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Blending Methodology of Linear Parameter Varying
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The design of a linear parameter varying (LPV) controller for the F-16 longitudinal axes over the entire � ight
envelope, using a blending methodology that lets an LPV controller preserve regional optimal solutions over each
parameter subset and reduces computationalcosts for synthesizing an LPV controller, is presented. Three blending
LPV controller synthesis methodologies are applied to control F-16 longitudinal axes. By the use of a function
substitution method, a quasi-LPV model of the F-16 longitudinalaxes is constructed from the nonlinear equations
of motion over the entire � ight envelope, including nontrim regions, to facilitate synthesis of LPV controllers for
the F-16 aircraft. The nonlinear simulations of the blended LPV controller show that the desired performance and
robustness objectives are achieved across all altitude variations.

Nomenclature
Cm0 = pitch moment aerodynamic coef� cient
Cmq = pitch moment aerodynamic stability derivative
CX , CZ = X and Z force aerodynamic coef� cients
CXq , CZq = aerodynamic stability derivatives
Nc, S = chord length, ft, and reference area, ft2

g = gravity constant, ft/s2

m, Iyy = mass, slug, and inertial moments, slug ¢ ft2

V , Nq = velocity, ft/s, and dynamic pressure, psi
X a:c:, X c:g: = aerodynamic center position, ft, and center

of gravity position, ft
®, q = angle of attack, rad, and pitch rate, rad/s
±e , T = elevator de� ection, rad, and thrust, lb
µ , ° = pitch angle, rad, and � ight-path angle, rad

Introduction

E XTENSIVE research over the last 10 years has focused on de-
veloping analysis and synthesis techniques for gain-scheduled

controllersfor linearparametervarying(LPV) systems.1¡6 InRefs. 1
and 2, conditions are given that guarantee stability, robustness, and
performancepropertiesof theglobalgain-scheduleddesigns.Recent
theoretical developments have produced methods for synthesizing
gain-scheduling controllers for LPV systems, which guarantee a
level of robust stability and performance across scheduling param-
eter spaces.4¡6 In Ref. 5, LPV control synthesis methods have also
been developed using parameter-dependentLyapunov functions to
lead to a less conservativeresult.This gain-schedulingapproachhas
been successfully applied to synthesize controllers for pitch-axis
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missile autopilots,7;8 F-14 aircraft lateral–directional axis during
powered approach,9;10 and turbofan engines.11;12

One of the potential dif� culties in practical uses of the LPV syn-
thesis methodologywith parameter-dependentLyapunov functions
is that the complexity of a linear matrix inequality (LMI) optimiza-
tion problemincreasesexponentiallywith the number of scheduling
parameters and the number of grid points over a scheduling param-
eter space. One approach to facilitatepracticaluse of LPV synthesis
methodology,the“blendingapproach,”hasbeendiscussedin Refs. 6
and 13. This approach to control design partitions the entire param-
eter space into overlapping small subspaces. An LPV controller is
synthesized for each small region. These regional controllers are
blended into a single LPV controller for the entire parameter space.
The blendedLPV controllerpreservestheperformancelevelof these
regionalcontrollersover each small region. In this paper, this blend-
ing approach is applied to control F-16 longitudinal axes over the
entire � ight envelope.

To synthesize an LPV controller for an F-16 aircraft, an LPV
model of the aircraftdynamics is required.Conventionalapproaches
to generate an LPV model of an aircraft are based on Jacobian lin-
earization at trim points or a change of state coordinates8 to reduce
the nonlinearity of aircraft dynamics. The LPV models constructed
by both approachescan presentaircraftdynamicsat trim conditions.
However, the models cannot represent aircraft dynamics at nontrim
conditions.Instead of using Jacobian linearizationor state transfor-
mation, the nonlinear terms of aircraft dynamics can be substituted
for other functions in quasi-LPV form.14;15 This function substitu-
tion approach can be applied for both trim and nontrim conditions.
The approach has been used in generating a quasi-LPV model of a
generic missile.14;15 In this paper, a quasi-LPV model of F-16 lon-
gitudinal axes is provided over the entire � ight envelope, including
nontrim regions, using a function substitution approach.

In the second section, a brief summary of conventionalLPV con-
troller synthesis used in this paper is presented to emphasize the
complexity of the LMI optimizations. In the third section, three
blending LPV control synthesis methodologies are presented. De-
velopment of a quasi-LPV model of F-16 longitudinal axes is pre-
sented in the fourth section. In the � fth section, formulation of
the LPV control problem and blending two LPV controllers of the
F-16 aircraftare presented.Nonlinearsimulationsof theclosed-loop
system with the blended controller are presented in the sixth sec-
tion, and this paper concludes with a brief summary in the seventh
section.
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LPV Control Synthesis
In this section, a conventional LPV control synthesis using

parameter-dependent Lyapunov functions5 is brie� y described.
Consider a generalized linear open-loop system as functions of pa-
rameters ½.t/ 2 P . For a compact subset P ½ Rs , the parameter
variation set denotes the set of all piecewise continuous functions
mapping R (time) into P with a � nite number of discontinuities in
any interval, where s is the number of parameters. An LPV open-
loop system can be written as

2
4

Px.t/

e.t/

y.t/

3
5 D

2
4

A.½.t// B1.½.t// B2.½.t//

C1.½.t// 0 D12.½.t//

C2.½.t// D21.½.t// 0

3
5

2
4

x.t/

d.t/

u.t/

3
5 (1)

where y.t/, e.t/, d.t/, and u.t/ are measurements, errors, distur-
bances, and control signals. Hereafter,½ denotes ½.t/. The induced
L 2 norm of d to e is de� ned as

sup
½ 2 P ;d 2 L 2;kdk2 6D 0

kek2

kdk2

Supposethere is anLPV outputfeedbackcontrollerK .½/ that sta-
bilizes theclosed-loopsystemexponentiallyandmakes the induced-
L 2 norm of d to e less than ° . An LPV controller K .½/ can be
constructed from solutions of X .½/ and Y .½/ of the following op-
timization problem5:

min
X;Y 2 Rn £ n

° (2)

subject to

2

6664
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3
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2

