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Is Image Steganography Natural?��Alvaro Mart�iny, Guillermo Sapiroz, and Gadiel SeroussixAbstra
tSteganography is the art of se
ret 
ommuni
ation. Its purpose is to hide the presen
e ofinformation, using for example images as 
overs. We experimentally investigate if stego-images,bearing a se
ret message, are statisti
ally \natural." For this purpose, we use re
ent resultson the statisti
s of natural images and investigate the e�e
t of some popular steganographyte
hniques. We found that these fundamental statisti
s of natural images are, in fa
t, generallyaltered by the hidden \non-natural" information. Frequently, the 
hange is 
onsistently biasedin a given dire
tion. However, for the 
lass of natural images 
onsidered, the 
hange generallyfalls within the intrinsi
 variability of the statisti
s, and thus does not allow for reliable de-te
tion, unless knowledge of the data hiding pro
ess is taken into a

ount. These results have
onsequen
es both in the art of steganography and in the mathemati
al modeling of naturalimages.Index Terms| Steganography, Information Hiding, Image Models, Natural Images.EDICS| 5-AUTH Authenti
ation and Watermarking.1 Introdu
tionIn steganography, we study te
hniques to a
hieve se
ret 
ommuni
ation between two parties thatare interested in hiding not only the 
ontent of a se
ret message but also the a
t of 
ommuni
atingit. To this aim, steganography algorithms (\stego algorithms") embed the se
ret information intodi�erent types of \natural" 
over data like sound, images, or video. The resulting altered data isreferred to as stego-data and it must be per
eptually indistinguishable from its natural 
over. Onthe other hand, stego-analysis seeks to analyze (possibly altered) 
over data to de
ide whether amessage has been embedded in it or not. Thus, the problem 
an be seen as one of 
lassi�
ationinto two 
lasses, namely, natural and stego-data.In this paper we fo
us on the use of natural images, i.e., images that appear naturally in \realworld" photographi
 s
enes, as 
overs, and study how several re
ently proposed statisti
al models
an be used for stego-analysis. We also experiment with basi
 statisti
s based on wavelet 
oeÆ
ientsand blo
k dis
rete 
osine transform 
oeÆ
ients, exploiting (partial) knowledge of the data hiding�This work is partially supported by the OÆ
e of Naval Resear
h grants N000140310399 and N000140310176, bythe Presidential Early Career Award for S
ientists and Engineers (PECASE), and a National S
ien
e FoundationCAREER Award.yInstituto de Computa
i�on, Fa
ultad de Ingenier��a, Universidad de la Rep�ubli
a, Montevideo, Uruguay. Workdone while the author was with Information Theory Resear
h, Hewlett-Pa
kard Laboratories, Palo Alto, CA 94304,and Ele
tri
al and Computer Engineering Department, University of Minnesota, Minneapolis, MN 55455.zEle
tri
al and Computer Engineering and Digital Te
hnology Center, University of Minnesota, Minneapolis, MN55455.xInformation Theory Resear
h, Hewlett-Pa
kard Laboratories, Palo Alto, CA 94304.1



te
hnique. The goal then is to investigate if the a
t of embedding (hiding) a \non-natural" messageinto a \natural" image, 
hanges some of the basi
 statisti
s of the image, thereby allowing for thedete
tion (but not ne
essarily interpretation) of the presen
e of a hidden message. For instan
e,we will show that a model for the distribution of the di�eren
es between adja
ent pixels, whi
h�ts natural images very a

urately, is not a good model for images altered by one of the stegoalgorithms in S-Tools [1℄, a popular pa
kage we in
luded in our experiments. Other algorithms,like Jsteg [2℄, however, do not signi�
antly violate this property.While previous works, [3, 4℄, had fo
used on rather simple image statisti
s, in [5℄, the authorsproposed a stego-analysis te
hnique based on image quality metri
s while, in [6, 7℄, Farid proposeda te
hnique based on high order statisti
s of wavelet 
oeÆ
ients. Re
ently, in [8℄, a stego algorithminvulnerable to Farid's te
