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An algorithm is presented for the adaptive restructuring of meshes on evolving
surfaces. The resolution of the relevant local length scale is maintained everywhere
with prescribed accuracy through the minimization of an appropriate mesh energy
function by a sequence of local restructuring operations. The resulting discretiza-
tion depends on the instantaneous configuration of the surface but is insensitive to
the deformation history. Application of the adaptive discretization algorithm is il-
lustrated with three-dimensional boundary-integral simulations of deformable drops
in Stokes flow. The results show that the algorithm can accurately resolve detailed
features of deformed fluid interfaces, including slender filaments associated with
drop breakup and dimpled regions associated with drop coalescence. Our algorithm
should be useful in a variety of fields, including computational fluid dynamics,
image processing, geographical information systems, and biomedical engineering
problems. c© 2001 Academic Press

1. INTRODUCTION

The evolution of a surface typically depends on one or more surface-defined dynamical
quantities. These quantities determine the local length scale L , which must be resolved
in numerical simulations. For example, the dynamics of deformable drops is determined
by the balance of hydrodynamic and capillary stresses thus, L is set by the local radius of
curvature. If surfactants are adsorbed on the interface, variations of surface tension may also
influence L . For the evolution of a biological membrane, L may depend on the distribution
of strain.
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The simplest surface discretization for numerical simulations involves a uniform struc-
tured mesh with fixed topology. However, in dynamic simulations this approach is limited to
modest deformations of the surface, because the required length-scale distribution evolves.
Thus, fixed meshes must resolve the anticipated global minimum of L everywhere.

Adaptive algorithms have been developed for discretization of static structures [1–3]. To a
more limited extent, remeshing algorithms have been developed for numerical simulations
of deformable interfaces. Most of these algorithms involve local mesh refinement and
reconnection [4, 5]; others involve global reconstruction [6] when significant loss of interface
resolution is detected.

Herein, we present an adaptive discretization algorithm for evolving surfaces, which is
based on the minimization of the mesh configurational energy. The mesh energy is an integral
measure of how local edge lengths l deviate from an optimal value l0 ∼ L . The minimum
mesh energy corresponds to the optimal mesh, which depends only on the instantaneous
configuration of the surface. The optimal mesh is achieved by the minimization of mesh
energy through a sequence of local restructuring operations, with dynamics that are defined
by the mesh energy function.

Our discretization algorithm, including the definition of the mesh energy function and
local mesh restructuring, is described in Section 2. Mesh adaptivity is illustrated in Section 3.
In Section 4, the algorithm is applied to boundary-integral simulations of deformable drops.
Other applications and extensions of the algorithm are discussed in Section 5.

2. ALGORITHM

2.1. Mesh-Energy Function

Our adaptive mesh algorithm relies on the mesh-energy function

E =
1

2

∑

edges

γ 2, (1)

where the edge tensions are

γ = l − l0, (2)

where l0 is the optimal edge length. The mesh is thus analogous to a system of springs.
The optimal edge length is related to the local length scale L ,

l0 = α〈L〉loc, (3)

where the constant α sets the resolution of the surface, and 〈· · ·〉loc is a weighted average
over a local region Sloc with O(l0) extent. Local averaging is needed to achieve a smooth
distribution of l0 on a discretized surface.

Minimization of the mesh energy (1) implies

l ≈ l0; (4)
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the corresponding number of nodes is given by N ∼
∫

S l−2
0 d S, where the integration is

performed over the entire surface.

2.1.1. Local Length-Scale Distribution

In general, the length-scale distribution L is given by the local minimum

L = min(L0, L1, L2, . . .), (5)

where L1, L2, . . . are the relevant local length scales for a particular problem, and L0 is a
prescribed global upper bound.

In many applications uniform resolution of solid angle is desirable. Thus, L1 is set by
the local curvature, e.g.,

L−2
1 =

1

2

(

κ2
min + κ2

max

)

, (6)

where κmin and κmax are the minimum and maximum local curvatures. An additional length
scale L2 becomes relevant for problems involving interactions between closely spaced
surfaces. For these problems, L2 may depend on the quadratic variations of local gap width
h between nearly parallel surfaces,

L2 = c2(L Rh)
1
2 . (7)

Here L R is the reduced local radius of curvature defined by

L−1
R = L−1

1 + L ′−1
1 , (8)

where L1 and L ′
1 are given by (6), with L ′

1 evaluated at the closest point on the nearby surface.
The prescribed constant c2 determines the relative weights given to the length scales L1 and
L2. Other local length scales can be similarly incorporated into the distribution (5).

