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Abstract

We present and investigate a Newton type method for online optimization in nonlinear model predic-
tive control, the so called “real-time iteration scheme”. In this scheme only one Newton type iteration
is performed per sampling instant, and the control of the system and the solution of the optimal control
problem are performed in parallel. In the resulting combined dynamics of system and optimizer, the ac-
tual feedback control in each step is based on the current solution estimate, and the solution estimates are
at each sampling instant refined and transferred to the next optimization problem by a specially designed
transition. This approach yields an efficient online optimization algorithm that has already been suc-
cessfully tested in several applications. Due to the close dovetailing of system and optimizer dynamics,
however, stability of the closed-loop system is not implied by standard nonlinear model predictive control
results. In this paper, we give a proof of nominal stability of the scheme which builds on concepts from
both, NMPC stability theory and convergence analysis of Newton type methods. The principal result is
that – under some reasonable assumptions – the combined system-optimizer dynamics can be guaranteed
to converge towards the origin from significantly disturbed system-optimizer states.

1 Introduction

Nonlinear model predictive control (NMPC) is a feedback control technique that is based on the real-time
optimization of a nonlinear dynamic process model. It has attracted increasing attention over the past
decade, in particular in chemical engineering [QB01, Hen98, MRRS00]. Among the advantages of NMPC
are the flexibility provided in formulating the objective and the process model and the capability to directly
handle equality and inequality constraints on states and inputs.

One important precondition for the application of NMPC, however, is the availability of reliable and
efficient numerical dynamic optimization algorithms, since at every sampling time a nonlinear dynamic
optimization problem must be solved. Solving such an optimization problem efficiently and fast, however,
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is not a trivial task and has attracted strong research interest in recent years (see e.g. [Wri96, BWB00,
TR01, Bie00, LB89, OB95b, TWR02, MBF02]).

Most approaches use classical off-line dynamic optimization algorithms to solve the optimization prob-
lems arising in NMPC. They do this as fast as possible, and once the solution has been computed, the
obtained control is applied to the system to be controlled. If the system is slow and the computer fast, the
feedback delay due to the computation time is short compared to the timescale of the system, and classical
stability theory for NMPC [MM90, ABQ+99, DMS00] can be assumed to hold true. In practical appli-
cations, however, in particular for large-scale systems, the optimizer cannot be assumed to be infinitely
fast compared to the system. A possible approach to take account of the computation time is to predict
the state at the time we expect the optimization to be finished and carry out the optimization for this pre-
diction [FA03, CBO00], allowing to prove nominal stability; however, this approach may still result in a
considerable delay of the feedback response to disturbances.

In contrast to the classical approaches, the “real-time iteration” scheme [DBS+02, Die02, DFS+02] –
that is the focus of this paper – reduces sampling times and feedback delay by a dovetailing of the dynamics
of the system with the dynamics of the optimization algorithm. In principle only one optimization iteration
is performed per sampling instant and the obtained estimate for the optimal solution is shifted suitably
to allow overall fast convergence. The approach allows to efficiently treat large-scale systems [FDU+02]
or systems with short timescales [DBS03] on standard computers, thus pushing forward the frontier of
practical applicability of NMPC. In its actual implementation for continuous time systems, the scheme is
based on the direct multiple shooting method within the optimal control package MUSCOD-II (Leinewe-
ber [Lei99]), and it has already been successfully applied for the NMPC of a real pilot plant distillation
column [DUF+01, DFS+03].

However, to concentrate on the essential features of the method and – most important – on a proof of
nominal stability of the scheme, we restrict the presentation in this paper to a strongly simplified NMPC
scheme for discrete time systems, as follows.

1.1 Discrete Time Nonlinear Model Predictive Control

Throughout this paper, we consider the following nonlinear discrete time system:

xk+1 = f(xk, uk), k = 0, 1, 2, . . . , (1)

with system statesxk ∈ Rnx and controlsuk ∈ Rnu . We assume thatf : Rnx × Rnu → Rnx is twice
continuously differentiable, and, without loss of generality, that the origin is a steady state for (1), i.e.
f(0, 0) = 0.

The aim of NMPC is to find controlsuk = u(xk) that depend on the current system statexk and that are
optimal with respect to a specified objective on a moving horizon, which implicitly captures the desire that
the system converges towards the steady state. We will denote the predicted states and controls bysi and
qi, in order to distinguish them from the statesxk and controlsuk of the real system. For the derivations
considered in this paper we assume that the objective minimized at every time instantk is given by

N∑

i=0

L(si, qi),

wheresi, i = 0, . . . , N is the predicted state over the fixed prediction horizonN ∈ N starting fromxk
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considering a predicted input sequence(q0, q1, . . . , qN ):

si+1 = f(si, qi), i = 0, . . . , N, s0 = xk.

We assume that the stage costL : Rnx × Rnu → R is twice continuously differentiable, thatL(0, 0) = 0,
and that there is am > 0 such that

L(x, u) ≥ m‖x‖2, ∀ x ∈ Rnx , u ∈ Rnu . (2)

A typical choice forL is e.g.L(x, u) = xT Qx + uT Ru with positive definite matricesQ andR.
Given this setup, the input applied in NMPC is defined as the first inputq∗0 of the optimal1 predicted

input sequence(q∗0 , . . . , q∗N ):
u(xk) := q∗0(xk). (3)

The closed loop system then obeys the “ideal-NMPC dynamics”

xk+1 = f(xk, u(xk)), (4)

and one central question in NMPC is if the closed loop system (4) is stable. This question has been
examined extensively over recent years and a variety of NMPC schemes exist that can guarantee stability,
see e.g. [MM90, ABQ+99, DMS00]. For the purposes of this paper we enforce stability using a so called
zero terminal constraint in the prediction, i.e.

sN+1 = 0, (or, equivalently, f(sN , qN ) = 0)

and we will provide a nominal stability result in Theorem 4.1.
Summarizing, in NMPC we proceed by solving a sequence of optimization problemsP (xk) of the

following form:

Definition 1.1 (P (x))

min
s0, . . . , sN ,
q0, . . . , qN

N∑

i=0

L(si, qi) (5a)

subject to

x− s0 = 0, (5b)

f(si, qi)− si+1 = 0, i = 0, . . . , N − 1, (5c)

f(sN , qN ) = 0. (5d)

As said, the vectorssi, qi are introduced to avoid confusion with the real system statesx and the inputsu.
Note that the optimal solution(s∗0(x), . . . , s∗N (x), q∗0(x), . . . , q∗N (x)) of P (x), if it exists, satisfiess∗0(x) =
x, and – because of the definition of the “ideal NMPC control” in (3) – alsoq∗0(x) = u(x).

1Optimal values are in the following denoted by a star.
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Assumption 1 For all initial valuesx in an open setX ⊂ Rnx that contains the origin, problemP (x)
has a unique optimal solution(s∗0(x), . . . , s∗N (x), q∗0(x), . . . , q∗N (x)), and the value functionV (x) which
is defined via the optimal cost for everyx by

V (x) :=
N∑

i=0

L(s∗i (x), q∗i (x)) (6)

is continuous on this setX. Furthermore, there is a (possibly large)M > 0 such thatV (x) ≤ M‖x‖2
∀x ∈ X.

Note that the steady state trajectory(0, 0, . . . , 0) is the solution ofP (0) and has optimal costV (0) = 0, and
that because ofV (x) ≥ L(x, q∗0(x)) ≥ m‖x‖2 we also haveV (x) > 0, ∀x ∈ X\{0}. In the remainder of
this paper we are not interested in the setX, but rather in the largest compact level set ofV that is contained
in X. Thus in the following we consider a fixedα > 0 such that

Xα := {x ∈ X|V (x) ≤ α} ⊂ X, (7)

is maximal and thatXα is compact. Clearly,Xα contains a neighborhood of the origin. This setXα

corresponds to the region of attraction of the ideal NMPC controller: for allx0 ∈ Xα we can prove
asymptotic stability of the ideal NMPC dynamics (4), i.e.,limk→∞ xk = 0, as will be stated in Theorem 4.1
in Section 4.1.

Remark: In practical applications, inequality path constraints of the formh(xi, qi) ≥ 0, like bounds
on controls or states, are of major interest, and should be included in the formulation of the optimization
problemsP (x). For the purpose of this paper we leave such constraints unconsidered, since general con-
vergence results for Newton type methods with changing active sets are difficult to establish. However, we
note that in the practical implementation of the real-time iteration scheme they are included.

1.2 Sequential versus Simultaneous Solution Approaches

Existing numerical schemes for NMPC optimization can roughly be subdivided intosequentialandsimulta-
neoussolution strategies [BBB+01, BR91b, Pyt99]. In thesequentialapproach, the system equations (5b)
and (5c) are used to eliminate the states(s0, . . . , sN ) from the optimization problem, regarding them as a
function of the controls(q0, . . . , qN ), and substitutes these functions into the objective (5a) and the terminal
constraint (5d); thus, the system equations and the optimization problem are treated sequentially, one after
the other, in each optimization iteration. Many real-time optimization schemes for NMPC are based on this
approach. However, sequential optimization schemes for NMPC often suffer from the drawback that poor
initial guesses for the control trajectory may lead the predicted state trajectories far away from the desired
reference trajectory; in particular, it may be difficult to satisfy the terminal constraint (5d); therefore, the
sequential approach often causes an unnecessarily strong nonlinearity of the resulting optimization problem
and poor convergence behaviour, especially for unstable systems. In some cases, an open-loop simulation
on a longer horizon is even impossible.

