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Is Image Steganography Natural?��Alvaro Mart�iny, Guillermo Sapiroz, and Gadiel SeroussixAbstratSteganography is the art of seret ommuniation. Its purpose is to hide the presene ofinformation, using for example images as overs. We experimentally investigate if stego-images,bearing a seret message, are statistially \natural." For this purpose, we use reent resultson the statistis of natural images and investigate the e�et of some popular steganographytehniques. We found that these fundamental statistis of natural images are, in fat, generallyaltered by the hidden \non-natural" information. Frequently, the hange is onsistently biasedin a given diretion. However, for the lass of natural images onsidered, the hange generallyfalls within the intrinsi variability of the statistis, and thus does not allow for reliable de-tetion, unless knowledge of the data hiding proess is taken into aount. These results haveonsequenes both in the art of steganography and in the mathematial modeling of naturalimages.Index Terms| Steganography, Information Hiding, Image Models, Natural Images.EDICS| 5-AUTH Authentiation and Watermarking.1 IntrodutionIn steganography, we study tehniques to ahieve seret ommuniation between two parties thatare interested in hiding not only the ontent of a seret message but also the at of ommuniatingit. To this aim, steganography algorithms (\stego algorithms") embed the seret information intodi�erent types of \natural" over data like sound, images, or video. The resulting altered data isreferred to as stego-data and it must be pereptually indistinguishable from its natural over. Onthe other hand, stego-analysis seeks to analyze (possibly altered) over data to deide whether amessage has been embedded in it or not. Thus, the problem an be seen as one of lassi�ationinto two lasses, namely, natural and stego-data.In this paper we fous on the use of natural images, i.e., images that appear naturally in \realworld" photographi senes, as overs, and study how several reently proposed statistial modelsan be used for stego-analysis. We also experiment with basi statistis based on wavelet oeÆientsand blok disrete osine transform oeÆients, exploiting (partial) knowledge of the data hiding�This work is partially supported by the OÆe of Naval Researh grants N000140310399 and N000140310176, bythe Presidential Early Career Award for Sientists and Engineers (PECASE), and a National Siene FoundationCAREER Award.yInstituto de Computai�on, Faultad de Ingenier��a, Universidad de la Rep�ublia, Montevideo, Uruguay. Workdone while the author was with Information Theory Researh, Hewlett-Pakard Laboratories, Palo Alto, CA 94304,and Eletrial and Computer Engineering Department, University of Minnesota, Minneapolis, MN 55455.zEletrial and Computer Engineering and Digital Tehnology Center, University of Minnesota, Minneapolis, MN55455.xInformation Theory Researh, Hewlett-Pakard Laboratories, Palo Alto, CA 94304.1



