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Blending Methodology of Linear Parameter Varying
Control Synthesis of F-16 Aircraft System
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The design of a linear parameter varying (LPV) controller for the F-16 longitudinal axes over the entire flight
envelope, using a blending methodology that lets an LPV controller preserve regional optimal solutions over each
parameter subset and reduces computational costs for synthesizing an LPV controller, is presented. Three blending
LPYV controller synthesis methodologies are applied to control F-16 longitudinal axes. By the use of a function
substitution method, a quasi-LPV model of the F-16 longitudinal axes is constructed from the nonlinear equations
of motion over the entire flight envelope, including nontrim regions, to facilitate synthesis of LPV controllers for
the F-16 aircraft. The nonlinear simulations of the blended LPV controller show that the desired performance and
robustness objectives are achieved across all altitude variations.

Nomenclature

Cho = pitch moment aerodynamic coefficient
Cm, = pitch moment aerodynamic stability derivative
Cy,Cy, = X and Z force aerodynamic coefficients
Cx,,Cz, = aerodynamic stability derivatives
c, S = chord length, ft, and reference area, ft>
g = gravity constant, ft/s?
m, I, = mass, slug, and inertial moments, slug - ft*
V.,q = velocity, ft/s, and dynamic pressure, psi
Xac» Xcg = aerodynamic center position, ft, and center

of gravity position, ft
o, q = angle of attack, rad, and pitch rate, rad/s
8., T = elevatordeflection, rad, and thrust, Ib
0,y = pitch angle, rad, and flight-path angle, rad

Introduction

XTENSIVE research over the last 10 years has focused on de-

veloping analysis and synthesis techniques for gain-scheduled
controllersforlinear parametervarying (LPV) systems.!~® In Refs. 1
and 2, conditions are given that guarantee stability, robustness, and
performancepropertiesof the global gain-scheduleddesigns. Recent
theoretical developments have produced methods for synthesizing
gain-scheduling controllers for LPV systems, which guarantee a
level of robust stability and performance across scheduling param-
eter spaces.*~® In Ref. 5, LPV control synthesis methods have also
been developed using parameter-dependentLyapunov functions to
lead to a less conservativeresult. This gain-schedulingapproach has
been successfully applied to synthesize controllers for pitch-axis
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missile autopilots,® F-14 aircraft lateral-directional axis during
powered approach,”!'? and turbofan engines.'":1?

One of the potential difficulties in practical uses of the LPV syn-
thesis methodology with parameter-dependentLyapunov functions
is that the complexity of a linear matrix inequality (LMI) optimiza-
tion problemincreasesexponentially with the number of scheduling
parameters and the number of grid points over a scheduling param-
eter space. One approachto facilitate practicaluse of LPV synthesis
methodology,the “blendingapproach,’has beendiscussedin Refs. 6
and 13. This approach to control design partitions the entire param-
eter space into overlapping small subspaces. An LPV controller is
synthesized for each small region. These regional controllers are
blended into a single LPV controller for the entire parameter space.
Theblended LPV controllerpreservesthe performancelevel of these
regional controllers over each small region. In this paper, this blend-
ing approach is applied to control F-16 longitudinal axes over the
entire flight envelope.

To synthesize an LPV controller for an F-16 aircraft, an LPV
model of the aircraftdynamicsis required. Conventionalapproaches
to generate an LPV model of an aircraft are based on Jacobian lin-
earization at trim points or a change of state coordinates® to reduce
the nonlinearity of aircraft dynamics. The LPV models constructed
by both approachescan presentaircraftdynamics at trim conditions.
However, the models cannotrepresent aircraft dynamics at nontrim
conditions. Instead of using Jacobian linearization or state transfor-
mation, the nonlinear terms of aircraft dynamics can be substituted
for other functions in quasi-LPV form.'*!*> This function substitu-
tion approach can be applied for both trim and nontrim conditions.
The approach has been used in generating a quasi-LPV model of a
generic missile.'*!3 In this paper, a quasi-LPV model of F-16 lon-
gitudinal axes is provided over the entire flight envelope, including
nontrim regions, using a function substitution approach.

In the second section, a brief summary of conventional LPV con-
troller synthesis used in this paper is presented to emphasize the
complexity of the LMI optimizations. In the third section, three
blending LPV control synthesis methodologies are presented. De-
velopment of a quasi-LPV model of F-16 longitudinal axes is pre-
sented in the fourth section. In the fifth section, formulation of
the LPV control problem and blending two LPV controllers of the
F-16 aircraftare presented. Nonlinearsimulations of the closed-loop
system with the blended controller are presented in the sixth sec-
tion, and this paper concludes with a brief summary in the seventh
section.
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LPYV Control Synthesis