In contrast to this, thesimultaneousapproach avoids this difficulty by keeping both, the controland
the state in the optimization problem, and treating the problemP (x) exactly as it is formulated in (5), thus
solving system equations and optimization problem simultaneously. Though the resulting optimization
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Figure 1: ProblemP (x): initial valuex and NLP variabless0, . . . , sN andq0, . . . , qN .

problem in the variables(s0, . . . , sN , q0, . . . , qN ) may be large-scale, it has a favourable structure and can
be efficiently solved, and instability and nonlinearity of the dynamic model can be better controlled. Note
that for some guess of the optimization variables, the state trajectory(s0, . . . , sN ) need not necessarily
satisfy the system equations (5b) and (5c) (for a visualization, see Fig. 1), but that a solution trajectory of
course satisfies all constraints. The real-time iteration scheme is based on this simultaneous approach.

1.3 Online NMPC and System-Optimizer Dynamics

In ideal NMPC it is assumed that the feedbacku(xk) is available instantaneously at every sampling time
k. However, in practice usually no explicit solution to the problemP (xk) is available, and the numerical
solution requires a non negligible computation time and involves some numerical errors. We typically
know each initial valuexk only at the timek when the corresponding controluk is already required for
implementation. Thus, instead of implementing the ideal NMPC controlu(xk) we have to use some quickly
available approximatioñu(xk, wk), where the additional argumentwk indicates a data vectorwk ∈ Rn

that we use to parameterize the control approximation. These data are generated by an online optimization
algorithm, and they may be updated from one time step to the next one, according to the lawwk+1 =
F (xk, wk), where the argumentxk takes account of the fact that the update shall of course depend on the
current system state. To achieve this the computations performed are thus divided in two parts

1. Preparation: computation ofwk = F (xk−1, wk−1), and generation of the feedback approximation
functionũ(·, wk), during the transition of the system from statexk−1 to xk.

2. Feedback Response: At timek, give the feedback approximationuk := ũ(xk, wk) to the system,
which then evolves according toxk+1 = f(xk, uk).

From a system theoretic point of view, instead of the ideal NMPC dynamics (4), we now have to investigate
the combined system-optimizer dynamics

xk+1 = f(xk, ũ(xk, wk)), (8a)

wk+1 = F (xk, wk). (8b)
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The difficulty in the analysis of the closed-loop behavior of this system stems from the fact that the two
subsystems mutually depend on each other.

The real-time iteration scheme investigated in this paper is one specific approach to online NMPC,
where the data vectorwk is essentially a guess for the optimal solution trajectory ofP (xk). The data update
law wk+1 = F (xk, wk) shall provide iteratively refined solution guesses, and is derived from a Newton
type optimization scheme. The approximate feedback lawũ(xk, wk) can be considered an (essential) by-
product of this Newton type iteration scheme.

1.4 Organisation of the Paper

The principal aim of the paper is to prove a nominal stability result for the system-optimizer dynamics (8)
due to the real-time iteration scheme. The investigation has to combine concepts from both, classical
stability theory for NMPC as well as from convergence theory for Newton type optimization methods.

In Section 2 we introduce the real-time iteration scheme and its combined system-optimizer dynamics
in xk and wk. Section 3 contains a detailed discussion of the convergence properties of Newton type
methods for NMPC and a convergence result for ideal NMPC optimization with a shift initialization for
each new optimization problem. In Section 4 we review a nominal stability result for ideal NMPC that
is based on a decrease of the optimal value functionV (xk) in each time step, and in Subsection 4.2 we
give a bound on the errors due to the feedback approximationũ(xk, wk) in the real-time iteration scheme,
with respect to the decrease of the value function. In Section 5 we analyze the contraction properties of the
optimizer stateswk under the assumption that the system statesxk stay in the level setXα. In Section 6
we finally combine the results of Section 4.2 and Section 5 to prove convergence of the real-time iteration
NMPC scheme, and in Section 7 we conclude the paper with a short summary.

2 Real-Time Iteration Scheme

In order to characterize the solution of the optimization problemP (x) we introduce the Lagrange mul-
tipliers λ0, . . . , λN for the constraints (5c) andλN+1 for (5d), and define the Lagrangian function
Lx(λ0, s0, q0, . . .) of problemP (x) as

Lx(·) :=
∑N

i=0 L(si, qi) + λ0
T (x− s0) +

∑N−1
i=0 λi+1

T (f(si, qi)− si+1) + λN+1
T f(sN , qN ).

We assume in the following thatLx is twice continuously differentiable in its arguments over the consid-
ered regions. Summarizing all variables in a vectorw := (λ0, s0, q0, . . . , λN , sN , qN , λN+1) ∈ Rn, the
necessary optimality conditions of first order forP (x) are:

∇wLx(w) =




x− s0

∇xL(s0, q0) + ∂f
∂x (s0, q0)T λ1 − λ0

∇uL(s0, q0) + ∂f
∂u (s0, q0)T λ1

...
f(sN−1, qN−1)− sN

∇xL(sN , qN ) + ∂f
∂x (sN , qN )T λN+1 − λN

∇uL(sN , qN ) + ∂f
∂u (sN , qN )T λN+1

f(sN , qN )




= 0. (9)
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One possible solution method for this set of nonlinear equations is to use Newton type iterations, as outlined
in the following.

2.1 Newton Type Iterations

Starting at some guessw for the optimal solution ofP (x), the Newton type methods investigated in this
paper compute a corrected iteratew′ = w + ∆w(x, w) towards the exact solution by

∆w(x,w) := −J(w)−1 ∇wLx(w), (10)

whereJ(w) is an approximation of the second derivative∇2
wLx(w). Note that∇2

wLx – often called
Karush-Kuhn-Tucker (KKT)matrix – is independent of the initial valuex, which enters the Lagrangian
Lx(w) only linearly. The index argumentx can therefore be omitted for the KKT matrix, i.e., we will
write ∇2

wL(w) in the sequel. Of course, its approximationJ(w) shall also be independent ofx, and
we assume in the following thatJ(w) is continuous over the considered regions. Moreover, the steps
∆w(x,w) = (∆λ0(x,w), s0(x,w), . . .) shall have the property thats′0 = s0 + ∆s0(x,w) = x, i.e., that
the linear initial value constraint (5b),x−s0 = 0, is satisfied after one Newton type iteration. This is easily
accomplished by noting that the firstnx rows of∇2

wL(w) are constant, cf. (11), and choosing them to also
be the firstnx rows ofJ(w).

We mention here that the Lagrangian functionLx of the optimal control problem ispartially separable
and its second derivative therefore has a block diagonal structure,

∇2
wL(w)=

266666664
−I

−I Q0 M0 AT
0

MT
0 R0 BT

0
A0 B0

... −I
−I QN MN AT

N

MT
N RN BT

N
AN BN

377777775 , (11)

which should also be chosen to be the structure ofJ(w), and which should be exploited in the actual
implementation of the Newton type method.

2.2 Real-Time Iteration Algorithm with Shift

Let us assume that during the transition from one sampling instant to the next we only have time to perform
one Newton type iteration. To allow fast convergence while the process evolves, the real-time iteration
scheme is based on a suitable transition between subsequent problems. After an initial disturbance it
subsequently delivers approximationsuk for the optimal feedback control that allow to steer the system
close to the desired steady state, as will be shown in Section 6, under suitable conditions.

Furthermore, as shown in [Die02], the computations of the real-time iteration belonging to problem
P (xk) can largely be preparedwithout knowledge of the value ofxk, so that the approximationuk of the
optimal feedback control is practically available at the timek. To underline the basic idea, suppose that
the inverseJ(w)−1 is available in explicit form (which is in practice never computed). Therefore one can
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write (10) as 


∆λ0

∆s0

∆q0

...


 = −




· · · ·
−Inx

· · ·
K(w) · · ·

...
. ..




[
x− s0

...

]
. (12)

The real-time iteration scheme with shift initialization proceeds now as follows:

1. Preparation: Based on the current guesswk = (λk
0 , sk

0 , qk
0 , λk

1 , sk
1 , qk

1 , . . . , λk
N , sk

N ) compute all
components of the vector∇wLxk(wk) apart from the first one, and compute the matrixJ(wk).
Prepare the linear algebra computation for the implicit representation of the inverse-vector product
J(wk)−1∇wLxk(wk) as much as possible without knowledge of the value ofxk (a detailed de-
scription how this can be achieved is given in [DBS+02] or [Die02]). Essentially, this amounts to
providing the matrixK(wk) as in (12).

2. Feedback Response: At the timek, whenxk measured, compute the feedback approximationuk =
ũ(xk, wk) := qk

0 −K(wk)(xk − sk
0) and apply the controluk immediately to the real system.

3. Transition: Compute the next initial guesswk+1 by first adding the step vector∆wk to wk and then
shifting all variables to account for the movement in time. That is, computewk+1 as

wk+1 := S
(
wk + ∆wk) = S( wk − J(wk)−1 ∇wLxk(wk)

)
,

whereS is a shifting matrix operating on

w =




λ0

s0

q0

λ1

s1

q1

·
·
·

λN

sN

qN

λN+1




such that Sw =




λ1

s1

q1

·
·
·

λN

sN

qN

λN+1

0
0
0




.

Continue by settingk = k + 1 and going to 1.

In contrast to the ideal NMPC feedback closed loop (4), in the real-time iteration scheme we have to regard
combined system-optimizer dynamics of the form (8), which are given by

xk+1 = f
(
xk, qk

0 −K(wk)(xk − sk
0)

)
=f

(
xk, qk

0 + ∆q0(xk, wk)
)

(13a)

wk+1 = S
(

wk − J(wk)−1 ∇wLxk(wk)
)

=S
(

wk + ∆w(xk, wk)
)
. (13b)

In the remainder of the paper we concentrate on investigating the nominal stability of these system-
optimizer dynamics.
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2.3 Connection to Existing Approaches

Several features of the algorithm have been presented by other researchers for real-time optimization in
NMPC. In particular, a one-iteration scheme has been proposed by Li and Biegler in [LB89] for the se-
quential approach. For this scheme even a stability result is derived, that is, however, only applicable to
stable systems. In the application of classical off-line optimization schemes to on-line control, the question
of how to initialize subsequent problems has found some attention in the literature [BR91a, LEL92], and a
shift strategy has been proposed, e.g., by de Oliveira and Biegler [OB95a] for the sequential approach.

