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RECENT DEVELOPMENTS IN MODELING, ANALYSIS AND NUMERICS OF
FERROMAGNETISM

MARTIN KRUZIK AND ANDREAS PROHL

ABSTRACT. Micromagnetics is a continuum variational theory describing magnetization pattern in ferromag-
netic media. Its multiscale nature due to different inherent spatio-temporal physical and geometric scales,
together with nonlocal phenomena and a nonconvex side-constraint leads to a rich behavior and pattern
formation. This variety of effects is also the reason for severe problems in analysis, model validation and
reductions, and numerics, which are only accessed recently and are reviewed in this work.
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1. FERROMAGNETISM — A MULTISCALE PROBLEM

Magnetic properties of materials have been known for more than thousand years. About 1000 years
back Chinese sailors started to use compasses. Until the 19th century electric and magnetic effects were
considered as two independent physical phenomena. In 1820 Oersted proved that an electric current can
influence the needle of a compass. Ampere and Faraday explained that behavior and laid the foundation for
the unified theory of electrodynamics, which was developed by James C. Maxwell. Since then, permanent
magnets have found many applications in energy transforming and data storage devices. In microphones
and electric generators they transform the mechanical energy of a membrane or a rotor into electric energy.
In loudspeakers and motors the electric energy is transformed back into mechanical energy. Around 1900,
Poulsen was the first who recorded an acoustic signal on a ferromagnetic wire opening thus wide applications
of magnetic recording. The invention of computers has brought a need of large data storage on easy to handle
media. This has led to the fast development of magnetic tapes and floppy disks as well as magnetic hard
disks. In general, magnetic media consist of elements, where each of them stores a single bit. The data
writing speed is constrained by the magnetization switching time. Therefore, a deeper understanding of
magnetization processes and mechanisms is important for the optimal design of magnetic recording media.
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Ferromagnetic models and simulations can provide reliable information which is experimentally inaccessible
at low costs and considerably fast.

The basic idea of micromagnetics is to neglect a quantum-physical description of matter by ignoring its
atomic nature and looking at it through the eyes of continuum physics. Such a theory started with the paper
by Landau and Lifshitz [68] in 1935 who calculated the structure of a domain wall between two adjacent
anti-parallel domains. Later on, William F. Brown [15] developed a theory called micromagnetism. The
basic difference to the magnetic domain theory is that one does not describe a shape of a domain in advance
and then calculates an optimal magnetic structure but, contrary to that, the domain shape is a subject of
optimization.

The theory of rigid ferromagnetic bodies [15, 68] assumes that a magnetization m : w — R™, which
describes the state of a body w C R", n = 2,3, is subjected to the Heisenberg-Weiss constraint, i.e., has a
given (in general, temperature dependent) magnitude

|m| = M almost everywhere in w ,

where Mg > 0 is the saturation magnetization. The Helmholtz free energy of a rigid ferromagnetic body w C
R™ consists of three parts. The first part is the exchange energy, « fw |Vm|? dz, a > 0 which penalizes spatial
changes of m and determines a finest characteristic length scale. The second part is the anisotropy energy
[, ¢(m) dz related to crystallographic properties of the ferromagnet. A typical ¢ : R = R* = RU {400}
is a nonnegative function vanishing only at a few isolated points on S™~! determining directions of easy
magnetization, e.g. at two points for uniaxial materials or at six (or eight) for cubic ones. Throughout the
paper we will assume that ¢ is a restriction of a non-negative, even function ¢ € C*°(R") to S"~! = {s €
R”; |s| < My}, extended by 400 out of S™71, i.e., p(A) = p(A) for A € S* ! and p(A) = +oo if A ¢ S 1.
The third contribution of the Helmholtz energy is the magnetostatic energy % fmn |Vu|? dz, which comes
from the stray field —Vu governed by

(1.1) div( — poVu +mx,) =0 inR",

where x, : R™ — {0,1} is the characteristic function of w, and pg is the vacuum permeability. The stray
field energy thus penalizes non-divergence free magnetization vectors. Altogether, the Helmholtz energy has
the form

1
(1.2) a/ |Vm|2dx+/<p(m)dx+§/ |Vu|*dz .
w w R™

If the ferromagnetic specimen is exposed to some external magnetic field H = H(z), Zeeman’s energy of
interactions between this field and magnetization vectors equals — fw (H,m)g. dz. Obviously, minimizing
Zeeman’s energy accounts for aligning m to H. The standard weak formulation of (1.1) implies that the
stray field energy can be equivalently expressed as

Ho

. 1
(1.3) — |Vu [?dz = = / (m, Vu)gs dz,
2 Jin 2/,

which is more convenient since only the integration over w is involved.
Remark 1.1. Suppose w = R? x (0,8), for § > 0. The classical formulation for (1.1) reads

divm in R? x (0,0)

Ou 9
“OA“:{O in B2 x [(—00,0)U (§,00)] * =0 & o gy ) = Fms on B x{0,3},

61’3

where [-] denotes the jump across the boundary of the sample. This implies that there are two sources of
stray field, given by the volume charge density —divm in R? x (0,8) and the surface charge density £mz on

R? x {0,6}.

By accounting to these mechanisms, the Landau energy of the ferromagnet w for M; = 1, and values
a > 0 reads

(1.4) Sa(m):a/|Vm|2dm+/<p(m)d$+%/ |Vu|2d$—/<H,m)Rnda:,
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together with (1.3), for yg = 1. According to Landau’s model, observed magnetization patterns correspond
to minimizers of this energy; as Brown [15] already outlined, minimizers to (1.4) solve the torque equation
that involves the effective field Heg = —DE&,,

mXHeﬂ‘ZO.

In the sequel, we mainly focus on uniaxial materials (e.g. cobalt) which penalize magnetizations that do
not align with the easy axis e € R, i.e., o(m) = 8| (m,eLr)|?, B > 0. Media with low value of 3 are
called soft, because the magnetization is easy to rotate. It is the multiscale nature of intrinsic o, >
0 and geometric scales of the variational problem [33], together with the nonconvex (Heisenberg-Weiss)
constraint and nonlocality (stray field contribution) which leads to a rich behavior and pattern formation on
intermediate scales.

Historically, physical investigations in micromagnetism initially concentrated on static magnetization con-
figurations observed in bulk specimen up to sub-micrometer size. Early observations of ferromagnetic do-
mains in iron crystals around 1956 revealed both the fascinating intricacies of domain patterns and, nev-
ertheless, their strong geometric nature; decades later, the realm of domain patterns has been enriched by
numerous observations, which, in many occasions, have stressed the multiscale nature of their arrangements.
One main concept is the competition of wall energy and the energy arising from surface magnetic charges
necessarily present in an uniformly magnetized confined specimen. For sizes above the single domain limit,
only a finite number of magnetization distributions called (ground) states may be generated, depending on
field application and, more generally, magnetic history.
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FIGURE 1. Domains: Four different magnetization states in 2 : 1 aspect ratio (cubic)
platelets: (a) ‘Landau’, (b) ‘Diamond’, (c) ‘S’, (d) ‘Flower’

Observation 1.1. Computations for Permalloy type materials of size 2 x 1um? for a 20nm thickness
indicate that two fluz closure ground states (‘Landau’ and ‘Diamond’) have noticeable lower energies than
the high remanence states (“‘S’ and ‘Flower’), see Figure 1. Intricacies also soon arise when allowing for
the existence of complex walls such as cross-tie walls (see Figure 2), which are stable wall structures in
continuous Permalloy films in the 20nm thickness range; for such thicknesses, accurate computations of wall
energies prove essential when attempting to define the hierarchy of flux-closure states. As the size decreases
to 0.5 x 0.25um? and the thickness to 10nm, however, then the ‘Landau’ state becomes the lowest energy
state and, soon followed, however, by the ‘S’ state, the ‘Diamond’ state and, last, the ‘Flower’ state. Clearly,
the ‘Flower’ state is closest to an uniformly magnetized state. However, the ‘S’ state appears only marginally
metastable and, besides, may easily be generated through the application of the saturating field at an angle
to the horizontal axis. These considerations show that submicron dimensions need to be reached before high-
remanence states, i.e., the states proper to memory applications for instance, may be considered sufficiently
stable. As easily guessed from purely magnetostatic arguments, platelet properties exhibit a strong shape
dependence, leading even to configurational anisotropy for platelets with high symmetry, such as squares,
triangles, or pentagons, where the conventional shape anisotropy vanishes.

Domains of ground states are separated by interfaces called walls which exhibit internal structure and are
of order 0(\/% ) thick, which typically amounts to a few dozens of nanometers. According to their structure,
different simple (Bloch, Néel walls) and complex walls (cross-tie walls, asymmetric Bloch and Néel walls) are

known [51]; see Figure 2. Structures of even smaller size are vortices in thin films and Bloch lines in bulk
3



materials. Vortices appear as embedded structures in cross-tie walls or at the intersection of domain walls,
leading do nontrivial topological arrangement of the magnetization field. Their dynamics is highly nontrivial
and at the present time poorly understood.
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FIGURE 2. Domain walls: (a) Bloch wall, (b) Neel walls (simple walls), (c) Cross-tie wall
(complex wall): mesoscopic (left) and microscopic (right) structure

Observation 1.2. Domain walls are transition layers between magnetic domains which possess a rich in-
ternal structure. The simplest among them are 180 degree plane walls separating two domains of opposite
direction: The Bloch wall (Figure 2 (a)) occurs in bulk materials, where transition proceeds perpendicular to
the transition axis; the main feature of this scenario is avoidance of magnetic volume charges, i.e., divm = 0.
If rotation proceeds in the plane spanned by the transition axis and end states, this layer is referred to as
Néel wall (Figure 2 (b)). It is the dominating type of wall in very thin films, where Bloch walls would cre-
ate significant surface charges; Néel walls completely avoid surface charges, but are source of (small) out-of
plane magnetization, as well as volume charges. In moderately thick films the most common wall type is
the cross-tie wall (Figure 2 (c)). This energetically more favorable composite wall replaces the 180 degree
Néel wall by a pattern of a main Néel-wall segment (orientationally favored by the anisotropy energy) and
perpendicular short Néel wall segments (the ‘cross-ties’) periodically lining up at a new scale weross. All Néel
walls in the cross-tie pattern show transition angles of 90 degrees or less.

Besides multiple spatial scales, micromagnetism shows a rich variety of complex nonstationary phenomena;
historically, the study of magnetization reversal processes in the quasi-static regime came first, where the
spin configuration is observed following the magnetization loop of an applied field. In contrast to static
and quasi-static investigations, the wide variety of dynamic properties of magnetic elements can only be
understood by precessional motion to explain spin dynamics and switching dynamics at speeds of pico- or
even femptosecond timescales; cf. Figure 3. Mesoscopic changes during a corresponding experiment may be
displayed by hysteresis loops, which plot the average magnetization at the steady state as a function of the
applied field strength; see Figures 3 (d), 15.

Observation 1.3. If we apply an external magnetic field to a (fully demagnetized) ferromagnet, the fer-
romagnet absorbs part of the external field by growing aligned domains until saturation is reached. FEven
when the external field is removed, the magnet will retain some field (remancence): it has become magne-
tized. See e.g. Figure 8 (d). When the external field is cycled in time the corresponding magnetization of the
magnet traces a hysteresis loop. In many cases we observe that the dependence of the magnetization on the
external field is rate-independent, which means that it is invariant to any increasing time homeomorphism.
The property of rate-independence is named after Truesdell and Noll [96]. Following Visintin [98], we define
hysteresis as a rate-independent memory effect. Actually, typical memory effects in ferromagnetism are not
purely rate-independent, since hysteresis is coupled with viscous effects. However, rate-independence prevails
provided that the evolution is not too fast. See e.g . [99] for a version of Landau-Lifshitz equation accounting
for rate-independent effects.

The interest in magnetic materials obtained a completely new and unforeseen momentum when growth
and lithographic patterning methods, known from the field of semiconductors, were applied to magnetic
material classes, which resulted in the discovery of a number of fascinating properties: starting with the
growth of artificial layered magnetic materials, with layer thicknesses on the atomic scale, the giant magne-
toresistance effect and quantum size effects in the electronic and magneto-optical properties have been seen.
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These studies pose new questions, for example about the magnetization reversal process induced by external
field pulses of short duration, the role of precessional damping, nonstationary magnetization patterns and
magnetic anisotropies, as well as the influence of geometric shape and size of ferromagnetic specimen in this
field-induced reversal process. For example, the dynamics of small magnetic elements is expected to differ
from that measured in (single-layer) magnetic films due to different relative roles played by exchange and
anisotropy energy contributions driving the evolution.
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FIGURE 3. Magnetization precession (a) without damping, (b) with damping; (c) switch-
ing/reversal process; (d) virgin curve and hysteresis loop

Mathematical models in ferromagnetism focus on certain ranges of spatio-temporal scales to describe
corresponding magnetic phenomena. The following levels of description may be distinguished:

(1) Atomic level: statistical physics is used to describe single magnetic spin moments and their interaction
in a finite ensemble.

(2) Microscopic level: continuum physics is used to describe the problem. Usually scales about 1 um
down to dozens of nanometers can be treated. The commonly used models at this level are the
nonconvex, nonlocal Landau-Lifshitz energy functional and the strongly coupled, degenerated quasi-
linear parabolic Landau-Lifshitz-Gilbert equation e.g. to predict structure and evolution of domains
and walls. See Sections 2.2, 3.2.

(3) Mesoscopic level: characteristic microscopic length scales of the magnetic material are ignored in a
large body limit to model specimen of engineering interest. The averaged magnetization is a global
minimizer of a degenerate convex, nonlocal, asymptotic variational problem, and microstructure is
described by volume fractions of particular magnetic poles. Further applications include description
of inhomogeneous magnetization in bulk specimen up to millimeter size and microstructure in single
crystals; cf. Sections 2.3, 3.3.

(4) Macroscopic level: Information about microstructure is suppressed, and phenomenological consti-
tutive laws describe evolution of gross magnetization during external loading. This simplification
compromises level (3) with high-performance computational realizability needed for advanced appli-
cations.

Over the last decades, considerable effort has been made to study mathematically related stationary and
nonstationary models for different regimes of scales: next to well-posedness and further characterizations
of solutions (e.g., study of singularity sets, asymptotics), models have been validated through theoretical
predictions (e.g., prediction of phenomena, scaling laws, reduced models). Mathematical difficulties inherent
to these models (e.g., nonconvexity, nonlocality, strong nonlinearities, degeneracies, measure valued solutions)
as well as multiple scales inherent to solutions also make the construction of efficient, convergent numerical
schemes a nontrivial task. The goal of this article is to survey recent status in mathematical modeling,
analysis, and numerics of ferromagnetism as it appears to the authors.In the sequel, we are going to use
standard Lebesgue spaces LP, Sobolev spaces H!, or spaces of bounded variations BV .
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2. STATIONARY MODELS — MULTISCALE PROPERTIES OF GROUND-STATE MAGNETIZATIONS

The variational theory of Landau and Lifshitz [68] describes magnetizations and corresponding domain-
wall structures inside a ferromagnetic body w C R™ as minima of the energy functional

Eu: ANH'(W,R") 5 R, A= {¢€L2(w,R")| 16| =1 ae. in w},

given in (1.4). The anisotropy density ¢ > 0 is zero in case m || e; € R™, for ¢ € I, with some index set
I, and positive else. Vectors e; € R™ are referred to as easy axes. The model describes multiscale domain
branching and structured domain walls by competition of local and nonlocal energy contributions in (1.4),
which are observed in experiments for ferromagnets of different anisotropic materials (e.g. uniaxial, where
#I =1, or cubic, where #I = 3 or 4): for example,

(1) multiscale branching near surfaces in uniaxial materials is explained by reduced magnetostatic en-
ergy contributions which only depend on the domain width of the last branching generation at the
boundary dw.