In this section, a conventional LPV control synthesis using
parameter-dependent Lyapunov functions® is briefly described.
Consider a generalized linear open-loop system as functions of pa-
rameters p(t) € P. For a compact subset P C R*, the parameter
variation set denotes the set of all piecewise continuous functions
mapping R (time) into P with a finite number of discontinuitiesin
any interval, where s is the number of parameters. An LPV open-
loop system can be written as

x(t) A(p(®))  Bi(p(®) Ba(p@) | [ x(®)
e() | =| Ci(p) 0 Dp(p(m) | [d@®) | (D)
y() Ca(p(1))  Da(p(1)) 0 u(t)

where y(1), e(t), d(t), and u(t) are measurements, errors, distur-
bances, and control signals. Hereafter, p denotes p(¢). The induced
L, norm of d to e is defined as

llell>

peP.delsdl2#0 ldll>

Supposethereis an LPV outputfeedbackcontroller K (p) that sta-
bilizes the closed-loopsystemexponentiallyand makes the induced-
L, norm of d to e less than y. An LPV controller K (p) can be
constructed from solutions of X (p) and Y (p) of the following op-
timization problem’:

x,YT?i{I”X” 4 @
subject to
X
£\~ ap,
i=1
Cll(ﬂ)x(p)
L y~'Bl (p)
—~ - 5 _ aY
AY (o) +Y (0 (o) + ) _ (B
i=1 i
L Bl (p)Y (p)
Vﬁlcl(p)
X *‘I,,'
[ P vl x@we0 Y0 ®)
y'L, Y(p)d
where

A(p) = A(p) — Bi2(p)Ca(p)
(6)

and n is the number of states of the generalized open-loop system.
The detailed definitions of matrices C; (p), C»2(p), and B (p) can
be found in Ref. 5. Note that

L

i=1
indicatesthatevery combinationof v, and v; isincludedin the LMIs.
The parameterrate p is bounded as v, < p; <v;.
A method to construct an LPV controller K (p) from the solu-
tions X(p) and Y (p) is taken from Ref. 5. An LPV controller is
constructed as

Aw(p) = A(p) + B2 (p)F(p) + Q7' (p)Y (p)L(p)C2(p)

A(p) = A(p) — Br(p)Cir(p),

—y20 (P M(p, p) @)
Bi(p) = -0 ()Y (p)L(p) ®)
Ci(p) = F(p) ©

Di(p) =0 (10)

where matrices Q(p), F (p), L(p), and M (p, p) are defined as

Q(p)=Y(p) -y X '(p)

F(p) = —[BI(p) X' (p) + DL(p)Ci(p)]

L(p) = —[Y~'(p)C (p) + Bi(p) D, (p)]

M(p.p) = H(p,p)+ y>Q(p)[—Q ' (p)Y(p)L(p) D21 (p)

—Bi(p)]1B] (p)X ' (p)
Matrix H (p, p) is defined as

s ] ax,l
H(p.p) = —[X‘(p)AF(p) +A P X )+ ) (pia—p_>

i=1

+CHp)Cr(p) + v > X "(p)Bi(p)Bi(p)" X! (p)}

with  Ap(p)=A(p) +By(p)F(p) and Cr(p)=Ci(p)+
D, (p)F (p). The closed-loop system with the controller K (p) is
exponentially stable, and the induced-£, norm is less than y. The
proof can be found in Ref. 5.

To make the optimization problem of Eq. (2) computationally
tractable, the scheduling parameters p are discretized into grid
points. Thus, an infinite number of constraints are represented by a
finite number of LMI constraints. Also, X (p) and Y (p) are repre-
sented by a finite number of basis functions /;(p) and g;(p):

X(p)AT(p) + A(p)X(p) = ) (ﬂ.7> —B:(p)B] (p) X(p)Cli(p) y~'B <p>_|

| <0 3)

-1, 0
o

—C; (p)Ca(p) Y(p)Bii(p) J/"ClT(p)-|

| <0 “4)

~1I,, 0
o ]

ne

Ny Ny
X(p)=Y hi@X;, Y =) g@EY, A
ji=1 i=1

where h;(p) and g;(p) are continuously differentiable functions.
The LMIs of Egs. (3-5) are solved for all grid points of the schedul-
ing parameters simultaneously. The size of the optimization prob-
lem is proportional to 2° !N, where s and N, are the number
of scheduling parameters and total number of grid points over the
scheduling parameter space. The number of decision variables are
(N, + Ny)[n(n+1)/2], where N,, N,, and n are the order of ba-
sis functions of X and Y and the state order. Thus, computational
time to solve the optimization problem of Eq. (2) is dependent on
the number of grid points of scheduling parameters, the state order
of a generalized open-loop system, and the basis function orders.
The conventional LPV synthesis methodology may require expen-
sive computationalcost (computationaltime and computer memory)
when the number of scheduling parameters increases. Also, a con-
ventionally designed LPV controller leads to a conservative result
because the decision variables X ; and Y; in Eq. (11) satisfy LMI
constraints over the entire parameter set simultaneously.

LPYV Controller Blending Approach

Instead of designing a single LPV controller for the entire pa-
rameter set at the same time in a conventional LPV synthesis, LPV
controllers can be synthesized for parameter subsets, respectively,
which are overlapped with each other. Then, these LPV controllers
are blended into a single LPV controller over the entire parameter
set to satisfy stability and to achieve the desired performance. The
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blended LPV controller can lead to less conservative results than
the conventionally designed LPV controller because the decision
variables of the LMI optimization problem satisfy the LMI con-
straint over each parameter subset, respectively. Also, the blended
LPV controller preserves the regional optimal solutions. The main
difficulty of this blending approach is how to combine the regional
optimal solution over the overlapped parameter subset.