6664

QA.½/Y .½/ C Y .½/ QAT .½/ C
sX

i D 1

³
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11.½/Y .½/ ¡Ind1

0

° ¡1C1.½/ 0 ¡Ine

3

7775 < 0 (4)

µ
X .½/ ° ¡1 In

° ¡1 In Y .½/

¶
¸ 0; X .½/ > 0; Y .½/ > 0 (5)

where

OA.½/ ´ A.½/ ¡ B2.½/C12.½/; QA.½/ ´ A.½/ ¡ B12.½/C2.½/

(6)

and n is the number of states of the generalized open-loop system.
The detailedde� nitions of matrices C11.½/, C12.½/, and B11.½/ can
be found in Ref. 5. Note that

sX

i D 1

Nº i

indicatesthat everycombinationofº i and Nºi is includedin the LMIs.
The parameter rate P½ is bounded as ºi · P½i · Nºi .

A method to construct an LPV controller K .½/ from the solu-
tions X .½/ and Y .½/ is taken from Ref. 5. An LPV controller is
constructed as

Ak.½/ D A.½/ C B2.½/F.½/ C Q¡1.½/Y .½/L.½/C2.½/

¡ ° ¡2 Q¡1.½/M.½; P½/ (7)

Bk.½/ D ¡Q¡1.½/Y .½/L.½/ (8)

Ck .½/ D F.½/ (9)

Dk .½/ D 0 (10)

where matrices Q.½/, F .½/, L.½/, and M.½; P½/ are de� ned as

Q.½/ D Y .½/ ¡ ° ¡2 X¡1.½/

F.½/ D ¡
£
BT

2 .½/X ¡1.½/ C DT
12.½/C1.½/

¤

L.½/ D ¡
£
Y ¡1.½/CT

2 .½/ C B1.½/DT
21.½/

¤

M.½; P½/ D H .½; P½/ C ° 2 Q.½/[¡Q¡1.½/Y .½/L.½/D21.½/

¡ B1.½/]BT
1 .½/X ¡1.½/

Matrix H .½; P½/ is de� ned as

H .½; P½/ D ¡
µ

X¡1.½/AF .½/ C AF .½/T X¡1.½/ C
sX

i D 1

³
P½i

@ X¡1

@½i
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C C T
F .½/CF .½/ C ° ¡2 X ¡1.½/B1.½/B1.½/T X ¡1.½/

¶

with AF .½/ D A.½/ C B2.½/F.½/ and CF .½/ D C1.½/ C
D12.½/F .½/. The closed-loop system with the controller K .½/ is
exponentially stable, and the induced-L 2 norm is less than ° . The
proof can be found in Ref. 5.

To make the optimization problem of Eq. (2) computationally
tractable, the scheduling parameters ½ are discretized into grid
points. Thus, an in� nite number of constraints are representedby a
� nite number of LMI constraints. Also, X .½/ and Y .½/ are repre-
sented by a � nite number of basis functions h i .½/ and gi .½/:

X .½/ D
NxX

j D 1

h j .½/X j ; Y .½/ D
N yX

i D 1

g j .½/Y j (11)

where h j .½/ and g j .½/ are continuously differentiable functions.
The LMIs of Eqs. (3–5) are solved for all grid points of the schedul-
ing parameters simultaneously. The size of the optimization prob-
lem is proportional to 2s C 1 Ng , where s and Ng are the number
of scheduling parameters and total number of grid points over the
scheduling parameter space. The number of decision variables are
.Nx C Ny /[n.n C 1/=2], where Nx , Ny , and n are the order of ba-
sis functions of X and Y and the state order. Thus, computational
time to solve the optimization problem of Eq. (2) is dependent on
the number of grid points of scheduling parameters, the state order
of a generalized open-loop system, and the basis function orders.
The conventional LPV synthesis methodology may require expen-
sivecomputationalcost (computationaltime andcomputermemory)
when the number of scheduling parameters increases. Also, a con-
ventionally designed LPV controller leads to a conservative result
because the decision variables X j and Y j in Eq. (11) satisfy LMI
constraintsover the entire parameter set simultaneously.

LPV Controller Blending Approach
Instead of designing a single LPV controller for the entire pa-

rameter set at the same time in a conventionalLPV synthesis, LPV
controllers can be synthesized for parameter subsets, respectively,
which are overlappedwith each other. Then, these LPV controllers
are blended into a single LPV controller over the entire parameter
set to satisfy stability and to achieve the desired performance. The



1042 SHIN, BALAS, AND KAYA

blended LPV controller can lead to less conservative results than
the conventionally designed LPV controller because the decision
variables of the LMI optimization problem satisfy the LMI con-
straint over each parameter subset, respectively. Also, the blended
LPV controller preserves the regional optimal solutions. The main
dif� culty of this blending approach is how to combine the regional
optimal solution over the overlapped parameter subset.

Consider the scheduling parameter vector ½ 2 P , which consists
of subvectors½s 2 Ps and ½d 2 Pd . The parameter subset Ps can be
partitioned into two subsets with the following conditions:

Ps\ D Ps1 \ Ps2 (12)
Ps D Ps1 [ Ps2 (13)

Suppose that there exist LPV controllers K1 and K2 constructed
from parameter-dependentLyapunov functions of a parameter sub-
vector ½d , over each parameter subset Psi [ Pd , i D 1; 2. Thus, X i

and Yi are functions of ½d (not ½s) over each parameter subset
Psi [ Pd ; i D 1; 2. Also, the controller K i can stabilize the closed-
loop system and the induced-L 2 norm of the closed-loop system is
less than °i over each parameter subset Psi [ Pd .

