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Abstract

We set up the electromagnetic system and its plane-wave solutions with the asso-
ciated slowness and wave surfaces. We treat the Cauchy initial-value problem for the
electric vector and make explicit the quantities necessary for numerical evaluation. We
use the Herglotz-Petrovskii representation as an integral around loops which, for each
position and time form the intersection of a plane in the space of slownesses with the
slowness surface. The field and especially its singularities are strongly dependent on
the varying geometry of these loops; we use a level set numerical technique to compute
those real loops which essentially give us second order accuracy. We give the static
term corresponding to the mode with zero wave speed. Numerical evaluation of the
solution is presented graphically followed by some concluding remarks.

Key Words: crystal optics, conical refraction, Maxwell’s equation, fundamental
solution

1 Introduction

1.1 General introduction

Crystal optics is similar to, but simpler than, anisotropic elasticity. For instance its slowness
surface has conical points, in common with many elasticity systems, and there are conical
points on the wave surface. It also has a third interesting feature associated with the role
of the divergence in relation to Maxwell’s equations, namely the fact that one characteristic
speed is zero (actually two coincident zeros), so that the slowness surface is quartic rather
than sextic as might be expected from the dimensionality - one quadratic sheet of the slowness
surface lies at infinity. Remarkably the wave surface is another quartic surface of the same
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algebraic type, but with reciprocal parameters. See for instance Born and Wolf (1989) for
a very full and readable account of the plane-wave theory of this system and the associated
geometry.

The system of crystal optics is of great intrinsic and historical interest, the latter be-
cause Hamilton’s prediction in 1833 of internal conical refraction, and Lloyd’s experimental
confirmation closely thereafter, led to the wide acceptance of Fresnel’s wave theory of light.
The intrinsic interest is largely centered around the remarkable geometrical properties of the
slowness surface and wave surface, which are both of a type known as Fresnel’s wave surface
(Salmon, 1915).

We derive the fundamental solution for the time-dependent system of crystal optics in
the space-time domain. Furthermore, we illustrate numerically the analytic expression for
the fundamental solution of the system in terms of real loop integrals according to the
Herglotz-Petrovskii formula, which may also be applied readily to other constant-coefficient
hyperbolic systems. Petrovskii (1945) expressed the solution in terms of non-real cycles
in complex space. Atiyah, Bott, and Garding (1970, 1973) placed Petrovskii’s work on a
modern basis, and Smit and De Hoop (1995) recently elaborated this in a three-dimensional
elastodynamic setting. But following John (1955) and Gelfand and Shilov (1964) we will
stay with the representation in terms of real integrals. Burridge (1967) used it to obtain the
geometrical arrivals (see below), and the singularity due to the conical points of the slowness
surface at field points in the interior of the cone of internal conical refraction for cubic elastic
media. But that work lacked numerical illustrations and the treatment of the conical point
was not uniform near the conical surface itself. Although we still do not give the uniform
time-dependent asymptotic analysis for this region, we do present numerical solutions close
to and on this ‘cone of internal conical refraction’. The geometrical arrivals mentioned above
are singularities in the field associated with slownesses ξ which are ‘stationary points’ where
the plane ξ·x = t touches the slowness surface and at which the slowness surface has finite
non-zero Gaussian curvature, and such wave arrivals are governed by the simplest form of
geometrical ray theory.

For instance Moskvin et al. (1993) have derived the Green’s function in the frequency
domain and discussed various important directions and cones of directions in relation to
the field, namely in the directions of generators of the cone of internal conical refraction,
and in the directions of the bi-radials, i.e. the directions of the conical points on the wave
surface, and they obtain asymptotic approximations to the field at large distances in the
neighborhoods of these directions. Based on Moskvin et al. (1993), Warnick and Arnold
(1997) made further detailed studies of the conical refraction. Recently, Berry (2004) applied
the paraxial optics to study this singularity; his findings have extended and complemented
the existing theory by providing detailed analysis of such singularity. All of the above cited
works for the internal conical refraction are based on the space-frequency formulation.

In this paper we study the second-order vector equation for E obtained by eliminating
the other dependent variables from Maxwell’s equations and the constitutive laws of crystal
optics. This equation is like the second-order elastodynamic equation for particle displace-
ment and may be obtained from that of isotropic infinitesimal elasticity by setting the Lamé
constant λ = −2, and µ = 1, so that λ+ 2µ = 0, and the density ρ = σ (see below).
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Crystals fall under three symmetry classes which affect the optical properties. Either
three eigenvalues of the dielectric tensor are all distinct (bi-axial crystal), or two eigenvalues
are equal but unequal to the third (uni-axial crystal), or all three eigenvalues are equal
(optically isotropic crystal). In this paper we shall concentrate on the bi-axial case.

Our approach is based on the space-time formulation which can be used to further study
the internal conical refraction; the numerical analysis carried out in the current work comple-
ments the earlier mathematical investigations done by Ludwig (1961), Melrose and Uhlmann
(1979) and Uhlmann (1982). In particular, with modern microlocal analysis tools Melrose
and Uhlmann (1979) have constructed the microlocal parametrix for the Cauchy problem of
Maxwell’s equation in a bi-axial crystal to analyze the singularities of the solution so that
they were able to explain the appearance of the cone of conical refraction when a ray of light
hits a bi-axial crystal in a direction parallel to an optic axis of the crystal. Furthermore,
based on Melrose and Uhlmann (1979), Uhlmann (1982) carried out a more elegant and
refined analysis than the study of the singularities to explain the so-called “double ring”
phenomena; see Uhlmann (1982) for more details.

On the other hand, Taylor and Uhlmann (Taylor, 1981; Chapter 15, Section 5) have
constructed a microlocal parametrix to deal with the phenomenon of conical refraction.
They first perturbed the second order equation for the electric vector so that the equation
behaves like an elastic system; then they defined the so-called conical singularity via the
characteristic variety and the conic variety. Here we notice that the characteristic variety
in their setting is equivalent to the slowness surface in our setting. In particular, they
constructed the fundamental solution at a conical singular point, and it is represented as
a tensor product between a δ-function and the distributional kernel of the classical wave
equation in three variables.

However, in this work we construct the fundamental solution for the second order equation
for the electric vector in the whole space, hence it is different from the one constructed by
Taylor and Uhlmann. On the other hand, the numerical computation of the fundamental
solution of the Cauchy problem presented here does illustrate related singularities in the
field associated with slownesses ξ which are ‘stationary points’ where the plane ξ·x = t
touches the slowness surface and at which the slowness surface has finite non-zero Gaussian
curvature (see below). See Every (1981) for the effects of curvature of the slowness surface
near crystal symmetry axes in cubic crystal acoustics, Shuvalov and Every (1996) for more
general symmetries, and Musgrave (1970) for the general theory of crystal acoustics.