3 Local Convergence of Newton Type Optimization

In this section we present results on the convergence properties of Newton type methods for optimization
in NMPC that lay the basis for the discussion in all subsequent sections.

3.1 Local Convergence for a Single Optimization Problem

In a first step we review a local convergence result of Newton type optimization for the solution of one
fixed optimization problem (i.e. no shift ofw after each iteration). Thus we consider in this subsection a
fixed x ∈ Xα and we will denote in the following byw0 an (arbitrary) initial guess for the primal-dual
variables of problemP (x). A standard Newton type scheme proceeds by computing iteratesw1, w2, . . .
according to

wi+1 := wi + ∆wi, ∆wi := ∆w(x,wi) = −J(wi)−1∇wLx(wi).

The following standard result states conditions that ensure the convergence of the iterates (for fixedx) from
the initial guessw0 to a point that satisfies the first order necessary conditions:

Theorem 3.1 (Local Convergence of Newton Type Optimization)
Assume thatJ(w) is invertible for all w ∈ D, whereD ⊂ Rn. Furthermore, assume that there exist
constantsκ < 1, ω < ∞ such that for allw′, w ∈ D, ∆w = w′ − w and all t ∈ [0, 1]

∥∥J(w′)−1
(
J(w + t∆w)−∇2

wL(w + t∆w)
)
∆w

∥∥ ≤ κ‖∆w‖, (14a)∥∥J(w′)−1 (J(w + t∆w)− J(w))∆w
∥∥ ≤ ωt‖∆w‖2, (14b)

that the the first step∆w0 := −J(w0)−1∇wLx(w0) is sufficiently small, such that

δ0 := κ +
ω

2
‖∆w0‖ < 1, (14c)

and that the ballB0 :=
{

w ∈ Rn| ‖w − w0‖ ≤ ‖∆w0‖
1−δ0

}
is completely contained inD. Then the Newton

type iteratesw0, w1, . . . are well-defined, stay in the ballB0, and converge towards a pointw∗ ∈ B0

satisfying∇wLx(w∗) = 0.

Remark: We would like to mention that the assumptions made are standard assumptions for the con-
vergence of Newton type methods (see e.g. [Boc87]). One should note that in general it is rather difficult
to check the conditions a priori, but that a posteriori estimates can be obtained when the Newton type
iterations are carried out.

For the proof of the theorem we need the following lemma:
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Lemma 3.2 (Contraction Rate)
Under the same assumptions as in Theorem 3.1 the Newton type iterates satisfy the contraction property

‖∆wi+1‖ ≤
(
κ +

ω

2
‖∆wi‖

)
‖∆wi‖ =: δi‖∆wi‖. (15)

Proof of Lemma3.2: We prove the lemma using a standard arguments for convergence of Newton type
methods (see e.g. [Boc87]):

‖∆wi+1‖ = ‖J(wi+1)−1 · ∇wLx(wi+1)‖
= ‖J(wi+1)−1 · (∇wLx(wi+1)−∇wLx(wi)− J(wi) ·∆wi)‖
= ‖J(wi+1)−1 · ∫ 1

0
(∇2

wL(wi + t∆wi)− J(wi)) ·∆wi dt‖
= ‖J(wi+1)−1 · ∫ 1

0
(∇2

wL(wi + t∆wi)− J(wi + t∆wi))∆wi dt

+J(wi+1)−1 · ∫ 1

0
(J(wi + t∆wi)− J(wi))∆wi dt‖

≤ ∫ 1

0
‖J(wi+1)−1 (∇2

wL(wi + t∆wi)− J(wi + t∆wi))∆wi‖ dt

+
∫ 1

0
‖J(wi+1)−1 (J(wi + t∆wi)− J(wi))∆wi‖ dt

≤ κ‖∆wi‖+
∫ 1

0
ωt‖∆wi‖2 dt

=
(
κ + ω

2 ‖∆wi‖
) ‖∆wi‖ = δi‖∆wi‖.

Proof of Theorem 3.1: Using Lemma 3.2 we first observe thatδi+1 ≤ δi and that

‖∆wi‖ ≤ δi−1δi−2 . . . δ0‖∆w0‖ ≤ (δ0)i‖∆w0‖.

so that

‖wi − wi+m‖ ≤ ‖∆wi‖+ . . . + ‖∆wi+m−1‖ ≤ (δ0)i‖∆w0‖
1− δ0

i.e.,w0, w1, w2, . . . is a Cauchy sequence and remains in the (compact) ballB0, and thus converges towards
a pointw∗ ∈ B0. This point satisfies∇wLx(w∗) = 0 due to continuity of∇wLx(·) and boundedness ofJ
on the compact ballB0, as

‖∇wL(w∗)‖ = lim
i→∞

‖∇wL(wi)‖ = lim
i→∞

‖J(wi)∆wi‖ ≤ ‖J‖max lim
i→∞

‖∆wi‖ = 0.

3.2 Local Convergence for a Class of Optimization Problems

We will tailor in this subsection the results of the previous subsection to the NMPC problem. For this
purpose we need to define two setsDC ⊂ D2C which are defined in terms of a fixedC > 0

DC := {w ∈ Rn |∃x ∈ Xα, ‖w − w∗(x)‖ ≤ C } (16)

D2C := {w ∈ Rn |∃x ∈ Xα, ‖w − w∗(x)‖ ≤ 2C } , (17)

wherew∗(x) is the primal-dual solution of problemP (x), and whereXα is the maximum level set ofV
in X as introduced in 1.1. Given these sets we can now state the assumptions necessary for the following
corollary.
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Assumption 2 Each solutionw∗(x) is unique inD2C , i.e.,

∀x ∈ Xα,∀w ∈ D2C\{w∗(x)} : ∇wLx(w) 6= 0, (18a)

and J(w) is invertible on∈ D2C . Furthermore there exist constantsω < ∞, κ < 1 such that for all
w′, w ∈ D2C , ∆w = w′ − w and all t ∈ [0, 1]

∥∥J(w′)−1
(
J(w + t∆w)−∇2

wL(w + t∆w)
)
∆w

∥∥ ≤ κ‖∆w‖ (18b)∥∥J(w′)−1 (J(w + t∆w)− J(w))∆w
∥∥ ≤ ωt‖∆w‖2. (18c)

The following two scalarsd andδ will be used throughout the paper.

Definition 3.1 Given a fixedC > 0, that shall be chosen as large as possible such that Assumption 2
holds, we define the positive scalars

d :=
C(1− κ)
1 + ω

2 C
and δ := κ +

ω

2
d. (19)

Note that

δ =
κ + ω

2 C

1 + ω
2 C

< 1. (20)

Now we can state the following corollary giving conditions for the convergence of Newton type methods
for NMPC:

Corollary 3.3 (Local Convergence of Newton type methods for NMPC problems)
Suppose Assumption 2. If for somex ∈ Xα and somew0 ∈ DC it holds that‖∆w(x,w0)‖ ≤ d, then the
Newton type iterateswi for the solution of∇wLx(w) = 0, initialized with the initial guessw0, converge
towards the solutionw∗(x). Furthermore, the iterates remain inDC .

Proof: We start by noting thatC = d
1−δ . The ballB0 of Theorem 3.1 is contained in the ball{w′ ∈

Rn| ‖w′ − w0‖ ≤ C}, which itself is contained in the setD2C , asw0 ∈ DC . Therefore, there is a
solutionw∗ ∈ D2C satisfying∇wLx(w∗) = 0, which must be equal tow∗(x) due to the uniqueness
assumption (18a). Furthermore, the distance of iteratewi from w∗(x) is bounded by

‖wi − w∗(x)‖ ≤ ‖∆wi‖
1− δi

≤ d

1− δ
= C, (21)

i.e.,wi ∈ DC .

In the remainder of the paper we will consider fixed values forα andC and assume that Assumption 2
is satisfied. Furthermore, we will often refer to the setΞ defined as follows:

Definition 3.2 (Ξ)

Ξ := {(x,w) ∈ Rnx × Rn |x ∈ Xα, w ∈ DC , ‖∆w(x,w)‖ ≤ d} (22)

This setΞ contains all pairs(x,w) for which Corollary 3.3 ensures numerical solvability. Note thatΞ is
nonempty, as it contains at least the points(x,w∗(x)), ∀x ∈ Xα, and their neighborhoods.
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3.3 Local Convergence for Ideal NMPC with Shift Initialization

We are now interested what influence a shift initialization has on the Newton type solution of two con-
secutive ideal NMPC problemsP (xk+1) andP (xk). In other words, we want to investigate under which
conditions a shifted version of the previous solution,w∗(xk), i.e., settingwk+1

0 := Sw∗(xk), leads to
convergence of the Newton scheme at timek. Herew∗(xk) denotes the optimal solution at timek, while
wk+1

0 denotes the initialization of the Newton type iterationwk+1
0 , wk+1

1 , . . ., at timek + 1, which is given
by the iteration rulewk+1

i+1 := wk+1
i + ∆w(xk+1, wk+1

i ) and satisfywk+1
i → w∗(xk+1) if the initial guess

wk+1
0 is sufficiently close to the solution, i.e., if(xk, wk+1

0 ) ∈ Ξ.
Note that the shifted initialization has the advantage that the initial value constraint (5b) of the new

problem is already satisfied. But is this initialization close enough to the exact solutionw∗(xk) to guarantee
local convergence?

The following theorem gives a partial answer to this question; roughly speaking, the shift provides a
good initialization if the lengthN of the optimization horizon is chosen sufficiently big, so that the zero
terminal constraint (5d) is not to strongly active, i.e., that the last multiplierλN+1 is sufficiently small.