When a scheduling parameter subvector ½s is in the intersec-
tion subset Ps\ , LMI solution matrices X i .½d / and Yi .½d/ are com-
bined into Xb.½s; ½d/ and Yb.½s; ½d/, respectively. The blended
matrices Xb.½s; ½d / and Yb.½s; ½d/ should be feasible solutions of
the LMI constraints of Eqs. (3) and (4) over the parameter sub-
set Ps\ [ Pd . When the parameter subvector ½s is in the parameter
subset Psi ¡ Ps\ , then Xb.½s ; ½d / and Yb.½s; ½d / should be equal
to X i .½d/ and Yi .½d/, respectively, and the partial derivatives of
@ Xb=@½ and @Yb=@½ should be equal to @ X i =@½ and @Yi=@½, re-
spectively.There are threeblendingmethods for Xb and Yb to satisfy
the feasibility condition and the boundary conditions.

For method 1, matrices Xb.½s , ½d/ and Yb.½s , ½d / can be written
as

Xb.½s; ½d / D
2X

i D 1

bxi .½s /X i .½d/ (14)

Yb.½s; ½d / D
2X

i D 1

byi .½s /Yi .½d / (15)

where blending functions bxi .½s/ and byi .½s/ are differentiable
scalar functions. To satisfy the boundary conditions of Xb and Yb ,
blending functions bxi .½s / and byi .½s/ are de� ned as

byi .½s/ D bxi .½s/ D
»

1; ½s 2 Psi ¡ Ps\

0; ½s 2 Ps ¡ Psi (16)

@bxi .½s /

@½s

D 0;
@byi .½s /

@½s

D 0; ½s 2 Psi ¡ Ps\ (17)

Suppose that the blending functions bxi .½s/ and byi .½s/ satisfy the
following conditions:

2X

i D 1

bxi .½s / D 1; 0 · bxi .½s/ · 1; ½s 2 Ps\ (18)

2X

i D 1

byi .½s / D 1; 0 · byi .½s/ · 1; ½s 2 Ps\ (19)

2

6666664

2X

j D 1

bx j X j
OAT C OA

2X

j D 1

bx j X j C
sX

i D 1

³
Nº i

@

@½i

2X

j D 1

bx j X j

´
¡ B2 BT

2

2X

j D 1

bx j X j C
T
11 ° ¡1 B1

C11

2X

j D 1

bx j X j ¡Ine1
0

° ¡1 BT
1 0 ¡Ind

3

7777775
< 0 (24)
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and ° is chosen as max.°1; °2/. Then, the following equations are
satis� edbecausetheLMIs ofEqs. (3) and (4) are convexwith respect
to X and Y . Hereafter, ½ dependence is omitted for convenience:

Xb
OAT C OAXb ¡

sX

i D 1

Á
Nº i

2X

j D 1

bx j

@ X j

@½i

!
¡ B2 BT

2

C XbCT
11C11 Xb C ° ¡2 B1 BT

1 < 0 (20)

QAYb C Yb
QAT C

sX

i D 1

Á
Nº i

2X

j D 1

by j

@Y j

@½i

!
¡ C T

2 C2

C Yb B11 BT
11Yb C ° ¡2C T

1 C1 < 0 (21)

When the derivatives of blending functions @bxi .½s/=@½s and
@byi .½s/=@½s are small enough to satisfy the following inequalities,

N¾

Á
sX

i D 1

(
Nº i

2X

j D 1

X j .½/
@bx j .½s/

@½i

)!
< ¾ .MX / (22)

N¾

Á
sX

i D 1

(
Nº i

2X

j D 1

Y j .½/
@by j .½s/

@½i

)!

< ¾.MY / (23)

it is noted that the blended Xb.½s; ½d/ and Yb.½s; ½d/ can be feasi-
ble solutions of LMIs of Eqs. (3) and (5) over the parameter subset
Ps\ , where matrices MX and MY are

MX ´ Xb
OAT C OAXb ¡

sX

i D 1

Á
Nº i

2X

j D 1

bx j

@ X j

@½i

!
¡ B2 BT

2

C XbCT
11C11 Xb C ° ¡2 B1 BT

1

MY ´ QAYb C Yb
QAT C

sX

i D 1

Á
Nºi

2X

j D 1

by j

@Y j

@½i

!
¡ C T

2 C2

C Yb B11 BT
11Yb C ° ¡2C T

1 C1

Here, N¾ and ¾ represent the maximum and the minimum singular
values, respectively.

The procedure of designing an LPV controller over the entire
parameter set using this blending method 1 is as follows:

1) Solve the LMI optimization of Eq. (2) for X i .½d/ and Yi .½d/
over two parameter subsets, respectively.

2) De� ne blending scalar functions bxi .½s/ and byi .½s / that sat-
isfy the boundaryconditionsof Eqs. (16) and (17) and the derivative
conditionsof Eqs. (22) and (23). Note that the derivative conditions
are suf� cient for Xb.½s; ½d/ and Yb.½s; ½d/ to be feasible solutions
of the LMI constraintsof Eqs. (3) and (4) over the parameter subset
Ps\ [ Pd . A controller designer chooses candidate blending func-
tions until the feasibility conditionsof Eqs. (3) and (4) are satis� ed.

3) Construct an LPV controller over the entire parameter set
Ps [ Pd using Eqs. (7–10), from the calculated Xb and Yb of
Eqs. (14) and (15).

For method 2, an alternative way to calculate the blended matri-
ces X .½s ; ½d/ and Y .½s ; ½d / as feasible solutions of the LMIs of
Eqs. (3–5) is adding extraLMIs in conventionalLPV synthesiswith
candidate blending functions.6 The extra LMIs are
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The procedure of designing an LPV controller over the entire
parameter set using this blending method 2 is as follows:

1) Solve the LMI optimizationof Eq. (2) for the solutionmatrices
X1.½d/ and Y1.½d/ over one of the parameter subsets, denoted by
Ps1 [ Pd .

2)De� neblendingscalarfunctionsbxi .½s/ andbyi .½s/ that satisfy
the boundary conditions of Eqs. (16) and (17).

