ON A NONLINEAR PARTIAL DIFFERENTIAL EQUATION
ARISING IN MAGNETIC RESONANCE ELECTRICAL
IMPEDANCE TOMOGRAPHY
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ABSTRACT. This paper considers the fundamental questions, such as existence
and uniqueness, of a mathematical model arising in MREIT system, which is
electrical impedance tomography technique integrated with magnetic resonance
imaging. The mathematical model for MREIT is the Neumann problem of a
nonlinear elliptic partial differential equation V- (%Vu(m)) = 0. We
show that this Neumann problem belongs to one of two cases: either infinitely
many solutions or no solution exist. This explains rigorously the reason why
we have used the modified model in [7] which is a system of the Neumann
problem associated with two different Neumann data. For this modified system,
we prove a uniqueness result on the edge detection of a piecewise continuous
conductivity distribution.

1. INTRODUCTION

Magnetic resonance electrical impedance tomography(MREIT) is a new imaging
technique of reconstructing the cross-sectional conductivity distribution of a human
body by means of the electrical impedance tomography (EIT) technique integrated
with the magnetic resonance imaging(MRI) technique. EIT technique to estimate
the conductivity distribution uses data obtained by injecting a known current into
the body through electrodes placed on the surface and measuring the resulting
voltage difference recorded on the electrodes. EIT problem is known as a highly ill-
posed inverse problem due to its low sensitivity of data to the change in conductivity
value. (See [14].) MREIT is designed to overcome this severe ill-posedness of EIT
problem by making good use of a recent MRI technique, so called current density
imaging (CDI) of measuring the internal current density distribution. (See for
related works [4, 6, 10, 11, 12, 15].)

In the recent paper [7], a new reconstruction algorithm for MREIT was devel-
oped to provide a high resolution conductivity image. This algorithm is based on
a new mathematical modeling which is involved with a nonlinear partial differen-
tial equation instead of the linear conductivity equation. Although the algorithm
has achieved successful numerical results in simulations, there has been no related
mathematical theory for the new model such as existence and uniqueness. This
paper is intended to provide answers to those questions.

Let us explain the mathematical model for MREIT which has been introduced in
[7]. Let the cross-section of the cylindrical body occupy a bounded domain Q C R2.
When a current is injected transversely through the outer surface of the body,
it induces an electrical potential distribution w that satisfies the two-dimensional
conductivity equation

V-(eVu)=0 in Q, (1.1)
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FIGURE 1. An illustration for the model where the current I is
applied through a pair of electrodes attached on the boundary.

where ¢ denotes the conductivity coefficient of the body which we want to recon-
struct. This unknown two variable function ¢ may be regarded as a piecewise
continuous positive function. In the MREIT model, the current is applied through
a pair of electrodes attached on the boundary 9Q: If both electrodes of width 2e
are attached at points P,Q) € 0f), respectively, then the current density on the
boundary can be approximated by a function

+a on {|z — P| < €} N 09,
gz) =4 -+ on {|z — Q| < e} NIQ, (1.2)
0 otherwise,

where I is the current sent to both electrodes at P and @), the illustration of which
is shown in Figure 1. For more details, see the ave-gab model in [3, 9].

With this current g, the resulting internal current density vector J = —ogVu is
divergence-free and satisfies the boundary condition
ou
o5, = —J.-v=g on 01, (1.3)

where v denotes the outward unit normal vector to 0€2. Moreover, the MREIT
system furnishes the internal data a = |J| = o|Vu| which is measured and processed
in MRI system [7, 15]. We want to utilize this acquisition data a by substituting
a(x)
o(z) = =——, z €Q, (1.4)
[Vu(z)]

into the conductivity equation (1.1) and the Neumann boundary condition (1.3).
As a result, the linear boundary value problem (1.1) and (1.3) with two unknowns
o and u is reduced to the following nonlinear Neumann boundary value problem
with one unknown u,

a .
V- (WVU) =0 mn Q,

a Ou
= T = = Q =
Val g ond, and i uds =0,

(1.5)
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where the last condition means the potential reference condition. To be precise, the
electric potential u € H'(Q) can be viewed as a weak solution satisfying

/Lw-wdxz/ gpds  forall ¢e HY(Q)
o |Vul 1)

with a constraint / uds = 0.