tehnique. The goal then is to investigate if the at of embedding (hiding) a \non-natural" messageinto a \natural" image, hanges some of the basi statistis of the image, thereby allowing for thedetetion (but not neessarily interpretation) of the presene of a hidden message. For instane,we will show that a model for the distribution of the di�erenes between adjaent pixels, whih�ts natural images very aurately, is not a good model for images altered by one of the stegoalgorithms in S-Tools [1℄, a popular pakage we inluded in our experiments. Other algorithms,like Jsteg [2℄, however, do not signi�antly violate this property.While previous works, [3, 4℄, had foused on rather simple image statistis, in [5℄, the authorsproposed a stego-analysis tehnique based on image quality metris while, in [6, 7℄, Farid proposeda tehnique based on high order statistis of wavelet oeÆients. Reently, in [8℄, a stego algorithminvulnerable to Farid's tehnique was introdued. This algorithm is a modi�ed version of theHistogram-Preserving Data Mapping (HPDM) [9℄, and we will refer to it as MHPDM.One of the main onlusions of this work is that embedding a stego message generally alters thestudied statistis of its over image. Moreover, in some ases, the hidden data auses a onsistentbias in some of the statistial parameters. On the other hand, the e�et is often not suÆient to\move" a signi�antly large set of images beyond what may be onsidered natural aording to thestudied statistial models, when the analysis is independent of the stego algorithm used. As wedemonstrate below, better results, inluding statistially signi�ant disrimination between naturaland stego-images, an be obtained when (partial) knowledge of the stego algorithm is used in theanalysis.The remainder of this paper is organized as follows. Setion 2 briey desribes the steganographyalgorithms that are onsidered in our experiments, and Setion 3 introdues the models of naturalimages that are tested for sensitivity to steganography. Setion 4 desribes the general setting forthe experiments, the spei�s of eah experiment, and the results obtained. Finally, the onlusionson the results, and diretions for future researh, are summarized in Setion 5.2 Steganography AlgorithmsWe onsider three di�erent stego algorithms in our experiments: Jsteg [2℄, the above mentionedMHPDM [8℄, and one of the algorithms in S-Tools [1℄. Jsteg embeds a message in the least signi�antbit of JPEG DCT oeÆients. The algorithm seleted in S-Tools admits 8-bits palletized images(256 olors) as inputs, and maintains this range throughout proessing. The algorithm operates intwo stages. First it redues the number of entries in the olor palette of the over image, and thenit embeds a message in the least signi�ant bits of the three RGB omponents, without expandingthe number of olors beyond 256. Note of ourse that, as eah RGB omponent of eah pixel isaltered independently, this tehnique is not diretly suitable for gray images sine it an be detetedby simply observing that some olors in the olor palette are not exatly gray. We experimentedwith this algorithm as an example of a sheme operating in the spae domain. To study the e�etsof S-Tools purely on image statistis (our main fous in the paper), the mentioned olor-shift issuewas bypassed by transforming RGB stego-images bak to gray sale, taking the rounded luminaneof eah pixel.The MHPDM algorithm [9℄, as well as its predeessor HPDM [8℄, works by altering the leastsigni�ant bit of a subset of the JPEG DCT oeÆients of an image. If the 64 oeÆients of eahDCT blok are indexed from zero following the usual zig-zag order [10℄, only oeÆients 1 through20 are andidates for modi�ation. The rest are left untouhed, sine values of oeÆient withindex 0 (DC) are far from being independent, and oeÆients 21 through 63 are highly quantizedduring the JPEG proess. 2



Both MHPDM and HPDM preserve the zero-order histograms of eah DCT frequeny indepen-dently. Denoting by xi;j the value of DCT oeÆient j at blok i for a given image I, and x0i;jthe orresponding value for a stego image I 0 with over I, the histograms of fxi;jg and fx0i;jg arepreserved for all �xed j in the range 0::63. In order to do that, it is neessary that the messagebit stream to be embedded in the j-oeÆients has the same memory-less empirial distributionas flsb(xi;j)g, where lsb(x) denotes the least signi�ant bit of x. This is done by assuming thatthe input message b has approximately as many zeros as ones, and proessing it with an entropydeoder designed for P (bi = 1) = P̂ (lsb(xi;j = 1), the latter denoting the mentioned empirialdistribution of the least signi�ant bit of the j-th DCT oeÆient. The value of this probability isinluded with the oded data, to allow for lossless deoding of the hidden data. In [8℄, the authorsshowed ertain weakness of the HPDM algorithm with respet to Farid's stego-analysis (whih isbased on statistis of wavelets oeÆients), and observed that it ould be avoided by not modifyingoeÆients with values 0,1 and -1. This modi�ation onstitutes basially the MHPDM algorithmthat we use in our experiments.3 Models of Natural ImagesOur experiments are based on statistis based on wavelet oeÆients, blok disrete osine transformoeÆients and three reently proposed statistial models of natural images. These models, whihare briey desribed below, reet in general properties that are more global than those used inearlier stego-analysis works.3.1 Areas of Conneted Components ModelIn [11, 12℄, it is observed that the distribution of the areas of onneted omponents of bilevel(thresholded) images follow a power law whih depends on just two parameters, an exponent � anda saling fator C. More preisely, onsider an image I whose gray levels are between 0 and N .For an integer k, de�ne the bilevel (thresholded) imagesIl(i; j) := � 1 if (l � 1)Nk � I(i; j) � lNk ;0 otherwise:In [11, 12℄, the authors found that the total number f(a) of onneted omponents of the bilevelimages Il with area a is f(a) � Ca�Furthermore, it was experimentally found and theoretially justi�ed [12℄ that the exponent �is lose to �2 for natural images. We refer to this model as the Areas Model. We should notethat this is a strongly non-loal statistial model, sine it looks at areas and at all bilevel imagessimultaneously. This is in sharp ontrast with models based on individual pixels statistis, whihwere ommon in earlier works.3.2 Adjaent Pixel Values ModelIn [13, 14, 15℄, a statistial model for the horizontal derivative Ix = �I�x of an image I is introdued.Based on the transported generator model [16℄, the authors model an image as a random numberof pro�les of the same objet and eah pixel is obtained as a linear ombination of these pro�les,weighted randomly. Mathematially, 3



