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Abstract

A continuation approach to the computation of essential and absolute spectra of reaction-diffusion

operators on the real line is presented. The advantage of this approach compared with direct eigenvalue

computations for the discretized operator are the efficient and accurate computation of selected parts of

the spectrum (typically those near the imaginary axis) and the option to compute nonlinear travelling

waves and selected eigenvalues, or other stability indicators, simultaneously to precisely locate the onset

to instability. We also discuss the implementation and usage of this approach with the software package

auto, and provide example computations for the FitzHugh–Nagumo and the complex Ginzburg–Landau

equation.

1 Introduction

The goal of this paper is to present a consistent path-following approach for the computation of absolute
and essential spectra of waves on one-dimensional domains. The eigenvalue problems that we are specifically
interested in arise when linearizing nonlinear evolution equations about nonlinear waves. As a paradigm, we
consider reaction-diffusion systems

ut = Duxx + cux + f(u), x ∈ R (1.1)

where u ∈ RN and f is smooth. To make (1.1) well-posed, we shall assume throughout this paper that D is
a positive diagonal matrix. Suppose now that u∗(x) is a stationary solution of (1.1) so that

|u∗(x)− u±(x)| → 0 as x → ±∞

where the asymptotic states u±(x) are constant or periodic in x. A natural question then is whether the
equilibrium u∗(x) is stable as a solution to the nonlinear evolution problem (1.1). Insight into this issue can
be gained by analysing the spectrum of the linear operator

L∗ = D∂xx + c∂x + fu(u∗(x)) (1.2)
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which arises when (1.1) is linearized about u∗.

The spectrum of the operator (1.2) on L2(R, CN ) is the disjoint union of the essential spectrum Σess and
the point spectrum Σpt which consists by definition of all isolated eigenvalues with finite multiplicity (and
is therefore discrete). While the point spectrum involves the full nonlinear wave u∗, the boundary of the
essential spectrum is entirely determined by the linearization of (1.1) about the asymptotic states u± [4,
Appendix to §5].

Also of interest are finite but large domains of the form (−`, `) with ` � 1. When considering (1.2) on
(−`, `), we add appropriate linear separated boundary conditions of the form

Qbc
±

(
u(±`)
ux(±`)

)
= 0, Qbc

± ∈ R2N×2N , rank Qbc
± = N (1.3)

at x = ±`. While the spectrum Σ` of the operator L∗ on (−`, `) is then necessarily discrete for each finite
`, we can still distinguish different parts in the limit ` → ∞ [9]: Generically, the set Σ` converges in the
symmetric Hausdorff distance to a limiting set Σ∞ which again consists of a discrete and a continuous part.
The discrete part is the union of the extended point spectrum Σext, which contains in particular the point
spectrum Σpt of the profile u∗(x) on R, and the boundary spectrum Σbc, which is generated by the boundary
conditions (1.3). The continuous part is called the absolute spectrum which, in general, differs from the
essential spectrum. As ` → ∞, each element of the absolute spectrum is approached by infinitely many
eigenvalues of L∗ which therefore cluster near the absolute spectrum. As already alluded to, the discrete
part depends on the full profile u∗ and on the specific boundary conditions employed. The absolute spectrum,
however, depends again only on the asymptotic states u±, but not on the boundary conditions (as long as
they are separated) or the profile u∗ [10].

The absolute spectrum of spatially periodic waves is also relevant for the spectra of spiral waves on large
disks [8], and it plays an important role when the nonlinear wave u∗ on R contains long plateaus where it is
close to another rest state or a periodic wave [11]. Lastly, we remark that the wave u∗ typically persists on
(−`, `) under boundary conditions of the form (1.3). If we denote the resulting family of waves by u`

∗(x) so
that u`

∗(x) → u∗(x) on compact subsets of R, then the statements made above are still true if we replace L∗
by the linearization of (1.1) about u`

∗ provided the convergence is rapid enough.

In summary, the continuous parts of the spectrum `∗ on R or (−`, `) are entirely determined by the asymptotic
states u± which, we assumed, are constant or periodic in x. We shall therefore from now on focus entirely
on operators with constant or periodic coefficients.

The aim of this paper is to outline reliable and efficient ways to compute these spectra using cheap but
accurate continuation algorithms without solving discretized matrix eigenvalue problems. For the convenience
of the reader, we describe in some detail how our strategies can be implemented in the boundary-value solver
auto [2]. We will also mention various extensions to the computation of linear spreading speeds and linear
instability thresholds such as Eckhaus boundaries.

As a general rule, the methods presented here can be adapted easily to dispersive equations such as members
of the Korteweg–de Vries family or coupled nonlinear Schrödinger equations. Some of our arguments can also
be adapted to periodic structures in higher space dimensions via Fourier and Bloch wave decomposition. We
remark, however, that absolute spectra have not been used so far for genuinely higher-dimensional problems.

2 Notation and hypotheses

We consider the operator
L := D∂xx + c∂x + a(x) (2.1)
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where we shall always assume that the entries dj of the diagonal matrix D = diag(dj) are strictly positive
for all j and that the coefficient matrix a(x) is constant or periodic in x:

Hypothesis (C) The coefficients a(x) = a0 ∈ RN×N do not depend on x.

Hypothesis (P) The coefficients a(x) ∈ C1(R, RN×N ) are periodic in x with minimal period L > 0.

The eigenvalue problem
Lu = Duxx + cux + a(x)u = λu (2.2)

can then also be written as

ux = v (2.3)

vx = D−1[λu− cv − a(x)u]

or equivalently as
Ux = [A(x) + λB]U (2.4)

where U = (u, v) ∈ C2N and

A(x) =

(
0 1

−D−1a(x) −cD−1

)
, B =

(
0 0

D−1 0

)
.

Solutions to the eigenvalue problem (2.2) are therefore found by solving the initial value problem (2.3). For
periodic coefficients, we denote by

Φλ : C2N −→ C2N , (u0, v0) 7−→ Φλ(u0, v0) := (u, v)(L) (2.5)

the linear time-L map of (2.3) that associates to each initial condition (u0, v0) the solution of (2.3) at time
L. We refer to the eigenvalues of Φλ as spatial Floquet multipliers and to their logarithms as spatial Floquet
exponents.

Note that nonlinear periodic waves can be found as periodic solutions of the first-order system

Ux = F (U, c), U =

(
u

v

)
∈ R2N , F (U, c) =

(
v

−D−1f(u, c) + cv

)
. (2.6)

If u∗(x) denotes a constant or periodic solution of (2.6), then a(x) = fu(u∗(x)) in (2.2).

Most of the results presented here do not require dj > 0. In this case, however, we need that the speed
c does not vanish. If a concrete model has dj = 0 for one or more indices j, we may also set dj = δ for
sufficiently small δ > 0. The result of [6, Chapter 3.2] shows that the resulting spectra are continuous in δ

on any bounded subset of the complex plane C as δ → 0.

3 Essential spectra

3.1 Characterizing essential spectra via Bloch waves

For constant coefficients a(x) ≡ a0, we consider the Fourier transformed operator

Lν := Dν2 + cν + a0 : CN → CN (3.1)

for ν ∈ C. Using that the Fourier transform is an isomorphism on L2 which turns L into a multiplication
operator, we immediately obtain the following lemma.
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Lemma 3.1 For constant coefficients, we have

specL = ∪ν∈iRspecLν .

In particular, the following assertions are equivalent:

(i) λ ∈ specL,

(ii) [Dν2 + cν + a0 − λ]u = 0 for some u ∈ CN with u 6= 0 and some ν ∈ iR,

(iii) d(λ, ν) := det(Dν2 + cν + a0 − λ) = 0 for some ν ∈ iR.

While the third condition gives the most compact criterion, the second condition is, in general, preferable
for numerical computations.

Note that the spectrum of the matrix Lν consists for each ν of precisely N temporal eigenvalues λj , counted
with multiplicity. Furthermore, the eigenvalues λj can be continued globally in γ since they are roots of the
complex analytic equation d(λ, ν) = 0. In fact, we easily obtain:

Lemma 3.2 The essential spectrum of L is the union of at most N connected components, each containing
an eigenvalue λj of the linearized reaction kinetics a0 and the point at infinity. Furthermore, we have
| arg λ| → π as |γ| → ∞ in each connected component of the essential spectrum.

We remark that it is not difficult to derive expansions for the location of the curves as |γ| → ∞.

For periodic coefficients a(x), there is a similar characterization. For each ν ∈ C, we define the Bloch-wave
operator

Lν := D(∂x + ν)2 + c(∂x + ν) + a(x) (3.2)

which is closed and densely defined on L2(0, L) with periodic boundary conditions u(0) = u(L) and ux(0) =
ux(L).

