖L1(Ω) → 0 by the assumption (ii).
This theorem can be applied to establish that Ck[z]’s are continuous, and eventually that G[z|uo] is

continuous as well.

Corollary 1 Suppose zn → z in L1 and

∫

Ω

sinc2(z(x)− k)dx 6= 0. Then Ck(z) defined in (6) is continuous

in z, i.e., Ck[zn]→ Ck[z].

This is directly proven by Theorem 3 with w(x) = uo(x) (for the denominator) and w(x) = 1 (for the
numerator), as well as ϕ(z) = sin2(z(x)− k).

Corollary 2 (Degenerate Case) If ϕ(z(x)) = 0 a.e., then, g[z] = 0 and condition (ii) in Theorem 3 can
be dropped.

It simply comes from the definition of g[z], and the conditions (i) and (iii):

|g[zn]| ≤M
∫

Ω

|ϕ(zn)| = M

∫

Ω

|ϕ(zn)− ϕ(z)|dx ≤ML

∫

Ω

|zn − z|dx→ 0.

Proposition 1 The fitting functional G is continuous in L1(Ω):

G[z|uo] =
K−1∑

k=0

∫

Ω

|Ck − uo|2sinc2(z − k) dx

with

Ck = Ck [z] =

{ R
Ω
uo sinc2(z−k) dxR
Ω

sinc2(z−k) dx
, if

∫
Ω

sinc2(z − k) dx > 0

0, otherwise.

Proof. Let w(x|z) = (uo(x) − Ck[z])2 and ϕ(z) = sinc2(z − k) for z ∈ L1(Ω). We now show that G[z|uo]
indeed satisfies all three conditions of Theorem 3. Condition (i) is clear since ϕ is Lipschitz continuous. For
(ii), let {zn} be a converging sequence zn → z in L1(Ω). Then

|w(x|zn)− w(x|z)| = |(Ck[zn]− uo(x))2 − (Ck [z]− uo(x))2|
≤ |Ck[zn] + Ck[z]− 2uo(x)||Ck [zn]− Ck[z]|
≤ 4‖uo‖L∞(Ω)|Ck[zn]− Ck[z]|,

and |Ck[zn] − Ck[z]| → 0 from the continuity of Ck in Corollary 1. Thus |w(x|zn) − w(x|z)| → 0. For (iii),
notice that |Ck [z]| ≤ ‖uo‖L∞(Ω) for ∀z. Then,

w(x|z) ≤ (‖u‖L∞(Ω) + |Ck[z]|)2 ≤ (2‖uo‖L∞(Ω))
2 for all x ∈ Ω.

Therefore, by Theorem 3, G[z|uo] is continuous in L1(Ω).
Finally, the Γ-convergence behavior of the proposed Modica-Mortola sine-sinc model becomes evident

from the combination of Proposition 1, Theorem 2, and Theorem 1.

Theorem 4 (Γ-Convergence) Eε Γ-converges to E w.r.t. the L1(Ω) topology.
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3.3 Existence of minimizers of Eε

In this subsection we show that for each ε, a minimizer to Eε does exist. We shall also briefly discuss the
compactness of a sequence of minimizers for all ε’s.

Theorem 5 (Existence of Minimizers) Suppose the given image uo ∈ L2(Ω) and denote the admissible
space for K-phase segmentation by:

AK = {z ∈ H1(Ω) : −1/2 < z < K − 1/2}.

Then for each ε > 0, there exists a minimizer of Eε in AK .

Proof. We first show that the infimum is finite. Consider the uniform phase z ≡ 0 ∈ AK . Then the
Modica-Mortola energy Fε[z] = 0, and C0 = 1

|Ω|
∫

Ω uo(x)dx < ∞ while Ck = 0 for k = 1, . . . ,K − 1.

Therefore,

Eε[0|uo] = λ

∫

Ω

|C0 − uo(x)|2 dx <∞, (7)

and since Eε[ · |uo] ≥ 0, the claim is proved.
Let {zn} be a minimizing sequence for Eε in AK . Since supn

∫
Ω
|∇zn|2 dx <∞ from the Modica-Mortola

energy, as well as −1/2 < zn < K − 1/2, the sequence {zn} must be precompact in L1(Ω) by Rellich-
Kondrachov’s compactness theorem. There thus exists a subsequence of {zn}, which is still denoted by {zn}
after relabelling to simplify notations, such that

zn → z∗ in L2(Ω), for some z∗ ∈ L2(Ω).

As a result, one has the weak convergence for the gradient fields:

∇zn → ∇z∗ weakly in L2(Ω).