It is natural to iralgestigate the fundamental mathematical issue of the nonlinear
boundary value problem (1.5), such as existence and uniqueness. In practice, the
existence may not be a serious problem but the uniqueness must be seriously taken
into account. In case when we have not unique but several different solutions, there
will be several corresponding distinct conductivity images and we cannot judge
which one would be the actual image.

Unfortunately, in section 3 we will prove that once the problem (1.5) has a so-
lution, then it always has infinitely many solutions under a practically acceptable
assumption that will be precisely defined in section 3. Hence the model (1.5) using
one measurement is insufficient for the reconstruction of the conductivity distribu-
tion. A numerical example is presented in section 5 to show how different conduc-
tivity images can be reconstructed with the same data (a,g). Moreover, we also
prove in section 3 that the problem (1.5) in general does not have existence result
even if a is smooth. We think that the existence of the solution to the problem (1.5)
is related to some complicated connection between a and g, because the internal
current density a depends on the choice of the injected current g.

Thus the model should be modified in order to guarantee the uniqueness. In sec-
tion 4, we apply two different currents g; and g» approximated in the same manner
as in (1.2) attaching two different pairs of electrodes {P;, @1} and {P2,Q2}. Since
the conductivity distribution ¢ is independent of the change of injected currents,
from the relation (1.4) we may assume

ai(z) _ axz)
[Vur(z)] — [Vua(z)]’
where u; is a solution to the nonlinear Neumann boundary value problem (1.5)
when g and a are replaced by g; and a; (j = 1,2). This leads to the following
nonstandard system of equations

a; .
A s ) = Q
\Y (|V j|Vu]> 0 in €,

ap as

T € Q,

™2 a0
Vu|  [Vus| 6
a]- auj ( : )
|VU‘7'|E =9 on 69’

/ ujds =0,
a0

for 7 = 1,2. With this modified model and a practically acceptable assumption, in
section 4 we are able to establish an important uniqueness result which may look
strange at a glance.

In the following section 2, we define a space for physically meaningful conductiv-
ity distributions and recall some regularity properties of elliptic partial differential
equations for further usage.

2. DEFINITIONS AND PRELIMINARY

We assume that Q C R2, a cross-section of the human body, is a simply connected
bounded domain with C? boundary. The conductivity distribution ¢ on the cross-
section () may be regarded as a piecewise continuous function because distinct
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tissues have different conductivities. So, we may assume that o belongs to the
following class

M
Y= {0’ =09+ Zakxpk
k=1

oo € C*(Q), o € CY(Dy), ok #0 on 8Dy, ODy, is a C* boundary}

MeN, 0<o<oo, DpCcQ, DpyND, =0 for k#¢,

where xp, denotes the characteristic function for Dy and 0 < o < 1 is not an
important number. With this setting, for any ¢ = gg + Ekle OkXD, € X, we easily
see that

o €C* (UL, D) nC* (Q\ UL, Dy) , (2.1)
M

{z € Q|0 is discontinuous at z} = U 0Dy, (2.2)
k=1

For a given current g in (1.2) and ¢ = 00+Z£/I:1 OkXD, € X, let u be the solution
of the classical Neumann boundary value problem

V-(eVu) =0 in Q,
a% =g ondQ, and uds = 0. 2:3)
a0
From the basic theory of elliptic partial differential equation [5, 8], we know
(a) wecC(),
() VueC* (UpLi D) NC™ (2\ UpL, Dy ,
(©) a0(§)Vut(€) - v(&) = (00(&) + k() Vu™ (§) - v(§) if £ € ODy,
d) Vut(€)-1(§) = Vu=(§) - 7(€) if £ € DDy,

where v and 7 are the outward unit normal vector and the unit tangent vector to
0Dy, respectively, and ut, u~ are defined by

(2.4)

ut = u|Q\U£/1=1]3k and u = u|u24=1 Dy-
Moreover, owing to the choice of g as in (1.2), we can show that
Vu(z) #0 for all z € Q, (2.5)

the proof of which can be found in [1, 2, 13]. Indeed, (2.5) holds if nonzero g satisfies
the following condition; there exist two disjoint arcs Tt and T'~ contained in Q
such that

rtur-=09, and Ttc{g>0}, I c{g<o0},

the detailed proof of which will be given in Remark 4.2 for completeness.

3. NON-EXISTENCE AND NON-UNIQUENESS

In this section, we will prove that the nonlinear Neumann boundary value prob-
lem (1.5) under a practically acceptable assumption is in general not uniquely solv-
able by constructing infinitely many different solutions from one solution and by
giving an example for non-existence.