(2) geometric structure of domain walls may be explained by accounting to competing effects due to all
involved energy contributions.

As can be easily deduced from harmonic mapping theory [52, 92], solutions (m,u) € A x H'(R") to (1.4)
exist and may be characterized in terms of regularity, provided that a > 0; a nontrivial task due to the
nonconvex side-constraint is to construct a stable numerical scheme for restricted (finite element) functions
to approximate solutions to (1.4), (1.1); see Section 2.2.

\m(x)

(a) (b) (©)

FIGURE 4. Minimization of Landau-Lifshitz energy: (a) direct minimization: m(zx) € S?~1,
(b) convexification: | m(z)| < 1, (c) Young-measure relaxation: v, = Zle ;04, (example)

The model of Landau and Lifshitz describes equilibria for ferromagnetic bodies on a microscopic level; in
contrast, mesoscopic models are in demand for practical applications to describe averaged magnetizations for
bulk specimen typically of millimeter-size. This goal motivates a reduced version of (1.4) which is obtained
by deleting the exchange energy contribution, i.e., if a = 0,

(2.1) &: AR,

allowing for infinite variations (microstructure) in space; proper mathematical objects to describe minimizing
magnetization configurations of a relaxed version of this energy functional are Young measure solutions.
We refer to [81, 89] for detailed expository on Young measures and applications. The Young measure
v={vs}, o, €Ly (w, M(8" 1)), [lvell = 1, for almost all = € w, and where M(S™"!) denotes measures
supported on S™~!. Here the subscript “w” means weakly measurable maps, i.e. £+ [g._, f(A)v(dA) is
measurable for any f continuous on S™!. Young measures encode (oscillatory) microstructures and also
allow for calculation of averaged magnetizations m(z) = [g._, Av,(dA), with |m(z)| <1, for almost every

Sn—l
z € w. The relaxation of & : A — R for the proper compact convexification

A= {u = {Va }ocw| sUpPve = S"7F, & — v, weakly measurable}
6



of Ain L' (w; C(S™1))" = L (w; M(S™ 1)) asks for minima of & : A x L?(w;R™) — R, where

(2.2) o) == [, [gn-1 p(A)ve(dA) da + § [gn | Vu > dz — [ (H,m)gr-~ dz,
subject to  m(z) = [g._1 Avp(dA) and Au =div(x,m) inR".

Minimization of (2.1) and (2.2) are linked together by standard relaxation theory, i.e., (i) inf 4 & = min &,
(ii) minimizers of & are weak limits of minimizing (sub-)sequences of &, and (iii) minimizing (sub-)sequences
of & weakly tend to minimizers of &. It is nontrivial to ensure that the magnetostatic energy in (2.2)
evaluated along a minimizing sequence of (1.4) converges to the weak limit of a minimizing sequence for
(1.4). The basic tool to show that is the Div-Curl Lemma [79, 95]. Indeed, as mj; — m weakly* in
L*®(w,R™), Vuj, — Vu weakly in L?(R",R"), and since {Vuy} is curl-free it is sufficient to show that
{divmy} is compact in Hj,.(R™). Then we have

/(mkavuk)mn dz — /(m,Vu)Rn dzx .

w

Therefore, it would be natural to define measure valued magnetization as Young measure supported on
Sn=! which is generated by sequences {my}, where {divmy} € H,!(R"). This would impose an additional
constraint on the Young measure. Fortunately, as shown in [32, 80, 81], any Young measure supported on
S™~! can be generated by a sequence satisfying the compactness constraint.

We now briefly explain the construction in R? which was already used in [32]. Suppose that A;, A, A3 €
S™~1 support the Young measure solution v = 9ud4, +9(1 — u)da, + (1 —9)d4, (Note that n + 1 points are
sufficient in n dimensions). Any m* € L?(w;R?) can be approximated by piecewise constant functions on w.
Thus the problem turns into an approximation of a constant function on a given set O C w. Take q € R?,
such that (uA; + (1 — p)As — Az, q)gz = 0, and p € R? in such way that (4; — Az, p)rz = 0. This choice of
p, q ensures the convergence of magnetostatic energies. Define

(t)_{l if0<t<d 1 if0<t<np

0 _1 ifo<t<1 2nd "(t):{—l ifpu<t<l

and extend them periodically over the whole space. Then we define for £, € N

Lex = {z € 0; 0(&(z, g)re2) = £1}, Mcx ={z € O; n({{z,p)re) = £1} N Ley .
Then we have
A]_ if x € M<+
mg,g(m) = Ay, ifze Mg,
A ifze ;Cg,
Finally,
~ _ /.LAl =+ (]. - /J,)AZ ifx e £§+
m'g(w)_{ Az ifrele 7
with weak-lim¢_,oo g ¢ = ¢ in L?(w;R?) and weak-limg oo ¢ = m in L?(w;R?). Eventually, we got a
sequence approaching weakly a constant function on O. We refer to [32] where it is shown that the sequence
above is really minimizing. The minimizing sequence is obtained by the appropriate scaling of the picture

on the right hand side of Figure 5. The strip of the thickness 1 — p1 belongs to L¢, and the strip of thickness
p to Le_. Similarly, strips of the width y and 1 — p are subsets of M, and M,_, respectively.

Another representation of the relaxation of & is using the convex envelope ¢** of ¢. We recall that the
convex envelope is the supremum of all affine functions not greater than ¢. We remark that ¢** can be
explicitly calculated in particular cases. See [32] for some examples. The problem now reads: Minimize

(2.3) & : AR, A:{¢eL2(w,Rn)||¢|51a,.e.inw},
where

(2.4) Eo(m) = / @**(m)dz + %/ | Vu |>dz — / (H,m)pn dz, Au=div(x,m) inR".
w R™ w

7
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Minima of & may be characterized as solutions of corresponding Kuhn-Tucker equations: Find (m,u,\) €
L?(w,R") x H(R") x L?(w), such that

(2.5) (Vu, Vw) = (m,Vw) VYw € H'(R"),

(2.6) Vu+ De**(m)+Am =H ae inw,

(2.7 0<A, |m|<1, and A1-|m|)+ =0 ae inw.

Here, (s)+ := max{s,0} denotes the non-negative part, and the last condition in (2.7) states that A # 0
is possible only for |[m| = 1 as a consequence of Am € 93(m) for the convex characteristic functional

3:R? — [0,00] defined by 3 =0, if |m| < 1, and 3 = oo, if not.

The subsequent sections survey both, analytical and numerical aspects of these strategies to describe
magnetization configurations on microscopic and mesoscopic levels. We begin with an interesting recent
interpretation of Landau-Lifshitz model as a limiting problem of a statistical approach. Section 2.2 discusses
scaling properties of domains and walls in terms of physical (a, 8 > 0) and geometric (¢, > 0) parameters,
and numerics in Subsection 2.2.1. Section 2.3 deals with Landau-Lifshitz energy without exchange energy;
in particular, we evidence high complexity of algorithms in the course of direct minimization of & : Ay = R
for finite-dimensional subsets A, C A in Section 2.3.1, which historically came first in numerical analysis
of minimizing (1.4); in Section 2.3.2, strategies to discretize the degenerate elliptic problem (2.5)—(2.7) are
reviewed; in Section 2.3.3, a convergent scheme using discretized Young measures to minimize the linear-
quadratic problem is discussed. Section 2.4 discusses a reduced model in the thin film limit.

2.1. Statistical theory derivation of the Landau-Lifshitz model. The statistical mechanics of lattice
spin system with a continuous order parameter is capable of describing equilibrium states of magnetic media.
In relatively small scale devices thermal fluctuations affect the behavior of magnetic domain walls which need
to be incorporated into the continuum model. Katsoulakis, Plecha¢, and Tsagkarogiannis [55, 56] derived this
limiting problem from statistical mechanics considerations using the large deviation theory. They consider
an n-dimensional periodic lattice. At each side z of this lattice there is an order parameter o representing
the magnetic spin moment with values on the unit sphere S™~1.

A most probable configuration of the system is then given by the Maxwellian distribution depending on
(z,v), v € S™,

M(z,v) = Lexp(—b(cp(v) +{(v,Va—J*m— H)Rn)) .
Zy(z)

Here, J describes local mean field interaction in the exchange energy and Z; is the corresponding partition
function with b = (k¥T)~!, for k Boltzmann’s constant and 7' the absolute temperature. Moreover, (@, m )
minimize a new free energy

(2.8) Ey(m) = %/ |Vu|2dx—%/(.]*m7m)mn dx+/
R™ w

w

ay(m) dm—/(H,m)Rn dz,

stands for the convolution and a; for the Legendre-Fenchel transform of

ap) = 6 log [

where “*”

exp(=b(p(0) + (0,p)ze)) do



Expanding the convolution term in (2.8) one gets the finite temperature analogy of the Landau-Lifshitz
energy (1.4). An important point is that the energy (2.8) is minimized subject to the constraint |m| < 1,
while the Landau-Lifshitz energy is considered for |m| = 1. The earlier mentioned convex constraint is due
to thermal fluctuations, and the Landau-Lifshitz energy can be seen as the low temperature limit of the
energy (2.8).

2.2. The Landau-Lifshitz energy: a microscopic model. The presence of the exchange energy contri-
bution in the energy functional (1.4) is the reason for a variety of microscopic, multiscale magnetic phenomena
like domains, structured domain walls, branching of domains, closure domains, etc. Construction of solu-
tions m = argmin g1, gn)€a(¢) is by minimizing sequences {m;}, C ANH (w,R™), which possess weakly
convergent subsequences {m;}, € H'(w,R") where, by a compactness argument, its limit m* € H'(w,R")
also satisfies |m* | = 1, for a.e. z € w. Passing to the limit with respect to each energy contribution now
follows by weakly lower (semi-)continuity property of each involved energy contribution. Explicit solutions

t
W =— =
l
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FIGURE 6. Multiscale phenomena and scaling laws in a uniaxial ferromagnet: (a) oscillatory
magnetization pattern of layer width w, (b) closure domains added to eliminate surface
charges, (¢) domain branching due to Privorotskii [87] (sketch)

are only known in special cases [68, 85].

Example 2.1. Let w = R3, &; € R? be the unit vector in z;-direction, and e = 3. Suppose m = m(x,), and
lim,, 100 m(z1) = £&3, then stray field contributions in the Landau-Lifshitz energy (without external field)
can be computed, and hence

+oo
(2.9) En(m) =/ alm'P = (m, Tmgs dzy, T =P @b — & @6

Parameterization of m using angles (9,1) = (§ —¢,5 —0) € [0,7] x [-m,7], cf. Figure 3 (a) yields to a
representation

m(¥,1) = cos (9€3) + sin (9¢(2)) , t(1) = sin (1&1) + cos (1&) ,
and the minimizer of (2.9) has the form

Y¥(x1) = arccos (tanhi}—l) , Wz) =0,

with w = \/% . Hence, the magnetization is nearly parallel to the easy axis at large distances from the origin,

and these domains are separated by a Bloch domain wall (—6,0) centered around the origin.

For highly anisotropic, uniaxial materials, domain branching and domains of specific scales are experi-
mentally observed multiscale phenomena which may be explained as energy-minimizing mechanism in the
context of micromagnetic theory. Figure 6 (a) shows oscillatory patterns of magnetizations of strongly uni-
axial ferromagnets along the easy axis to avoid volume charges, whereas ‘closure domains’ are added in
Figure 6 (b) along the boundary to also avoid surface charges at the expense of small anisotropy and surface

9



energy contributions. Finally, multiscale oscillatory structures are arranged in a complex branching pattern
on surfaces perpendicular to the easy axis in the vicinity of dw (see Figure 6 (c)).! In [24, 25], a simplified
energy £: A - R, for A ={¢ € BV(w,R")||¢| =1 a.e.}, and w = (0,£) x v’ C R™ is considered,

1
Q(m)=a|Dm|(w)+ﬂ/m§+m§dm+§ | Vu | dz,
w R3

to study branching and inherent scalings for strongly uniaxial materials. Here, | Du |(-) denotes total variation
of u. This ‘wall’ energy is chosen to restrict to sharp interfaces: it allows for jumps of m across a surface
and assigns to them an energy which is proportional to the jump hight and surface area, neglecting possible
internal wall structure (see below). In this case layers of width wmin ~ Val generate magnetization patterns

of energy &£, ;. ~ val (Figure 6 (a)), which may be reduced to £,_;, ~ vapfl for wpni, ~ ,/%Z by using
closure domains in Figure 6 (b) in case 8 < 1. Finally, Privorotskii’s branching construction [87] to balance
surface and anisotropy energies of closure domains creates significantly lower energies ¢/a?¢min{g,1} for

typical bulk domain sizes Wmin = {/ #Zgl}, provided samples are sufficiently large to allow for branching

structures, i.e., £ > max{%,a}, and Wﬁlgl} < 1. These scaling laws evidence sharpness of above

branching constructions and hence detect domain branching as one essential multiscale phenomenon in
micromagnetism. However, it is not clear from the energy-based arguments what are characteristic length-
scales in the planes z = 0, £. Also, one might imagine from Figure 6 (a)—(c) that three-dimensional structures
of uniaxial materials achieve a better scaling law — a possibility, which is ruled out in [25]. Finally, it is
still not clear if corresponding observations hold for the exchange energy a || Vm ||? as well which moreover
allows for internal wall structures of magnetizations.

Studies of inner structures of domain walls are one of the major research topics in nowadays micromag-
netism. Existence, internal structure [6, 73], stability [37], and interaction [34] of different observed simple
and complex domain walls exhibiting multiple scales (Figure 1) may also be understood for specific ranges
of material and geometric parameters by Landau-Lifshitz energy (1.4). For thin soft ferromagnetic films
w = (0,£)2x(0,6), 6 > 0 and practically relevant parameter regimes, 2d Néel walls are the favorite wall type,
yielding to minimizing energies of magnitude O (62log™' (% )); cf. Section 2.4, and [34, 33]. These theoretical
studies of Néel walls support experimental observations in thin samples according to which they consist of
a small core with fast varying rotation and two far-reaching, logarithmically decaying tails. Melcher [73]
has given a more detailed analysis providing corresponding scaling laws of the pointwise behavior of the
one-dimensional Néel wall, if confined by anisotropy energy. Understanding interaction of such walls with
one another or with the boundary using Landau-Lifshitz energy is a subject of current research. Another
recent result [37] establishes stability of one-dimensional Néel walls in thin films under two-dimensional per-
turbations; derived scaling laws for minimizing energies also evidence why energetically favorable cross-tie
walls in moderately thick films are replaced by Néel-walls as thickness of the sample decreases. These results
provide the basis to better understand structure and scalings of more complex walls, as e.g. cross-tie walls
which are composed of Néel walls (cf. Figure 1 (c¢)); we refer to [34] for further discussion.