I(z) =Pi aig(z � zi)where z and zi are oordinates in R2 denoting a pixel loation and an objet pro�le loationrespetively, g is the pro�le of an objet, and the oeÆients ai are random weights. Loationszi are modeled as samples from a 2D Poisson proess with uniform intensity, and weights ai aremodeled as independent and identially distributed (IID), also independent of the zi-s.Under this model and ertain assumptions on u(z) =Pi g2x(z � zi), the authors show that theprobability density funtion of Ix isf(t) = 1p��(p) ( 2)� p2� 14 (2)�p+ 12 tp� 12Kp� 12 (q2 t), for p > 0,where K is the modi�ed Bessel funtion, � is the Gamma funtion, and p and  are two parametersreferred to as shape parameter and sale parameter respetively. Furthermore, they show that pand  satisfy p = 3k21k2 ,  = k23k1where k1 = E[I2x℄ and k2 = E[I4x℄.Notie that given an image I, one an approximate Ix as the di�erene between adjaent pixelvalues and estimate k1 and k2, obtaining thereby an estimate of f(t). We will refer to this modelas the PC Model.3.3 Laplaian Distribution ModelIn [17℄, the author reports on an empirially observed property of natural images referred to asDi�erentially Laplaian. It is observed that for a reasonably small onstant k, and any �xed set ofk2 oeÆients adding up to 0, the linear ombination of k2 pixel intensities in a k�k square, usingthese k2 oeÆients as weights, tends to exhibit a Laplaian-like distribution for natural images(this is related to the well known Laplaian distribution of predition errors in image oding [18℄).4 Experimental Results4.1 Experimental SettingFor all experiments we used gray sale 1536� 1024 natural images from Van Hateren's data base.1The 12-bits pixel values of all images are proportional to the light intensities in the senes; however,the multiplying onstant need not be the same for di�erent images. In experiments where thisdisparity might a�et the statistis of interest, we follow [19℄, and use log-ontrast images. In thelog-ontrast image of I, the pixel at loation (i; j) is alulated as log+(I(i; j))�E(log+(I)), wherelog+(x) = log(x+1), and E(f(I)) denotes the arithmeti mean of f(I(i; j)) when (i; j) ranges overall pixel oordinates in the image.2 Cases where log-ontrast was used will be expliitly identi�edin the sequel.We experimented with a subset, whih will be denoted I, of 1400 images from the Van Hateren'sdata base. From this set of images we generated Jsteg and MHPDM stego images by �rst reduingthe number of gray levels to a maximum of 256 (saling by 255=max(I) and rounding) and then1http://hlab.phys.rug.nl/imlib/index.html2log+ is used to avoid problems with the logarithm of zero. The slight e�et of this bias on eliminating the onstantmultiplier of the light intensity is seondary for the ases of interest.4



