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Abstract

We present and investigate a Newton type method for online optimization in nonlinear model predic-
tive control, the so called “real-time iteration scheme”. In this scheme only one Newton type iteration
is performed per sampling instant, and the control of the system and the solution of the optimal control
problem are performed in parallel. In the resulting combined dynamics of system and optimizer, the ac-
tual feedback control in each step is based on the current solution estimate, and the solution estimates are
at each sampling instant refined and transferred to the next optimization problem by a specially designed
transition. This approach yields an efficient online optimization algorithm that has already been suc-
cessfully tested in several applications. Due to the close dovetailing of system and optimizer dynamics,
however, stability of the closed-loop system is not implied by standard nonlinear model predictive control
results. In this paper, we give a proof of nominal stability of the scheme which builds on concepts from
both, NMPC stability theory and convergence analysis of Newton type methods. The principal result is
that — under some reasonable assumptions — the combined system-optimizer dynamics can be guaranteed
to converge towards the origin from significantly disturbed system-optimizer states.

Introduction

Nonlinear model predictive control (NMPC) is a feedback control technique that is based on the real-time
optimization of a nonlinear dynamic process model. It has attracted increasing attention over the past
decade, in particular in chemical engineering [QB01, Hen98, MRRS00]. Among the advantages of NMPC
are the flexibility provided in formulating the objective and the process model and the capability to directly
handle equality and inequality constraints on states and inputs.

One important precondition for the application of NMPC, however, is the availability of reliable and

efficient numerical dynamic optimization algorithms, since at every sampling time a nonlinear dynamic
optimization problem must be solved. Solving such an optimization problem efficiently and fast, however,



is not a trivial task and has attracted strong research interest in recent years (see e.g. [Wri96, BWBO0O,
TRO1, Bie00, LB89, OB95b, TWR02, MBF02]).

Most approaches use classical off-line dynamic optimization algorithms to solve the optimization prob-
lems arising in NMPC. They do this as fast as possible, and once the solution has been computed, the
obtained control is applied to the system to be controlled. If the system is slow and the computer fast, the
feedback delay due to the computation time is short compared to the timescale of the system, and classical
stability theory for NMPC [MM90, ABQ 99, DMS00] can be assumed to hold true. In practical appli-
cations, however, in particular for large-scale systems, the optimizer cannot be assumed to be infinitely
fast compared to the system. A possible approach to take account of the computation time is to predict
the state at the time we expect the optimization to be finished and carry out the optimization for this pre-
diction [FA03, CBOO0Q], allowing to prove nominal stability; however, this approach may still result in a
considerable delay of the feedback response to disturbances.

In contrast to the classical approaches, the “real-time iteration” scheme (0B ®ie02, DFS02] —
that is the focus of this paper — reduces sampling times and feedback delay by a dovetailing of the dynamics
of the system with the dynamics of the optimization algorithm. In principle only one optimization iteration
is performed per sampling instant and the obtained estimate for the optimal solution is shifted suitably
to allow overall fast convergence. The approach allows to efficiently treat large-scale systemsEDU
or systems with short timescales [DBS03] on standard computers, thus pushing forward the frontier of
practical applicability of NMPC. In its actual implementation for continuous time systems, the scheme is
based on the direct multiple shooting method within the optimal control package MUSCOD-II (Leinewe-
ber [Lei99]), and it has already been successfully applied for the NMPC of a real pilot plant distillation
column [DUFF01, DFSF03].

However, to concentrate on the essential features of the method and — most important — on a proof of
nominal stability of the scheme, we restrict the presentation in this paper to a strongly simplified NMPC
scheme for discrete time systems, as follows.

1.1 Discrete Time Nonlinear Model Predictive Control

Throughout this paper, we consider the following nonlinear discrete time system:
xk+1:f($k,uk)7 k=0,1,2,..., Q)

with system states® ¢ R”= and controls:* € R"=. We assume that : R"= x R"= — R"= s twice
continuously differentiable, and, without loss of generality, that the origin is a steady state for (1), i.e.
£(0,0) =0.

The aim of NMPC is to find controlg® = u(z*) that depend on the current system stetend that are
optimal with respect to a specified objective on a moving horizon, which implicitly captures the desire that
the system converges towards the steady state. We will denote the predicted states and contesid by
gi, in order to distinguish them from the statgsand controls:* of the real system. For the derivations
considered in this paper we assume that the objective minimized at every time instanten by
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wheres;, i = 0,..., N is the predicted state over the fixed prediction hori2ér N starting fromz*



considering a predicted input sequenigg q1, - - -, qn):
Si+1:f(si7qi)7i207"'aNa SO:xk_

We assume that the stage cdst R”= x R™ — R is twice continuously differentiable, tha{0,0) = 0,
and that there is & > 0 such that

L(z,u) > ml|z|? VzecR"™, ueR™. 2

A typical choice forL is e.g.L(x,u) = 27 Qx + u” Ru with positive definite matrice§ andR.
Given this setup, the input applied in NMPC is defined as the first igpuaf the optimat predicted
input sequencéys, ..., qy):
u(z®) = g (a"). (3)

The closed loop system then obeys the “ideal-NMPC dynamics”
zFtl = f(xk7u(xk)), 4)

and one central question in NMPC is if the closed loop system (4) is stable. This question has been
examined extensively over recent years and a variety of NMPC schemes exist that can guarantee stability,
see e.g. [MM90, ABQ 99, DMS00]. For the purposes of this paper we enforce stability using a so called
zero terminal constraint in the prediction, i.e.

sy+1 =0, (or,equivalently f(sn,qn)=0)

and we will provide a nominal stability result in Theorem 4.1.
Summarizing, in NMPC we proceed by solving a sequence of optimization prokimts of the
following form:

Definition 1.1 (P(z))

N
min Z L(si,q) (5a)
S0,.-.5SN, i=0
qo,- .-, 4N
subject to
x— 89 =0, (5b)
f(3i7Qi)—Si+1:O, i:07"'7N_17 (50)
f(sn,qn) = 0. (5d)
As said, the vectors;, ¢; are introduced to avoid confusion with the real system statasd the inputs:.
Note that the optimal solutiofs{(x), . .., sy (z), i (x), ..., gy (z)) of P(z), if it exists, satisfies(z) =

x, and — because of the definition of the “ideal NMPC control” in (3) — gs@) = u(x).

1Optimal values are in the following denoted by a star.



Assumption 1 For all initial valuesz in an open sefX C R"= that contains the origin, probler’(x)
has a unique optimal solutiofs{(z), ..., sy (z), ¢ (x), ..., ¢y (z)), and the value functio (=) which
is defined via the optimal cost for everpy

N

V(z) = L(sf(x), ¢ (x)) (6)

=0

is continuous on this seX. Furthermore, there is a (possibly larg@)y > 0 such thatV (z) < M|z
Ve e X.

Note that the steady state traject@dyo0, . . ., 0) is the solution of?(0) and has optimal codt(0) = 0, and
that because of (z) > L(x, ¢i(x)) > m||z||*> we also havé/ (z) > 0, Vo € X\{0}. In the remainder of
this paper we are not interested in the Xebut rather in the largest compact level sevatat is contained
in X. Thus in the following we consider a fixed> 0 such that

Xo ={z e X|V(z) <a}CX, 7)

is maximal and thaf\, is compact. ClearlyX, contains a neighborhood of the origin. This S&{
corresponds to the region of attraction of the ideal NMPC controller: fox%le X, we can prove
asymptotic stability of the ideal NMPC dynamics (4), ilan, .o xx = 0, as will be stated in Theorem 4.1
in Section 4.1.