Consider the scheduling parameter vector p € P, which consists
of subvectors p; € P, and p,; € P,. The parameter subset P, can be
partitioned into two subsets with the following conditions:

Py =Py NPy, (12)
Ps =P, UP,, (13)

Suppose that there exist LPV controllers K| and K, constructed
from parameter-dependentLyapunov functions of a parameter sub-
vector p,, over each parameter subset P;, UP,, i =1, 2. Thus, X;
and Y; are functions of p,; (not p,) over each parameter subset
P, UP,,i =1, 2. Also, the controller K; can stabilize the closed-
loop system and the induced-£, norm of the closed-loop system is
less than y; over each parameter subset P;, UP,.

When a scheduling parameter subvector p; is in the intersec-
tion subset P, LMI solution matrices X;(p,) and ¥;(p,) are com-
bined into X,(p,, p,) and Y,(p,, p,), respectively. The blended
matrices X, (p,, p,) and Y, (p,, p,) should be feasible solutions of
the LMI constraints of Eqs. (3) and (4) over the parameter sub-
set Py, UP,. When the parameter subvector p, is in the parameter
subset Py, — Py, then X, (p,, p,) and Y, (p,, p,) should be equal
to X;(p,) and Y;(p,), respectively, and the partial derivatives of
90X, /dp and 8Y, /9 p should be equal to X, /dp and 3Y;/dp, re-
spectively. There are three blending methods for X, and Y, to satisfy
the feasibility condition and the boundary conditions.

For method 1, matrices X, (p,, p,) and Y (p,, p,) can be written
as

2
Xy(py, pg) = Z b (p)Xi(py)

i=1

(14)

2
Yy(py p) = Y by (p)Yi(p,) (15)
i=1
where blending functions by, (p,) and by, (p,) are differentiable
scalar functions. To satisfy the boundary conditions of X, and Y,
blending functions b,, (p,) and b,, (p,) are defined as

lv Ps € Pfi - Pm
b}'i (p;) = bx.‘ (p;) = !
O, Ps € Pf - Pfi (16)
ob,. (p, ab,, (p,
D) _p Ao pep,-m. a7
ap, ap,

Suppose that the blending functions b,, (p,) and b,, (p,) satisfy the
following conditions:

2
Y bp)=1.

i=1

2
Zbyi (p.;) =1,

i=1

0=<by(p) =1, p, € Py (18)

O S b}'i (p)) S 19 p.)‘ € Pm (19)

ibx,x_,.AT +A ibx,x_,- + Z(

j=1 j=1 i=1

2
Cu Y b,X,

i=1
y—l BT

i=1

2
BlTl Zb}'/ Y.f

j=1

y~'C

j=1 j=1

thx>

AZbUY +Zb YAT+Z(_,8 Zb‘,y

j=1
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and y is chosen as max(yy, y»). Then, the following equations are
satisfied becausethe LMIs of Egs. (3) and (4) are convex with respect
to X and Y. Hereafter, p dependenceis omitted for convenience:

XbAT+Axb—Z< th o ) — BB

i=1 ji=1

+X,CTC\\ X, +y*BiB <0 (20)
AY, + VA7 +Z<_,Zb )—C;C2
i=1 j=1
+Y,B, B Y, +y*CI'C, <0 (21)

When the derivatives of blending functions 8b,,(p,)/dp, and
0b,, (p,)/dp, are small enough to satisfy the following inequalities,

(Z: 3 X *’(p)})<g<Mx) (22)
i=1

(;: ¢ })<g<MY> (23)

Z Y,(p ) b, i (p )

j=1
itis noted that the blended X, (p,, p,) and Y, (p,, p,) can be feasi-
ble solutions of LMIs of Eqgs. (3) and (5) over the parameter subset
Ps.,» where matrices My and My are

My=X,AT + Ax, -3 (ﬁi

i=1

+X,CIC\ X, +y 2B, BF

MYEAYb+YbAT+2< Zb"a

) - Cclc,
i=1 ji=1
+Y,B, B Y, +y*Cl'C,
Here, ¢ and g represent the maximum and the minimum singular
values, respectively.

The procedure of designing an LPV controller over the entire
parameter set using this blending method 1 is as follows:

1) Solve the LMI optimization of Eq. (2) for X;(p,) and Y;(p,)
over two parameter subsets, respectively.

2) Define blending scalar functions b, (p,) and b,, (p,) that sat-
isfy the boundary conditions of Egs. (16) and (17) and the derivative
conditions of Egs. (22) and (23). Note that the derivative conditions
are sufficient for X, (p,, p,) and Y, (p,, p,) to be feasible solutions
of the LMI constraints of Egs. (3) and (4) over the parameter subset
Psn UP,. A controller designer chooses candidate blending func-
tions until the feasibility conditions of Eqgs. (3) and (4) are satisfied.

3) Construct an LPV controller over the entire parameter set
P, UP,; using Egs. (7-10), from the calculated X, and Y, of
Egs. (14) and (15).

For method 2, an alternative way to calculate the blended matri-
ces X(p,, py) and Y (p,, p,) as feasible solutions of the LMIs of
Egs. (3-5) is adding extra LMIs in conventional LPV synthesis with
candidate blending functions ® The extra LMIs are

— BB thx ch y"Bl—|

j=1

<0 (24)
-1, 0
S
)—C{C2 thy B, y*‘c{-|
a <0 (25)

~1I,, 0

o ]
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The procedure of designing an LPV controller over the entire
parameter set using this blending method 2 is as follows:

1) Solve the LMI optimization of Eq. (2) for the solution matrices
X,(p,) and Y (p,) over one of the parameter subsets, denoted by
Pn U P(l-

2) Define blendingscalarfunctionsb,, (p,) andb,, (p,) thatsatisfy
the boundary conditions of Eqs. (16) and (17).