From the relation (1.4) between the conductivity distribution o and the measured
current density a, we may assume that a practically meaningful solution u of the
Neumann problem (1.5) satisfies

a(x)
[Vu(z)|

€, (3.1)
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since ¥ contains almost all cases of piecewise continuous conductivities that may
happen in the real situation. So, the practical solution u can be considered as a
H' () solution of the more complicated problem where g is given as in (1.2),

a a
V- —=—wvu) = nQ —e¥%
(|Vu| u) 0 inf |Vul €&

ﬁ% =g onodf), and 89uds =0.

Hence, if u is a solution of (3.2), it satisfies (2.5) and the properties (a) — (d) in
(2.4). By the property (b) in (2.4) and (3.1), a = ﬁWM must be also a piecewise
continuous function in .

We can easily construct a solution for problem (3.2): For any o € X, there exists
a unique solution u, to the classical Neumann problem (2.3), and this u, is also a
solution to (3.2) when a is given by a = o|Vu,|. To our surprise, the problem (3.2)
with this @ has infinitely many solutions and u, is just one of them. The following
theorem states this non-uniqueness result.

(3.2)

Theorem 3.1. If the nonlinear problem (3.2) has a solution, then it has infinitely
many solutions.

Proof. Suppose u is a solution of the problem (3.2). We will construct infinitely
many solutions by means of u. Since w satisfies the property (a) in (2.4) and (2.5),
we have min, g u(r) < max,cqu(z). For any ¢t € (ming u, maxgu) and A > 0, we

define
u+c in Qf,
U\ == . _
AMm+(1=Nt+c in Q,

where the number ¢ is chosen so that f aq Ut,xds = 0 and
Qf ={zeQlu(z) >t} and Q :={z€ Q|u(z) <t}
Then it is easy to see that usx € C(f2) and

V() Vu(z)
: = for all z € .
Vura(e)l  [Vu(z)|
Since the possible discontinuity regions of a/|Vuy x| are {z € Q |u(z) = t} and those
of a/|Vu|, we easily verify that a/|Vu x| € E. Therefore u;  is also a solution to
(3.2), which completes the proof. O

In section 5, we will present two distinct (numerically obtained) solutions that
will arise in the complicated real situation, which solve the same problem (3.2).

Now we investigate the existence question. For simplicity, we confine ourselves
to a unit square domain Q = (0,1) x (0,1) in R2. Let z = (z,z2) denote a point
in 2 and the current pattern g on 99 be given by

-1 if Iy = 0,
gx) =41 ifzy =1, (3.3)
0 otherwise.

The next theorem furnishes an example for the non-existence of the problem (3.2).

Theorem 3.2. Let Q = (0,1) x (0,1) and g be given in (3.3). Assume that a in
(3.2) depends only on z1—wvariable, that is, a(z1,x2) = a(z1). The necessary and
sufficient condition for the existence of solution to the problem (3.2) is a = 1.

Proof. If a = 1, then clearly u(z) = z; —  is a solution of the problem (3.2) which

would be one of the infinitely many solutions. This proves the sufficiency.
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To show the necessity, suppose that the problem (3.2) has a solution u. First,
we will prove that a(t) > 1 for all ¢t € (0,1). For convenience, we denote
llz{.’L'E@Q'JIQZO}, l2:{$€69|$1:1},
l3={m€89|w2=1}, l4={$€69|$1=0},
and R, := {z € Q|0 < 21 < t} be a rectangle on the left side of the line {z1 = t}.
Applying the divergence theorem on Ry, we obtain

_ a Ou

- 2%y
0 /m Va] o0 %

a
= gds + / ——Vu-vds
/eammasz oR,{zi=t} |Vl (3.4)
=— ds+a(t)/ Vu"/ds
Iy 8R,N{z1=t} |Vu|

S -1 + a(t)7

since a(z) = a(t) on OR, N{z1 =t} and Vu-v < |Vu| where v denotes the outward
unit normal to R;. Hence we have a(t) > 1 for all ¢ € (0, 1).