Remark: In practical applications, inequality path constraints of the férm;, ¢;) > 0, like bounds

on controls or states, are of major interest, and should be included in the formulation of the optimization

problemsP(x). For the purpose of this paper we leave such constraints unconsidered, since general con-
vergence results for Newton type methods with changing active sets are difficult to establish. However, we
note that in the practical implementation of the real-time iteration scheme they are included.

1.2 Sequential versus Simultaneous Solution Approaches

Existing numerical schemes for NMPC optimization can roughly be subdividedégeentiabndsimulta-
neoussolution strategies [BBB01, BR91b, Pyt99]. In theequentiahpproach, the system equations (5b)
and (5c) are used to eliminate the states . . ., si) from the optimization problem, regarding them as a
function of the controléqy, . . ., ¢x), and substitutes these functions into the objective (5a) and the terminal
constraint (5d); thus, the system equations and the optimization problem are treated sequentially, one after
the other, in each optimization iteration. Many real-time optimization schemes for NMPC are based on this
approach. However, sequential optimization schemes for NMPC often suffer from the drawback that poor
initial guesses for the control trajectory may lead the predicted state trajectories far away from the desired
reference trajectory; in particular, it may be difficult to satisfy the terminal constraint (5d); therefore, the
sequential approach often causes an unnecessarily strong nonlinearity of the resulting optimization problem
and poor convergence behaviour, especially for unstable systems. In some cases, an open-loop simulation
on a longer horizon is even impossible.

In contrast to this, theimultaneouspproach avoids this difficulty by keeping both, the coné&nodl
the state in the optimization problem, and treating the prolim) exactly as it is formulated in (5), thus
solving system equations and optimization problem simultaneously. Though the resulting optimization
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Figure 1: ProblenP(z): initial valuex and NLP variablesy, ..., sy andqo, - . ., qn-
problem in the variablegso, . .., s, qo, - - . , gn) May be large-scale, it has a favourable structure and can

be efficiently solved, and instability and nonlinearity of the dynamic model can be better controlled. Note
that for some guess of the optimization variables, the state trajettgry. ., sy) need not necessarily
satisfy the system equations (5b) and (5c) (for a visualization, see Fig. 1), but that a solution trajectory of
course satisfies all constraints. The real-time iteration scheme is based on this simultaneous approach.

1.3 Online NMPC and System-Optimizer Dynamics

In ideal NMPC it is assumed that the feedback”) is available instantaneously at every sampling time

k. However, in practice usually no explicit solution to the probl&fx*) is available, and the numerical
solution requires a non negligible computation time and involves some numerical errors. We typically
know each initial valuec* only at the timek when the corresponding controf is already required for
implementation. Thus, instead of implementing the ideal NMPC confrdi) we have to use some quickly
available approximatiori(z*, w*), where the additional argument® indicates a data vectar” ¢ R™

that we use to parameterize the control approximation. These data are generated by an online optimization
algorithm, and they may be updated from one time step to the next one, according to th&Haw=
F(z%,w*), where the argument* takes account of the fact that the update shall of course depend on the
current system state. To achieve this the computations performed are thus divided in two parts

1. Preparation: computation ef* = F(z*~1 w*~1), and generation of the feedback approximation
functioni(-,w"), during the transition of the system from state! to z*.

2. Feedback Response: At tinig give the feedback approximatiarf := @(z*, w") to the system,
which then evolves according g+ = f(z*, u*).

From a system theoretic point of view, instead of the ideal NMPC dynamics (4), we now have to investigate
the combined system-optimizer dynamics

= f(:vk,ﬁ(xk,wk)), (8a)

whtl = Pz wh). (8b)



The difficulty in the analysis of the closed-loop behavior of this system stems from the fact that the two
subsystems mutually depend on each other.

The real-time iteration scheme investigated in this paper is one specific approach to online NMPC,
where the data vectar” is essentially a guess for the optimal solution trajectori of*). The data update
law w*+1 = F(z*,w*) shall provide iteratively refined solution guesses, and is derived from a Newton
type optimization scheme. The approximate feedbackiaw, ") can be considered an (essential) by-
product of this Newton type iteration scheme.

1.4 Organisation of the Paper

The principal aim of the paper is to prove a nominal stability result for the system-optimizer dynamics (8)
due to the real-time iteration scheme. The investigation has to combine concepts from both, classical
stability theory for NMPC as well as from convergence theory for Newton type optimization methods.

In Section 2 we introduce the real-time iteration scheme and its combined system-optimizer dynamics
in z¥ andw®. Section 3 contains a detailed discussion of the convergence properties of Newton type
methods for NMPC and a convergence result for ideal NMPC optimization with a shift initialization for
each new optimization problem. In Section 4 we review a nominal stability result for ideal NMPC that
is based on a decrease of the optimal value functi¢gn”) in each time step, and in Subsection 4.2 we
give a bound on the errors due to the feedback approximatioh, w*) in the real-time iteration scheme,
with respect to the decrease of the value function. In Section 5 we analyze the contraction properties of the
optimizer statesv® under the assumption that the system statestay in the level seX . In Section 6
we finally combine the results of Section 4.2 and Section 5 to prove convergence of the real-time iteration
NMPC scheme, and in Section 7 we conclude the paper with a short summary.

2 Real-Time Iteration Scheme

In order to characterize the solution of the optimization problfm) we introduce the Lagrange mul-
tipliers Ay, ..., Ax for the constraints (5¢) andy,; for (5d), and define the Lagrangian function
L. (Mo, S0, o, - - -) Of problemP(z) as

Lo() = Zi]\;o L(si,qi) + )\OT(m —50) + Zi\gol >\i+1T(f(5i>Qi) — Sit1) + >\N+1Tf(5N, qn).

We assume in the following that, is twice continuously differentiable in its arguments over the consid-
ered regions. Summarizing all variables in a veator= (Ao, S0, 90, - - - s AN, SN, qN, An+1) € R™, the
necessary optimality conditions of first order B(z) are:

r — So
V. L(s0,q0) + %(80, 20)" M — Ao
af T
VuL(50,q0) + 5% (50, q0)" A1

: —0. ©)

f(SN71,QN71) — SN

ViL(sn,qn) + %(?Na an ) AN — An
VuL(sn,qn) + %ﬁ(sjw an) ANt

L f(sn,qn) J




One possible solution method for this set of nonlinear equations is to use Newton type iterations, as outlined
in the following.