3) Solve the LMI optimization problem of Eq. (2) with the extra
LMI constraints of Eqgs. (24) and (25) for the solution matrices
X,(p,) and Y,(p,) over the other parameter subset P,, U P,.

4) Repeat step 3 of method 1.

The LMI optimization over the second parametersubset P, UP,
is related to the solution matrices X and Y| over the first parameter
subset P, UP,. Thus, defining the order of parameter subsets may
affect the designed LPV controller over the entire parameter set.

Both methods 1 and 2 require appropriate blending functions to
blend solution matrices over the parameter subset P, .. Note that an
LPV controller provided by the blending methods 1 and 2 changes
depending on which blending functions are selected. It is unknown
how this affects the closed-loop performance of the designed LPV
controller.

For method 3, blending matrix functions are calculated to min-
imize the induced-£, norm y over the parameter subset P,, UP,.
The blended solution matrices X, and Y, are rewritten as

Xo(p,. po) = L[ X5 ()X 1 (p) + X1 (p) X1, (P,)]
+1[X0, () X2(py) + X2 (p) X1y (p,) ] (26)
Y,(p5 Pa) = [0, (00 Y1 (p0) + Y1 (p) Yo (p,) ]

+ 1Y (00 Ya(py) + Yalp) Yo, (p,) ] 27

where blending matrix functions X,, (p,), Xp,(p,), ¥», (p,), and
Y, (p,) are differentiablesymmetric matrix functionsbounded over
the parameter subset P;, . To present the blending matrix functions,

basis functions g, (p,), hy (P,), 8y (p,), and hy, (p,) for X, (p,),
X, (py), Y, (py), and Yy, (p,) are introduced, respectively. To sat-
isfy the boundary condition of blended matrices X,(p,, p,) and

Y, (p;. pa), the X, (p,), X, (py), Yi, (py), and Y, (p,) are defined
as

Nxg
Xp1(py) = 8 (P)T + Z 8 (P;) Xy,
k=1
N*'h
Xoy(py) = hay (PIT + D iy (p) X, (28)
k=1
Nyg

Y, (py) = &y (p)I + Z 8y (p.;)Yblk
k=1

NUr
Y (p) = hyy (0] + Y By ()Y, (29)
k=1
where
8w (py) =1, hy(p,) =0
984 (p,) _ 0hy(p) _o peP. —P
dp,, dp,, ' Lo
hy(py) =1, 8q(p) =0
98w (py) _ Ihy(py) _ 0 cP _p
ap‘“ 8p‘“ 9 p,; 52 Hal
gyo(p,;) = 1, hyk (p;) =0
98y, (py) _ dhy, (py) -0 p.EP, —P
ap,, Ip, ' oo
hyo(p.;) = 1’ g}'k (p)) = O

98y (p,) _ 8h}'k (p,) -0

apy, ap,,

Py S sz - Pm (30)

Here, the basis functionsare differentiableover the parameter subset
P, and Xblk s szk s Yblk ,and szk are unknown constant matrices in
R">*". The unknown constant matrices can be determined solving
the following LMI optimization:

min 3D
Koy Xy, Yoy, Yoy eRrxn
. . ~ (_ 93X, _
X, AT + AX, — Z <£fa_p,.> —BBT X,CI y 131—|
= | <0
Cii X, e, 0
y~'BI 0 —I,,dJ
(32)
AY, +V,AT + Z i.a—yb -crc, v,By, y*‘ClT—|
1 ' 3p;
= | <0
BT Y, ~1,, 0
y~'C 0 —1, J
(33)
Xb yilln
. >0, X, >0, Y,>0 (34)
J/7 In Yb
where
Nixg
Xy = 8y X + hyy X +0.5= Y e [XiX + X, X1]
j=1
NX/Y
k=1
Ny,
Y, =gy, Y1 + hon2 + O'5= Zg}'z [Yl Ybl, + Ybl, Y‘]
j=1
NUY
+ Y [NV + Y, Y2]} (35)
k=1

The procedure of designing an LPV controller over the entire pa-
rameter set using this blending method 3 is as follows:

1) Solve the LMI optimization of Eq. (2) for X;(p) and Y;(p)
over each parameter subset.

2) Define basis functions for blending matrix functions in
Egs. (28) and (29), which satisfy the boundary conditionsof Eq. (30)
over each parameter subset.

3) Construct solution matrices X and Y over the entire parameter
set using the solution matrices X, X,, Y1, Y, X, and Y, after
solving the optimization of Eq. (31).

4) Constructan LPV controlleroverthe entire parametersetusing
Egs. (7-10) based on solution matrices X and Y generatedin step 3.

There are three methods described to calculate the blended solu-
tion matrices X, (p,, p,) and Y, (p,, p,) that are feasible solutions
of LMIs of Eqgs. (3) and (4) over the parameter subset P,, UP,.
Because all three methods keep X and Y| over the parameter sub-
set P, — Ps,, the blended LPV controllers generated by the three
methods are equal to the regional LPV controller K| over the pa-
rameter subset P, — P,,. Both methods 1 and 3 can also keep the
regional LPV controller K, over the parameter subset Py, — P;,,.