2.2. Mesh Restructuring

Mesh-energy minimization is achieved through energy-reducing local restructuring, which
involves a dynamical spring-like relaxation and topological transformations. These proce-
dures are described below; certain details are provided in Appendix A.

The mesh restructuring procedures are iteratively performed until criteria (11), (12), and
(A.1) are satisfied everywhere. The algorithm has O(N ) computational cost.

2.2.1. Mesh Relaxation

For fixed mesh topology, the energy (1) is reduced by the relaxation of a dynamical
system of massless springs with tensions γ and damping coefficients of unity. Accordingly,
the position x of a node evolves on the surface with a velocity ẋ proportional to the vector
sum of spring forces acting on the node,

ẋ = P̂ ·

Nc
∑

j=1

ê jγ j , (9)
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where the summation is over the edges that emanate from the node, Nc is the node co-
ordination number, ê j is the unit vector parallel to edge j , and P̂ = I − nn is the surface
projection tensor.

The dynamics of (9) involves a spectrum of relaxation times. Fast modes correspond
to local O(l0) displacements with O(1) relaxation times; slow modes are associated with
long-wave perturbations of the node density δρ. The relaxation of long-wave perturbations
is described by a macroscopic diffusion equation

δ̇ρ ' −k2δρ, (10)

where k is the magnitude of the wave vector normalized by the characteristic edge length
of the mesh. The slowest modes correspond to k ∼ N− 1

2 , and have O(N ) relaxation time.
Relaxation of slow modes, with O(N 2) computational cost, is circumvented by topolog-

ical mesh restructuring described below. Thus, the relaxation process is terminated when

|ẋ| < ε, (11)

where the equilibration parameter ε > N− 1
2 controls the extent to which the mesh energy

is minimized.

2.2.2. Topological Transformations

Topological restructuring operations are used to provide access to mesh configurations
with lower energy than accessible by mesh relaxation, and to accelerate the equilibration of
slow long-wave modes. The operations described here include node addition, subtraction,
and reconnection.

Addition and subtraction of nodes. The criterion for node addition (subtraction) is
based on the minimization of mesh energy through Eq. (4). Accordingly, nodes are added
(subtracted) in a local region Sloc, unless

|n − n0| <
∼

1N , (12)

where n0 and n are the optimal and actual number of nodes in Sloc, and 1N is the number
of simultaneously added (subtracted) nodes in this region. The optimal number of nodes is

n0 = Sloc〈ρ0〉
′
loc, (13)

where

ρ0 = c0α
−2L−2 (14)

is the node density corresponding to the prescribed resolution, and c0 is a geometric factor.
For a mesh of equilateral triangles c0 = 2 · 3− 1

2 . The local averaging operator 〈· · ·〉′loc is
similar to that in Eq. (3).
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Node reconnection. Herein, unstructured meshes are sought, thus node reconnection is
based on mesh isotropy, under the assumption that the mesh energy function (1) is isotropic.
For meshes with triangular elements, isotropy is achieved by a Delaunay algorithm [4, 7–9].

2.3. Evolving Surfaces

2.3.1. Surfaces Defined by Node Positions

In many applications, the surface is defined only by node positions. In such cases, the
node placement and tangential repositioning used in our algorithm require an accurate local
representation of the surface. Many suitable representations are available [10–13]; in our
implementation, we used a local parabolic representation [14].

2.3.2. Evolution

Our algorithm is particularly useful for applications involving discretization of evolving
surfaces. In our approach, mesh restructuring and surface evolution are decoupled. Surface
evolution is achieved by time-stepping the equation of motion

ẋ = u, (15)

where u is the velocity of the surface at x. The surface resolution is maintained by minimizing
the mesh energy after each time step. The resulting mesh is thus insensitive to the history of
evolution. In most applications, the computational cost of mesh restructuring is negligible
compared to the cost of surface evolution.

3. EXAMPLES OF MESH RESTRUCTURING

For the applications presented in this article, the global maximum length scale L0 in
Eq. (5) is equal to the volume-equivalent particle radius. The initial mesh is derived from
a regular mesh on an icosahedron by projection onto the prescribed initial particle shape
[15]. In this section, we present two simple examples that illustrate the adaptivity of our
mesh restructuring algorithm.