Lemma 3.3 For periodic coefficients with minimal period L > 0, we have

specL = ∪ν∈i[0,2π/L)specLν .

In particular, the following assertions are equivalent:

(i) λ ∈ specL,

(ii) [D(∂x + ν)2 + c(∂x + ν) + a(x)− λ]u = 0 for some u ∈ H2
per(0, L) and some ν ∈ iR,

(iii) d(λ, ν) := det(Φλ − eνL) = 0 for some ν ∈ i[0, 2π/L).

The proof is a consequence of the Bloch-wave decomposition L2(R) ∼= ⊕ν∈i[0,2π/L)L
2(0, L) given by the

isomorphism

u(x) =
∫

ν∈i[0,2π/L)

eνxu(x; ν) dν,

where u ∈ L2(R) and u(x; ν) = u(x + L; ν) [12]. Since the direct computation of the Floquet exponents ν

of the period map Φλ of the ODE is often numerically unstable, condition (ii) is again preferable, from a
numerical viewpoint, to the seemingly simpler condition (iii).

The operators Lν have compact resolvent for each ν, and their spectra consist therefore of isolated eigenvalues
with finite multiplicity whose real parts accumulate at −∞. In particular, we denote the countably many
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eigenvalues of L0 by λj , which we order so that their real parts decrease as j increases. The roots λj of
the complex analytic dispersion relation d(λ, ν) can again be continued globally in ν = iγ. In particular, it
suffices to solve for γ ∈ [0, 2π/L) since we then have necessarily λj(2πi/L) = λΠ(j)(0) for some permutation
Π of N.

Lemma 3.4 For periodic coefficients, the essential spectrum of L is an at most countable union of connected
sets, each of which contains a point in the spectrum of L0, that is, an eigenvalue of the operator considered
on (0, L) with periodic boundary conditions.

Note that the connected components do not need to contain a point at infinity. Isolas are possible, and the
spectrum may not be connected on the Riemann sphere C̄, see §4.3 and §5.2.

Lastly, we briefly comment on the effect of coordinate transformations of the form x 7→ x − c∗t which
correspond to changing the frame of reference in which spectra are computed. For constant coefficients, the
passage to a comoving frame ξ = x − c∗t simply introduces an additional drift term c∗uξ in the expression
for L. Thus, the eigenvalues Λ in the frame ξ can be computed from solutions λ(ν) of d(λ, ν) = 0 via
Λ = λ(ν)−c∗ν. A similar result is true for periodic coefficients though the equation becomes time-dependent,
and we therefore have to consider the period map ΨT of the linear PDE

ut = Duξξ + (c + c∗)uξ + a(ξ + c∗t)u

with T = L/c∗.

Proposition 3.5 ([10]) The essential spectrum of ΨT is of the form ρ = eΛT where Λ = λ(ν) − c∗ν, and
λ(ν), with ν = iγ with γ ∈ [0, 2π/L), satisfies d(λ(ν), ν) = 0.

Thus, the computation of spectra in an arbitrary frame reduces to the solution of an eigenvalue problem of
the type as considered above. Note that spectral stability does not depend on the frame since the real part
of the spectrum is independent of the coordinate frame by Proposition 3.5.

3.2 A priori estimates

For both (C) and (P), a straightforward scaling result shows that for each fixed δ ∈ (0, π
2 ) there is a constant

R > 0 so that L does not have any spectrum with |λ| > R and | arg λ| < π
2 + δ.

It will also turn out to be useful to consider the dispersion relations d(λ, ν) for purely imaginary temporal
and spatial eigenvalues so that λ = iω and ν = iγ for ω, γ ∈ R. We prove here that all real roots (ω, γ) of
d(iω, iγ) lie in bounded rectangles of R2 and provide estimates for these squares.

For constant coefficients, we assert (and refer to [6, Lemma 10] for the proof using Gershgorin circles) that
any real solution (ω, γ) of d(iω, iγ) = 0 satisfies

(ω, γ) ∈ [−|c|R0, |c|R0]× [−R0, R0]

where

R2
0 = max

j=1,...,N

1
dj

ajj +
N∑

i=1,i 6=j

|aij |

 .

For periodic coefficients, we write L as the sum of the diagonal constant-coefficients operator L0

L0 = diag(dj)∂xx + c∂x + diag(ajj),
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where a =
∫

a(x) dx, and the bounded remainder L1 which can be estimated in the operator norm on
L2(R, RN ) by

‖L1‖ ≤ sup
x∈R

|a(x)− diag(ajj)|,

where the norm on the right-hand side is the matrix norm induced by the norm used on RN (the Euclidean
norm on RN , for instance, induces the matrix norm |A| =

√
σ(AT A) where σ(B) denotes the spectral radius

of the matrix B). Using the explicit resolvent estimate

‖(λ− L0)−1‖ ≤ sup{| − djk
2 + cik + ajj − λ|−1; j = 1, . . . , N, k ∈ R},

we see that the spectrum of L is contained in an ‖L1‖-neighborhood of the spectrum

specL0 = {−djk
2 + cik + ajj ; j = 1, . . . , N, k ∈ R}

of L0. Thus, any real root (ω, γ) of d(iω, iγ) satisfies

(ω, γ) ∈ [−|c|R1, |c|R1]× [−R1, R1]

where

R2
1 = max

j=1,...,N

1
dj

[
ajj + ‖L1‖

]
≤ max

j=1,...,N

1
dj

[
ajj + sup

x∈R
|a(x)− diag(akk)|

]
.

A rough estimate for the real parts therefore is

Re spec(L) ≤ max
j=1,...,N

ājj + sup
x∈R

|a(x)− diag(ākk)|.

3.3 Constant coefficients

3.3.1 Computing essential spectra using continuation

For constant coefficients, we had seen that we can compute the essential spectrum of L by continuing the
N temporal eigenvalues λ of the matrix Lν defined in (3.1) in the parameter ν = iγ. Thus, starting from
ν = 0, say, where the temporal eigenvalues appear as eigenvalues of the matrix a0, we can use the complex
normalized eigenvalue equation

[−Dγ2 + ciγ + a0 − λ]u = 0, 〈uold, u〉 = 1, (3.3)

where uold denotes the eigenvector from a previous infinitesimal step in the continuation parameter γ or the
initially supplied solution at the beginning of the continuation. The condition

〈uold, u〉 = 1 (3.4)

is evaluated in the complex plane and therefore fixes the norm of the solution u and its complex phase. Such
a condition is necessary as solutions to

[−Dγ2 + ciγ + a0 − λ]u = 0

are, of course, not unique but come in group orbits {reiαu; α, r ∈ R}. Equation (3.4) can be replaced by
any other condition that fixes a unique element in the group orbit of solutions. Bordering conditions similar
to (3.4) will occur throughout this paper to enforce uniqueness of solutions.
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3.3.2 Testing stability

Often, the spectrum is only computed to check whether a given homogeneous equilibrium is stable (i.e.
whether its essential spectrum lies completely in the open left-half plane). For N = 2, the spectrum is
strictly stable if, and only if,

(i) det(a0) > 0 and tr(a0) < 0, and

(ii) a0
22d1 + a0

11d2 < 0 or (d1a
0
22 − d2a

0
11)

2 + 4d1d2a
0
12a

0
21 < 0

where a0 = (a0
ij) (see e.g. the computations in [1]). For general N , connectedness of the essential spectrum

on the Riemann sphere as stated in Lemma 3.2 immediately gives the following stability criterion.

Lemma 3.6 The essential spectrum of L is contained in the open left-half plane if, and only if, it does not
intersect the imaginary axis.

Remark 3.7 When some of the diffusion coefficients dj vanish, then the conclusion of the lemma remains
true provided c 6= 0 and all eigenvalues λj of a0 lie in the open left half-plane.

To determine whether the essential spectrum intersects the imaginary axis, we do not need to calculate the
entire essential spectrum. It suffices to compute the 2N spatial eigenvalues ν for λ ∈ iR through continuation
in λ. The above lemma then states that the equilibrium is stable provided Re νj 6= 0 for all λ ∈ iR and each
1, . . . , 2N . A strategy for determining stability therefore goes as follows:

(i) Compute the 2N solutions νj(0) of d(0, ν) = 0 and find the associated nontrivial solutions uj of the
equation

[Dν2 + cν + a0]u = 0, |u| = 1.