Then, by the lower semicontinuity of the L2-norm under the weak topology,
∫

Ω

|∇z∗|2 dx ≤ lim inf
n→∞

∫

Ω

|∇zn|2 dx. (8)

For the other two terms with sine and sinc functions, convergence follows from Lebesgue’s dominated
convergence theorem (LDCT) as shown below. First, possibly with another round of subsequence refinement
and relabelling, one can further assume that zn → z∗ a.e. Then, sin2 πzn → sin2 πz∗ a.e., and by LDCT,

∫

Ω

sin2 πzn dx→
∫

Ω

sin2 πz∗ dx. (9)

Similarly, sinc2π(zn−k)→ sinc2π(z∗−k) a.e. for k = 0, . . . ,K−1. By LDCT, one has
∫

Ω
sinc2π(zn−k) dx→∫

Ω sinc2π(z∗ − k) dx, and

∫

Ω

uo(x)sinc2π(zn − k) dx→
∫

Ω

uo(x)sinc2π(z∗ − k) dx,

since uo ∈ L2(Ω) ⊂ L1(Ω). Consequently, if for the k-th phase
∫

Ω
sinc2π(z∗−k) dx > 0, then (Ck[zn])n must

be a bounded sequence. Since uo ∈ L2(Ω), by LDCT, as n→∞,
∫

Ω

|uo − Ck[zn]|2sinc2π(zn − k) dx→
∫

Ω

|uo − Ck[z∗]|2sinc2π(z∗ − k) dx. (10)

If on the other hand, sinc2π(z∗ − k) = 0 a.e., then
∫

Ω

|uo − Ck [z∗]|2sinc2(z∗ − k) dx = 0 ≤ lim inf
n→∞

∫

Ω

|uo − Ck[zn]|2sinc2(z∗ − k) dx. (11)

9



Finally, in combination of (8), (9), (10) and (11), we have

Eε[z
∗|uo] ≤ lim inf

n→∞
Eε[zn|uo] ≤ inf

z∈AK
Eε[z|uo],

and the limit z∗ has to be a minimizer of Eε. This completes the proof.
Notice that in this theorem, we have even allowed the given image uo ∈ L2(Ω), instead of uo ∈ L∞(Ω),

which is the default assumption throughout the work.
Finally we briefly comment on the compactness or stability of the sequence of minimizers from the

Γ-convergence approximation.

Theorem 6 (Compactness of the Sequence of Minimizers) Following the preceding theorem, let zε
minimizes Eε for each ε > 0. Then there exists a subsequence (zε′) of (zε) and some z ∈ L1(Ω) such that
zε′ −→ z in L1(Ω) as ε′ → 0, and z minimizes E.

Proof. By the Cauchy-Schwarz inequality,

Eε[z|uo] ≥ Fε[z] =

∫

Ω

[
ε|∇z|2 +

1

ε
sin2 πz

]
dx

≥ 2

∫

Ω

|∇z|| sinπz|dx =

∫

Ω

|∇(H(z))|dx.
(12)

Here H : (− 1
2 ,K − 1

2 ) → R satisfies H ′(r) = 2| sinπr| and H(0) = 0. By (7), there exists M > 0 such that
Eε[zε|uo] ≤M for all ε. By (12), the sequence of functions (hε(x) = H(zε(x)))ε must be bounded in BV (Ω),
and thus precompact in L1(Ω). By subsequence refinement, one can assume that there exists a subsequence
hε′ → h a.e. for some h ∈ L1(Ω). Since H(r) is continuous and strictly monotone, it admits a continuous
inverse. Thus one has zε′(x) −→ z(x) = H−1(h(x)), a.e. Since zε ∈ (− 1

2 ,K − 1
2 ) is uniformly bounded for ε,

one must have zε′ → z in L1(Ω) by LDCT. Then the rest of the theorem follows from Theorem 1.

4 Computation and Experiments

In this section, we develop the computational schemes for the proposed model. The major difficulty arises
from the fact that the Modica-Mortola sine-sinc functional is non-convex. In this paper, we apply the method
of convex splitting or the concave-convex procedure (CCCP) for robustly computing the local minima of the
model. After a brief review on the CCCP method, we detail our computational strategies, and test the
schemes on some generic examples involving both synthetic and natural images.

4.1 Review of the concave-convex procedure (CCCP)

There have been growing interests recently in how to solve non-convex function efficiently. In [22] in the
setting of gradient flows, Eyre proposed to split non-convex functions into two functions, one contractive
and the other expansive. It included computational examples of the Cahn-Hilliard equation with different
time steps. More analysis on the numerical algorithms for the Cahn-Hilliard or Allen-Cahn equations were
studied by Vollmayr-Lee and Rutenberg in [53], where unconditionally stable time step was explored. The
idea of convex splitting has also been recently applied to the Cahn-Hilliard inpainting by Bertozzi et al. [4].