In this work we concentrate on the fundamental solution for the constant-coefficient
time-dependent non-dispersive system of crystal optics in the space-time formulation. For
the variable-coefficient time-dependent system of crystal optics in the space-time domain,
Braam and Duistermaat (1993) predict singularities that spiral or glance hyperbolically in
the vicinity of the so-called “double characteristic set”, and the derivatives of the material
properties are responsible for such singularities. To deal with such a case, we may start
from normal forms of real symmetric systems with multiplicity developed in Braam and
Duistermaat (1993) and go along the lines developed in Burridge (1967) to study singularities
related to the internal conical refraction of light; the related numerical investigation is an
ongoing work.
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1.2 Outline of this paper

In Section 2 we set up the electromagnetic system and its plane-wave solutions with the as-
sociated geometrical entities such as the slowness surface, and the wave surface. In Section
3 we set up and solve the Cauchy initial-value problem for E and make explicit some quan-
tities with a view to numerical evaluation. In Section 4 we follow the Herglotz-Petrovskii
procedure of transforming the integral representation to an integral around loops which, for
each x, t, form the intersection of the plane ξ·x = t with the slowness surface. As x, t vary
the geometry of these loops varies; the field and especially its singularities are strongly de-
pendent on the geometry of these loops. In Section 5 we give the static term corresponding
to the mode with zero wave speed. Numerical evaluation of the fundamental solution is
presented graphically in Section 6 for a selection of points in the positive quadrant of the
13-plane. Section 7 contains some concluding remarks.
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Table of notations:

Symbol Definition
t. time

x = (x1, x2, x3) spatial coordinate vector.

r = (r1, r2, r3) coordinate vector for the
representation of E .

c the speed of light in vacuo.

E, H the electric and magnetic vectors.

D The electric displacement.

B The magnetic induction.

µ The magnetic permeability
(scalar).

ε The dielectric tensor (symmetric).

σ, σ1, σ2, σ3 µε/c2 and its principal values.

ξ The slowness vector.

f Plane wave pulse shape.

e, h, d, b Constant polarization vectors for
E, H, D, B, related to ξ.

x̂ The unit vector in the direction
of x, and similarly for other
vectors.

x̂, ŷ, ẑ, x⊥ Unit vectors (Section 5 and
Appendix A only).

Ω, dΩ The unit sphere and its surface
element.

E The energy ellipsoid rTσ−1r = 1.

u, v Ellipsoidal coordinates on ellipsoid E
(σ1 ≥ u ≥ σ2 ≥ v ≥ σ3 ≥ 0.)

S, dS The slowness surface and its
surface element.

cS A conical point on S.

ΠS One of the four special tangent
planes to S.

CS One of the four circles in which a
ΠS touches S.

W The wave surface (reciprocal
to S).
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Symbol Definition
cW A conical point on W (reciprocal

to ΠS).

ΠW One of the four special tangent
planes to W
(reciprocal to cS).

CW One of the four circles in which ΠW
touches W.

DW The disk spanning CW .

Σ±, χ± The two cones of internal conical
refraction (vertex 0, base CW),
equation χ±(x) = 0.

L Loop or loops forming the
intersection of plane ξ·x = t
with slowness surface S.

∇, ˙ Derivatives with respect to
x and t.

Notes: 1) When used in matrix calculations vectors are columns unless explicitly transposed.
(Thus xTx is a scalar and xxT is 3 × 3.) 2) There are four conical points cS. cS in the
singular refers to the cS in ξ1 > 0, ξ3 > 0. And similarly for some other quantities.

2 Crystal optics equations

2.1 Maxwell’s equations and the slowness surface

We follow Born and Wolf (1991, Chapter XIV). Let x = (x1, x2, x3) = (x, y, z) be Cartesian
coordinates and t the time. Maxwell’s equations and the constitutive equations of crystal
optics are

−1

c
Ḃ = ∇× E, 1

c
Ḋ = ∇×H,

B = µH, D = εE.
(2.1)

Please refer to the Table of Notations for symbol definitions.
Since E, H, D, and B may be expressed as superpositions of plane waves we shall seek

them in a standard form for plane waves:

E = e f(t− ξ · x), H = h f(t− ξ · x),
D = d f(t− ξ · x), B = b f(t− ξ · x).

(2.2)

Substitution of (2.2) into (2.1) leads to

1

c
b =

µ

c
h = ξ × e, −1

c
d = −ε

c
e = ξ × h. (2.3)
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It easily follows that

ξ×(ξ×e) =
µ

c
ξ×h = −σe, (2.4)

i.e.
σe = |ξ|2e− (ξ·e)ξ. (2.5)

Then from (2.3)
h·ξ = b·ξ = d·ξ = e·h = d·h = 0. (2.6)

Also
ξ·(e× h) = −e·(ξ × h) = h·(ξ × e)

=
1

c
e·d =

1

c
h·b.

(2.7)

We shall often assume that
εij = εiδij, σij = σiδij. (2.8)

No summation is implied. Then

dk = εkek, bk = µhk. (2.9)

From (2.7) we have
1

c

∑

k

εke
2
k =

1

c
µ|h|2 = ξ·(e× h). (2.10)

From (2.7),(2.8),(2.9) we obtain

µεk
c2
ek = |ξ|2ek − (ξ·e)ξk. (2.11)

Writing

σk =
µεk
c2

(2.12)

and rearranging (2.11) we get

ek = (ξ·e)
ξk

|ξ|2 − σk
. (2.13)

Equation (2.9) for dk and (2.13) lead to

dk = (ξ · e) εkξk
|ξ|2 − σk

. (2.14)

Contracting (2.13) with ξk and canceling ξ·e we obtain

∑

k

ξ2
k

|ξ|2 − σk
= 1. (2.15)

Contracting (2.14) by ξk and using ξ·d = 0 we get
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∑

k

σkξ
2
k

|ξ|2 − σk
= 0. (2.16)

Equations (2.15) and (2.16) may be taken as equivalent equations of the slowness surface
Sσ on which ξ is constrained to lie. Another equation for S is

det(σ − |ξ|21 + ξξT ) = 0 (2.17)

obtained from (2.5) regarded as a linear system in e. In (2.17) 1 is the identity 3 × 3
tensor and ξT is the transpose of the column vector ξ. Equation (2.17) can be written more
explicitly as

|ξ|2 ξTσξ − [tr(adjσ)|ξ|2 − ξTadjσ ξ] + detσ = 0, (2.18)

where adj stands for the transposed matrix of cofactors, and tr for the trace; to obtain this
equation, we use the principal axes of σ as coordinates, multiply out Equation (2.17) explic-
itly and identify certain combinations of quantities that are invariant and can be expressed
as in (2.18). See Figure 1.

In the following we consider a uniform, homogeneous crystal, so that the principal values
of the permittivity are positive and the corresponding hyperbolic system has fixed multiplic-
ity.

2.2 The wave surface.

Let us now consider the wave surface reciprocal to the slowness surface. Remarkably for the
system of crystal optics the algebraic form of the two surfaces is the same.

To see this we first consider the equation of energy conservation

∂t[
1

8π
(E ·D +H ·B)] = − c

4π
∇ · (E ×H). (2.19)

This is easily verified from equations (2.1). The quantity 1
8π

(E ·D +H ·B) is the energy
density and c

4π
E ×H is the Poynting vector giving the power flux density. For plane waves

E ·D = H ·B, and the Poynting vector is the group, or ray, velocity multiplied by the
energy density. It follows by using (2.3) and (2.7) in (2.19) that

1
8π

(e · d+ h · b) = 1
4π
e · d = 1

4π
h · b = 1

4π
µ|h|2 = c

4π
ξ · (e× h), (2.20)

from which we may deduce that the ray velocity v is

v =
c

4π

1

µ|h|2e× h. (2.21)

For future reference let us notice here that from (2.6) and (2.21) the vectors ξ, v, d, and e
all lie in the same plane orthogonal to the parallel vectors b, h.