hnique was introdu
ed. This algorithm is a modi�ed version of theHistogram-Preserving Data Mapping (HPDM) [9℄, and we will refer to it as MHPDM.One of the main 
on
lusions of this work is that embedding a stego message generally alters thestudied statisti
s of its 
over image. Moreover, in some 
ases, the hidden data 
auses a 
onsistentbias in some of the statisti
al parameters. On the other hand, the e�e
t is often not suÆ
ient to\move" a signi�
antly large set of images beyond what may be 
onsidered natural a

ording to thestudied statisti
al models, when the analysis is independent of the stego algorithm used. As wedemonstrate below, better results, in
luding statisti
ally signi�
ant dis
rimination between naturaland stego-images, 
an be obtained when (partial) knowledge of the stego algorithm is used in theanalysis.The remainder of this paper is organized as follows. Se
tion 2 brie
y des
ribes the steganographyalgorithms that are 
onsidered in our experiments, and Se
tion 3 introdu
es the models of naturalimages that are tested for sensitivity to steganography. Se
tion 4 des
ribes the general setting forthe experiments, the spe
i�
s of ea
h experiment, and the results obtained. Finally, the 
on
lusionson the results, and dire
tions for future resear
h, are summarized in Se
tion 5.2 Steganography AlgorithmsWe 
onsider three di�erent stego algorithms in our experiments: Jsteg [2℄, the above mentionedMHPDM [8℄, and one of the algorithms in S-Tools [1℄. Jsteg embeds a message in the least signi�
antbit of JPEG DCT 
oeÆ
ients. The algorithm sele
ted in S-Tools admits 8-bits palletized images(256 
olors) as inputs, and maintains this range throughout pro
essing. The algorithm operates intwo stages. First it redu
es the number of entries in the 
olor palette of the 
over image, and thenit embeds a message in the least signi�
ant bits of the three RGB 
omponents, without expandingthe number of 
olors beyond 256. Note of 
ourse that, as ea
h RGB 
omponent of ea
h pixel isaltered independently, this te
hnique is not dire
tly suitable for gray images sin
e it 
an be dete
tedby simply observing that some 
olors in the 
olor palette are not exa
tly gray. We experimentedwith this algorithm as an example of a s
heme operating in the spa
e domain. To study the e�e
tsof S-Tools purely on image statisti
s (our main fo
us in the paper), the mentioned 
olor-shift issuewas bypassed by transforming RGB stego-images ba
k to gray s
ale, taking the rounded luminan
eof ea
h pixel.The MHPDM algorithm [9℄, as well as its prede
essor HPDM [8℄, works by altering the leastsigni�
ant bit of a subset of the JPEG DCT 
oeÆ
ients of an image. If the 64 
oeÆ
ients of ea
hDCT blo
k are indexed from zero following the usual zig-zag order [10℄, only 
oeÆ
ients 1 through20 are 
andidates for modi�
ation. The rest are left untou
hed, sin
e values of 
oeÆ
ient withindex 0 (DC) are far from being independent, and 
oeÆ
ients 21 through 63 are highly quantizedduring the JPEG pro
ess. 2



Both MHPDM and HPDM preserve the zero-order histograms of ea
h DCT frequen
y indepen-dently. Denoting by xi;j the value of DCT 
oeÆ
ient j at blo
k i for a given image I, and x0i;jthe 
orresponding value for a stego image I 0 with 
over I, the histograms of fxi;jg and fx0i;jg arepreserved for all �xed j in the range 0::63. In order to do that, it is ne
essary that the messagebit stream to be embedded in the j-
oeÆ
ients has the same memory-less empiri
al distributionas flsb(xi;j)g, where lsb(x) denotes the least signi�
ant bit of x. This is done by assuming thatthe input message b has approximately as many zeros as ones, and pro
essing it with an entropyde
oder designed for P (bi = 1) = P̂ (lsb(xi;j = 1), the latter denoting the mentioned empiri
aldistribution of the least signi�
ant bit of the j-th DCT 
oeÆ
ient. The value of this probability isin
luded with the 
oded data, to allow for lossless de
oding of the hidden data. In [8℄, the authorsshowed 
ertain weakness of the HPDM algorithm with respe
t to Farid's stego-analysis (whi