2.2.1. Algorithms to minimize the Landau-Lifshitz energy. If restricted to the first energy contribution in
(1.4), stationary points to (1.4) are called harmonic maps, which are by now well-understood w.r.t. properties
like existence, nonuniqueness, regularity and singularities of both, minimizing or nonminimizing harmonic
maps. Numerically, it is challenging to meet energy decay property £,(m7) < Ea(mfl_l), j > 1 with
the nonconvex side-constraint |m?| = 1 in an iterative context j > 0. Guided by analytical arguments
above, there are efficient (non-conforming) numerical strategies [28, 31, 29, 69] to discretize the minimization
problem by first minimizing the extension of &, to H'(w,R"), &, : H'(w,R") — R for = 0, vanishing
magnetic potential u, and zero external magnetic field and afterwards using stereographic projection (see
Figure 7 (c)):

Algorithm 2.1. 1. Let m°® € A be an initial guess.

2. For every j > 1, find md € H'(w,R™) such that E,(m7) < E4(mI~1).

INote the closeness of the geometric construction in Figure 5 (o = 0) to the one in Figure 6 (a),(b) (a > 0).
10
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FIGURE 7. Discretization of nonconvex constraint: (a) local charts and parametrization, (b)
convergent discretization by Alouges, (¢) projection onto sphere, (d) scaled projection, (e)
convexified problem, (f) including regularization, (g) discrete Young-measures, (h) including
active-set strategy

3. Set m’ = % €A
4. Set j:=37+1 and go to 2. until a stopping criterion is met.

A conforming finite element realization of this algorithm confines the projection step to vertices of a
quasiuniform mesh 7y, and computes sequences {m}}; C Ay from piecewise affine, globally continuous
{m}}; C Vi(w;R™), where

mfl €A, = {quh € Vh(w;]R")| | dp(z;)| =1 for all vertices :z:z} .

However, mainly because of the lack of convexity of the constraint, convergence of these algorithms cannot
always be verified. In particular, decrease of energy of this strategy can be shown if iterates v € H!(w,R")

lie outside the unit ball, i.e., |v(z)| > 1, which then implies |V(|zg;g ‘) |2 < | Vo(z)|?, for ae. z € w. In
1997, Alouges [2] came up with an energy-decreasing algorithm for minimizing harmonic maps, where every
iteration step starts with a minimization on a new composed space, followed by a stereographic projection
step: if compared to previous numerical strategies from above, this projection step now updates defects
minimized on the manifold tangent to the constraint — rather than new iterates itself; cf. Figure 7 (b). Let

again &, stand only for the exchange energy.

Algorithm 2.2. 1. Let m°® € A be an initial guess.
2. For every j > 1, compute a minimizer w’ € K,,;—1 of

Ealm? ™t —w)  Vw € Kpi-1r = {w € Hj(w,R")| (w,m? "gs =0 a.e. inw}.

. i=1_,i
J — M _—w
3. Set m? = TmT=T =207 T

4. Set j: =7+ 1, and go to 2. until a stopping criterion is met.
11



A stopping criterion can be that the difference of two subsequent values of £y, Eq(mi=1) — Eq(m7) is
sufficiently small. By construction of the numerical scheme, we have

[m ' —wP=1+]wf>>1 aeinw,

which implies the energy estimate q(m?) < £, (mi~!' —wi=1) < £,(mi~") during the projection step; from
a practical viewpoint, the lack of convexity has been transformed into the linear, easier to handle constraint
(mJ,w)gs = 0, almost everywhere in w. The following result is due to Alouges [2].

Theorem 2.1. Algorithm 2.2 converges in the sense that a (relabeled) subsequence {m’}; weakly converges
in H'(w,R?) to a harmonic map m> € AN H, (w,R®), where ng is the boundary data of m°. Moreover,
the entire sequence {w’} strongly converges to zero in Hj(w,R3?).

In [8], stability and convergence of a finite element realization of Alouges’ algorithm for restricted trian-
gulations with angles not exceeding 7/2 is verified, and explicit counterexamples are presented (2D, 3D),
which show increase of energy for non-permitted triangulations. — These results apply to harmonic maps,
whereas Landau-Lifshitz energy also accounts for nonlocal effects in terms of stray field energy; recently
in [3], Alouges’ scheme is extended to the micromagnetic energy &,, by accounting for nonlocal stray field
energies, in particular. The splitting-type algorithm extends the layout of Algorithm 2.2 by introducing an
additional parameter A > 0.

Algorithm 2.3. 1. Let m°® € A be an initial guess.
2. For every j > 1, compute a minimizer w? € K,,i—1 of

a/ | V(mI™ —w) |? dx—}-/ o(mI™t —w) d$+§/(VA_ldivm]_l,mJ_l—w)Rn dm—/(H,mJ_l—wmn dz .

w

. j—1 j
j— _m!T —dw!
3. Set m? = Tmi=T—awi |-

Set j: =7+ 1 and go to 2. unless a stopping criterion is met.

Different scaling properties of exchange energy and stray field energy contributions in terms of A > 0 yield
to energy decay of the method during projection and hence convergence for sufficiently small choices A < Ag.

Remark 2.1. Possible strategies to conserve |m| = 1 may be based on parameterization of S™~1 or local
charts for the sphere, cf. Figure 7 (a), which often leads to efficient numerical methods in the two-dimensional
case. However, these ansatzes restrict possible minimizers to (1.4) and dynamics (see Section (3)), or require
strategies to change between charts of the sphere.

2.3. The relaxed Landau-Lifshitz energy without exchange energy: a mesoscopic model. Micro-
scopic magnetization patterns described as minima of (1.4) reveal multiple scales, with smallest oscillations
exhibiting a scale a > 0, allowing for infinitely many oscillations for minimizers m € L*®°(w,R") in the
limiting case @ — 0. Section 2.3.1 considers mesh-dependent discrete minimizers of & : A4y — R of multiple
scales to illustrate possible smearing of physical patterns (for a > 0) due to discretization effects; this section
bridges over to the study of the degenerate elliptic problem (2.5)—(2.7). Existing results on the relaxation
(2.2) using Young measures are reviewed in Section 2.3.3.

2.3.1. Discretization of the nonconvex problem. We highlight numerical effects imposed to my, = argmin¢80(¢) €
Ap by the underlying mesh 7} and their scalings to allow for reliable resolution of relevant structures of
m = argming€,(¢) € AN H'(w,R"), & > 0 small. In [88], magnetization patterns are constructed for
minimizers my, = argmin,&o(¢) € Ap = {¢n] € [Po(K)]", VK € Ts} for uniaxial materials in the absence

of exterior forces, i.e.,

(2.10) Eo(én) =ﬂ/ | (b, e 1 )n |2dx+%/w | VA~ div(xo ) [2 dz .

Above and in the sequel Py(K), d = 0,1 denotes spaces of polynomials of degree < d on K. Minimizing

constructions motivate a geometry which bridges laminate structures of scale O(h'/?) in the bulk of the

specimen to closure domain structures of scale O(h?/®) at the boundary dw over a length-scale O(1) in

order to optimally balance interpolation errors on a quasiuniform mesh, cf. Figure 8. Computing energy
12



FI1GURE 8. Construction of branching magnetization mp,, using direct minimization (uniax-
ial; from [88])

contributions in (2.10) which arise from interpolating this structure onto the mesh gives the upper bound
for uniaxial materials [88],
min & (¢r) < C(1+ 1og31)h2/3 :
onEAR h
Interestingly, scales differ for discrete minimizing magnetizations of cubic ferromagnets, where laminates in
the interior of the ferromagnet of magnitude O(1) are reduced to closure domains O(h) by multiple branching
over a length-scale of O(1), cf. [88].

2.3.2. Discretization of the convezified problem. Computation of mesoscopic magnetization is more efficient
if (2.5)—(2.7) is used rather than dealing with the minimization problem & : A — R directly, in cases where
the convex envelope ¢** : R" — R U {+o00} is explicitly known. These equations are degenerate elliptic,
so solutions (m,u,\) € L?(w,R™) x H'(R") x L?(w) are not unique in general. However, they are unique
for uniaxial materials in two or three dimensions (cf. [18] for two dimensions). We recall a proof in two
dimensions, see [62] for n = 3. Note that the difference of two possible solutions (d,e) := (ma—my,us —uy )
0 (2.5)—(2.7) is determined by

(2.11) | Ve 72 + / (Dy**(ma) — Dp*™*(m1),8)p, dz + / (Aama — Aimy, ), dz = 0.

By monotonicity arguments, it is easy to see that all terms are non-negative and hence vanish, yielding to
e=0, divéi =0 a.e. in w, (6,n)gz =0 a.e. on dw,

where for a moment n denotes the outer unit normal to dw. Here, the last two results are outcomes from
the first one, using (1.1). Consider the divergence-free function § € L?(R?,R?), with & |w: 8, and & = 0 else;
there holds § € H (div; R?), since normal components of 4 are continuous on the boundary dw. By Helmholtz
decomposition principle, § = curly, n € W(R?), with n = const, since § = 0 outside w C R2. But Vy || e,
thanks to (2.11), and n = 0 outside w, which eventually proves (e,d) = (0,0). These arguments do not carry
over to cubic materials.

A canonical conforming finite element discretization of (2.5)—(2.7) asks for solutions (mp, up ) € Wp(w; R™) x
Vi(R™), where V4 (+) is assembled from elementwise affine, globally continuous functions, and Wp,(-) gathers
elementwise constant grid functions on a quasi-uniform mesh 7, of R™, such that 7j, |w is a triangulation of
w C R™; the non-stable behavior is illustrated by the computations in Figure 9 (a). Mathematically, this ob-
servation may be explained by the lack of validity of discrete Helmholtz principle for the used finite element
pairing, which was the crucial tool to verify uniqueness of solutions for the limiting problem (2.5)—(2.7) in
the above argument. This short-coming of a discretization is cured if V4(+) is replaced by Crouzeix-Raviart
based elements

(@ = {on € 2@ dnl e PK), [

dnds =0 VK, K' € Th}
KNnK'’

13



for polyhedral Q C R"™, which now allows for discrete Helmholtz principle of involved spaces, leading to a
well-posed discretization [18] of (2.5)—(2.7) (uniaxial materials). In [18], a penalized version of this problem
is then studied, and nonlocal magnetostatic effects are accounted for on a set R” O Q D w, using vanishing
Dirichlet data for magnetic potential, i.e., up € V2(Q); see also Figure 7 (e).

Problem 2.1. Find (mp,un) € Wy (w;R?) x V2(Q) such that

(thh,vhwh) = (mh,Vhwh) Ywy, € Vf?(ﬂ),

yy e 1 (mnl =1

a.e. inw.
[ |

Vyup + Dgo**(mh) + Apmyp, = PLH

A proof of the following error statement for solutions to Problem 2.1 (uniaxial case) exploits discrete
Helmholtz principle for the used finite pairing and a bootstrapping argument [18],
(212) | V(u—un) oy + | Dp™ (m) = Dp™ (ma) 2o ey + | M1 = w22y gy < Cle + ).

An alternative strategy to obtain a stable discretization of (2.5)—(2.7) is to go back to the formerly mentioned

ors ors
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Fi1GURE 9. Convexification: magnetization of (a) unstable scheme, (b) stable scheme (Prob-
lem 2.1), (c) stabilized scheme (Problem 2.2, £ = A) (from [88])

scenario (mp, up ) € Wi (w; R™) x V2(£2), and adding stabilizing terms which control non-physical oscillatory
behavior.

Problem 2.2. Find (mp,up) € Wp(w;R™) x V2(Q) such that for £ € {A, B}

(Vuh,th) = (mh,th) Ywy, € V,?(Q),
(Vun, pr) + (D™ (mp), pin) + (Anmns pin) + te((mal, [pn]) = (H, pp) ¥V pn € Wh(w,R™),

Ah :5_1 (|mh | - 1)"1‘

a.e. 1N wW.
| |

Here, [] : L®(K U K',R") — L*(K N K',R"), for adjacent K,K' € Ty|  denotes the jump across
inter-element interior faces £ = K N K’ € Z. The following stabilizations are considered in [88], for n = 2,

ta (fmn), lnl) = 3 he /g s mge] (s ez, s (il [n]) = 3 e / ([mn], [l

§EE e €

Problem 2.2 produces solutions which enjoy (2.12) for slightly restricted mesh-geometries; its convergence
proof avoids the above argument based on discrete Helmholtz-principle and uses inverse-type inequalities
instead. Behavior of this stabilized method can be motivated by interpreting Problem 2.2 as Kuhn-Tucker
equation of a slight modification of the strictly convex energy (¢ > 0)

Eo(m) +6/ 3¢(m)dz, 3a(m) = |divm|?> or 3p(m)=|Vm|?.

Convergence result (2.12) allows for control of certain components of iterates {my } as h — 0, obtained from
Problems 2.1 and 2.2; in general, strong convergence of {my}, may not be expected, due to the degenerate
14



convexity of the energy functional (2.4), which prevents us to reliably recover the uniquely defined Young
measure in the uniaxial case (cf. [32] and Section 2.3.3)

(2.13) # e ve =T(m@), () + (1 _ I‘(m(w)))ém_ (mey) - Where

1/2
m*(m(z)) = :I:(l - (m(a:),eJ_)f@) e+ (m(z),eL)reer, T(m(z)) =3+ {m(z).e)an ____
2(1-(m(2),e1)2,)
in a post-processing step. Surprisingly, numerical schemes can be constructed for the uniaxial case which
compute magnetizations that strongly converge to solutions of (2.5)—(2.7), and which are motivated from

(2.14) go(m)+€1/|Vm|2dx+62/|v2m|2da:, e >0.

The following scheme uses piecewise affine finite elements for the magnetization field as well [88]; cf. Fig-
ure 7 (f).

Problem 2.3. Find (mp,up) € Vi(w,R?) x V2(Q) such that
(Vun, Vwp) = (my, Vwr) Yws € VE(Q),
(Vun, p) + ((mn, e )rz, (pn, e1)r2) + (Anmn, pin)

+h2/<[6nmh]: [Onpn])re + B2 (Vmp, Vi) = (H,pn), ¥ pn € Vi(w,R?),
cc=’€

a.e. M w.