The disadvantageof method 1 is that choosingblending functions
is performedin anad hoc manner. However, method 1 is the fastestto
synthesizean LPV controlleroverthe entire parameterset among the
three blending methods. In method 2, the blending solution matrices
X, and Y, are guaranteedto be feasible solutions over the parameter
subset P;,,. Method 2 requires solving the LMI optimization with



1044 SHIN, BALAS, AND KAYA

the extra LMI constraints. In method 3, optimal blending matrix
functionsare calculated to minimize the induced-£, norm y overthe
parameter set P, based on basis functions defined by a controller
designer. It is unknown how the basis functions affect the blending
matrix functions and the LPV control design.

Quasi-LPV Model of F-16 Longitudinal Axes

In this section, a quasi-LPV model of F-16 longitudinal axes is
presented. The full nonlinear equations of an F-16A aircraft are
taken from Ref. 16. The nonlinear equations of F-16 longitudinal
axes'® are

V = (§Scosa/m)[Cx(a, 8,) + (¢/2V)Cx, (@)q]
+(gSsina/m)[Cy(a, 8,) + (/2V)Cy, (@)q]
—gsin(® — ) + (T/m) cosa (36)
& = [gcos(f —a)l/V — (sina/mV cos B)T
+{1+@s¢/2mv*)[Cy, (@) cosa — Cx, (@) sina ] }q

+(@S/V)[Cy(a, 8,) cosa — Cx(a, 8,) sina] (37)
¢ = (Se/21,,V)[eC,, (@) + AC,, (@) ]q

+(GSe/1,))[Cpo (@, 8.) + (A D) C1 (@, 8,)] (38)
0=4q (39)

where A=X_., — X,... Velocity, angle of attack, pitch rate, and
pitch angle are the state variables, and thrust and elevator deflection
are the control variables. The aerodynamic coefficients are lookup
tables based on wind-tunnel data from NASA Langley Research
Center wind-tunnel tests on an F-16 aircraft scaled model.!” The
aerodynamicdata were valid fora speedrangeof 100 < V <900 ft/s,
an angle of attack range of —10 <« <45 deg, and an altitude range
of 5000 < i <40,000 ft. These three parameters are scheduling pa-
rameters in the quasi-LPV model derived for the F-16 longitudinal
axes. Note that V and « are both scheduling parameters and states
and that & is a scheduling parameter that enters implicitly into the
nonlinear dynamics.

Unfortunately, the control variable §, does not enter affinely
in Egs. (36-38). To derive a quasi-LPV model of F-16 longi-
tudinal axes, it is necessary that all controls be in affine form.
This is achieved by transforming (8., T) into synthetic inputs
u, = [u, u,]".Fordetailsof the transformation,readersare referred
to Ref. 13. For the F-16 quasi-LPV model, cosf and siné are lin-
earized abouta trim value . After tedious algebraicmanipulations,
Egs. (36-39) are rewritten as

F= AV, o, h)x + MV, a, hyu, + £(V, o, h)
x=[V a q 6—06]" (40)

where the elements of matrices A€ R**4, MeR**2?, and
f € R**!are given in Appendix A.

With the function substitution method,'*" the nonlinear func-
tion f(V,a, h) can be decomposed into quasi-linear functions
G(V,a, [V =V, a—ay]” where G is in R**2. Thus, a quasi-
LPV model of F-16 aircraftlongitudinalaxesis provided.The details
of function substitutionare given in Appendix B. To compare simu-
lation results of the nonlinear and the quasi-LPV model of the F-16
aircraft dynamics, several time sets of inputs 7 and §, are prede-
fined. In this paper, one example of time simulations is presented
due to space limitations. For example, inputs are set as

T, Ib, 0<t<I, 1<t

% = 8, T_{TO—ZOOOIb, 1<t<1ls (41)
where 8.9 and T are a trim values. The time simulation results in
Fig. 1 show that the time responses of the quasi-LPV and nonlinear
models are almost matched to each other. Note that the quasi-LPV
model provided by the function substitution method may change
depending on which one trim point is selected. It is unknown how
this affects the quasi-LPV model or the LPV control design.

500 :
- ~— Linear model

§ - - Nonlinear model
24500

2

k]

2 \\t—
S 400

q (deg/sec)

time (sec)

Fig.1 Nonlinear vs quasi-LPV model simulations.

W] & .
W,
| o]
Woud A
@ z to-fw,
b D=
’mL ***** noises
Act

Fig.2 Interconnection structure for the model matching problems.

LPV Control Problem Formulation
Control Design Objectives and Weighting Functions

A formulation of the LPV control synthesis of the F-16 longitudi-
nal axes is presented in this section. The primary control objective
for the F-16 longitudinal flight controller is to track velocity and
flight-path angle commands within 1 ft/s and a 0.6-deg error range
in steady-state conditions.

Velocity and flight-path angle tracking problems can be formu-
lated as model matching problems in the LPV control synthesis. In
this paper, we consider the F-16 aircraft as an unmanned aircraft.
The ideal transfer function from the flight-path angle command to
the flight-path angle measurement is modeled as a second-order
system, 0.426(s + 1.5) /(s> + 1.6s + 0.64) with 0.8 rad/s bandwidth
and a right-hand zero at —1.5 rad/s. For the velocity tracking prob-
lem, the ideal transfer function from the velocity command to
the velocity measurement is modeled as the second-order system
0.16/(s> +0.8s +0.16) with 0.4 rad/s natural frequency and criti-
cal damping.