3.1. Static Irregular Surface

An adaptively structured mesh on a particle with an irregular prescribed shape is shown
in Fig. 1. The restructured mesh was obtained using resolution constant α = 0.2 in Eq. (3),
which corresponds to 362 nodes on a spherical surface. The restructured mesh has 1312
nodes, as required for resolution of the high curvature regions, according to Eqs. (5) and (6).

Nodes with high coordination numbers form in the low- to high-curvature transition
regions, as seen in Fig. 1b. The restructured mesh has two nodes with coordination number
Nc = 9, and 35 nodes with Nc = 8; the remaining nodes have coordination numbers in the
range 5–7.

3.2. Evolving Surface

A simple example of mesh restructuring on an evolving surface is shown in Fig. 2. The
surface is initially spherical, and evolves according to (15) with velocity given by the linear
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FIG. 1. Adaptively structured mesh on particle with prescribed shape (a); close-up of surface asperity (b).
Mesh resolution α = 0.2.

field

u = E · x, (16)

where E is the velocity gradient corresponding to incompressible axisymmetric strain.
Uniform resolution of solid angle is maintained with resolution constant α = 0.3, which

corresponds to 162 nodes on the initially spherical surface, and 685 nodes on the final
spheroidal configuration shown. Curvatures of 25 are attained at the tips. The tension
profiles shown in Fig. 2b demonstrate that optimal local edge length (4) is approximately
maintained.

4. DYNAMICS OF DROPS WITH DEFORMABLE INTERFACES

In this section, our adaptive mesh-restructuring algorithm is used in three-dimensional
boundary integral simulations of deformable drops in Stokes flow. We consider neutrally
buoyant drops with volume 4π

3 a3 and viscosity λµ, in a continuous-phase fluid with viscosity
µ; constant interfacial tension σ is assumed. Under these conditions, drop dynamics depends
on the viscosity ratio λ, and the capillary number Ca = µaG/σ , where G is the imposed
strain rate. The behavior of drops in shear flow u = Gyex , and axisymmetric straining flow
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FIG. 2. Adaptive mesh with resolution α = 0.3 on initially-spherical surface undergoing axisymmetric strain
(a), major axis D as labeled; normalized tension profiles along the major axis (b).

(ur , uz) = G(− 1
2r, z) is considered. Henceforth, length is rescaled by the drop radius a,

and time is rescaled by the capillary relaxation time µa/σ .

4.1. Evolution Equation

Interface evolution is described by Eq. (15) with node velocities obtained by solving a
boundary-integral equation on the drop interfaces S [16, 17]

u(x) =
2

λ + 1
Ca u∞(x) −

2

λ + 1

∫

S
G(x′ − x) · f(x′) d2x′

+
λ − 1

λ + 1

∫

S
[T(x′ − x) · u(x′)] · n(x′) d2x′. (17)

The surface traction jump,

f = (κmin + κmax)n, (18)

results from surface tension and is proportional to the mean curvature, n is the outward
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normal vector, and u∞ is the prescribed incident flow. The kernel functions G, T are the
single-layer and double-layer Green functions for Stokes equations [17]. According to
Eq. (17), node velocities on the interface are obtained without solving for the velocity
elsewhere in the fluid.

4.1.1. Numerical Implementation

Equation (17) was solved by iteration [18] with eigensolutions corresponding to rigid-
body motion and expansion purged [17]. The boundary integrals were evaluated by trapezoid-
rule on the nodes of the mesh with singularity subtractions to regularize the integrands [15].
Curvatures and normal vectors were evaluated at nodes using a parabolic surface represen-
tation [14]. Second-order time stepping of (15) was used, with time step controlled by the
capillary-stability criterion 1t ¿ µlmin/σ , where lmin is the global minimum edge length.
The fluid velocity calculation has O(N 2) computational cost, which dominates the O(N )

cost of mesh restructuring.

4.1.2. Accuracy

Node velocities obtained by the above procedure are O(N−1) accurate [19]. Extrapolation
with respect to the number of nodes was used to obtain O(N−2) accuracy of the quantities
shown in Figs. 7c and 9.

The accuracy of our three-dimensional simulations was verified by considering two test
problems with axial symmetry (cf., Figs. 4 and 7c). The analytical azimuthal integration, al-
lowed by this symmetry, reduces Eq. (17) to a one-dimensional integral equation [17], which
can be solved with high precision. The required one-dimensional mesh was restructured,
according to the procedure described in Appendix B.