3) Solve the LMI optimization problem of Eq. (2) with the extra
LMI constraints of Eqs. (24) and (25) for the solution matrices
X2.½d/ and Y2.½d/ over the other parameter subset Ps2 [ Pd .

4) Repeat step 3 of method 1.
The LMI optimizationover the second parametersubset Ps2 [ Pd

is related to the solution matrices X1 and Y1 over the � rst parameter
subset Ps1 [ Pd . Thus, de� ning the order of parameter subsets may
affect the designed LPV controller over the entire parameter set.

Both methods 1 and 2 require appropriate blending functions to
blend solution matrices over the parameter subset Ps\ . Note that an
LPV controller provided by the blending methods 1 and 2 changes
depending on which blending functions are selected. It is unknown
how this affects the closed-loop performance of the designed LPV
controller.

For method 3, blending matrix functions are calculated to min-
imize the induced-L 2 norm ° over the parameter subset Ps\ [ Pd .
The blended solution matrices Xb and Yb are rewritten as

Xb.½s ; ½d / D 1
2

£
Xb1 .½s /X1.½d / C X1.½d/Xb1 .½s/

¤

C 1
2

£
Xb2 .½s /X2.½d / C X2.½d/Xb2 .½s/

¤
(26)

Yb.½s; ½d/ D 1
2

£
Yb1 .½s/Y1.½d/ C Y1.½d/Yb1 .½s/

¤

C 1
2

£
Yb2 .½s/Y2.½d/ C Y2.½d /Yb2 .½s/

¤
(27)

where blending matrix functions Xb1 .½s/, Xb2 .½s/, Yb1 .½s/, and
Yb2 .½s/ are differentiablesymmetricmatrix functionsboundedover
the parameter subset Ps\ . To present the blending matrix functions,
basis functions gxk .½s/, h xk .½s/, gyk .½s/, and h yk .½s/ for Xb1 .½s/,
Xb2 .½s /, Yb1 .½s/, and Yb2 .½s / are introduced, respectively. To sat-
isfy the boundary condition of blended matrices Xb.½s; ½d/ and
Yb.½s; ½d/, the Xb1 .½s/, Xb2 .½s/, Yb1 .½s/, and Yb2 .½s/ are de� ned
as

Xb1 .½s/ D gx0 .½s/I C
NxgX

k D 1

gxk .½s/Xb1k

Xb2 .½s/ D hx0 .½s/I C
NxhX

k D 1

hxk .½s/Xb2k
(28)

Yb1 .½s/ D gy0 .½s/I C
NygX

k D 1

gyk .½s/Yb1k

Yb2 .½s/ D h y0 .½s/I C
NyhX

k D 1

h yk .½s/Yb2k
(29)

where

gx0 .½s/ D 1; hxk .½s/ D 0

@gxk .½s /

@½si

D
@hxk .½s/

@½si

D 0; ½s 2 Ps1 ¡ Ps\

hx0 .½s/ D 1; gxk .½s/ D 0

@gxk .½s /

@½si

D
@hxk .½s/

@½si

D 0; ½s 2 Ps2 ¡ Ps\

gy0 .½s/ D 1; h yk .½s/ D 0

@gyk .½s /

@½si

D
@h yk .½s/

@½si

D 0; ½s 2 Ps1 ¡ Ps\

h y0 .½s/ D 1; gyk .½s/ D 0

@gyk .½s /

@½si

D
@h yk .½s/

@½si

D 0; ½s 2 Ps2 ¡ Ps\ (30)

Here, the basis functionsare differentiableover the parametersubset
Ps\ and Xb1k

, Xb2k
, Yb1k

, and Yb2k
are unknown constantmatrices in

Rn £ n . The unknown constant matrices can be determined solving
the following LMI optimization:

min
Xb1 j

;Xb2 j
;Yb1 j

;Yb2 j
2 Rn £ n

° (31)

2

6664

Xb
OAT C OAXb ¡

sX

i D 1

³
Nº i

@ Xb

@½i

´
¡ B2 BT

2 XbC T
11 ° ¡1 B1

C11 Xb ¡Ine1
0

° ¡1 BT
1 0 ¡Ind

3

7775 < 0

(32)

2
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sX
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³
Nº i
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´
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2 C2 Yb B11 ° ¡1C T
1

BT
11Yb ¡Ind1

0

° ¡1C1 0 ¡Ine

3

7775 < 0

(33)
µ

Xb ° ¡1 In

° ¡1 In Yb

¶
¸ 0; Xb > 0; Yb > 0 (34)

where

Xb D gx0 X1 C hx0 X2 C 0:5

(
NxgX

j D 1

gx j

£
X1 Xb1 j

C Xb1 j
X1

¤

C
NxhX

k D 1

hxk

£
X2 Xb2k

C Xb2k
X2

¤
)

Yb D gy0 Y1 C h y0 Y2 C 0:5

(
N ygX

j D 1

gy j

£
Y1Yb1 j

C Yb1 j
Y1

¤

C
NyhX

k D 1

h yk

£
Y2Yb2k

C Yb2k
Y2

¤
)

(35)

The procedure of designing an LPV controller over the entire pa-
rameter set using this blending method 3 is as follows:

1) Solve the LMI optimization of Eq. (2) for X i .½/ and Yi .½/
over each parameter subset.

2) De� ne basis functions for blending matrix functions in
Eqs. (28) and (29),whichsatisfy the boundaryconditionsofEq. (30)
over each parameter subset.

3) Construct solution matrices X and Y over the entire parameter
set using the solution matrices X1 , X2 , Y1 , Y2, Xb , and Yb , after
solving the optimization of Eq. (31).

4) Constructan LPV controllerover theentireparameterset using
Eqs. (7–10) based on solutionmatrices X and Y generated in step 3.