A block diagram of the interconnectionstructure for synthesizing
an LPV controller for the F-16 longitudinal axes is shown in Fig. 2.
The velocity, angle rate, and angle sensors are modeled as the first-
order low pass filters 50/(s + 50), 60/(s +60), and 10/(s 4+ 10)
(Refs. 16 and 17).In the LPV controllersynthesismodels, the sensor
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models shown in Fig. 2 are approximated as
sensor = diag[l, 1, 10/(s 4+ 10)] (42)

becausethe interesting frequency range for LPV control synthesisis
less than 10 rad/s. The reduced-order sensor models help to reduce
the overall state order of an LPV controller because the state order
of an LPV controller is same as that of the augmented open-loop
system. The elevator actuator is modeled as the first-order lag filter
20/(s +20) and its rate limit is defined as £60 deg/s in Refs. 16
and 17. Because the F-16 is a fighter aircraft, we estimated the
engine model as the first-order lag filter 4/(s +4), which allows
fast responses in engine dynamics. The thrust rate limit is taken to
be 10,000 Ib/s. In the block diagram in Fig. 2, the actuator rate and
actuator models are

2 2 4, 4
Os 0 s :| @3)

actuator= dlag[s +20° 54200 s+4 s+4

The performance weighting functionsare chosenbased on the de-
sired performance objectives. The performance weighting function
of flight-pathangle W, ,[100(s /1004 1)*]/(s /0.6 + 1)?,is derived
based on the performance objective to keep a y tracking error less
than 0.6 deg for a 1-rad command at steady-state flight. Because
the bandwidth of the ideal model from the flight-path angle com-
mand to the flight-path angle measurementis 0.8 rad/s, the roll-off
frequency of the weighting function is chosen as 0.6 rad/s to spec-
ify the tracking error less than 0.6 deg at the low-frequency region
(<0.6 rad/s). The performance weighting function for the velocity
W, (s/200+1)/(s + 1), is derived to track velocity commands
within 1-ft/s error range in steady-state flight. The unmodeled dy-
namics are included in the multiplicative uncertainty models Wy,
and W,,,,. The uncertainty weighting functions are rolled up in the
midfrequency range to limit the bandwidth of the LPV controllers.
The multiplicative uncertainty weight functions are set as

_0.01(s/0.35+ 1) 0.01(s/0.2+ 1)

Wiy = s/80+1 Wiy = 5/50+ 1

The sensornoise models are taken as constantacross frequency to
reducethe state order of the LPV controllers.The velocity,angle,and
anglerate sensornoisesare modeled as white noises with amplitudes
of 0.8 ft/s, 0.1 deg, and 0.6 deg/s, respectively.

To solve LMI Egs. (3-5), the basis function sets need to be de-
fined for X and Y. There is no analytical method to choose the best
basis function set. Most often, the basis functions used are power
series,'® Legendre polynomials,'® or affine functions of scheduling
parameters.”’ Here, the basis function et for X (p) and Y (p) is cho-
sen as the first-orderpower series {1, p} of the schedulingparameter
of velocity to reduce the computation time in the LPV control syn-
thesis. Note that the basis functions of X and ¥ do not have to be
the same.

Blending Two Controllers

In this section, synthesizingan LPV controllerfor the F-16 longi-
tudinal axes using the blending approachis demonstrated. To apply
the blending approach for control of the F-16, the entire parameter
set (the flight envelope) is partitioned into two subsets: high- and
low-altitude regions. Parameter subsets are

Pr={(V,a, 100 < V <900 ft/s, —10 < a < 45 deg,
5000 < A < 30,000 ft}
Py = (V,a, 100 < V <900 ft/s, —10 < a < 45 deg,
10,000 < h < 40,000 ft}
Pr=Pi NP, (44)

To use methods 1 and 2, blending functions are required over the
parameter subset Pn, which are satisfied with the boundary condi-
tions of Egs. (16) and (17). Blending functions b, (h) and b, (h) are
chosen as

bi(h) =
1, h < 10,000 ft
h — 10,000
0.5|:1 + COS(WTE>:|, 10,000 < h < 30,000 ft
0, 30,000 ft < h
(45)
bi(h) 4+ by(h) =1 (46)

With the blending functions, the solution matrices X; and Y; are
blended across the parameter subset P as

X,(V,o,h) =b; (W)X (V,a) + ba(h) X5 (V, @) 47)
Y,(V,a,h) =b (W)Y, (V,a) + b,(W)Y>(V, ) (48)

With methods 1 and 2, LPV controllers K; and K|; are constructed
with the solution matrices X, and Y, over the entire parameter set,
respectively.

To blend solution matrices X; (V, @) and Y; (V, «) calculatedover
each parameter subset, the basis functions for blending matrix func-
tions are required to use method 3. In this paper, the basis function
sets are chosen as {gy, g} for X;,, and Y, , and as {hy, &} for X,
and Y, , respectively:

gi(h) =
0, h < 10,000 ft
0.15]11+ h — 20,000 10,000 < h < 30,000 ft
. cos T0.000 7 )|, ,000 < h < 30,
0, 30,000ft < h
(49)
go(h) = by (h), ho(h) =1 — go(h), hi(h) = —gi(h) (50)

where b, (h) is defined in Eq. (45). Note that it is not necessary to
choose the same basis functions for X, and Y,,. From the solu-
tion of the LMI optimization of Eq. (31), the matrices X, (V, «, h)
and Y, (V, «, h) are calculated using Egs. (26) and (29). An LPV
controller Ky is constructed from the matrices X,(V, «, h) and
Y, (V, «, h) over the entire parameter set.