(ii) Follow each (νj , uj) as solutions to

[Dν2 + cν + a0 − iω]u = 0, 〈uold, u〉 = 1 (3.5)

by continuation in ω ∈ [0, |c|R0] with R0 as in §3.2, starting at ω = 0.

(iii) Stability is equivalent to Re νj(iω) 6= 0 for all ω ∈ [0, |c|R0].

3.3.3 Generic singularities

When continuing roots λ or ν of d(λ, ν) = 0 in the real parameters ν = iγ or λ = iω, it is of interest to
know what the generic singularities are that one may encounter. On the level of the dispersion relation, this
question can be easily answered.

Continuation of λ in ν = iγ: We can always continue eigenvalues λ as functions of ν = iγ by the implicit
function theorem unless ∂λd(λ, ν) = 0. Thus, suppose, without loss of generality, that ∂λd(λ, ν) = 0 at
λ = ν = 0 so that

d(λ, ν) = α2λ
2 + β1ν + O(|ν|2 + |λν|+ |λ|3).

If α2β1 6= 0, then the Newton polygon shows that the solution set in ν = iγ is given locally by the curves

λ(iγ) = ±i
√

β1/α2
√

γ + O(|γ|) (3.6)
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for γ ∈ R close to zero. The coefficients α2 and β1 are real whenever the singularity occurs for real λ.

Due to analyticity, the equations d = 0 and ∂λd = 0 can be satisfied together either only at a discrete number
of points (λ, ν) or else along curves. In the latter case, at least two branches of the essential spectrum coincide
and d, ∂λd have a common factor by Bézout’s theorem. This is, for instance, excluded if the diffusion rates are
pairwise different [6, Lemma 10]. Otherwise, the number of isolated double roots, counted with multiplicity,
is equal to the degree of the resultant of d(·, ν) and ∂λd(·, ν) which is at most 2N(2N − 1). In particular,
we expect that we do not encounter any singularities during continuation in ν = iγ since they should not
occur for purely imaginary ν. Thus, generically, we are able to continue temporal eigenvalues in the real
parameter γ in a smooth fashion. An exception is the reversible situation c = 0 where the dispersion relation
depends analytically on ν2 = −γ2, so temporal eigenvalues can collide on the real axis and split into complex
conjugate pairs.

Continuation of ν in λ = iω: To determine stability, we proposed to continue the 2N roots νj as functions
of λ = iω, whose singularities are of the form

d(λ, ν) = α1λ + β2ν
2 + O(|ν|3 + |λν|+ |λ|2).

If d and ∂νd have no common factors, the number of double roots is again finite and, in fact, not larger than
N(2N − 1) by Lemma 4.5 below. The roots ν unfold in the same way as the roots λ in (3.6) above. Since
these singularities occur for discrete values of λ, they do typically not occur during continuation in λ = iω.

3.4 Periodic coefficients

3.4.1 Continuation-based computation of the essential spectrum

For periodic coefficients, we can compute the essential spectrum of L by continuing the countably many
temporal eigenvalues λj of the Bloch-wave operators Lν in the parameter ν = iγ. Supplementing the
equation appearing in Lemma 3.3(ii) by an appropriate normalization condition, we obtain the complex
boundary-value problem [

D(∂x + iγ)2 + c(∂x + iγ) + a(x)− λ
]
u(x) = 0 (3.7)∫ L

0

〈uold(x), u(x)〉dx = 1,

where uold is the solution at a previous continuation step or the initially supplied solution at the beginning
of the computation. Note that the integral condition is evaluated in the complex field C and therefore selects
again an element in the real two-dimensional group orbit.

If the linearization L arises from a translation invariant reaction-diffusion system as laid out in the intro-
duction, then we typically need to solve the equation for the wave train and its temporal eigenvalues in
tandem. Using the notation from §2 and normalizing the spatial period L to unity, we therefore consider
the boundary-value problem

Ux = LF (U, c), U ∈ RN × RN (3.8)

Vx = L[FU (U(x), c) + λB − ν]V, V ∈ CN × CN

U(1) = U(0)

V (1) = V (0)∫ 1

0

〈U ′(x), Uold(x)− U(x)〉dx = 0
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∫ 1

0

〈Vold(x), V (x)〉dx = 1

corresponding to the travelling-wave ODE (2.6) and the eigenvalue problem (3.7). Here, (Uold, Vold)(x) denote
the solution at a previous continuation step or the initial solution at the beginning of the continuation, and we
have added appropriate phase and normalization conditions to fix an element in the group orbit of solutions.
Note that the complex normalization condition for V is slightly different from the one used in (3.7) as it
normalizes (u, ux) instead of only u. While theoretically equivalent, it turns out that one or the other may
be more stable in numerical computations. We also remark that computations often run more reliably when
the last equation in (3.8) is replaced by the nonlinear condition∫ 1

0

|V (x)|2 dx = 1,

∫ 1

0

Im〈Vold(x), V (x)〉dx = 0.

We focus on the case where ν = iγ is purely imaginary as this gives the essential spectrum. We remark,
however, that the considerations below remain true for ν ∈ C.

If we are given a solution (U∗, V, λ, iγ) of (3.8), then we can continue this solution numerically as a function
of ν = iγ by using a boundary-value solver such as auto. The generic singularities that we may encounter
during continuation of (3.8) are identical to those for constant coefficients since both problems reduce to
a single analytic equation in two complex variables; in particular, we do not expect that singularities arise
during continuation in γ.

It remains to find initial solutions (V, λ, iγ) of the eigenvalue-problem part of (3.8). Firstly note that, in
the context of (3.8), λ = 0 will always be an eigenvalue of L0 with eigenfunction ∂xu∗(x) due to translation
invariance. Thus, (U, V, λ, ν) = (U∗, ∂xU∗, 0, 0) satisfies (3.8), and we can compute a curve λ0(ν) of solutions
to d(λ, ν) = 0 by continuation in ν = iγ provided λ = 0 is a simple eigenvalue of L0.

More generally, we may discretize the operator L0 with periodic boundary conditions using finite differences
in space and solve the resulting matrix eigenvalue problem using packages such as lapack or matlab. Each
of the resulting temporal eigenvalues λ together with its eigenfunction V can then be used, together with
γ = 0, as an initial guess for (3.8).

3.4.2 Testing stability

The following lemma gives conditions that guarantee spectral stability of spatially periodic equilibria.

Lemma 3.8 The essential spectrum of L, with the exception of the eigenvalue λ = 0, is contained in the
open left-half plane provided the following conditions hold:

(i) The spectrum of L0 is contained in the open left-half plane except for the algebraically simple eigenvalue
λ = 0, and the curve λ0(iγ) satisfies λ′′0(0) > 0.

(ii) The origin λ = 0 is not an eigenvalue of Lν for ν = iγ 6∈ 2πi/LZ.

(iii) The spectrum of L does not intersect iR \ {0}.

To verify (i), we compute the spectrum of L0 and check that the eigenvalue λ = 0 is simple and that there
are no other eigenvalues in the closed right-half plane. Afterward, we continue λ = 0 in ν = iγ near γ = 0
as outlined in the preceding section to see whether Re λ0(iγ) < 0 for all γ 6= 0.

Condition (ii) is equivalent to the statement that the 2N spatial Floquet exponents νj of the linear time-L
map Φλ=0 that we defined in (2.5) are non-zero except for a single simple exponent ν1 = 0 that corresponds
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to the temporal eigenvalue λ = 0. The exponents ν for λ = 0 coincide with the Floquet exponents of the
linearization

Ux = LFU (U∗(x), c)U

of the travelling-wave ODE about the wave train U∗. auto, for instance, has subroutines that compute
these Floquet exponents together with the wave train U∗.

Condition (iii) can be checked as follows: Take the spatial Floquet exponents νj with j = 1, . . . , 2N of
the wave train that were computed in the previous step at λ = 0. For each of the νj , we compute the
corresponding Floquet eigenfunction V by solving the linear boundary-value problem

Vx = L[FU (U∗(x), c)− ν]V + εH1(x), V (1) = V (0),
∫ 1

0

〈H2(x), V (x)〉dx = 1 (3.9)

for (V, ε) with ε ∈ C, where H1 and H2 are arbitrarily prescribed 1-periodic continuous functions. Note that
(3.9) is linear in (V, ε), and it can been shown that it is uniquely solvable for any choice (H1,H2) except
when these lie in a certain hyperspace. Once we computed a Floquet eigenfunction Vj for each νj at λ = 0,
we continue them in ω for ω ∈ (0, |c|R0] with R0 as in §3.2 as solutions (U∗, Vj , iω, νj) of (3.8). Condition
(iii) is met provided Re νj 6= 0 for all ω ∈ (0, |c|R0] and all j.