2.1 Newton Type Iterations

Starting at some guess for the optimal solution ofP(x), the Newton type methods investigated in this
paper compute a corrected iterate= w + Aw(z, w) towards the exact solution by

Aw(z,w) == —J(w)™! VLl (w), (10)

where J(w) is an approximation of the second derivatiVé, £, (w). Note thatVZ L, — often called
Karush-Kuhn-Tucker (KKTjnatrix — is independent of the initial valug which enters the Lagrangian
L. (w) only linearly. The index argument can therefore be omitted for the KKT matrix, i.e., we will
write V2 £(w) in the sequel. Of course, its approximatiditw) shall also be independent of and
we assume in the following thaf(w) is continuous over the considered regions. Moreover, the steps
Aw(z,w) = (AXo(z,w), so(z,w),...) shall have the property tha} = sy + Asp(z,w) = z, i.e., that
the linear initial value constraint (5h),— sg = 0, is satisfied after one Newton type iteration. This is easily
accomplished by noting that the first rows of V2 £(w) are constant, cf. (11), and choosing them to also
be the firstr, rows of J(w).
We mention here that the Lagrangian functidnof the optimal control problem igartially separable
and its second derivative therefore has a block diagonal structure,
—I
-1 Qo Mo A¥
MT Ry BY
Ao Bo
Ve L(w)= . ; (11)
—I QII\[, My AL
M¥% Ry BY
AN BN
which should also be chosen to be the structurg/@b), and which should be exploited in the actual
implementation of the Newton type method.

2.2 Real-Time Iteration Algorithm with Shift

Let us assume that during the transition from one sampling instant to the next we only have time to perform
one Newton type iteration. To allow fast convergence while the process evolves, the real-time iteration
scheme is based on a suitable transition between subsequent problems. After an initial disturbance it
subsequently delivers approximation’s for the optimal feedback control that allow to steer the system
close to the desired steady state, as will be shown in Section 6, under suitable conditions.

Furthermore, as shown in [Die02], the computations of the real-time iteration belonging to problem
P(z*) can largely be preparesithout knowledge of the value of, so that the approximation® of the
optimal feedback control is practically available at the timeTo underline the basic idea, suppose that
the inverse/(w)~! is available in explicit form (which is in practice never computed). Therefore one can



write (10) as

ADY; :
ASQ _Hnl . T — 8o
A | = | K@w) --- : . (12)

The real-time iteration scheme with shift initialization proceeds now as follows:

1. Preparation: Based on the current guess = (\X, sk, qb, AF, b, qF, ..., Nk, sk) compute all
components of the vectd?,, £, (w*) apart from the first one, and compute the matfixv®).
Prepare the linear algebra computation for the implicit representation of the inverse-vector product
J(w*)71V,, L« (w*) as much as possible without knowledge of the valueofa detailed de-
scription how this can be achieved is given in [DB®] or [Die02]). Essentially, this amounts to
providing the matrixi (w") as in (12).

2. Feedback Response: At the tirhewhenz* measured, compute the feedback approximaifor:
a(zk, wh) = ¢k — K(w*)(z* — sk) and apply the contrat* immediately to the real system.

3. Transition: Compute the next initial gues$* by first adding the step vectdxw” to w* and then
shifting all variables to account for the movement in time. That is, comp(ité as

whtl =8 (wk + Aw*) = S( Wk — J(wh) ™t VLo (wh) ),

whereS is a shifting matrix operating on

Ao A

S0 S1

q0 q1

A1 .

S1

q1

w = . suchthat Sw=| Ay

SN
aqN

)\N )\N+1

SN 0

qN 0

| AN41 | | 0 |

Continue by setting = k£ + 1 and going to 1.

In contrast to the ideal NMPC feedback closed loop (4), in the real-time iteration scheme we have to regard
combined system-optimizer dynamics of the form (8), which are given by

P2 (g — KRt ) (e At @3
Wt =8 (wF — J(WF) T Vi Lok (wF) ) =5 ( w" + Aw(z*,w") ). (13b)

In the remainder of the paper we concentrate on investigating the nominal stability of these system-
optimizer dynamics.



2.3 Connection to Existing Approaches

Several features of the algorithm have been presented by other researchers for real-time optimization in
NMPC. In particular, a one-iteration scheme has been proposed by Li and Biegler in [LB89] for the se-
guential approach. For this scheme even a stability result is derived, that is, however, only applicable to
stable systems. In the application of classical off-line optimization schemes to on-line control, the question
of how to initialize subsequent problems has found some attention in the literature [BR91a, LEL92], and a
shift strategy has been proposed, e.g., by de Oliveira and Biegler [OB95a] for the sequential approach.

3 Local Convergence of Newton Type Optimization

In this section we present results on the convergence properties of Newton type methods for optimization
in NMPC that lay the basis for the discussion in all subsequent sections.

3.1 Local Convergence for a Single Optimization Problem

In a first step we review a local convergence result of Newton type optimization for the solution of one
fixed optimization problem (i.e. no shift ef after each iteration). Thus we consider in this subsection a
fixedz € X, and we will denote in the following by, an (arbitrary) initial guess for the primal-dual
variables of problenP(z). A standard Newton type scheme proceeds by computing itexates,, . . .
according to

Wit = w; + Aw;,  Aw; = Aw(z,w;) = —J(wi)_lvwﬁr(wi).
The following standard result states conditions that ensure the convergence of the iterates (f9ffomd
the initial guessug to a point that satisfies the first order necessary conditions:

Theorem 3.1 (Local Convergence of Newton Type Optimization)
Assume that/(w) is invertible for allw € D, whereD C R”™. Furthermore, assume that there exist
constantss < 1, w < oo such that for alkw’,w € D, Aw = w' —w and allt € [0, 1]

| J(w") ™ (J(w + tAw) — Vi, L(w + tAw)) Awl|| < k|| Aw, (14a)
| J(w") ™" (J(w + tAw) = J(w)) Aw|| < wt||Aw]|?, (14b)
that the the first step\wg := —J(wo) ~ 1V L.(wp) is sufficiently small, such that
Jo = /<c+%HAwO|| <1, (14c)
and that the ballBy := Jw € R"| ||lw — wpl| < % is completely contained il». Then the Newton

type iterateswy, w1, ... are well-defined, stay in the balB,, and converge towards a point* € By
satisfyingV,, L, (w*) = 0.

Remark: We would like to mention that the assumptions made are standard assumptions for the con-
vergence of Newton type methods (see e.g. [Boc87]). One should note that in general it is rather difficult
to check the conditions a priori, but that a posteriori estimates can be obtained when the Newton type
iterations are carried out.

For the proof of the theorem we need the following lemma:



Lemma 3.2 (Contraction Rate)
Under the same assumptions as in Theorem 3.1 the Newton type iterates satisfy the contraction property

w
lAwiall < (+ SlAwi] ) 1 Awil] = 5] Awi]. (15)

Proof of Lemma3.2: We prove the lemma using a standard arguments for convergence of Newton type
methods (see e.g. [Boc87]):

[Awipil| = || (wig1) ™" Vi La(wip)||
= [[J(wis1)"t- (Ywﬁz(wiﬂ) = VuLy(wi) — J(w;) - Aw)|
= ||J(wi+1)*1 . OI(VE),C(’wl + tAwl) — J(wl)) - Aw; dt”

T (i)™ fo (T (wi + tAw;) — J(w;)) Aw; di|

< LT (wisn) " (V2L w; + tAw;) — J(w; + tAw;)) Aw| dt
+ o 1 (win) ™0 (T (ws + tAw;) — J(w;)) Aw]| dt
Kl| Awi|| + [ wi]|Aw;|? dt

[ IA

(5 + 2| Aw;]) | Awi| = 6] Awi].