From (2.20), (2.21) we have
ξ · v = 1. (2.22)

We may now verify that
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v × (v × d) = −σ−1 d, (2.23)

i.e.
σ−1 d = |v|2d− (v·d)v. (2.24)

Taking advantage of the fact that σ is diagonal in the current coordinate system we may
write (2.24) as

1

σk
dk = |v|2dk − (v · d)vk, (2.25)

leading to

∑

k

v2
k

|v|2 − 1

σk

= 1,
∑

k

1

σk
v2
k

|v|2 − 1

σk

= 0, (2.26)

and
det(σ−1 − |v|21 + vvT ) = 0; (2.27)

compare (2.15), (2.16), (2.17). Also

|v|2 vTadjσ v − [tr(σ)|v|2 − vTσ v] + 1 = 0, (2.28)

in analogy with the development (2.11) to (2.17). Equations (2.26) and (2.27),(2.28) may
be taken as equivalent equations of the wave surface Wσ upon which v is constrained to
lie. See Figures 2 and 3. Two cones Σ± having the origin as vertex pass through the circles.
Their equations are

χ±(ξ) ≡ (ξc3x1 ± ξc1x3)
(ξc3x1

σ1
± ξc1x3

σ3

)
+ x2

2 = 0; (2.29)

see Appendix A for the derivation of these equations.

3 The Cauchy problem

In this section we set up and solve the Cauchy problem for the second-order system of
PDE’s obtained by eliminating B, D, H from (2.1). Later we shall evaluate the solution
numerically and present some results graphically. Our development is strongly motivated by
John (1955), the discussion of the Herglotz-Petrovskii formula in Gelfand and Shilov (1964),
and Petrovskii (1945).

3.1 The second-order equation for E

The elimination of B, D, H from (2.1) yields the single second-order equation

σË = −∇×∇×E = (∇21−∇∇T )E. (3.1)

Then, on writing ∂t for ∂/∂t (3.1) becomes
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[σ∂2
t − P (∇)]E = 0, (3.2)

where
P (ξ) = |ξ|21− ξξT , (3.3)

so that P (ξ̂) is the projection onto the plane normal to ξ̂. We shall generate the fundamental
solution of (3.2) by solving the Cauchy problem for (3.2) in t > 0 with initial conditions

E(x, 0) = 0, ∂tE(x, 0) = σ−1δ(x), (3.4)

where
δ(x) = δ(x1)δ(x2)δ(x3). (3.5)

By Duhamel’s principle this Cauchy problem is equivalent to the inhomogeneous equation

[σ∂2
t − P (∇)]E = 1δ(t)δ(x), (3.6)

with E = 0 for t < 0. We shall solve this using the following considerations, which are
motivated by John (1955), Chapter 2; in addition, we generalize that work to a matrix
formulation and consider the degenerate mode with zero wave speed.

3.2 The residue calculation

Let us write
L(v, ξ) = v2σ − P (ξ), (3.7)

regarding v as a scalar complex variable. Then for large enough |v|

L−1(v, ξ) = v−2σ−1[1− v−2P (ξ)σ−1]−1

= v−2σ−1
∞∑

n=0

v−2n(P (ξ)σ−1)n.
(3.8)

This is a series in inverse even powers of v, starting with v−2. On multiplying this by vq and
integrating around a large circle centered at the origin in the complex v plane we obtain

I =
1

2πi

∮
L−1(v, ξ)vq dv =

{
0, q = 0,
σ−1, q = 1.

(3.9)

Other values of q will not concern us. Let us now evaluate I by residues at the finite poles.
When ξ 6= 0 there are four simple non-zero poles ±V1, ±V2 of L−1 and a double pole at
v = 0. Thus, if we write V−1 for −V1 and V−2 for −V2, and ∂v for ∂/∂v we find on evaluating
the residues at the VN that

I =
∑

N

vqadjL

∂v detL

∣∣∣∣∣
v=VN

+ {residue at v = 0}. (3.10)

We may rewrite ∂v detL|v=VN as
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∂v detL|v=VN = ∂v det(v2σ − P )|v=VN = 2VNtr(σ adjL). (3.11)

To find the residue at v = 0 we expand (v2σ − P )−1 in positive powers of v. Thus using

adjP (ξ) = |ξ|2ξξT (3.12)

we find that
detL = adj(v2σ − P )

= adjP +O(|v|2)
= |ξ|2ξξT +O(|v|2).

(3.13)

Recalling that detP = 0 we see that

det(v2σ − P ) = v2tr(σadjP ) +O(|v|4)

= v2|ξ|2 ξTσξ +O(|v|4).
(3.14)

So

{det[L(v, ξ))]}−1 =
v−2

|ξ|2 ξTσξ +O(1). (3.15)

Thus the residue of vqL−1 at 0 is

{residue of vqL−1at v = 0} =





0, q = 0,

ξξT

ξTσξ
, q = 1.

(3.16)

Thus, from (3.9), (3.10), (3.11), and (3.16) we find that

∑

N

adjLN
2VNtr(σadjLN )

= 0, (3.17)

and
∑

N

adjLN
2 tr(σadjLN )

+
ξξT

ξTσξ
= σ−1. (3.18)

Here we have written LN for L evaluated at v = VN , N = ±1,±2.

3.3 The fundamental solution

Let us first seek a matrix plane-wave solution Gξ of (3.2) in the form

Gξ(x, t) =
∑

N

adjLN
2VNtr(σadjLN )

f(VN t− ξ·x) +
ξξT

ξTσξ
tf ′(−ξ·x). (3.19)

This form is motivated by the plane wave decomposition of the δ-function, (3.23), and the
above results of the residue calculation, (3.18).
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We first verify that L(∂t,∇)Gξ(x, t) = 0. Thus

L(∂t,∇)Gξ(x, t) =
∑

N

LNadjLN
2VNtr(σadjLN)

f ′′(VN t−ξ·x)

=
∑

N

detLN 1

2VNtr(σadjLN)
f ′′(VN t−ξ·x)

= 0,

(3.20)

since each detLN = 0. By (3.17) the initial value of Gξ is

Gξ(x, 0) =
∑

N

adjLN
2VNtr(σadjLN)

f(−ξ·x) = 0, (3.21)

and by (3.18) the initial value of ∂tGξ is

∂tGξ(x, 0) =
∑

N

adjLN
2 tr(σadjLN)

f ′(−ξ·x) +
ξξT

ξTσξ
f ′(−ξ·x) = σ−1f ′(−ξ·x). (3.22)

We are ultimately interested in the matrix point source problem (3.2), (3.4), (3.5) or equiv-
alently (3.6). The link is the plane-wave expansion of the δ-function,

δ(x) = − 1

8π2

∫

Ω
δ′′(ξ̂·x) dΩ, (3.23)

where Ω is the unit sphere |ξ| = 1, dΩ is the surface element on Ω, and δ ′′ is the second
derivative of the one-dimensional δ-function. (See John, 1955, Chapter II; Courant and
Hilbert, 1962, Chapter VI, Section 11; and Gelfand and Shilov, 1964, Chapter I, Section
3.11.) From (3.21) and (3.22), and setting f = δ ′, we see that

G(x, t) = − 1

8π2

∫

Ω
Gξ(x, t) dS

= − 1

8π2

∑

N

∫

Ω

adjLN
2VNtr(σadjLN )

δ′(VN t−ξ̂·x) dΩ− t

8π2

∫

Ω

ξ̂ξ̂
T

ξ̂
T
σξ̂

δ′′(−ξ̂·x) dΩ

(3.24)
satisfies (3.4) exactly.