Now, we will show that the level curve Ty := {z € Q|u(z) = u(¢,0)} is the
vertical line {z € Q|z; =t} for all t € (0,1). Since a > 1, the choice of g in (3.3)
and the Neumann boundary condition in (3.2) yield 0u/0v(t,0) = 0, which implies

minu(z) < u(t,0) < maxu(z).
z€eQ z€Q
Thus Q; := {z € Q| u(z) < u(t,0)} is a nonempty open subset of § and (¢,0) € 9.
It is easy to see that
HY O N1y) < HY 00\ (L UI3Ul)) ifTy # {x €|z =t} (3.5)

where H!(L) denotes the arclength of the curve L.
Applying the divergence theorem on 2, we have

a Ou
0= /m Va] o0 %
a Ou
- gds + / ~ul 3y % 3.6
/8(2tr18§2 80\ 00 |V’LL| ov ( )

= —HY O N1y) + H (O N1s) + / VeV,

G v
saee |Vl

where v denotes the outward unit normal to ;. Since u(z) < wu(¢,0) in Q; and
u(z) = u(t,0) on 9 \ 89, we have v = Vu/|Vu| on 99, \ 89, which implies
Vu-v
V|
By the above identity and the fact that a > 1, from (3.6) we get

=1 on 0 \oN.

H (0 N1g) = H' (0 N 1) + / ads
80\ 09

> HH (0O N 1z) + H (0Q; \ 09)
=HY (0 \ (L Uls ULL)).

Hence, from (3.5) it must be T'y = {z € Q|z; = t}, that is, u(t, z2) = u(t,0) for
0 < z2 < 1, which implies (Vu - v)/|Vu| = £1 on OR; N {z1 = t} in (3.4). Thus

from (3.4), we have
a Ou
= ———ds=-1=% .
0= | Ty 25 = 71200
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By the knowledge of a > 1, we conclude that a(t) = 1 for all ¢ € (0,1), which proves
the necessity. O

4. UNIQUENESS OF EDGE IN A MODIFIED SYSTEM

In order not to go astray from the main point of MREIT, we must focus on the
final goal of MREIT which aims to reconstruct the conductivity image o. In section
3, we have observed that the model (3.2) may have infinitely many solutions u, so
has infinitely many distinct conductivity images o = a/|Vu|. Thus, the model (3.2)
is not appropriate for making reconstruction algorithm. This is the main reason
why the modified system (1.6) has been introduced in [7] for the reconstruction al-
gorithm that has been successfully demonstrated to provide accurate high resolution
conductivity images.

Although, in numerical simulations in [7], the system (1.6) seems to have unique-
ness, we are not able to prove the uniqueness rigorously for the present, but we could
prove a practically useful uniqueness result which guarantees the unique detection
of the edges of the conductivity image. This means that the system (1.6) uniquely
determines the interface where the conductivity distribution ¢ is discontinuous.

As discussed at the beginning of section 3, if we assume that (uy,us) is a prac-
tically acceptable solution of the system (1.6), we may impose the assumption

ai a2

g=r0— = €3,
|V’U,1| |Vu2|

which is the two measurement analogue of the assumption (3.1). By plugging this
assumption into the system (1.6), we have the following system that will be consid-
ered in this section,

aj .
=1 . — Q
\% (|Vuj|vuj> 0 in Q,
ai as
= )
Pl = [l = (4.1)
a;j auj ’
|VU]'|—8V =g; on 0,

/ ujds =0,
o)

for j = 1,2. For the uniqueness of (4.1), we need to choose an appropriate pair of
current patterns g; and g2 to have

[Vui(z) x Vua(z)] >0 for all z € Q. (4.2)

In practice, each current g; (j = 1,2) is applied through one pair of electrodes
attached at points P;,Q; € 0f). Here, the points P, P, Q1 and () are situated
along the boundary 012 in this order and separated by a distance greater than 2e.
(See [7].) Hence we can assume, as in (1.2), the current g; is approximated by

+4 on {|z — P;j| < €} N 04,
gim) =< —L  on{lz - Q| <e}ndQ, (4.3)
0 otherwise,

where I is the current sent to both electrodes at P; and @, and 2e¢ is the width of
each electrode. With these currents g; and g, as the Neumann data, from (2.5) we
can easily see that the solution (ui,us) € H'(2) x H'(Q2) to the nonlinear system
(4.1) satisfies

Vuj(z) #0 forallz e Q, j=1,2.

