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Abstract. The local discontinuous Galerkin method for the numerical approximation of the
time-harmonic Maxwell equations in low—frequency regime is introduced and analyzed. We consider
topologically non—trivial domains and heterogeneous media, containing both conducting and insulat-
ing materials. The presented method involves discontinuous Galerkin discretizations of the curl-curl
and grad—-div operators, based on a mixed formulation of the problem and on the introduction of the
so—called numerical fluxes. An hp-analysis is carried out and error estimates that are optimal in the
meshsize h and slightly suboptimal in the approximation degree p are obtained.
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1. Introduction. In this paper, we propose and analyze an hp-local discontinu-
ous Galerkin (LDG) method for the low—frequency time-harmonic Maxwell equations
in heterogeneous media, containing both conducting and insulating materials. The
method is based on the following formulation of the problem: find the complex field
E that satisfies

V x (u17'V x E) 4+ iwoE = —iwJ, =:J inQCR3 (1.1
V-E=0 in Qy C Q, (1.2)

together with suitable boundary conditions (see Alonso and Valli [1]). The complex
field E is actually related to the electric field £ by the identity £(x,t) = Re(E(x)e™?),
where w # 0 is a given frequency. The parameter p = p(x) is the magnetic perme-
ability, J, is the phasor associated with a given current density and ¢ = o(x) is the
electric conductivity, which is zero in the subdomain Qg occupied by insulating ma-
terials. We remark that the electric field-based formulation in (1.1)—(1.2) is only one
of several field and potential-based formulations proposed in the literature for the so-
lution of eddy current problems (see, e.g., Bryan, Emson, Fernandes and Trowbridge
[12], Bossavit [11], Hiptmair [33] and the references therein).

There are two main reasons for using discontinuous Galerkin (DG) methods for
the numerical approximation of the above problem.

The first is that these methods, being based on discontinuous finite element spaces,
can easily handle meshes with hanging nodes, elements of general shape and local
spaces of different types. They are thus ideally suited for hp-adaptivity and multi—
physics or multi-material problems. This flexibility in the mesh—design is not shared in
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a straightforward way by standard edge or face elements commonly used in computa-
tional electromagnetics. Indeed, these elements are designed to enforce the continuity
of certain momenta in tangential or normal direction across interelement boundaries
(see, e.g., Nédéléc [37, 38], Bossavit [9, 10], and Monk [36]). This makes the han-
dling of non—matching grids and high—order approximations rather inconvenient from
an implementational point of view. Nevertheless, efficient hp—adaptive edge element
methods have been developed recently by Demkowicz and Vardapetyan in [29, 45].

The second reason, of no less importance, is related to the difficulties in obtaining
numerical approximations in the subregion {}¢ containing the insulators. In fact, when
conforming elements are considered, the continuity of both the tangential and normal
components of the discrete field has to be imposed and, therefore, continuous elements
have to be used. It is well known that for such approximations convergence to the
exact solution might not be achieved, for instance, if Qy is a non—convex polyhedron
or in the presence of singularities of the material properties. These situations are in
fact excluded in Alonso and Valli [1], where an iteration-by—subdomain procedure is
studied, using edge elements in the conducting region 2\ Qg and continuous elements
in 9. Possible remedies can be found, in the context of the full Maxwell prob-
lem, in Bonnet-BenDhia, Hazard and Lohrengel [8], where a singular field method
is introduced; in [27], where the original variational forms are modified near solution
singularities; or in Chen, Du and Zou [20], where the divergence constraint is taken
into account by a mixed method. These problems are overcome in a natural way by
DG methods, since they are based on completely discontinuous finite element spaces
and the continuity requirements are enforced in a weak sense only.

The LDG method has been introduced by Cockburn and Shu [26] for convection—-
diffusion systems, and has been further developed and analyzed in Cockburn and
Dawson [22], Castillo, Cockburn, Schétzau and Schwab [19], Castillo, Cockburn, Pe-
rugia and Schotzau [18], Cockburn, Kanschat, Perugia and Schétzau [23]; see also
the review by Cockburn and Shu [25]. It is one of several DG methods that have
been proposed in the literature for diffusion problems We only mention here the DG
methods of Baumann and Oden [7, 39], and the interior penalty (IP) methods and
their variants which have been recently studied, e.g., in Riviere, Wheeler and Girault
[43], Riviere and Wheeler [42] and Houston, Schwab and Siili [34]. A comparison of
DG methods from a computational point of view can be found in Castillo [17]. Recent
works have aimed at unifying the presentation and the analysis of all these methods
for elliptic problems. In Prudhomme, Pascal, Oden and Romkes [41], an hp-analysis
of different DG methods has been given, including the Baumann—Oden method and
interior penalty methods. Furthermore, in Arnold, Brezzi, Cockburn and Marini [5],
a framework has been presented within which virtually all the DG methods found in
the literature can be analyzed; it is based on a mixed formulation of the second—order
problem and on the so—called numerical fluxes.

The LDG method for the discretization of (1.1)—(1.2) is designed by adapting to
the curl-curl and grad-div operators the definition of the numerical fluxes considered
in [26, 18] for the Laplacian. This is done in a consistent way and such that the
auxiliary variables needed to define the LDG formulation can be eliminated from the
equations in an element—by—element manner. For discontinuity stabilization parame-
ters of the order p? / h, we prove error estimates that are optimal in the mesh—size h and
slightly suboptimal in the polynomial degree p (half a power of p is lost). This analysis
is the first hp-error analysis for the LDG method in several space dimensions and in
this sense extends previous work in [19, 18]. For elliptic problems on unstructured
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two— or three—dimensional domains no better p-bounds can be found in the literature;
see, e.g., Riviere, Wheeler and Girault [43], Prudhomme, Pascal, Oden and Romkes
[41] and Houston, Schwab and Siili [34], where the same rates of convergence as in
our case are obtained by different analysis techniques. We mention, however, that op-
timal hp—bounds have been proved by Castillo, Cockburn, Schétzau and Schwab [19]
for one—-dimensional convection—diffusion problems, and recently by Georgoulis and
Siili [32] for two—dimensional reaction—diffusion problems on structured quadrilateral
grids.

The outline of the paper is as follows. In section 2, we present the low—frequency
time-harmonic Maxwell equations in heterogeneous media, under quite general and
realistic assumptions on the domain and the data. We need to extend to our case
the existence and uniqueness results established in [1] for a more particular situation.
The proof of these extensions is developed in detail in the appendix, and relies on
the existence of a continuous lifting of tangential traces, which is divergence free in
Qp and satisfies certain homogeneous flux conditions through the cavities of y. In
section 3, we derive the LDG method and show that it defines a unique approximate
solution. An hp—error analysis is carried out in section 4. Possible extensions of our
work and concluding remarks are presented in section 5.

2. The model problem in heterogeneous media. In this section, we specify
our assumptions on the domain and the data, and present the complete model problem
in heterogeneous media. The proof of the well-posedness of the continuous problem
is postponed to the appendix.

2.1. Preliminaries. We start by making precise the assumptions on the domain
and on the data, and by introducing the functional spaces used throughout the paper.

Assumptions on the domain. Let Q be a connected, bounded, open Lipschitz
polyhedron in R?®, whose boundary may contain several connected, not necessarily
simply connected components. Throughout the paper, whenever referring to a non—
simply connected domain, we assume that there exists an “admissible set of cuts” in
the sense of [3], whose removal reduces the domain to a simply connected one (see
also [31] for further comments). Let Qg be the subdomain of  occupied by insulating
materials. We define Q, = Q\ Qp, and denote by I' the interface 9Q N 9N,. We
assume {9 and Q, to be open Lipschitz polyhedra such that the closure of T' is a
collection of closed faces of 02y and 09,. For the sake of simplicity, we assume
Qo to be connected. The extension to the general case where )y is not connected
can be done easily by dealing with each of the connected components of 2y as done
with € in this paper. Let I'g;, 7 = 0,...,J, be the connected, not necessarily
simply connected components of 8€2y. We denote by I'g o the “external” connected
component of 9y, defined as the boundary of the only unbounded component of
R3 \ Qp, and by Lo j,j=1,...,J, the possible “cavities” of ), which are boundaries
of connected, bounded Lipschitz polyhedra in R® \ Q.

Assumptions on the data. The magnetic permeability and reluctivity, 4 and
pu~ L, are symmetric, uniformly positive definite tensors with bounded coefficients. The
electric conductivity o is a symmetric tensor with bounded coefficients, uniformly pos-
itive definite in the conducting region €, and zero in €)g. These tensors are smooth
within any subdomain occupied by a single material, and might be discontinuous
across the interfaces between different materials. Finally, the current density J sat-
isfiess J =0in Q,, V-J =01in Qg and J - ng = 0 on 9y, where ng is the outward
normal unit vector to 9.
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Functional spaces. Given a domain D in R? or R®, we denote, as usual, by
H*(D)?, d = 1,2,3, the Sobolev space of real or complex functions with integer or
fractional regularity exponent s > 0, endowed with the norm ||-||s,p; see, e.g., [35]. For
D c R®, H(curl; D) and H(div; D) are the spaces of real or complex vector functions
u € L*(D)? with V x u € L?*(D)? and V - u € L?*(D), respectively, endowed with
the graph norms. We denote by H} (D), Ho(curl; D) and Hy(div; D) the subspaces
of H(D), H(curl; D) and H(div; D) of functions with zero trace, tangential trace
and normal trace, respectively, and by H(curl’; D) and H(div®; D) the subspaces
of H(curl; D) and H(div; D) of curl-free and divergence—{ree functions, respectively.
We also define Hy(curl,div; D) = Ho(curl; D) N H(div; D) and Hy(curl®,div®; D) =
Hy(curl’; D)NH(div%; D). Finally, we denote by H(dD) the space of tangential traces
of H(curl; D) functions endowed with the norm || - |4 (sp), and refer to [13] for its
complete characterization in non—simply connected domains.

2.2. Low—frequency time—harmonic Maxwell’s equations in heteroge-
neous media. The physical problem we are interested in is the low—frequency time—
harmonic Maxwell system (1.1)—(1.2), completed with Dirichlet boundary conditions
on 0N and flux conditions through the cavities of Qo; see [1]. Renaming the unknown
field, the complete problem reads as follows: find u € H(curl; Q) N H(div; Q) such
that

V x (p 'V x u) +iwou=J in Q (2.1)
V-u=0 in 0 (2.2)
nxu=g on 0} (2.3)
((ulg, *m0,5),)r,,; =0 Vi=1,...,J, (2.4)

where n is the outward normal unit vector to 92, g is the tangential trace in H(992)
of a function in H(curl;€2), ng ; is the normal unit vector to I'y ; pointing outside
D, and (,-)r, ; denotes the duality product between H_%(F[)’j) and H%(F[)’j), with
L?(Ty,;) as pivot space.

Although J is divergence—free in €2y, possible errors in the experimental recovering
and/or numerical representation of J may give rise to source terms components that
are not divergence—free. In order to address this issue, we consider the following
variational formulation of (2.1)—(2.4): find u € H(curl; Q) N H(div; Qo) such that
n xu=gon 9N, ((ulg, -ng;),)r,, =0for j=1,...,J, and

/,u_Iqu-Vdex+iw/au-de+/ VV-uV-de:/J-de, (2.5)
Q Q Qo Q

for all v € Hy(curl; Q) N H(div; Qo) with ((v|o, - no,;),)r,; = 0, j = 1,...,J.
Here, v = v(x) is any positive bounded scalar function, bounded away from zero,
with the same physical dimension as p~!, that should be chosen in such a way that
the magnitudes of the different terms at the left-hand side are balanced. The LDG
method we are going to introduce is actually based on a discrete counterpart of (2.5).
Now, we can account for perturbations of the data by considering the strong problem
corresponding to (2.5) with J replaced by a generic F € L2(Q)%. This is done in
section 2.3.