4.2. Stationary Drop Shapes

Figure 3 depicts stationary drop shapes in shear flow for two viscosity ratios, under
conditions that produce strongly distorted interfaces, but not breakup. These results were
obtained from long-time simulations of drops with spherical initial shapes. The adaptivity

FIG. 3. Stationary drop shapes in shear flow; Ca = 1.43, λ = 3 (a), Ca = 0.8, λ = 0.01 (b). Velocity in
horizontal direction, velocity gradient vertical.
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of the mesh to the distorted drop interfaces is evident; high curvature regions (κ ≈ 20 for
λ = 0.01) are resolved.

4.3. Drop Breakup

The results depicted in Figs. 4 and 5 illustrate adaptive discretization on surfaces with a
widely varying time-dependent length-scale distribution.

Figure 4 depicts the relaxation and breakup of a drop after elongation in an axisymmetric
straining flow. The sequence of drop shapes obtained from three-dimensional simulations is
compared to axisymmetric calculations at given values of time normalized by the breakup
time. The breakup time predicted by three-dimensional simulations differs from the ax-
isymmetric result by 1%.

An example of drop breakup in shear flow is shown in Fig. 5. Other examples, including
a detailed comparison with an experimentally observed drop shape, have been published
elsewhere [20].

Pinch-off. Three-dimensional adaptive-mesh simulations that extend beyond pinch-off
events are feasible using the mesh-splicing algorithm described in Appendix C; an example
is shown in Fig. 6. Typically, the neck region undergoes subsequent breakup yielding small

FIG. 4. Breakup of λ = 1 drop in a quiescent fluid after elongation in axisymmetric straining flow, Ca = 0.13;
indicated times are normalized by breakup time. At t = 0, the flow stops, and the drop length is 11.2. The breakup
time is tB = 24.5. Three-dimensional (mesh) and axisymmetric (solid contour) simulations are shown. Inset shows
neck region corresponding to the final configuration.
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FIG. 5. Breakup of an initially spherical drop in shear flow Ca = 0.42, λ = 1; inset shows neck region at
t = 492. Flow oriented as in Fig. 3.

FIG. 6. Pinch-off of a drop in shear flow: same conditions as in Fig. 5.
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satellite drops [21, 22], which are not resolved by our simulation. However, the evolution
at larger length scales is insensitive to the details of the pinch-off event [23, 24].

4.4. Near-Contact Motion of Deformable Drops

Near-contact motion of deformable drops involves two local length scales (6) and (7),
associated with curvature and gap-width variation. Application of our algorithm to such
problems is illustrated in Figs. 7–9. The results were obtained using c2 = 0.5 in Eq. (7).

The axisymmetric configuration of drops depicted in Fig. 7a was obtained by the long-
time evolution of two initially spherical drops in compressional flow; the near-contact region
is shown in Fig. 7b. The system was stabilized by constraining drop centers to the symmetry
axis.

The long-time configuration of the drops in Figs. 7a and 7b is stationary because of the
balance between pressure-driven film drainage, and the reverse pumping of fluid into the
near-contact region by the externally driven recirculation within drops [25]. The gap-width
history at the center of the near-contact region (Fig. 7c) obtained by our three-dimensional
simulation agrees closely with the axisymmetric result; however, we were unable to resolve
the minimum gap-width.

The evolution of a pair of drops in shear flow is illustrated in Figs. 8 and 9. The gap-
width history (Fig. 8b) shows that the drops come into close contact gradually (less than

FIG. 7. Near-contact motion of drops in axisymmetric compressional flow Ca = 0.1, λ = 1. Side-view of
drops (a), and near-contact region (b) at t = 150. Gap-width history at the center of the near-contact region (c);
three-dimensional (solid curve) and axisymmetric (dashed curve) simulations are shown. Drops are initially
spherical and centered at (0, 0, ±1.6).
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FIG. 8. Evolution of two drops in shear flow (a), gap-width history (b). Flow oriented as in Fig. 3; Ca =

0.135, λ = 1.37. Drops are initially spherical and centered at (0, 0, 0) and (−11, 0.51, 0).

FIG. 9. Relative displacement of drops in velocity gradient direction; numerical simulation (solid curve),
experimental measurements by Guido and Simeone [26] (points). Same conditions as in Fig. 8.
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3% gap-width), and separate quickly. Our simulation agrees closely with the experimental
measurements of Guido and Simeone [26] shown in Fig. 9.