3.4.3 Group velocities, and Eckhaus instabilities

Quantities relevant for the interaction and stability of spatio-temporally periodic travelling waves are the
group velocity

cg := −dλ0

dν

∣∣∣
ν=0

∈ R,

which measures transport along the wave, and the coefficient

d2λ0

dν2

∣∣∣
ν=0

∈ R

which determines whether the curve λ0(iγ) extends into the left or the right half-plane near the origin.
Continuation of these quantities in system parameters allows us to detect sign changes of the group velocity
and certain Eckhaus instabilities.

To calculate the group velocity and the above coefficient, we consider the first-order system (2.3)

Ux = [A(x) + λB]U, U(L) = eiγLU(0) (3.10)

with U = (u, v) ∈ C2N or, equivalently, the system

Vx = [A(x) + λB − iγ]V, V (L) = V (0) (3.11)

where U = eiγxV . We set

λ| :=
dλ0

dν

∣∣∣
ν=0

, λ|| :=
d2λ0

dν2

∣∣∣
ν=0

.

Differentiating (3.11) with respect to ν = iγ and evaluating the resulting equations at γ = 0, we obtain the
system

V ′
| = A(x)V| + [λ|B − 1]V (3.12)

V ′
|| = A(x)V|| + 2[λ|B − 1]V| + λ||BV

on (0, L) with periodic boundary conditions

V|(0) = V|(1), V||(0) = V||(1) (3.13)
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for V| := ∂νV and V|| := ∂2
νV both in R2N and (λ|, λ||) ∈ R2. Lastly, we add the boundary conditions∫ 1

0

〈V (x), V|(x)〉dx = 0,

∫ 1

0

〈V (x), V||(x)〉dx = 0, (3.14)

which ensure that both V| and V|| are L2-orthogonal to the null space of the ODE for V . We mention that
the scalar products in the integral conditions can be replaced by the PDE scalar products which sometimes
appear to be computationally more stable and reliable.

The system (3.8)-(3.14) with λ = ν = 0 can now be solved uniquely for (U, c), (V, V|, V||) and (λ|, λ||).

In fact, using nontrivial solutions V (x) and W (x) of

Vx = A(x)V, V (0) = V (1), Wx = −A(x)tW, W (0) = W (1)

and finding Ṽ (x) so that
Ṽx = A(x)Ṽ + (λ|B − 1)V, Ṽ (0) = Ṽ (1),

we have

λ| =
〈W,V 〉L2

〈W,BV 〉 L2

, λ|| =
〈W, 2(λ|B − 1)Ṽ 〉L2

〈W,BV 〉L2
.

3.5 Implementation in AUTO

We now discuss briefly how the strategies that we outlined above can be implemented in the continuation
package auto and refer to names of routines and constants as given in [2]. Since auto uses only real
arithmetic, dimension counting will always be done over real numbers (unless explicitly stated otherwise).

3.5.1 Periodic coefficients

Implementing the system (3.8) in auto works as follows.

The constants file: Equation (3.8) is a boundary-value problem, and we therefore set ips=4. The ODEs
appearing in (3.8) involve 6N real unknowns, namely (U, V ) ∈ R2N × C2N , and we thus set ndim=6N. We
have nbc=6N real boundary conditions and nint=3 real integral conditions. Since the ODEs can be solved
uniquely upon choosing initial conditions, we have effectively 6N + 3 real equations and need therefore the
same number of variables plus one for continuation which gives 6N + 4. In addition to the 6N initial data
for (U, V ), we have five real parameters at our disposal, namely c, L, γ ∈ R and λ ∈ C. Thus, we may fix the
period L and use the four parameters γ, c ∈ R and λ ∈ C for continuation by setting nicp=4 and specifying
the four parameters in the array icp. It may be helpful for convergence to increase the number of Newton
iterations itnw from its default value.

The equations file: The unknowns (U,Re V, Im V ) ∈ R2N×R2N×R2N are set to the variables U(1),. . . ,U(6N).
The period L is stored in par(11), and we use par(1),. . . ,par(4) for c, γ, Re λ, Im λ. The periodic boundary
conditions are defined in the subroutine bcnd via

do j=1,ndim

fb(j) = U0(j) - U1(j)

end do

The integral conditions are defined in icnd. We set
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fi(1) = 0.0

do j=1,ndim/3

fi(1) = fi(1) + UPOLD(j) * (UOLD(j)-U(j))

end do

for the phase condition of the wave train U , and use

fi(2) = -1.0

fi(3) = 0.0

do j=ndim/3+1,2*ndim/3

fi(2) = fi(2) + U(j)*U(j) + U(j+ndim/3)*U(j+ndim/3)

fi(3) = fi(3) + UOLD(j)*U(j+ndim/3) - UOLD(j+ndim/3)*U(j)

end do.

for the normalization of the eigenfunction V .

Initial data: We assume that the period L, the wave train U∗ = (u∗, u′∗) and the associated wave speed
c are known. These can be obtained, for instance, from direct PDE simulations or from continuation in
the travelling-wave ODE (2.6) beginning at a Hopf bifurcation point. We also assume that we found initial
solutions for λ, γ and the associated eigenfunction V (see §3.4.1). This information needs to be stored in
the subroutine stpnt or an external data file that can be read by auto (see [2]). It is recommended to scale
the initial guess for the eigenfunction to have norm one so that it satisfies the integral condition; otherwise,
convergence may be be quite slow.

Solving (3.9) and (3.12): We discuss now how equation (3.9) is solved to get the Floquet eigenfunction
V for a given Floquet exponent ν. First, we pick functions H1 and H2 (for instance, constant functions).
Note that (3.9) involves two real integral conditions and a real two-dimensional parameter ε. We fix ν and
continue instead in the real two-dimensional ε and the unused dummy parameter par(9): continuation in a
dummy parameter in auto allows us to solve a linear or nonlinear system through Newton’s method. Next,
we continue to Re ε = 0 using Im ν as additional free parameter. Lastly, we continue to Im ε = 0 using ν as
free parameter.

Equation (3.12) is solved analogously. It is affine in the unknowns (V|, V||, λ|, λ||) ∈ R2N × R2N × R2 and
almost any initial guess (for instance, a constant function) for (V|, V||, λ|, λ||) will give the correct solution
by continuing in the dummy parameter par(9) and the active parameters (λ, λ|, λ||) ∈ C × R2, starting at
λ = ν = 0. We recommend to exclude V|, V|| from the pseudo-arclength computation by setting nthu=8

succeeded by 4N lines of the form <index of component> 0.

3.5.2 Constant coefficients

The implementation for constant coefficients is similar to the one for periodic coefficients discussed above.
While the eigenvalue problem (3.3) is only an algebraic equation, it is recommended to implement it as a
boundary-value problem as in §3.5: this is done by setting ips=4 and choosing ntst=1 and ncol=2. In the
following, we shall only comment on the differences to the implementation for periodic coefficients.

The constants file: Unless the equilibrium is to be continued in a parameter, we do not need to solve the
nonlinear problem simultaneously. In this case, we then have two integral conditions, three free parameters
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(γ ∈ R and λ ∈ C), and the vector u ∈ CN stored in U(1),. . . ,U(2N) in auto. (It may also be convenient to
use the files from the periodic case in the first order formulation with U ∈ C2N .) We recommend to disable
mesh adaption by setting iad=0.

Initial data: Initial data for λ, ν and the eigenvector u (or U = (u, du
dx )) can be imported from root-solving

routines in packages such as maple or mathematica applied to the dispersion relation d(λ, ν) = 0 for a
fixed value of either λ or ν.

4 Absolute spectra

4.1 Definition and characterization of the absolute spectrum

As outlined in the introduction, the absolute spectrum arises naturally as follows: Take the linearization L
about an asymptotically homogeneous or periodic travelling wave and compute its spectrum on the interval
(−`, `) with fixed separated boundary condition at x = ±`. The resulting spectra will depend on ` and on
the boundary conditions. It is proved in [9] that these spectra converge, uniformly on compact subsets of C
and in the symmetric Hausdorff distance, to a limiting spectral set as ` →∞. The continuous (non-discrete)
part of the limiting set is given by the absolute spectrum Σabs, defined below in Definition 1, which does
not depend on the boundary conditions: As ` → ∞, each element of the absolute spectrum is approached
by infinitely many eigenvalues of L which therefore cluster near the absolute spectrum. We emphasize that
the results in [9], even though mostly formulated for constant coefficients, are valid for periodic coefficients.