Theorem 3.4 (Numerical Solvability for Ideal NMPC with Shift)
Assume that for allw∗(x) = (λ∗0, s

∗
0, . . . , λ

∗
N+1), x ∈ Xα

∥∥∥∥∥∥∥∥∥∥∥∥∥

J(Sw∗(x))−1




0
...
0

λ∗N+1(x)
0
0




∥∥∥∥∥∥∥∥∥∥∥∥∥

≤ d. (23)

Then(xk+1, Sw∗(xk)) ∈ Ξ, i.e., the shift initializationwk+1
0 := Sw∗(xk) for each new problemP (xk+1)

guarantees convergence of the Newton type scheme towards the new optimal solutionw∗(xk+1).

Proof: First note thatf(x, u(x)) = f(s∗0(x), q∗0(x)) andSw∗(x) = (λ∗1(x), s∗1(x), . . . , λ∗N+1, 0, 0, 0).
Thus it holds that

∇wLf(x,u(x))(Sw∗(x)) =




f(s∗0(x), q∗0(x))− s∗1(x)
...

f(s∗N (x), q∗N (x))− 0
∇xL(0, 0) + ∂f

∂x (0, 0)T 0− λ∗N+1(x)
∇uL(0, 0) + ∂f

∂u (0, 0)T 0
f(0, 0)




= S∇wLx(w∗(x)) +




0
...
0

−λ∗N+1(x)
0
0




= 0 +




0
...
0

−λ∗N+1(x)
0
0




.
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Therefore, condition (23) is equivalent to

‖J(Sw∗(x))−1∇wLf(x,u(x))(Sw∗(x))‖ ≤ d, ∀x ∈ Xα,

i.e.,
(f(x, u(x)), Sw∗(x)) ∈ Ξ, ∀x ∈ Xα, (24)

and in particular

(f(x, u(xk)), Sw∗(xk)) = (xk+1, Sw∗(xk)) ∈ Ξ, ∀k ∈ N.

A direct consequence of the theorem is that under certain conditions one cannot only guarantee closed loop
stability, but also numerical solvability for all optimization problemsP (xk), if the initial statex0 is in Xα

and if the first initial guessw0
0 ∈ DC is such that‖∆w(x0, w0

0)‖ ≤ d (i.e. that(x0, w0
0) ∈ Ξ). However,

this favorable result was obtained under the assumption that computation times are negligible, i.e., that the
Newton type method can be iterated until convergence at every sampling time.

Remark: A major difference of the real-time iteration scheme as described in Section 2.2 to the ideal
scheme considered in Theorem 3.4 is that the iterationswk

0 , wk
1 , . . . for problemP (xk), wk

i → w∗(xk), are
terminated prematurely, namely after the first iteration. Instead of initializing each new problemP (xk+1)
by wk+1

0 := S(limi→∞ wk
i ) = Sw∗(xk), we initialize withwk+1

0 := Swk
1 = S( wk

0 + ∆w(xk, wk
0 ) ). For

the real-time iterations, we simply drop the lower iteration index and setwk := wk
0 .

4 Nominal Stability and Decrease of the Optimal Value Function

In this section we will first review a well known result for nominal stability of ideal NMPC, which is based
on a guaranteed decrease of the value function. The line of proof allows us then to examine the influence
of the “input disturbance” introduced by the feedback approximation of the real-time iteration scheme
(compared to ideal NMPC). We will give a bound on the error of the feedback approximation with regard
to the decrease of the value function.

4.1 Nominal Stability for Ideal NMPC

Let us first review the following result for nominal stability of ideal NMPC (cf. [MM90, ABQ+99,
DMS00]):

Theorem 4.1 (Nominal Stability for Ideal NMPC) Let Assumption 1 hold, and assume thatx0 ∈ Xα.
Then the closed-loop dynamicsxk+1 = f(xk, u(xk)), k = 0, 1, . . ., generated by the ideal NMPC law(3)
leads the system state towards the origin,limk→∞ xk = 0.

Proof: We give an outline of the well known proof here, since this allows us to see that under the for-
mulated assumptions NMPC has some inherent robustness properties, which can be utilized for showing
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stability of the real-time iteration scheme. As standard in NMPC we use the optimal value functionV (x)
as a Lyapunov function for the closed-loop system. First note that

V (x)− L(x, u(x)) =
N∑

i=1

L(s∗i (x), q∗i (x)).

Furthermore it is clear that the shifted state and control vector(s∗1(x), . . . , s∗N (x), 0) and
(q∗1(x), . . . , q∗N (x), 0), is a feasible (but not optimal) solution for the next optimal control problem
P (f(x, u(x)), with associated costs

N∑

i=1

L(s∗i (x), q∗i (x)) + L(0, 0).

Since the optimal costV (f(x, u(x)) can only be lower than this value, it follows that

V (f(x, u(x))) ≤ V (x)− L(x, u(x)) ≤ V (x)−m‖x‖2, (25)

and it is clear thatf(x, u(x)) ∈ Xα if x ∈ Xα, so thatV (f(x, u(x)) is indeed well defined. Note also that

V (xk+1) ≤ V (xk)−m‖xk‖2 ∀xk ∈ Xα.

As Xα is assumed to be compact, the sequence(xk)k∈N has at least one accumulation pointx∗ ∈ Xα. By
continuity ofV and‖ · ‖2 we obtain

V (x∗) ≤ V (x∗)−m‖x∗‖2

which can only be satisfied ifx∗ = 0.

Remark: Recent results on the robustness of Lyapunov functions for discontinuous difference equa-
tions and results on the stability of NMPC under perturbations suggest that the ideal NMPC controller has
some inherent robustness properties with respect to disturbances under the stated assumptions (in partic-
ular becauseV is continuous). The main observation is that the term−L(x, u(x)) in (25) provides some
robustness with respect to disturbances that might lead to a lower decrease – but no increase – of the value
functionV from time step to time step [SRM97, KT02, Fin03, FIAF02]. Thus, considering the error of an
approximate feedback compared to the ideal NMPC inputu(xk) as a disturbance, it can be assumed that
under certain conditions the closed loop should be stable. We will build on somewhat similar arguments in
the proof of the main result of this paper in Section 6. To prepare this proof, we will first provide a bound
on the error of the feedback approximation due to the real-time iteration scheme.

4.2 An Error Bound for the Feedback Approximation

In the real-time iteration scheme, instead of applying, at statex, the ideal NMPC controlu(x) := q∗0(x) to
the plant, we employ a feedback approximationũ(x,w) := q0 + ∆q0(x,w) that depends not only on the
system statex but also on the current optimizer parameter vectorw = (λ0, s0, q0, . . .). Here,∆q0(x,w)
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is the first control of the Newton type step vector∆w(x,w) = (∆λ0(x,w),∆s0(x,w), ∆q0(x,w), . . .).
What matters is the errorε(x,w) with respect to the descent property (25)

V (f(x, ũ(x,w))) ≤ V (x)− L(x, ũ(x,w)) + ε(x,w). (26)

The decrease (and thus convergence to the origin) in the value function along the disturbed trajectory is
ensured as long as−L(x, ũ(x,w)) + ε(x,w) < 0. The following theorem establishes a bound on the error
ε(x,w), which is quadratic in the Newton type step size∆w(x,w). It will be used in the proof of stability
for the real-time iteration scheme in Section 6.

Theorem 4.2 (Error Bound for Approximate Feedback)
Suppose Assumptions 1, 2 and 5 hold. Then there is aµ > 0 such that for each(x,w) ∈ Ξ

V (f(x, q0 + ∆q0(x,w))) ≤ V (x)− L(x, q0 + ∆q0(x, w)) + µ‖∆w(x, w)‖2.

The theorem is proven in the appendix, where also a specific value for the constantµ is given, in Eq. (42).
The purely technical Assumption 5 is also stated in the appendix.

As the theorem states that the errorε(x,w) is small if the Newton type step size∆w(x,w) is small, we
will in the following section investigate the behaviour of‖∆w(xk, wk)‖ during the real-time iterations.

5 Contractivity of the Real-Time Iterations

Before being able to prove stability of the real-time iteration schem in Section 6 we need to establish some
convergence properties of the Newton type iterations in the real-time iteration scheme. For this purpose we
recall that the system and optimizer states of the real-time iteration algorithm with shift obey the system-
optimizer dynamics (13):

xk+1 = f(xk, qk
0 + ∆q0(xk, wk)),

wk+1 = S( wk + ∆w(xk, wk) ).

To investigate the stability of these combined dynamics we will in this section establish a bound on the size
of the steps∆wk := ∆w(xk, wk), which is based on a stricter version of condition (23) in Theorem 3.4.

Assumption 3 There exist constantsσ > 0, η > 0 with σ < 1− δ and

η ≤
√

m

α
(1− (δ + σ))d, η ≤ 1

2
m(1− (δ + σ))√

32(M + m)µ
, (28)

such that for all(x,w) ∈ Ξ, w′ = w + ∆w(x,w)
∥∥∥∥∥∥∥∥∥∥∥∥∥

J(Sw′)−1




0
...
0

λ′N+1

0
0




∥∥∥∥∥∥∥∥∥∥∥∥∥

≤ η‖x‖+ σ‖∆w(x,w)‖. (29)

15



Remark: This assumption is critical for the subsequent reasoning. In particular the fact thatη might be
required to be quite small deserves some discussion. Ifw = w∗(x), then∆w(x,w) = 0 andw′ = w∗(x),
so the bound can essentially be seen as a bound on the last multiplierλ∗N+1(x) whose modulus can be
interpreted the “shadow price” of the final state constraintf(sN , qN ) = 0. For a sufficiently large sizeN
of the optimization horizon we expect the multiplierλ∗N+1(x) to decrease, as the cost function itself drives
the system to the steady state, and the constraint becomes less and less important. Therefore, we can argue
that it is reasonable to assume thatη can be made sufficiently small by enlarging the optimization horizon
– of course, such an enlargement changes the dimensions of the problem and therefore also the matrixJ
and its inverse, but numerical experiments with largeN have shown that – for controllable systems – the
vectorsJ(w)−1(0, . . . , 0, 1T , 0, 0)T only have significant nonzero elements at the end of the horizon and
are decaying in backwards direction, i.e., their norms do practically not depend on the dimensionN . Note
that the conditioning ofJ is independent ofN for controllable systems.