Proof of Theorem 3.1: Using Lemma 3.2 we first observe thiat ; < §, and that
[Awg]| < 6i18i—2 ... ol| Awol| < (80)"[| Awoll.
so that )
(00)"[| Awol|
1— 4y
i.e.,wp,wy,ws, ...is a Cauchy sequence and remains in the (compactBgalind thus converges towards

apointw* € By. This point satisfie¥,,£,.(w*) = 0 due to continuity ofV,, £, (-) and boundedness df
on the compact balB,, as

|wi = wirmll < Awill + ... + [[Awiym-1] <

190w = T [V Lwn) | = lim 7w Awl] < 7 ma Jim || A = 0.

3.2 Local Convergence for a Class of Optimization Problems

We will tailor in this subsection the results of the previous subsection to the NMPC problem. For this
purpose we need to define two séts C Do which are defined in terms of a fixed > 0

Dc = {weR"[Fr € X,, |w—w*(z)|<C} (16)
Doc = {weR"|[FTr € X,, |w—w(z)] <20}, (17)

wherew*(z) is the primal-dual solution of probler®(x), and whereX,, is the maximum level set df
in X as introduced in 1.1. Given these sets we can now state the assumptions necessary for the following
corollary.

10



Assumption 2 Each solutionw*(z) is unique inDyc, i.e.,
Vz € Xo,Vw € Doc\{w*(z)} : Vi Lly(w) # 0, (18a)

and J(w) is invertible one Dyc. Furthermore there exist constants < oo, k < 1 such that for all
w',w € Daey, Aw = w' —w and allt € [0, 1]

[[J(w") ™ (J(w + tAw) — Vo, L(w + tAw)) Awl|| < k|| Aw| (18hb)
| (w") ™ (J(w + tAw) — J(w)) Aw]|| < wt]|Awl|?. (18c)
The following two scalard andé will be used throughout the paper.

Definition 3.1 Given a fixed”' > 0, that shall be chosen as large as possible such that Assumption 2
holds, we define the positive scalars

C(1—-k) w
= d §:= —d. 19
d [+2C and §:=k+ 2d (29)
Note that Lec
kT3
= 1. 20
1+20 ° (20)

Now we can state the following corollary giving conditions for the convergence of Newton type methods
for NMPC:

Corollary 3.3 (Local Convergence of Newton type methods for NMPC problems)

Suppose Assumption 2. If for some& X, and someu, € D¢ it holds that||Aw(z,wo)|| < d, then the
Newton type iterates),; for the solution ofV,, £, (w) = 0, initialized with the initial guessvy, converge
towards the solutiom™* (z). Furthermore, the iterates remain Dc.

Proof: We start by noting tha€’ = +%~. The ball B, of Theorem 3.1 is contained in the bdl’ €
R™| |Jw" — wol| < C}, which itself is contained in the sé®y¢, aswy € D¢e. Therefore, there is a
solutionw* € D¢ satisfyingV,, L, (w*) = 0, which must be equal te*(z) due to the uniqueness
assumption (18a). Furthermore, the distance of itaratieom w*(x) is bounded by

* Awi d
o —wr (@) < 120 < 4 ¢, 1)

i.e.,w; € D¢. a

In the remainder of the paper we will consider fixed valuesfandC and assume that Assumption 2
is satisfied. Furthermore, we will often refer to the Batefined as follows:

Definition 3.2 (Z)
E:={(z,w) eR™ xR" |z € X, w € D¢, ||Aw(z,w)|| < d} (22)
This set= contains all pairgz, w) for which Corollary 3.3 ensures numerical solvability. Note tBas

nonempty, as it contains at least the poiatsw*(x)), V2 € X, and their neighborhoods.

11



3.3 Local Convergence for Ideal NMPC with Shift Initialization

We are now interested what influence a shift initialization has on the Newton type solution of two con-
secutive ideal NMPC problemB(z*+1) and P(z*). In other words, we want to investigate under which
conditions a shifted version of the previous solutiarf,(z*), i.e., settingws ™ := Sw*(z*), leads to
convergence of the Newton scheme at timeHerew* (z*) denotes the optimal solution at tinke while
wh T denotes the initialization of the Newton type iteratiofi™*, w¥** .., attimek + 1, which is given
by the iteration rulev! " := wft" + Aw(z"+1, wit!) and satisfywf T — w*(2"*1) if the initial guess
wett is sufficiently close to the solution, i.e.,(#", wi™) € =.

Note that the shifted initialization has the advantage that the initial value constraint (5b) of the new
problem is already satisfied. But is this initialization close enough to the exact saftitjofi) to guarantee
local convergence?

The following theorem gives a partial answer to this question; roughly speaking, the shift provides a
good initialization if the lengthV of the optimization horizon is chosen sufficiently big, so that the zero
terminal constraint (5d) is not to strongly active, i.e., that the last multiplier; is sufficiently small.

Theorem 3.4 (Numerical Solvability for Ideal NMPC with Shift)
Assume that for allo*(z) = (A§, 55, -, Anvp1 ) @ € Xa

0

J(Sw*(z))~! 0 <d. (23)
/\7\r+1(1‘)
0
0

Then(z**1, Sw* (2*)) € Z, i.e., the shift initializations ™ := Sw* (2*) for each new problen®(z#+1)
guarantees convergence of the Newton type scheme towards the new optimal sol(tioht).

Proof.  First note thatf (z, u(x)) = f(s§(x), ¢5(x)) and Sw*(z) = (Aj(z),s7(x),...,Ay,1,0,0,0).
Thus it holds that

Vol f(zu@) (Sw*(z) = flsy(2), g (x)) =0
et VLL(0.0) + 5H0,070 = Ay, (2)
V.L(0,0) + 5L(0,0)70
I £(0,0) R )
0 0
= SV, Lu(w*(z)) + 0 =0+ 0
A4 (@) Avt1(@)
0 0
L 0 - L O -
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Therefore, condition (23) is equivalent to
HJ(Sw*(x))_lvw‘cf(mu(z))(sw*($)>|| <d, Vze X,

ie.,
(f(z,u(z)), Sw*(z)) € E, Vxe X,, (24)

and in particular
(f (2, u(@)), Sw*(a*)) = («*1, Sw*(«*)) € 2, VEk €N,

a

A direct consequence of the theorem is that under certain conditions one cannot only guarantee closed loop
stability, but also numerical solvability for all optimization probleméz*), if the initial statez? is in X,

and if the first initial gues®) € D¢ is such thaf| Aw(2°, wl)|| < d (i.e. that(z?,wj) € =). However,

this favorable result was obtained under the assumption that computation times are negligible, i.e., that the
Newton type method can be iterated until convergence at every sampling time.

Remark: A major difference of the real-time iteration scheme as described in Section 2.2 to the ideal
scheme considered in Theorem 3.4 is that the iteratigns?, . . . for problemP(z*), wf — w*(z*), are
terminated prematurely, namely after the first iteration. Instead of initializing each new prétgleit')
by wit! := S(lim; oo wk) = Sw*(2*), we initialize withwi ™+ := Swh = S(wk + Aw(z*, w§) ). For

the real-time iterations, we simply drop the lower iteration index and:%et= w§.