3.4 Transformation to an integral over the slowness surface

Here we follow John (1955, Chapter II) and Gelfand and Shilov (1964, Chapter I, Section
6.3). If the wave-speeds ±VN are ordered from the most negative to the most positive we
find that VN (−ξ) = V−N(ξ). This and the fact that the VN are homogeneous functions of
degree 1 imply that the integral in (3.24) for N is the same as the integral for −N . Thus we
may combine the terms for ±N and write
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G(x,t) = − 1

4π2

∑

N=1,2

∫

Ω

adjLN
2VNtr(σadjLN)

δ′(VN t−ξ̂·x) dΩ− 1

8π2

∫

Ω

ξ̂ξ̂
T

ξ̂
T
σξ̂

t δ′′(−ξ̂·x) dΩ.

(3.25)
In the Nth term of (3.24) let us transform the integral over Ω to one over SN , N = 1, 2,
where SN is the sheet of the slowness surface corresponding to slowness 1

VN (ξ̂)
. We note that

|ξ|2 dΩ = cos θ dSN =
ξ·∇ξVN
|ξ| |∇ξVN |

dSN =
1

|ξ| |∇ξVN |
dSN , (3.26)

where ξ = |ξ|ξ̂, θ is the angle between ξ and v̂ the normal to SN , and dSN is the surface
element on SN and we have used the homogeneity of VN as a function of ξ. We next use the
facts that VN(ξ) = 1 on SN , δ′ is homogeneous of degree −2, and that VN(ξ) is homogeneous
of degree 1, to get

δ′(VN(ξ̂)t− ξ̂·x)

VN (ξ̂)
= |ξ|3 δ

′(VN(ξ)t− ξ·x)

VN(ξ)
= |ξ|3δ′(t− ξ·x). (3.27)

Finally we write

G(x, t) = − 1

8π2
∂t

∫

S

adjL(1, ξ)δ(t− ξ·x)

|∇ξVN | tr[σ adjL(1, ξ)]
dS − t

8π2

∫

Ω

ξ̂ξ̂
T
δ′′(ξ̂·x)

ξ̂
T
σξ̂

dΩ, (3.28)

where we have combined the two terms N = 1, 2 by integrating over the whole of S which
comprises both sheets. Because of the properties of δ the integrals may be written as integrals
along curves of intersection of the algebraic surface S with the plane ξ·x = t. We shall
elucidate this and make more explicit the various expressions appearing in the integrand.

One may also examine the above fundamental solution from a microlocal point of view.
For example, one may use Fourier Integral Operator theory to construct the parametrix
for the Cauchy problem to study singularities, which eventually leads to the Herglotz-
Petrovskii formula for the fundamental solution of the hyperbolic system under consideration
(Hörmander, 1980; Chapter 12); however, here we will not pursue this line further.

4 The loop integrals

Consider the integral expression of (3.28) repeated here for convenience

G(x, t) = − 1

8π2
∂t

∫

S

adjL(1, ξ)δ(t− ξ · x)

|∇ξv| tr[σ adjL(1, ξ)]
dS − t

8π2

∫

Ω

ξ̂ξ̂
T
δ′′(ξ̂ · x)

ξ̂
T
σξ̂

dΩ. (4.1)

The first integral reduces to an integral around a curve, the intersection of S and the plane
ξ·x = t. Let n be the outward unit normal to S and ζ ′ defined by

ζ ′ = x̂·ξ. (4.2)
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Then
sin θ dS = ds dζ ′, (4.3)

where s is arc-length along the curve and

cos θ = x̂·n =
x̂·∇ξv

|∇ξv|
. (4.4)

Hence
δ(t− ξ · x) dS
|∇ξv|

=
δ(t− |x| ζ ′) ds dζ ′√
|∇ξv|2 − (x̂·∇ξv)2

. (4.5)

Thus

∫

S

adjL(1, ξ)δ(t− ξ · x)

|∇ξv| tr[σ adjL(1, ξ)]
dS =

1

|x|
∫

L

adjL(1, ξ) ds

tr[σ adjL(1, ξ)]
√
|∇ξv|2 − (x̂·∇ξv)2

. (4.6)

Here L is the complete real intersection of S with the plane ξ·x = t and ds is arc-length
along L.

4.1 Implicit computation of complete intersection L
To evaluate the integral (4.6), we have to compute the complete real intersection L of S with
the plane ξ·x = t. We use an Eulerian approach.

Since
S = {ξ ∈ R3 : det(σ − P (ξ)) = 0}, (4.7)

we define the function
Φ(ξ) ≡ det(σ − P (ξ)), (4.8)

and find its zero level set S:
S = {ξ ∈ R3 : Φ(ξ) = 0}. (4.9)

Moreover, the hyperplane ξ·x = t may also be represented implicitly by the zero level set of
function

Ψ(ξ) ≡ ξ·x− t. (4.10)

To reduce the computational complexity, we use the fact that L always lies on the plane
ξ·x = t with a fixed normal x̂. Thus we may rotate the coordinate system first and find L
by contouring zero level sets of a 2-dimensional function. This technique is commonly used
in the level set method for dynamic implicit surfaces; see Osher and Fedkiw (2002).

In the numerical implementation, we have used linear interpolation for contouring zero
level sets and trapezoid quadrature for numerical integration so that the computed funda-
mental solution has at least second-order accuracy in terms of mesh size used for contouring
zero level sets; on the other hand, we may use the Newton-Raphson method to improve the
accuracy for contouring zero level sets, which is not carried out here.
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4.2 The method of evaluation

The method of numerical evaluation is as follows. We first rotate the coordinate system so
that the new 3-direction is parallel to x. Thus, defining the rotation matrix Q to have x̂ as
its third column (We chose the second column to lie in the 12-plane.), and setting

ξ = Q ξ′ (4.11)

the coordinate ξ′3 is in the direction of x as required and ξ ′1, ξ′2, ξ′3 form a right-handed
orthogonal coordinate system. So, using

σ′ = QTσQ, ξ′ = QTξ (4.12)

we may write the determinant det{σ − P (ξ)} as

det{σ − P (ξ)} = det{σ′ − P (ξ′)} = σ1σ2σ3 − tr{adj(σ′}|ξ′|2 + ξ′Tadj(σ′)ξ′ + |ξ′|2ξ′Tσ′ξ′
(4.13)

as a function of ξ′1 and ξ′2 for each fixed ξ′3 = t/|x|. A Matlab code was written using the
contour command to find L as a curve or curves of points in the ξ ′1ξ

′
2-plane where this

determinant vanishes. The integration was performed to second order accuracy in the mesh
size on which det{σ′ − P (ξ′)} was evaluated.

5 The static term

In (3.28) the final term of the fundamental solution G represents a non-propagating distur-
bance, corresponding to zero velocity, which grows linearly in time and is singular at the
origin. It is

J(x, t) = − t

8π2

∫

Ω

ξ̂ξ̂
T

ξ̂
T
σξ̂

δ′′(ξ̂·x) dΩ. (5.1)

Let us now calculate J(x, t).
Let x̂ be the unit vector in the direction of x and let ŷ, ẑ be chosen so that x̂, ŷ, ẑ form

a right-handed orthonormal triple.
Then a general unit vector ξ̂ perpendicular to x may be written as cosφŷ + sin φẑ, and

we may write J as

J(x, t) = − t

8π2|x|3
∫ 1

−1

∫ 2π

0

ξ̂ξ̂
T

ξ̂
T
σξ̂

δ′′(µ) dφ dµ, (5.2)

where

ξ̂ = µx̂+
√

1− µ2(cosφŷ + sin φẑ), (5.3)

and x⊥ = cosφŷ + sinφẑ. Then

J(x, t) = − t

8π2|x|3
∫ 2π

0

∂2

∂µ2

(
ξ̂ξ̂

T

ξ̂
T
σξ̂

)∣∣∣∣∣
µ=0

dφ. (5.4)



The Fundamental Solution of the Time-Dependent System of Crystal Optics 16

After some elementary calculations one finds that

∂2

∂µ2

(
ξ̂ξ̂

T

ξ̂
T
σξ̂

)∣∣∣∣∣
µ=0

= 2

[
x̂x̂T

x⊥
T
σx⊥

− 2(x⊥
T
σx̂)(x̂x⊥

T
+ x⊥x̂T )

(x⊥
T
σx⊥)2

+
4(x̂Tσx⊥)2x⊥x⊥

T

(x⊥
T
σx⊥)3

]
.

