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Abstract. In this paper, we present a super-convergence result for the Local Discontinuous
Galerkin method for a model elliptic problem on Cartesian grids. We identify a special numerical
flux for which the L2Z-norm of the gradient and the L2-norm of the potential are of order k + 1/2
and k + 1, respectively, when tensor product polynomials of degree at most k are used; for arbitrary
meshes, this special LDG method gives only the orders of convergence of k and k + 1/2, respectively.
‘We present a series of numerical examples which establish the sharpness of our theoretical results.
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1. Introduction. In this paper, we derive a priori error estimates of the Local

Discontinuous Galerkin (LDG) method on Cartesian grids for the following classical
model elliptic problem:

—Au=f in Q,
u = g’D on F’D, (11)
ou

— = ‘n onI
8’” anN N

where ( is a bounded domain of R? and n is the outward unit normal to its boundary
I' = T'p UT y; we assume that the (d — 1)-measure of I'p is non-zero.

Recently, Castillo, Cockburn, Perugia and Schétzau [3] obtained the first a priori
error analysis of the LDG method for purely elliptic problems. Meshes consisting
of elements of various shapes and with hanging nodes were considered and general
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numerical fluxes were studied. It was shown that, for very smooth solutions, the
orders of convergence of the L?-norms of the errors in Vu and in u are k and k + 1/2,
respectively when polynomials of degree at most k are used. On the other hand,
Castillo [2] and Castillo, Cockburn, Schétzau and Schwab [4] proved that, for one-
space dimension transient convection-diffusion problems, the order of convergence of
the error in the energy norm is optimal, that is, & + 1, provided that the so-called
numerical fluxes are suitably chosen. In this paper, we extend these results to the
LDG method on Cartesian grids for the multi-dimensional elliptic model problem
(1.1); we show that the orders of convergence in the L2-norm of the error in Vu and
u are k + 1/2 and k + 1, respectively, when tensor product polynomials of degree at
least k are used. Our proof of this super-convergence result is a modification of the
analysis carried out in [3]; it takes advantage of the Cartesian structure of the grid
and makes use of a key idea introduced by LeSaint and Raviart [10] in their study of
the original DG method for steady-state linear transport.

Since our analysis is a special modification of that of [3], in order to avoid unnecessary
repetitions, we refer the reader to [3] for a more detailed description of the framework
of our error analysis. The organization of this paper is as follows. In Section 2, we
briefly display the LDG method in compact form, introduce the special numerical flux
on Cartesian grids and present and discuss our main result. In Section 3, the detailed
proofs are given and in Section 4, we present several numerical experiments showing
the optimality of our theoretical results. We end in Section 5 with some concluding
remarks.

2. The main results. In this section we recall the formulation of the LDG
method and identify the special numerical flux we are going to investigate on Cartesian
grids. Then we state and discuss our main results. As pointed out in the introduction,
we refer to [3] for more details concerning the formulation of the LDG method.

2.1. The LDG method. We assume that the problem domain Q can be covered
by a Cartesian grid. To define the LDG method, we rewrite our elliptic model problem
(1.1) as the following system of first-order equations:

qg=Vu in Q, (2.1)
—-V.g=f in Q, (2.2)
U= gp on I'p, (2.3)

g n=gy-n on Ty (2.4)

Next, we discretize the above problem on a Cartesian grid 7. To obtain the weak
formulation with which the LDG is defined, we multiply equations (2.1) and (2.2)
by arbitrary, smooth test functions r and v, respectively, and integrate by parts over
the d-dimensional rectangle K € 7. Then we replace the exact solution (g,u) by its
approximation (g, un) in the finite element space My x Vi, where

Mny:={q € (L*(2)* : q|, € S(K)?, VK € T}, (2.5)
Vv ={uec L*() : u|K € S(K), VK € T}, (2.6)

and

S(K) := Q¥(K) = {polynomials of degree at most k in each variable on K}.
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The method consists in finding (g, un) € My x Vy such that