There are three methods described to calculate the blended solu-
tion matrices Xb.½s; ½d / and Yb.½s; ½d / that are feasible solutions
of LMIs of Eqs. (3) and (4) over the parameter subset Ps\ [ Pd .
Because all three methods keep X1 and Y1 over the parameter sub-
set Ps1 ¡ Ps\ , the blended LPV controllers generated by the three
methods are equal to the regional LPV controller K1 over the pa-
rameter subset Ps1 ¡ Ps\ . Both methods 1 and 3 can also keep the
regional LPV controller K2 over the parameter subset Ps2 ¡ Ps\ .

The disadvantageof method1 is that choosingblendingfunctions
is performedin anadhocmanner.However,method1 is the fastest to
synthesizeanLPV controllerover theentireparameterset amongthe
three blendingmethods. In method2, the blendingsolutionmatrices
Xb and Yb are guaranteedto be feasible solutionsover the parameter
subset Ps\ . Method 2 requires solving the LMI optimization with
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the extra LMI constraints. In method 3, optimal blending matrix
functionsare calculatedto minimize the induced-L 2 norm° over the
parameter set Ps\ , based on basis functions de� ned by a controller
designer. It is unknown how the basis functions affect the blending
matrix functions and the LPV control design.

Quasi-LPV Model of F-16 Longitudinal Axes
In this section, a quasi-LPV model of F-16 longitudinal axes is

presented. The full nonlinear equations of an F-16A aircraft are
taken from Ref. 16. The nonlinear equations of F-16 longitudinal
axes16 are

PV D . Nq S cos®=m/
£
CX .®; ±e/ C . Nc=2V /CXq .®/q

¤

C . Nq S sin ®=m/
£
CZ .®; ±e/ C . Nc=2V /CZq .®/q

¤

¡ g sin.µ ¡ ®/ C .T=m/ cos ® (36)

P® D [g cos.µ ¡ ®/]=V ¡ .sin ®=mV cos¯/T

C
©
1 C . Nq S Nc=2mV 2/

£
CZq .®/ cos ® ¡ CXq .®/ sin ®

¤ª
q

C . Nq S=V /[CZ .®; ±e/ cos ® ¡ CX .®; ±e/ sin®] (37)

Pq D . Nq S Nc=2Iyy V /
£
NcCmq .®/ C 1CZq .®/

¤
q

C . Nq S Nc=Iyy/
£
Cm0 .®; ±e/ C .1=Nc/CZ .®; ±e/

¤
(38)

Pµ D q (39)

where 1 D X c:g: ¡ X a:c:. Velocity, angle of attack, pitch rate, and
pitch angle are the state variables,and thrust and elevatorde� ection
are the control variables. The aerodynamic coef� cients are lookup
tables based on wind-tunnel data from NASA Langley Research
Center wind-tunnel tests on an F-16 aircraft scaled model.17 The
aerodynamicdata werevalidfor a speedrangeof 100 · V · 900ft/s,
an angle of attack range of ¡10 · ® · 45 deg, and an altitude range
of 5000· h · 40,000 ft. These three parameters are scheduling pa-
rameters in the quasi-LPV model derived for the F-16 longitudinal
axes. Note that V and ® are both scheduling parameters and states
and that h is a scheduling parameter that enters implicitly into the
nonlinear dynamics.

Unfortunately, the control variable ±e does not enter af� nely
in Eqs. (36–38). To derive a quasi-LPV model of F-16 longi-
tudinal axes, it is necessary that all controls be in af� ne form.
This is achieved by transforming (±e; T ) into synthetic inputs
us D [u1 u2]T . For detailsof the transformation,readersare referred
to Ref. 13. For the F-16 quasi-LPV model, cosµ and sin µ are lin-
earized about a trim valueµ0. After tedious algebraicmanipulations,
Eqs. (36–39) are rewritten as

Px D A.V; ®; h/x C M .V; ®; h/us C f .V; ®; h/

x ´ [V ® q µ ¡ µ0]T (40)

where the elements of matrices A 2 R4 £ 4, M 2 R4 £ 2 , and
f 2 R4 £ 1 are given in Appendix A.

With the function substitution method,14;15 the nonlinear func-
tion f .V ; ®; h/ can be decomposed into quasi-linear functions
G.V ; ®; h/[V ¡ V0 ® ¡ ®0]T where G is in R4 £ 2. Thus, a quasi-
LPV modelofF-16 aircraftlongitudinalaxes isprovided.The details
of functionsubstitutionare given in AppendixB. To compare simu-
lation results of the nonlinear and the quasi-LPV model of the F-16
aircraft dynamics, several time sets of inputs T and ±e are prede-
� ned. In this paper, one example of time simulations is presented
due to space limitations. For example, inputs are set as

±e D ±e0; T D
»

T0 lb; 0 · t · 1; 11 · t

T0 ¡ 2000 lb; 1 · t · 11 s (41)

where ±e0 and T0 are a trim values. The time simulation results in
Fig. 1 show that the time responses of the quasi-LPV and nonlinear
models are almost matched to each other. Note that the quasi-LPV
model provided by the function substitution method may change
depending on which one trim point is selected. It is unknown how
this affects the quasi-LPV model or the LPV control design.

Fig. 1 Nonlinear vs quasi-LPV model simulations.

Fig. 2 Interconnection structure for the model matching problems.

LPV Control Problem Formulation
Control Design Objectives and Weighting Functions

A formulationof the LPV control synthesisof the F-16 longitudi-
nal axes is presented in this section. The primary control objective
for the F-16 longitudinal � ight controller is to track velocity and
� ight-path angle commands within 1 ft/s and a 0.6-deg error range
in steady-state conditions.

Velocity and � ight-path angle tracking problems can be formu-
lated as model matching problems in the LPV control synthesis. In
this paper, we consider the F-16 aircraft as an unmanned aircraft.
The ideal transfer function from the � ight-path angle command to
the � ight-path angle measurement is modeled as a second-order
system,0:426.s C 1:5/=.s2 C 1:6s C 0:64/ with 0.8 rad/s bandwidth
and a right-hand zero at ¡1.5 rad/s. For the velocity tracking prob-
lem, the ideal transfer function from the velocity command to
the velocity measurement is modeled as the second-order system
0:16=.s2 C 0:8s C 0:16/ with 0.4 rad/s natural frequency and criti-
cal damping.