Independent of the computational PDE literature, on the other hand, the similar idea of convex splitting
was also explored by Yuille and Rangarajan [54] in a more general setting of neural computation, where the
method has been termed the Convex-Concave Procedure (CCCP). The method has found many important
applications in computer vision and neural computation.

Theorem 7 (Yuille and Rangarajan [54]) Let E(~x) with ~x ∈ Rn be an energy function with a bounded
Hessian. Then it can be decomposed into the sum of a convex function and a concave function.
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Theorem 8 (Yuille and Rangarajan [54]) Consider an energy function which is bounded below and is
an addition of convex and concave functions:

E(~x) = Econvex(~x) + Econcave(~x).

Then, the discrete iterative CCCP algorithm given by

∇Econvex(~xn+1) = −∇Econcave(~xn), n = 0, 1, · · · (13)

is guaranteed to monotonically decrease the energy E(~x) as a function of time and to converge to a local
minimum or a saddle point of E(~x).

We briefly comment on these results for our application. First, notice that (13) is only solvable when

Range(−∇Econcave) ⊆ Range(Econvex). (14)

In particular, the condition holds when Range(Econvex) = Rn, the entire space. The solvability condition
(14) implies that, in some sense, the convex part must be stronger than or dominant over the concave part,
which is often (practically) true for energy minimization problems when the function f is bounded below
and f →∞ as |~x| → ∞.

Secondly, in the present context, the CCCP should be applied to the functional setting instead of the
function in Rn. Therefore the gradients in (13) should be naturally replaced by the Fréchet derivatives of
the functionals. In our application, the functional is indeed Fréchet differentiable. (In general, the CCCP
iteration (13) can also be based upon the sub-gradients of convex function(al)s since the splitting yields
convex components.)

4.2 Details of the computational scheme

To compute the optimization problem (5),

Eε[z|uo] = Fε[z] + λG[z|uo]

=

∫

Ω

[
ε|∇z|2 +

1

ε
sin2 πz

]
dx+ λ

K−1∑

k=0

∫

Ω

|Ck − uo|2sinc2(z − k) dx,

we treat C = (C0, . . . , CK−1) as an independent variable by breaking the dependency of C on the function
z, and compute Eε[z,C|uo] regarding z and C as independent variables. This allows the application of the
alternating minimization (AM) scheme, i.e., to alternatingly optimize the two conditional energiesEε[z|C, uo]
and Eε[C|z, uo], under the iterations of zn → C

n → zn+1 given by

C
n = argminEε[C|zn, uo], (15)

zn+1 = argminEε[z|Cn, uo]. (16)

It is well known (i.e., Vogel [52] or Shen [44]) that the AM scheme is monotone:

Eε[z
n+1,Cn+1|uo] ≤ Eε[zn,Cn|uo].

To minimize (15), one simply computes at the pixel level,

Ck =

∑
i

∑
j ui,j sinc2(zni,j − k)

∑
i

∑
j sinc2(zni,j − k)

, k = 0, . . . ,K − 1, (17)

where zni,j denotes computational phase field on the Cartesian image domain.
We then apply the concave-convex procedure to minimize Eε[z|Cn, uo] in (16). For convenience, we

shall omit the superscript n of C
n hereafter. First, we add simple convex functionals to express Eε as

the difference of two convex functionals. By noticing that if f is a convex function from R to R, then the
functional F (u) =

∫
Ω f(u(x))dx is a convex functional, we have the following proposition.
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Proposition 2 Let F (u) =
∫

Ω
f(u(x))dx, where f ∈ C2(R) and f ′′ ≥ −γ for some γ ≥ 0. Define the

splitting

F (u) =

∫

Ω

(
f(u) +

γ

2
u2
)
dx−

∫

Ω

γ

2
u2dx := F 1(u)− F 2(u).

Then both F 1 and F 2 are convex.

The proof is trivial since f ′′1 (u) ≥ 0 if f1(u) = f(u) + γ
2u

2. We now apply this splitting technique to the
proposed model Eε in (5).

We shall add two sets of terms, one for the non-convex Modica-Mortola functional Fε, and the other for the

non-convex fitting term G. For the functional Fε, we add π2

ε

∫
Ω |z|2 dx by noticing that d2

dz2 sin2 πz ≥ −2π2:

Fε[z] =

(
Fε[z] +

π2

ε

∫

Ω

|z|2 dx
)
− π2

ε

∫

Ω

|z|2 dx := F 1
ε [z]− F 2

ε [z].