REMARK 2.1. A conforming finite element discretization of the variational for-
mulation in (2.5) requires elements in Qo that are both curl- and div—conforming,
and therefore also H'-conforming. Whenever Qg is a non-convez polyhedron, it is
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well-known that these conforming approximations may fail to converge to the exact
solution. In [1], for instance, where the above problem is discretized by a domain
decomposition method with conforming elements, this situation is forbidden. See also
[8] for a discussion of this issue in the context of the full time—harmonic Mazwell
problem in a closed cavity. The use of discontinuous Galerkin methods is a way to
overcome these difficulties since these methods are based on completely discontinuous
finite element spaces and the continuity requirements are enforced in a weak sense
only.

REMARK 2.2. Conditions (2.2) and (2.4) are actually motivated in [1], in the
case J = 0 in Q, by means of a physical perturbation argument. Let us adapt this
argument to our case. To this aim, we introduce the perturbed tensor oy defined as
o9 =0 i Qy, and oy = I in Qo, where I is the identity and 9 is a positive constant
that we will let tend to zero. By Lemma 3.5 in [3], we can represent the current density
J in Qg as J =V x o, with a field » € H'(Qg)®. Consequently, from equation (2.1)
with o replaced by oy, we have iwdu = —V X (iwy + p~ 1V x u) in Q. Therefore,
ulq, belongs to V x (H(curl;Qg)). From the second part of Lemma 3.5 in [3], which
holds true also for H(curl; Qo) functions, we have that u satisfies (2.2) and (2.4) for
any 9 > 0. Then, as ¥ — 0, we obtain problem (2.1)-(2.4).

2.3. The model problem. In this section, we introduce a slightly more general
model problem than the one in (2.1)—(2.4), in order to allow for general source terms
F € L?(Q)? in the corresponding variational formulation. To this end, we use the fact
that any function F € L?(2)® admits the orthogonal decomposition

F=F +F, (2.6)

where F' € L?*(Q)? is such that V - F'|o, = 0 and ((F'|g, - no;),1)r,, = 0 for
j=1,...,J, while F" satisfies F"'|q, = 0 and F"|q, = Vf, with f € H*(Q), f =0
on I'g o and f constant, say f = f;, oneachI'g ; for j =1,...,J. Thisis a consequence
of the decomposition in [3, Section 3.5, point (iii)].

We consider the following problem: find u € H (curl; Q) N H(div; ) such that

V x (™ 'V x u) +iwou = F' in Q (2.7
vVW-u=—f in Qg (2.8)
nxu=g on 0N} (2.9)
M(ulg, - no5), rg,; = f Vi=1,...,J, (2.10)

where ) is any positive constant, whose purpose, again, is to achieve the correct
physical dimensions. Notice that for F = J, we have F' = J and f = 0 in the
decomposition (2.6), and problem (2.7)—(2.10) reduces to (2.1)—(2.4).

We point out that in the LDG discretization of problem (2.7)—(2.10) that will be
introduced in the following section, we need to compute neither the elements F' and
f in the decomposition of F, nor the constants f;. The only data that enter explicitly
the formulation of the method are F and g. This is due to the variational character of
the method and the particular choice of the inhomogeneous flux conditions in (2.10);
see Remark 3.3 below.

We define the space V = H(curl; Q) N H(div; Qo), endowed with the norm

J

1 1 1
[l = wlllofullg.q + lu2V xullf o +[lv2 V- ullg g, + A Y K(ula -10,5), Do, 1%,
j=1



6 1. Perugia and D. Schtzau

with oy = 0 in Q, and oy = 91 in Qq, where I is the identity and ¥ is a fixed positive
dimensional constant.

The variational formulation corresponding to (2.7)—(2.10) is as follows: findu € V
such that n x u = g on 99, A{(u|q, -ng,;),1)r,; = fj for j =1,...,J, and

/u_Iqu-Vdex—Hw/au-de+/ I/V-uV-de:/F-de, (2.11)
Q Q Q Q

for all v € V, with n x v =0 on 99 and ((v|q, - no,;), )r,,; =0, =1,...,J.
Well-posedness of the above formulation is established in the following theorem.
THEOREM 2.3. For any F € L?(Q)? and g € H(0N), the variational formulation

(2.11) admits a unique solution and there exists a positive constant C such that

[ullv < C(IIFllo.e + lIgllxen)-

Moreover, u is solution to problem (2.7)-(2.10) if and only if u is solution to (2.11).

In the case where the domain is such that H(curl; Qg) N Ho(div; Qo) — H'(Qp)?
and the problem is driven by boundary conditions only, this result has been proved in
[1]. The extension to our more general case is rather technical and will be given in all
details in the appendix. One of the key ingredients necessary to prove Theorem 2.3 is
to construct, under our assumptions on the domain, a continuous lifting of tangential
traces with zero divergence in €y and zero flux conditions through I'y ;, j =1...,J.
We do this in Proposition A.1, by using trace theorems recently proved in [14] and
[15], and extended in [13] to domains with non—simply connected boundaries.

3. The local discontinuous Galerkin method. In this section, we formulate
the LDG method for the discretization of problem (2.7)-(2.10). We assume from now
on that

g € L?(00)3. (3.1)

3.1. Traces and discontinuous finite element spaces. We start by intro-
ducing certain trace operators and finite element spaces used in the definition of the
method. Let 7 be a shape regular triangulation of the domain 2 into tetrahedra
and/or parallelepipeds, with possible hanging nodes and aligned with the interfaces
between different materials, so that u, p~! and o are smooth within each element of
Th. We set T2 := Thlq, and have Q@ = Uge7, K and Qo = UKeT,?F- We will denote
by hx the diameter of the element K € 7.

Faces. We define and characterize the faces of the triangulation 7. An interior
face of Ty, is defined as the (non—empty) two—dimensional interior of 9K TNOK ~, where
K* and K~ are two adjacent elements of Ty, not necessarily matching. A boundary
face of Ty, is defined as the (non—empty) two—dimensional interior of K N 9N, where
K is a boundary element of 7,. We denote by £z the union of all interior faces of Ty,
by &p the union of all the boundary faces of 7Ty, and by £ = £7 U £p the union of all
faces of Ty,. Similarly, we denote by £° the union of all faces of 7,2, and we set £2 and
&Y for the interior and boundary faces of 7).

Traces. Let H*(T;) := {v: v|x € H*(K), K € Ty} for s > 1, endowed with the
norm ||v]|? 7. = 3 k7. [[V]|7 - Then, the elementwise traces of functions in H*(7p)
belong to TR(E) := HkeT;, L2(OK); they are double—valued on £7 and single-valued
on &p. The space L2(€) can be identified with the functions in TR(€) for which the
two trace values coincide. We define similarly H*(7,0), TR(£°) and L?(£9).
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Trace operators. Let us introduce the following trace operators for piecewise
smooth functions. First, let v € TR(£)? and e € £. If e is an interior face in £7, we
denote by K7 and K> the elements sharing e, by n; the normal unit vector pointing
exterior to K;, and we set v; = v|gk;, ¢ = 1,2. We define the average and tangential
jump of v at x € e as

1 .
v} = §(VI +v3) ifeCc &z [V = n; X vy +ny X vy ifec&r
v ifecép nxv ife C &Ep,
and, if e C £, the normal jump of v at x € e as
[Vly =vi-ni+v2-ny ife C £9.

The normal jump of v will not be used on faces outside 7,0, and thus is left undefined.
Similarly, we define for ¢ € TR(E?) the average and jump at x € e as

1
“( +1ps) ifec &l Ying +eny  if e C &Y
= 2 ==

where we recall that ng denotes the outward normal unit to 9. Note that the
averages and jumps above defined are single—valued functions.

If v € H(curl; Q), then, for all e C £z, the jump condition n; X v; +ny x vo =0
holds true in H&)% (€)%, and thus also in L?(e)®. For the definition of H(;)% (e), see,
e.g., [35]. Therefore [v]r is well-defined and equal to zero on 7. Similarly, for v €
H(div; Q0), we have that [v]n is well-defined and equal to zero on £2. Furthermore,
for the exact solution u € V, owing to assumption (3.1), we have for a boundary face
e C &p that [u]r = g in L?(e)?, in addition to [u]r = 0 on &£ and [u]x = 0 on &Y.

Finite element spaces. Let p = {px}keT, be a degree vector that assigns
to each element K € 75, a polynomial approximation order px > 1. The generic
hpfinite element space of piecewise polynomials is then given by

SPO(T) == {u € L*(Q) : u|kx € SP% (K), VK € Tr},

where SP¥ (K) is the space PP¥ (K) of complex polynomials of degree at most px in

K, if K is a tetrahedron, and the space QP (K) of complex polynomials of degree at

most pi in each variable in K, if K is a parallelepiped. The superscript 0 indicates

that SE°(Ty,) C L2(Q) = H°(2). We define S2°(T}) similarly.

3.2. Derivation of the LDG method. We introduce the auxiliary variables

s=p"'w w=Vxu in Q (3.2)
p=uvp p=V-u in Q. (3.3)

Notice that s € H(curl; Q), w € L2(Q)3, p € H' () and p € L*(Qp). By subtracting

the gradient of equation (2.8) from equation (2.7), taking into account the above
identities and that F = F' in Q, and F = F' + V in Qg, we obtain

V xs+iwou—Vo=F inQ, (3.4)

where % = Vyp in g and % =0in Q,.
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The LDG method is obtained by discretizing the first order equations in (3.2)—
(3.4) in a discontinuous way. Notice that s is actually related to the magnetic field
phasor given by iw™'x 'V x u. In this context, however, s, w, ¢ and p are auxiliary
variables introduced in order to derive the method and will be eliminated from the
equations locally in an element by element manner. This local solvability gives the
name to the LDG method. We refer to [16] and [17] for a discussion of this elimination
process from the computational point of view.

Since the LDG method is defined elementwise, we fix K € 7, and, in order to
account for the fact that the term Ve is different form zero in the elements contained
in Qg only, we set Kg = Ko(K) =K, if K C Qo, and Ky = Ko(K) = @, if K C Q.
We proceed formally by multiplying in K the first identities in (3.2) and (3.3) by test
functions z and 7, the second identities in (3.2) and (3.3) by test functions t and %,
and equation (3.4) by a test function v. By integration by parts and varying K € Ty,
we obtain the following weak formulation:

/,uflw-idxz/s-idx

K K

/ upi‘dxz/ pTdx

Ko KO

/w-fdx:/ u-fodx—/ u-ng x tds

K K 8K

/ pzﬁdx:—/ u-V@de—k/ u- (¢Yng)ds
Ko Ky OK
/S-vadx—/ s-nKdes—f—iw/ ou-vdx
K oK K

+/ <pV-\7dx—/ (p\_/-ansz/F-\_/dx,
Ko 0Ky K

(3.5)

for any K € Tp, where ng is the outward normal unit vector to 0K. The boundary
integrals in (3.5) have to be understood as duality pairings.