ompressing with JPEG and embedding a random message in JPEG DCT oeÆients during theproess.3 For MHPDM in partiular, the message satis�ed P (bi = 1) = P̂ (lsb(xi;j = 1)) forevery oeÆient index j = 1::20. The amount of information embedded was always the maximumallowed by the image, i.e., a message as long, in bits, as the number of oeÆient values suitablefor modi�ation aording to the stego algorithm. When we used S-Tools to generate stego data,we also started from a 256 gray level version of the original image and adjusted the length of theembedded message to avoid visually pereptible artifats. The amount of information embeddedin an image in this ase was signi�antly smaller than for the Jsteg or MHPDM ounterparts. TheS-tools images were always onverted bak to gray level images before omputing statistis, byworking on the image formed by the rounded luminane.Sine JPEG lossy ompression may a�et image statistis, when analyzing results for Jsteg andMHPDM we always ompare stego images to lean JPEG images, i.e., images with no messageembedded but that have been lossily ompressed with JPEG (again reduing the number of graylevels to a maximum of 256 and using the same software and settings as for Jsteg and MHPDM).Similarly, we use the term bitmap image to refer to an image with no information embedded butwhose number of gray levels has been redued to a maximum of 256.Some experiments rely on estimations of mean (�), standard deviation (�), skewness (1) andkurtosis (�2) of a random variable X based on an observed sample x1::xn. The skewness andkurtosis of X are de�ned (see e.g. [20℄) as1 = E(x� �)3�3 ); �2 = E(x� �)4�4We use estimators respetively alulated as�� = Pni=1 xin ; �� = ( 1nPni=1(xi � ��)2)1=2; �1 = 1nPni=1(xi���)3��3 ; ��2 = 1nPni=1(xi���)4��4 ,where xi ranges over all data values of interest.4.2 ExperimentsWe now desribe several experiments involving the di�erent stego algorithms and natural imagestatistial models desribed above. We also present some additional experiments targeting MHPDMstego-analysis in partiular. In this ase, we inlude also an analysis of wavelet and DCT oeÆients.4.2.1 Areas Model ParametersWe explore the e�et of stego algorithms on the values (�;C) of the Areas Model parameters. Weobserve that the power law holds in bitmap, JPEG, and stego images and, although the parametervalues are often modi�ed for individual images, they generally remain in the (relatively large)range of values observed for natural images. Thus, the variation does not allow us to learlydistinguish between natural and stego images. Moreover, there is not a lear bias e�et, meaningthat in ontrast with other models (see below), this haraterization of natural images is mostly\randomly" modi�ed by the stego proess. Figure 1 shows the distribution of onneted omponentsareas of a partiular image from I as bitmap, JPEG, and overing a message embedded with Jstegand S-Tools. We observe that the plots are very lose and the values of the exponent � for thebest linear �tting in eah ase are �2:09;�2:06, �2:05, and �2:06, respetively. Figure 2 shows,3Jsteg and our implementation of MHPDM are both based on soure ode from the Independent JPEG Group'sJPEG software, http://www.ijg.org/. We set the parameter quality setting to 75%.5
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Figure 1: Distribution of onneted omponents areas for four versions of the same image, withand without hidden message. We observe that the exponential distribution is observed both by theoriginal and the stego images, thereby limiting the use of this model for stego-analysis.enlosed in a retangular frame, parameters values for a partiular image from I as bitmap, JPEG,and overing a message embedded with MHPDM, Jsteg and S-Tools, together with a loud of pointsobtained plotting parameters values for a subset I1000 of 1000 JPEG images from I. The variationresulting from embedding a message is rather small as ompared to the universe of observed values.4.2.2 PC Model ParametersThis model has been found to �t aurately the distribution of di�erenes between adjaent pixels.The model would be appropriate for lassi�ation if the observed �t deteriorated for stego images.Figure 3 shows the model �t for a given JPEG image, and the same image inluding a messageembedded with MHPDM, Jsteg and S-Tools, respetively. As observed in the �gure, Jsteg andMHPDM do not produe a notieable departure from the model. However, the algorithm from S-tools does, and an image bearing a message embedded using this algorithm an easily be detetedby observing the histogram of di�erenes between adjaent pixels and its disrepany with themodel.Figure 4 shows parameters values for the same four variations of the same image as Figure 3,and also the bitmap representation, immersed in a loud of points obtained for parameters valuesof the subset I1000 of 1000 JPEG images from I. Exept for the values obtained for S-Tools, therest, enlosed in a retangular frame, show small di�erenes as ompared to the range of di�erentvalues observed on JPEG images.A loser examination of the e�et on the whole data set I1000 reveals that the parameter p isaltered in a onsistent diretion by the MHPDM algorithm, i.e., in more than 95% ases of 10006