(5.5)
Thus we need integrals of the form

I(0) =
∫ 2π

0

dφ

D
, I(2)
pq =

∫ 2π

0

x⊥p x
⊥
q dφ

D2
, I(4)
pqrs =

∫ 2π

0

x⊥p x
⊥
q x
⊥
r x
⊥
s dφ

D3
, (5.6)

where D = x⊥
T
σx⊥ and the superscripts indicate the ranks of the tensors. We begin with

I(0) from which the others may be derived by means of

I(2)
pq = −∂I

(0)

∂σpq
, I(4)

pqrs =
1

2

∂2I(0)

∂σpq∂σrs
. (5.7)

Let us write
F = x̂Tadjσx̂. (5.8)

Then it may be shown that

I(0) =
2π

F
1
2

; (5.9)

see Appendix B. Let us further define

Zjk = εijkx̂i, w = σx̂, W = ZTσZ. (5.10)

Then, it follows after some further calculation that the static term of (3.28) is given by

− t

8π2

∫

Ω

ξ̂ξ̂
T

ξ̂
T
σξ̂

δ′′(ξ̂ · x) dΩ =

− t

4πF
1
2 |x|3

{
2x̂x̂T − x̂

Tσx̂

F
W − 2

F
(x̂wTW +Wwx̂T )− 2

F
ZTwwTZ +

3

F 2
(wTWw)W

}
,

(5.11)
with Z, w, and W given by (5.10), and F by (5.8); see Appendix B.

We now have the ingredients for evaluating the solution G given in (3.28).
The field near the edge of the disk of tangency on the wavefront is difficult to express

uniformly in the asymptotic sense, and so is the field near the conical points on the wave-
front; however, they can be computed independently. Therefore, we have chosen to evaluate
the fundamental solution numerically. One may evaluate the fundamental solution in the
space-frequency domain based on Fourier analysis; here we prefer to evaluate the funda-
mental solution in the space-time domain because this domain is much closer to the physics
and yields much simpler expressions at caustics (Burridge, 1995)). The resulting numerical
method is flexible for concentrating on the specific regions that we are interested in.
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6 The field in the 13-plane

In this section we plot the solution Gij(x, t) as functions of t for various fixed x with |x| = 1
and x given by

x(θ) =

( sin θ
0

cos θ

)
, (6.1)

and θ = 0, π/36, π/18, . . . , π/2, i.e. θ increasing by steps of 5◦ from 0◦ to 90◦. This will give
a sampling of points on the 13-plane illustrating the various types of behavior in relation
to the geometrical configuration described at the end of the previous section. For clarity
in the graphical illustrations we set the parameters to be σ1=2.25, σ2=1.0, σ3=0.25; these
parameters do not correspond to any real crystal.

Let us first define θa, θb and θc by

tan θa =

√
σ3(σ1 − σ2)

σ1(σ2 − σ3)
,

tan θb =

√
σ1(σ1 − σ2)

σ3(σ2 − σ3)
,

tan θc =

√
σ1 − σ2

σ2 − σ3
.

(6.2)

Here θa and θb are the points at which the circle CS crosses the 13-plane, for θ = θc x is
parallel to a bi-radial and so points in the direction of the conical point CW . We find that
θa < θc < θb. See Figure 4.

To understand the sequence of arrivals for a given θ draw the ray through the origin in
the direction of x(θ) in Figure 4. Now trace along the ray from the outside of W inward.
Each crossing of the curves drawn is associated with the arrival of a singularity. A normal
to W at one of these crossings gives the direction of the associated stationary point ξ1,2 on
S. Reciprocally the normal to S at such a ξ1,2 gives the direction of the point x to which it
corresponds. Thus at both stationary points ξ1,2 corresponding to the ray in the direction
of x̂ the normals to S have the same direction making an angle θ with the 3-axis. The inner
sheet of W corresponds to the outer sheet of S, and vice-versa as indicated in the captions
to Figures 2 & 3.

For 0 < θ < θa and again for θb < θ < π/2, the singularities all correspond to points of
tangency on S with positive Gaussian curvature. These singularities are of the form

A(x̂)ê1,2ê
T
1,2

K
1
2 (ξ1,2)|x|

δ[t− t1,2(θ)], (6.3)

except for those x having directions passing too close to θ = θa or θb, where the contact
circle CW on the wave front crosses the 13-plane. In (6.3) A is a smoothly varying function
of direction, ξ1,2 = ξ1,2(θ) is one of the two points at which the plane ξ·x(θ) = t is tangent
to S, and t1,2(θ) the two corresponding values of t, with indexing such that t1 < t2, and
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e1,2(θ) is the corresponding polarization for E. Then ξ1(θ) lies on the inner sheet of S and
ξ2(θ) lies on the outer. See Figures 4 & 5. K(ξ1,2) > 0 is the Gaussian curvature of S at
ξ1,2. See Burridge (1967).

For θ = θa, ξ1 = cS and ξ2 is on the outer sheet still near the 3-axis.
For θa < θ < θc and for θc < θ < θb χ(x) < 0, the Gaussian curvature is negative at the

contact point ξ1, which now lies on the outer sheet of S. The wave singularity corresponding
to such a point has the form

A(x̂)ê1,2ê
T
1,2

|K| 12 (ξ1)|x|
−1

π(t− t1)
, (6.4)

the Hilbert transform of that in (6.3). See Burridge (1967). Notice that for these values of
θ this is the first of the two ‘geometrical’ wave arrivals and it carries a two-sided singularity.
Hence the field must already be non-zero. Indeed, when χ(x) < 0 a weak step singularity
arising from small integration loops encircling the conical point arrives first, the associated
wavefront being the disk spanning a contact circle CW on W. See Burridge (1967) for a
treatment of the analogous arrival for cubic elastic media when x is not too near the cone
Σ++. For θ near θa the stationary point ξ1 is close to the conical point cS. This raises
the question of the uniform analytical treatment of the neighborhood of the circle CW , the
boundary of the disk. The analysis of this approximation is not known to the present authors
for the time-dependent problem, but Borovikov (2000) has recently given a treatment for the
time-harmonic case, and the time-dependent approximation may be derived from this by a
Fourier transform, but as far as the authors are aware this has not yet been carried out.

As θ increases from θa to θc, the stationary point ξ1(θ) moves away from the conical
point on S toward the circle CS at the lower of ξ1(θc) = ξ1(θc), and at the same time the
stationary point ξ2(θ) moves from ξ2(θa) outside of the cone Σ++ toward the rim of the disk
nearest to the 3-axis at the upper point ξ1(θc) = ξ1(θc). Both geometrical arrivals come
in together at t = t1 = t2. The direction of x now becomes bi-radial and passes through
the conical point cW on W. Then all the points of CS become stationary points and to find
the singularities for directions near bi-radial one needs to perform the appropriate uniform
asymptotic analysis.