5. CONCLUSIONS

An adaptive mesh-restructuring algorithm, based on the minimization of a mesh en-
ergy function, has been presented for simulations of evolving surfaces. Three-dimensional
boundary-integral simulations of deformable drops were used to illustrate the adaptivity of
meshes on surfaces with widely varying time-dependent length-scale distributions.

Our algorithm should be useful for solving a wide range of problems in computational
fluid dynamics, including boundary-integral simulations of emulsions and foams, where the
length scales associated with curvature, gap-width variation, and surface-tension gradients
(Marangoni stresses) must be simultaneously resolved.

Numerical simulations of red-blood-cell motion in the microcirculation requires the reso-
lution of length scales associated with the distribution of elastic shear and bending strains on
the cell membrane [27–29]. During the evolution, highly curved regions form spontaneously
and significantly contribute to the red cell dynamics [30]. By maintaining the resolution of
surfaces with widely varying length scales, our algorithm makes feasible accurate numerical
simulations of red cell motion in microvessels.

Our algorithm can be directly applied to two-dimensional finite-element simulations
[31], and an extension to three-dimensional meshes should be possible. Adaptive mesh re-
structuring has applications in diverse fields, including medical imaging [32, 33], computer
graphics [11, 12], and geographical information systems [34].

APPENDIX A: DETAILS OF IMPLEMENTATION

A.1. Mesh Restructuring

Certain details of mesh relaxation and topological transformations are described below.

A.1.1. Mesh Relaxation

Dynamic mesh relaxation was performed using second-order integration of Eq. (9) with
step size 1t = 0.25; smaller time steps did not affect the results. The value of the equili-
bration parameter in Eq. (11) was set to ε = 0.05.

Mesh relaxation was performed both globally, and locally on directly affected regions
Sloc following each topological transformation.

A.1.2. Topological Transformations

Node addition. Three-node addition (1N = 3) was implemented as shown in Fig. 10.
Nodes are added on the surface at points closest to edge midpoints of a selected triangle.
Low-coordination number nodes (i.e., Nc = 3, 4) are not produced by this procedure. As
indicated in Fig. 10, the local averaging region Sloc includes all nodes that are first or second
neighbors of the vertices of the selected triangle.

Node subtraction. Single-node subtraction (1N = 1) was implemented, as shown in
Fig. 11 for the case Nc = 5. Here, the local averaging region Sloc includes all nodes that are
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FIG. 10. Node addition procedure: initial mesh (a); after addition (b); after local relaxation (c). Triangle
selected for node addition, added nodes, and Sloc (dashed contour) are indicated.

first or second neighbors of the vertices of the polygonal region surrounding the subtracted
node. A similar approach was used to subtract nodes with Nc = 6, 7.

Node reconnection. The criterion for node reconnection is defined in Fig. 12. Accord-
ingly, an edge connecting nodes 1 and 2 is favored over the connection between nodes 3
and 4 if

l < s1 + s2, (A.1)

where l is the distance between nodes 1 and 2, and si = |pi · ê| is the distance from node i
to the center of the circle containing nodes i , 3, 4 projected along the unit vector ê between
nodes 1 and 2.

Local node reconnection is performed only if l is small compared to the local radius of
curvature, and the projections of the region 1, 2, 3, 4 onto the planes 1, 3, 4 and 2, 3, 4
are convex. For meshes with edge lengths smaller than the local radius of curvature, the
foregoing procedure is equivalent to Delaunay triangulation.

The surface representation that we used [14] requires Nc ≥ 5, which imposes an addi-
tional coordination-number constraint for node reconnection.

A.2. Local Averaging Operations

Below are the averaging operations for Eqs. (3) and (13), which we used in our simula-
tions. Accordingly, we define an optimal triangle area

A0 =
3

2

[

3
∑

i=1

ρ̄(i)

]−1

, (A.2)

FIG. 11. Same as in Fig. 10, except for node subtraction, with subtracted node indicated.
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FIG. 12. Schematic for node reconnection procedure. Crosses denote centers of circles containing nodes
1, 3, 4 and 2, 3, 4.

where the mean node density is

ρ̄(i) =
1

2

[

ρ0(i) +
1

Nc

Nc
∑

j=1

ρ0( j)

]

, (A.3)

and ρ0 is the optimal node density (14). In Eq. (A.2) the summation is over the vertices of
the triangle, and in Eq. (A.3) the summation is over the nearest neighbors of node i .