A second, more technical assumption is the following modification of Assumption 2, where the shifting
matrixS is introduced

Assumption 4 For all w′, w ∈ D2C , ∆w = w′ − w and all t ∈ [0, 1]
∥∥J(Sw′)−1S

(
J(w + t∆w)−∇2

wL(w + t∆w)
)
∆w

∥∥ ≤ κ‖∆w‖ (30a)∥∥J(Sw′)−1S (J(w + t∆w)− J(w)) ∆w
∥∥ ≤ ωt‖∆w‖2. (30b)

As before it should be noted that checking Assumption 4 a priori is in general difficult, if not impossible.
The obtained results should rather be seen as a theoretical underpinning of the real-time iteration scheme
than as a constructive approach to pick suitable controller parameters for stability. Under the above two
assumptions we can prove the following lemma.

Lemma 5.1 (Stepsize Contraction for Real-Time Iterations)
Suppose Assumptions 3 and 4 are satisfied. Furthermore, assume that(xk, wk) ∈ Ξ and xk+1 :=
f(xk, qk

0 + ∆q0(xk, wk)) ∈ Xα. Then, using the shorthands∆wk := ∆w(xk, wk) and wk+1 :=
S(wk + ∆wk), the following holds

‖∆w(xk+1, wk+1)‖ ≤
(
κ + σ +

ω

2
‖∆wk‖

)
‖∆wk‖+ η‖xk‖ ≤ (δ + σ)‖∆wk‖+ η‖xk‖. (31)

In particular, ‖∆w(xk+1, wk+1)‖ ≤ d, i.e.,(xk+1, wk+1) ∈ Ξ.

Proof: First note that for anyw = (λ0, s0, q0, . . . , λN+1) ∈ Rn and regardless ofx ∈ Rnx ,

∇wLf(s0,q0)(Sw) = S∇wLx(w) +




0
...
0

−λN+1

0
0




.
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Let us now introduce for a moment the shorthandw′ := wk +∆wk and observe thatwk+1 = Sw′ and that
xk+1 = f(xk, qk

0 + ∆qk
0 ) = f(s′0, q

′
0). Therefore, we can deduce similar as in Lemma 3.2 that

‖∆w(xk+1, wk+1)‖ = ‖∆w(f(s′0, q
′
0), Sw′)‖

= ‖J(Sw′)−1 · ∇wLf(s′0,q′0)(Sw′)‖

=

∥∥∥∥∥∥∥∥∥∥∥

J(Sw′)−1 ·




S∇wLxk(w′) +




...
0

−λ′N+1

0
0







∥∥∥∥∥∥∥∥∥∥∥
≤ ‖J(Sw′)−1 · S∇wLx(w′)‖ + η‖xk‖+ σ‖∆wk‖
≤ (

κ + ω
2 ‖∆wk‖) ‖∆wk‖ + η‖xk‖+ σ‖∆wk‖

≤ (
κ + σ + ω

2 ‖∆wk‖) ‖∆wk‖+ η‖xk‖
≤ (δ + σ) ‖∆wk‖+ η‖xk‖,

where we have made use of Assumption 3 in the 4th transformation and of Assumption 4 in the 5th, as
in the proof of Lemma 3.2. Fromm‖x‖2 ≤ V (x) ≤ α it follows for all x ∈ Xα that‖x‖ ≤ √

α
m , and

from ‖∆wk‖ ≤ d and from the left inequality of (28), we can finally deduce that‖∆w(xk+1, Swk+1)‖ ≤
(δ + σ) d + η

√
α
m ≤ (δ + σ) d +

√
m
α (1− (δ + σ))d

√
α
m = d.

The lemma allows us to conclude the following contraction property for the real-time iterations(xk, wk)
(as defined in Eqs. (13)), which we use in the following section.

Corollary 5.2 (Shrinking Stepsize for Real-Time Iterations)
Let in addition to Assumptions 1-4 assume that the real-time iterations start with an initialization
(x0, w0) ∈ Ξ, and that for a givenα0 ≤ α and for somek0 > 0 we have that∀k ≤ k0 : xk ∈ Xα0 . Then
∀k ≤ k0 : (xk, wk) ∈ Ξ and

‖∆wk‖ ≤ (δ + σ)k‖∆w0‖+
ρ

2
√

α0 with ρ :=
2η√

m(1− (δ + σ))
. (32)

Proof: Inductively applying Lemma 5.1 to the iterates(xk+1, wk+1), we immediately obtain that
(xk, wk) ∈ Ξ, for k = 1, 2, . . . , k0. Similarly one obtains inductively from the contraction inequality (31),
‖∆wk+1‖ ≤ (δ + σ)‖∆wk‖+ η‖xk‖, and the fact that‖xk‖ ≤ √

α0
m that

‖∆wk‖ ≤ (δ + σ)k‖∆w0‖+ η

√
α0

m

k−1∑

i=0

(δ + σ)i ≤ (δ + σ)k‖∆w0‖+
η
√

α0
m

1− (δ + σ)
.

We may furthermore ask how many iterations we need to reduce the stepsize such that it becomes smaller
than a given level. However, considering Corollary 5.2 we must expect that they will not become smaller
than the constantρ2

√
α0 in Eq. (32). But how many iterations do we need, for example, to push the stepsize

under twice that level?
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Corollary 5.3 (Iterations needed for Stepsize Reduction)
Let us in addition to Assumptions 1-4 assume that the real-time iterations start with an initialization
(x0, w0) ∈ Ξ, and that for a givenα0 ≤ α we have that∀k ≤ k0 : xk ∈ Xα0 for some

k0 ≥ logδ+σ

(
ρ
√

α0

2‖∆w0‖
)

. (33)

Then
‖∆wk0‖ ≤ ρ

√
α0. (34)

Proof: From (33) we conclude that

(δ + σ)k0‖∆w0‖ ≤ ρ

2
√

α0.

This together with (32) yields (34).

6 Nominal Stability of the Real-Time Iteration Scheme

Equipped with the error bound from Section 4.2 and the contractivity of the real-time iterations from
Section 5 we can finally prove nominal stability of the real-time iteration closed-loop scheme. However,
since the errorε(xk, wk) in the decrease in the value function depends on the real-time stepsize∆wk, we
have to investigate two competing effects: on the one hand, the feedback errors may allow anincrease
in V (xk), instead of the desireddecreasethat was needed to prove nominal stability for ideal NMPC in
Theorem 4.1. On the other hand, we know that the stepsizes∆wk shrink during the iterations, and thus
we also expect the errors to become smaller. Since an increase in the value function might imply that we
leave the level setXα, we will not be able to stabilize with the real-time iteration scheme the whole setXα

(at least not if∆w0 is too large). Thus, we have to back of a little from the boundary ofXα to allow an
increase in the value function without leavingXα until ∆wk is small enough to guarantee a decrease of
the value function. For this reason we will distinguish two phases:

• In the first phase we may have an increase of the value functionV (xk), therefore we must allow for
a safety back-off. However, the stepsizes‖∆wk‖ can be shown to shrink.

• In the second phase, finally, the numerical errors are small enough to guarantee a decrease of both,
V (xk) and‖∆wk‖ and we can prove convergence of iterates(xk, wk) towards the origin(0, 0).

6.1 Phase 1: Increase in Objective, but Decrease in Stepsize

Exploiting Corollary 5.3, let us define the numberkα of iterations that are at maximum needed for reduction
of the stepsize under the valueρ

√
α if all iterates stay in the level setXα.

Definition 6.1 (kα and Ξattr) We definekα to be the smallest integer such that

kα ≥ logδ+σ

(
ρ
√

α

2d

)
. (35)
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Furthermore, we define our safety back-off set as the set

Ξattr :=
{
(x,w) ∈ Ξ

∣∣V (x) ≤ α− kαµd2
}

. (36)

Figure 2 tries to clarify the appearing regions and the key ideas of the complete stability proof.

Theorem 6.1 (Increase of Objective, Decrease of Stepsize)Assume that Assumptions 1-4 and 5 hold
and that(x0, w0) ∈ Ξattr. Then fork = 0, . . . kα it holds that(xk, wk) ∈ Ξ. Furthermore,

‖∆wkα‖ ≤ ρ
√

α.

Proof: We make use of Corollary 5.2 and 5.3. To apply them, we first observe that(x0, w0) ∈ Ξ. It
remains to be shown thatx0, . . . , xkα ∈ Xα. We do this inductively, and show: if for somek ≤ kα it
holds that(xk, wk) ∈ Ξ andV (xk) ≤ α + (k − kα)µd2 then also(xk+1, wk+1) ∈ Ξ andV (xk+1) ≤
α + (k + 1 − kα)µd2. To show this we first note that‖∆wk‖ ≤ d as an immediate consequence of
Corollary 5.2. Now from Theorem 4.2 we know that

V (xk+1) ≤ V (xk)− L(xk, uk) + µd2

from which we conclude

V (xk+1) ≤ V (xk) + µd2 ≤ α + (k − kα)µd2 + µd2 = α + (k + 1− kα)µd2.

Remark: The restriction of the initial system statex0 to the level set
{
x ∈ X

∣∣V (x) ≤ α− kαµd2
}

is
unnecessarily restrictive. On the one hand we neglected the decrease−L(xk, uk) in each step; and on
the other hand an initial stepsize‖∆w(x0, w0)‖ considerably smaller thand would allow the errors in
the decrease condition be considerably smaller thanµd2. Note in particular that an initial iterate(x0, w0)
where the optimizer is initialized so well that‖∆w(x0, w0)‖ ≤ ρ

√
α directly qualifies for Phase 2, if only

V (x0) ≤ α, without requiring any safety back-off at all. However, to keep the discussion as simple as
possible, we chose to stick to our above definition of the setΞattr of states attracted by the origin.