To track these points as θ passes from θc to θb and to keep the order of arrival times
so that t1 ≤ t2 the labeling of points must change so that ξ1 becomes ξ2 and vice versa.
The old ξ2, renamed as ξ1, now proceeds from the rim to the conical point ξc while the old
ξ1, renamed as ξ2, proceeds beyond the rim towards the 1-axis, reaching an intermediate
position ξ2(θb) while ξ1(θb) moves to ξc.

For θ passing from θb to π/2, ξ1 proceeds on the inner sheet of S from ξc to the direction
of the 1-axis and ξ2 also tends to the 1-direction on the outer sheet. In Figure 5 is shown the
13-section of S with the points ξ1,2(θa,b,c) indicated. Pairs ξ1,2 corresponding to the same
θ have parallel normals in the direction of ξ(θ), making an angle θ with the 3-axis, and
indicated as dashed lines in the figure.
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6.1 Numerical values of the Gij(x, t) for various x in the 13-plane.

Since the solution is self-similar (homogeneous of degree -2 in x and t) the computation of
G was carried out as described above by taking x = (sin θ, 0, cos θ), for which |x| = 1. In
Figures 11 - 12 the components of G are plotted as functions of t for each x corresponding
to the values of θ listed above. Let us relate these plots to the geometry of the integration
loops. Consider, for instance, the plots in these figures for θ = 20◦. The corresponding
integration loops are shown superimposed on the quarter of S for which x1 > 0 and x3 > 0
in Figure 6.

Here θ is near θa so the x is near CW and the inner stationary point marked ‘◦∗’ lies near
the conical point. Loops are shown for representative values of t. For θ = θa and t such that
the plane ξ·x = t passes through the conical point, the loop corresponding to that time has
a cusp at the conical point. The loop near the outer stationary point has the form typical
for stationary points with positive Gaussian curvature.

It is clear from the coordinate lines marked on S that the polarization for the first
singularity (on the inner sheet) is in the tensor component transverse to x and lying in the
tensorial ‘direction’ 


0 0 0
0 1 0
0 0 0


 , (6.5)

while the later arrival associated with the outer sheet is in the ‘direction’



cos2 θ 0 − sin θ cos θ
0 0 0

− sin θ cos θ 0 sin2 θ


 . (6.6)

We can also approximately read off the amplitude since that is inversely proportional to the
square root of the Gaussian curvature of S at the corresponding stationary point. Notice
particularly that the curvature goes to infinity at the conical point, leading to zero amplitude
there (but indicating that the waveform actually has a different singularity type). On the
other hand the curvature goes to zero at points of CW where the four special tangent planes
ΠS touch S.

The details of the loops for an x just outside the cone Σ++ are shown in Figure 7. Notice
particularly the stationary point marked ‘◦∗’, which lies on the inner sheet of S (as do the
other smaller closed loops). The conical point itself is where the loops cross below ◦∗. The
open larger loops belong to the outer sheet of S. The time sequence is such that the outer
closed loops are paired with the lower open loops at earlier times and a full intersection of
ξ·x = t with S consists of such pairs of loops until the upper ◦∗ is reached, when the small
closed loops disappear.

The details of the loops for an x just inside the cone Σ++ are shown in Figure 8. Now
the stationary point marked ‘◦∗’ lies on the outer sheet of S. The conical point itself is where
the small closed loops (on the inner sheet of S) converge to a point and then open up as
closed loops on the outer sheet. The open larger loops belong to the outer sheet of S. The
time sequence is that the outer closed loops and the lower open loops are paired at earlier
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times, and a full intersection of ξ·x = t with S consists of two loops until ◦∗ is reached, when
the small closed loops merge with the larger loops to form one large loop like the uppermost
(and latest) of the open loops shown.

In Figure 9 we show the loop configuration for an x near the bi-radial direction. There
are two stationary points indicated again by ‘◦∗’, one just outside the circle CS and one just
inside. Notice particularly the configuration of the loops near these points.

In Figure 10 we show a similar loop configuration for an x just the other side of the
bi-radial direction. Again there are two stationary points indicated by ‘◦∗’, one just inside
the circle CS and one just outside. Notice that the configuration of the loops near these
points is similar to the one in Figure 9 but rotated by 180◦.

In Figures 11 - 12 are plotted the components of G which are not identically zero by
symmetry in the plane x2 = 0. In these figures the Gij[x(θ), t] are plotted as functions of t
for the fixed values of θ indicated on the left vertical scale. The two curves cutting across
these indicate the arrival times t1(θ) and t2(θ). Where these (almost) meet corresponds to
θc where t1 = t2. The plot of each Gij starts at the time t3(θ) of the conical-point arrival.
Notice that only in the range θa < θ < θb (approximately 25◦ < θ < 75◦) is the signal
non-zero for t3 < t < t1. In the same range the arrival at t1 has the Hilbert transform pulse
shape.

The components of G represented in Figures 11 - 12 have δ-like singularities, and so it
is difficult to represent their amplitudes in relation to the smooth parts of the signal, the
amplitudes of the numerical δ’s being inversely proportional to the time step and therefore
large and dependent upon the discretization. To give a better representation of the smooth
field together with the singularities we have plotted in Figures 13 - 14 the step response
obtained from the integrals in (3.28) before differentiation with respect to t, plus the time
integral of the third term.

7 Conclusions

We have developed the fundamental solution for the time-dependent system of crystal optics
using the Herglotz-Petrovskii formula. This technique represents the solution as integrals
around real loops, the intersection of a moving plane ξ·x = t with the slowness surface S,
together with a non-propagating term, which is calculated separately. Because of the iden-
tities stemming from the residue calculation of Section 3 and other similar relationships it
is possible to express the result in terms of Abelian integrals on non-real cycles (Petrovskii,
1945), and possibly a more efficient computation would ensue. These are closely related to
the integrals arising in the Cagniard - De Hoop method. See for instance Van der Hijden
(1987) for the extension to waves in layered anisotropic elastic media. We have not concerned
ourselves with the efficiency of computation, but have used this strikingly geometrical rep-
resentation to motivate our calculation and to illustrate some special regions of the field,
namely the field near the cone of internal conical refraction, and the field near the bi-radial
directions. We found that this representation is easily programmable in Matlab.

We have graphically displayed the geometrical entities that come into play and plotted
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the signal G(x, t) as functions of t for linear ‘gathers’ of positions x in the style used in
seismic exploration. Since it is not straightforward to represent graphically the amplitude
of the Dirac δ we have in one or two places plotted the step response. It is an easy matter
to calculate the field to any degree of accuracy in any region using our method. The same
method may be used for the fundamental solution for infinitesimal anisotropic elasticity.

We have left for future study the analysis of the uniform asymptotics for field points near
the bi-radial directions associated with the conical points cW on the wave-surface W and
near (the surface of) the cones of internal conical refraction Σ±. We note that Borovikov
(2000) has obtained related time-harmonic results where the cone is strictly conical in that
it has straight generators but with a nonlinear phase function.