h isbased on statisti
s of wavelets 
oeÆ
ients), and observed that it 
ould be avoided by not modifying
oeÆ
ients with values 0,1 and -1. This modi�
ation 
onstitutes basi
ally the MHPDM algorithmthat we use in our experiments.3 Models of Natural ImagesOur experiments are based on statisti
s based on wavelet 
oeÆ
ients, blo
k dis
rete 
osine transform
oeÆ
ients and three re
ently proposed statisti
al models of natural images. These models, whi
hare brie
y des
ribed below, re
e
t in general properties that are more global than those used inearlier stego-analysis works.3.1 Areas of Conne
ted Components ModelIn [11, 12℄, it is observed that the distribution of the areas of 
onne
ted 
omponents of bilevel(thresholded) images follow a power law whi
h depends on just two parameters, an exponent � anda s
aling fa
tor C. More pre
isely, 
onsider an image I whose gray levels are between 0 and N .For an integer k, de�ne the bilevel (thresholded) imagesIl(i; j) := � 1 if (l � 1)Nk � I(i; j) � lNk ;0 otherwise:In [11, 12℄, the authors found that the total number f(a) of 
onne
ted 
omponents of the bilevelimages Il with area a is f(a) � Ca�Furthermore, it was experimentally found and theoreti
ally justi�ed [12℄ that the exponent �is 
lose to �2 for natural images. We refer to this model as the Areas Model. We should notethat this is a strongly non-lo
al statisti
al model, sin
e it looks at areas and at all bilevel imagessimultaneously. This is in sharp 
ontrast with models based on individual pixels statisti
s, whi
hwere 
ommon in earlier works.3.2 Adja
ent Pixel Values ModelIn [13, 14, 15℄, a statisti
al model for the horizontal derivative Ix = �I�x of an image I is introdu
ed.Based on the transported generator model [16℄, the authors model an image as a random numberof pro�les of the same obje
t and ea
h pixel is obtained as a linear 
ombination of these pro�les,weighted randomly. Mathemati
ally, 3



I(z) =Pi aig(z � zi)where z and zi are 
oordinates in R2 denoting a pixel lo
ation and an obje
t pro�le lo
ationrespe
tively, g is the pro�le of an obje
t, and the 
oeÆ
ients ai are random weights. Lo
ationszi are modeled as samples from a 2D Poisson pro
ess with uniform intensity, and weights ai aremodeled as independent and identi
ally distributed (IID), also independent of the zi-s.Under this model and 
ertain assumptions on u(z) =Pi g2x(z � zi), the authors show that theprobability density fun
tion of Ix isf(t) = 1p��(p) ( 
2)� p2� 14 (2)�p+ 12 tp� 12Kp� 12 (q2
 t), for p > 0,where K is the modi�ed Bessel fun
tion, � is the Gamma fun
tion, and p and 
 are two parametersreferred to as shape parameter and s
ale parameter respe
tively. Furthermore, they show that pand 
 satisfy p = 3k21k2 , 
 = k23k1where k1 = E[I2x℄ and k2 = E[I4x℄.Noti
e that given an image I, one 
an approximate Ix as the di�eren
e between adja
ent pixelvalues and estimate k1 and k2, obtaining thereby an estimate of f(t). We will refer to this modelas the PC Model.3.3 Lapla
ian Distribution ModelIn [17℄, the author reports on an empiri
ally observed property of natural images referred to asDi�erentially Lapla
ian. It is observed that for a reasonably small 
onstant k, and any �xed set ofk2 
oeÆ
ients adding up to 0, the linear 
ombination of k2 pixel intensities in a k�k square, usingthese k2 
oeÆ
ients as weights, tends to exhibit a Lapla
ian-like distribution for natural images(this is related to the well known Lapla
ian distribution of predi
tion errors in image 
oding [18℄).4 Experimental Results4.1 Experimental SettingFor all experiments we used gray s
ale 1536� 1024 natural images from Van Hateren's data base.1The 12-bits pixel values of all images are proportional to the light intensities in the s
enes; however,the multiplying 
onstant need not be the same for di�erent images. In experiments where thisdisparity might a�e
t the statisti
s of interest, we follow [19℄, and use log-
ontrast images. In thelog-
ontrast image of I, the pixel at lo
ation (i; j) is 
al
ulated as log+(I(i; j))�E(log+(I)), wherelog+(x) = log(x+1), and E(f(I)) denotes the arithmeti