−2.6 −2.4 −2.2 −2 −1.8 −1.6 −1.4 −1.2 −1 −0.8 −0.6
6

7

8

9

10

11

12

13

Exponent

F
ac

to
r

JPEG Images
Bitmap, JPEG, MHPDM
Jsteg
S−Tools
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Figure 3: PC Model �t to four versions of the same image. When the message is embedded using theS-Tools algorithm, this an be easily deteted due to its disrepany with the model. For MHPDMand Jsteg stego algorithms, there is a good to the natural images model.pairs of MHPDM / JPEG images from I1000, the stego algorithm auses an inrease in the value ofp. A histogram of relative di�erenes of parameter p (the di�erene divided by the value of p for theJPEG image) is shown in Figure 5 where we observe that pratially all values are positive. Thisonsistent bias indiates a potential weakness of MHPDM with respet to stego-analysis based onthis model. However, the shift is not large enough to ahieve signi�ant lassi�ation performanefor this lass of images, as an be appreiated in Figure 5, showing relative di�erenes smaller than5% in most ases, and Figure 6, showing very similar histograms of both parameters for 1000 JPEGimages and 1000 MHPDM stego images from I1000.4.2.3 Di�erentially Laplaian ModelFor the Di�erentially Laplaian Model experiments we selet k2�1 oeÆients pseudo-randomlywith a uniform distribution in the interval (-1,1) and hoose one more oeÆient so that the overalloeÆient sum is zero. As previously observed for the PC Model, the �t of the Di�erentiallyLaplaian Model does not deteriorate signi�antly when hidden data is embedded. This was thease observed for several values of parameter k and di�erent images.Also, for a �xed linear ombination T , if we denote by T (I) = fT (bloki;j(I))g where bloki;j(I)8