For comparison, an LPV controller Ky is constructed with so-
lution matrices X and Y over the entire parameter set using the
conventional LPV controller synthesis approach. It takes approxi-
mately 43 h on 933-MHz Pentium III machine running Linux. With
the blending methods 1, 2, and 3, it takes approximately 22, 25,
and 30 h on the same machine, respectively. The computation time
to synthesize the LPV controller for the F-16 longitudinal axes is
reduced using the blending approaches.

Nonlinear Simulations

The 12 state nonlinear F-16 aircraft dynamics'® with the synthe-
sized LPV controllers K, K, K, K, Ky, and Kyj; are simulated
to compare their time simulations in this section. Recall that the
controllers K| and K, are constructed over parameter subsets P,
and P,, respectively. The controller K, is synthesized over the
entire parameter set, using the conventional LPV control synthe-
sis methodology. The controllers K;, Ky, and Ky are the blended
controller using the blending methods 1, 2, and 3, respectively. In
simulations, the LPV controlleris implemented using linearinterpo-
lation at the current values of the schedulingparametersbetween the
grid point solutions. The full-state models of actuators and sensors
are included in the nonlinear F-16 aircraft simulations.

With these controllers, the velocity and y step responses are sim-
ulated around 8000- and 32,000-ft altitude, respectively. The step
inputsizes are a 10-ft/s velocity command and a 5-deg y command
at 1 s. The simulation results in Fig. 3 show that all velocity and
y measurements match the ideal responses within £0.25 ft/s and a
0.06-deg tracking error. It is observed that these controllers achieve
the desired performance objectives.

The controllers K, K;, Ky, and Ky are exactlyequal to each other
over the parameter subset P; — P, because the blending methods 1,
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Fig.4 Time simulations around 32,000-ft altitude.

2, and 3 keep the regional controller K| over the parameter subset
P1 — Pn. The step responses of velocity and y with the controller
Ky in Fig. 3 represent the step responses with the controllers K,
K, and Ky in the simulations around 8000-ft altitude. The actuator
deflections and their rates of the time simulations are shown in
Fig. 3. Note that the blended controller Ky; uses smaller actuator
deflections and their rates than the controller K, does to achieve
the performance objectives.

The controllers K,, K;, and Ky are exactly equal to each other
over the parameter subset P, — Pn. The blended controller Ky is
different from K, over the parameter subset P, — P becausein the
method 2, the blended controlleris constructed solving the LMI op-
timization of Egs. (2-5) with the extra LMI constraints of Eqs. (24)
and (25). The step responses with the controllers Ko, Kyj1, and K
are shown in Fig. 4. Itis observedthat these LPV controllersachieve
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Fig. 5 Time simulations for the candidate maneuver.
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Fig. 6 Actuator time responses for the candidate maneuver.

the desired performance objectives over the parameter set P, — Pn.
The simulation results show that the controller K, uses the largest
actuator deflections and their rates to achieve the performance ob-
jectives.

For comparison, one of the candidate maneuvers that the F-16
aircraft flies from 15,000 to 32,000 ft across the parameter subset
P is simulated, using 20- and 10-ft/s velocity steps and 10-deg
y step commands. Velocity, flight-path angle, altitude, and angle-
of-attack time responses with the LPV controllers K, Ky, Kjp,
and K; are shown in Fig. 5. All of the LPV controllers can achieve
the performance objectives across the parameter subset P. Notice
that the velocity tracking performance with the blended controllers
is slightly better than the LPV controller K, designed over the
entire parameter set P; U P, using the conventional LPV controller
synthesismethodology. The actuatordeflections and their rates with
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the LPV controllersare shown in Fig. 6. The simulationresults show
that the blended controllers use much smaller actuator deflections
to track the velocity and y commands.

Sensor noises are integrated into the F-16 aircraft simulations for
the same situationof flying the F-16 aircraftfrom 15,000 to 32,0001t.
Sensor noises for pitchrate, velocity,and pitch angle are set as white
noises with £0.5 deg/s, £0.8 ft/s, and £0.1-deg amplitudes. The
simulation results are omitted due to space limitations. The LPV
controllers K, Ky1, Ky, and Kj stabilize the F-16 aircraft with the
sensor noises and achieve tracking performance objectives over the
scheduling parameter variations. The thrust signal and its rate do
not exceed their limits: 7' < 19,000 1b and |dT'/d¢| < 10,000 1b/s.
Also, the elevator actuator and its rates do not exceed their limits:
[8.] <25 deg and |dé,. /dt| < 60 deg/s. Note that the blended con-
troller can lead to a less conservative result than the conventional
LPV controller because the blended controller can preserve the per-
formance level of the regional LPV controllers.

Note that method 1 requires the slow parameter varying blending
functions. In this example, the parameter intersection range is wide
enoughto providethe slow-varyingblendingfunctionsfor method 1.
When the parameterintersectionspaceis narrow, method 3 is appro-
priate to blend two LPV controllers over the parameter intersection
space.