 mean of f(I(i; j)) when (i; j) ranges overall pixel 
oordinates in the image.2 Cases where log-
ontrast was used will be expli
itly identi�edin the sequel.We experimented with a subset, whi
h will be denoted I, of 1400 images from the Van Hateren'sdata base. From this set of images we generated Jsteg and MHPDM stego images by �rst redu
ingthe number of gray levels to a maximum of 256 (s
aling by 255=max(I) and rounding) and then1http://hlab.phys.rug.nl/imlib/index.html2log+ is used to avoid problems with the logarithm of zero. The slight e�e
t of this bias on eliminating the 
onstantmultiplier of the light intensity is se
ondary for the 
ases of interest.4




ompressing with JPEG and embedding a random message in JPEG DCT 
oeÆ
ients during thepro
ess.3 For MHPDM in parti
ular, the message satis�ed P (bi = 1) = P̂ (lsb(xi;j = 1)) forevery 
oeÆ
ient index j = 1::20. The amount of information embedded was always the maximumallowed by the image, i.e., a message as long, in bits, as the number of 
oeÆ
ient values suitablefor modi�
ation a

ording to the stego algorithm. When we used S-Tools to generate stego data,we also started from a 256 gray level version of the original image and adjusted the length of theembedded message to avoid visually per
eptible artifa
ts. The amount of information embeddedin an image in this 
ase was signi�
antly smaller than for the Jsteg or MHPDM 
ounterparts. TheS-tools images were always 
onverted ba
k to gray level images before 
omputing statisti
s, byworking on the image formed by the rounded luminan
e.Sin
e JPEG lossy 
ompression may a�e
t image statisti
s, when analyzing results for Jsteg andMHPDM we always 
ompare stego images to 
lean JPEG images, i.e., images with no messageembedded but that have been lossily 
ompressed with JPEG (again redu
ing the number of graylevels to a maximum of 256 and using the same software and settings as for Jsteg and MHPDM).Similarly, we use the term bitmap image to refer to an image with no information embedded butwhose number of gray levels has been redu
ed to a maximum of 256.Some experiments rely on estimations of mean (�), standard deviation (�), skewness (
1) andkurtosis (�2) of a random variable X based on an observed sample x1::xn. The skewness andkurtosis of X are de�ned (see e.g. [20℄) as
1 = E(x� �)3�3 ); �2 = E(x� �)4�4We use estimators respe
tively 
al
ulated as�� = Pni=1 xin ; �� = ( 1nPni=1(xi � ��)2)1=2; �
1 = 1nPni=1(xi���)3��3 ; ��2 = 1nPni=1(xi���)4��4 ,where xi ranges over all data values of interest.4.2 ExperimentsWe now des
ribe several experiments involving the di�erent stego algorithms and natural imagestatisti
al models des
ribed above. We also present some additional experiments targeting MHPDMstego-analysis in parti
ular. In this 
ase, we in
lude also an analysis of wavelet and DCT 
oeÆ
ients.4.2.1 Areas Model ParametersWe explore the e�e
t of stego algorithms on the values (�;C) of the Areas Model parameters. Weobserve that the power law holds in bitmap, JPEG, and stego images and, although the parametervalues are often modi�ed for individual images, they generally remain in the (relatively large)range of values observed for natural images. Thus, the variation does not allow us to 
learlydistinguish between natural and stego images. Moreover, there is not a 
lear bias e�e
t, meaningthat in 
ontrast with other models (see below), this 
hara
terization of natural images is mostly\randomly" modi�ed by the stego pro
ess. Figure 1 shows the distribution of 
onne
ted 
omponentsareas of a parti
ular image from I as bitmap, JPEG, and 
overing a message embedded with Jstegand S-Tools. We observe that the plots are very 
lose and the values of the exponent � for thebest linear �tting in ea
h 
ase are �2:09;�2:06, �2:05, and �2:06, respe
tively. Figure 2 shows,3Jsteg and our implementation of MHPDM are both based on sour
e 
ode from the Independent JPEG Group'sJPEG software, http://www.ijg.org/. We set the parameter quality setting to 75%.5