Similarly, the fitting term G in (5) can be split into G[z|C, uo] = G1[z|C, uo]−G2[z|C, uo], where

G1[z|C, uo] = G[z|C, uo] +
π2

3

K−1∑

k=0

∫

Ω

|uo − Ck |2|z − k|2 dx,

G2[z|C, uo] =
π2

3

K−1∑

k=0

∫

Ω

|uo − Ck|2|z − k|2 dx,

since d2

dz2 sinc2z ≥ −2π2

3 .
Thus, the functional (5) becomes Eε = E1

ε −E2
ε = (F 1

ε + λG1)− (F 2
ε + λG2). We then apply the CCCP

algorithm (13) via the Fréchet derivative:

(F 1
ε + λG1)′(zn+1) = (F 2

ε + λG2)′(zn). (18)

Under integration by parts, (18) is equivalent to the PDE:

[
−2ε∆zn+1 +

π

ε
sin 2πzn+1

]
+

2π2

ε
zn+1

+

[
λ

K−1∑

k=0

|uo − Ck |2
d

dz
sinc2(zn+1 − k)

]
+ λ

K−1∑

k=0

|uo − Ck|2
2π2

3
(zn+1 − k)

=
2π2

ε
zn + λ

K−1∑

k=0

|uo − Ck|2
2π2

3
(zn − k).

(19)

Here the terms in the square brackets come from the Euler-Lagrange equation of Eε.
Numerically, the Laplacian term ∆zn+1 is computed by the standard 5-pixel stencil, i.e., with h denoting

the grid size,
h2∆z = zi−1,j + zi,j−1 + zi+1,j + zi,j+1 − 4zi,j .

This could further lead to the Jacobi type iteration when the central pixel zi,j is assigned to the time step
n+ 1 while the other four neighbors still stay at the step n.

We now elaborate on how to develop proper linearization schemes for the nonlinear terms that involve sine

and sinc. For the second term with sin 2πzn+1
i,j , we use

sin 2πzni,j
zn

zn+1
i,j = 2πzn+1

i,j sinc(2zni,j) for linearization.

This is inspired by the closely related problem of finding a solution to the nonlinear equation sinx = a for a
given a ∈ (0, 1) and on [0, π/2]. An effective iteration scheme is given by the same linearization technique:

sinxn

xn
xn+1 = a, or equivalently, xn+1 = a

xn

sinxn
= Φ(xn),
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where Φ(x) = ax
sinx . A remarkable property is that for x ∈ [0, π/2] and any given a ∈ (0, 1), Φ is a contractive

mapping, i.e., maxx∈[0,π/2] |Φ′(x)| ≤ a < 1. In particular, the linearization iteration indeed leads to a

unique fixed point x∗, ax∗

sinx∗ = x∗ by Picard’s fixed point theorem. In addition, to avoid singularities in the
denominators, small value δ, δ � 1, (e.g., δ = 10−16, the MATLAB constant), is often added for numerical
robustness.

For the fourth term on the left that involves the derivative of the sinc function, we similarly linearize it
to

d

dz
sinc2(zn+1

i,j − k) = 2 sinc(zni,j − k)

[
πz cosπz − sinπz

πz3

]

z=zni,j−k
(zn+1
i,j − k).

Combining all the above steps of finite-difference discretization and function linearization, in the case when
the Jacobi iteration is adopted for the Laplacian, we attain the following iteration scheme: at each step n,

{
8ε+

π

ε

(
sin 2πzni,j
zni,j

+ 2π

)

+ λ

K−1∑

k=0

|ui,j − Ck|2
(

2π2

3
+ 2sinc(zni,j − k)

d
dz sinc(zni,j − k)

zni,j − k

)}
zn+1
i,j

=2ε(zni−1,j + zni,j−1 + zni+1,j + zni,j+1) +
2π2

ε
zni,j

+ λ

K−1∑

k=0

|ui,j − Ck|2
(

2π2

3
zni,j + 2ksinc(zni,j − k)

d
dz sinc(zni,j − k)

zni,j − k

)
.

(20)

The Neumann natural boundary condition is imposed along the boundary of the image domain. The
detailed numerical analysis on the CCCP method augmented with all the above linearization techniques
is interesting but foreseeably involved. This offers an intriguing open problem to the numerical analysis
community.