A block diagramof the interconnectionstructure for synthesizing
an LPV controller for the F-16 longitudinalaxes is shown in Fig. 2.
The velocity, angle rate, and angle sensors are modeled as the � rst-
order low pass � lters 50=.s C 50/, 60=.s C 60/, and 10=.s C 10/
(Refs. 16 and 17). In the LPV controllersynthesismodels, the sensor
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models shown in Fig. 2 are approximated as

sensor D diag[1; 1; 10=.s C 10/] (42)

becausethe interestingfrequencyrange for LPV control synthesis is
less than 10 rad/s. The reduced-order sensor models help to reduce
the overall state order of an LPV controller because the state order
of an LPV controller is same as that of the augmented open-loop
system. The elevator actuator is modeled as the � rst-order lag � lter
20=.s C 20/ and its rate limit is de� ned as §60 deg/s in Refs. 16
and 17. Because the F-16 is a � ghter aircraft, we estimated the
engine model as the � rst-order lag � lter 4=.s C 4/, which allows
fast responses in engine dynamics. The thrust rate limit is taken to
be 10,000 lb/s. In the block diagram in Fig. 2, the actuator rate and
actuator models are

actuator D diag

µ
20s

s C 20
;

20
s C 20

;
4s

s C 4
;

4
s C 4

¶
(43)

The performanceweightingfunctionsare chosenbasedon the de-
sired performance objectives.The performanceweighting function
of � ight-pathangleWp° , [100.s=100 C 1/2]=.s=0:6 C 1/2 , is derived
based on the performance objective to keep a ° tracking error less
than 0.6 deg for a 1-rad command at steady-state � ight. Because
the bandwidth of the ideal model from the � ight-path angle com-
mand to the � ight-path angle measurement is 0.8 rad/s, the roll-off
frequency of the weighting function is chosen as 0.6 rad/s to spec-
ify the tracking error less than 0.6 deg at the low-frequency region
(<0.6 rad/s). The performance weighting function for the velocity
Wpv , .s=200 C 1/=.s C 1/, is derived to track velocity commands
within 1-ft/s error range in steady-state � ight. The unmodeled dy-
namics are included in the multiplicative uncertainty models Wmu1

and Wmu2 . The uncertainty weighting functions are rolled up in the
midfrequency range to limit the bandwidth of the LPV controllers.
The multiplicative uncertainty weight functions are set as

Wmu1 D 0:01.s=0:35 C 1/

s=80 C 1
; Wmu2 D 0:01.s=0:2 C 1/

s=50 C 1

The sensornoisemodels are takenas constantacross frequencyto
reducethe stateorderof theLPV controllers.The velocity,angle,and
anglerate sensornoisesare modeledaswhitenoiseswith amplitudes
of 0.8 ft/s, 0.1 deg, and 0.6 deg/s, respectively.

To solve LMI Eqs. (3–5), the basis function sets need to be de-
� ned for X and Y . There is no analyticalmethod to choose the best
basis function set. Most often, the basis functions used are power
series,18 Legendre polynomials,19 or af� ne functions of scheduling
parameters.20 Here, the basis functionset for X .½/ and Y .½/ is cho-
sen as the � rst-orderpower series f1; ½g of the schedulingparameter
of velocity to reduce the computation time in the LPV control syn-
thesis. Note that the basis functions of X and Y do not have to be
the same.

Blending Two Controllers
In this section,synthesizingan LPV controller for the F-16 longi-

tudinal axes using the blending approach is demonstrated.To apply
the blending approach for control of the F-16, the entire parameter
set (the � ight envelope) is partitioned into two subsets: high- and
low-altitude regions. Parameter subsets are

P1 ´ f.V ; ®; h/j100 · V · 900 ft=s; ¡10 · ® < 45 deg;

5000 · h < 30,000 ftg

P2 ´ f.V ; ®; h/j100 · V · 900 ft=s; ¡10 · ® < 45 deg;

10,000 < h · 40,000 ftg

P\ ´ P1 \ P2 (44)

To use methods 1 and 2, blending functions are required over the
parameter subset P\ , which are satis� ed with the boundary condi-
tions of Eqs. (16) and (17). Blending functions b1.h/ and b2.h/ are
chosen as

b1.h/ D
8
>>><

>>>:

1; h · 10,000 ft

0:5

µ
1 C cos

³
h ¡ 10,000

20,000
¼

´¶
; 10,000 < h < 30,000 ft

0; 30,000 ft · h
(45)

b1.h/ C b2.h/ D 1 (46)

With the blending functions, the solution matrices X i and Yi are
blended across the parameter subset P\ as

Xb.V ; ®; h/ D b1.h/X1.V; ®/ C b2.h/X2.V; ®/ (47)

Yb.V; ®; h/ D b1.h/Y1.V; ®/ C b2.h/Y2.V; ®/ (48)

With methods 1 and 2, LPV controllers KI and KII are constructed
with the solution matrices Xb and Yb over the entire parameter set,
respectively.

To blend solutionmatrices X i .V; ®/ and Yi .V ; ®/ calculatedover
each parameter subset, the basis functions for blendingmatrix func-
tions are required to use method 3. In this paper, the basis function
sets are chosen as fg0; g1g for Xb1 and Yb1 , and as fh0; h1g for Xb2

and Yb2 , respectively:

g1.h/ D
8
>><

>>:

0; h · 10,000 ft

0:15

µ
1 C cos

³
h ¡ 20,000

10,000
¼

´¶
; 10,000 < h < 30,000 ft

0; 30,000 ft · h

(49)

g0.h/ D b1.h/; h0.h/ D 1 ¡ g0.h/; h1.h/ D ¡g1.h/ (50)

where b1.h/ is de� ned in Eq. (45). Note that it is not necessary to
choose the same basis functions for Xbk and Ybk . From the solu-
tion of the LMI optimization of Eq. (31), the matrices Xb.V; ®; h/
and Yb.V ; ®; h/ are calculated using Eqs. (26) and (29). An LPV
controller KIII is constructed from the matrices Xb.V; ®; h/ and
Yb.V; ®; h/ over the entire parameter set.