We approximate (w,p,s,@,u) in (3.5) by functions (wp, pn,sn, @n,uy) in the
hpfinite element space Wj, x My X 3 X @ X Vp, chosen as

W, =3, =V, = S2%(T)3 My, = Qn = S2UTY), (3.6)

for a given degree distribution p. Note that this choice actually implies that, for all
vEV, VypxveX,=W;and V- v]g, € Qn = My, where Vi, x and Vj- denote
the elementwise curl and divergence operators, respectively.

The discrete version of (3.5) then reads as follows: find (wp, pp,Sh, pn,un) €
W, x My x X x Qp x V, such that, for any K € 7T and for any choice of test
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functions (z,7,t,%,v) € Wp, X My X Xp X Qp X V},, we have

/,u_lwh-idx:/ Sp - zdx

K K

/ Vph%dxz/ pn Tdx

Ko Ko

/wh-fdxz/ uh-fodx—/ Uy -ng X tds

K K oK

/ phzﬁdxz—/ uh-Viﬁdx—}—/ ﬁh-(zﬁnK)ds
Ko Ko 8K,
/sh-Vdex—/ §h-nKdes+iw/ ouy, - vdx
K 0K K

+/ gth-de—/ aﬁh\’/-ans=/ F -vdx.
KO aKo K

Here, 1y, S, ﬁh and :’,;Eh denote the so—called numerical fluzes which are approxima-
tions to the traces of u, s and ¢ on K. They are crucial for the stability as well as
for the accuracy of the method and will be defined in the next section. TheAﬂuxes
Uy, and S, are related to the curl-curl operator, whereas the fluxes 1, and @, are
associated with the grad—div operator in Q.

REMARK 3.1. If u and v are piecewise constant, the auxiliary variables w and p
are not needed, and the method can be defined by introducing directly s = p='V x u
and ¢ = vV -u.

(3.7)

3.3. The LDG numerical fluxes. Similar to [5], we understand the numerical
fluxes as follows. Given u and s in H*(7,)® for s > 1, the fluxes 4 = d(u) and
= §(s,u) belong to L*(£)3. Similarly, for ulg, € H*(TP)? and ¢ € H*(T?),
i = Ti(ulg,) belongs to L2(£°)% and 3 = $(p, ulq,) to L2(E°). The fluxes are thus
single-valued on the union of faces. Furthermore, the fluxes in u are assumed to be
independent of the auxiliary variables in order to be able to eliminate them from the
system of equations.

We define the fluxes s and U face by face by adapting to the curl-curl operator

the numerical fluxes considered in [18] and [23] for the Laplacian:

w)

S =

~ {{s}} — afu]r + b[s]r ifec &z

s—anxu-—g) ifec &p
G {u} +v[u]r ifeCé&r
e if e C Ep.

We use a similar recipe for the grad—div fluxes and set

o} - cluly +d-[¢] if e C €7

Cﬁ: —)\<U|Qo 'n0,j71>Fo,j ife C FO,j ] = ].,...,J
0 ifecC F0,0

i

_ {{{u}} — d[u]x if e C £9

u ifecé&).
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Here,a € L>®(£),b € L>®(&7), c € L*®(E2) and d € L*°(£2)3 are real valued functions
still at our disposal. This completes the definition of the LDG method.

Let us make some comments about these fluxes.

e The fluxes introduced above are conservative in the sense of [5], and give rise
to a consistent formulation (see Theorem 3.2 below).

e The parameters a and c are referred to as discontinuity stabilization parame-
ters. They have to be positive and will be chosen depending on the local meshsize,
polynomial degree, and on the coefficients y and v. The parameters b and d, on the
other hand, are chosen of order one; their purpose is to enhance the accuracy in the
approximation of the auxiliary variables s and ¢ that might be computed in a post-
processing step. Indeed, in [23] it has been shown for the Laplacian that a parameter
like b and d can be selected in such a way that the auxiliary variable superconverges
on Cartesian grids.

e The numerical flux 1 enforces the boundary condition (2.3) in a weak sense.
Namely, for any u € H*(73)3, we have that

nxiu=g on &p. (3.8)
The flux :’,;5 imposes the condition ¢ = 0 on T'g and ¢ = —A(up|q, - ng,j, 1)1, ; on
Toj,j=1,...,J. Since for the exact solution A(u|q, - ng j,1)r,,; = f; on Iy , the
flux ¢ approximates the boundary condition ¢ = —f; on I'g ;. This is the reason

why the constants f; do not appear explicitly in the formulation; see also Remark 3.3
below.

e Since the trace on I'g; of a function v € H*(T,?)® with s > 1 actually belongs
to L*(T'o,;)*, we have that (vlo, - 1o, )ro,; = Jr, , Vi, *ho,ds, j=1,...,J.

3.4. The mixed formulation of the LDG method. In this section, we cast
the LDG method in a mixed form, as in [18], and prove existence and uniqueness of
discrete solutions. To do this, we sum the equations in (3.7) over all elements. Using
integration by parts, the identities

v-ng xtds =— / t-ng xvds
Z/BK Z K

KeTs, KeTy,

:_/8[[‘,]]:,,.{E}der/gI{{v}-[[E]]Tds (3.9)
@) ds = [ (w1 + AT ds+ [ e (o) ds

KeT?"?

that hold true for all v,t € TR(E)3, w € TR(E%)® and ¢ € TR(EP), as well as the
form of the numerical fluxes, we obtain the following formulation.
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Mixed formulation. Find (wy, pp,sh, o, un) € Wy X My X 3 X Qp X Vi
such that

/;flwh-idxz/sh-idx
Q Q

/ Vphi'dxz/ pp Tdx
Qo Q0

/wh-fdxz/vhxuh-fdx—/ b[[uh]]T-[[f]]Tds
Q Q

&z

~ [tuile - gepas+ [ g-tas

£ £n

/Qophlzdx: Qovh-uhlﬁdx—/ggdl[uh]]N-[[/éz]]ds—/g%[[uh]]N{{qﬁ}}ds

/Qsh.vh Xde—/g{{sh}}.[[v]]Tds_/grb[[sh]]T.[[‘—,]]Tder/ga[[uh]]T_[[v]]Tds
+i‘*’/90“h'de+/9090’lvh'de_/ggHSOhMV]]NdS—/g%d-[[goh]][[v]]Nds

J
+ /0 c[un]n[¥ln ds + XD (unla, - 10,4, 1)r, ; (Fla, - 00,5, 1rg,;
&

T j=1

=/F-\7dx+/ ag-(nxv)ds,
Q Ep
(3.10)

for all (z,7,t,1,v) € Wp x Mp x p X Qp x V.

We prove existence and uniqueness of solutions and consistency of (3.10) in the
following theorem. Notice that, in order to have consistency, we do not need any
smoothness assumption on the exact solution in addition to (3.1).

THEOREM 3.2. For strictly positive discontinuity stabilization parameters a and
c, the LDG method defines a unique approzimate solution (W, pr,Sh, Pn,Wn) in the
space Wy X My x By X Qp X V. Furthermore, the LDG formulation (3.10) is
consistent, i.e., the exact solution (w,p,s,p,u) satisfies (3.10), for all test functions
(Z,T,t,?ﬁ,v) €Wy x My X3, XxQpXxVp.

Proof. Since problem (3.10) is linear and finite dimensional, in order to prove
existence and uniqueness of solutions, it is sufficient to prove that if F = 0 and g = 0,
then wy, = sp, = up = 0 and p, = @y = 0. Taking (z,7,t,v,v) = (Wp, pp, Sk, ©h, Up)
in (3.10), subtracting the first and the second equations from the third and the fourth
ones, respectively, and then subtracting the results from the fifth equation, we obtain

/H*lw%dx+/a[[uh]]2Tds+iw/auidx+/ v p? dx
Q £ Q %
J
+ /sg c[un] ds + )\Z(uh|go .no’j’1>%0’j —0.

j=1
Taking into account that p~! is positive definite in Q and v is positive in Qy, we have
wp, = 01in  and pp, = 0 in p; since o is positive definite in Q,, then u;, = 0 in
Q,, and since a > 0, ¢ > 0 and A > 0, then [up]r = 0 on &, [up]x = 0 on €2 and
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(unle, -mo,5,1)r,; =0, j =1,...,J. Now, since ¥, = Wy and Qp = My, taking s,
and ¢y, as test functions in the first and second equations of (3.10), respectively, from
wp, = 0 and pp, =0, we have sy, = 0in 2 and ¢, = 0 in Q,. Then, the third equation
reduces to fQ Vi xup-tdx = 0, for all t € . Since Vi, x Vy, C Xy, we have
Vi xup = 0in Q. Similarly, the fourth equation becomes fﬂo Vi -upydx =0, for all
¥ € Qp. From V}, - Vg, C Qn, we have Vp, -up =0 in Qo. From up, = 0 in Q, and
[un]r = 0on &, we get ng x up = 0 on 9Q. We can summarize the above conditions
on up, in Qg as uplg, € Hy(curl®, div®; Qo) and (upla, -mo,, Dy, =05 =1,...,J.
This implies that u, = 0 also in Qg (see [30], formula (4.14) with I, = 89, T, = 0
and weight w = 1). This concludes the proof of the first part of the theorem.

As far as the consistency of the formulation (3.10) is concerned, let (w, p,s, ¢, u)
be the exact solution. From s = y~!'w and ¢ = vp, it is obvious that the first two
equations are fulfilled, for any z € Wy, and 7 € Mj. Since Ju]r = 0 on & and
[ulr = g € L?(€p)? on &p, due to (3.1), taking into account that w = V x u, we
have that the third equation is satisfied by w and u, for all t € Xj,. Similarly, since
[u]lx = 0 on &2, taking into account that ¢ = V - u, we have that the fourth equation
is satisfied by ¢ and u, for all ¥ € Q)p,. Finally, consider the fifth equation. Express
the term [ {sp}-[VIr ds by — X xcr, [ox V'K xsnds+ [; {v}-[se]r ds, according
to (3.9), and substitute the exact solution into the obtained equation. Understanding
the boundary integral as duality pairings, integrating by parts and observing that
ueV,se H(curl; Q) and p € H(Qp), together with the definition of {¢}}, we get

/sz-\‘rdx+iw/au-\7dx— Vgo-\‘rdx+/ pV-nds
Q Q Q0 £

0
<]

J
+ A3 (ula, 105, 1ro, (T, - 1o, Dy, = /QF ¥ dx.
j=1
From (3.4) and the flux conditions (2.10), we obtain
J
/ pv-nds+ ij(ﬂgo -ng,j,1)r,; =0,
&3 j=1
which is satisfied because ¢|an, = (¥V - u)sq, = —f|aq,, and f is zero on 'y and

constant f; on I'g;, j =1,...,J. This completes the proof of the theorem. O

REMARK 3.3. The constants f; do not appear explicitly in the LDG formulation
(8.10). As can be inferred from the proof of Theorem 3.2, this is due to the particular
choice of the fluz conditions in (2.10), whose purpose is, in fact, to cancel the terms
containing the constants f;, since they are not easily computable from the datum F.
If we consider problem (2.7)-(2.10) with more general flux conditions

A((u|90 : no,j)7 1>Fo,j = &y,

for given constants a;, j = 1,...,J, the numerical flux fo\ on the faces belonging to
Lo, 3=1,...,J, must be adjusted accordingly by