Note the scaling for Ay, which is different from the one in Problems 2.1 and 2.2. Next to (2.12), the
following results apply [88],

Vh y o \1/2
213) (X [1m—malPdo) "+ K2 m = iz + B4 V= ma) o < C,
ce= ¢

_ 5/8 s —1/2 1\ p,3/4
. L2(w = ) )
(216)  [[m = mp |12z < C(h + dist™/2(w, w')h )

provided that the solution to (2.5)—(2.7) is sufficiently regular; the proof is based on a Helmholtz-decomposition
for L?(w,R?)-functions, makes use of increased stability properties of the scheme, together with estimates
for ||m — mp || g-1(w,r2); finally, balancing the error in the interior of w C R? and in a boundary layer close
to Ow yields (2.15)—(2.16). Control of the related Young measure is now an immediate consequence.

Remark 2.2. Computation of the nonlocal magnetostatic field —Vu requires to solve (2.5) in the whole R™.
There are different approaches to evaluating this field: first, truncation by restricting the magnetostatic field
to the compact domain Q, for R™ D Q 3 w and imposing Dirichlet data on 09, see e.g. [18, 88]. Choosing
diam Q ~ 10diamw 4s motivated in [40] for practical studies in order to capture relevant magnetostatic
energy contributions. Second, (2.5) is solved exactly in [72, 71, 64, 86, 17| via integral representation, i.e.,
—Vu = —V.Lm, for a linear convolution operator L : L>(R™,R) — H'(Q); interesting numerical approaches
using H-matriz techniques in this context are proposed and studied in [86]. — We refer to Figure 10 for a
comparison of these strategies to compute the stray field.

2.3.3. Discretization of the relaxed problem. If the convex envelope ¢** is not known explicitly, minimizing

Eo from (2.2) yields to a measure valued solution which not only contains information about the mesoscopic
magnetization m but also about a pattern of minimizing sequences. As to a numerical discretization of
(2.2) we also must, besides a discretization of w, discretize the sphere S™~'; cf. Figure 7 (g). Let 7, be
a quasiuniform triangulation of w that consists of elements with diameter not exceeding hy. Similarly, we
define a triangulation 7;22 of S"~! which is assembled from elements with a spherical diameter not exceeding
hy. Hence, we obtain a triangulation 7, = T} x 72 of w x S"! with mesh parameter h = (h1,hs). We

may now define projectors Py : L' (w; C(8"1)) — L' (w; C(S™1)) by

1
[%mmm=—/a@@@ VreKeT,
K] Jx
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FIGURE 10. Stray field —Vuy around ferromagnet w = (—0.5,0.5) x (—2.5,2.5) displayed
by level lines using truncated domain Q = (—5.5,5.5)? (left), or FEM-BEM coupling (right)
(from [16])

and P} (z,-) denotes a projector that assigns to each G(z,-) its 7,2 -elementwise affine, globally continuous
interpolation, i.e., [PZ G](z,A) = EzL:hf G(z, A;)vi(A), for basis functions {v;}; satisfying v;(A;) = d;j;
functions (; are nonnegative and Zf:hf v;(A) = 1. Then, the composed projector P, = Py, p,) = PL PZ, =
P,%Q P,%l provides an w-elementwise constant and S™~!-elementwise affine, globally continuous approximation,
with adjoint projector Py : A — A defined by (v, P,G) = (P;v,G). The following characterization of

A = Py A C A is taken from [89, Sec. 3.5],

Lh2

Ap = {th{y?(}KETgla U?{ZZ)‘K,i(SAi VK € hll}’
=1

where )\,~| = ki is T, -elementwise constant, such that )7,., A; = 1. A proper discretization of (2.2) can
now be stated in the following form [64]; see Figure 7 (g).

Problem 2.4. Find a minimizer (p",m", u") € A x Wp, (w; R?) x f/,?l () of o subject to

mh|K€Thl = /5‘ ) AN’IZ((dA) ) (vhluhd’vhlwhl) = (mhuvfuw’n) vwhl € Vi?l (Q) .

Problem 2.4 is convex, of quadratic-linear type and with linear constraint; a numerical analysis is given in
[64], which verifies convergence of the method for a relative scaling hy = o(h?/ ?). In practice, the size of this
problem may be very large for sufficiently small h. In [64], and motivated from [19], an active-set strategy is
proposed and analyzed which selects active atoms per each element K € 7Tj, independently according to a
local convex optimization problem; see Figure 7 (h). This procedure drastically decreases complexity of the
problem; we refer to [64] for details.

Remark 2.3. Let us mention another possibility to approximate the relaxed problem by means of Young
measures. Using the Caratheddory theorem we know that for any m(z) € R™, |m(z)| < 1 there are at most
n+1 points A; on S™~! such that ¢**(m) = Z?:Jrll Aida,, where functions A\;, i = 1,...,n+1 are coefficients
of a convex combination. Therefore, we can consider a Young measure v = 27:11 Ak,i04;, where K € 7;111,
and {)\K,i}i are constant on K. Points {Az}, € 8™ ' may again be described by means of angles in spherical
coordinates to avoid the nonconvex constraint, and for each K € T, hold {\k;} > 0 and Z?:Jrll Ak, = 1.
However, the resulting optimization problem is again highly nonconvez; see [61] for details.
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2.4. Thin film limit. Driven by needs of spin electronics ferromagnetic films enjoy renewed attention.
Magnetization pattern are different from those in bulk materials because the magnetostatic interaction
behaves differently if the magnetization m : w — R® remains uniform across the thickness of the film. Let
w=w' x (0,8) be a cylindrical domain of radius ¢ and thickness § > 0, § < ¢, and ¢(m) = 3 (m3 + m2) for
m = (my,ma,m3), i.e., the easy axis is in the plane of the film. Under the assumptions that (i) the sample
is not too small in the sense of o < £5log ' (g), and (ii) anisotropy and external field are sufficiently weak
in the sense of 8 = O(%) and | H| = O(%), it is shown in [34] that the limiting behavior of minimizers of
(1.4) for 6 — 0 may be represented by using the following I'-convergent, two-dimensional reduced problem:
Minimize

~ 1 1
(2.17) Emin(m') = = [ |my ?dz’ + 5/ |Va|* de — g/ (H,m")gn~ dz’
w' Q w'

amongst all m' : w' — R?, @ : Q = R, for Q C R? containing w, such that
|m'|?<1 ind, (Vii, Vw)g = (m', V'w') Yw e H ().

This result can be motivated by a simple scaling argument, according to which surface, anisotropy, and
Zeeman’s energy respectively are of magnitudes O(ad), O(B¢26), and O(| H |¢?§). The magnetostatic energy
being nonlocal is more complicated but can be approximated by [40, 34]

/|w|2dm52/|va\2dz+5/ s [2da’ = O(€62) + O(£25).
Q Q w'

This formula splits magnetostatic contributions into those which penalize in-plane divergence and out-of
plane component separately.

In the regime § < ¢, the larger of the two magnetostatic terms is the cost of the out-of plane component
mg, which is why we expect mz ~ 0. Assuming now m(z) = m(z'), for ' € R?, and using the above scalings
for 3,|H|, all terms — apart from the smaller surface exchange energy —, lead to contributions O(£§?),
which motivates (2.17). We refer to [36] for further details.

3. DYNAMICAL MODELS — FROM SPIN DYNAMICS TO MESOSCOPIC EVOLUTION

Field-induced magnetization dynamics in a ferromagnetic field leads to domain wall motion to reach states
of lower energy. During its motion, it may be trapped in local energy minima until thermal fluctuations
allow to overcome one of the energy barriers that separate the system from neighboring favorable states; a
full description of magnetization reversal needs to contain precisely the spatial and time dependence of the
nucleation and domain wall structure at different fields: at low fields, and for an initially saturated sample,
nucleation always initiates at low anisotropic extrinsic defects or at film edges; in contrast, at high fields,
intrinsic nucleation takes place in many low coercivity regions, e.g., correlated with film polycrystallinity in
composed matter. Rough domain walls move in a jerky manner by successive micrometer-sized jumps at the
wall boundary; moreover, submicron-sized defects and film nanostructure are further impediences of domain
wall propagation at lower scales.

The most rigorous micromagnetic model is the Landau-Lifshitz model. However, this microscopic descrip-
tion models phenomena reasonable only for small areas of submicron size, and cannot model large Barkhausen
jumps, for example. Moreover, relevant time-scales are of picoseconds, and the relaxation of magnetization
can be examined only across no more than some nanoseconds. These shortcomings are amongst the main
motivations for mesoscopic models to describe magnetization reversal.

3.1. The model by Landau and Lifshitz. The foundation of magnetization precession is laid by quantum
mechanics, where the mean value of the spin operator S evolves according to Schridinger’s equation,

()00 = 22(5)(t) x B(1),

and B(t) = poH (t). If the magnetization m : w — S? is understood to be the dipole of spins per unit volume
we arrive at the Landau-Lifshitz equation (LL), governing magnetization motion

(3.1) my(t) = yom(t) x H(t).
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Assuming the magnetic field to be time independent, successive multiplication by m and H leads to

im@re=0,  Lma,m=0.

Hence, the modulus of the magnetization remains unchanged during motion, and the angle between the
magnetization also remains constant as a function of time. Landau-Lifshitz therefore describes a precessional
motion of the magnetization around the applied field, as sketched in Figure 3, and the angular frequency is
a linear function of the magnetic field, wg = 7| H |. The possibility of infinitely fast precession in finite time
is evidenced by the following example (from [26]).

Example 3.1. Let a,mo € R3. Then the unique solution of my(t) = a x m(t), t > 0, for m(0) = mg is
given by the unimodular evolution

m(t) = exp(at) x mg = m}) +mgcos(|a|t) + % x mgsin(|a|t),
Il Il

for mg = mg + my, where myg s parallel to a, and mg is perpendicular to a.

From a mathematical viewpoint, it is only recently that solution concepts have been studied for (LL) in
the form m; = m x Am, for m : w = S2, and w C R2. Existence of weak solutions to the related Cauchy
problem goes back to [93], and global existence of smooth solutions for small initial energies (n = 2) is
studied in [21, 93]; an open question is on existence of a global smooth solution of (LL) for n > 2. In [48],

B. Guo, Y. Han, and G. Yang construct the solution m(r,t) = — = ( %,005(4(7’1:)),sin(4(:}it)) ),0<t<T
of the 2D cylindrical symmetric Landau-Lifshitz equation m; = m X m,. + %m X m, showing finite-time
blow-up, i.e., limy_y7_ || Vm || poe(,, me) = 00; see also [70] in this context. So far, it is known for (LL) that
as long as || Vm || (,,rsn) is bounded, then the solution remains regular for all times, so singularities are
indicated by loss of control on || Vim || ey, rsn); this statement is based on the energy identity, which gives
a bound for || Vm || 12, rsn)-

Singularities also play an important role in establishing uniqueness of solutions; in particular, when the
singularities are weak enough, solutions can be extended in a weak sense beyond the singularity, possibly in a
non-unique fashion. The question of whether weak solutions are unique is not known for the two-dimensional
(LL); there are different characterizations of weak solutions, and it is not clear whether they coincide. For
the related equations of harmonic map heat flow and wave maps, there exist non-unique solutions due to the
appearance of singularities [30].

(From a physical viewpoint, the mathematical concept of singularities translates to defects and spatial
energy concentration in ferromagnetic materials. The issue of nonuniqueness is important for micromagnetic
simulation. Understanding the source and characterizing the nature of singularities affects issues involving
the validity of the physical model as well as what allowable features should be present in the definition of
weak solution.

Another well-known approach to studying (LL) and its possible singularities rewrites the problem as a
perturbed version of cubic nonlinear Schrédinger equation by stereographically projecting the target sphere
S? onto the complex plane, ¢ = iAg + 071(| ¢? |*)0q + O(g*). Main motivations of this approach are

(1) equivalence of m; = m X my, with the cubic nonlinear Schrédinger equation q; = i(gze + | ¢|?q) in
one space dimension, using Hasimoto transform.

(2) extensive results available on solution’s behavior for the cubic nonlinear Schrédinger equation g, =
i(Aq — | ¢ ?q) in higher dimensions: for n < 2, no singularities appear, whereas singularities can
form in the critical and supercritical cases n > 2. These studies heavily benefit from the underlying
principles of conservation of || ¢||p2 — i.e., multiply by § and take real part —, and energy E(q) =
5/, 1Vq|*dz — ;| ¢q|* dz — i.e., multiply by g, and take imaginary part.

Unfortunately, part of the analytical methods which are used to study blow-up behavior of solutions to
cubic nonlinear Schrédinger equation fail in the context of (LL), which motivates numerical studies instead;
see [58].

3.1.1. Discretization of Landau-Lifshitz equation. It is due to the highly nonlinear character of my = mx Am
that explicit time integrators is often given preference over implicit ones. However, only high-order explicit
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discretizations possess nontrivial stability regions in this case, as detailed in [101]; the following observation
is taken from this reference.

Example 3.2. Let a,mq € R®. The discretization of the problem my(t) = a x m(t), t > 0, for m(0) = my
by explicit Euler reads 4 ' ' _

mit =m/ —kaxm! = Am7, m® =mg.
The three eigenvalues of A are \y =1, \a = 1+ |al|ki, A3 = 1 — |a|ki, hence p(A) = \/1+ |a|?k? > 1.

This implies that the stability region for the Euler scheme contains only {k = 0}.

This observation results from the fact that stability regions of the explicit Euler method do not contain
any part of the imaginary axis except the origin. On the other hand, the stability regions of the classical
third- and fourth-order Runge-Kutta schemes do contain part of the imaginary axis. For example, absolute
stability of the fourth-order explicit Runge-Kutta scheme to solve m;(t) = axm(t), m(0) = mg holds for cases
k= O(ﬁ), see [101]. This shortcoming of explicit first-order method can be cured by artificially injected
dissipative mechanisms during the computation. One possibility is a semi-implicit (Gauss-Seidel) strategy,

yielding to absolute stability for choices k = O(ﬁ) If applied to m(t) = m(t) x Am(t), the following
semidiscretization in time is proposed in [101] to compute iterates {md}1<j<, for m? = (m?, m}, mi).

Algorithm 3.1. 1. Let m°® = my.
2. Given m?, 0 < j < J, find m?*! that solves

- . S S
m{+1 mi + k (myAm} —mjAm3)
mi T =| ml+kmit Am} — mgAm{H)

» . L ST o
mit md + k (mdT AmItt — mI T Amdth

An implicit variant of this scheme is discussed in [101] as well, and computational experiments motivate
its unconditional stability.

A different strategy to obtain a convergent discretization of (LL) is realized in [9], where (LL) is approx-
imated by Landau-Lifshitz-Gilbert equation (3.2), for Heg = Am; this approach uses artificial additional
damping which comes from the term headed by a; > 0. For choices a; = ch?, and k = O(h?), convergence
on quasiuniform meshes 7 of Algorithm 3.3 can be verified. The following example is taken from [9].