More generally, in this case we can prove that (4.2) holds as the following lemma.
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Lemma 4.1. Suppose that (uy,us) € H(Q) x H'() is a solution to the nonlinear
system (4.1) with the Neumann data g1 and g2 defined in (4.3). Then we have
|Vuy(z) X Vug(z)| >0 for all z € Q.
Proof. To derive a contradiction, suppose that there exists a point £ € 2 such that
[Vui(§) x Vuz(£)| = 0.

Then there exists a nonzero vector (ci,cz) € R? so that ¢; Vuy(€) + caVua(€) = 0.
Consider the function w := cyu; + couz, which satisfies Vw(£) = 0 and

ai .
V- Vw)] =0 in{,
(|VU1| >

———=¢g ondf), and wds = 0,
|Vu1| 61/ g a0
where § = ¢191 + ¢292. By the assumption of
a1(x) _ G (x)
[Vur(z)] [V ()]
we may regard w as a solution to the classical Neumann problem (2.3) with the
conductivity coefficient in the set ¥. Then all the properties in (2.4) hold for w.
On the other hand, the definition of g; in (4.3) yields

€y,

+e19- on {|z — Pi| < e} NOQ,
+e2g- on {|z — P2| < e} N 0N,

@) =4 —al  on{lr-Qil<enon,
-k on {|z — Q2| < €} N OQ,
0 otherwise.

Hence, by the ordering of the points P, P, @1 and @2, we easily see that for any
nonzero vector (ci,cz2), § # 0 and there exist two disjoint arcs T'T and T'~ contained
in 09 such that

rtur-=09, and I'tc{§g>0}, I'" Cc{g<o0}. (4.4)
Therefore, it follows from (2.5) that Vw(z) # 0 for all x € Q. In particular,
Vw(€) # 0, hence it is a contradiction. This completes the proof. O

For the sake of clarity, we will give in the following remark more detailed proof
for the reason why the property (4.4) of nonzero § implies Vw # 0 in 2, although
it can be also found in [1, 2, 13].

Remark 4.2. Suppose that Vw(£) = 0, then by the maximum principle the level set
{z € Q|w(z) =w(&)} divides Q into more than four disjoint connected components
QFf,---,QE (m > 2) such that (see Figure 2)

U QFf ={z € Q|w(z) >w(E)} and U Q, ={z € Q|w(x) <w(§)}
k=1 k=1

Applying the maximum principle again, the boundary of each component Qki
must occupy a portion 'y,:f of 99, that is, 'y,:ct = Bﬂki N o # O: If not, anki is a
subset of the level curve {z € Q |w(z) = w(£)} and therefore by maximum principle
w is the constant equal to w(&) in Qki By the unique continuation, Vw = 0 in the
whole domain 2 and therefore § = 0, which is a contradiction.

From the maximum-minimum principle

supw =supw =supw and infw = inf w = infw,
of a9y " Q 9y, Ve
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dw
E<O

The level set
{z € Qw(z) =w(é)}

o
5 <0

FIGURE 2. An illustration for Remark 4.2 when m = 2.

there exist points z;7 € v and 2, € v, so that
w(zl) =supw, w(z;)= gl_fw

Q;: k

By Hopf’s lemma, we have §(z;7) > 0 and §(z, ) < 0fork=1,--- ,m. Since m > 2,
g cannot satisfy the property (4.4), which is a contradiction.

Lemma 4.1 tells us that two gradient vector fields Vuy and Vus are neither van-
ishing nor parallel to each other at any points in (2. Based on this fact, we can prove
the following uniqueness result for the inverse problem with two measurements.

Theorem 4.3. Suppose that (uy,us), (i1,%2) € H(Q) x H(Q) are solutions to
the nonlinear system (4.1) with the Neumann data g1 and g» defined in (4.3). Then
the edge of the conductivity image is uniquely determined by (a1, az2) in such a way
that

aj

|V

{x €N ‘ ) is discontinuous at m} = {:c €N ‘
[Vu,|

Proof. Since (u1,us) satisfies

s discontinuous at a:} .

ai as
—— =—€X
[Vui|  [Vaua| =

there exist oo € C*(Q?) and {(o%, Dy,) | ox € C*(Dy,), Dy, C Q}M | for some M € N,
which satisfy

M
|Va—’l]1j| =0-0+I;a-kXDk € X. (45)
Hence, from (2.1) we have
M
o=00+ Y okxp, €C* (UfL, D) NC* (2\ UL, D), (4.6)
k=1

and u; can be viewed as a solution of (2.3) when g is substituted by g;. Thus, from
(b) in (2.4) we get