Conclusions

In this paper, the methodologies of blending LPV controllers are
discussedto preservethe regional optimal solutionover each param-
eter subset and to reduce computation time to synthesize an LPV
controller over the entire parameter set. The blending approaches
are to design each LPV controller for the set of a small number
of scheduling parameters over the parameter subsets and blend all
controllersscheduled on the entire scheduling parameters using the
blending functions.

The quasi-LPV model of the F-16 longitudinalaxes is providedby
afunctionsubstitutionmethod over the entire flightenvelopeto facil-
itate synthesisof an LPV controller. The two LPV controllersof the
F-16 longitudinal axes are synthesized as functions of velocity and
angle of attack at two regions: low and high altitudes, respectively.
The two LPV controllers are blended into a single LPV controller
as functions of velocity, angle of attack, and altitude over the entire
flight envelope, using the three blending approaches. Note, from
the nonlinear time simulations, that the blended controllers achieve
better performance than the LPV controller constructed using the
conventional LPV synthesis methodology. The blended controllers
constructed using methods 1, 2, and 3 achieve the performance ob-
jectives and stabilize the closed-loop system of the F-16 aircraft
with sensor noises.

Appendix A: Nonlinear Equations of F-16
Longitudinal Axes

From nonlinearequations (36-39), the nonlinearequations of the
F-16 longitudinal axes are rewritten as follows:

1% |4 "I
o'(| _ |:A11(V,01) Ap(V, a, h):| o |
Ay (V) Ap(V,a,h)

q q J
éJ 6 — 6y

+MV, 0, u,+ f(V,a) (A1)

0 0
A=Ay = 0 0

Ap(1,1) = (§S¢/2mV)[Cx, (@) cosa + Cz, (@) sina |

where

Ap(1,2) = g(—cosa cosfy — sina sin6p)
A2, 1) =1+ (§Se/2mV*)[—Cy, (@) sina + Cz, (@) cos

A;(2,2) = (g/V)(sina cosby — cosa sinby)

| (@SE/2V 1,y)[ECp, (@) + AC, (@)] 0}
22 —
1 0

(@S/m)Cy(a)sina + g(— cosa sinfy + sina cos by)
(qS/mV)Cz(a)cosa + (g/V)(sina sinfy + cosa cos )
(gS/1;)ACz ()
0 ]

The gain matrix M is constructed as lookup tables and u, are syn-
thetic inputs. The term of M (V, «, h)u, can represent the following
terms:

MV,a, Hu,(V,a,é,, T)
(éS/m)[C_’Z(AcS(, sina + Cx (a, 8,) cosoz] + (cosa/m)T
(@S/mV)[C 8. cosa — Cx(a, 8,) sina] — (sina/mV)T

(§S¢/1,,)Cpy(at, 8,) + (§S/1,,) ACy,8, J
0

where Cz(«, 8,) =Cz(a) +Cy,6,. The aerodynamic coefficients
data are taken from Ref. 16. The detailed methods to determine
M and syntheticinputs u, are availablein Ref. 13. The syntheticin-
puts can vary in the range of —1 <u; <1 and 0 <u, < 1. The units
of u; and u, are 25 deg and 19,000 Ib, respectively.

Appendix B: Decomposition
Set the state variables in a quasi-LPV model of the F-16 aircraft
dynamics as V =V, @ — a9, ¢ — qo, and 8 — 6, where V, oy, q
and 6, represent a trim point. Then, Eq. (A1) is rewritten as

& An@) An@)] (& Bi(2)] .
| =F(z Bl
[sj (H[AN(:) Azz(Z):| LJ’L[BAZJ” B
where
Az Ap() 20 B (2)
F(z)= f(z)+
@=7@ |:A21(Z) Azz(Z):| |:w0:| * |:Bz(2):| 1o

& = w — wy, U=u,—uy (B2)

z=[V o, w=I[g 6] (B3)

To provide a quasi-LPV model of F-16 aircraft dynamics from
Eq. (B1), the term F(z) should be decomposed into LPV functions
written as

(zo +
8:(z9 51):| £ (B4)

F(z) = F(z =

( ) ( 0+§l) [gw(z()—'_gl)

where g. € R*>*? and g, € R*>*2. There are an infinite number of
possible solutions of g. and g, to satisfy Eq. (B4). To determine
functions g. and g,,, more constraintsare required. In this paper, the
variation of g. and g,, over the entire flight envelope is minimized.
With these constraints, an optimization problem is formulated to
determine g. and g,,. For example, to determine the first row of g.,
an optimization problem is as follows:

min € (BS)
g1 €R.g:p €R

subject to

Fi(zp+&) = [g:” (20 + 618, (ot 51)]51

<e€

< <e (B6)

8285”(20 +§l) 828212(20 +§l)
9?2 ’ 9?2

where F is the first row of F'. To make the optimization problem of
Eq. (B5) computationally tractable, the continuous constraints are
evaluated at grid points over the parameter set. Thus, the matrix g.
can be determined at every grid point of &. With solutions of the
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optimizationfor g. and g,,, a quasi-LPV model of F-16 longitudinal
axes is written as

1% V-V
a| [AnV,e)+g(V,a) Ap(V.ah) || a—a
q | N |:A21(V»01) +&u(V,a) An(V,a, h):| q

éJ 9—90J

+ MV, o, h)(u; —uy) (B7)
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