6.2 Phase 2: Convergence towards the Origin

We now show that the real-time iterations – once the errors have become small enough – not only remain
in their level sets, but moreover, are attracted by even smaller level sets. For convenient formulation of the
results of this subsection we first define two constant integers.

Definition 6.2 (k1 and k2) Let us define the constantsk1 andk2 to be the smallest integers that satisfy

k1 ≥ 6(M + m)
m

and k2 ≥ logδ+σ

(
1
4

)
.
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x

V (x) = α− kα µd2

V (x) = α

Ξattr

Ξ

(x1, w1)
(x2, w2)

(x0, w0)

w

w∗(x)

k →∞

Figure 2: Illustration of the setsΞ andΞattr in the system-optimizeer space of variables(x,w), and visu-
alization of the iterates during the two phases of the stability proof.
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Theorem 6.2 (Objective and Stepsize Reduction)
Let in addition to Assumptions 1-5 assume that for anα0 ≤ α and ak0 ≥ 0 it holds that

V (xk0) ≤ α0 and ‖∆wk0‖ ≤ ρ
√

α0.

Then all iteratesk ≥ k0 are well-defined and also satisfyV (xk) ≤ α0 and‖∆wk‖ ≤ ρ
√

α0. Moreover,
for k ≥ k0 + k1 + k2

V (xk) ≤ 1
4
α0 and ‖∆wk‖ ≤ ρ

√
1
4
α0.

Proof: We prove the theorem in three steps: invariance of level sets, attractivity of a small level set for
xk and reduction of the Newton steps‖δwk‖
Step 1: Well-definedness of all iterates and invariance of the level sets.

The proof is by induction. We assume that for somek ≥ k0 it holds thatV (xk) ≤ α0 and‖∆wk‖ ≤
ρ
√

α0. We will show that then the next real-time iterate is well-defined and remains in the level sets, i.e.,
V (xk+1) ≤ α0 and‖∆wk+1‖ ≤ ρ

√
α0.

First note that by the definition ofρ in (32), byα0 ≤ α, and by the left inequality of (28)

‖∆wk‖ ≤ 2η√
m(1− (δ + σ))

√
α ≤ 21

2

√
m
α (1− (δ + σ))d√

m(1− (δ + σ))
√

α = d,

i.e., (xk, wk) ∈ Ξ and the real-time iterate is well-defined. Now, due to Assumption 1‖xk‖ ≤ √
α0
m . By

Lemma 5.1 we know that ifxk+1 ∈ Xα then

‖∆wk+1‖ ≤ (δ + σ)‖∆wk‖+ η‖xk‖ ≤ (δ + σ)ρ
√

α0 + η

√
α0

m

and therefore, using the definition ofρ in (32),

‖∆wk+1‖ ≤ ρ
√

α0

(
(δ + σ) +

1
2
(1− (δ + σ))

)
= ρ

√
α0

1 + δ + σ

2
≤ ρ

√
α0.

It remains to be shown thatxk+1 ∈ Xα0 ⊂ Xα. To show this we first observe that due to the right
inequality of (28) in Assumption 3 we have

ρ ≤
√

m

8(M + m)µ

and therefore
ε(xk0 , wk0) ≤ µ‖∆wk0‖2 ≤ m

8(M + m)
α0 =: ε0. (37)

By Theorem 4.2 we obtainV (xk+1) ≤ V (xk) + ε0 −m‖xk‖2. We now distinguish two cases:

a) m‖xk‖2 ≥ 2ε0: we haveV (xk+1) ≤ V (xk)− ε0 ≤ α0 − ε0 ≤ α0.

b) m‖xk‖2 ≤ 2ε0: because ofV (xk) ≤ M‖xk‖2 we have thatV (xk) ≤ 2M
m ε0 and therefore

V (xk+1) ≤ 2M
m ε0 + ε0 = 1

4α0 ≤ α0 by the definition ofε0 in (37).
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This completes the first step of the proof.

Step 2: Attraction of the statesxk for k ≥ k0 + k1 by the level setX 1
4 α0

.

We already showed that all iterates are well-defined and satisfyV (xk) ≤ α0 and‖∆wk‖ ≤ ρ
√

α0, and
furthermore, thatε(xk, wk) ≤ ε0.

To prove the stronger result that the statesxk are fork ≥ k0 + k1 in the reduced level setX 1
4 α0

, we

first show that once one iteratexk′ is insideX 1
4 α0

, all following system states also remain inside. Again,
we distinguish the two cases:

a) m‖xk′‖2 ≥ 2ε0: we haveV (xk′+1) ≤ V (xk′)− ε0 ≤ V (xk′) ≤ 1
4α0

b) m‖xk′‖2 ≤ 2ε0: as before, we haveV (xk+1) ≤ 1
4α0.

So let us see how many statesxk can at maximum remain outsideX 1
4 α0

. First note that ifV (xk) ≥ 1
4α0

we also haveM‖xk‖2 ≥ 1
4α0 = 2M+m

m ε0 ≥ 2M
m ε0, i.e., m‖xk‖2 ≥ 2ε0. Therefore, for each iterate

that remains outsideX 1
4 α0

, case a) holds, andV (xk+1) ≤ V (xk) − ε0. We deduce thatV (xk0+∆k) ≤
α0−∆kε0, and therefore fork ≥ k0 + 6(M+m)

m thatV (xk) ≤ α0− 6(M+m)
m ε0 = 1

4α0 by definition (37).

Step 3: Reduction of the steps‖∆wk‖ for k ≥ k0 + k1 + k2 under the levelρ
√

1
4α0.

We already know that all iteratesk ≥ k0 +k1 satisfyV (xk) ≤ 1
4α0 and‖∆wk‖ ≤ ρ

√
α0. We can now

use Corollary 5.3 with‖∆w0‖ replaced byρ
√

α0, α0 replaced by14α0, andk0 replaced byk − (k0 + k1),
which yields the proposition:

If k − (k0 + k1) ≥ logδ+σ


ρ

√
1
4α0

2ρ
√

α0


 then ‖∆wk‖ ≤ ρ

√
1
2
α0.

By definition ofk2 this implies‖∆wk‖ ≤ ρ
√

1
2α0 for all k ≥ k0 + k1 + k2.

Theorem 6.2 allows us to conclude that eachk1 + k2 iterations, the level of the objective is reduced by a
factor of 1

4 . This allows us to state the main result of this paper.

Theorem 6.3 (Nominal Stability of the Real-Time Iteration Scheme)
Let us suppose Assumptions 1-5 and assume that(x0, w0) ∈ Ξattr. Then all system-optimizer states are

well-defined, i.e., satisfy(xk, wk) ∈ Ξ, and for all integersp ≥ 0 andk ≥ kα + p(k1 + k2) it holds that
V (xk) ≤ α 1

4p (respectively,‖xk‖ ≤ √
α
m

1
2p ) and‖∆wk‖ ≤ ρ

√
α 1

2p .

Proof: The theorem is an immediate consequence of Theorem 6.1 followed by an inductive application
of Theorem 6.2. Furthermore, becausem‖x‖2 ≤ V (x), the inequalityV (x) ≤ α

4p implies again
‖x‖ ≤ √

α
4pm .

6.3 Discussion

From a practical point of view, the derived result can be interpreted as follows: whenever the system state
is subject to a disturbance, but such that after the disturbance the combined system-optimizer state is in
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the regionΞattr, the subsequent closed-loop response will lead the system towards the origin with a linear
convergence rate, until another disturbance occurs. We would like to stress again, however, that the proof
should not be seen as a construction rule for designing suitable real-time iteration schemes. Instead it gives
a theoretical underpinning of the real-time iteration scheme.

Similar convergence results as for the real-time iteration scheme would also hold true for numerical
schemes where more than one Newton type iteration is performed per sampling time, sacrificing, however,
the instantaneous feedback of the real-time iteration scheme. In the limit of infinitely many iterations per
optimization problem, the setΞattr would approach the setΞ and the whole region of attraction of the ideal
NMPC controller would be recovered.

The result can in principle be expanded to other NMPC schemes without a zero terminal con-
straint. However, one should note that we assume that the value function is continuous. As is well
known [MHER95, Fon00], NMPC can also stabilize systems that cannot be stabilized by feedback that
is continuous in the state. This in general also implies a discontinuous value function. In this case the
robustness properties utilized in Section 4.2 and used in Theorem 4.2 do not hold [KT02, GMTT03a,
GMTT03b, SRM97] and further precautions must be taken.

7 Summary and Conclusions

We have presented a Newton type method for optimization in NMPC – the real-time iteration scheme
with shift – and have proven nominal stability of the resulting system-optimizer dynamics. The scheme
is characterized by a dovetailing of the dynamics of the system with those of the optimizer, resulting in
an efficient online optimization algorithm which, however, shows intricate dynamics that do not allow to
apply readily available standard stability results from NMPC.

The proof of nominal stability makes use of results from both, classical stability theory for NMPC
as well as from convergence theory for Newton type optimization methods. Among several technical as-
sumptions is one essential one (Assumption 3) that basically requires the disturbances in the optimization
procedure – which are introduced by the movement of the optimization horizon – to be sufficiently small.
We claim that this assumption can in practice always be satisfied by choosing a sufficiently long optimiza-
tion horizon.

The proof of nominal stability gives a theoretical underpinning of the real-time iteration scheme that
has already successfully been applied to several example systems, among them a real pilot-plant distilla-
tion column [DUF+01, DFS+03]. Experience has shown that in practice the real-time iteration scheme
is able to bring the system-optimizer dynamics back into the region of attraction even after rather large
disturbances (cf. [DBS03]).

Acknowledgements

Financial support by theDeutsche Forschungsgemeinschaft (DFG)within the priority program 469
“Online-Optimization of Large Scale Systems” is gratefully acknowledged, as well as support by the “In-
stitute of Mathematics and its Applications” of the University of Minnesota (USA) which hosted the first
author while parts of the paper have been developed.