4 Nominal Stability and Decrease of the Optimal Value Function

In this section we will first review a well known result for nominal stability of ideal NMPC, which is based

on a guaranteed decrease of the value function. The line of proof allows us then to examine the influence
of the “input disturbance” introduced by the feedback approximation of the real-time iteration scheme
(compared to ideal NMPC). We will give a bound on the error of the feedback approximation with regard
to the decrease of the value function.

4.1 Nominal Stability for Ideal NMPC

Let us first review the following result for nominal stability of ideal NMPC (cf. [MM90, ABED,
DMSO00]):

Theorem 4.1 (Nominal Stability for Ideal NMPC) Let Assumption 1 hold, and assume thétc X,,.
Then the closed-loop dynamig§*! = f(z*, u(2*)), k = 0,1,.. ., generated by the ideal NMPC |a8)
leads the system state towards the oridimy;,_, ., z* = 0.

Proof: We give an outline of the well known proof here, since this allows us to see that under the for-
mulated assumptions NMPC has some inherent robustness properties, which can be utilized for showing

13



stability of the real-time iteration scheme. As standard in NMPC we use the optimal value fuvi¢tipn
as a Lyapunov function for the closed-loop system. First note that

N

V() = L{z,u(z)) = Y L(s; (2), qf ().
=1
Furthermore it is clear that the shifted state and control vedtgf(z),...,sy(z),0) and
(gf(x),...,q5(x),0), is a feasible (but not optimal) solution for the next optimal control problem

P(f(z,u(x)), with associated costs

N

> L(si(x),4; () + L(0,0).

i=1
Since the optimal codt' (f(x, u(x)) can only be lower than this value, it follows that
V(f(z,u(x))) < V(z) - L(z,u(z)) < V(z) —m]lz|?, (25)
and itis clear thaf (z,u(z)) € X, if z € X,, sothatV(f(x, u(z)) is indeed well defined. Note also that
V() < V(®) —m|2¥)? V2 e X..

As X, is assumed to be compact, the sequenég,cy has at least one accumulation pairite X,,. By
continuity of VV and|| - ||*> we obtain

V(@) < V(a®) —mlla|?

which can only be satisfied if* = 0. a

Remark: Recent results on the robustness of Lyapunov functions for discontinuous difference equa-
tions and results on the stability of NMPC under perturbations suggest that the ideal NMPC controller has
some inherent robustness properties with respect to disturbances under the stated assumptions (in partic-
ular becausé& is continuous). The main observation is that the terfiiz, u(x)) in (25) provides some
robustness with respect to disturbances that might lead to a lower decrease — but no increase — of the value
functionV from time step to time step [SRM97, KT02, Fin03, FIAF02]. Thus, considering the error of an
approximate feedback compared to the ideal NMPC ingut') as a disturbance, it can be assumed that
under certain conditions the closed loop should be stable. We will build on somewhat similar arguments in
the proof of the main result of this paper in Section 6. To prepare this proof, we will first provide a bound

on the error of the feedback approximation due to the real-time iteration scheme.

4.2 An Error Bound for the Feedback Approximation

In the real-time iteration scheme, instead of applying, at statiee ideal NMPC controk(z) := ¢ (z) to
the plant, we employ a feedback approximatign, w) := go + Ago(z, w) that depends not only on the
system state: but also on the current optimizer parameter veator (Ao, So, qo, - - -). Here,Ago(z, w)
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is the first control of the Newton type step vecthw(z, w) = (Alg(z, w), Aso(z, w), Ago(z, w),...).
What matters is the errefz, w) with respect to the descent property (25)

V(f(z,a(z,w))) < V(z) — Lz, @(z,w)) + e(x,w). (26)

The decrease (and thus convergence to the origin) in the value function along the disturbed trajectory is
ensured as long asL(x, u(x,w)) + €(z,w) < 0. The following theorem establishes a bound on the error
e(x,w), which is quadratic in the Newton type step sixe(z, w). It will be used in the proof of stability

for the real-time iteration scheme in Section 6.

Theorem 4.2 (Error Bound for Approximate Feedback)
Suppose Assumptions 1, 2 and 5 hold. Then thergiis-& such that for eacliz, w) € E

V(f(z,90 + Ago(x,w))) < V(z) = L(z,q0 + Ago(w, w)) + pf| Aw(z, w)|*.

The theorem is proven in the appendix, where also a specific value for the cqn&agiven, in Eq. (42).
The purely technical Assumption 5 is also stated in the appendix.

As the theorem states that the er¢Qr, w) is small if the Newton type step sizZew(z, w) is small, we
will in the following section investigate the behaviour|akw(z*, w*)| during the real-time iterations.

5 Contractivity of the Real-Time Iterations

Before being able to prove stability of the real-time iteration schem in Section 6 we need to establish some
convergence properties of the Newton type iterations in the real-time iteration scheme. For this purpose we
recall that the system and optimizer states of the real-time iteration algorithm with shift obey the system-
optimizer dynamics (13):

xk+1 = f(xk7 qlg + Aqo(xk7wk))7

whtl = S(w* + Aw(zk, w")).

To investigate the stability of these combined dynamics we will in this section establish a bound on the size
of the stepsAw” := Aw(x*, w*), which is based on a stricter version of condition (23) in Theorem 3.4,

Assumption 3 There exist constants > 0, n > O witho <1 — ¢ and

m 1m(l—(d+0))
<\ /=01 —=(5+0))d, <- Tl 28
n<y/5 1= (0+0) N TR (28)
such that for all(z, w) € Z, v’ = w + Aw(z, w)

0

J(sw)= | 0 <l + ol Aw(z, w)l. (29)
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Remark: This assumption is critical for the subsequent reasoning. In particular the fagtrhight be
required to be quite small deserves some discussian=#w*(z), thenAw(z, w) = 0 andw’ = w*(z),
so the bound can essentially be seen as a bound on the last mulipligfz) whose modulus can be
interpreted the “shadow price” of the final state constréiity, gv) = 0. For a sufficiently large siz&/
of the optimization horizon we expect the multipligy;, , (=) to decrease, as the cost function itself drives
the system to the steady state, and the constraint becomes less and less important. Therefore, we can argue
that it is reasonable to assume thatan be made sufficiently small by enlarging the optimization horizon
— of course, such an enlargement changes the dimensions of the problem and therefore also tlife matrix
and its inverse, but numerical experiments with ladgdave shown that — for controllable systems — the
vectorsJ (w)~1(0,...,0,17,0,0)T only have significant nonzero elements at the end of the horizon and
are decaying in backwards direction, i.e., their norms do practically not depend on the dim¥nsiote
that the conditioning off is independent oV for controllable systems.

A second, more technical assumption is the following modification of Assumption 2, where the shifting
matrix S'is introduced

Assumption 4 For all w’, w € Dac, Aw = w' —w and allt € [0, 1]
| J(Sw")™'S (J(w + tAw) — Vo, L(w + tAw)) Aw|| < &l|Aw| (30a)
| J(Sw") 'S (J(w + tAw) — J(w)) Aw|| < wt||Aw|?. (30Db)

As before it should be noted that checking Assumption 4 a priori is in general difficult, if not impossible.
The obtained results should rather be seen as a theoretical underpinning of the real-time iteration scheme
than as a constructive approach to pick suitable controller parameters for stability. Under the above two
assumptions we can prove the following lemma.