~

¢ = (aj = f;) — Muplg, - 00,5, L)ry ;-

Consequently, the right-hand side in the last equation of (3.10) becomes

J
/ F-\‘rdx+/ ag-(nxv) ds-l—Z(aj = fi){¥]ao - mo,5, L)1y ;-
Q Ep

j=1
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3.5. The primal formulation of the LDG method. In this subsection, we
eliminate the auxiliary variables w, s, p and ¢ from the mixed system in (3.10) and
derive the primal formulation of the LDG method. This is possible since the fluxes 1

and 4 are chosen independently of s and .
Let us start by introducing the lifting operators £; : L%(7)® — Xy, Lo :
L2(£)3 — Eh, Ml : L2(510—)3 — Qh and M2 : L2(52—) — Qh defined by

/Qﬁl(v)-fdx:/&v-[[f]]qwds /QLQ(V)-de:/gv-{{E}ds V6 € Sh,

Ml(v)zzdx=/gov-[[zz]]ds M2(v)vﬁdx=/govﬁvﬁ}}ds Vib € O,

Qo Qo

as well as the lifting Gp € X}, of the boundary datum given by
/Gp-fdx:/ g-tdx VteX,.
Q ép

Denoting by ITs, and IIg, the L?—projections onto Wy, = X, and My, = Qp, the
first and second equation in (3.10) can then be written as s, = Ix, (u~'wy) and
on =1Ig, (vpr). Then, from the third and fourth equations in (3.10), we obtain

sh = Iz, [¢ ' (Va x up — L([un]r) + Gop)], (3.11)
on =g, [v(Vh - un = M([un]n))], (3.12)
where we used the compact notation L([up]r) := Li(b[up]r) + L2([up]r), with
b[uy]7r understood as restricted to £z, and M([up]n) = Mi(dup]w) + Ma([ur]n).
Since Vj, x Vi, € Xy, and Vy, - Vipla, € @4, identities (3.11) and (3.12) can be used
in the fifth equation of (3.10), giving rise to the so—called primal formulation of the

LDG discretization of (2.7)—(2.10), in the variable u only.
Primal formulation. Find u; € V}, such that, for all v € V,

Br(up, v) := Ap(up,v) + Zp(up, v) +iw/ oup - vdx + J(up,v) = Fr(v), (3.13)
Q

where the forms Ay, Z,, (interior penalty form) and J are defined by
Ah(u, V) = / [L_l (Vh Xu— ,C(l[ll]]T)) . (Vh XV — ,C([[\_I]]T)) dx
Q
+ / (Vi -u— M([ulw)) (Vo -9 — M([¥]w)) dx
Qo

T (u,v) :/ga[[u]]T-ﬂ\?]]Tds—}-/go c[u]n [F]w ds

T
J

j(ua V) = /\Z<u|90 - Ng,j, 1>T0,j <‘_’|90 - 1o, j, 1>F0,ja
j=1

and the linear form F; by

fh(v)z‘/gF-\_rdx—/Q,u_lGD-(thw_l—ﬁ([[\_/]];r))dx—l—é ag-(nxv)ds.
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For discrete test and trial functions, the primal form (3.13) of the LDG method is
equivalent to the mixed system (3.10). However, unlike (3.10), the formulation (3.13)
is no longer consistent, due to the discrete nature of the lifting operators. Nevertheless,
the form By(+,-) has the continuity and coercivity properties that allow us to carry
out an error analysis in a straightforward way by using Strang’s lemma. Regarding
this point, our approach differs from the analysis in [5].

REMARK 3.4. Other DG methods can be obtained by modifying the definitions
of Ap(u,v), Ip(u,v) and Fp(v) in (8.13). The interior penalty (IP) method and its
nonsymmetric variant (NIP), for instance, can be obtained by taking in (3.13) the
same Ip(u,v) as in the LDG method, and instead of Ap(u,v) and Fp(v),

A v = [

u‘lvh xu-Vy xvdx — /l[ll]]T - {{,U,_lvh X \7}} ds
Q £

—/[V]]T-{{,u_lvh xu}ds-i—/ vV -uVy - vdx
£

Qo

-/ [l (0% o - / I {9 ds

fflbp(v)=/F-\7dx—/p_1(nxg)-vhX\_rdx—}—/ ag-(nxv)ds,
Q Q &p

and
NIP _ -1 ) - g1 _
Ayt (w,v) = [ pmVexu-Vyxvdx+ [ [u]r-{p” Ve x¥}ds
Q £

—/[[V]]T-{{,uflvhxu}}ds—k/ vV -uVy-vdx
£ Q

0

+ /gg'[u]]N {vVn-v}ds - /gg[[‘_’]]N {vVi -u}ds
A = [

F-\_/dx—l—/p_l(nxg)-VhX\_Idx—{—/ ag-(nx Vv)ds,
Q Q Ep

or, in terms of the lifting operators Lo and Mo,
A}lp(ll, V) = / /},_1 (Vh Xxu-Vy xXv— ,62([[11]]7’) -V xv— ;62([[‘_/]]]") -V X ll) dx
Q

+/ V(Vh -uVy-v —Mg(l[ll]]N)Vh -V—Mg([[{f]]N)Vh 'll) dx
Qo

f,Izp(v)=/QF-\7dx—/Q,u_1GD-Vh><\7dx+/g ag-(nxv)ds,

and

ANP (1, v) = /Q/.L_I(Vh xu-Vy x ¥+ Ly([u]r) - Vi x ¥ = Lo([¥]r) - Vi X u) dx

-|'/Q I/(Vh -uVy ¥+ My([uln) Vi - ¥ — Mao([¥]n) Vi, 'll) dx

]—",Ilp(v):/QF-\‘rdx+/Qp_1Gp-Vh><\7'dx+/‘g ag-(n xv)ds.

These formulations can also be derived by using the same mized formulation as for the
LDG method, and defining appropriately the numerical fluzes, see [5]. The analysis of
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the IP and NIP methods is almost identical to the one of the LDG method presented
in the next section and the obtained error estimates hold true verbatim also for these
methods. The only difference consists in a restriction on the choice of the stabilization
parameters in the IP method, as pointed out in Remark 4.6 below. We refer to [5]
and [17] for an extensive discussion and comparison of different DG methods, from a
theoretical and a computational point of view.

4. Error analysis. The aim of this section is to present an hp—error analysis
of the LDG method introduced in section 3, based on its primal formulation (3.13).
Although we use the same setting of [5], our analysis differs from the one presented
there since we directly work on the discrete form (3.13), taking into account non—
consistency terms by Strang’s lemma. This approach in the analysis of DG methods
seems to be new and might be of interest on its own.

The main result (see Theorem 4.12 below) consists in error estimates, in a suitable
energy—norm, of the form

2 hi(min(pK’SK) 2 1 2
Ju—unlli <C D g (lull} ok + IV x ullf, &)
KeTs K
hi{min(pk,sx) )
+C Z pst—1 ||Vv'u||sK,K7
KeTp K

for exact solutions u that satisfy u € H*¢¥+t1(K)? p~ 1V x u € H*%(K)3, for all
K € Th,and vV-u € H*% (K), for all K € T2, with local regularity exponents sx > 1.
These estimates are optimal in the local meshsizes hx and slightly suboptimal in the
local approximation degree pi. Furthermore, in Theorem 4.12, we also make explicit
the dependence on the local material properties.

The outline of this section is as follows. In section 4.1, we define the disconti-
nuity stabilization parameters a and c in terms of the local meshsize, approximation
degree and magnetic permeability. Section 4.2 is devoted to establish hp—stability es-
timates for the lifting operators £ and M in the definition of the primal formulation.
These estimates will be crucial in section 4.3 where we prove continuity and coercivity
properties of the bilinear form By, (-,-). Based on Strang’s lemma, we derive hp—error
estimates in section 4.4, and in section 4.5 we recover error estimates for the auxiliary
variables s and ¢ used in the derivation of the LDG method. Recall that the variable
s is related to the magnetic field, and therefore its computation might be of interest.
We conclude in section 4.6 by investigating the stability of the discrete problem with
respect to the data.

4.1. The discontinuity stabilization parameters. In this section, we define
the discontinuity stabilization parameters a and c in terms of the “local meshsize”,
“local polynomial degree” and “local magnetic permeability”. This allows us to obtain
continuity and coercivity constants independent of global bounds for these quantities.

Let us start by introducing the functions h and p in L* (), related to the local
meshsize and polynomial degree, defined as

h = h(x) = min{hk, hx} if x in the interior of 8K N oK'
- X hx if x in the interior of K N AN

max{pk, Pk} if x in the interior of 0K N K’
DK if x in the interior of K N 9.
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Regarding the magnetic permeability, we assume u to be Lipschitz continuous in
K, for any K € Tp,. This implies that p|x can be extended up to 0K, and we denote
this extension by ur. Therefore, for any K € Tp, there are positive constants mxg
and Mg such that

mr < )\,’(/LK(X)) < Mg Vx € K, (4.1)

where A\;(uk(x)), i = 1,2,3, are the eigenvalues of ux(x). For any K € Ty, the
constants mg and Mg satisfy 0 < m < mg and Mg < M < +00, where m is the
uniform ellipticity constant of p and M is the reciprocal of the uniform ellipticity
constant of p~1.

We choose the scalar function » in the formulation of the problem as v(x) =
1/|u(x)|, for all x € Qp, where |u(x)| is the spectral norm of the tensor u(x) (|u(x)]
simply reduces to u(x) whenever p is a scalar function). Then we also have that v
satisfies

1 1 _
— < < — K
e S vi(x) < — Vx € K,

for any K € T2, where we have defined vk in the same way as .
We make the additional assumption that there exists k > 0 such that
M
—E <k  VKETh VT (4.2)
mi
Whenever p is a piecewise constant scalar function, (4.2) holds true with k = 1. For
4 piecewise constant tensor, k in (4.2) expresses the maximum anisotropy among the
different materials. We set

— m(x) = min{|pr ()|, |px: (X)|} if x is in the interior of 0K N 0K’
=)= |k (%) if x is in the interior of K N 0.

We are now ready to define the discontinuity stabilization parameters a and c in terms
of h, p and m. They are chosen as

a=oah"'p’m™! in L®(E) c=oah7'p’m™! in L®(EY), (4.3)

with @ > 0 independent of the meshsize, approximation order and the magnetic
permeability. The parameters b and d are taken to be of order one, i.e.,

lIblloc,er < & lldlloo,e9 <9, (4.4)

with § > 0 independent of h, p and pu.

REMARK 4.1. The choice of the stabilization parameters of order p*/h is the
hp—extension of the choice in [5] for h—version DG methods for the Laplacian. This
choice balances the interior penalty terms in Ty (-,-) with the stability estimates in the
following Proposition 4.2 for the lifting operators L and M, or, equivalently, with the
inverse estimate (4.5) below.

Stabilization parameters of order p?/h can also be found in the hp-literature on
DG methods for diffusion problems, see, e.g., [34], [41] and [43], where different error
analyzes are developed. The choice p/h is investigated in [34] for the NIP method,
still leading to a suboptimal error bound in p. Furthermore, an optimal hp—bound
has been recently obtained in [32] for two—dimensional reaction—diffusion problems on
structured quadrilateral grids for solutions belonging to certain “augmented” Sobolev
spaces. The same result can be established in our case, leading to hp—optimal bounds
on structured grids, provided that the corresponding arguments can be extended to
three space—dimensions.
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4.2. The lifting operators. In this section, we derive hp—stability estimates
for the lifting operators introduced in section 3.5. To do this, we define the space

V(h) :={v=w,+w|wy € Vy, we V with n x we L*(00Q)%}.