Definition 1 For constant coefficients, we define the generalized absolute spectrum Σm
abs with Morse index

m as the set of those λ ∈ C for which

Re ν1 ≥ . . . ≥ Re νm = Re νm+1 ≥ . . . ≥ Re ν2N

where νj are the 2N roots of d(λ, ν) repeated with multiplicity. The generalized absolute spectrum

Σ∗abs :=
2N−1⋃
m=1

Σm
abs.

is the union over all indices m, and the absolute spectrum is defined as

Σabs := ΣN
abs.

For periodic coefficients, we use the same definition with the eigenvalues ν replaced by the Floquet exponents
of Φλ.

The notation Σabs and ΣN
abs will be used interchangeably for the absolute spectrum. The generalized absolute

spectrum with Morse index different from N is usually meaningless for spectral properties of L from (2.1).
It is, however, a natural first step towards the computation of the absolute spectrum. Note that each Σm

abs is
typically the union of curve segments that are glued together at singularities that we shall discuss in detail
below. First, we note the absolute spectrum is also bounded to the right:

Remark 4.1 For both (C) and (P), a straightforward scaling result shows that for each fixed δ ∈ (0, π
2 ) there

is a constant R > 0 so that ΣN
abs does not contain any elements λ with |λ| > R and | arg λ| < π

2 + δ.
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The characterization of Σ∗abs in Definition 1 allows us to reformulate Σ∗abs using the system

d(λ, ν1) = 0, d(λ, ν2) = 0, ν2 − ν1 = iγ (4.1)

with γ ∈ R. We see that λ ∈ Σ∗abs if either (λ, ν1, ν2) are solutions of (4.1) for some nonzero real γ or else if
λ and ν1 = ν2 are solutions of (4.1 with ∂νd(λ, ν1) = 0. Setting ν = ν1 and ν2 = ν + iγ, we can remove the
singularity of (4.1) at γ = 0 by considering the system

A(λ, ν; γ) =
(

d(λ, ν),
d(λ, ν)− d(λ, ν + iγ)

iγ

)
= 0 (4.2)

so that A : C × C × R → C2. Thus, λ ∈ Σ∗abs if, and only if, (λ, ν; γ) satisfies (4.2). We shall call solutions
(λ, ν) of A(λ, ν; 0) = 0 double roots.

4.2 Constant coefficients

Computationally, it is more reliable and convenient to replace the dispersion relations d(λ, ν) by the original
algebraic equations. Using the definition

D(λ, ν) := Dν2 + cν + a0 − λ,

the system A(λ, ν; γ) = 0 is equivalent to solving

D(λ, ν)u = 0, [D(2ν + iγ) + c](u + iγv) +D(λ, ν)v = 0, (4.3)

together with the normalization

〈uold, u〉 = 0, 〈vold, u〉 − 〈uold, v〉 − iγ〈vold, v〉 = 0. (4.4)

4.2.1 Continuation within the generalized absolute spectrum

We now collect several properties of the system A(λ, ν; γ) = 0 before we return to solving (4.3)-(4.4).

For each isolated solution (λ, ν) of A(λ, ν; γ) = 0 for some fixed γ ≥ 0, we can define its multiplicity to be
the (real) Brouwer degree deg(A(·, ·; γ), 0) in the variable (λ, ν), evaluated at the solution (λ, ν).

Lemma 4.2 The multiplicity is nonnegative. Furthermore, the degree of (λ, ν) = 0 at γ = 0 is one precisely
when ∂λd(0, 0) 6= 0 and ∂ννd(0, 0) 6= 0.

Proof. Since the derivative ∂(λ,ν)A is complex linear, it has a nonnegative determinant when considered
as a real 4 × 4 matrix which proves the first claim. The second statement follows since ∂(λ,ν)A(0) is, in
this case, block-diagonal with diagonal entries given as non-zero complex multiples of the identity, such that
det ∂(λ,ν)A(0) > 0.

We call solutions for γ = 0 with multiplicity one simple double roots. If a solution is not isolated, we say it
has multiplicity ∞.

In the following, we consider various homotopies by allowing the coefficients D, c, a0 and γ to depend on a
homotopy parameter τ ∈ [0, 1]. The resulting functions will be denoted by Aτ (λ, ν), omitting the dependence
on γ = γ(τ). The homotopy invariance of the Brouwer degree gives the following result.

Lemma 4.3 The number (λ, ν) of roots of Aτ (λ, ν) inside a ball G ⊂ C2 is independent of τ provided there
are no roots on the boundary ∂G for each τ ∈ [0, 1]. Here, solutions are counted with multiplicity.
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Next, we prove that the assumption in the preceding lemma is automatically met provided the ball G has
sufficiently large diameter.

Lemma 4.4 If the diffusion coefficients are pairwise distinct so that di 6= dj for i 6= j, then there exists a
number R > 0, depending only on |D|, |a0|, |c| and |γ|, such that every solution (λ, ν1, ν2) of (4.1) satisfies

|λ|+ |ν1|+ |ν2| ≤ R.

Proof. A straightforward estimate of the linear equation D(λ, ν)u = 0 shows that |ν| ≡ ±
√

λ/di for some
i as either λ or ν tend to infinity. Since di 6= dj for i 6= j, this implies | Im(ν1 − ν2)| → ∞ whenever
Re ν1 = Re ν2, and therefore |γ| → ∞.

Lemma 4.5 Assume that di 6= dj for i 6= j, then there are precisely
(
2N
2

)
double roots, i.e. solutions to

A(λ, ν; 0) = 0, when counted with multiplicity.

Proof. We choose a homotopy of A(λ, ν; 0) = 0 to the equation with c = 0 and a = diag(aj). On account
of Lemmata 4.3 and 4.4, the number of roots of Aτ (λ, ν; 0) does not change during the homotopy. For the
resulting diagonal equation, there are N roots (λ, ν) = (dj , 0) which are easily seen to have multiplicity one.
The remaining roots are solutions to

diν
2 + ai − λ = 0, djν

2 + aj − λ = 0,

that is, to

λ = diν
2 + ai, ν2 = −ai − aj

di − dj

for a given pair (i, j) with 1 ≤ i < j ≤ N . Choosing the aj appropriately, the above system has N(N − 1)
distinct solutions. We claim that each solution has Brouwer degree equal to 2. Indeed, differentiate the
dispersion relation

d(λ, ν) = ΠN
j=1[λ− djν

2 − aj ]

and compute the Taylor jet at the solutions (λ∗, ν∗):

d(λ, ν) = a(λ− λ∗)2 − b(ν − ν∗)2 + O(3)

with a 6= 0. In particular, d(λ, ν) + ε has two simple double roots at λ = λ∗±
√

ε/a + O(ε) and ν = ν∗. The
additivity and homotopy invariance of the degree shows that the multiplicity is two. Altogether, we have
found N + 2N(N − 1) = 2N(2N − 1)/2 roots which proves the lemma.

As an immediate consequence, we conclude that the generalized absolute spectrum consists of at most
(
2N
2

)
curves that are parameterized by γ.

Corollary 4.6 The generalized absolute spectrum is given by

Σ∗abs =
⋃
γ≥0

{
λj(γ); j = 1, . . . ,

(
2N

2

)}
,

where λj(γ) denotes the λ-component of the solutions to A(λ, ν; γ) = 0. Moreover, λj(γ) can be chosen to
be continuous in γ. In particular, Σ∗abs consists of at most

(
2N
2

)
connected components, each containing a

double root and the point at infinity (when considered on C).
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Proof. The representation of Σ∗abs follows from the previous discussion and the homotopy invariance of the
degree in a ball of radius R for each fixed finite γ, and therefore for all γ. To show continuity, we have to pick
continuous curves λj(γ) out of the setwise continuous continuum of solutions to A(λ, ν) = 0. We therefore
look at the family of perturbed problems A = ε(1)λ + ε(2)ν. By Thom’s transversality theorem, there exist
sequences εk = (ε(1)

k , ε
(2)
k ) → 0 such that the solution sets λk

j (γ) form smooth curves. By continuity of the
solution set, and finiteness of the index set j, we may pick a subsequence k` such that the curves λk`

j converge
uniformly in γ to the solution curves of the limiting problem, thus providing us with a continuous labelling
of the solutions λj(γ) for the original problem.

To summarize, to compute the generalized absolute spectrum, it suffices to calculate all double roots and to
subsequently continue the curves of Σ∗abs that emanate from the double roots in γ from γ = 0 to γ = ∞.