Example 3.3. Let Hoz = Am, as = 1, and w = (—0.5,0.5)%. Choose initial data mg € L™ (w,S?) as

_{ (0,0,-1) forr > 1
mo(z,y) = { —a2-}-r2 (2az,2ay,a® —r?) forr < %

forr =r(z,y) = /22 + 92, and a = a(z,y) = (1 — 2r)*. Figure 11 explains finite-time blowup as simulta-
neous accelerated precession around xs-azis (given by angle —m < 0 < ), and switching the direction (given
by angle =% < ¢ < T ); cf. also Figure 3 (a). Note that the energy identity %I(m,t) = 0 is valid throughout
the experiment, where I(m,t) = fg [lme(s) |*ds + L || Vm(2) ||

Hysteresis curves usually tell us that beyond some value of the applied field, any magnetic sample can
be considered saturated. The magnetization is then uniform and aligned with the field. Precession alone
does not allow us to reach that limit, in contradiction to experimental evidence. Therefore, the precession
equation has to include a damping term so that, after some finite time, the magnetization become aligned
with the applied field. By far, the simplest way of introducing a damping term to (3.1) consists of replacing
the field H by an effective field including an ohmic type dissipation term, Heg = H — ,m%‘;wsmt, where M,
is the saturation magnetization and a > 0 a phenomenological damping parameter. One also often refers
to Rayleigh type dissipation because the associated dissipation function is a combination of the generalized
velocities squared. We then obtain the Landau-Lifshitz-Gilbert (LLG) equation

ma(t) = 7o m(t) x H(t) — % m(t) x my(t).
s
The effect of damping is illustrated in Figure 3 (b): as time passes, the magnetization spirals down until it
becomes aligned with the field, and all torques acting on m then vanish. The study of (LLG) is the subject
of the subsequent section.
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FIGURE 11. Accelerated, switched precession at (0,0) (1st row), corresponding plots for
IVm 3 vs. || Vm(0,0) [|gs (2nd row), and magnetization patterns shortly before (3rd
row) and after (4th row) blowup time, for different damping parameters a; = 1, i, %
(columnwise) (from [9]).

3.2. The model by Landau, Lifshitz and Gilbert. When the effective magnetic field Hes varies in

time, the configuration (m,u ) eventually may start to evolve too. Depending on considered scales, different

models are used to describe highly nonlinear phenomena: at a microscopic level, Landau-Lifshitz-Gilbert

model is used to describe evolution of domains and structured domain walls (Bloch walls, Neel walls, cross-

tie walls, etc.) or codimension-2 defects called vortices in thin films; although small in dimension, they

enforce a nontrivial topological arrangement of the magnetization field. Spin dynamics (‘magnetization
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reversal’) from millisecond down to femtosecond timescales in magnetic materials of micrometers down to
dozens of nanometers is the key for fast data storage in hard disks. One certain disadvantage of the model is
that it describes evolution of pronounced microstructures rather than averaged magnetic properties; hence,
phenomenological rate-independent models motivated from those in plasticity theory are used to describe
magnetization dynamics on a mesoscopic level, as will be further detailed in Section 3.3.

The Landau-Lifshitz-Gilbert equation [68] describes the evolution of spin fields in continuum ferromagnets
around the effective field Heg,

(3.2) mg=—ay1m X (m X Heg) +aom X Heg, ai,a3 >0,

where m = (m!,m?,m?®) : w x (0,T) — R?, with |[m| = 1, and Hey = —DE&,, together with (1.4), and
Maxwell’s equation (1.1) in a quasistatic approximation. This equation linearly combines the heat flow of
harmonic maps to the sphere S%, m; = —m x (m x Am), and the Schrédinger flow m; = m x Am in the
case Heg = Am.

Problem (3.2) is a strongly coupled degenerated quasilinear parabolic system which makes it hard to ana-
lyze mathematically. In order to understand essential properties of this phenomenological model describing
nonequilibrium magnetism, we restrict to exchange energy contributions in the effective field, defining thus
the reduced effective field Heg = Am. Supposing classical solutions to (3.2) in this case, by using the identity
a x (b xc) = {a,c)rsb — {a, b)rsc, we compute

m x (m x Am) = (m, Am)gsm — |m |*Am .

In addition, if we multiply (3.2) by m, we find (m,m)gs = £ m|*> = 0, and hence |m |*> = 1, everywhere

in RT x w. Now, m-Vm = 0, or (m,Am)gs = —| Vm |?, which is the reason for the following Landau-
Lifshitz-Gilbert (LLG) equation

(3.3) my —oar Am = a1|Vm|2m+a2m><Am inwr:=(0,T) Xw,

(3.4) Onm 0 on dwr:=(0,T) x 0w,

(3.5) m(0,z) = mo(z) VeE€w, |mo|=1 ae inw.

Note that the natural boundary condition resulting from balance of torque, m x 8,,m = 0 can be simplified
to (3.4) as m € S2. — If (3.3) holds in a classical sense, an equivalent formulation would result from taking
the cross-product with m to replace the term scaled by as,

a1 a2

3.6 —_
(36) a? + a2 e

————mxmy=Am+|Vm|’m inw

a? + a2 ¢ | | i
which is also known as Gilbert equation [44]. By again using the above vector identity and |m |? = 1, it can
be recast into the form
(3.7

Qo aq
71 7M + 21 o2
ay T a3 ay T a3

mxm;=mXAm in wr.

The choice between the Gilbert version and the Landau-Lifshitz version of the dynamic equation for mag-
netization is often based on mathematical convenience; both equations preserve the length of a smoothly
varying magnetization vector and both can be studied in the framework of evolution problems of harmonic
maps. — The subsequent example is taken from [85].

Example 3.4. In [100], the Landau-Lifshitz solution of Example 2.1 is generalized to the nonstationary case,
where Hoxy = —HE3 is aligned to the easy axis, and H < 2L constant is not too big. The traveling-wave

2a
solution found by Walker is ’
— vyt
¥(z1,t) = arccos (tanhml(si) , p(z1,t) = om,
H

for fized (wu,dm,vH ) given by

. 209 a a? + o3 «a

sin (2py) = —22H, édy=,—s—", wg=H .

(2ex) o " Bsin? (o) " Qs B+ sin® (px)



The solution supports the idea of a flat domain wall moving with velocity vy in a direction of the x1-axis.

Hence, crucial parameters which control the dynamics of a domain wall are its thickness w and wall mobility
w(ai+ad)

15 v —
v:=limyg .0 H = -

First existence results for (LLG) also in the presence of magnetostrictive effects are due to Visintin [97],
see also [12]: locally existing solutions are globally extended thanks to the valid energy law, see below. In
1992, by a method introduced in [30] to prove nonuniqueness of weak solutions to the heat flow of harmonic
maps, Alouges and Soyeur [5] established a nonuniqueness result for weak solutions to problem (3.3)—(3.5)
for w C R3; the idea is to take a singular solution of the type g(%) as the initial datum, and then to
show that there is another nonstatic solution emanating from such a datum. These earlier results do not
discuss possible singularities of the solution, which is provided by a further study of weak solutions (‘Struwe
solutions’) for domains w C R? without boundary due to Guo and Hong [45]: these solutions are regular
away from at most finite many isolated points in wr, and with decreasing energy; they are globally regular
in the case of small initial energies. Their proof uses the intrinsic Liapunov structure of the problem, and
local energy arguments developed for harmonic maps by Struwe, see [92] for a survey. In the sequel, study
of partial regularity of Struwe solutions [38] and their uniqueness [22] (cf. [50] for correcting remarks) again
follow corresponding previous results in the harmonic mapping theory (1994 M. Feldman, 1995 Y. Chen,
J. Li, F.H. Lin, 2002 R. Moser on partial regularity of Struwe’s solution, and 1996 A. Freire on uniqueness
of Struwe’s solution for 2D-Cauchy problem).

Definition 3.1. A wvector function {m(t,z)} is said to be a global weak solution to (3.6), if m is defined
a.e. in wr such that

1) m € L*®(0,00; H'(w,R")) and m; € L%((0,0); L?(w,R™)),

2) |m(t,z)|> =1 a.e. on RT x w,

3) (3.6) holds in the sense of distributions,

4) m(0,z) = mo(x) in the sense of traces,

5) for all T >0,

ay

1
Z I? + —/—
S IVmD M+ 55

r 1
| ma(o) [P ds < 5 ) Fmo .
0
Verification of weak solutions to (LLG) in higher dimensions requires a Ginzburg-Landau penalization
strategy [45, 92], which defines a weak solution m to (LLG) as suitable limit of {m®}.so, where each element

solves
aq

€ 2 £ € € 5 .
(3.8) a%-}-a%mt_a%-l-a%m xm; —Am®+g(m°) = 0 inwrp,
(3.9) (9672 = 0 ondwr,
(3.10) me(0,z) =m§(z) Vrew, |m’| = 1 inw,

for g(m*) = VG(m?), and G(m®) = g2 (| m* |2 —1)?%; by standard Galerkin approximation, consider solutions
{m#"} which satisfy the (semi-)discrete energy identity

aq

T 1 T 1
(3.11) [ m @ P as+ 51 9me @) P+ [ [ Gmth) dads = 1 Vmal?, B> 0,
0 0 w

ai + a3
where h is a mesh parameter. This result carries over to the limiting case h — 0; moreover, by testing (3.8)
with m® — % min{1, |m® |} one may show |m® | <1, a.e. on RT x w. Both ingredients now suffice to select
convergent subsequences (not relabeled) {m®}. such that

m¢ - m weakly* in L= (R*; H' (w,R")),

mi = my weakly in L* (RT; L*(w,R™)),
(3.12) m® x m§ — m xm; weakly in L?(R*; L*(w,R"))
m® — m strongly in L*>(R*; L*(w,R™)),
|m|=1 ae.onRt xw.
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Finally, by taking the cross-product of (3.8) with m®, we can verify that the limit satisfies (3.6).

Remark 3.1. For the Cauchy problem w = R3, Alouges & Soyeur [5] use a finite difference discretization
of (3.2) (Hesr = Am) to derive the following ODE with Lipschitz-continuous right-hand side,

Omp = —ag mp, X (my X Ahmh) +asmp X Apmy , mp(0) = mop ,

This identity holds for all grid-points, where A, denotes the standard discrete Laplacian; conservation of
|mp| =1 at every grid-point and a semi-discrete energy law are the relevant steps to verify ezistence of a
weak solution in this context.

Remark 3.2. An interesting approach to understand wall dynamics is given in [85], where o reduced sharp-
interface model for their dynamics in hard ferromagnetic bodies is derived from (LLG) by asymptotic analysis
(B — o0). The idea of the construction is to asymptotically balance wall thickness, anisotropy effects, and
wall mobility appropriately, leading to a limiting equation which describes evolution of the flat domain wall
by its mean curvature and a nonlocal forcing term.

A crucial problem in the analysis of (3.2) is again the nonconvex constraint |m | = 1, which is penalized
by Ginzburg-Landau approximation (3.8); perturbation effects due to this strategy are then controlled by
stability properties (i.e., energy law, and |m®| < 1) to eventually verify convergence (3.12). Next to the
strongly nonlinear character of the problem, proper dealing with the nonconvexity numerically is a problem
since it cannot be satisfied a.e. anymore. Explicit time integrators of high order and occasional updates
during the evolution to approximate |m| = 1 are most commonly used strategies in engineering literature
[42], which suffer from severe limitations with respect to admissible time steps [40, 101], and non-reliable
dynamics. From this perspective, recent developments in numerical micromagnetism aim at constructing
efficient convergent schemes for the cases Heg = —DE,, both for « = 0 and a > 0. First results for the
case @ = 0 in the more general framework of Maxwell-(LLG) have been done by Joly, Vacus, and Monk
[54, 53, 78], addressing energy decay and conservation of length for iterates of their proposed schemes in the
case of (known) smooth driving (electro-)magnetic fields. Approaches base on the given form (3.2) to easily
detect these stability properties in the discrete setting. An interesting, semidiscrete scheme to efficiently
solve (3.2) is proposed in [26]:

Algorithm 3.2. 1. Let m®* = my, for £> 0.
2. For each 1 <j < J, 1<l < {jmax, and m?? = mI—Lli-tmax - compute mI* € L°(w,R™) from
a1 m]af

i = =S (G ) (B B ) (2 )

3. Stop iteration at level 1 < j < J in case |m¥* —mHt=1| < kP, B> 0, and set m¥»* = mI—1ti-1.max,

For smooth Heg = —Dy + H, 8> 3 and k < ko(t;) this is a second order convergent, length-preserving
method [26]; in practice, max; £; max = 2 is usually sufficient to meet the stopping criterion. In the remainder
of this subsection, we now focus on the case a > 0.

3.2.1. Discretization of Ginzburg-Landau penalization (3.8)—(3.10). In [83], Pistella & Valente studied finite-
time blow-up of solutions to (LLG) subjected to additional surface exchange contributions numerically: for
this purpose, they consider a fully discrete finite-difference version of the Ginzburg-Landau approximation
(ala (6%)] 2 0)

(3.13) m; —ag Am® + a1 9(mf) = ax(m® x Am®) inwr,
(3.14) Oym® = 0 ondwr,
(3.15) m*(0,z) = mo(z) Vrew, |mo|=1 inw,

for g = VG, with G(z) = 755 (2> —1)?, which is based on explicit Euler’s method; by restricting the time-step
k> 0 as follows (a1 = ag = 1),
e?h?  h?
3.16 k< min[————
( ) —mln[2(62+h2)’ 4]7

max; | mi’j | <1 and a discrete energy-law corresponding to (3.11) are verified. These stability results are
the key to verify convergence of a subsequence to solutions of (3.13)—(3.15), for every positive € > 0, and
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finally of a subsequence to the weak solution of the limiting problem (3.3); see also [20] for blow-up studies
using a stable, semi-explicit finite-difference scheme to discretize the limiting problem (3.7) directly.

Approximation of structures governed by (LLG) requires small values of € > 0, such that (3.16) severely
restricts values of time-steps k > 0. From this point of view, the following discretization of (3.8)—(3.10) is
more flexible (cf. e.g., [41]): Given mg p = Pymy, find mi € Vi(w;R™) for all 1 < j < J such that

ay j —_j—1/2
oz (i on) + (v, V6)
1 12 j—1 2 —j—1/2 a2 j—1 j
(3.17) +om (U PP =27 0)) = 572 (! x dum]n)

where we denote dy¢? := k=1 {¢’ — ¢j‘_1} and Ejil/z = %{q}’ + q&"l} Note that the right-hand term in
(3.17) comes in a linear form, since (mﬁ;l/ Y% dymy, én) = (m}, x dymy,, ¢5). Consistency and discrete energy

law are desirable characteristics of (3.17) for the whole range of parameters k, h,e > 0.

Lemma 3.1. The solution {mh} —, satisfies for any k > 0

@ llmj e <1,
. _ 1
.. 2 J 12 —
G +%ijndtmh P+ 5 s | V2 + | GOm) s = 5
Proof. Choosing ¢p = dtmffl yields the result. O

3.2.2. Approzimation of weak solutions to (LLG). As outlined in Section 3.2, so far it is not clear whether
(3.2) also admits finite-time singularity formation. For this reason, it is convenient that reliable numerics for
(LLG) has to deal with weak solutions. Verification of a corresponding discrete energy law for a discretization
of the limiting problem (3.2) (Hegs = Am) is a challenging task: first, conservation of |m | = 1 rules out
the implicit Euler method; second, spatial discretization using finite elements does not allow this nonconvex
constraint to hold in a pointwise fashion.