/qN-rdm:—/uNV-rdm—}—/ unr-nds, (2.7)
K K oK

/qN-Vvdmz/fvda:+/ vqy -nds, (2.8)
K K 0K

for all test functions (r,v) € S(K)? x S(K), for all elements K € 7. The functions
uny and g in (2.5) and (2.6) are the so-called numerical fluzes. These are nothing
but discrete approximations to the traces of u and g on the boundary of the elements
K and are defined as follows. Consider a face e of the d-dimensional rectangle K. If
e lies inside the domain 2, we define

Bl =ledl -l v »

and, if e lies on the boundary of 2,

+ _ + _
G:= {‘1 Cu(u’ —gp)n onlp, (2.10)

—~ gp On FD,
gy on 'y,

and U=
ut on Ty

Moreover, the stabilization parameter C; and the auxiliary parameter C5 are defined
as follows:

Cii(e) = ¢, Ciz2(e) -m = sign(v - n)/2, (2.11)

where ( is a positive real number and v is an arbitrary but fixed vector v with non
zero components; see Fig. 3.1.

2.2. Error analysis on Cartesian grids. To state our main result, we need
to recall some notation and to introduce new hypotheses. We restrict our analysis
to domains  such that, for smooth data, the solution u of problem (1.1) belongs to
H?(Q), and such that when f is in L2(2) and the boundary data are zero, we have the
elliptic regularity result ||ul||2 < C || f |lo; see Grisvard [8] or [9]. Since the domain
will be triangulated by means of a Cartesian grid, the above requirements hold only
if Q is a d-dimensional rectangle.

We denote by hg the diameter of an element K, and set, as usual h := maxgecT hi-
We denote by £z the set of all interior faces of the triangulation 7, by £p the set of
faces on I'p, and by Ex the set of faces on I'y; we assume that I'p = Uecgp@ and
Tn = Ueegy e The Cartesian triangulations we consider are regular, that is, if px
denotes the radius of the biggest ball included in K,

hxk

— <o VKeT. (2.12)
PK

Finally, we denote by Ex C Q a closed set containing the intersection between the
Neumann boundary 'y and the set { € T : v -n(z) < 0}. Moreover, we assume
that the triangulation 7 is such that

U K. cEw, (2.13)

e€En

where K. denotes, from now on, an element containing the face e.
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We are now ready to state our main result.

THEOREM 2.1. Assume that the solution (q,u) of (2.1)—(2.4) belongs to H**+1(Q)4 x
H**2(Q) for k > 0; assume also that if the intersection between Ty and {x € T :
v -n(x) < 0} is non-empty, u belongs to WFTL2(Eyr). Assume that the Cartesian
grid T is shape-regular, (2.12), and that it satisfies the condition (2.13) if Ty N{x €
T:v-n(x) <0} #0. Let (qn,un) € My x Vy be the approzimation of (q,u) given
by the LDG method with k > 0 and numerical fluzes defined by (2.9), (2.11) and by
(2.10).

Then we have

lu — unllo < CR*FT,
and
|(q —qN,U—UN) |.A S Ch/k+%:

where the constant C solely depends on (, k, d, o and on the norms || u |12 and
[ llwost1.o0 (g0 -

Several important remarks are in order before we prove this result in the next Section.
REMARK 2.2. This theorem is an extension to the bounded domain case of the
corresponding result by Cockburn and Shu [7] for the LDG method for transient
convection-diffusion problems. It is also an extension to the multi-dimensional case of
the results obtained by Castillo, Cockburn, Schétzau and Schwab [4] in the one-space
dimension case. The key ingredient of its proof is a super-convergence result of LeSaint
and Raviart [10] used in their study of the original DG method for steady-state linear
transport in Cartesian grids.

REMARK 2.3. Note that Theorem 2.1 holds true in the case k = 0, that is, when
approximate solution is piecewise constant. In [3], all the error estimates obtained for
the corresponding LDG method on general grids are valid only for k£ > 1; moreover,
no order of convergence is numerically observed for k = 0.