Owing to (3.1), the exact solution u belongs to V(h).

PROPOSITION 4.2. Let L and M be the lifting operators defined in section 3.5.
Under the above assumptions on u and v, and assumption (4.4) on the parameters b
and 4, we have that, for all v € V(h),

2 £(IVIz) llo.o < Cuise % (8 + 1)|Ib"2pm~ 2 [v]z[lo.
3 M([VIn)llo.0 < Clige & (8 + 1)|[h~ 2 pm~2 [v] v |

0,89_.7

with a constant Cyg, > 0 only depending on the shape regularity of the mesh. Moreover,
for Gp defined in section 3.5, we have

1 1 1
It 2Gplloe < Cug s ||h™ 2pm™ 2g]lo,ep -

Proof. Let us first recall the following inverse inequality:

2
p
lall o < O i llalliic Vo€ S (K), &

with a constant Ci,, > 0 only depending on the shape regularity of the mesh. For
two—dimensional elements, the proof of (4.5) can be found in [44, formula (4.6.4) of
Theorem 4.76]; for three-space dimensions, the proof is analogous, see also [34].

From the definition of £ and M in terms of £; and M, ¢ = 1,2 (see section 3.5),
the bounds for £ and M can be proved by combining estimates for £; and M;,
i =1,2. We develop in detail the proof of the following estimate for £4:

=2 L1.(b[v]r)llo.e < Cuige % 8][h™2 pm™2 [V] 0.2 (4.6)

Recall that, for v .= wp + w € V(h), we have [v]r = [wp]r on £z. Denoting
by Iy, the L?-projection onto X, by the definition of the operator £; and the
Cauchy—Schwarz inequality, we have

™2 L1 ([ v]7)llo.c Jo £1(b[Vlr) - p~ 7z dx

= sup

zeL?(Q)3 [1z[0,2

_1_

— sup Jo L1(6[v]r) - IIs, (n~2Z) dx

z€L?(Q)3 ||Z”0’Q

Je, blvlT - [Ms, (1= 22)]r ds

= sup

z€L2(Q)3 ||Z||0,Q

_1 _1 1 1 1

<5 sup B ipn fDVIrloe|bip mi (s, (u 22)lrlos:
> z€L2(Q)3 ||z||0,9

Then, by using conditions (4.1) on pu, the definitions of [-]r, m, h and p, the inverse
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inequality (4.5), and properties of the L?—projection, we obtain

141 1 hx Mg 1
[h2p'm2 [IIs, (u 2 2)]7l3e, <2 Y —5—lnk x Osx, (0 22)|1} 55
KeTn K
1 1
<2Ci 3 Ml (22) B < 2Ciny 3 Mucllu~ 2l
KETs KeTn
Mk 2 2
<2Ciny Y m—K”Z”o,K < 2Cinv £ l2][5,0,

KeTs,

where in the last step we used (4.2). This proves the desired estimate for £1 in (4.6).
Analogous estimates can be obtained for M; and M, as well as for L2, recalling that
[vlr € L?(ép)® on Ep. Then the bounds for £ and M immediately follow. Since
Gp = L([u]r), the same arguments give the bound for Gp. O

4.3. Continuity, coercivity and error bound. In this section, we establish
continuity and coercivity properties of the form By. To do this, we introduce the
seminorm | - |, given by

_1 ET
VIi =lle"2Va x vi[g o + b Zpn~ 2 [V] 7[5 £

(4.7)
+ 13 Vh - VI g + B~ Fpn 2 VI oo,
as well as the norm || - ||,
) J
IVIE = VI + [wlllo® vIig.a + A 3 1(v]as <105, D, 17 (48)
j=1

That (4.8) is actually a norm in V(h) is proved in the following proposition.

PROPOSITION 4.3. The quantity defined in (4.8) is a norm in V(h).

Proof. From ||v|n, = 0, we immediately have v = 0 in Q,, [v]r = 0 on £ and
[vilv = 0 on &2, ie., v € Ho(curl; Q) N H(div; Qo). Now, from v = 0 in Q, and
v € Hy(curl; ), it follows that ng x v|g, = 0 on the interface I' = 9Q, N 0, and
therefore ng x v|g, =0 on 9. From Vxv=0in Q, ng xv=0o0n 9y, V-v=0
in Q¢ and ((v|a, - no,;),)r,; =0,j =1...,J, we get v.= 0 also in Qq (see, e.g.,
formula (4.14) with T'; = Qg and T, = { in [30]), which concludes the proof. O

Let us first prove continuity and coercivity properties for the LDG forms in (3.13).

LEMMA 4.4. Assume the above hypotheses on u, v and on the coefficients in the
definition of the numerical flures. Then the following continuity property holds true:

|AR(w,v) + Ip(w,v)| < Clw|p|v|n VYw,v € V(h),

with a constant C only depending on a, §, k, and Chig.
Proof. For w,v € V(h), we have
|AR(wW, V) +Tn(w, V)| < |52 [Va x W = L(wW]7)]llo0 162 [Va x v = L([v]7)]llo,0
+ [V E [V - w — M)l 1V [V - v = M([VIN)]llo.aq
+allh~tpu~E [wlrlo.e [~ Fpn~ 2 [v]Tlo,e

1 1 1 1
+allpnd [wlnll g0 52 pn? [l co.
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From Proposition 4.2, we have ||L([z]7)]lo,0 < C|z|n and | M([z]~)o,0, < Clz|s,
for z = w and z = v, and the result immediately follows. 0
LEMMA 4.5. Assume the above hypotheses on u, v and on the coefficients in the
definition of the numerical fluxes. The coercivity property
Ap(v,v) + Ty (v,v) > Clv|7 Vv € Vy,

holds true for any choice of a > 0. The constant C depends on «, §, & and Clg.
Proof. We have

Anvo¥) + Tu(v,¥) = [ {1V x v = £(1vE)]) dx
Q
+ [ (1Vhv - MEAWIP dx
Qo
+aln zpm 2 [V]rll3 e + ol 2pm 2 [VInIE g
The first term at right-hand side can be bounded by
I 4 Vhx ¥l =2 [ 5V v (el ax + In L@l o
_1 2 1 -1 2
> (1= )l Va x Vil o + (1= <)l B LI o

with € > 0 still at our disposal. Similarly, the second term at right-hand side can be
bounded by

(1 =2V vIRg, + (1 1) A IMIIN R g,

Therefore, using the estimates of Proposition 4.2, and taking e that satisfies the
inequalities
Cliggk® (0 + 1)
Ci 20+ 1) + o

<e<1,

we obtain the result. O

REMARK 4.6. The continuity result of Lemma 4.4 holds true verbatim for the IP
and NIP methods discussed in Remark 3.4. The coercivity property of Lemma 4.5,
instead, is trivially satisfied for any choice of a > 0 for the NIP method, but only
under the condition a > Ciy k* for the IP method.

As already pointed out, the primal formulation (3.13) our analysis is based on is
not consistent, due to the discrete nature of the lifting operators. However, we can
obtain error bounds by using Strang’s lemma.

PROPOSITION 4.7. Assume the above hypotheses on u, v and on the coefficients
in the definition of the numerical fluzes. The following continuity and coercivity
properties hold true:

IBr(w, V)| < Ceontl|[Wnllvlln  Vw,v € V(h)
Bh(V,V) > Ccoermvmi Vv € Vy,

with Ceont and Ceoer 0only depending on o, 6, k and Chg.
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1

Proof. Since |Bu(v,v)| = [(An(v,V) + Zp(v,v) + j(v,v))z + ot o]®,
the continuity and coercivity properties follow from Lemma 4.4, Lemma, 4.5 and the
definition of the norm || - ||5. O

From Proposition 4.7 and from Strang’s lemma (see, e.g., [21, Theorem 4.2.2]),
we immediately have the following error bound.

THEOREM 4.8. Assume the above hypotheses on u, v and on the coefficients in
the definition of the numerical fluzes. Then we have

Ccont

Fu—willn < (1+ 5 sup [Br(0W) = Fi(w)]

Ceoer wEV, |||W|||h

N
) jnf lu =i+

REMARK 4.9. In order to analyze stability properties of discrete solutions with
respect to the data, the continuity of the functional Fp(-) with respect to the norm
Il - ln has to be investigated. This is not straightforward since || - || does not contain
the L?2-norm over Q. In section 4.6, we prove a discrete Poincaré inequality that
allows us to address this issue in the particular case where p is the identity. In the
general case of discontinuous permeabilities, we obtain the same stability estimates
provided that the datum F satisfies certain restrictions. This point is also addressed
in section 4.6.

4.4. hp—error estimates. In this section, we estimate the terms at the right—
hand side in the error bound established in Theorem 4.8 and derive a—priori error
estimates for piecewise smooth solutions. In order to do that, we need the following
hp—approximation result.

PROPOSITION 4.10. Let K € Ty, and suppose that u € H'* (K), tx > 0. Then
there exists a sequence of polynomials 7?3;:11 in SPX(K), px = 1,2, ..., satisfying

hmin(pK +1,tx)—q

K

lu = whEully e < C luliwx  VO<qg<tx.  (49)

tK—q
Pr

Furthermore, if tg > 1,

min(pK+1,tK)7%

lu = 7y ullo,ox < O~ leallee, - (4.10)

pix3

The constant C' is independent of u, hx and pg, but depends on the shape regularity
of the mesh and on t = maxkeT;, tk.

Proof. The assertion (4.9) has been proved in [6, Lemma 4.5] for two—dimensional
domains. For three—dimensional domains, the proof is analogous, see also [34]. In
order to prove (4.10), we use the multiplicative trace inequality (see, e.g, [41, Lemma
A.3))

113,06 < C(llnllo.x IVnllox + hi'Inlls x) (4.11)

that holds true for any n € H!(K) with a constant C' > 0 only depending on the
shape regularity of the mesh. The second assertion now follows by applying in (4.11)
the approximation result (4.9) for ¢ = 0,1. O

We will denote by II" the operator defined by II!(u)|x = 7% (u|k), for any
K € Th, with 7/'% (u|x) as in Proposition 4.10, and by II! the operator that maps
u = (u1,ug,us) into (14 (uy), 17 (ug), T2 (us)).
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Next, we give an estimate of the residual Ry (u,w) := Bp(u,w) — Fp(w).

LEMMA 4.11. Let u be the exact solution. Assume (u='V xu)|x € H**(K)3, for
Al K € Ty, and (vV -u)|x € H** (K), for all K € T}, with local regularity exponents
six > 1. Then, for any w € Vy,, the following estimate holds true:

h2min(pK+1,sK) Mg 1
-1 2
(Rt w)| < O( 30 =57V xulle ) Il
KeTh K

h2 min(pk+1,sk)

Mg 3
+O( X MV ) I

KeTy K

where My are the constants in (4.1).