23



References

[ABQ+99] F. Allgöwer, T.A. Badgwell, J.S. Qin, J.B. Rawlings, and S.J. Wright. Nonlinear predictive
control and moving horizon estimation – An introductory overview. In P.M. Frank, editor,
Advances in Control, Highlights of ECC’99, pages 391–449. Springer, 1999.

[BBB+01] T. Binder, L. Blank, H. G. Bock, R. Bulirsch, W. Dahmen, M. Diehl, T. Kronseder, W. Mar-
quardt, J. P. Schlöder, and O. v. Stryk. Introduction to model based optimization of chemical
processes on moving horizons. In M. Grötschel, S. O. Krumke, and J. Rambau, editors,On-
line Optimization of Large Scale Systems: State of the Art, pages 295–340. Springer, 2001.
download at: http://www.zib.de/dfg-echtzeit/Publikationen/Preprints/Preprint-01-15.html.

[Bie00] L. T. Biegler. Efficient solution of dynamic optimization and NMPC problems. In F. Allgöwer
and A. Zheng, editors,Nonlinear Predictive Control, volume 26 ofProgress in Systems The-
ory, pages 219–244, Basel, 2000. Birkhäuser.

[Boc87] H. G. Bock. Randwertproblemmethoden zur Parameteridentifizierung in Systemen nichtlin-
earer Differentialgleichungen, volume 183 ofBonner Mathematische Schriften. University
of Bonn, Bonn, 1987.

[BR91a] L. T. Biegler and J. B. Rawlings. Optimization approaches to nonlinear model predictive
control. In Y. Arkun and W. H. Ray, editors,Chemical Process Control – CPC IV, pages
543–571, Austin, Texas, 1991. The CACHE Corp.

[BR91b] L.T. Biegler and J.B Rawlings. Optimization approaches to nonlinear model predictive con-
trol. In W.H. Ray and Y. Arkun, editors,Proc. 4th International Conference on Chemical
Process Control - CPC IV, pages 543–571. AIChE, CACHE, 1991.

[BWB00] R. A. Bartlett, A. Wächter, and L. T. Biegler. Active set vs. inerior point strategies for model
predicitve control. InProc. Amer. Contr. Conf., pages 4229–4233, Chicago, Il, 2000.

[CBO00] W. Chen, D.J. Ballance, and J. O’Reilly. Model predictive control of nonlinear systems:
Computational delay and stability.IEE Proceedings, Part D, 147(4):387–394, 2000.

[DBS+02] M. Diehl, H. G. Bock, J. P. Schlöder, R. Findeisen, Z. Nagy, and F. Allgöwer. Real-time
optimization and nonlinear model predictive control of processes governed by differential-
algebraic equations.J. Proc. Contr., 12(4):577–585, 2002.

[DBS03] M. Diehl, H. G. Bock, and J. P. Schlöder. Newton-type methods for the approximate solu-
tion of nonlinear programming problems in real-time. In G. Di Pillo and A. Murli, editors,
High Performance Algorithms and Software for Nonlinear Optimization. Kluwer Academic
Publishers B.V., 2003. in print.

[DFS+02] M. Diehl, R. Findeisen, S. Schwarzkopf, I. Uslu, F. Allgöwer, H. G. Bock, E. D. Gilles, and
J. P. Schlöder. An efficient algorithm for nonlinear model predictive control of large-scale
systems. Part I: Description of the method.Automatisierungstechnik, 12, 2002.

[DFS+03] M. Diehl, R. Findeisen, S. Schwarzkopf, I. Uslu, F. Allgöwer, H. G. Bock, E. D. Gilles, and
J. P. Schlöder. An efficient algorithm for nonlinear model predictive control of large-scale
systems. Part II: Application to a distillation column.Automatisierungstechnik, 1, 2003.

24



[Die02] M. Diehl. Real-Time Optimization for Large Scale Nonlinear Processes, volume 920 of
Fortschr.-Ber. VDI Reihe 8, Meß, Steuerungs- und Regelungstechnik. VDI Verlag, Düsseldorf,
2002. Download also at: http://www.ub.uni-heidelberg.de/archiv/1659/.

[DMS00] G. De Nicolao, L. Magni, and R. Scattolini. Stability and robustness of nonlinear reced-
ing horizon control. In F. Allgöwer and A. Zheng, editors,Nonlinear Predictive Control,
volume 26 ofProgress in Systems Theory, pages 3–23, Basel, 2000. Birkhäuser.

[DUF+01] M. Diehl, I. Uslu, R. Findeisen, S. Schwarzkopf, F. Allgöwer, H. G. Bock, T. Bürner,
E. D. Gilles, A. Kienle, J. P. Schlöder, and E. Stein. Real-time optimization for large
scale processes: Nonlinear model predictive control of a high purity distillation column. In
M. Grötschel, S. O. Krumke, and J. Rambau, editors,Online Optimization of Large Scale Sys-
tems: State of the Art, pages 363–384. Springer, 2001. download at: http://www.zib.de/dfg-
echtzeit/Publikationen/Preprints/Preprint-01-16.html.

[FA03] R. Findeisen and F. Allgöwer. Computational delay in nonlinear model predictive control.
Accepted for publication inProc. Int. Symp. Adv. Control of Chemical Processes, ADCHEM,
2003.

[FDU+02] R. Findeisen, M. Diehl, I. Uslu, S. Schwarzkopf, F. Allgöwer, H.G. Bock, J.P. Schlöder, and
Gilles. Computation and performance assesment of nonlinear model predictive control. In
Proc. 42th IEEE Conf. Decision Contr., Las Vegas, USA, 2002.

[FIAF02] R. Findeisen, L. Imsland, F. Allgöwer, and B.A. Foss. On the robustness of continuous time
model predictive control. Workshop on Nonlinear Predictive Control, Oxford, UK, May 9th
2002.

[Fin03] R. Findeisen. Stability, computational efficiency, robustness, and output feedback in sampled-
data nonlinear model predictive control. PhD thesis, University of Stuttgart, in preparation,
2003.

[Fon00] F.A. Fontes. A general framework to design stabilizing nonlinear model predictive con-
trollers. Syst. Contr. Lett., 42(2):127–143, 2000.

[GMTT03a] G. Grimm, M.J. Messina, A.R. Teel, and S. Tuna. Examples when model predictive control
is nonrobust. submitted, 2003.

[GMTT03b] G. Grimm, M.J. Messina, A.R. Teel, and S. Tuna. Model predictive contro: for want of a
local control lyapunov function, all is not lost. submitted, 2003.

[Hen98] M.A. Henson. Nonlinear model predictive control: Current status and future directions.
Comp. & Chem. Eng., 23:187–202, 1998.

[KT02] C.M. Kellett and A.R. Teel. On robustness of stability and lyapunov functions for disconti-
nous difference equations. InProc. 42th IEEE Conf. Decision Contr., pages 4282–4287, Las
Vegas, USA, 2002.

[LB89] W.C. Li and L.T. Biegler. Multistep, newton-type control strategies for constrained nonlinear
processes.Chem. Eng. Res. Des., 67:562–577, 1989.

25



[Lei99] D. B. Leineweber.Efficient reduced SQP methods for the optimization of chemical processes
described by large sparse DAE models, volume 613 ofFortschr.-Ber. VDI Reihe 3, Verfahren-
stechnik. VDI Verlag, Düsseldorf, 1999.

[LEL92] M. J. Liebman, T. F. Edgar, and L. S. Lasdon. Efficient data reconciliation and estima-
tion for dynamic processes using nonlinear programming techniques.Comp. & Chem. Eng.,
16(10/11):963–986, 1992.

[MBF02] F. Martinsen, L.T. Biegler, and B.A Foss. Application of optimization algorithms to nonlinear
mpc. In Proceedings of 15th IFAC World Congress, 2002.

[MHER95] E.S. Meadows, M.A. Henson, J.W. Eaton, and J.B. Rawlings. Receding horizon control and
discontinuous state feedback stabilization.Int. J. Contr., 62(5):1217–1229, 1995.

[MM90] D.Q. Mayne and H. Michalska. Receding horizon control of nonlinear systems.IEEE Trans.
Automat. Contr., 35(7):814–824, 1990.

[MRRS00] D.Q. Mayne, J.B. Rawlings, C.V. Rao, and P.O.M. Scokaert. Constrained model predictive
control: stability and optimality.Automatica, 26(6):789–814, 2000.

[OB95a] N. M.C. de Oliveira and L. T. Biegler. Newton-type algorithms for nonlinear process control.
algorithm and stability results.Automatica, 31(2):281–286, 1995.

[OB95b] N.M.C. de Oliveira and L.T. Biegler. An extension of Newton-type algorithms for nonlinear
process control.Automatica, 31(2), 1995.

[Pyt99] R. Pytlak.Numerical Methods for Optimal Control Problems with State Constraints. Lecture
Notes in Mathematics. Springer, Berlin, 1999.

[QB01] S.J. Qin and T.A. Badgwell. Review of nonlinear model predictive control applications. In
B. Kouvaritakis and M. Cannon, editors,Nonlinear model predictive control: theory and
application, pages 3–32, London, 2001. The Institute of Electrical Engineers.

[SRM97] P.O.M. Scokaert, J.B. Rawlings, and E.S. Meadows. Discrete-time stability with perturba-
tions: Application to model predictive control.Automatica, 33(3):463–470, 1997.

[TR01] M. J. Tenny and J. B. Rawlings. Feasible real-time nonlinear model predictive control. In
6th International Conference on Chemical Process Control – CPC VI, AIChE Symposium
Series, 2001.

[TWR02] M.J. Tenny, S.J. Wright, and J.B. Rawlings. Nonlinear model predictive control via
feasibility-pertubed sequetial quadratic programming. submitted, 2002.