We remark that double roots may coalesce in certain situations:

Lemma 4.7 If a is triangular and n ≥ 2, then there are at least two degenerate double roots (λ∗, ν∗) of the
dispersion relation which are double roots with respect to both ν and λ so that

d(λ∗ + λ, ν∗ + ν) = α2λ
2 + β2ν

2 + O(|λ|3 + |ν|3).

Proof. It suffices to consider n = 2, D = (1, δ) with δ 6= 0, and a =
(
a1 ∗
0 a2

)
in which case the dispersion relation

is equal to d(λ, ν) = d1(λ, ν)d2(λ, ν) = 0 with d1(λ, ν) = ν2 + cν − λ + a1 and d2(λ, ν) = δν2 + cν − λ + a2.
In particular, there are

(
4
2

)
= 6 double roots for δ 6= 1 which satisfy d = 0 and ∂νd = (∂νd1)d2 + d1∂νd2 = 0.

The solutions to d1 = 0 and d2 = 0 are given by λ1 = ν2 +cν +a1 and λ2 = δν2 +cν +a2, respectively, where
ν is arbitrary. These give rise to spatial double roots provided d2(λ1, ν) = 0 or d1(λ2, ν) = 0, respectively,
that is, when δν2 + cν − (ν2 + cν + a1) + a2 = 0 or ν2 + cν − (δν2 + cν + a2) + a1 = 0. This is the case for

ν±j = ±
√

(−1)j a2−a1
1−δ . The remaining two of the six double roots are the roots ν1 = − c

2 and ν2 = − c
2δ of

the dispersion relations d1 and d2, respectively.

If some of the diffusion coefficients are equal (di = dj for appropriate indices i 6= j), we cannot a priori
exclude that branch points ’disappear’ at infinity. In fact, in the explicit decoupled model problem that we
utilized in the proof of Lemma 4.5, a double branch point ’crosses’ the point at infinity when di − dj crosses
zero.

4.2.2 Testing absolute stability

We shall show that, for constant-coefficient operators, the absolute spectrum ΣN
abs is connected in C̄. Since

Remark 4.1 shows furthermore that it lies in an acute sector that opens up along the negative real axis,
it suffices to check whether the absolute spectrum has a nonzero intersection with the imaginary axis to
establish stability or instability.

Lemma 4.8 The absolute spectrum ΣN
abs is connected in C̄ and contains the point at infinity. Furthermore,

the absolute spectrum ΣN
abs is contained in the open left half-plane if, and only if, it does not intersect the

imaginary axis.

Proof. We argue by contradiction. Thus, suppose that Σ̃ is a non-empty, compact subset of ΣN
abs so that

there is a smooth Jordan curve Γ in C with Γ∩ΣN
abs = ∅ and int Γ∩ΣN

abs = Σ̃. The idea is to show that the
spectrum of L on (−`, `) with appropriate boundary conditions cannot accumulate on Σ̃ in contradiction to
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[9, Theorem 5]. Since Γ does not intersect the absolute spectrum with Morse index N , the eigenvalues νj of
A + λB satisfy

Re ν1 ≤ . . . ≤ Re νN < Re νN+1 ≤ . . . ≤ Re ν2N

for all λ ∈ Γ. We denote the N -dimensional generalized eigenspaces associated with the N leftmost and
rightmost eigenvalues by Es(λ) and Eu(λ), respectively: These spaces are well defined, unique and analytic
in λ for λ in a neighbourhood U of Γ. Next, pick λ0 ∈ Γ and an N -dimensional subspace Ebc with

Ebc ⊕ Eu(λ) = CN , Ebc ⊕ Es(λ) = CN (4.5)

for λ = λ0. Analyticity then implies that (4.5) is true for all λ ∈ U except possibly for finitely many λ.
Redefining Γ if necessary, we can therefore assume that (4.5) is true for all λ ∈ Γ.

We set our boundary conditions by choosing a matrix Qbc
− = Qbc

+ with null space equal to Ebc. Equation
(4.5) shows that [9, Hypothesis 7] is met, and [9, Proposition 5] now asserts that there are numbers M ≥ 0
and `∗ � 1 such that the spectrum of L on (−`, `) with the boundary conditions (1.3) contains precisely M

elements in the interior of Γ and does not intersect Γ for ` ≥ `∗. We emphasize that (4.5), and therefore the
above statement, remains true if we change Ebc, A, and B slightly.

Next, pick an element λ1 in the non-empty set Σ̃. Upon transforming the matrix A+λ1B into Jordan normal
form, it is easy to see that there are matrices C0 and C1 of arbitrarily small norm so that the eigenvalues νj

of
A + λ1B + C0 + (λ− λ1)C1 (4.6)

satisfy

Re ν1 ≤ . . . ≤ Re νN−1 < Re νN = Re νN+1 < Re νN+2 ≤ . . . ≤ Re ν2N , Im νN 6= Im νN+1 (4.7)

at λ = λ1 and
d Im(νN − νN+1)

dλ

∣∣∣
λ=λ1

6= 0. (4.8)

In particular, we may choose C0 and C1 so small that the statements in the previous paragraph are also true
for (4.6). On the other hand, (4.7) and (4.8) show that [9, Hypothesis 8] is satisfied near λ = λ1, and [9,
Theorem 5] now implies that the number of eigenvalues of L (on (−`, `) with the boundary conditions (1.3))
in a small disk centered at λ1 becomes unbounded as ` → ∞. This contradicts the statement established
before that this number is equal to M which is independent of `. The second statement of the lemma follows
from Remark 4.1.

4.2.3 Generic singularities

The generalized absolute spectrum Σ∗abs typically does not admit any singularities. Upon shifting, curves
of generalized absolute spectrum pass through zero where they emanate from double roots λ ≡ αν2 with
ν1 = −ν2 = ±iγ/2 along λ = −γ2α/4. However, even though we may continue curves in Σ∗abs smoothly,
the Morse index m may jump along these curves. This occurs typically at triple points, where Re νj+1 =
Re νj+2 = Re νj+3, Im νj+1 > Im νj+2 > Im νj+3. One expects these conditions to hold at discrete points on
the generalized absolute spectrum. Typically, λ = λtriple + bl(ν − νl) + O(|ν − νl|2) for l = j, j + 1, j + 2 near
these singularities, and the resulting bifurcation picture is readily computed under the assumption that the
coefficients bl are different from each other (see Figure 1).

The Morse index drops from j + 1 to j along two of the curves as they cross the singularity. Between these
two curves that enter the generalized absolute spectrum, there is a curve of generalized absolute spectrum
that crosses the singularity along which the Morse index increases. The Morse index increase happens along
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Figure 1: A triple-point singularity of the generalized absolute spectrum in the complex λ-plane. Curves are

oriented by sgn(γ), numbers are Morse indices minus j. Insets show relevant spatial eigenvalues.

the curve where Re ν1 = Re ν3, i.e. where the difference of imaginary parts is given by the sum of the two
other differences of imaginary parts.

Note that if we insist on following curves with constant Morse index (rather than preserving smoothness
during the continuation), then we are losing a curve with Morse index j +1 and creating a curve with Morse
index j. Moreover, if we follow curves with Morse index j, the parameter γ jumps down as we cross the
singularity. In particular, local considerations do not enforce curves of constant Morse index to continue to
γ = ∞, although we may well be able to continue them in λ. We emphasize that the absolute spectrum is
nevertheless connected in C̄, see Lemma 4.8.

The singularity dν1/dλ = dν2/dλ at ν∗j , j = 1, 2, in the generalized absolute spectrum typically requires an
additional parameter, but can be observed on the real axis without external parameter. To leading order,
we find νj ≡ ν∗j + aλ + bjλ

2, j = 1, 2, from the dispersion relation and therefore

Re(ν1 − ν2) = Re[(b1 − b2)λ2] = 0

with solutions forming a rectangular cross to leading order, where γ increases towards the singularity on one
of the curves and it decreases towards the singularity on the other perpendicular curve. The Morse indices
are the same on all four curves. This occurs, for instance, on a real interval of Σ∗abs that is bounded by two
double roots at the endpoints.

Due to the symmetry of spatial eigenvalues with respect to the real axis there is also the possibility of two
pairs of complex conjugate spatial eigenvalues, in which case we expect 12 curves of Σ∗abs meet in one point,
four of which are real intervals.

4.3 Periodic coefficients

The initial setup for periodic coefficients is similar. The dispersion relation is now given by

d(λ, ν) = det[Φλ − eνL],

and we shall use the regularized system

D(λ, ν)u = 0, [D(2(∂x + ν) + iγ) + c](u + iγv) +D(λ, ν)v = 0, (4.9)
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where
D(λ, ν) = D(∂x + ν)2 + c(∂x + ν) + a(x)− λ, (4.10)

together with the normalization conditions ∫ L

0

〈uold, u〉dx = 1 (4.11)∫ L

0

[〈vold, u〉 − 〈uold, v〉 − iγ〈vold, v〉] dx = 0

for u and v. It suffices here to consider γ ∈ [0, π/L).