Proof. By straightforward calculations involving integration by parts, taking into
account that u € V, L([u]r) = Gp, along with boundary and flux conditions and
the characterization of the data, we have that, for any w € V,,

Rp(u,w) :/g{{,u—lv xu} - [W]rds — /QN_IV xu- L([W]r)dx

+/ggﬂuV-u}}[[w]]Nds—/Qo vV -u M([w]n) dx.
Since

/ p= iV x u- L([w]r) dx =/ Iy, (u~'V x u) - L([W]7) dx,
Q @ (4.12)

/ VY - u M([W] ) dx = / My, (VY - u) M([W]w) dx,
Qo Qo
for the L?-projections Iy, and IIg, onto X5 and Qp, respectively, we can write

Rp(u,w) =Ty + Ty +T5 + Ty,

where
T = /{{;flv xu—1Is, (u 'V xw}-[Ww]rds
£

T2 = [[M71V xXxu-— th (/flV X 'I.l)]]T . b[[V_V]]T ds
&z

Ts =/ {vV -u—-1Ig, vV -u)} [W]N ds
&2
T, = |[I/V -u— HQh (VV . 11)]] . d[[W]]N ds.
&g
Let us bound the term T4; the other terms are bounded similarly, observing our
assumptions on b and 4. By the Cauchy—Schwarz and triangle inequalities, and the
definition of || - ||n, we obtain the following bound:
Ty <Iwa(I*p~"m? o'V x u =TI} (™' V x u)Hllo.e
+[[ntp m (I (0 'V % w) — T, ('Y x w)Blo.g).
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From the definitions of h, p and m, and (4.10) with tx = sk, we conclude that
Ib2p~'m? 'V x u — T (' V x w)Bl5 ¢

hg Mg, _ -
<O Y Y xou - TGV x w) o

KeTn K
2m1n(pK+1 SK) M
K -1 2
< C Z 23K+1 ||/"/ V X u”sK,Ka
KeT

and, similarly,

Im¥p ' I ('Y x ) = Ty, ('Y x w B3 e

hx M _ ~
<C Y EFEIE (Y x ) — g, (071 x )3 o

KeT, +K
<C Z MK||H;}(M_1V xu) — s, (u~'V x 11)||§,K
KeTsn
<O Y MelI(u™'V xw) = p7'V x ufff
KeTs,
2mm(pK+1 SK)M
Ky —
<C Z SK ||N lvxu”SK K>
KeTsn Pk

where we have used the inverse estimate (4.5), the fact that II}(p~'V x u) =
IIx, II% (4 ~'V x u), the stability of the L?-projection ITx, and (4.9) with tx = sk
and q¢ = 0. Therefore, we obtain

h2 min(pk+1,sk) MK

T < Cllwl; Y X P 'V xull?, k.
KET;, Pk

This, together with similar estimates for the terms T», T3 and T4 in the above expres-
sion for Rp(u, w), proves the result. O

In order to estimate the infimum at the right—-hand side of the bound in Theo-
rem 4.8, we make the assumption that the local meshsizes and approximation degrees
have bounded variation, i.e., that there exist a constant £ > 0 such that

€ 'hx <hgr <thi, 0 'pr <prr < Upk (4.13)

for all K and K’ sharing a two—dimensional face. In particular, this assumption
forbids the situation where the mesh is indefinitely refined in only one of two adjacent
subdomains. Nevertheless, the above hypothesis is not restrictive in practice, and
allows, for instance, for geometric refinement and linearly increasing approximation
orders. For any element K, we denote by msx the quantity defined by

msk = min{mg : K and K’ share at least one face}. (4.14)

We are now able to prove the main approximation result.

THEOREM 4.12. Assume the above hypotheses on u, v and on the coefficients in
the definition of the numerical fluzes. Consider shape regular meshes and polynomial
degree distributions obeying (4.13). Furthermore, denote by uy the discrete solution



The hp-LDG method for low—frequency time—harmonic Maxwell’s equations 23

of the LDG method defined in section 3 and let the exact solution u satisfy u|x €
HsxTYK)3, (u™'V x u)|x € H?*(K)3, for all K € Ty, and (vV -u)|x € H**(K),
for all K € T2, with local regularity ezponents sk > 1. Then we have the a-priori
error estimate

R h2 min(pk ,Sk ) .
fu—wil} <C Y0 2 (Nillull o s + Miclla™'V x ull?, )
KET;, K
2m1n(pK,sK)
2
+C Z 25K 1 MK”VV'UHSK,K’
KeTP Pk

1
where Mg are the constants in (4.1), and Nx = —— + |w| sup |o(x)| + A, with
msK xeK

msk defined by (4.14), and |o(x)| denoting the spectral norm of the tensor o(x). The
constant C depends on Q, Qo, {sk}, k, £, a, 8, and on the shape regularity of the
mesh, but is independent of the local meshsizes hx and the polynomial degrees px .

Proof. We start by estimating [ju — IT%(u)||», where IL! is the operator defined
after Proposition 4.10. From the definition of || - |5, the assumptions on u, v and
on the coefficients in the definition of the numerical fluxes, and hypothesis (4.13), we
have

2
b=l < O 30 = Tul e+ 30 P~ Tl

KeTn KeTn
tlol Y swp oGl lu-Thulfc+A Y fu— Tl )
KeT, X¢K KETP:0KN0Q0 0

with msx defined by (4.14) (C depends on Q, Qq, &, £, o, 6 and on the shape regularity
of the mesh). The hp-approximation results with tx = sk + 1 in Proposition 4.10
yield

h2 min(px ,sx )

lu -l < C Z o Nk|lull3, 1 k-
KETh K

By inserting this and the estimate of Lemma 4.11 in the inequality of Theorem 4.8,
we obtain the result. 00

Notice that for solutions u € H**t1(73)3, with =V xu € H*(T;)® and vV -u €
H5(TP), s > 1, assuming constant approximation orders px = p for all K € Tp,
setting h = maxgeT;, hk, and incorporating bounds related to u, v, o and A in the
constant C, the estimate in Theorem 4.12 simplifies to

pymin(s,p)

lu —upfln < CT(IIUIIsH 7 + IV xulls, 7, + [V - ull; 70).

This estimate is optimal in the meshsize h, and slightly suboptimal in p (half a power
of p is lost). In the case of elliptic diffusion problems in two— or three—dimensional
domains, no better p—bound can be found in the literature for general unstructured
grids (see, e.g., the hp—version analyzes in [34, 41, 43]). Optimal p—bounds have been
obtained in [19] for one—dimensional convection—diffusion problems, and recently in
[32] for two—dimensional reaction—diffusion problems on structured quadrilateral grids.
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REMARK 4.13. For solutions that are elementwise analytic, we have in fact expo-
nential convergence as p — co. This can be seen from the error bound in Theorem 4.8
and standard approzimation properties for analytic functions; see, e.g., [44].

Note also that the restriction sk > 1 has been made for convenience only, and
it is possible to prove error estimates for sg > % as well. This minimal regularity
assumption is still unrealistic when strong edge and corner singularities are present
in the solutions (see [28]). On the other hand, the use of appropriate hp—mesh design
principles might resolve these singularities at exponential convergence; see, e.g., [44].
The extension of our analysis to such low-regularity cases remains to be done.

REMARK 4.14. The result of Theorem 4.12 holds true verbatim for the IP and
NIP method. However, in the IP case, the constant a has to be sufficiently large to
guarantee the existence of discrete solutions; see Remark 4.6.

4.5. Error estimates for the auxiliary variables. By invoking the expres-
sions in (3.11) and (3.12), we are able to derive error estimates for the auxiliary
variables s and ¢. This is important, in particular, because the variable s is related
to the magnetic field that might be of interest. These estimates are a straightforward
consequence of the following result.

PROPOSITION 4.15. Under the same assumptions as in Theorem 4.12, we have

0,0 <C(lp™'V xu-— HZ(M_lv xu)llo,o + [lu— upln)
[V - u = gnllog, < C(IPV -u =TV -w)lo,0o + [lu — url),

o'V x u — s

with C depending on «, 6, k and the shape regularity of the mesh.

Proof. Let us denote again by Ilx, the L?-projection onto X;. Taking into
account the identity (3.11), the triangle inequality and that, for the exact solution u,
L([u]r) = Gp, we obtain

le™'V xu—splloo < Ty + T,
where
Ty =[|p7'V x u—Ts, (W' Vi x up)llo.0
Ty = s, (" £([u — up]7)) llo,0-

Using the stability of IIs;, and the estimates in Proposition 4.2, we obtain T <
C|u — up|p. We estimate T; as follows:

Ty <||jp7'Vxu—Hsx, (u™'V xu)lloo + s, (7' V x u—p~' Vi, x wp) o
<Clp 'V xu—TIL(p 'V x u)llo,q + [u — unlls,

where we used the triangle inequality, the fact that TI! (4 ~'V x u) = Ix, T2 (4~ V X
u), the stability of ITx;, and the definition of || - ||». This completes the proof of the
first estimate. The second one can be obtained in a similar way. O

Proposition 4.15, together with Theorem 4.12 and Proposition 4.10, yields imme-
diately hp-bounds for the error in s and . For instance, for solutions u € H*+!(73)3,
with = 'V xu € H*(T,)% and vV-u € H*(T?), s > 1, and for constant approximation
orders pg = p, for all K € Ty, we get

pymin(s,p)

™'V x u —spllo,e < C——
p 2

(Ihallsa, 7 + 167"V x ulls 7 + [0V - ull, 70)

min(s,p)

9 = lng, < O (s + 7Y x g, + 109wl 7).
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We remark that for the second estimate the global error |u — uy ||, has been invoked
for convenience. This bound can also be expressed in terms of local quantities related
to Qo only.

From the approximation point of view, the above error bounds for the auxiliary
variables are suboptimal in h and in p. In [23], a special numerical flux has been
identified for the Laplacian that gives better rates of convergence for QP elements
on Cartesian grids. A similar result remains to be established in the context of the
present paper.

We also remark that it is possible to use polynomials of elemental degree pg — 1
in the approximation of s and ¢, resulting in optimal error estimates. However,
numerical results in [24] and [40], for the Stokes problem and the Laplacian, show
that this alternative does not lead to a gain in terms of computational cost and
produces slightly less accurate approximations.

4.6. Stability of discrete solutions. In this section, we investigate the sta-
bility of discrete solutions with respect to the data. First, we do this by proving a
discrete Poincaré inequality, based on a duality argument similar to the one in [4]. We
restrict ourselves to the case of y = I, with I being the identity, since the elliptic reg-
ularity result needed for this argument does not hold true if p is piecewise smooth (see
[28]). Then, in the general case of discontinuous coefficients, the analogous stability
result can be obtained, provided that the source term F satisfies certain restrictions.

PROPOSITION 4.16. Assume that u = I, and take v = 1, A = 1. Moreover,
assume the above hypotheses (4.3) and (4.4) on the coefficients in the definition of
the numerical fluzes. Then we have that

[vllo.0 < Clvlln

for any v € H*(T3)3, s > % The constant C is independent of the meshsizes and the
approzimation degrees.