Lemma 5.1 (Stepsize Contraction for Real-Time Iterations)
Suppose Assumptions 3 and 4 are satisfied. Furthermore, assumérthat®) € = and ¢+ =
f(z* gk + Ago(z¥,w*)) € X,. Then, using the shorthandsw” := Aw(z*,w*) and w*+! =
S(wk + Aw*), the following holds
w
|Aw (@™, w | < (H +o+ EHAw’“II) 1AW+ llz®]| < (6 + o) | Aw® || +nlla®].  (31)

In particular, [|Aw(z*+1 wkh)|| < d, i.e., (xFH whtl) € =

Proof: First note that for any = (Ao, S0, g0, - - -, An+1) € R™ and regardless of € R"~,

VL f(se,q0)(Sw) = SV Lo(w) + 0

16



Letus nowmtroduce for a moment the shortharid= w* + Aw” and observe that**+! = Sw’ and that
ot = f(2*, gk + Agk) = (s}, qb). Therefore, we can deduce similar as in Lemma 3.2 that

[Aw(@*t wb | = | Aw(f(sp, gp), Sw)|
= [|J(Sw) ™ VaLp(syq (Sw)|

J(Sw) ™ | SV Lok (@) + | _yp

|7(Sw' )=t SVwLa(w)]  +  nlla®]| + of| Aw||
(ﬁ+“|\Aw’“II)||Aw’“II +  nlla®] + ol Aw”]
(5 + 0+ $lAwt]) [Aw* | + 52"

(0 +0) | Aw® ]| + nllz*]],

ININAIAIA

where we have made use of Assumption 3 in the 4th transformation and of Assumption 4 in the 5th, as
in the proof of Lemma 3.2. Fromu||z||* < V(z) < «a it follows for all z € X, that|[z|| < /<, and
from ||Aw*|| < d and from the left inequality of (28), we can finally deduce thato(z*+1, Swk+1)|| <

(G+0)d+n/E <0 +0)d+ /Z(1—(0+0))dy/Z =d.
O

The lemma allows us to conclude the following contraction property for the real-time iterétibns*)
(as defined in Egs. (13)), which we use in the following section.

Corollary 5.2 (Shrinking Stepsize for Real-Time Iterations)

Let in addition to Assumptions 1-4 assume that the real-time iterations start with an initialization
(2°,w®) € =, and that for a givery, < o and for somek, > 0 we have thatk < ko : z* € X,,. Then

Vk <ko: (2F w*) € Zand

P - o 2n
[Awk] < (04 o)l Aw’| + S vao with pi= N R (32)

Proof: Inductively applying Lemma 5.1 to the iteratés*! w**+1), we immediately obtain that
(xF wk) € Z, fork = 1,2,..., ko. Similarly one obtains inductively from the contraction inequality (31),
HAw’““H <(6+ J)HAwkH + nllz*||, and the fact thaftz*|| < /22 that

1AWF | < (6 + o) ¥ Aw® | + 1y | 22 Zaﬂ 6+ o)* ||Aw0||+%.

|

We may furthermore ask how many iterations we need to reduce the stepsize such that it becomes smaller
than a given level. However, considering Corollary 5.2 we must expect that they will not become smaller
than the constarff,/ag in Eq. (32). But how many iterations do we need, for example, to push the stepsize
under twice that level?
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Corollary 5.3 (lterations needed for Stepsize Reduction)
Let us in addition to Assumptions 1-4 assume that the real-time iterations start with an initialization
(2%, w®) € =, and that for a givenyy < o we have thatk < kq : z* € X,,, for some

P/ &0
ko > logs, (2Aw°||) (33)

Then
| Awke|| < py/a. (34)

Proof: From (33) we conclude that
(6 + )" Aau’] < £y/as.

This together with (32) yields (34). a

6 Nominal Stability of the Real-Time Iteration Scheme

Equipped with the error bound from Section 4.2 and the contractivity of the real-time iterations from
Section 5 we can finally prove nominal stability of the real-time iteration closed-loop scheme. However,
since the erroe(2*, w*) in the decrease in the value function depends on the real-time steypsizewe

have to investigate two competing effects: on the one hand, the feedback errors may aillmrease

in V (%), instead of the desiredecreasahat was needed to prove nominal stability for ideal NMPC in
Theorem 4.1. On the other hand, we know that the stepgize’s shrink during the iterations, and thus

we also expect the errors to become smaller. Since an increase in the value function might imply that we
leave the level seX,, we will not be able to stabilize with the real-time iteration scheme the whol& set

(at least not ifAw? is too large). Thus, we have to back of a little from the boundarxgfto allow an
increase in the value function without leaviag, until Aw* is small enough to guarantee a decrease of
the value function. For this reason we will distinguish two phases:

e In the first phase we may have an increase of the value fungtjafi), therefore we must allow for
a safety back-off. However, the stepsiziesw”|| can be shown to shrink.

¢ In the second phase, finally, the numerical errors are small enough to guarantee a decrease of both,
V (z*) and||Aw”| and we can prove convergence of iterate’s w"*) towards the origir{0, 0).
6.1 Phase 1: Increase in Objective, but Decrease in Stepsize

Exploiting Corollary 5.3, let us define the numlgrof iterations that are at maximum needed for reduction
of the stepsize under the valpg/« if all iterates stay in the level sétf,,.

Definition 6.1 (k, and =,,) We defing,, to be the smallest integer such that

(07
o > logs (p;df) (35)
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Furthermore, we define our safety back-off set as the set
Battr 1= {(x, w) € 2 |V(:L’) < o — ko pud? } ) (36)
Figure 2 tries to clarify the appearing regions and the key ideas of the complete stability proof.

Theorem 6.1 (Increase of Objective, Decrease of StepsizA&ssume that Assumptions 1-4 and 5 hold
and that(z°, w°) € Z,4,. Then fork = 0, ... k, it holds that(z*, w*) € Z. Furthermore,

[Aw*= | < pVe.

Proof: We make use of Corollary 5.2 and 5.3. To apply them, we first observe tAaw®) € =. It
remains to be shown thaf’, ... 2% € X,. We do this inductively, and show: if for some< k, it
holds that(z*, w*) € = andV (z*) < a + (k — ko )ud? then also(z*+1 wk*t1) € = andV (zF*1) <
a+ (k+ 1 — ky)ud®. To show this we first note thatAw*|| < d as an immediate consequence of
Corollary 5.2. Now from Theorem 4.2 we know that

V(M) < V(ah) — L(aF, u) + pd?
from which we conclude

V(Ik+1) < V(Ik) +’quQ <a+ (k o ka)NdQ +Md2 =+ (k +1— ka)‘udQ.

Remark: The restriction of the initial system staté to the level se{z € X |V (z) < a — kopd? } is
unnecessarily restrictive. On the one hand we neglected the decrddsé, «*) in each step; and on

the other hand an initial stepsizie\w(z", w°)|| considerably smaller tha# would allow the errors in

the decrease condition be considerably smaller th&n Note in particular that an initial iteratg:®, w°)

where the optimizer is initialized so well thit\w (2%, w)|| < py/a directly qualifies for Phase 2, if only
V(2%) < «, without requiring any safety back-off at all. However, to keep the discussion as simple as
possible, we chose to stick to our above definition of the=ggt of states attracted by the origin.