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Figure 1: Distribution of 
onne
ted 
omponents areas for four versions of the same image, withand without hidden message. We observe that the exponential distribution is observed both by theoriginal and the stego images, thereby limiting the use of this model for stego-analysis.en
losed in a re
tangular frame, parameters values for a parti
ular image from I as bitmap, JPEG,and 
overing a message embedded with MHPDM, Jsteg and S-Tools, together with a 
loud of pointsobtained plotting parameters values for a subset I1000 of 1000 JPEG images from I. The variationresulting from embedding a message is rather small as 
ompared to the universe of observed values.4.2.2 PC Model ParametersThis model has been found to �t a

urately the distribution of di�eren
es between adja
ent pixels.The model would be appropriate for 
lassi�
ation if the observed �t deteriorated for stego images.Figure 3 shows the model �t for a given JPEG image, and the same image in
luding a messageembedded with MHPDM, Jsteg and S-Tools, respe
tively. As observed in the �gure, Jsteg andMHPDM do not produ
e a noti
eable departure from the model. However, the algorithm from S-tools does, and an image bearing a message embedded using this algorithm 
an easily be dete
tedby observing the histogram of di�eren
es between adja
ent pixels and its dis
repan
y with themodel.Figure 4 shows parameters values for the same four variations of the same image as Figure 3,and also the bitmap representation, immersed in a 
loud of points obtained for parameters valuesof the subset I1000 of 1000 JPEG images from I. Ex
ept for the values obtained for S-Tools, therest, en
losed in a re
tangular frame, show small di�eren
es as 
ompared to the range of di�erentvalues observed on JPEG images.A 
loser examination of the e�e
t on the whole data set I1000 reveals that the parameter p isaltered in a 
onsistent dire
tion by the MHPDM algorithm, i.e., in more than 95% 
ases of 10006
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Figure 3: PC Model �t to four versions of the same image. When the message is embedded using theS-Tools algorithm, this 
an be easily dete
ted due to its dis
repan
y with the model. For MHPDMand Jsteg stego algorithms, there is a good to the natural images model.pairs of MHPDM / JPEG images from I1000, the stego algorithm 
auses an in
rease in the value ofp. A histogram of relative di�eren
es of parameter p (the di�eren
e divided by the value of p for theJPEG image) is shown in Figure 5 where we observe that pra
ti
ally all values are positive. This
onsistent bias indi
ates a potential weakness of MHPDM with respe
t to stego-analysis based onthis model. However, the shift is not large enough to a
hieve signi�
ant 
lassi�
ation performan
efor this 
lass of images, as 
an be appre
iated in Figure 5, showing relative di�eren
es smaller than5% in most 
ases, and Figure 6, showing very similar histograms of both parameters for 1000 JPEGimages and 1000 MHPDM stego images from I1000.4.2.3 Di�erentially Lapla
ian ModelFor the Di�erentially Lapla
ian Model experiments we sele
t k2�1 
oeÆ
ients pseudo-randomlywith a uniform distribution in the interval (-1,1) and 
hoose one more 
oeÆ
ient so that the overall
oeÆ
ient sum is zero. As previously observed for the PC Model, the �t of the Di�erentiallyLapla
ian Model does not deteriorate signi�
antly when hidden data is embedded. This was the
ase observed for several values of parameter k and di�erent images.Also, for a �xed linear 
ombination T , if we denote by T (I) = fT (blo
ki;j(I))g where blo
ki;j(I)8



Figure 4: Cloud of PC Model parameters values for JPEG images and the e�e
t of hiding infor-mation on one parti
ular image. En
losed in a frame are values for bitmap, JPEG, Jsteg andMHPDM versions of the same image. The value for the same image pro
essed with S-Tools, out-side the frame, 
learly shows that S-Tools produ
es easy to dete
t non-natural images (following thismodel), while MHPDM and Jsteg do produ
e what are 
onsidered legitimate natural images.