Vu; € C* (UpL, D) NC™ (2 \ UL, Dy,) . (4.7)
From (4.5), we have a;(z) = o(x)|Vu;(z)|, which implies that
a; € C* (UL D) NC* (Q\ UL D) for j =1,2,
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by the aid of (4.6) and (4.7). Therefore, we get

M
A:={z € Q|a; or ay is discontinuous at z} C U oD;,. (4.8)
k=1
For converse of (4.8), fix any £ € Dy, for any k = 1,--- , M. It follows from
Lemma 4.1 that either

6u2

+
M )20 o 2 #0, (4.9)

or

where uj = ujlo\p, for j = 1,2, and §/07 denotes the tangential derivative on
ODy. By the properties (¢) and (d ) (2.4), we get

Ouj du; 4 Ouj . Ouj
00(5)6—1/(5) = (00(§) + Uk(ﬁ))g(@ an W@) = W(ﬁ):
where u} := u;|p, and v denotes the outward unit normal to 0Dy. Considering

a; = 0|Vu;|, a simple calculation yields that
ot |
Il , (4.10)

= (¢)

a5 ©F = laf (O + ((00(§) + 04(8)? = (00(€))?) | 52

where a; := a;|p, and a] := aj|o\p,- Since 0% (€) # 0 by definition of ¥, by the

aid of (4.9) the second term on the right hand side of (4.10) is nonzero for either

j =1or j = 2. Thus we show that a; or as is discontinuous at £, and so £ € A.

This proves that UM 0D, C A. Hence, from (4.8) we conclude that UM, 0Dy, = A.
On the other hand, from (4.5) and (2.2), we can easily see that

M
{a: €N Wa; | is discontinuous at :1:} = U 0Dy, = A. (4.11)
J

Because we have used only the fact that (u;,us) is a solution to the nonlinear
system (4.1), we can derive the same conclusion as (4.11) for (i, @2)

M
{:v €N |vaé | is discontinuous at a:} = U Dy = A, (4.12)
J

for some mutually disjoint domains Dj, C Q. Since the set A is completely deter-
mined by the data (a;,as2), the proof is completed by (4.11) and (4.12). O

Theorem 4.3 shows that the region where the conductivity distribution has jumps
can be uniquely detected by the observation of discontinuities of the measured data
(a1, az). In the following theorem, we show that the conductivity values as well as
the unknown inclusions can be determined in a simple case when the conductivity
distribution ¢ € ¥ is known to be piecewise constants.

Theorem 4.4. Suppose that (u1,us), (i1, 4s) € H(Q) x HY(Q) are solutions to the
nonlmear system (4.1) with the Neumann data g1 and g2 defined in (4.3). Suppose
that \Vu | and Wau [ are piecewise constants, that is,

M M
a; a;

k=1

where g, fir, are nonzero constants satisfying —1 < pyg, fir, < 00. Then (u1,uz2) and
(ti1,U2) are the same.
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Proof. First, we will prove that
a _  a
|Vu;|  |Va,|
From (4.13), and (4.11), (4.12) in the proof of Theorem 4.3, the edge of the con-
ductivity image is uniquely determined, that is, M = M and U,ICMZ1 Dy, = Uf:[:l Dy,.
Thus, for (4.14) it only remains to prove that g = fig for k= 1,--- , M. For this, it
suffices to show that py can be uniquely determined by the measured data (a1, a2)

analogously as explained in the proof of Theorem 4.3. To be precise, uy will be
shown to be determined by

pe=V1+mp—-1, k=1,--- M, (415)
where the number my, is defined by

ar @
max }‘_ ‘ -1, if a; > af on 0Dy,
e | | af (§)

myg = (4.16)

min a}'_ ()
ecob. | |af (©
Here, aj := a1|p, and a; = ailo\p, -
From (4.13), we have a] = |Vu]| on 8Dy, thus it follows
a2 _
a, (§) _ lag (9P —laf (O

a© T varep 0 G (.17)

By the aid of (4.10) (in our case, 6o(§) = 1 and o (§) = ), we easily observe that
either a] > af or aj < af on 8Dy. In case when a] > a}f, from (4.17) and (4.10)
we have

(4.14)

2
—1}, if ay < af on 0D,

2

@ _, . Lar@PF - et ©P
ay (€) | out Jor(¢) |”
for all £ € Dy. In case when a] < a;, we get the similar result given by

Z;Eg — 12> pp(pr + 2).