Regarding instability of the absolute spectrum, we can conclude that the existence of an unstable isola of
essential spectrum implies unstable absolute spectrum provided it lies in the boundary of the component of
the resolvent set where the Morse index of the period map Φλ is N . This observation is a consequence of
the more general fact that isolas of essential spectrum contain absolute spectrum with a certain Morse index
(see [6, Theorem 3.3] and [7] for details).

Continuing a curve of (generalized) absolute spectrum from double roots proceeds as for the constant coef-
ficients. However, there is an infinite number of double roots for γ = 0 even though each bounded region of
the complex plane typically contains only finitely many. Compared to the constant-coefficient case, it is also
much more problematic to find double roots in the first place: in fact, we do not know of any systematic
way of locating double roots in a given region of the complex plane.

Similar to constant coefficients, there is the possibility that the absolute spectrum consists of curve segments
of generalized absolute spectrum. We would therefore need to compute Σ∗abs and determine the Morse index
on each segment. We conjecture, however, that for periodic coefficients most of the absolute spectrum
consists of isolated smooth curves.

We next describe possible strategies for locating elements of the (generalized) absolute spectrum which involve
continuation of (3.8) in the real part η of ν = η + iγ, which corresponds to posing L in an exponentially
weighted space with weight η.

Firstly, consider an intersection point of two curve segments of essential spectrum, possibly for η 6= 0. Unless
this point is a root of ∂λd(λ, ν), it lies in the generalized absolute spectrum, because two Floquet exponents
have the same real part, and it can be used as a starting point for continuation. In fact, a Jordan curve of
essential spectrum that does not contain further essential spectrum continues in η either to a self intersecting
curve or to a double root, see [7] for details.

Secondly, we discuss the special case of generalized absolute spectrum on the real axis. At λ ∈ R, a Floquet
exponent ν is either real or there is the complex conjugate exponent ν. If ν ∈ R, then Im(ν) = miπ for
m ∈ Z, i.e. it is a positive or negative Floquet multiplier.

In case of a distinct pair of complex conjugate Floquet exponents, a slight change in the real part of λ or
η = Re(ν) does not change the complex conjugate relation and so there is in fact an interval of R∩Σ∗abs. Note
that an endpoint of this interval is a double root. Conversely, continuation of ν in λ on the real axis may
lead to double roots in the generalized absolute spectrum. Note that by symmetry of Floquet exponents, the
computation of real intervals only requires continuation of one Floquet exponent, i.e. (3.8) with ν = η + iγ.

In the other case, there are two real Floquet exponents with equal real part and imaginary parts γ = 0 and
γ = π, respectively. Since varying λ along the real axis will leave the Floquet exponents real, changing the
imaginary part of λ will only change the imaginary part of the Floquet exponents to leading order, by the
Cauchy Riemann equations. The corresponding curve of absolute spectrum intersects the real axis with a
vertical tangent. Conversely, for λ ∈ R the continuation in η of a pair of Floquet multipliers with opposite
sign may lead to the location of such a crossing point.
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Other typical singularities of the absolute spectrum on the real axis are as described in §4.2.3, keeping in
mind that signs of Floquet multipliers may differ.

We refer to §5 and [6, Chapter 4.4] as well as [7] for examples where exponential weights have been used to
locate absolute spectrum.

4.4 Continuation, and implementation in AUTO

In the case of constant coefficients, we first calculate all double roots (λ, ν), i.e. all roots of A(λ, ν; 0) = 0,
and subsequently nontrivial solutions u and v of the linear equation (4.3). Starting from each of these at
most

(
2N
2

)
points, see corollary 4.6, we then continue solutions of (4.3)-(4.4) in γ.

Afterward, we reconstruct the Morse indices on all curve segments of Σ∗abs between triple points and double
roots by computing all 2N solutions of A(λ, ν; γ) = 0 at all double roots and triple points (or at arbitrary
test points on each segment). Alternatively, we could compute all 2N solutions νj of D(λ, νj)uj = 0 and
(4.3)-(4.4) simultaneously, though this is computationally much more expensive.

We remark that it is not necessary to use the regularized system (4.3)-(4.4) away from double roots. Instead,
it may be convenient for the implementation to use the equations D(λ, ν)u1 = 0 and D(λ, ν + iγ)u2 = 0.

Except for the location of double roots, these remarks equally apply to periodic coefficients and (4.9)-(4.11).
For consistency with this case, we describe the setup in auto for (4.3)-(4.4) as a first order system and
boundary value problem, so there are 2N +2N complex equations. This way the same equation file of auto

can be used.

The constants file: We cast both (4.3) and (4.9) as ndim=8N real algebraic equations with periodic
boundary conditions, bcnd=8N, and icnd=4 real integral conditions to normalize. The nicp=5 free parameters
are λ, ν ∈ C and γ ∈ R. It is useful for subsequent computations to view γ = Im(ν2) and include Re(ν2) in
the implementation.

For the case of constant coefficients, eigenfunctions are spatially constant, so we set ntst=1 and ncol=2.
We recommend to disable mesh adaption by setting iad=0, and to exclude the vector v in (4.3)-(4.4) from
the pseudo-arclength computation. For this set nthu=4 succeeded by 2N lines of the form <index of

component> 0.

The equations file: We recommend to implement the operator D(λ, ν) in a new subroutine called from the
subroutine func, because (4.3) and (4.9) require two evaluations. Also this makes it easy to simultaneously
continue all eigenvalues and thereby the Morse index, if feasible. The current Morse index can then be
stored in an additional parameter to check changes. Boundary and integral conditions are implemented in
the subroutine bncd and icnd as described previously in §3.5.

Initial data: For constant coefficients, we use double roots as described above and set the data in the
subroutine stpnt. For periodic coefficients, initial points in the generalized absolute spectrum are often
found by continuing single Floquet exponents in exponential weights to a point where two of these have the
same real part. To improve convergence of the initialization, we recommend to join both eigenfunctions and
the nonlinear solution into a single data file and rescale to the same discretization grid. The program @fc

converts such a file to auto format and reads initial parameters from the subroutine stpnt, see [2].
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5 Examples

To illustrate the algorithms outlined above, we investigate essential and absolute spectra for the complex
Ginzburg–Landau and the FitzHugh–Nagumo equation1.

5.1 The complex Ginzburg–Landau equation

We consider wave trains of the complex Ginzburg–Landau equation (CGL)

At = (1 + iα)Axx + A− (1 + iβ)A|A|2 (5.1)

which is an approximate modulation equation valid near the onset of certain instabilities of the essential
spectrum [5].

Periodic wave-train solutions of (5.1) are given by A∗ = rei(κx−ωt) with r2 = 1− κ2 and ω = β + (α− β)κ2.
In the detuned variable A = Ãe−iωt, the equation becomes, upon omitting tildes,

At = (1 + iα)Axx + (1 + iω)A− (1 + iβ)|A|2A

with solutions A∗ = reiκx. For the linearization about these wave trains, we consider B and B̄ as independent
variables, not necessarily complex conjugate, and obtain the linearization

λB = (1 + iα)Bxx + (1 + iω)B − (1 + iβ)(2|A∗|2B + A2
∗B̄)

λB̄ = (1− iα)B̄xx + (1 + iω)B̄ − (1− iβ)(2|A∗|2B̄ + Ā2
∗B).

Next, we substitute B = beiκx+νx and B̄ = b̄e−iκx+νx, where we view b and b̄ as independent variables. We
obtain the analogue to the matrix in (4.10) for the dispersion relation

D(λ, ν) =

(
(1 + iα)(ν + iκ)2 0

0 (1− iα)(ν − iκ)2

)
+ a− λ id

where

a =

(
1 + iω − 2(1 + iβ)r2 −(1 + iβ)r2

−(1− iβ)r2 1− iω − 2(1− iβ)r2

)
which simplifies to

D(λ, ν) =

(
(1 + iα)(ν2 + 2iκν)− (1 + iβ)r2 −(1 + iβ)r2

−(1 + iβ)r2 (1− iα)(ν2 − 2iκν)− (1− iβ)r2

)
− λ id .

Hence, we obtain a constant-coefficient problem with dispersion relation d(λ, ν) = detD(λ, ν) = 0, and the
approach of §3.3 and §4.2 for N = 2 applies.