9
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Figure 7: Parameter distribution for the Di�erentially Lapla
ian Model for the four 
lasses ofimages. We observe very similar distributions, indi
ating that the model is not powerful enough todete
t stego images.varies along all k�k blo
ks of a partition of I, estimations of mean, standard deviation and kurtosisof T (I) do not aid in the 
lassi�
ation pro
ess.Figure 7 shows a log normalized histogram of the values 
al
ulated for a �xed 5 � 5 linear
ombination of pixels values, on a JPEG image and the same image in
luding a message embeddedwith MHPDM, Jsteg, and S-Tools. The four plots are very similar.4.2.4 Statisti
s of Wavelet CoeÆ
ientsIn this subse
tion, we 
onsider the analysis of statisti
s on wavelet-transform 
oeÆ
ients of images.In parti
ular, we 
onsidered, as features for 
lassi�
ation, estimations of mean, standard deviation,skewness, and kurtosis of several statisti
s 
al
ulated from Haar wavelet 
oeÆ
ients on log-
ontrastimages. The investigation fo
used on the MHPDM algorithm. We experimented with di�eren
esand sums of pairs of 
oeÆ
ients taken from horizontal, verti
al and diagonal wavelet bands. Inparti
ular, denoting by hi;j a 
oeÆ
ient in the horizontal band of the �rst level de
ompositionof a N � M image, we found that the estimated kurtosis of hi;j+1 � hi;j with 0 � i < N=2,0 < j < M=2, is 
onsistently altered for stego images. Stego images showed a higher kurtosis thantheir 
orresponding JPEG images in more than 95% 
ases of the set I1000 of 1000 pairs of images11
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lear bias in the stego image.from I. However, the kurtosis variability in this 
lass of natural images is on
e again quite large,and it seems diÆ
ult to �x a threshold that 
ould reliably dis
riminate between the two groups.Figure 8 shows the estimated kurtosis of hi;j+1 � hi;j for 20 JPEG and MHPDM stego imagesfrom I. Crosses representing kurtosis of stego images appear always above dots 
orresponding toJPEG images, but it seems diÆ
ult to 
hoose a threshold that would separate the two series ofvalues pre
isely. Nevertheless, the 
onsistent bias shows that MHPDM images deviate from thenatural images 
lass, and 
an be regarded as a weakness of the method.4.2.5 Comparing DCT CoeÆ
ientsAn additional area explored for MHPDM was the information from higher order joint statisti
sof DCT 
oeÆ
ients. The fa
t that the histogram of ea
h 
oeÆ
ient is preserved separately bythe MHPDM algorithm opens the possibility that some joint distribution might be altered, thusaiding in stego-analysis. We 
onsider the 
olle
tion of 64-dimensional ve
tors obtained by applyingthe DCT on 8 � 8 blo
ks of a log-
ontrast image, and taking the absolute value of the resultingtransform 
oeÆ
ients. We look at absolute values of ea
h 8�8 DCT blo
k as a ve
tor in R64 . Ea
himage of size N �M brings N8 M8 sample ve
tors. Given a JPEG image and the same image witha message embedded with MHPDM, let J = fjig; S = fsig, 0 � i < N8 M8 , be the sample ve
torsin R64 obtained from ea
h image respe
tively. We 
ompute a ve
tor w 2 R64 that maximizes theempiri
al 
orrelation w = argmaxf�̂(w:v0; Iv)g, where v is a sample taken from J or S and Ivis valued 1 or �1 when v is a taken from J or S respe
tively. Averaging uniformly ve
tors w
omputed for several pairs of training images, we seek assigning a high weight to DCT 
oeÆ
ientsthat aid 
lassi�
ation for many images whereas others would re
eive low weights. On
e the averageproje
tion ve
tor W = mean(w) is determined, 
lassi�
ation of an image I 
onsists in 
al
ulatingthe arithmeti
 average meanfW:v0ig, where vi 2 R64 ranges over ve
tors of absolute values of DCT
oeÆ
ients of I, and �nally using a threshold for the de