[Wri96] S. J. Wright. Applying new optimization algorithms to model predictive control. In J.C.
Kantor, C.E. Garcia, and B. Carnahan, editors,Fifth International Conference on Chemical
Process Control – CPC V, pages 147–155. American Institute of Chemical Engineers, 1996.

26



Appendix: Proof of Theorem 4.2

In order to be able to prove Theorem 4.2, we will compare approximate solutions of the full problemP (x)
with those of a shrunk problem̃P (f(x, ũ(x,w))), defined as follows.

Definition 7.1 (P̃ (x′))

min
s1, . . . , sN ,
q1, . . . , qN

N∑

i=1

L(si, qi) (38a)

subject to

x′ − s1 = 0, (38b)

f(si, qi)− si+1 = 0, i = 1, . . . , N − 1, (38c)

f(sN , qN ) = 0. (38d)

Let us also define the projection operatorΠ : Rn → Rn−(2nx+nu) = Rñ

Πw = Π




λ0

s0

q0

λ1

s1

...
λN+1




=




λ1

s1

...
λN+1


 =: w̃

which simply removes the first components fromw ∈ Rn, to yield a vectorw̃ ∈ Rñ in the primal-dual
space of problem̃P (·), and we assume compatible norms inRn andRñ in the sense that‖Πw‖ ≤ ‖w‖
and ‖ΠT w̃‖ = ‖w̃‖. Let us define the LagrangiañLx(w̃) of P̃ (x) in a straightforward way, and the
corresponding second derivative approximationJ̃(w̃), which can be shown to bẽJ(w̃) = ΠJ(ΠT w̃)ΠT .
We define the set

X̃ := {x′ ∈ Rnx |∃(x,w) ∈ Ξ : x′ = f(x, q0 + ∆q0(x,w))}

and assume solvability of̃P (x′) for all x′ ∈ X̃, and we define

D̃2C :=
{

w̃ ∈ Rñ
∣∣∣∃x′ ∈ X̃ : ‖w̃ − w̃∗(x′)‖ ≤ 2C

}

and make the analogon to Assumption 2 onD̃2C , plus some additional technical assumptions.

Assumption 5 We assume that the Lagrangian functionL̃x is twice continuously differentiable oñD2C

and that each solutioñw∗(x) exists and is uniquely determined iñD2C , i.e.,

∀x ∈ X̃, ∀w̃ ∈ D̃2C\{w̃∗(x)} : ∇w̃L̃x(w̃) 6= 0. (39a)
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We also assume that̃J is continuous oñD2C and thatJ̃(w̃) is invertible for allw̃ ∈ D̃2C , and that for all
w̃′, w̃ ∈ D̃2C , ∆w̃ = w̃′ − w̃ and all t ∈ [0, 1] it holds that

∥∥∥J̃(w̃′)−1
(
J̃(w̃ + t∆w̃)−∇2

w̃L̃(w̃ + t∆w̃)
)

∆w̃
∥∥∥ ≤ κ‖∆w̃‖ (39b)

and that ∥∥∥J̃(w̃′)−1
(
J̃(w̃ + t∆w̃)− J̃(w̃)

)
∆w̃

∥∥∥ ≤ ωt‖∆w̃‖2. (39c)

Let us furthermore assume that for allw′, w ∈ D2C , ∆w = w′ − w and all t ∈ [0, 1] it holds that
∥∥∥J̃(Πw′)−1Π

(
J(w + t∆w)−∇2

wL(w + t∆w)
)
∆w

∥∥∥ ≤ κ‖∆w‖ (40a)

and that ∥∥∥J̃(Πw′)−1Π(J(w + t∆w)− J(w)) ∆w
∥∥∥ ≤ ωt‖∆w‖2. (40b)

We also assume the following bound on the Hessian of the LagrangianL·(w):

‖∇2
wL(w)‖ ≤ B, ∀w ∈ D2C . (41)

By assumptions (39), we can guarantee numerical solvability ofP̃ (x) by the Newton type scheme as in
Corollary 3.3, if for somew̃0 it holds that‖J̃(w̃0)−1∇w̃L̃x(w̃0)‖ ≤ d. Note thatP̃ (x) needs never be
solved in practice, but that this is only a hypothetical scheme which helps to establish the error bound.

Proof of Theorem 4.2 Now we are able to prove the theorem, with

µ := 2B

(
δ

1− δ

)2

. (42)

We first define the shorthandsx′ := f(x, q0 + ∆q0(x,w)) and∆w := ∆w(x,w). We will compare three
vectors inRn:

• the solutionw∗(x) of P (x),

• the first stepw′ := w + ∆w towards this solution, and

• an augmented version of the solution vectorw̃∗(x′) of P̃ (x′) defined as

w̃∗
′
:= ΠT w̃∗(x′) + (In −ΠT Π)w′,

so that, more intuitively,̃w∗
′
= (λ′0, s

′
0, q

′
0, λ̃

∗
1(x

′), s̃∗1(x
′), . . .).

We will show that all three vectors are inD2C , and, to obtain a bound on the distance betweenw∗(x) and
w̃∗

′
that

‖w∗(x)− w′‖ ≤ δ‖∆w‖
1− δ

, and ‖w̃∗′ − w′‖ ≤ δ‖∆w‖
1− δ

. (43)

Clearly, the vectorw∗(x) is in D2C and because(x,w) ∈ Ξ the first stepw′ is also inD2C . Furthermore,
the left inequality forw∗(x) was already proven in Corollary 3.3. Forw̃∗

′
, we first note that‖w̃∗′ −w′‖ =

‖ΠT (w̃∗(x′)−Πw′)‖ = ‖w̃∗(x′)−Πw′‖. We consider hypothetical Newton type iteratesw̃0, w̃1, . . . for
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solution ofP̃ (x′), started at the initial guess̃w0 := Πw′. To show that these iterates are well-defined, let
us first bound the size of the first step,∆w̃0 := ∆w̃(x′, w̃0). Because

∇w̃L̃x′(w̃0) = ∇w̃L̃x′(Πw′) =

[
x′ − s′1

...

]
=

[
f(x, q0 + ∆q0(x,w))− s′1

...

]

=

[
f(s′0, q

′
0)− s′1
...

]
= Π∇wLx(w′),

we have by adding0 = ∇wLx(w) + J(w)∆w to the defining equation of∆w̃0

−∆w̃0 = J̃(w̃0)−1∇w̃L̃x′(w̃0)
= J̃(w̃0)−1

(∇w̃L̃x′(w̃0)−Π(∇wLx(w) + J(w)∆w)
)

= J̃(w̃0)−1Π
(∇wLx(w′)−∇wLx(w)− J(w)∆w

)
.

(44)

Therefore we can bound

‖∆w̃0‖ = ‖J̃(w̃0)−1Π(∇wLx(w′)−∇wLx(w)− J(w)∆w) ‖
= ‖J̃(w̃0)−1Π

∫ 1

0
(∇2

wL(w + t∆w)− J(w))∆w dt‖
= ‖ ∫ 1

0
J̃(Πw′)−1Π(∇2

wL(w + t∆w)− J(w + t∆w))∆w dt

+
∫ 1

0
J̃(Πw′)−1Π(J(w + t∆w)− J(w))∆w dt‖

≤ κ‖∆w‖+
∫ 1

0
ωt‖∆w‖2 dt =

(
κ + ω

2 ‖∆w‖) ‖∆w‖ ≤ δ‖∆w‖,

due to assumptions (40). After having established a bound on the first step∆w̃0 of the hypothetical iterates,
we conclude with assumptions (39) from the standard convergence result for Newton type iterates that the
limit limi→∞ w̃i = w̃∗(x′) satisfies

‖w̃∗(x′)− w̃0‖ ≤ ‖∆w̃0‖
1− δ

≤ δ‖∆w‖
1− δ

,

so that we have shown the right inequality of (43). With (43) we can now conclude that

‖w̃∗′ − w∗(x)‖ ≤ 2
δ‖∆w‖
1− δ

(45)

in particular thatw̃∗
′ ∈ D2C . We now compare the objective values of the two vectorsw∗(x) andw̃∗

′
. The

objective contributions can be expressed in terms of the LagrangianLx(·), because both,w∗(x) andw̃∗
′

are feasible points forP (x):

V (x) =
N∑

i=0

L(s∗i (x), q∗i (x)) = Lx(w∗(x))

and

L(x, q0 + ∆q0(x, w)) + Ṽ (x′) = L(s′0, q
′
0) +

N∑

i=1

L(s̃∗i (x
′), q̃∗i (x′)) = Lx(w∗

′
).
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Therefore, we can compare

‖Lx(w̃∗
′
)−Lx(w∗(x))‖ = ‖ ∫ 1

0
∇wLx(w∗(x) + t1(w̃∗

′ − w∗(x)))T (w̃∗
′ − w∗(x)) dt1‖

= ‖ ∫ 1

0

(∫ t1
0
∇2

wL(w∗(x) + t2(w̃∗
′−w∗(x)))(w̃∗

′−w∗(x)) dt2

)T
(w̃∗

′−w∗(x)) dt1‖
= ‖(w̃∗′−w∗(x))T

(∫ 1

0

∫ t1
0
∇2

wL(w∗0 + t2(w̃∗
′−w∗(x))) dt2 dt1

)T
(w̃∗

′−w∗(x))‖
≤ B

2 ‖w̃∗
′−w∗(x)‖2,

where we have made use of the fact that∇wLx(w∗(x)) = 0. Together with (45) we can now obtain the
bound

L(x, q0 + ∆q0(x, w)) + Ṽ (x′)− V (x) ≤ B

2

(
2
δ‖∆w‖
1− δ

)2

and together with the property thatV (x′) ≤ Ṽ (x′) =
∑N

i=1 L(s̃∗i (x
′), q̃∗i (x′)), as in the proof of

Theorem 4.1, we immediately obtain the error bound of Theorem 4.2, withµ given by (42).
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