6.2 Phase 2: Convergence towards the Origin

We now show that the real-time iterations — once the errors have become small enough — not only remain
in their level sets, but moreover, are attracted by even smaller level sets. For convenient formulation of the
results of this subsection we first define two constant integers.

Definition 6.2 (k; and k5) Let us define the constarits and k5 to be the smallest integers that satisfy

6(M +m)

1
kl Z and k’Q Z 10g5+g <4>
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Figure 2: lllustration of the sefS and=.;, in the system-optimizeer space of variablesw), and visu-
alization of the iterates during the two phases of the stability proof.
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Theorem 6.2 (Objective and Stepsize Reduction)
Let in addition to Assumptions 1-5 assume that fongn< « and akq > 0 it holds that

V(zk) <ap and [JAwr|| < py/ag.

Then all iteratest > kq are well-defined and also satist(z*) < « and ||Aw*|| < p,/ag. Moreover,

fork > ko + k1 + ko
1 1
V(zF) < 700 and ||Aw"| < p\/zao.

Proof: We prove the theorem in three steps: invariance of level sets, attractivity of a small level set for
z* and reduction of the Newton stef&uw*” ||

Step 1: Well-definedness of all iterates and invariance of the level sets.

The proof is by induction. We assume that for soimg kq it holds thatV (z*) < a and||Aw”| <
p+/g. We will show that then the next real-time iterate is well-defined and remains in the level sets, i.e.,
V(M) < ap and||Aw* || < py/ap.

First note that by the definition gfin (32), byay < «a, and by the left inequality of (28)

L 2 __2/E1-(+0)
Il < e =G VoS VR -t o)

i.e., (zF,w*) € = and the real-time iterate is well-defined. Now, due to Assumptign*l] < ,/92. By
Lemma 5.1 we know that if**t! ¢ X, then

d
va=d

(67
AWM < (8 + o) [Awk (| + nlla™|| < (8 + o)py/ao + m/gO

and therefore, using the definition pfn (32),

8t < oy (6-+0) + 50 - G40 ) = v 57 < oy

It remains to be shown that**! € X, C X,. To show this we first observe that due to the right
inequality of (28) in Assumption 3 we have

m

< "
p= 8(M +m)p

and therefore

ko ko) < ull Awkoll2 < m
(o, wh) < plldw | < g

By Theorem 4.2 we obtailf (z*+1) < V(2*) + ¢y — m||x%||?. We now distinguish two cases:

Qp =: €Q. (37)

a) mljxz"¥||? > 2¢o: we haveV (1) < V(z%) — eg < ap — o < ap.

b) m|z*||> < 2e: because of(z*) < M|/z*|? we have thatl/(z*) < 22L¢, and therefore
V((E/H_l) < 2%60 + e = ia() < g by the definition ofo in (37)
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This completes the first step of the proof.

Step 2: Attraction of the state€ for k > ko + k; by the level SeKia(,-

We already showed that all iterates are well-defined and safti&ff) < ag and||Aw*|| < p,/ag, and
furthermore, that(z*, w*) < €.

To prove the stronger result that the statésare fork > ko + k; in the reduced level seX.,,, we

first show that once one iteraté’ is insideX%ao, all following system states also remain inside. Again,
we distinguish the two cases:

a) m|z* |2 > 2¢0: we haveV (z¥'+1) < V(2*) — e < V(2") < Layg
b) m||z*'||? < 2¢o: as before, we have (") < Lla,.

So let us see how many state’s can at maximum remain outside. . First note that ifiV (z%) > Loy
we also havel/||z*||? > tap = 2Mtme, > 28 e je, mllz*||2 > 2¢. Therefore, for each iterate
that remains outsid& . , , case a) holds, and (z**1) < V(z*) — ¢y. We deduce thal’ (zFo+4F) <

1a0’

ag — Akeg, and therefore fok > ko + S thatV (a#) < ap — SMEm ¢ — 1, by definition (37).

Step 3: Reduction of the stefpdw” || for k > ko + k; + k2 under the levep, /L av.

We already know that all iteratés> ko + k1 satisfyV (z*) < Lag and||Aw”|| < p,/ag. We can now
use Corollary 5.3 with|Aw® || replaced by, /aq, o replaced byt o, andk, replaced bye — (ko + k1),
which yields the proposition:

Py %Olo X 1

By definition ofk; this implies||Aw”|| < py/4aq forall k > ko + k1 + ko. O
Theorem 6.2 allows us to conclude that eaght k- iterations, the level of the objective is reduced by a
factor ofﬁ. This allows us to state the main result of this paper.

Theorem 6.3 (Nominal Stability of the Real-Time Iteration Scheme)

Let us suppose Assumptions 1-5 and assumegiiat®) € =..... Then all system-optimizer states are
well-defined, i.e., satisfiy*, w*) € Z, and for all integergp > 0 andk > k., + p(k; + ko) it holds that
V(z*) < a5 (respectively||z*|| < /= %) and || Aw"|| < py/ass.

Proof: The theorem is an immediate consequence of Theorem 6.1 followed by an inductive application

of Theorem 6.2. Furthermore, becausdz||*> < V(z), the inequalityV(z) < £ implies again

2]l < /5o a

6.3 Discussion

From a practical point of view, the derived result can be interpreted as follows: whenever the system state
is subject to a disturbance, but such that after the disturbance the combined system-optimizer state is in
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the regiorz=,¢,, the subsequent closed-loop response will lead the system towards the origin with a linear
convergence rate, until another disturbance occurs. We would like to stress again, however, that the proof
should not be seen as a construction rule for designing suitable real-time iteration schemes. Instead it gives
a theoretical underpinning of the real-time iteration scheme.

Similar convergence results as for the real-time iteration scheme would also hold true for numerical
schemes where more than one Newton type iteration is performed per sampling time, sacrificing, however,
the instantaneous feedback of the real-time iteration scheme. In the limit of infinitely many iterations per
optimization problem, the s&,;;, would approach the s&and the whole region of attraction of the ideal
NMPC controller would be recovered.

The result can in principle be expanded to other NMPC schemes without a zero terminal con-
straint. However, one should note that we assume that the value function is continuous. As is well
known [MHER95, Fon00], NMPC can also stabilize systems that cannot be stabilized by feedback that
is continuous in the state. This in general also implies a discontinuous value function. In this case the
robustness properties utilized in Section 4.2 and used in Theorem 4.2 do not hold [KT02, GMTTO03a,
GMTTO03b, SRM97] and further precautions must be taken.

7 Summary and Conclusions

We have presented a Newton type method for optimization in NMPC — the real-time iteration scheme
with shift — and have proven nominal stability of the resulting system-optimizer dynamics. The scheme
is characterized by a dovetailing of the dynamics of the system with those of the optimizer, resulting in
an efficient online optimization algorithm which, however, shows intricate dynamics that do not allow to
apply readily available standard stability results from NMPC.

The proof of nominal stability makes use of results from both, classical stability theory for NMPC
as well as from convergence theory for Newton type optimization methods. Among several technical as-
sumptions is one essential one (Assumption 3) that basically requires the disturbances in the optimization
procedure — which are introduced by the movement of the optimization horizon — to be sufficiently small.
We claim that this assumption can in practice always be satisfied by choosing a sufficiently long optimiza-
tion horizon.