The essential spectrum {λ; d(λ, iγ) = 0, γ ∈ R} consists of the two explicit curves

λ±(iγ) = −1 + κ2 − γ(2iακ + γ)±
√

(κ2 − 1)2 − γ(4iβκ3 + 2αβγ + α2γ3 − 4iκ(β + αγ2)− 2κ2(2 + αβ)γ).
(5.2)

We note that λ−(0) = 0, so zero is always in the essential spectrum (see Figure 2 for the shape of the
essential spectrum).

Regarding the absolute spectrum, note that the dispersion relation d has four spatial roots ν for each λ, and
the Morse index for the absolute spectrum is therefore two. Furthermore, we expect

(
4
2

)
= 6 double roots

1The auto files used for the following computation are available from the authors upon request.
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Figure 2: The essential spectrum of the wave train with wave number κ = 0.1 is plotted for (α, β) = (0.1, 0.2).

by Lemma 4.5; note, however, that this prediction will not hold for α = 0 since the diffusion coefficients
coincide in this case, and Lemma 4.5 does not apply. Indeed, the resultant of d(λ, ν) and ∂νd(λ, ν) with
respect to ν has degree four in that case, hence there are only four double roots (plus two at infinity). We
now discuss the set Σ∗abs for various different parameter values.

We focus on the complex Ginzburg–Landau equation, with α 6= 0, for which essential and absolute spectrum
generally differ. Furthermore, the explicit solution (5.2) is not easy to interpret for general α, β and κ.
Therefore, it appears appropriate to use the numerical approaches discussed in §4.2 to compute the absolute
spectrum.

Our results are summarized in Figures 3 and 5, where we plot the numerically computed sets Σ∗abs and
the indices associated with each segment for three sets of parameter values. The union of the segments
with index 2 is the absolute spectrum. Of interest is the onset of absolute instability, which we computed
for fixed values of (α, β) as the wave number κ is varied. For (α, β) = (0.1, 0.2), the absolute spectrum
becomes unstable through a complex conjugate pair of branch points that crosses the imaginary axis, while
for (α, β) = (−8, 1) all branch points lie to the left of the imaginary axis, and the instability is induced by a
curve of absolute spectrum that crosses the imaginary axis.

First, consider (α, β) = (0.1, 0.2). Starting with the stable absolute spectrum for κ = 0.1 shown in Figure 3(i),
we continued the branch points in the parameter κ ∈ [0, 1] to locate the onset of absolute instability (see
Figure 4). The real stable branch point in the absolute spectrum for κ = 0.1 shown in Figure 3(i) merges
with a branch point of index 3 at κ ≈ 0.51 and Re(λ) ≈ −0.01. For increasing κ a pair of complex conjugate
branch points emerges, each with index 2, and crosses the imaginary axis at κ ≈ 0.598. This is the only
crossing of branch points in the absolute spectrum for (α, β) = (0.1, 0.2) and κ ∈ [0, 1].

Next, we consider the Ginzburg–Landau equation for (α, β) = (−8, 1), which lie in the Benjamin–Feir
unstable regime αβ < 1, and focus on the wave train with wave number κ = −0.3. The generalized absolute
spectrum is plotted in Figure 5. In this case, the absolute spectrum is unstable but does not contain any
branch points. In particular, the instability is a remnant instability (in the terminology of [9]) which cannot
be detected by locating branch points of index two.
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Figure 3: The absolute spectrum Σ∗
abs is plotted for (α, β) = (0.1, 0.2), where bullets correspond to branch

points and numbers indicate the Morse index. (i) For the wave number κ = 0.1, Σ2
abs is stable, and its
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Figure 6: Bifurcation diagram of wave trains with period L = 200 to the FitzHugh–Nagumo equation in the

(ε, c) parameter plane. The insets show the u-components of the wave-train profiles for ε = 0.0033.

5.2 The FitzHugh–Nagumo equation

We investigate the critical part of the spectrum of wave trains with large spatial period in the FitzHugh–
Nagumo equation

ut = uxx + cux − v − u(u− 1)(u− a)

vt = δvxx + cvx + ε(u− γv),

written in a comoving frame with speed c.

It is known, from numerical computations and also through some theoretical work, that the FitzHugh–
Nagumo equation supports, in an appropriate parameter regime, a fast stable pulse and an unstable slow
pulse which disappear in fold or saddle-node bifurcation as the parameter ε is increased. Both pulses are
accompanied by wave trains with arbitrarily large spatial period, which converge to the pulses as the period
is increased, and also undergo saddle-node bifurcations for each fixed period as ε is increased. Our objective
is to numerically continue the spectrum of these wave trains which will cross through the imaginary axis as
we continue the wave trains for a fixed large period through their fold bifurcation. For large periods, the
eigenvalues of the pulses generate nearby isola of essential spectrum [3] and so we expect an isola to cross at
the fold point. Throughout, we fix the parameters a = γ = 0.2 and δ = 0.25, and consider the wave trains
with spatial period L = 200. The bifurcation diagram in (c, ε) and the associated solution profiles are shown
in Figure 6.

First, to illustrate the PDE spectra near the fold bifurcation, we continue the fast wave trains in the (ε, c)-
plane until they become the slow wave trains while, at the same time, computing and continuing the simple
real eigenvalue of their PDE linearization L0 that destabilizes the wave train at the fold. The resulting
eigenvalue curve is shown in Figure 7.

Next, we compute the entire isolas of essential spectrum that emanate from the fold eigenvalue and from the
translation eigenvalue at λ = 0 for different values of ε near the fold bifurcation. As illustrated in Figure 8,
the fast wave train destabilizes already before the actually fold bifurcation as the two aforementioned isolas
first coalesce at the temporal eigenvalues corresponding to ν = iπ/L to form a single isola, part of which
then moves into the right half-plane. Note that the unfolding of the essential spectrum near temporal double
root that occurs when the two isolas touch each other is the x-shape crossing that we expect from the list of
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Figure 12: (i) Real parts of the ordered Floquet exponents ν2 and ν3 for λ ∈ R within the isola of essential
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1.446575 · 10−7 lies in the absolute spectrum, which seems hard to continue as a curve. (ii) We plot the isola

of essential spectrum in Figure 11(ii) continued to the exponential weight η ≈ −0.075, see (i). Signs of real

Floquet multipliers are indicated. This isola contains the component of absolute spectrum referred to in (i).

generic singularities in §3.3.3. Figure 9 indicates that the onset of instability does not occur at finite wave
numbers; instead the curvature of the essential spectrum at the origin changes sign, see §3.4.3. We remark
that at the fold point the isola has an x-shaped crossing point at the origin and the group velocity changes
sign through a singularity.

The merged isola in Figure 8(ii) contains absolute spectrum, which we found hard to compute, however.
Instead, we locate it indirectly via isolas of essential spectrum, computed in exponentially weighted spaces,
which necessarily contain absolute spectrum of index 2 on account of the discussion in §4.3. Figure 10 shows
these isolas inside the isola plotted in Figure 8(ii). The isola containing absolute spectrum moves into the
unstable half plane as the parameter ε approaches the fold point (see Figure 10(ii)). Thus, the wave train is
not only essentially but also absolutely unstable before the fold point.

Lastly, on the branch corresponding to the slow wave train, the merged isolas separate again into an unstable
isola which is completely contained in the right half-plane and an isola which emerges from λ = 0, which
is contained in the closed right half-plane (see Figure 11). We computed these spectra using the methods
described in §3.4: To locate the two isolas, we used finite differences with 800 grid points and a subsequent
direct eigenvalue computation to approximate the spectrum of L0. The curves attached to the eigenvalues of
L0 are then computed by continuation. Both of these isola contain absolute spectrum, again referring to §4.3.
Concerning the isola attached to the origin, we located a point in the absolute spectrum by continuation
of two Floquet exponents whose imaginary parts differ by π/L and hence have opposite signs as Floquet
multipliers, see Figure 12. The expected curve of absolute spectrum containing this point seems hard to
compute. However, since the signs of the real Floquet multipliers eν2 and eν3 are opposite, the crossing point
of the real parts of the Floquet exponents is not a double root and the attached curve of absolute spectrum
should cross the real axis with orthogonal tangent. We remark that this cannot occur for spectra of constant
coefficient problems. We bound the location of this curve of absolute spectrum by continuing the isola of
essential spectrum in Figure 11(ii) in decreasing exponential weight η = Re ν ≤ 0. These isola in weighted
spaces appear to be concentric circles about the crossing point. We therefore expect that the component of
absolute spectrum lies in the smallest isola we computed, a circle of radius 5 · 10−13, see Figure 12.
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