Example 3.5. Given mg € H'(w,S™ 1), consider the implicit Euler method

4 . o . _ omi
dim? —ay Am? = o |Vm/! |2m’—|—ozgmJ x Am!  inw, aﬂzo on Ow .
n
We proceed by contradiction, and suppose |m? | = 1 almost everywhere: multiplication with m? yields

de|m? >+ k|dm? > =0 forae r€wW.
Note that |m7 |2 = 1 a.e. in w is violated in general — in contrast to the continuous equation.

We now propose two fully discrete, consistent schemes which satisfy a discrete energy law and hence allow
for approximation of weak solutions to (LLG).
The first scheme uses lumped mass integration defined by

O6mh = Z/Ihxn )dz Vx,n € C@®),
KeTn

where Ij, : C(w) — V" denotes the (linear) Lagrange interpolation operator on 7.
The following first discretization of (3.2) is consistent.

Problem 3.1. Given m) = I;,(m°), compute iterates mfl € Vi(w;R™), 5 > 1 from
(demif, dn)n = —on (2 x (Y2 > Apidt1/2), )

+ao (mfflm X Ahm{fl/z),(ﬁh) Y on € Vi(w;R™).
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Here, we denote (—Ap¢n, 3n) = (Von, V3n). By Lipschitz-continuity of the right-hand side, the problem
has a unique solution. The following bounds verify |m} (z)| = 1 for all vertices z € £, as well as discrete
energy law for (3.18) for every k > 0, and every 1 < j < J,

(i) |mi(z)| =1 Vze&,

J

.. 1 —_j+1/2 —j+1/2 1

@) I Vmil P +ank Y m T x AP = o Yl |
j=1

Verification follows from choosing ¢, = c;Simfl/ 2, ¢; € Vi(w,R?) such that ¢;(x¢) = & to verify (i);
assertion (ii) follows from selecting ¢, = —Ahm;‘l/ 2, However, convergence towards weak solutions of

(3.3)-(3.5) is an open problem.

Another discretization of (LLG) is due to Alouges & Jaisson [4] and uses the Gilbert equation (3.7): if
we take ¢ = m x w, where w € H!(wr,R3) N L™ (wr,R3) satisfies (w, m)gs = 0 a.e. in w, we get

(3.18) % (my,w)gs dedt  — /(mxmt,w)R3dxdt
2 Jwr wr
2, 2
- —% / (Vm, Vw)ge dzdt

from which the original weak formulation is re-obtained by taking w = m x ¢, for any ¢ € C§°(wr,R"™).
Now, consider the following subsets of V}, (w; R"™),

Mh = {¢hGVh(w;Rn)H(ﬁh(iL‘gHZIVII:gEE},
F = {6 € ValwsRY)| (wlwe),mi(we))es =0Va €} Vmi € My

A discretization of (3.18) could be obtained via the following Crank-Nicolson procedure: Let m$) = Pymy.
For mj, € M}, being given, find mfrl € My, that solves for all wy, € _7-',7;1:

a1

. . i 2 2
(3.19) X (i wn) = (m]™ x dimi wn) = Rl

(V% V) .

Qg

Unfortunately, this latter equation is very difficult to solve because of the constraint on mi € Mp. We
therefore solve only approximately this equation and reconstruct mi in order to satisfy the constraint. The
governing idea is to account for the fact that due to the constraint on mi_l, dtmfZ almost belongs to .7-',{.
Therefore, if we replace this term by a new unknown v, € f,{_l, we may approximate (3.19) by

al + o

(3.20) 2L (wp,wp) — (M3 x vp,wp) = (Vi Y2, V) Yy € FiTL

(6% Qa2

Well-posedness of this problem follows from the fact that v, € .7-",{_1 is determined by the difference of the
continuous, positive symmetric bilinear form and a skew-symmetric continuous bilinear form. The algorithm
in [4] now reads:

Algorithm 3.3. 1. Start with an initial magnetization m% € M,
2. Given mffl € My, 1<j<J, solve (3.20) and call vf;l € .7-",{71 the solution.
3. Compute mj, € My, from

i (z) = mfl_l(a:) + kvp(z)

= — rzel.
|mp~(2) + koa(2) |

A crucial step in the analysis of this discretization is to rewrite the second step in terms of dtmfl €
Vi (w; R™) and find the following characterization, for all wy € .7-',31_1,

2 2
aq ; i ; ot +« i1/
a—z(dtmfl,wh) — (mj, b« dym] , wp) + 1T22(mel I/Z,th) < Ck||wp ||lL=,
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where C' does not depend on j or k. Hence, this slightly perturbed version of (3.19) gives rise to the discrete
energy inequality
ai +a3

J 2 2
(o7} P9 N o + a;j 0112
—k E dym? ——= max |[|Vm] || < Ctjk+ ——=||Vm .
Qa2 j—1|| e, 7+ a? 1§J‘§J” wll” < Ctsk + a? I nll

This property eventually allows to extract a convergent subsequence {mfll,} whose limit — firstly taken with
respect to k — 0, then with respect to h — 0 — is a weak solution of the equation in Gilbert form (3.7).
This program of convergence analysis for the above method is elaborated in [4].

3.2.3. Approzimation of strong solutions to (LLG). As outlined in the previous section, being provided
with a consistent, discrete energy law to analytically hope for convergence of computed iterates towards
weak solutions are non-trivial constraints for the construction of numerical methods to solve (LLG), and
development in this direction is only very recent. Another direction of research over the last years are simple,
easy-to-implement approximation schemes which perform remarkably well in practice: in general, they do
not satisfy a discrete energy law and tend to independently deal with the nonconvex algebraic constraint,
nonlocality, and the evolutionary character of the problem in order to obtain efficient numerical schemes:
splitting-/projection schemes and penalization strategies.

In [39], a simple projection scheme is proposed to solve (LLG) which is implicit and unconditionally stable;
flexibility with respect to the choice of the time-step size is an important issue for a method to numerically
resolve magnetic multiscale phenomena, which rules out time-explicit methods as possible efficient schemes.
On the other hand, fully implicit schemes have to cope with the nonconvex, strongly nonlinear character of
the problem; these are the main motivations to come-up with the following scheme for (3.6).

Algorithm 3.4. 1. Start with an initial discretization m9 € Vi (w;R™).
2. Given mfz_l € My, 1 <j <J, compute i) € Vi(w;R") for any j > 1 from

j—1

I Il . : nd —
= <mh T ,¢h> + (Vi Vo) — — 2 (mi‘l x wm) —0 Ven € Va(w,R").

al + a2 k a? + a2 k

3. Compute mfl € My, from mfl(xg) — M@ for all zy € £.

o Im(ze) |’

In order to handle efficiently nonlinear effects, the error analysis in [39] for the case of classical solutions
to (LLG) is based on a characterization of the solution by a nonlinear recursion relation; for simplicity, for
the heat flow of harmonic maps (i.e., a1 = 1, @z = 0), we find

(Id — kAp)~'md ™ (z¢)
1, i1
| (Id — kAp)~tmy (ze) |
where it is understood that the Neumann boundary condition is imposed when inverting the given operator.

The authors in [39] now use Strang’s trick to construct a correction of the exact solution of (LLG), for
a1 = ]., Qg = 0,

mi (z¢) = ;

(Id — kA)tm(z,tj—1)
[(1d = kA)Tm(, t;1) |
which satisfies (3.21) to higher order accuracy. The same strategy is then used to also construct a second-order

projection scheme, which is not obtained simply by keeping involved operators in Step 2. and considering
averages in time, but requires some further correction terms: Step 2. is then replaced by

(3.21) m(z,t;) = +0O(k?),

j—1

s . ; 7l —
o (mh mit ¢h> (O g - O (mi‘l XM,%)

a? + a2 k a? + a3 k

- - 1 . . -
= 12[ (V0 Vi 1), Vmd s ) + 5 (1 V! PIAd +mg 0™ = 1d)Awmi ™ 60 ) | -

Computational experiments are reported in [39] for the case of heat flow harmonic map to illustrate uncon-
ditional stability of these projection strategies, but also indicate an increase with respect to computational
effort in the case of higher order projection methods.
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A slightly modified numerical strategy is studied in [88] for (3.3)—(3.5), where the Lagrange multiplier
of (LLG) is still kept in the discretization; the projection step then balances the damping character of the
implicit Euler method, cf. Example 3.5.

Algorlthm 3 5. 1. Start with an initial discretization m$ € Vi(w;R™).
2. Given mj '€ My, compute mh € Vi(w;R™) for any 1 < j < J from

il i o
(s 6n) + a1 (Vi Von) = an (| Vi, " P17, 6n) — ao (10, x Vi), Ven) ¥ ¢ € Va(w, R").
3. Compute mh € My, from mh(ﬂfe) ‘;:Jhgwe) o for all z; € £.

By replacing all quantities in Step 2. by tilted ones, we arrive at the following penalized discretized (LLG),

(3.22) (Ao 6n) + o (Vi V) + (31} )), 6n)
= au (| Vi), [Priv, 6n) — e (1), x Vi, Von) ,

where € = k and §({m}}) = (1- ‘—Wi_—ll)ﬁzfl_l. Hence, the projection scheme above corresponds to a semi-

explicit penalization with a new penalization function, which is additionally introduced to the discretization
of (LLG) to enforce | mj (z¢) | = 1, for all z; € £. The following error estimates are verified in [88] for (3.22)
in the case of quasi-uniform triangulations of w C R? and related numerical scales k= /2 = o(h 1),

0<j<J

J 1
ma || m(ty) —m |+ (k32 1V m(es) — mi) 1)

J 1/2
(3.23) (S [imes) —mi 14+ 1 m(t) = mim(e e 1)) < G+ 1),

Jj=1

The proof of this result uses an inductive argument to compensate for the lack of a discrete energy law,
invoking (i) existence of (locally verifiable) strong solutions to (LLG), in combination with (ii) above ap-
proximation results and given restrictions on meshes and numerical scalings, in particular. These arguments
and results have been extended to cases w C R? in [27].

The connection between projection schemes and (semi-explicit) penalization ansatzes to numerically en-
force the nonconvex constraint is the reason for the study of other strategies § = g;, i = 1,2, 3,

ar({mg)) = (i P =D, Ga({ml}) = (1= =)l
Ga({i}) = (1 e )ih ' v €M

Studies in [88] show that e ! = o(k™!) is a stable choice for g, leading to optimal convergence behavior;
computational experiments show suboptimal behavior in case € < k is chosen. Moreover, choosing v € Ny
large yields a better balancing of stability and accuracy requirements, where the choice of € is more flexible
with respect to the time-step size k. These results evidence replacement of the projection method above by
a ‘scaled projection method’, parameterized by v € N; see Figure 7 (d).

Algorithm 3.6. 1. Start with an initial discretization mf € Vj(w, R™).

2. Given Thi_l,mfl_l € Vh(w;R™), 1 < j < J, compute Thi € Vi(w; R™) from
Ty, — mj, > — 2 n
(T’%) + a1 (Vm,Vér) = ay (| th | mh,¢h) —ay (mh X th,Vcbh) YV én € Vi(w,R™).

i, ()

W’ fOT all Ty € E.

3. Compute mh € Vi(w; R™) from mh(a:g)

So far, magnetostatic stray field, anisotropy and exterior magnetic fields which contribute in model (3.2),
(1.4) were neglected, since they do not lead to further analytical problems in the general model; however,
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an efficient numerical treatment of the general model is not so evident and is studied in [88], where different
contributions
HJf‘le 5= alpmith H’z,, = —Dp(m]) — Vu), + H't!

€ elr,2;

are shifted in time to eventually account for Hg;f" L= Hg; ll;h + H/ o 2,5 0 (LLG); computed iterates
(ul,ml) € V4(Q) x Vi(w; R™) again satisfy (3.23).

Algorithm 3.7. 1. Start with (m}, uf ), where up = Ag hdlvh(X“’mh)
2. Given (i ul ) € Va(w, R") x Vi(wsR") x V2(Q), 1 < j < J, compute 1it], € Vi(w,R"), with
O], =0 on dw, for any j > 1, and ¢y, € Vi(w,R™) from

~7 i1 ' ' | |
A rcx(Vin}, Vo) = ana(| 9, P, on) + a2(V(gn x ™), Vir)
o (mj_l Heg 23 h’¢h) - (m{z_l x (mj_l x HIZ eff,2; h) ¢h) .

i (z¢)

T (w0 |77 for all xy € £.

3. Given y € Ng, compute m{l € Vh(w'R”) from m{l(m) =
4. Given w € Q C R"™, compute u L e V() from
(Vi th, V) = (mi™, V) Y, € VR(Q).
The following example is taken from [88].
Example 3.6. Let w = (—1,1) x (—0.5,0.5), H = (—100,0,0), e = —
ag=as=a=08=1,0=(-4,4)% in (3.2), (1.4) to evolve

%(1 1,0), and fix parameters

mo = Am inwa Th(w,y)=(z‘2+y2—1,y,0),
ViIm? +n? 4

for 1 = 0.2 according to Algorithm 3.7. Snapshots which show growing alignment of magnetization to applied
field H are displayed in Figure 12.

5 v‘ Y \\\\ 5

Ficure 12. Plot of magnetization mi and its modulus at subsequent times, using Algo-
rithm 3.7 (from [88])

3.2.4. Effective dynamics of soft ferromagnetic thin films. Dynamics of ferromagnetics is severely constrained
in a thin film w = W' x (0,d) C R?, leading to different behavior compared to bulk media. In [43], Garcia-
Cervera and E derived an effective dynamical equation for a soft ferromagnetic thin film in situations where
a, B, | Hext | = O(9), az = 1, and § < ay; moreover, to leading order it is plausible to ask for order parameters
m'(z') = (m}(z'),mh(z")), such that a.e. |m'| = 1. Then, by asymptotic analysis with respect to § — 0,
the spin dynamics for the limiting case is controlled by

1 . .
(3.24) my = (oz_l + a1) (Her — (m', Hesr)pzm')
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where ﬁeg = —D&pin is now computed from
1
Eunin(m) = a / |Vm! [2da’ + / o(m') do’ — / (H,mlyae o'+ 1A w0 2y, o € @ CRY.
w w w

Computational comparisons of (3.24) with the full Landau-Lifshitz-Gilbert equation show very good agree-
ment in the regime § < a; (ag = 1), cf. [43]; note that (3.24) for Hey = aAm yields to heat flow of harmonic
maps.

At first glance, it is surprising that the gyromagnetic term of (LLG) in the thin film limit only contributes
as damping term for the in-plane components of m, moreover with a much larger damping coefficient a%
The reason for this is the requirement § < «a; that exchange mechanisms dominate all other geometric and
physical parameters; unfortunately, this crucial constraint excludes reliable studies of dynamics, e.g. vortex
dynamics, by using the reduced model (3.24) for practically relevant studies; cf. [40].