The proof of nominal stability gives a theoretical underpinning of the real-time iteration scheme that
has already successfully been applied to several example systems, among them a real pilot-plant distilla-
tion column [DUF 01, DFS"03]. Experience has shown that in practice the real-time iteration scheme
is able to bring the system-optimizer dynamics back into the region of attraction even after rather large
disturbances (cf. [DBS03]).
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Appendix: Proof of Theorem 4.2

In order to be able to prove Theorem 4.2, we will compare approximate solutions of the full prétiem
with those of a shrunk proble®( f (z, @(x,w))), defined as follows.

Definition 7.1 (P(z))

N
min Z L(si, q:) (382a)

S1,...,8N, i=1

qi, ..., 4N
subject to

¥ —s1 =0, (38Db)
f(siaqi)_5i+1207 i:17"'7N_17 (38C)
f(5N7QN) =0. (38d)

Let us also define the projection operalbr R” — R"~(27=+nu) — R7

S
50
A
4o 511
Mw=0| M |=| . |=w
S1 .
AN+1
[ AN+41 ]

which simply removes the first components framec R”, to yield a vectord € R™ in the primal-dual
space of problenP(-), and we assume compatible normsRifi andR™ in the sense thatllw|| < |jw||
and ||[TI”w| = |l@||. Let us define the Lagrangiafy, () of P(x) in a straightforward way, and the
corresponding second derivative approximatikir), which can be shown to b&(w) = ILJ(IT7w)117.
We define the set

X = {2 e R™ |3(z,w) € Z: o' = f(z,q + Ago(z,w))}
and assume solvability d?(z') for all 2/ € X, and we define

Doc = {ﬁ) eR"

W' e X | — o ()] < 20}

and make the analogon to Assumption 2[s-, plus some additional technical assumptions.

Assumption 5 We assume that the Lagrangian functifp is twice continuously differentiable abye
and that each solutiow*(x) exists and is uniquely determinediibc, i.e.,

Vo € X,V € Dyc\{*(2)} : VLo () # 0. (39a)
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We also assume thatis continuous oDyc and thatJ(w) is invertible for allé € D¢, and that for all
W, W € Doc, A = w' —w and allt € [0, 1] it holds that

Hj(uv’)—l (j(zb +tAD) — VEL(D + tAzD)) M;H < k||Ad| (39b)
and that } . .
HJ(@/)*1 (J(uv +tAD) — J(w)) AH;H < wt|| AG|2. (39¢)
Let us furthermore assume that for all, w € Doe, Aw = w’ —w and allt € [0, 1] it holds that

Hj(mu')fln (J(w + tAw) — V2 L(w + tAw)) AwH < k|| Aw| (40a)

and that
Hj(nw')—ln (J(w + tAw) — J(w)) AwH < wt|| Aw|. (40b)

We also assume the following bound on the Hessian of the Lagrasigfan:
V2 L(w)|| < B, Yw € Dyc. (41)

By assumptions (39), we can guarantee numerical sqlvabilitl?(af) by the Newton type scheme as in
Corollary 3.3, if for someiy it holds that||.J (@) ™'V 4 L. (W0)|| < d. Note thatP(z) needs never be
solved in practice, but that this is only a hypothetical scheme which helps to establish the error bound.

Proof of Theorem 4.2 Now we are able to prove the theorem, with

5 2
u:=2B (1_5> . (42)
We first define the shorthand$ := f(z, ¢o + Ago(x, w)) andAw := Aw(z,w). We will compare three
vectors inR™:
e the solutionw*(z) of P(z),
o the first stepy’ := w + Aw towards this solution, and

e an augmented version of the solution veaidi(z') of P(z’) defined as
@ =TT (') + (I, — T M)w’,
so that, more intuitivelyi* = (X}, sb, gh, A ('), 55 (2),...).

We will show that all three vectors are i, and, to obtain a bound on the distance betweéfx) and
@* that

and ||&* — ' < (43)

lw* () —w'|| <

S| Aw]] S| Aw]]
1-46" 1-46°

Clearly, the vectorw*(z) is in D2 and becausér, w) € = the first stepu’ is also inDyc. Furthermore,

the left inequality forw* () was already proven in Corollary 3.3. Fét', we first note thafjw* — w'|| =

|07 (w*(2') — Tw')|| = ||@* (x") — Iw'||. We consider hypothetical Newton type iterat@s w1, . . . for
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solution of P(z'), started at the initial guesg, := ITw’. To show that these iterates are well-defined, let
us first bound the size of the first stelwp, := Aw(z’, wy). Because

. ' — s f(z,q0 + Ago(z,w)) — &
(T = .1][( 0 .0( ) = s

f(s0,90) = 51

<
gl
S
H\
=
<
I

= vaﬁm (w/) )

we have by adding = V,, L, (w) + J(w)Aw to the defining equation akw,

~Ady =

J(@0) Vg Ly (0)
= J(t0) "M (VarLar () — (VLo (w) + T (w) Aw)) (44)
= J(wo) MI(VpLy(w') — Vi Ly(w) — J(w)Aw)

Therefore we can bound

[AT|| = [[J(W0) ML (Vi La(w') — Vi Ly (w) — J(w)Aw) ||
1T (0) ™ML [y (V2 L(w + tAw) — J(w))Aw di|
= | fol j(Hw')_lﬂ(Vfuﬁ(w + tAw) — J(w + tAw))Aw dt
+ [ T (M) I (w + tAw) — J(w)) Aw dt |
< rAwl| + fy ot Aw|? dt = (k4 2] Aw]]) |Aw]| < 5| Aw],

due to assumptions (40). After having established a bound on the firgksigpf the hypothetical iterates,
we conclude with assumptions (39) from the standard convergence result for Newton type iterates that the
limit lim; o, w; = W, (2') satisfies

| Aol _ ]| Aw|
1-6 = 1-6"

[ (") — o] <

so that we have shown the right inequality of (43). With (43) we can now conclude that

5] Aw]|

7 — w*(z)]| < 2
lo* —w*(2)l| < 2= —

(45)
in particular thato*" € D,c. We now compare the objective values of the two vectotsr) andw* . The
objective contributions can be expressed in terms of the Lagranién, because bothy*(x) andw*
are feasible points foP(z):

N
Vi)=Y L(s;(x),q (2)) = Lo(w*(x))
=0
and v
L(z, g0 + Aqo(x, w)) + V(') = L(sp, q0) + Z L(3(2), G (1) = La(w™).
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Therefore, we can compare
1£2(@) = La( @Dl = Iy Tawka(w (@) + 1(@" = w*(@)T (@ —w(w)) dt
= 1o (Jo! VAL (@) + o'~ (2))) (@ " (2)) db ) (0" ~w* (x)) dt |

’ 1 ot ’ ) T ’
@~ @) (o Jo? VAL + (i —w (@) de diy ) ("'~ ()]
Zl

IN

o —w* ()%,

where we have made use of the fact tRat L, (w*(z)) = 0. Together with (45) we can now obtain the
bound

(7 (! B (SHA’wH 2
_ < Z (o — 0
Liz,qo + Ago(w,w)) + V(') = V(a) < 5 (255
and together with the property that(z') < V(z') = Zf\;l L(s:(«"),q («")), as in the proof of
Theorem 4.1, we immediately obtain the error bound of Theorem 4.2 iwgitien by (42). a
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