ision that must be �xed a

ording to atrade o� between false alarms and hit probabilities (i.e. respe
tively the probability of in
orre
tly
lassifying a natural image as stego and the probability of 
orre
tly 
lassifying a stego image assu
h). The averaged proje
tions were 
onsistently higher for stego images than their 
orrespondingJPEG images in more than 99% 
ases of a subset Itest of 1000 pairs of test images from I with12
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tion of DCT 
oeÆ
ients. Although the values are similar for the natural and stegoimages, there is a 
lear bias, being the value for the stego image always grater than the one for the
orresponding natural one.a training subset Itrain of 400 pairs of images from I. Results for a subset of the testing set areshown in Figure 9 where 
rosses representing values for stego images appear always above 
ir
lesrepresenting JPEG images. This bias on
e again indi
ates a 
lear modi�
ation by MHPDM ofthe statisti
s of natural images. However, on
e again the variability for this large 
lass of naturalimages is signi�
ant and it is impossible to �x a threshold that would work well for most pairs atthe same time.4.2.6 CoeÆ
ients Correlations based on Model ParametersAs expe
ted, the MHPDM algorithm redu
es the 
orrelation between pairs of JPEG 
oeÆ
ients.However, these 
orrelations vary 
onsiderable among natural images, thus they 
an not be usedfor 
lassi�
ation unless they are tied to some other variables not a�e
ted by the steganographyalgorithm. One alternative is to exploit a possible 
orrelation between Areas Model or PC Modelparameters and the 
orrelation between a pair of 
oeÆ
ients. To explore this idea, using 
anoni
al
orrelation analysis [21℄ on the set I1000 of 1000 JPEG images, we 
omputed two proje
tions thatmaximize empiri
al 
orrelation between proje
ted values: One from the four dimensional spa
eof models parameters4 and the other from the spa
e of all empiri
al 
orrelations between absolutevalues of pairs of 
oeÆ
ients altered by MHPDM. The empiri
al 
orrelation obtained is high (> 0:9)yet the empiri
al 
orrelation between the proje
ted values and a variable indi
ating whether animage is natural or stego is pra
ti
ally zero.4We re
all that the parameters are exponent � and s
aling fa
tor C in Areas Model and shape parameter p ands
ale parameter 
 in PC Model

13



4.2.7 CoeÆ
ients Correlations Estimation: Exploiting algorithm knowledge in stego-analysisEmpiri
al 
orrelations of DCT 
oeÆ
ients vary 
onsiderably among natural images. However, itis also possible to look at empiri
al 
orrelations between empiri
al 
orrelations for di�erent pairsof 
oeÆ
ients. That is, images that have high 
orrelation between 
oeÆ
ients, say a and b, mightalso have high 
orrelation between a di�erent pair of 
arefully 
hosen 
oeÆ
ients a0 and b0, withhigh probability. This fa
t 
an be exploited parti
ularly for the MHPDM algorithm if we 
onsiderthat only 
oeÆ
ients with indi
es 1 through 20 are modi�ed. Based on a set of log-
ontrasttraining images, for ea
h pair of absolute values of DCT 
oeÆ
ients a and b in A = f1::20g, weget an estimation ^̂�(jaj; jbj) of �̂(jaj; jbj) (the empiri
al 
orrelation between jaj and jbj) based onthe empiri
al 
orrelations between pairs of absolute values of DCT 
oeÆ
ients taken from the setB = f0; 21::63g and use ^̂�(jaj; jbj) � �̂(jaj; jbj) as a feature for 
lassi�
ation. To 
al
ulate ^̂�(jaj; jbj),we determine the proje
tion from the ve
tor v of values vi = �̂(ja0j; jb0j) to a one-dimensional spa
ethat maximizes the empiri
al 
orrelation with �̂(jaj; jbj). The set of pairs of 
oeÆ
ients (a0; b0) isthe set of all possible pairs of 
oeÆ
ients from a subset B0 � B, where highly quantized 