For comparison, an LPV controller K tot is constructed with so-
lution matrices X and Y over the entire parameter set using the
conventional LPV controller synthesis approach. It takes approxi-
mately 43 h on 933-MHz Pentium III machine running Linux. With
the blending methods 1, 2, and 3, it takes approximately 22, 25,
and 30 h on the same machine, respectively.The computation time
to synthesize the LPV controller for the F-16 longitudinal axes is
reduced using the blending approaches.

Nonlinear Simulations
The 12 state nonlinear F-16 aircraft dynamics16 with the synthe-

sized LPV controllers K1 , K2 , K tot, KI, KII , and KIII are simulated
to compare their time simulations in this section. Recall that the
controllers K1 and K2 are constructed over parameter subsets P1

and P2 , respectively. The controller K tot is synthesized over the
entire parameter set, using the conventional LPV control synthe-
sis methodology. The controllers KI , KII, and KIII are the blended
controller using the blending methods 1, 2, and 3, respectively. In
simulations,the LPV controlleris implementedusing linear interpo-
lationat the currentvaluesof the schedulingparametersbetween the
grid point solutions. The full-state models of actuators and sensors
are included in the nonlinear F-16 aircraft simulations.

With these controllers, the velocity and ° step responses are sim-
ulated around 8000- and 32,000-ft altitude, respectively. The step
input sizes are a 10-ft/s velocity command and a 5-deg ° command
at 1 s. The simulation results in Fig. 3 show that all velocity and
° measurements match the ideal responses within §0.25 ft/s and a
0.06-deg tracking error. It is observed that these controllers achieve
the desired performance objectives.

The controllersK1 , KI, KII , and KIII are exactlyequal to eachother
over the parameter subsetP1 ¡ P\ because the blendingmethods 1,
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Fig. 3 Time simulations around 8000-ft altitude.

Fig. 4 Time simulations around 32,000-ft altitude.

2, and 3 keep the regional controller K1 over the parameter subset
P1 ¡ P\ . The step responses of velocity and ° with the controller
KIII in Fig. 3 represent the step responses with the controllers K1,
KI, and K II in the simulations around 8000-ft altitude. The actuator
de� ections and their rates of the time simulations are shown in
Fig. 3. Note that the blended controller KIII uses smaller actuator
de� ections and their rates than the controller K tot does to achieve
the performance objectives.

The controllers K2, KI, and KIII are exactly equal to each other
over the parameter subset P2 ¡ P\ . The blended controller K II is
different from K2 over the parameter subset P2 ¡ P\ because in the
method 2, the blended controller is constructedsolving the LMI op-
timization of Eqs. (2–5) with the extra LMI constraintsof Eqs. (24)
and (25). The step responses with the controllers K tot, KIII, and KII

are shown in Fig. 4. It is observedthat theseLPV controllersachieve

Fig. 5 Time simulations for the candidate maneuver.

Fig. 6 Actuator time responses for the candidate maneuver.

the desired performanceobjectivesover the parameter set P2 ¡ P\ .
The simulation results show that the controller K tot uses the largest
actuator de� ections and their rates to achieve the performance ob-
jectives.

For comparison, one of the candidate maneuvers that the F-16
aircraft � ies from 15,000 to 32,000 ft across the parameter subset
P\ is simulated, using 20- and 10-ft/s velocity steps and 10-deg
° step commands. Velocity, � ight-path angle, altitude, and angle-
of-attack time responses with the LPV controllers K tot, K III , KII,
and KI are shown in Fig. 5. All of the LPV controllers can achieve
the performance objectives across the parameter subset P\ . Notice
that the velocity tracking performance with the blended controllers
is slightly better than the LPV controller K tot designed over the
entire parameter set P1 [ P2 using the conventionalLPV controller
synthesismethodology.The actuatorde� ectionsand their rateswith
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the LPV controllersare shown in Fig. 6. The simulationresults show
that the blended controllers use much smaller actuator de� ections
to track the velocity and ° commands.

Sensor noises are integrated into the F-16 aircraft simulations for
the samesituationof � ying theF-16aircraftfrom15,000to 32,000ft.
Sensor noises for pitch rate, velocity,and pitch angle are set as white
noises with §0.5 deg/s, §0.8 ft/s, and §0.1-deg amplitudes. The
simulation results are omitted due to space limitations. The LPV
controllers K tot, KIII, KII , and KI stabilize the F-16 aircraft with the
sensor noises and achieve tracking performanceobjectivesover the
scheduling parameter variations. The thrust signal and its rate do
not exceed their limits: T < 19,000 lb and jdT=dtj < 10,000 lb/s.
Also, the elevator actuator and its rates do not exceed their limits:
j±e j < 25 deg and jd±e=dt j < 60 deg/s. Note that the blended con-
troller can lead to a less conservative result than the conventional
LPV controller because the blendedcontrollercan preserve the per-
formance level of the regional LPV controllers.

Note that method 1 requires the slow parameter varying blending
functions. In this example, the parameter intersection range is wide
enoughto providethe slow-varyingblendingfunctionsformethod1.
When the parameter intersectionspace is narrow, method3 is appro-
priate to blend two LPV controllersover the parameter intersection
space.

Conclusions
In this paper, the methodologiesof blending LPV controllers are

discussedto preservethe regionaloptimal solutionover each param-
eter subset and to reduce computation time to synthesize an LPV
controller over the entire parameter set. The blending approaches
are to design each LPV controller for the set of a small number
of scheduling parameters over the parameter subsets and blend all
controllersscheduledon the entire schedulingparameters using the
blending functions.