Finally, once the phase field z is solved from the system, in order to extract each phase or segment,
we apply the hard thresholding decision rule: k − 1

2 ≤ z < k + 1
2 for each individual k-th phase. A

simple morphological transformation (opening) is also employed to remove any spurious dots due to the
hard thresholding. Instead of hard thresholding, it is also possible to adopt a slightly more complex local
decision rule based on windowing, which will then make the morphological operation obsolete.

4.3 Numerical experiments

In this subsection, we present some generic experimental results based on the theories and computational
schemes developed above. In all the experiments, a given image is always normalized to the canonical
gray interval [0, 1], and the bandwidth parameter (or the diffuse scale) ε is in the order of a few pixels.
Furthermore, inspired by the simulated annealing technique in stochastic image processing (e.g., Geman and
Geman [23]) and Gibbs’ random fields, we have also experimented with dynamically decreasing ε’s to speed
up convergence, for example, adopting ε1 in the first 50 iterations, while ε2 = ε1/2 for the rest.

Regarding the initial guess for the phase field z, we have typically adopted random values between −0.5
to K+0.5 as mentioned in the theory (the set AK). For complex images with large variances in homogeneous
regions or with many phases, weak supervision can be used for the initial values, i.e., initial Ck values can
be estimated from the assigned supervised “seed” regions. For more discussion on weak supervision and
automated stochastic supervision (based on patch statistics), we refer to the recent works of Shen [46], and
Li and Perona [27, 26].

The first two experiments are on two generic synthetic images. In Figure 1, it is shown that the proposed
model works well with a noisy image containing a generic T-junction, a universal singular structure crucial
in visual perception (e.g., Nitzberg, et al. [37]).
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Figure 1: A noisy synthetic image uo containing a generic T-junction (upper left), the phase field z computed
by the proposed sine-sinc model (upper middle and right), and the three individual phases (the bottom row).
The example shows that the model is robust to noise and reconstructs well the geometry.

Figure 2 shows another more complex synthetic image that contains several generic visual structures,
including an internal hole, occlusion and stacked objects, T-junctions, singular junctions where multiple
objects (or phases) meet, as well as thin passages that reveal the bottleneck effect (see the recent work of
Kohn and Slastikov in material sciences [25] for asymptotic bottleneck analysis in phase transitions). In this
case, with K = 5 phases, initial condition is weakly supervised. When this is experimented with random K
values, it results in phase merging or empty phases.

The next three experiments demonstrate the performance of the proposed model and its computational
schemes on three generic natural images.

Figure 3 shows the application of the proposed model to an MRI brain image. Even though the intensities
fluctuate severely and the boundaries are complex, the proposed method has done a satisfactory job in
separating the major different phases. Shown on top of the original image are the three small patches that
are in practice easily supervised by a radiologist.

The final two examples in Figure 4 and 5 both involve color images for which the RGB color space has
been employed. We have adopted the Euclidean metric of three color channels as in [50]:

|uRo − CRk |2 + |uGo − CGk |2 + |uBo − CBk |2

where uRo , uGo , uBo correspond to the red, green, blue channels of the given color image uo. ( This may not
be optimal for color perception, e.g., [10, 11]). These two examples further demonstrate the flexibility of the
proposed model and its computational algorithm.

5 Conclusion

In this paper, we propose a new multiphase segmentation model based on the celebrated phase transition
model of Modica and Mortola [34] in material sciences, fluid mechanics, and the Γ-convergence theory. The
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Figure 2: A complex synthetic image uo with multiple objects and several generic visual structures. Image
size is 240× 240, ε = 2 (pixels), and λ = 15 (scaled by the grid size). The calculated Ck values are 0, 0.16,
0.50, 0.74, 0.97, respectively.

sine-sinc model properly synchronizes the fitting term for the given image with the regularity term for the
diffuse interfaces. Mathematical analysis has been developed for the Γ-convergence behavior of the model
and the existence of its minimizers. We have also developed in detail the convex-splitting or the CCCP
algorithm for minimizing the non-convex energy functional. Several numerical experiments on both generic
synthetic and natural images have demonstrated the satisfying performance of the proposed model and its
algorithm.

It is our belief that the interplay and integration between physics and information technologies will
further blossom in the near future. The current work is a typical example that has substantially benefited
from numerous existing contributions in these two fields.
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Figure 3: The performance of the proposed Modica-Mortola sine-sinc model to the segmentation of a MRI
brain image. Shown on top of the original image (upper left) are the three “seed” phase patches which are
often easily supervised by a radiologist. The resolution details in the segmented phases depend upon the
bandwidth parameter ε (ε = 2 (pixels) for this particular output).
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