We plan to apply the same method to develop the fundamental solution for the time-
dependent system of anisotropic elasticity in the future.
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Appendix A: The cones of internal conical refraction

Here we will derive equation (2.29) for the cones of internal conical refraction. For easy
reference we repeat the equation here

χ±(ξ) ≡ (ξc3x1 ± ξc1x3)
(ξc3x1

σ1
± ξc1x3

σ3

)
+ x2

2 = 0. (A.1)

Let us first indicate why the planes of multiple tangency ΠW to the wave surface W, and
dual to the conical points ξc on S, touch the wave surface in circles. First we notice that the
existence of the conical points ξc and the fact that W is of the fourth degree show that the
tangency is along a repeated conic. But the fourth-degree terms in the quartic equation of
the wave frontW are (x2

1 +x2
2 +x2

3)(x2
1/σ1 +x2

2/σ2 +x2
3/σ3). After a rotation of coordinates so

that the the new 3-axis is normal to the plane of tangency, and on setting the new coordinate
x′3 = 1/

√
σ2 for the plane of tangency, we find that the equation for the curve of tangency

is Φ2 = 0, where Φ is a quadratic expression in x′1 and x′2 whose second-degree part is a
constant multiple of x′21 + x′22 and hence represents one of the circles on W which we have
called CW .

The two double cones of internal conical refraction are the cones with origin O as vertex
and passing through the circles CW , or alternatively the cones of normals to S at the conical
points ξc. Recall for reference that the plane x2 = 0 cuts S and W each in an intersecting
circle and ellipse, S in ξ2

1 + ξ2
3 = σ2 and ξ2

1/σ3 + ξ2
3/σ1 = 1, and W in x2

1 + x2
3 = 1/σ2 and

σ3x
2
1/+ σ1x

2
3 = 1.

Since (A.1) is homogeneous of degree 2 in (x1, x2, x3), it will be true for any x on the
double cones with origin as vertex and passing through a circle CW if it is satisfied for all x
on CW . So, first consider a general point x on the circle CW . For definiteness we assume CW
to lie in the first quadrant x1 > 0, x3 > 0, in which case the negative signs should be taken
in (A.1) as also for the third quadrant. The positive signs should be taken for the second
and fourth quadrants.

Draw the chord through x perpendicular to the diameter on which x2 = 0. It is bisected
by this diameter at the point x′ = (x1, 0, x3), say, and each half is of length x2. Let s be
the extremity of the diameter where it touches the circle x2

1 + x2
3 = 1/σ2 and t be the other

extremity where it touches the ellipse σ3x
2
1 + σ1x

2
3 = 1. Then, from an elementary theorem

on intersecting chords of a circle, we know that

|s− x′||t− x′| = y2. (A.2)

We shall show that (ξc3x1 − ξc1x3) is a (positive) scalar multiple of |s− x|, and that
−(ξc3x1/σ1 − ξc1x3/σ3) is a (positive) scalar multiple of |t − x|, the scalar multiples being
the reciprocals

√
σ2 and 1/

√
σ2.

First notice that s is normal to the circle ξ2
1 + ξ2

3 = σ2, ξ2 = 0 at the conical point ξc on
S, and so

s = ξc/σ2, (A.3)

since |ξc| =
√
σ2 and |s| = 1/

√
σ2. Similarly, t is a normal to the ellipse ξ2

1/σ3 + ξ2
3/σ1 = 1,

ξ2 = 0 at the same conical point ξc, and so it is a multiple of (ξc1/σ3, 0, ξc3/σ1). But it lies
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on the ellipse σ3t
2
1 + σ1t

2
3 = 1, and if we take the scalar multiplier to be 1 we easily verify

that
σ3t

2
1 + σ1t

2
3 = σ3(ξc1/σ3)2 + σ1(ξc3/σ1)2

= ξ2
c1/σ3 + ξ2

c3/σ1

= 1.

(A.4)

Thus we find that
t = (ξc1/σ3, 0, ξc3/σ1) (A.5)

precisely.
We may express |s− x′| and |t − x′| as twice the areas of the triangles Osx′ and Otx′

divided by the perpendicular distance 1/
√
σ2 from O to the line containing s, x′, t. Twice

the area of triangle Osx′ is s3x1 − s1x3, and so

|s− x′| = √σ2(s3x1 − s1x3) =
ξc3x1 − ξc1x3√

σ2
(A.6)

and twice the area of triangle Otx′ is −(t3x1 − t1x3), and so

|t− x′| = −√σ2(t3x1 − t1x3) = −√σ2

(ξc3x1

σ1
− ξc1x3

σ3

)
(A.7)

On using (A.6) and (A.7) in (A.2) we obtain (A.1) with negative signs as required. Then
by taking the circle CW to lie in the second or fourth quadrants we account for the positive
signs in (A.1).
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Appendix B: The integrals I (0), I(2), I(4) and the static

term

As stated in Section 5 we need integrals of the form

I(0) =
∫ 2π

0

dφ

D
, I(2)

pq =
∫ 2π

0

x⊥p x
⊥
q dφ

D2
, I(4)

pqrs =
∫ 2π

0

x⊥p x
⊥
q x
⊥
r x
⊥
s dφ

D3
, (B.8)

where D = x⊥
T
σx⊥ and the superscript indicates the rank of the tensor. We begin with

I(0) from which the others may be derived by means of

I(2)
pq = −∂I

(0)

∂σpq
, I(4)

pqrs =
1

2

∂2I(0)

∂σpq∂σrs
. (B.9)

Let us further suppose that the triad x̂, ŷ, ẑ is chosen so that ŷ and ẑ are principal axes of
the section of the ellipsoid ξTσ−1ξ = 1 by the plane ξ·x = 0. Then

I(0) =
∫ 2π

0

dφ

D

=
∫ 2π

0

dφ

a cos2 φ+ b sin2 φ

= 4
∫ π

0

dφ

a(1 + cos 2φ) + b(1− cos 2φ)

= 2
∫ 2π

0

dψ

(a + b) + (a− b) cosψ)
,

(B.10)

where a = ŷTσŷ, b = ẑTσẑ, and we have changed integration variable to ψ = 2φ. Setting,
in the usual way, z = eiψ, dψ = dz/iz, we obtain

I(0) = −2i
∮

|z|=1

dz
1
2
(a− b)z2 + (a+ b)z + 1

2
(a− b))

= − 4 i

(a− b)
∮

|z|=1

dz

(z + α)(z + β)
,

(B.11)

where

α+ β =
2(a+ b)

a− b , αβ = 1 (B.12)

Evaluating (B.11) by residues at α where |α| < 1 we get

I(0) =
8π

(a− b)(−α + β)

= − 2π√
ab
,

(B.13)
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where we have used the obvious identity (−α + β)2 = (α + β)2 − 4αβ. But ab is the
determinant of ( ŷT

ẑT
)
σ
(
ŷ ẑ

)
(B.14)

which is the cofactor of x̂Tσx̂ in

det

{( x̂T

ŷT

ẑT

)
σ
(
x̂ ŷ ẑ

)}
, (B.15)

i.e. it is the 11 component of

adj

{( x̂T

ŷT

ẑT

)
σ
(
x̂ ŷ ẑ

)}
=

( x̂T

ŷT

ẑT

)
adjσ

(
x̂ ŷ ẑ

)
= F, say, (B.16)

where we have made use of the fact that the adjoint of a product is the product of the
adjoints in the reverse order and that the adjoint of an orthogonal matrix is its transpose.
The 3× 3 component of this is

F = x̂Tadjσx̂. (B.17)

Further, to facilitate differentiation with respect to σjq we write

F = x̂Tadjσx̂ = 1
2
ZjkZqrσjqσkr, (B.18)

where
Zjk = εijkx̂i, (B.19)

and we are assuming σT = σ. Thus writing

∂F

∂σkr
= ZjkZqrσjq,

∂2F

∂σkrσjq
= ZjkZqr, (B.20)

from which we obtain

I(0) =
2π

F
1
2

,

I
(2)
jq =

2π

F
3
2

(ZTσZ)jq,

I
(4)
jqkr = − 2π

F
3
2

ZjkZqr +
3π

2F
5
2

(ZTσZ)jq(Z
TσZ)kr.