Figure 4: Cloud of PC Model parameters values for JPEG images and the e�et of hiding infor-mation on one partiular image. Enlosed in a frame are values for bitmap, JPEG, Jsteg andMHPDM versions of the same image. The value for the same image proessed with S-Tools, out-side the frame, learly shows that S-Tools produes easy to detet non-natural images (following thismodel), while MHPDM and Jsteg do produe what are onsidered legitimate natural images.
9
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Figure 6: Histograms of PC Model parameters for JPEG and MHPDM images. We observe thatthe parameters distributions are similar for natural and stego images.
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Figure 7: Parameter distribution for the Di�erentially Laplaian Model for the four lasses ofimages. We observe very similar distributions, indiating that the model is not powerful enough todetet stego images.varies along all k�k bloks of a partition of I, estimations of mean, standard deviation and kurtosisof T (I) do not aid in the lassi�ation proess.Figure 7 shows a log normalized histogram of the values alulated for a �xed 5 � 5 linearombination of pixels values, on a JPEG image and the same image inluding a message embeddedwith MHPDM, Jsteg, and S-Tools. The four plots are very similar.4.2.4 Statistis of Wavelet CoeÆientsIn this subsetion, we onsider the analysis of statistis on wavelet-transform oeÆients of images.In partiular, we onsidered, as features for lassi�ation, estimations of mean, standard deviation,skewness, and kurtosis of several statistis alulated from Haar wavelet oeÆients on log-ontrastimages. The investigation foused on the MHPDM algorithm. We experimented with di�erenesand sums of pairs of oeÆients taken from horizontal, vertial and diagonal wavelet bands. Inpartiular, denoting by hi;j a oeÆient in the horizontal band of the �rst level deompositionof a N � M image, we found that the estimated kurtosis of hi;j+1 � hi;j with 0 � i < N=2,0 < j < M=2, is onsistently altered for stego images. Stego images showed a higher kurtosis thantheir orresponding JPEG images in more than 95% ases of the set I1000 of 1000 pairs of images11
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4.2.7 CoeÆients Correlations Estimation: Exploiting algorithm knowledge in stego-analysisEmpirial orrelations of DCT oeÆients vary onsiderably among natural images. However, itis also possible to look at empirial orrelations between empirial orrelations for di�erent pairsof oeÆients. That is, images that have high orrelation between oeÆients, say a and b, mightalso have high orrelation between a di�erent pair of arefully hosen oeÆients a0 and b0, withhigh probability. This fat an be exploited partiularly for the MHPDM algorithm if we onsiderthat only oeÆients with indies 1 through 20 are modi�ed. Based on a set of log-ontrasttraining images, for eah pair of absolute values of DCT oeÆients a and b in A = f1::20g, weget an estimation ^̂�(jaj; jbj) of �̂(jaj; jbj) (the empirial orrelation between jaj and jbj) based onthe empirial orrelations between pairs of absolute values of DCT oeÆients taken from the setB = f0; 21::63g and use ^̂�(jaj; jbj) � �̂(jaj; jbj) as a feature for lassi�ation. To alulate ^̂�(jaj; jbj),we determine the projetion from the vetor v of values vi = �̂(ja0j; jb0j) to a one-dimensional spaethat maximizes the empirial orrelation with �̂(jaj; jbj). The set of pairs of oeÆients (a0; b0) isthe set of all possible pairs of oeÆients from a subset B0 � B, where highly quantized oeÆientsare disarded. One this projetion w is determined, we use a linear �tting from w:v0 to �̂(jaj; jbj)over the set of training images and use this polynomial to alulate ^̂�(jaj; jbj). Having determinedthe estimator ^̂� of �̂ for all pairs (jaj; jbj) we an alulate features ^̂�(jaj; jbj) - �̂(jaj; jbj) for the setof training images and determine a projetion from the spae of features to a one dimensionalspae that maximizes the empirial orrelation with a variable valued 1 for natural images and -1for stego images. Classifying an image onsist of omparing the projetion of its features with agiven threshold, whih is hosen to determine an operating point in the \hit/false alarm" plane,as desribed below. This tehnique ahieved the best lassi�ations results. Figure 10 shows falsealarm probability vs. hit probability for an experiment on a subset Itrain0 of 800 training pairsof JPEG/stego images from I and a subset Itest0 of 600 test pairs from I. The plot is obtainedvarying the lassi�ation threshold. Fixing its value is a trade o� between these two probabilities,i.e., given the probability of orretly lassifying an image as being stego (hit probability) there isan impliit probability of mistaking a natural image as stego (false alarm probability). Of oursewhen designing a test the goal is for the plot to be as far apart as possible to the dotted line thatrepresents simply seleting randomly with equal probabilities between the two lasses (assumingthey are equally probable). Thus, Figure 10 shows that the test desribed ahieves signi�antlyreliable detetion of stego-images.5 ConlusionsWe have studied the e�et of applying popular steganography algorithms on di�erent statistialmodels of natural images. On one hand, we observed that some popular stego algorithms on-sistently bias these statistis for some of the most fundamental models. On the other hand, theintrinsi variability of these statistis is so high, for the lass of images studied, that this bias in-dued by hiding \unnatural" information is not suÆient in general to move the results outside ofthe \natural" range, unless knowledge of the embedding algorithm is available and exploited. Thebest lassi�ation results were obtained in the latter ase.These experimental results lead us to onlusions in two diretions. First, regarding faithfulmodels of natural images, it seems that the reported e�orts so far are not suÆient to learlyexlude some \non-natural" images, for example those obtained by arti�ially embedding hiddenmessages. Thus, there seems to be a need for further re�nement of these models. In the stego arena,14
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