Proof. Fix v € H*(Ty)3. Since v € L?(2)3, we can decompose v according to
(26)intov=F +F' withF'=VfinQoand f=fjonTy;, j=1,...,J. We
consider the following dual problem: find z € H(curl; Q) N H(div; Qo) such that

VxVxz+iwoz=F  inQ (4.15)
V-ez=—f in Qg (4.16)
nxz=0 on 00 (4.17)
<(Z|QO '1’10’]'),].)1‘0,]. = fj V] = ].,...,J. (418)
First, we claim that
V x z € H*(Q)3, IV x 25,0 < C||V]lo,0, for so > 1. (4.19)
To prove this, set w = V x z. From equation (4.15), we have V x w = —iwoz + F' €

L?(Q)3. Furthermore, V-w =0 and w-n =V x z-n = 0 on Q. Hence, from [3,
Proposition 3.7], it follows that w € H*°(Q)? for a regularity exponent sq > %, as
well as ”WHSO,Q < C||W||H(curl;Q)' However, ||W||H(curl;Q) < C”z”H(curl;Q) + ||FI||0,Q-
Then, from the stability estimate in Theorem 2.3 and the L2-orthogonality of the
decomposition of v, we also have ||w||s,,0 < C||v|jo,0, which completes the proof of
(4.19).
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Subtracting the gradient of equation (4.16) from (4.15), multiplying the result by
¥, and integrating over 2 and Qg, owing to the decomposition of v, we obtain that

||V||?)Q = /Q (V x Vz + iwoz) - vdx —/Q (VV -z) - Vdx.
0

Let us first consider the integral containing the curl-curl term. Integration by parts,
together with the first rule in (3.9), as well as the Cauchy-Schwarz inequality and the
definition of || - ||, gives

|/ Vsz-\‘rdx|§|/ sz-VhX\‘rdx|+|/ﬁsz}}-[[\7]]Tds|
Q Q €
hk

1
2
< llzllreusoyIvlia + € (Y SNV x 2l oxc) IVl
ket PK

Using similar scaling arguments as the ones in [2, Lemma 5.2], together with the result
of [2, Lemma 5.5], we can see that

IV x 2/l ok < Chi IV x 23, k-

with a constant C' only depending on the shape regularity of the meshes. This,
together with pg' < 1, yields 3 et ZTﬁIIV x 2|2 5k < ClIV X 2500 < Cllvlloo-

Therefore, since also ||z||g(curi;0) < Cl|Vjo,o (see Theorem 2.3), we get
|| ¥ Va-vax| < Clvloalvli.
Q

Similarly, by integration by parts, using the second identity in (3.9), we obtain

J
[ (990w ax) < lellmaan I+ [ AVab v dst+ S0 1A) [ o, s,
0 z j=1 0.3

where we also used the fact that V -z is zero on I'g ¢ and equal to —f; on Iy ;, for
1
j=1,...,J. Since ||V - z|jo,ox < Chp?||V - z||1,k, for all K € T,%, we get

| [ AV 2}I5 s < OV -2l vl
A

The Cauchy-Schwarz inequality, the trace theorem and the standard Poincaré inequal-
ity then yield

J
S5l [ 19 om0l ds < CIVSlogyIvih.
j=1 Lo,j

Combining the above estimates, together with [|Z|| g(aivia0) + IV - 2ll1,0, < Cl|Vllo,0
and a similar argument for the term iw [, 0zv dx, shows that

1130 < ClIvlloalvil-

This completes the proof. O
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From Proposition 4.16, we are able to establish the continuity of the functional
Fnr(-) in (3.13) with respect to the norm || - ||, at least in the particular case where
p=1I.

COROLLARY 4.17. Under the same assumptions as in Proposition 4.16, we have
for all v € Vy,

_1 L
|Fa(v)] < C(IIF 5.0 + 10" 2p &lI5,50) > IVIA,

with a constant C independent of the meshsizes and the approximation degrees.
Proof. From the definition of Fj, Proposition 4.16 and the Cauchy-Schwarz in-
equality, we obtain

1 1
[Fa(W)] < C(IFII3 o + 1Goll5 o + In~ZpglI5 o0) * IV,

for any v € V. The result follows from the estimate for Gp in Proposition 4.2. 0
Consider now the case where p satisfies our more general assumptions. The part of
the functional F}, involving the boundary term can be dealt with as in Corollary 4.17,
therefore, we will focus on the term fQ F - vdx. We can prove the following result.
PROPOSITION 4.18. Assume our general hypotheses on p, v and the coefficients
in the definition of the numerical fluzes. Whenever Qg is not simply—connected, let
{Z¢}e=1,...,. be an admissible set of cuts for Qo in the sense of [3], and denote by n,
the normal unit vector to Xy, pointing in one of the two possible directions. Given
F € L2(Q)3, let F = F' + F" be its orthogonal decomposition, according to (2.6). If

F' -ng=0 on 90
, (4.20)
(F-ng,l)glzo VKZ].,...,L,
then, for all v € Vp,
/ F-vdx < C[Floalvll- (4.21)
Q

with a constant C independent of the meshsizes and the approximation degrees.

We first remark that, without the above restrictions, the continuity property
(4.21) still holds true, but with a constant C that depends weakly on the meshsizes
and the approximation degrees.

Second, we notice that, if g is simply—connected, the second condition in (4.20)
is empty. In this case, if F coincides with the physical source field J, then (4.20) is
satisfied (and F" = 0). If Qg is not simply—connected, the case F = J is covered,
provided that (J' -ny, 1)y, =0,£=1,...,L.

Finally, we point out that in the case where Q = Qp and Q, = 0 no restriction
on F needs to be assumed.

Proof of Proposition 4.18. Recall that in the orthogonal decomposition (2.6)
of F = F' + F", the function F” is such that F'|q, = 0 and F"|q, = Vf, with
f€HY D), f=00nTyp and f constant, say f = f;, oneach Tg; for j =1,...,J.
The standard Poincaré inequality implies that || f]|o.0, and ||f||1,, are equivalent to
IV fllo,20 = IF"|lo,00- From [3, Theorem 3.17], the assumptions (4.20) on F’, together
with V - F'|q, = 0, imply that there exists w € Hy(curl, div; Q) with V-w =0 in
Qo and (W -ng j,1)r,;, =0, j =1,...,J, such that F' = V x w. Corollary 3.19 in
[3] implies that [|w(lo,, and ||W|| g(curi:00) are equivalent to ||V x wlo,, = [|F'[l0,00-
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Moreover, from the continuous imbedding of Hg(curl,div; Qo) in H*(Qp)3, for some
s > 1, we also have that w € H*(£)? and ||w||;,0, can be controlled by ||W|| fr(curt;20)-
After these preliminaries, we can proceed by estimating fQ F-vdx. We can write

/F-\_rdx:/ F-\_fdx+/ (Vxw+Vf) vdx
Q Q Q

o 0

:/ F-vdx+ w -V X vdx — Z wW-ng X vds
Q, Qo Kero 0K

_/ fVh-vdx+ Z [V -ngds.
Qo

KeT? oK
Therefore,
_ _1y -1 1 1 _1
/F'de <lwlHlo™2Flo,q, [wlllo=vllo,q, + ln2 Wllo.aqllu™% Vi X Vilo,0,
Q

1 g1 _1 o1 _1 1
+[I2p T m2wlo g0 I 2 pm~ = [V]rllo,e0 + 172 Flloollv Vi - llo,0

+|hp~tn3 f|

11
0,e0llb™2pm™ > [V]nllo g2
J 1 J 1
_ 2 2
+ (A1) (Vv g, )
j=1 j=1
where we have used the fact that n x w = 0 on 9€)¢. Consequently,

_ _ _1 1 1 1 1
¥ v <Cloln (ol o, + it wli o, + e b o

J
_1 1 1 1 _
+ 1w 2 fI g, + 02D 3 F112 0o + A1 f2).

j=1
For the volume terms at right—hand side, we have
w2 F |2 o, < CIFIRq,
2wl o, < Cliwli2 o, < CIFI3 g,
=2 £I2 00 < ClIfI3.00 < CIIFIR 0,

with C independent of the meshsizes and the approximation degrees. Using standard
scaling arguments, we obtain

1 g1 hx Mk hxeMg , _
[h2p ' me Wl g0 < IWl0x < Y hi 1wl &
KeT? KeT?
SCHWHiQO < C”w”%{(curl;Qo) < C”F“g,ﬁoa

again with C independent of the meshsizes and the approximation degrees. Similarly,

1150 < D

KeT?

hx Mg
Pk

hx Mg
Pk

1 4 1 2
[h2p " m2 f[lg g0 < Z
KeT?
<C[IflIi 0 < CIIFIE 005

hie IR &



The hp-LDG method for low—frequency time—harmonic Maxwell’s equations 29

and

J
AT 1 <O lhuge < ClIFllo,g,-

Jj=1
This completes the proof of the proposition. O

5. Conclusions and extensions. In this paper, we propose a local discontinu-
ous Galerkin method for the discretization of the time-harmonic Maxwell equations
in low—frequency regime and carry out its hp—error analysis. We consider heteroge-
neous materials and topologically non—trivial domains; assumptions that are realistic
in practice. In particular, since our method enforces interelement continuity only in
weak sense, we are able to allow for domains where standard conforming approxima-
tions may fail to converge to the exact solutions.

Although we use the setting of [5] to cast the LDG method in its primal form, we
propose a new technique to actually derive error estimates which is based on Strang’s
lemma and which might be of independent interest in the analysis of DG methods.
For triangulations containing hanging nodes, we derive hp-error estimates that are
optimal in the meshsize and suboptimal in the approximation order. This analysis
is the first hp—error analysis for the LDG method in several space dimensions and in
this sense also extends our previous work in [18].

Let us also indicate some related issues that are still open:

e For the Laplacian, the parameters b and d can be chosen in such a way that the
LDG method superconverges on Cartesian grids and for tensor product polynomials,
see [23]. Whether or not a similar phenomenon actually takes place in the context of
the p—version of the method is an open question and has to be addressed in future
work.

e The study of hp-refinement towards edge and corner singularities, in order to
resolve them at exponential convergence, remains to be done.

e One of the drawbacks of discontinuous Galerkin methods is the relatively high
number of degrees of freedom due to the discontinuous nature of the finite element
spaces. This problem can be overcome by coupling discontinuous and conforming
elements, following [40]. The approach there combines the ease with which the LDG
method handles hanging nodes with the lower computational cost of standard finite
elements.

e The extension of the LDG method to mixed boundary conditions can be done in
a straightforward way (see, e.g, [18]). However, in order to avoid further complications
in the analysis of the corresponding continuous problems, this point is omitted in this
paper.

We conclude by pointing out that the analysis of discontinuous Galerkin methods
for time-harmonic Maxwell’s equation in the high—frequency case is the subject of a
forthcoming paper.

Appendix. The proof of Theorem 2.3.

The appendix is devoted to the proof of Theorem 2.3. We start by establishing,
in section A.1, the existence of a continuous and divergence—free lifting of tangential
traces. This result is a key tool in the proof of existence and uniqueness of solutions
to our model problem which is developed in section A.2.

A.1. Divergence—free continuous lifting of tangential traces. Recall that
we denote by H(09) the space of tangential traces of H(curl; Q) functions. We refer to
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[14] for its complete characterization and for the definition of its norm. The existence
of a continuous lifting of the tangential traces of H(curl; ) functions is guaranteed
by Theorem 3.1 in [13] in the case where Q is a bounded, open Lipschitz polyhedron
in R3, not necessarily simply connected. In this section, we show that we can actually
require this lifting to be divergence—free in a Lipschitz polyhedral subdomain Qg of 2,
and to satisfy homogeneous flux conditions through surfaces of the possible cavities
of Qp. This result is stated in the following proposition. We define, for convenience,
the space

Hpyx (div; Qo) = {v € H(div; Qo) : ((V|a, -mo,), )1, =0, j=1,...,J}, (A1)

along with its subspace Haux div’; Qo) consisting of divergence—free functions.
g p ; g g

PROPOSITION A.1. Let Q be a connected, bounded, open Lipschitz polyhedron in
R3, Qo C Q a Lipschitz polyhedral subdomain. Then, given g € H(curl;Q), there is
i € H(curl; Q)N Hauy(div®; Qo) such that nxi = nxg =: g on 9Q and 14| & (curis0) <
C||g||H(6Q)-

In order to prove Proposition A.1, we need the following two lemmas.