The optimal length of an edge, defined by Eq. (3), is

l0 =
1

2

2
∑

i=1

l ′0(i), (A.4)

where the summation is over the two nodes joined by the edge, and

l ′0(i) = 21/2c1/2
0

∑

w(i)A0(i)
1/2 (A.5)

is the optimal mesh length scale associated with a node i . In our simulations, l ′0(i) was
obtained by summing over the Nc neighboring triangles surrounding the node and the Nc

next-neighbors; the weights assigned to the first and second neighbors were w = 5
6 N−1

c and
w = 1

6 N−1
c .

The optimal number of nodes in a local region, defined by Eq. (13), is

n0 =
nSloc

S0
, (A.6)

where

S0 =
∑

k

A0(k), (A.7)

is the sum of the optimal areas in Sloc, and n is the actual number of nodes in the region,
with border nodes weighted by the fraction of surrounding triangles that lie within Sloc.
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APPENDIX B: ONE-DIMENSIONAL MESH RESTRUCTURING

In this appendix, we describe an adaptive mesh-restructuring algorithm for two-
dimensional and axisymmetric problems. A spline parameterized by arc-length s provides
the local surface representation.

The appropriate node density, analogous to (14), is

ρ0 = α−1L−1. (B.1)

A piecewise constant representation of the node density is defined, ρ̄0(s) = ρ0(si ), where
si is the arc-length of nearest node. The number of new nodes N ′ is obtained by integration
of ρ̄0, with the resolution constant α adjusted to obtain an integer value. The positions of
the new nodes s ′

i (i = 1, . . . , N ′) are given by

1 =

∫ si+1

si

ρ̄0(s) ds, (B.2)

starting from s1 = 0. The local length-scale distribution, corresponding to (6), that maintains
uniform resolution of angle is

L−1
1 = |κ|, (B.3)

where κ is the line curvature. Near-contact lubrication stresses are resolved by the length
scale (7).

APPENDIX C: MESH SPLICING

Here we present an extension of our adaptive discretization algorithm for mesh splicing,
which involves the repositioning of selected nodes to target positions x′ using

ẋ = −P̂ · (x − x′), (C.1)

in place of the mesh-relaxation equation (9).
The procedure starts with the identification of two sets of splicing nodes at a prescribed

distance on either side of a location to be spliced (e.g., regions with most negative cur-
vature), as illustrated in Fig. 13a. The two sets of splicing nodes are then repositioned to
target points x′ that lie on corresponding splicing planes, as shown in Fig. 13b. Reposi-
tioning is achieved by globally restructuring the mesh using (C.1) for the sets of splicing
nodes.

Surface patches were generated from spherical caps that are approximately tangent to the
interface along the (near-circular) contours formed by the projected splicing nodes. Surface
patches were discretized by a procedure similar to that described in Section 3, using node
addition and subtraction to achieve one-to-one correspondence between nodes at the edge of
the patches and nodes on the splicing contours.Edge nodes and nodes on splicing contours
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FIG. 13. Mesh splicing procedure used for simulation shown in Fig. 6. Points indicate sets of splicing nodes
before (a) and after (b) repositioning. Surface patches before (c) and after (d) relaxation.

are then joined as shown in Fig. 13c. Dynamic relaxation (9) was used to achieve the mesh
configuration depicted in Fig. 13d.

Fine-scale control of individual nodes afforded by our adaptive discretization algo-
rithm can also be used to join the meshes of coalescing particles. Singularities, such
as cusps and ridges, can be accommodated by controlling the local orientation of edges
[34].
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30. T. W. Secomb, R. Skalak, N. Özkaya, and J. F. Gross, Flow of axisymmetric red blood cells in narrow
capillaries, J. Fluid Mech. 163, 405 (1986).

31. T. J. R. Hughes, The Finite-Element Method: Linear Static and Dynamic Finite Element Analysis (Prentice-
Hall Inc., Englewood Cliffs, NJ, 1987).



MESH ALGORITHM FOR EVOLVING SURFACES 463

32. D. McInerney and D. Terzopoulos, A dynamic finite-element surface model for segmentation and tracking in
multidimensional medical images with application to cardiac 4D image-analysis, Comput. Medical Imaging

Graphics 19, 69 (1995).

33. A. D. Kalvin, C. B. Cutting, B. Haddad, and M. E. Noz, Constructing topologically connected sur-
faces for the comprehensive analysis of 3D medical structures, SPIE Image Process. 1445, 247
(1991).

34. L. Scarlatos and T. Pavlidis, Hierarchical triangulation using cartographic coherence, CVGIP: Graphical

Models Image Process. 54, 147 (1992).