3.3. A mesoscopic-level model. For mesoscale ferromagnets, the main interest lies in evolution of aver-
aged magnetizations rather than detailed, complex spin dynamics. The phenomenological model introduced
by Roubiéek and Kruzik in [90, 91] combines the tendency to minimize Landau-Lifshitz energy during evo-
lution with a rate-independent maximum-dissipation mechanism during magnetization switching from one
pole to the other. In fact, there are many contributions to energetic losses if a ferromagnet is exposed to
a switching external magnetic field. Besides hysteresis losses which are independent of an external field
frequency and which we are going to model here, there are also intrinsic damping, disaccommodation and
eddy currents. Except for hysteresis losses, all others are rate-dependent; we refer to [51] for more details.
In this sense, hysteresis losses are considered as a limit for frequencies tending to zero. On the other hand,
for ferromagnets, rate-independence holds with a good approximation in a fairly wide range of frequencies.
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FIGURE 13. Frequency dependence of different kinds of losses in a transformer steel [51].

3.3.1. Rate-independent dissipation. For usual loading regimes and magnetically hard materials, one must
consider a certain dissipation mechanism, which may also be influenced by impurities in the material without
affecting substantially the stored energy. Hence, energy storage and dissipation mechanisms are, to some
extent, independent of each other and, as the dissipation mechanisms are determined on an atomistic level,
it seems that the only efficient way how to incorporate them in a higher-level model is a phenomenological
approach.

Our, to some extent simplified, standpoint is that the amount of dissipated energy within the phase
transformation from one pole to the other can be described by a single, phenomenologically given number
(of the dimension J/m3=Pa) depending on the coercive force H, [23]. Hence, we need to identify the
particular poles according to the magnetization vector. Inspired by [75, 77] and considering L poles (L = 2
for uniaxial magnets or 6 or 8 for cubic magnets), we define a continuous mapping £ : S"~! — A where
Ap:={eRl ¢ >0,i=1,..,L, ZiL:1 & = 1}. In other words, {£1,...,£r} forms a partition of
unity on S™~1 such that £;(s) is equal to 1, if s is in i-th pole, i.e., s € S?~! is in a neighborhood of i-th
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easy-magnetization direction. Of course, £(m) in the (relative) interior of Ay indicates m in the region
where no definite pole is specified. Hence, £ plays the role of an order parameter.

In terms of the mesoscopic microstructure described by the Young measure v, the
parameter is naturally defined as

“mesoscopic” order

c=Av:=Lev

where [£ o v](x) := [g._1 £(5)vz(ds). Thus, A is just a continuous extension of the mapping m — £(m), i.e.,
if {my} converges to v weakly* in L®°(w;R"), then £(m) — Av weakly* in L*°(w;RY).

In order to phenomenologically describe dissipative energetics, one must prescribe a potential of dissipative
forces as a function of the rate of ¢. For rate-independent processes, this potential must be convex and
homogeneous of degree one. Considering a norm |- [gz on RE, one can postulate o(¢) = Hc|¢|gz. The energy
density needed to transform i-th pole to j-th pole is then Hc|e; — e;|gz, with e; the unit vector with 1 at
the i-th position.

In the sequel, we represent magnetization at time ¢ > 0 by the couple ¢ = ¢(t) = (v,¢) = ({Va,t}zew,s(-,1)).
Let us denote by Q the convex set of admissible configurations:

(3.25) Q= {q = (v,6) € L (w; M(S"1)) x Lw(w,RL)| ¢(r) e AL, Av=cfora.a.z€ w} .

Let G(t,q) := Eo(q) — (F(t),q) denote Gibbs energy, where (F(t),q) = (v,H(t) ® Id), and D(q1,q2) :=
H, [ |s1— <2 |re dz the distance between to configurations ¢; = (v4,6; ), @ = 1,2. The general framework of
Mielke, Theil, and Levitas [75, 76, 77] is used in the sequel to obtain a mesoscopic ferromagnetic model with
appropriate solvability properties.

Definition 3.2. A process g = q(t) is called stable if for all t € [0,T)
G(t,q) <G(t,4) + D(q(t),q) Vi€ Q.
An important notion is the set of stable states S(¢t) at a time ¢ > 0,
S ={a€ Q| 6(t,0) <G(t,) + D(a,d) VieQ}

Definition 3.3. A process g = q(t) satisfies the energy inequality if for a.a. s,t € [0,T], s.t. s <t,

t
dF
G(ta) + VaDgnn) < Gaw) — [ (G0.a0))as
~——— — ~— = ~~ d
effective Gibbs’ dissipated QGibbs’ ener- reduced work of
energy at time ¢ energy gy at time s external field

where the total variation over the time interval [s,t] is defined in a standard way, without using explicitly
any time derivative, as Var(D,q; s, t) := sup Z;Zl D(q(tj—1),q(t;)), where the supremum is taken over all
J € N and over all partitions of [s,t] in the form s =tg < t; < ... < tj_1 <tj=t.

It was shown in [76] that in qualified cases the stability and energy inequality can be written in the form
of a doubly nonlinear evolutionary inclusion

(3.26) OR(ar) + D&(a) + No(a) > F(t), 4¢(0) =qo,

where o = (vo,u0) € Q denotes the initial configuration, Ng the normal cone to Q at ¢, and OR the
subdifferential of the energy R(q) = [ o(c)dz = [ H|s|gr dz, which is dissipated during the transformation
process. The advantage of defining a solution of (3.26) is the absence of any time derivative and purely
energetic considerations. In this sense, it can be seen as a weak form of (3.26).

Definition 3.4. The process ¢ = q(t), ¢ = (v,s), will be considered a solution if v € LY (wr; M(S™1)),
¢ € BV([0,T]; L*(w; R%)), and q(t) € Q for all t € [0,T], and is stable for all t € [0,T] and satisfies the
energy inequality in Definition 3.3, for a.a. s,t € [0,T], such that s < t.

The existence of a solution satisfying this definition was shown in [90]. The Gibb’s energy needs a slight
regularization by a higher order term, however.
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Remark 3.3. By the reduced work in Definition 3.8 we mean (up to a sign) the usual work, i.e. f:(F, ?1_3) dé,

but reduced by (F(s),q(s)) — (F(t), q(t)) which is just the gap between Gibbs’ and Helmholtz’ energies at time
instances 0 and t.

3.3.2. Incremental problems. The existence of a response t — ¢(t) with the above mentioned properties was
shown even in a more general case in [91] by a semi-discretization in time, using the implicit Euler scheme.
For simplicity, let us consider an equi-distant partition of the time interval [0,7"] with a time step k > 0,
assuming T'/k an integer.

Algorithm 3.8. Let ¢° = qo, find ¢ := argmin e 51(q), for j =1,.., % and

I(g) :=G(jk,q) + D(¢’ *,q) .
If a global minimizer to this problem is not unique, we just identify an arbitrary one as ¢/. Then we define

the piecewise constant interpolation g € L>(0,T; L3 (w; M(S)) x L™ (w; RF) in the way (G-kst] = ¢

for j =1,...,T/k, and ¢ (0) = ¢°. A proof of the existence of a solution to the evolutionary problem can be
found in [91]. It is based on the above incremental formulation and on a suitable limiting procedure.

3.3.3. Numerical solution. A straightforward numerical approximation based on the incremental formulation
in Algorithm 3.8 copes with the nonsmoothness of the dissipative term. However, in specific cases, using an
approach from [60, 90], we can reformulate the problem as a smooth one with a few additional constraints
and variables. One such situation is e.g. if L = 2, |b|y = 2max(|b1|,|b2|) for any b € R?. Then ¢(z) =
Jgn-1 83V (ds) where s = (s1,52,53), or ¢ = mg, i.e., the third component of the magnetization. The stray
field energy is calculated using Green’s function of the Laplace operator as described in [72, 71].

Algorithm 3.9. Given ¢° = ¢(0), compute (¢’,a’ ) = argming, 11,)J (g, a), where
(3.27) J@.a) = Gk.0) + [ alz)do

w

and
{ f5n—1 savkE—1(ds) — fS"—l s3v5(ds) < a(zx) for a.a. x € w,

Jgn-1 53v2(ds) — [gu_y s3vh1(ds) < a(z) for a.0. z € w.

FIGURE 14. Magnetization my, for 2D-cross sections of various bulk specimens computed
from Algorithm 3.9 (also the demagnetizing field around), displayed at specific times (after
[66])

It can be shown, see [60], that Algorithms 3.8 and 3.9 are equivalent to each other in the sense that
having a solution to anyone of them we can easily construct a solution to the other one. Algorithm 3.9 can
be discretized in the same way as (2.4). Figures 14-15 display the magnetization, the stray field around, and
the resulting hysteresis loops for a uniaxial material CoZrDy at the temperature 4.2 K, using Algorithm 3.9.
In case that the mesoscopic order parameter ¢ is an affine function of the magnetization then one can rule
out the Young measure from Definition 3.3. The resulting incremental problem is then formulated only in
terms of the magnetization; one has to replace the anisotropy density ¢ by ¢**, however, and ends up having

OR**(my) + DE(m) + Nz(M) >0,  m(0)=0,
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FI1GURE 15. Hysteresis loops corresponding to specimen A, B, C in Figure 14 (left, middle);
Virgin magnetization and minor hysteresis loops due to spatially varying activation threshold
resulted by inhomogeneities of magnetization process (after [66, 67])

where R**(my) := [ |s(my)|dx, cf. (2.3)-(2.4). A discretization of this problem (in regularized form, v > 0)
using implicit Euler method on an equidistant mesh I = {¢;}; leads to a convex problem at every time-step
(compare to Problem 2.1):

Algorithm 3.10. 1. Start with mg = Pym° € Wi, (w;R?), and fiz k,h,y > 0.
2. For each 1 < j < J, find (mj,u; ) € Wp(w; R%) x V,2(Q) that satisfies

(Viul, Vawy) = (mi, Viwy) Yuwp, € VA(Q),

Vauj, + D™ (mj) + sgn,, <§(mi) - <(mi_1))DC(m{z) +Gmy, =PH e inw,

a.e. inw.
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FIGURE 16. Magnetization {m{l}j computed from Algorithm 3.10 close to first switching
time at three subsequent time steps, and corresponding hysteresis loop (from [65])

Remark 3.4. The mesoscopic model described above does not allow for modeling a virgin magnetization
curve, i.e., the curve describing the evolution of the magnetization from a completely demagnetized specimen
(i.e. |m| =0 in w) to the saturation state (lm| =1 in w). The reason is that the coercive force H. is kept
constant. One way how to generalize the model in a way that it describes virgin magnetization processes is to
make the coercive force dependent on the history of the magnetization. This idea was scrutinized in [67, 91].

4. OUTLOOK

The mathematical modeling of ferromagnetic materials is a very active area of research for decades, and
many important questions raised e.g. in [33, 40] have only been answered recently. However, many interesting
questions are still open, including effective dynamics for walls, vortices, as well as their interaction, or reduced,
effective models which are valid for different relevant parameter regimes, blow-up behavior of (LL) and (LLG),
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and efficient numerical strategies to reliably handle nonconvexity and nonlocal constraints imposed to weak
solutions — to only name a few interesting topics. The following list is mainly motivated by own interests
of the authors:

e Understanding the relationship between the original Landau-Lifshitz energy and a newly derived
finite temperature version of the micromagnetic energy derived in [55, 56]. Is it computationally
feasible to model various domain walls by the stochastic model?

¢ Develop a microscopic model describing dissipation effects in a physically more reliable way, which
could also be used to rigorously derive mesoscopic evolutionary limiting problems.

¢ Study of more complex electromagnetic models describing e.g. reading and writing of information
on a hard disk [94] all, from modeling, analytical, and numerical view point.

¢ Clarify the relationship between mesoscopic evolutionary models and Preisach models used in hys-
teresis computation for many decades. Does the energetic formulation correspond to a Preisach
operator? As a starting point one can study whether the energetic formulation allows for the so-
called return-point property. See [98] for details.

e Setting valuable benchmarks for the hysteresis calculations and testing mesoscopic models for engi-
neering problems.

Acknowledgment. The paper was partly written during M. K.’s stay at the ETH Zurich in May 2004,
and A. P’s stay at "UTIA AV CR in Prague in September 2004. The hospitality of the hosting institutes is
gratefully acknowledged. The work of M.K. was also supported by the GA AV CR grant No. TAA 1075402.

(1]
2]

(3]

(23]

REFERENCES

A. Aharoni, Introduction to the theory of ferromagnetism, Oxford University Press (1996).

F. Alouges, A new algorithm for computing liquid crystal stable configurations: the harmonic mapping case, SIAM
J. Num. Anal. 34, pp. 1708-1726 (1997).

F. Alouges, S. Conti, A. DeSimone, Y. Pokern, Energetics and switching of quasi-uniform states in small ferromagnetic
particles, M2AN Math. Model. Numer. Anal. 38, pp. 235-248 (2004).

F. Alouges, P. Jaisson, Convergence of a finite element discretization for the Landau-Lifshitz equations, preprint (2004).
F. Alouges, A. Soyeur, On global weak solutions for Landau-Lifshitz equations: existence and nonuniqueness, Nonl. Anal-
ysis, Theory, Meth. Appl. 18, pp. 1071-1084 (1992).

F. Alouges, T. Riviere, S. Serfaty, Néel and cross-tie wall energies for planar micromagnetic configurations, ESAIM Control
Optim. Calc. Var. 8, pp. 31-68 (2002).

G. Anzellotti, S. Baldo, A. Visintin, Asymptotic behavior of the Landau-Lifshitz model of ferromagnetism, Appl. Math. Op-
tim. 23, pp. 171-192 (1991).

S. Bartels, Stability and convergence of finite element approzimation schemes for harmonic maps, preprint (2004).

S. Bartels, J. Ko, A. Prohl, Numerical study of blow-up for Landau-Lifshitz equation (in preparation).

A. Bergqvist, Magnetic vector hysteresis model with dry friction-like pinning, Physica B 233, pp. 342-347 (1997).
H.A.M. van den Berg, Self-consistent domain theory in soft ferromagnetic media. II. Basic domain structures in thin film
objects, J. Appl. Phys. 60, pp. 1104-1113 (1986).

M. Bertsch, P. Podio-Guidugli, V. Valente, On the dynamics of deformable ferromagnets. I. Global weak solutions for soft
ferromagnets at rest, to appear in: Ann. Mat. Pura Appl. 179, pp. 331-360 (2001).

M. Brokate, J. Sprekels, Hysteresis and Phase Transitions, Springer, New York, 1996.

P. Bryant, H. Suhl, Thin-film magnetic patterns in an external field, Appl. Phys. Lett. 54, pp. 2224-2226 (1989).

W.F. Brown, Magnetostatic principles in ferromagnetism, Springer, New York (1966).

C. Carstensen, S.A. Funken, A. Prohl, Stable finite elements in relaxed micromagnetic problems, in: 16th IMACS World
Congress (2000).