The quasi-LPVmodelof theF-16 longitudinalaxes is providedby
a functionsubstitutionmethodover theentire� ightenvelopeto facil-
itate synthesisof an LPV controller.The two LPV controllersof the
F-16 longitudinal axes are synthesized as functions of velocity and
angle of attack at two regions: low and high altitudes, respectively.
The two LPV controllers are blended into a single LPV controller
as functions of velocity, angle of attack, and altitude over the entire
� ight envelope, using the three blending approaches. Note, from
the nonlinear time simulations, that the blended controllers achieve
better performance than the LPV controller constructed using the
conventionalLPV synthesis methodology. The blended controllers
constructed using methods 1, 2, and 3 achieve the performance ob-
jectives and stabilize the closed-loop system of the F-16 aircraft
with sensor noises.

Appendix A: Nonlinear Equations of F-16
Longitudinal Axes

From nonlinearequations(36–39), the nonlinearequationsof the
F-16 longitudinal axes are rewritten as follows:
2

6664

PV
P®
Pq
Pµ

3

7775 D
µ

A11.V ; ®/ A12.V; ®; h/

A21.V ; ®/ A22.V; ®; h/

¶
2

664

V

®

q

µ ¡ µ0

3

775

C M.V ; ®; h/us C f .V; ®/ (A1)

where

A11 D A21 D
µ

0 0

0 0

¶

A12.1; 1/ D . Nq S Nc=2mV /
£
CXq .®/ cos® C CZq .®/ sin ®

¤

A12.1; 2/ D g.¡ cos ® cos µ0 ¡ sin ® sin µ0/

A12.2; 1/ D 1 C . NqS Nc=2mV 2/
£
¡CXq .®/ sin ® C CZq .®/ cos ®

¤

A12.2; 2/ D .g=V /.sin ® cos µ0 ¡ cos® sin µ0/

A22 D

(
. NqS Nc=2V Iyy/

£
NcCmq .®/ C 1CZq .®/

¤
0

1 0

)

f D

2

6664

. Nq S=m/CZ .®/ sin ® C g.¡ cos® sin µ0 C sin ® cos µ0/

. Nq S=mV /CZ .®/ cos® C .g=V /.sin ® sin µ0 C cos ® cos µ0/

. NqS=Iyy/1CZ .®/

0

3

7775

The gain matrix M is constructed as lookup tables and us are syn-
thetic inputs. The term of M .V; ®; h/us can represent the following
terms:

M.V; ®; h/us .V; ®; ±e; T /

¼

2

66664

. Nq S=m/
£

NCZe ±e sin ® C CX .®; ±e/ cos®
¤

C .cos®=m/T

. NqS=mV /
£

NCZe ±e cos ® ¡ CX .®; ±e/ sin®] ¡ .sin ®=mV /T

. NqS Nc=Iyy /Cm0 .®; ±e/ C . Nq S=Iyy/1 NCZe ±e

0

3

77775

where CZ .®; ±e/ D CZ .®/ C NCZe ±e. The aerodynamic coef� cients
data are taken from Ref. 16. The detailed methods to determine
M and synthetic inputs us are available in Ref. 13. The synthetic in-
puts can vary in the range of ¡1 · u1 · 1 and 0 · u2 · 1. The units
of u1 and u2 are 25 deg and 19,000 lb, respectively.

Appendix B: Decomposition
Set the state variables in a quasi-LPV model of the F-16 aircraft

dynamics as V ¡ V0, ® ¡ ®0 , q ¡ q0 , and µ ¡ µ0, where V0, ®0, q0

and µ0 represent a trim point. Then, Eq. (A1) is rewritten as
µP»1

P»2

¶
D F.z/ C

µ
A11.z/ A12.z/

A21.z/ A22.z/

¶ µ
»1

»2

¶
C

µ
B1.z/

B2.z/

¶
Qu (B1)

where

F.z/ D f .z/ C
µ

A11.z/ A12.z/

A21.z/ A22.z/

¶ µ
z0

w0

¶
C

µ
B1.z/

B2.z/

¶
u0

»1 D z ¡ z0; »2 D w ¡ w0; Qu D us ¡ u0 (B2)

z D [V ®]T ; w D [q µ ]T (B3)

To provide a quasi-LPV model of F-16 aircraft dynamics from
Eq. (B1), the term F.z/ should be decomposed into LPV functions
written as

F.z/ D F.z0 C »1/ D
µ

gz.z0 C »1/

gw.z0 C »1/

¶
»1 (B4)

where gz 2 R2 £ 2 and gw 2 R2 £ 2. There are an in� nite number of
possible solutions of gz and gw to satisfy Eq. (B4). To determine
functionsgz and gw , more constraintsare required. In this paper, the
variation of gz and gw over the entire � ight envelope is minimized.
With these constraints, an optimization problem is formulated to
determine gz and gw . For example, to determine the � rst row of gz ,
an optimization problem is as follows:

min
gz11 2 R;gz12 2 R

² (B5)

subject to

F1.z0 C »1/ D
£
gz11 .z0 C »1/gz12 .z0 C »1/

¤
»1

­­­­
@2gz11 .z0 C »1/

@» 2
1

­­­­· ²;

­­­­
@2gz12 .z0 C »1/

@» 2
1

­­­­· ² (B6)

where F1 is the � rst row of F . To make the optimizationproblem of
Eq. (B5) computationally tractable, the continuous constraints are
evaluated at grid points over the parameter set. Thus, the matrix gz

can be determined at every grid point of »1 . With solutions of the
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optimizationfor gz and gw , a quasi-LPV model of F-16 longitudinal
axes is written as2

6664

PV
P®
Pq
Pµ

3

7775 D
µ

A11.V; ®/ C gz.V ; ®/ A12.V; ®; h/

A21.V ; ®/ C gw.V ; ®/ A22.V; ®; h/

¶
2

6664

V ¡ V0

® ¡ ®0

q

µ ¡ µ0

3

7775

C M.V ; ®; h/.us ¡ us0/ (B7)
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