oeÆ
ientsare dis
arded. On
e this proje
tion w is determined, we use a linear �tting from w:v0 to �̂(jaj; jbj)over the set of training images and use this polynomial to 
al
ulate ^̂�(jaj; jbj). Having determinedthe estimator ^̂� of �̂ for all pairs (jaj; jbj) we 
an 
al
ulate features ^̂�(jaj; jbj) - �̂(jaj; jbj) for the setof training images and determine a proje
tion from the spa
e of features to a one dimensionalspa
e that maximizes the empiri
al 
orrelation with a variable valued 1 for natural images and -1for stego images. Classifying an image 
onsist of 
omparing the proje
tion of its features with agiven threshold, whi
h is 
hosen to determine an operating point in the \hit/false alarm" plane,as des
ribed below. This te
hnique a
hieved the best 
lassi�
ations results. Figure 10 shows falsealarm probability vs. hit probability for an experiment on a subset Itrain0 of 800 training pairsof JPEG/stego images from I and a subset Itest0 of 600 test pairs from I. The plot is obtainedvarying the 
lassi�
ation threshold. Fixing its value is a trade o� between these two probabilities,i.e., given the probability of 
orre
tly 
lassifying an image as being stego (hit probability) there isan impli
it probability of mistaking a natural image as stego (false alarm probability). Of 
oursewhen designing a test the goal is for the plot to be as far apart as possible to the dotted line thatrepresents simply sele
ting randomly with equal probabilities between the two 
lasses (assumingthey are equally probable). Thus, Figure 10 shows that the test des
ribed a
hieves signi�
antlyreliable dete
tion of stego-images.5 Con
lusionsWe have studied the e�e
t of applying popular steganography algorithms on di�erent statisti
almodels of natural images. On one hand, we observed that some popular stego algorithms 
on-sistently bias these statisti
s for some of the most fundamental models. On the other hand, theintrinsi
 variability of these statisti
s is so high, for the 
lass of images studied, that this bias in-du
ed by hiding \unnatural" information is not suÆ
ient in general to move the results outside ofthe \natural" range, unless knowledge of the embedding algorithm is available and exploited. Thebest 
lassi�
ation results were obtained in the latter 
ase.These experimental results lead us to 
on
lusions in two dire
tions. First, regarding faithfulmodels of natural images, it seems that the reported e�orts so far are not suÆ
ient to 
learlyex
lude some \non-natural" images, for example those obtained by arti�
ially embedding hiddenmessages. Thus, there seems to be a need for further re�nement of these models. In the stego arena,14
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Figure 10: Results using CoeÆ
ients Correlations Estimation. The graph shows that this te
hnique,that uses information about the stego algorithm, 
an dete
t stego images with signi�
ant a

ura
y.it is �rst obvious that stego-analysis is a \
at and mouse" game: Knowing the stego algorithm,a te
hnique 
an be devised to atta
k it; and knowing the atta
k, the stego algorithm 
an befurther modi�ed to mislead the dete
tion pro
edure. An example is given by Farid's stego-analysisapproa
h [6, 7℄, whi
h was over
ome by MHPDM, whi
h in turn, seems to be broken by the resultsin Se
tion 4.2.7. It would therefore be desirable to have a more fundamental approa
h to thestego 
apa
ity in natural images, preferably based on universal properties and independent of theparti
ular algorithm of 
hoi
e. Some analysis has been done in this dire
tion in [22, 23, 24, 25, 26℄.An approa
h based on universal modeling and simulation [27, 28, 29, 30, 31℄ is 
urrently beingpursued. Results on this approa
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