C. Carstensen, D. Praetorius, Numerical Analysis for a Macroscopic Model in Micromagnetics, SIAM J. Numer. Anal. (in
print).

C. Carstensen, A. Prohl, Numerical analysis of relazed micromagnetics by penalised finite elements, Num. Math. 90,
pp. 65-99 (2001).

C. Carstensen, T. Roubicek, Numerical approzimation of Young measures in non-convexr variational problems,
Num. Math. 84, pp. 395-415 (2000).

M.M. Cerimele, F. Pistella, V. Valente, A numerical study of a nonlinear system arising in modeling of ferromagnets,
Nonl. Analysis 47, pp. 3357-3367 (2001).

N.H. Chang, J. Shatah, K. Uhlenbeck, Schrédinger maps, Comm. Pure Appl. Math. 53, pp. 590-602 (2000).

Y. Chen, S. Ding, B. Guo, Partial reqularity for two-dimensional Landau-Lifshitz equations, Acta Math. Sinica 14, pp. 423—
432 (1998).

S. Chikazumi, Physics of Magnetism, J.Wiley, New York (1964).

33



(24]
(25]
(26]
(27]
(28]

(29]

[57]
(58]

59]

R. Choksi, R.V. Kohn, Bounds on the micromagnetic energy of a uniazial ferromagnet, Comm. Pure Appl Math. 51,
pp. 259-289 (1999).

R. Choksi, R.V. Kohn, F. Otto, Domain branching in uniazial ferromagnets: a scaling law for the minimum energy,
Commun. Math. Phys. 201, pp. 61-79 (1999).

J. Cimrdk, M. Slodicka, An iterative approzimation scheme for the Landau-Lifshitz-Gilbert equation,
J. Comp. Appl. Math. 169, pp. 17-32 (2004).

J. Cimrék, Error estimates for a semi-implicit numerical scheme solving the Landau-Lifshitz equation with an exchange
field, preprint, (2004).

R. Cohen, R. Hardt, D. Kinderlehrer, S.-Y. Lin, M. Luskin, Minimum energy configurations for liquid crystals: computa-
tional results, in: Theory and applications of liquid crystals, IMA 5, New York (Springer), pp. 99-122 (1987).

R. Cohen, S.-Y. Lin, M. Luskin, Relazation and gradient methods for molecular orientation in liquid crystals, Com-
put. Phys. Comm. 53, pp. 455-465 (1989).

J. Coron, Nonuniqueness for the heat flow of harmonic maps, Ann. Inst. H. Poincaré, Non-Linéaire 7, pp. 335-344 (1990).
E. Dean, R. Glowinski, C.H. Li, Applications of operator splitting methods to the numerical solution of nonlinear problems
in continuum mechanics and physics, in: Mathematics applied to science (Academic Press), New York, pp. 13-64 (1988).
A. DeSimone, Energy minimizers for large ferromagnetic bodies, Arch. Rat. Mech. Anal. 125, pp. 99-143 (1993).

A. DeSimone, R.V. Kohn, S. Miiller, F. Otto, Magnetic microstructures—a paradigm of multiscale problems, ICIAM 99
(Edinburgh), pp. 175-190, Oxford Univ. Press, Oxford (2000).

A. DeSimone, R.V. Kohn, S. Miiller, F. Otto, A reduced theory for thin-film micromagnetics, Comm. Pure Appl. Math. 55,
pp. 1408-1460 (2002).

A. DeSimone, R.V. Kohn, S. Miiller, F. Otto, Repulsive interaction of Néel walls, and the internal length scale of the
cross-tie walls, Multiscale Model. Simul. 1, pp. 57-104 (2003).

A. DeSimone, R.V. Kohn, S. Miiller, F. Otto, R. Schifer, Two-dimensional modeling of soft ferromagnetic films,
R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 457, pp. 2983-2991 (2001).

A. DeSimone, H. Kniipfer, F. Otto, 2-d stability of the Néel wall, preprint (2004).

S. Ding, B. Guo, Initial-boundary value problem for higher-dimensional Landau-Lifshitz systems, Appl. Anal. 83, pp. 673—
697 (2003).

W. E, X.-P. Wang, Numerical methods for the Landau-Lifshitz equation, SIAM J. Numer. Analysis 38, pp. 1647-1665
(2000).

W. E, Selected problems in material science, in: World mathematics 2000, Springer (2000).

X. Feng, A. Prohl, Numerical analysis of the Allen-Cahn equation and approzimation for mean curvature flows, Nu-
mer. Math. 94, pp. 33-65 (2003).

J. Fidler, T. Schrefl, Micromagnetic modelling — the current state of the art, J. Phys. D: Appl. Phys. 33, R135-R156
(2000).

C.J. Garcia-Cervera, W. E, Effective dynamics for ferromagnetic thin films J. Appl. Phys. 90 370-374 (2001).

T.L. Gilbert, A Lagrangian formulation of gyromagnetic equation of the magnetization field, Phys. Rev. 100, pp. 1243ff
(1955).

B. Guo, M.-C. Hong, The Landau-Lifshitz equation of the ferromagnetic spin chain and harmonic maps, Calc. Var. 1,
pp. 311-334 (1993).

B. Guo, F. Su, Global weak solution for the Landau-Lifshitz-Mazwell equation in three space dimensions,
J. Math. Anal. Appl. 211, pp. 326-346 (1997).

B. Guo, F. Su, The global smooth solution for Landau-Lifshitz- Mazwell equation without dissipation, J. Partial Diff. Egs. 11,
pp. 193-208 (1998).

B. Guo, Y. Han, G. Yang, Blow-up for Landau-Lifshitz equations in two dimensions, Comm. Nonl. Science & Num. Sim. 5,
pp. 43-44 (2000).

S. Gustafson, J. Shatah, The stability of localized solutions of Landau-Lifshitz equations, Comm. Pure Appl. Math. 55,
pp. 1136-1159 (2002).

P. Harpes, Uniqueness and bubbling of the 2-dimensional Landau-Lifshitz flow, Calc. Var. 20, pp. 213-229 (2004).

A. Hubert, R. Schifer, Magnetic Domains, Springer, Berlin (1998).

R.D. James, D. Kinderlehrer, Frustration in ferromagnetic materials, Continuum Mech. Thermodyn. 2 pp. 215-239 (1990).
P. Joly, A. Komech, O. Vacus, On transitions to stationary states in a Mazwell-Landau-Lifshitz- Gilbert system, SIAM
Math. Anal. 31, pp. 346-374 (2000).

P. Joly, O. Vacus, Mathematical and numerical studies of nonlinear ferromagnetic materials, Math. Mod. Num. Anal. 33,
pp. 593-626 (1999).

M.A. Katsoulakis, P. Plech4¢, Statistical equilibrium measures in micromagnetics, preprint (2004).

M.A. Katsoulakis, P. Plechac¢, D.K. Tsagkarogiannis, Mesoscopic modeling for continuous spin lattice systems: Model
problems and micromagnetics applications, preprint (2004).

C.E. Kenig, G. Ponce, L. Vega, Small solutions to nonlinear Schrédinger equations, Ann. Inst. H. Poincaré Anal. Non
Linéaire 10, pp. 255-288 (1993).

J. Ko, Partially Regular and Singular Solutions to the Landau-Lifshitz (Gilbert) Equations, Ph.D.-thesis, New York Uni-
versity (2004).

T.R. Koehler, Hybrid FEM-BEM method for fast micromagnetic calculations, Physica B 233, pp. 302-307 (1997).

34



[60] M. Kruzik, Mazimum principle based algorithm for hysteresis in micromagnetics, Adv. Math. Sci. Appl. 13, pp. 461-485
(2003).

[61] M. Kruzik, Variational models for microstructure in shape memory alloys and in micromagnetics and their numerical
treatment. In: Communications of the Bezbach Colloguium on Science 2000, vol. II. Proceedings of the conference held
in Bexbach, Germany, October 27-29, 2000 (Eds. M. Robnik and A. Ruffing), Shaker Verlag, Aachen, 2003, pp. 20-38.

[62] M. Kruzik, Periodic solution to a hysteresis model in micromagnetics, IMA Preprint 1446, U Minnesota (2003).

[63] M. Kruzik, Periodicity properties of solutions to a hysteresis model in micromagnetics, In: Num. Math. Adv. Appl.,
Proceedings of ENUMATH 2003, (M. Feistauer et al. eds.) , Springer, Berlin, pp. 605-614 (2004).

[64] M. Kruzik, A. Prohl, Young measure approzimation in micromagnetics, Num. Math. 90, pp. 291-307 (2001).

5] M. Kruzik, A. Prohl, Macroscopic modeling of magnetic hysteresis, Adv. Math. Sci. Appl. (in print).

6] M. Kruzik, T. RoubiCek, Specimen shape influence on hysteretic response of bulk ferromagnets, J. Magn. Magn. Mat. 256,

158-167 (2003).

[67] M. Kruzik, T. Roubicek, Interactions between demagnetizing field and minor-loop development in bulk ferromagnets
J. Magn. Magn. Mat. 277, 192-200 (2004).

[68] L.D. Landau, E.M. Lifshitz, On the theory of the dispersion of magnetic permeability of ferromagnetic bodies, Physik
Z. Sowj. 8, pp. 1563-169 (1935). Course of Theoretical Physics 8, Pergamon Press, Oxford (1960).

[69] S.-Y. Lin, M. Luskin, Relazation methods for liquid crystal problems, SIAM J. Num. Anal. 26, pp. 1310-1326 (1989).

[70] X. Liu, S. Jiang, Y. Han, New ezplicit solutions to the n-dimensional Landau-Lifshitz equations, pp. 324-326, Physics
Letters A 281 (2001).

[71] M. Luskin, L. Ma, Analysis of the finite element approzimation of microstructure in micromagnetics, SIAM
J. Num. Anal. 29, pp. 320-331 (1992).

[72] L. Ma, Analysis and computation for a variational problem in micromagnetics, Ph.D.-thesis, U Minnesota (1991).

[73] C. Melcher, The logarithmic tail of Néel walls in thin films, Arch. Rat. Mech. Anal. 168, pp. 83-113 (2003).

[74] A. Mielke, Energetic formulation of multiplicative elastoplasticity using dissipation distances, Cont. Mech. Thermodyn.
(to appear).

[75] A. Mielke, F. Theil, Mathematical model for rate-independent phase transformations, in: Models of Cont. Mechanics in
Analysis and Engineering, Shaker-Verlag, Aachen, pp. 117-129 (2001).

[76] A. Mielke, F. Theil, On rate-independent hysteresis models, Nonlin. Diff. Eq. Appl. 11 (2004), 151-189.

[77] A. Mielke, F. Theil, V. Levitas, A wariational formulation of rate-independent phase transformations using exztremum

principle, Arch. Rat. Mech. Anal. 162, pp. 137-177 (2002).

| P.M. Monk, O. Vacus, Error estimates for a numerical scheme for ferromagnetic problems, SINUM 86, pp. 696-718 (1998).

| F. Murat, Compacité par compensation. Ann. Scuola Norm. Sup. Pisa Sci. Fis. Mat IV, 489-507 (1978).

| P. Pedregal, Relazation in ferromagnetism: the rigid case, J. Nonlin. Sci. 4, pp. 105-125 (1994).

1] P. Pedregal, Parametrized Measures and Variational Principles, Birkhduser, Basel (1997).

] P. Pedregal, Numerical computation of parametrized measures, Num. Funct. Anal. Opt. 16, pp. 1049-1066 (1995).

| F. Pistella, V. Valente, Numerical stability of a discrete model in the dynamics of ferromagnetic bodies,

Num. Meth. PDEs 15 (1999).

[84] P. Podio-Guidugli, V. Valente, Ezistence of global-in-time weak solutions to a modified Gilbert equation, Nonl. Analysis 47,
pp. 147-158 (2001).

[85] P. Podio-Guidugli, G. Tomassetti, On the evolution of domain walls in hard ferromagnets, SIAM J. Appl. Math. 64,
pp. 1887-1906 (2004).

[86] N. Popovié, D. Praetorius, Application of H-matrices in micromagnetics, Computing (to appear).

[87] 1. Privorotskii, Thermodynamic theory of domain structures, New York, Wiley (1976).

[88] A. Prohl, Computational Micromagnetism, Teubner, Stuttgart (2001).

[89] T. Roubicek, Relazation in Optimization Theory and Variational Calculus, W. de Gruyter, Berlin (1997).

[90] T. Roubitek, M. Kruzik, Microstructure evolution model in micromagnetics, Zeitschrift f. Angew. Math. Phys. 55, pp. 159-

182 (2004).

[91] T. Roubicek, M. Kruzik, Mesoscopic model for ferromagnets with isotropic hardening, Zeitschrift f. Angew. Math. Phys.,
(to appear).

[92] M. Struwe, Geometric evolution problems, IAS/Park City math. Series 2, pp. 259-339 (1996).

[93] P.L. Sulem, C. Sulem, C. Bardos, On the continuous limit for a system of classical spins, Comm. Math. Phys. 107,
pp. 431-454 (1986)

[94] J. Sun, F. Collino, P.B. Monk, L. Wang, An eddy-current and micromagnetism model with applications to disk write heads,
Int. J. Numer. Meth. Engrg. 60, pp. 1673-1698 (2004).

[95] L. Tartar, Compensated compactness and applications to partial differential equations . In: Nonlin. Anal. Mech. Herriot-
Watt Symposium IV (R. Knops ed.) Pitman Res. Notes Math. 39 136-212 (1979).

[96] C. Truesdell, W. Noll, The nonlinear field theories in mechanics. In: Encyclopedia of Physics, ITI/3, Springer, Heidelberg,
1965.

[97] A. Visintin, On Landau-Lifshitz’ equations for ferromagnetism, Japan J. Appl. Math. 2, pp. 49-84 (1985).

[98] A. Visintin, Differential models of hysteresis, Springer, Berlin, (1994).

[99] A. Visintin, Modified Landau-Lifshitz equation for ferromagnetism, Physica B 233, pp. 365-369 (1997).

[100] L.R. Walker, A treatise on magnetism, vol. III, G.T. Rado & H. Suhl (eds), Academic Press, New York, pp. 450-453
(1963).

35



[101] X.-P. Wang, C.J. Garcia-Cervera, W. E, A Gauss-Seidel projection method for micromagnetics simulations,
J. Comp. Phys. 171, pp. 357-372 (2001).

[102] L.C. Young, Generalized curves and existence of an attained absolute minimum in the calculus of variations, Comptes
Rendus de la Société et des Lettres de Varsovie, Classe IIT 30, pp. 212-234 (1937).

INSTITUTE OF INFORMATION THEORY AND AUTOMATION, ACADEMY OF SCIENCES OF THE CzECH REPUBLIC, POD VODARENSKOU
VEZI 4, CZ-182 08 PrAHA 8, CZECH REPUBLIC
E-mail address: kruzikQutia.cas.cz

DEPARTMENT OF MATHEMATICS, ETHZ, CH-8092 ZURICH, SWITZERLAND
E-mail address: apr@math.ethz.ch

36