(B.21)

It is now straightforward to write the integral of (5.5), call it K. Then
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Kip =
∫ 2π

0

∂2

∂µ2

(
ξ̂iξ̂

T
p

ξ̂
T
σξ̂

)∣∣∣∣∣
µ=0

dφ

= 2 [I (0) x̂ix̂
T
p − (x̂Tσx̂) I

(2)
ip − 2(σx̂)k(x̂iI

(2)
kp + I

(2)
ik x̂p) + 4(σx̂)k(σx̂)`Ik`ip].

(B.22)

Hence, using (B.21) in (B.22) we get

Kip = 2π {2F−
1
2 x̂ix̂

T
p − (x̂Tσx̂)F−

3
2 (ZTσZ)ip

−2F−
3
2 (σx̂)k[x̂i(Z

TσZ)kp + (ZTσZ)ikx̂p]

−2F−
3
2 (σx̂)k(σx̂)`ZkiZ`p

+3F−
5
2 (σx̂)k(σx̂)`(Z

TσZ)k`(Z
TσZ)ip}.

(B.23)

Or, in subscript-free notation

K =
2π

F
1
2

{
2x̂x̂T − x̂

Tσx̂

F
W − 2

F
(x̂wTW +Wwx̂T )

− 2

F
ZTwwTZ +

3

F 2
(wTWw)W

}
,

(B.24)

where we have written
w = σx̂, W = ZTσZ. (B.25)

Thus we may write the static term of (3.28) as

− t

8π2

∫

Ω

ξ̂ξ̂
T

ξ̂
T
σξ̂

δ′′(ξ̂ · x) dΩ = − t

4πF
1
2 |x|3

{
2x̂x̂T − x̂

Tσx̂

F
W

− 2

F
(hwTW +Wwx̂T )

− 2

F
ZTwwTZ +

3

F 2
(wTWw)W

}
,

(B.26)

with w and W given by (B.25), and F and Z by (B.18) and (B.19).
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Figure 1: This shows the slowness surface S cut away to reveal the inner sheet. The contours
drawn on the surface are tangent everywhere to the polarization e. The thicker contours drawn in
each coordinate plane show the circle and ellipse in which that plane cuts the surface. The conical
points are clearly visible as the intersections of the ellipse and circle in the (1-3)-plane. There are
also four planes each of which touches S along a circle. The four circles (only half of one being
clearly visible) are drawn as heavy lines surrounding the conical points on the outer sheet.
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Figure 2: This shows the inner sheet of the wave-surface W reciprocal to the outer sheet of the
slowness surface S. The four prominent ‘ears’ have negative Gaussian curvature and correspond
to four regions with negative curvature on S. The dark circles are the circles of contact CW of
the four special tangent planes ΠW . These circles correspond to conical points on S. Reciprocally
the conical points of W shown here correspond to similar circles of tangency on S. This surface
joins smoothly onto the outer sheet of W shown in the next figure along the contact circles. The
fundamental solution is weak on the circles CW , but the strongest part of the field is near the conical
points cW of W.
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Figure 3: This shows the outer sheet of the wave-surface W reciprocal to the inner sheet of the
slowness surface S. The dark circles are the circles of contact CW for the four multiply tangent
planes ΠW . These circles correspond to conical points on S. This surface joins smoothly onto the
inner sheet ofW shown in the previous figure along the four circles CW where the signal is relatively
weak. An additional weak wave singularity (arrival) resides on the disks spanning these circles.
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Figure 4: This shows the 13-section of the wave surface W for fixed time t = 1. Notice the ellipse
and the circle which intersect at the conical points of W, the bi-radials, making angle θc with the
3-axis. The angles θa, θb, and θc, measured from the 3-axis, are indicated. Notice also the segments
of common tangents which represent the disks DW forming a part of the wavefront carrying a weak
singularity.
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Figure 5: This shows the 13-section of the slowness surface S. Notice the ellipse and the circle
which intersect at the conical points of S, the bi normals, making angle θc with the 3-axis. The
points ξ1,2(θ) are indicated for θ = θa, θb, θc. Notice also the segments of common tangents which
represent the disks DW forming a part of the wavefront which carries a weak, early arriving,
singularity.
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Figure 6: This shows one quarter of S with integration loops for selected values of t. The points
marked ‘◦∗’ indicate the points of tangency where first the inner loop and later the outer loop
shrink to single points. The wave-field δ-like singularities associated with these points have the
polarization indicated by the thinner lines drawn on S.
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Figure 7: This shows the configuration of loops near the conical point for θ = 15◦. Notice the
stationary point surrounded by the small loop on the inner sheet of S. The conical point appears
where the curves cross. The signal from the conical point is zero in all components. χ(x) > 0 and
so x is (just) outside the cone through the circle of tangency CW and the singularity at ◦∗ is δ-like,
appropriate to positive curvature.
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x = (0.5          0       0.87).     

Figure 8: This shows the configuration of loops near the conical point for θ = 30◦. Notice the
stationary point ◦∗ in a neighborhood of negative Gaussian curvature on the outer sheet of S. The
local shape of the loops is hyperbolic. The conical point appears where the loops converge above it.
χ(x) < 0 here and so x is inside the cone through the circle of tangency CW and there is a nonzero
step-like arrival when the loops pass over the conical point. As t increases near these small loops
surround the conical point on the inner sheet, shrink to the conical point, and then grow around it
on the outer sheet.
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Figure 9: This shows one quarter of S with integration loops for selected values of t. The stationary
points marked ‘◦∗’ indicate the points of tangency where first the inner loop and later the outer
loop shrink to single points. Notice that the upper stationary point, just outside the circle CS , is
associated with positive curvature while the lower one, just inside the circle CS , is associated with
negative curvature. The wave-field singularities associated with these points have the polarizations
indicated by the thinner lines drawn on S. Thus the upper stationary point has polarization in
the 13-plane while the lower has polarization in the 2-direction. Notice that the loops near these
points remain close to CS .The types of singularities are appropriate to the sign of the curvature at
the ‘◦∗’. (Compare with Figure 10.)
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Figure 10: This is similar to Figure 9. Notice that the upper stationary point, just inside the
circle CS , is associated with negative curvature while the lower one, just outside the circle CS , is
associated with positive curvature. The wave-field singularities associated with these points have
the polarizations indicated by the thinner lines drawn on S.
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Figure 11: This plots (a): G11(x, t) and (b): G31(x, t) for x having the direction (sin θ, 0, cos θ)
for θ increasing by steps of 5◦ from 0◦ to 90◦. See the text for further details.
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Figure 12: This plots (a): G22(x, t) and (b): G33(x, t) for x having the direction (sin θ, 0, cos θ)
for θ increasing by steps of 5◦ from 0◦ to 90◦. See the text for further details.
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Figure 13: This plots (a): WG11(x, t) and (b): WG31(x, t) of the step response for x having
the direction (sin θ, 0, cos θ) for θ increasing by steps of 5◦ from 0◦ to 90◦. See the text for further
details.
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Figure 14: This plots (a): WG22(x, t) and (b): WG33(x, t) of the step response for x having
the direction (sin θ, 0, cos θ) for θ increasing by steps of 5◦ from 0◦ to 90◦. See the text for further
details.