Now we will find the optimizer z € 0Dy, of (4.16). Applying the divergence theorem
on Q\ D, we get

a1 Oup ouy ouy
0=/ —ds—/ —ds:—/ U g,
80 |V’U/1| ov 8Dy, ov 8Dy, ov

noting that u; belongs to C1:*(Q \ UM, Dy) from (2.4) and af /|Vu{| =1 on 0D,
Hence there exists a point z € 0Dy, satisfying duj /0v(z) = 0, and by Lemma 4.1
we have

= pr(pe +2),

M(z) = |Vui(2)| >0 (4.18)
or S ' '
From (4.17), (4.18), and the jump relation (4.10), we obtain
ar (2) |
: =1 = pr(pr +2),
af (2)

which implies that the point z € 0Dy, is the optimizer of (4.16). Thus it is clear
that the number my defined in (4.16) is given by my = pg(ur +2) > —1 because
pr > —1. Therefore we conclude that ur = /1 + my — 1, which proves (4.15), and
hence (4.14).
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Finally, from (4.13) and (4.14) we see that u; and @; can be viewed as the
solutions of (2.3) when g is substituted by g; and o := 1 + Zkle BEXD,, Since
both (ui,u2) and (@1,7s2) are solutions to the nonlinear system (4.1). Hence by
the uniqueness of the classical Neumann problem (2.3), we verify that u; = @; and
us = Uz, which completes the proof. d

5. CONCLUSION AND NUMERICAL EXAMPLES

A new reconstruction algorithm, so called J—substitution algorithm, was pre-
sented in [7] without uniqueness proofs to provide an impressively high resolution
conductivity image o in simulations based on internal current density a obtained
from MRI system. For this algorithm, two different internal current densities a; and
a» induced by two different applied currents ¢g; and g» defined in (4.3) were used.
In this paper, Theorem 4.3 has proved the uniqueness of the edge detection for
piecewise continuous conductivities, and Theorem 4.4 has shown that a piecewise
constant conductivity distribution can be completely reconstructed from a; and as.

On the other hand, it is worth investigating whether one could recover the con-
ductivity distribution with only one internal current density, which means equiv-
alently whether the nonlinear Neumann boundary value problem (3.2) could be
solved uniquely. Theorem 3.1 has given a negative answer to this question.

In this section, we will present a numerically obtained example of non-uniqueness
with one measurement which has been discussed in section 3. Suppose that Figure
3 represents an internal current density a(x) on a cross-section Q = (—1,1) x(—1,1)
of the human body induced by the applied the current

1 ifx; =1,
glz) =< -1 if g = -1, (5.1)
0 if otherwise,

which can be viewed as an electrode attachment model in (1.2) when P = (1,0),
Q = (-1,0), I =2, and e = 1. We have numerically obtained this current density

a(z) := o(z)|Vu(z)| (5.2)

by assuming a conductivity distribution o (in our experiment, o is assumed to be
o1 in Figure 5) and numerically solving the classical Neumann problem (2.3) with
Neumann data ¢ in (5.1) to calculate |Vu(z)|. As a numerical solver for (2.3),

-1 08 08 04 02 ] 02 0.4 06 038 1

FIGURE 3. Simulated current density a(x).
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FIGURE 4. Two different solutions u; and us to the problem (3.2).

we have adopted the cell-centered finite difference scheme explained in [7]. In real
situation, the current density a(z) is provided by a suitable MRI experiment called
current density imaging [4, 6, 10, 11, 12, 15].

With this a and g, we can construct infinitely many solutions of the nonlinear
Neumann boundary value problem (3.2) by virtue of Theorem 3.1. Here we present
two different solutions u; and us, respectively given in Figure 4. Indeed, u; is equal
to u that has been used to generate the simulated current density a in (5.2), and
uy corresponds to ug ) defined in the proof of Theorem 3.1 in case when ¢ = 0 and
A = 5. These two different solutions yield two distinct conductivity images

a(z)
=——— and o3(z)= =——F+—,
Vs (@) 0 = T o)
which are respectively shown in Figure 5. Hence, we conclude that only one in-

ternal current density information is insufficient for the unique determination of
conductivity distributions.

o1 () a(z)

i

20

0 02 04 08 03 1

o1(x) o2()

FI1GURE 5. Two distinct conductivity images generated by w; and us.
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