LEMMA A.2. Let Q be a connected, bounded, open Lipschitz polyhedron in R3.
Then, given g € H(curl; Q), there is tp. € H(curl; Q)NH (div®; Q) such that nx i, =
nxg=:g on N and ||Upe|| g (cur;0) < ClIgll1(s0)-

Proof. Let g € H(curl; Q). Since V x H(curl; Q) = V x H}(Q2)? (see [30]), there
exists g1 € H'(Q)? such that V x g = V x g. Then, we can write g = g1 + g2,
with g2 € H(curl; Q) and V x go = 0. Consequently, g2 admits the orthogonal
decomposition g2 = Vi + w, with ¢ € H'(Q), w € Ho(div®; Q) N H(curl’; Q), (see
[30], formula (4.14) with T, = 9Q and T'; = ). Let @ € H'(2)® be the unique
solution to A@ = —V - g1 in Q, = ¢|aq on 89, where ¢|aq is the trace in Hz (99)
of ¢ € H'(Q). Define tp. = g1 + V@ + w. By construction, n X @i, = g on 99,
since n Xx V@ = n x Vy on 09Q, and V -ty = 0 in  immediately follows from
Ap = =V -g; and V -w = 0. Therefore, the tangential trace operator is linear
continuous and surjective from the divergence—free subspace of H(curl; Q) N H (div; Q)
onto H(0N), and then, up to its kernel, its inverse is continuous, owing to the open
mapping theorem. O

LEMMA A.3. Let ) and Qg be as in Proposition A.1, Uy be as in Lemma A.2, and
let o € RP be the vector with components o = ((tpc|a, - No5), oy, § = 1,...,J.
Then there is a function g € Ho(curl®; Q) N H(div®; Qo) such that ((Tgux|a, -
ng;), Dry,; =aj,j=1,...,J, and

[[Uauxllo,0 < Cllubello,o- (A.2)

Proof. Conditions ((ugux|o, - no,j) 1)r,; = aj, j = 1,...,J, define a unique
gy € Ho(curl®;div®; Q) satisfying ||ugux|lo,0, < Cla| (see, e.g., [31], Lemma 3.2,
with Ty = 0Qg and I'; = (). Actually, ||uguxllo,0, < C|[tbello,. This can be seen

in the following way. By definition of dual norms, by the fact that I'g ; is a surface
without boundary, and by continuity of the normal trace operator from H (div; )
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onto H~2(8f)), we have

[{((Wbeleo - 1o,5), P)To ;|
lellz,ro,;

[{(@bela, - mo,5), o ; |

My ro,

< sup

1
peH?2 (To,;)

= [[Ubc|o, - no,;l| ) S [[bela, - nl|

1 1
H™2(Ty,; H™2(8%0)

< Cllapell B(dgivio) = Cllubello,o-

Therefore, |a| < Cl|ube||o,0, from where ||uaux|lo,0, < C|[tbello,0 follows. Taking the
trivial extension Ugyy of ugyyx to  completes the proof. O
Proof of Proposition A.1. It is enough to define 1 = Uy — Ugyx, where uy,. and

Ugyy are as in Lemma A.2 and Lemma A.3, respectively. O

A.2. Proof of Theorem 2.3. Recalling that V = H(curl; Q) N H(div;Q),
endowed with the norm
J
L _1 1
lall, = wllofwl o+ 12V xuldq + (2 V- uld g, + A3 [(ula, - 1o,), Drg, 2,
j=1
(A.3)
we set Vo = Ho(curl; Q) N Hayx (div; Qo), with Hyyx (div; Qo) defined in (A.1).
Consider the bilinear form in (2.11)

a(u,v):/u*Iqu-Vdex+iw/au-de+/ vV -uV - -vdx.
Q Q Qo

In the following proposition, we prove V—ellipticity of a(-,-) : Vo x Vg — R. The proof
essentially follows the lines of [1, Theorem 3.1], but uses the result of Proposition A.1.
PROPOSITION A.4. There is C > 0 such that a(u,u) > C|lul|3, for all u € V,.
Proof. Since, for u € Vy, a(u,u) differs from ||ul|}, only in that it does not
contain |w|||19%u||g,90, it is enough to prove that, for all u € Vy,

[ullf 0, < Ca(u,u). (A.4)

In order to do this, we need to establish the existence of a continuous lifting of
tangential traces on I' = 0Q, N 0Q with zero divergence and flux conditions. To
this end, we introduce the space Hor_(curl; Qo) = {v € H(curl; Q) : ng x v|r_ =

1 —
0in Hy,>(T'_)}, where I'_ = 9Qg \ T, i.e., T'_ is the part of Qg contained in 9. For
1

the definition of Hy,?(I'_), see, e.g., [35]. Let v~ be the restriction of the tangential
trace operator to I and #(T) its image. A complete characterization of this space, as
well as the precise definition of its norm can be found in [14]. Fix v € Hy r_(curl; Qo).
According to Proposition A.1, with Q = Qy, let v, € H(curl; Qo) N Hﬂux(diVO;QO)
be the lifting of ng x v on 9, i.e., ng X v.= ng X vpe on 9Qy. Then, we also have
Vbe € Hor_(curl; Qo) and v~ vy, = 4~ v. This shows that v~ is linear continuous
(see [15] and [13]) and surjective from Hy r_ (curl; Q9) N Haux (div®; Qo) onto H(T'), and
then, up to its kernel, its inverse is continuous, owing to the open mapping theorem.

Now, let u € Vg, and denote by ug the restriction of u to Qy. Then, due
to the previous considerations, ug can be decomposition as ug = w + up., where
w € Hy(curl; Qo) N Hayx(div; Qo) and up is such that up, € Hor_(curl; Q) N
His(div’; Q0), 1o X upe = ng X up on T and [[unel|arcurny) < Clly ullz(r). From
[3, Corollary 3.19], we have

Iwllo.0 < C(IIV x Wllo,00 + IV - wllo,00) < Ca(u, u)?. (A.5)
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As far as uy is concerned, we can obtain a bound in terms of a(u,u) as follows.
Since u € H(curl;Q), we have that ng x ugp = ng x u|g, on I'. This implies that
I~ wollzry = 7 ullgr), where 5~ is the restriction to I' of the tangential trace
operator taken from Q, = 2\ Q. By the continuity of ¥, we conclude that

[N

||ubC||H(cur1;Qg) < C“u”H(curl;Q,) < Ca(u7 11) .

This, together with (A.5), implies (A.4). The statement of the proposition then
follows. O

Well-posedness of formulation (2.11) can now be proved in a standard way as
follows. Let us be the (unique) function in Hp(curl®, div®;Qq) such that ((us|g, -
ng;), r,,;, = A1 f;, 5 =1,...,J (see, e.g., [31, Lemma 3.2]), and define iy as the
trivial extension of uy to 2. By the orthogonal decomposition F = F'+F" as in (2.6),
with F” = V£ in Qp, and the trace theorem in H'(£)y), we have ||u;||v < C||F||o,q-

Furthermore, let 1 € V be such that V-1 = 0in Qp, n x 1 = g on 90 and
6] (curs) < Cllgll#(a0), according to Proposition A.1. By defining up = u — 1y —
U € Vo, the variational problem (2.11) can be written as: find ug € Vy such that, for
any v € Vg,

a(ug, v) = L(v),

where
L(V)Z/F-\"fdx—/u*Vxﬁ-Vdex—z’w/aﬁ-\‘/dx.
Q Q Q

From Proposition A.4, the bilinear form a(-,-) : Vo x Vg — R is continuous and
V-elliptic. Moreover, the linear functional L(-) : Vo — R is continuous in the V-
norm. Existence and uniqueness of the solution in ug € Vg, as well continuous
dependence in the V-norm on the data F and u then follow from Lax—Milgram’s
lemma. We conclude the existence and uniqueness of the solution u € V and the
stability estimate

[ullv < Cl[Fflo,0 + Cllullv + [[usllv < C[[Fllo.e + Cllgllwoa),

where we used Proposition A.1 and the properties of uy.

To obtain the equivalence of strong and variational form of our model problem we
proceed as follows. Integrating by parts and taking into account the properties of f,
it is obvious that, if u solves (2.7)—(2.10), then it also solves (2.11), for any v € V.
In order to prove the converse, define

Vi = {v € Hy(curl; Q) : v|q, € VH;(Q), v]g, =0}
Va = {v € Hy(curl; Q) : v|o, € Ho(curl®,div’; Qy), v|o, = 0}
Vs = {v € Hy(curl; Q) : v]q, € Hau(div’;Qp)}.

Then

Ho(cur; ) =V, & Vo & Vs (A.6)
Vo = (Vl (&) V2) n Hﬂux(div; Qo) b Vs. (A7)

For test functions v € V3, the variational problem (2.11) becomes

/H_Iqu-Vdex—i—iw/ au-dez/F'-de, (A.8)
Q Qo Q
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recalling that F = F' + Vf. Since forany v e Vi1 ®Vy, VXxv=0inQ,v=0
in Q, and v is L?-orthogonal to F’, owing to decomposition (A.6) we can take any
v € Hy(curl; Q) in (A.8) without altering the problem, and obtain that (2.7) is satisfied
in the sense of the distributions. Since F' € L?*(Q)% and ou € L?(02)3, we have that
V x (p71V x u) € L?(Q)? and (2.7) holds true almost everywhere.

For test functions v € (V1 @ V3) N Hayux(div; Qo), (2.11) becomes

/ vV-uV - -vdx = Vf-vdx. (A.9)
Qo

Qo

From (2.6), (F1 + F2)|o, = Vf, with f € H'(Q), f = 0 on Iy and f constant
on each I'g ;, j = 1,...,J. By integrating by parts the right-hand side, taking into
account the properties of f and the flux conditions on v, we have

/ vV-uV-vdx =— V- -vdx, (A.10)
Qo

Qo

for any v € (V1 ® Va2) N Hayux(div; Q). We can take in (A.10) test functions v €
(V1 @ Vo) N H(div; Qo) without altering the problem. In fact, given v € (V1 @
V2) N H(div;Qp), there is a (unique) vg € Hy(curl?,div®; Qo) such that ((vs|a, -
ng;), 1ry; = (V| *no5), Dry,;, J = 1,...,J (see, e.g., [31], Lemma 3.2, with
I, = 00 and I'; = (). Naming again vg the trivial extension of vz to Q,, we have
that vo = v — vg belongs to (V1 @ V2) N Haux(div;Qp), and V- v = V - vq in Q.
Consequently, equation (A.10) holds true also for v € (V1 @ V) N H(div; Q).

Now, for any ¢ € L?(), let ¢ be the (unique) solution in H}(Qg) of the problem
A = ¢ in Qg, ¥ = 0 on 9Qg. Denoting again by v the trivial extension of ¢ to Q,,
we have that V1) belong to Ho(curl; Q) N (VHE(Q0) N H (div; o)), which is contained
in (V1 & V) N H(div; Q). Then, we can take v = V¢ as test function in (A.10)
and obtain that, for any € L*(0), [, ¥V-u@dx = — [, fPdx, from which (2.8)
follows, along with the regularity property vV - ulg, € H'(Qo).

This completes the proof of Theorem 2.3.
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