REMARK 2.4. From an approximation point of view, the order of convergence in q,
namely, k+1/2, is suboptimal by one half; however, it is confirmed to be sharp by our
numerical experiments in Section 4. For general numerical fluxes and unstructured
grids, an order of convergence in g of only k is obtained; see [3].

REMARK 2.5. If we take the more general case

min{hp+, hy-}%, if KINK; =e,

. (2.14)
hk., ifecCT,

Cu(e) = C{

where ¢ > 0 and « are constants, we might conceive the possibility that a suitable
tuning of the value of & could improve the order of convergence in q. However, this
is not true, as will be made clear in the proof of Theorem 2.1 displayed in the next
section. See also [3] for other results about the influence of the value of a on the
orders of convergence of the general LDG method.

REMARK 2.6. In Theorem 2.1 an extra regularity condition on the exact solution u
on the closed set Ej containing part of the Neumann boundary is required. If this
condition is dropped, and if Tyy N{x € T': v - n(x) < 0} is not empty, only an order
of convergence of k£ in the error in g can be proved by using our technique which
represents a loss of 1/2. Note that whenever it is possible to choose v in such a way
that Ty N {xz € T : v-n(x) < 0} = 0, no extra regularity assumption on the exact
solution is required.
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3. Proofs. This section is devoted to the proof of Theorem 2.1. For simplicity,
we consider only the case d = 2 and () rectangle; see Fig. 3.1. All the arguments we
present in our analysis rely on tensor product structures and can be easily extended
to the case d > 2.

)
_|_
A 51

o
E _ &
Yo K ’Y;_
/ 2
v = (v1,v2) > T

&

Fic. 3.1. The Cartesian grid T and the auziliary vector v used to define the numerical fluzes.

To prove Theorem 2.1, we follow the approach used by [3]. Thus, we start, in Sec-
tion 3.1, by briefly reviewing the setting of our error analysis. We proceed in Sec-
tion 3.2, by introducing the projections IT and IT which generalize to several space
dimensions the projections used by Castillo, Cockburn, Schétzau and Schwab [4] in
their study of the LDG method for transient convection-diffusion problems in one-
space dimension. Then, in Section 3.3, we derive the expressions of the functionals
K 4 and Kp needed in the setting of [3] to get error estimates. To do so, we make
use of a super-convergence result essentially due to LeSaint and Raviart [10], and
whose proof is presented in Section 3.4. The proof of Theorem 2.1 is completed in
Section 3.5.

3.1. The framework of the error analysis. All the following results are col-
lected from [3]. First, we start by reviewing that, by summation over all elements,
the LDG method can be written in the compact form: Find (qy,un) € My x Vi
such that

A(qN,UN;T,U) = ‘7:(7'71])7
for all (r,v) € My x Vy, by setting

Alg,u;r,v) :=a(q,r) + b(u,r) — b(v, q) + c(u,v),
F(r,v) := F(r) + G(v),
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with

o= v
b(u,r) := /KuV-rda:— Z /e({u}}—i-Clg-[[u]])[[r]]ds— Z /eur-nds,

KeT e€ET e€En

c(u,v) := Z / Cy1 [u] - [v] ds + Z Ciiuvds.

ecér e€Ep €

The linear forms F', G are defined by

F(r):= Z gpT-ndx

ecép €
G(v) :=/fvdm+ Z /CngDvds+ Z /vgN.nds.
Q ecEp V€ ecén VE

We also introduce the semi-norm |(g,u)|% that appears in a natural way in the
analysis of the LDG method and is defined as

| (q,u)|% = |lqll3 + Z /Cu [u]” ds + Z Ci1u? ds. (3.1)
ecEr V€ ecEp“ €

To prove error estimates for the LDG method, we follow [3] and introduce two func-
tionals, K 4 and Kp, which capture the approximation properties of the LDG method;
the functionals are related to two suitably chosen projections IT and II onto the FE
spaces M  and Vi, respectively. Namely, we require K 4 and Kp to satisfy

| A(g — g, u — TTu; @ — T1®, p — 1) | < Ka(g, u; @, ¢) (32)
for any (g,u), (®,9) € H(Q)¢ x H?(Q2), and
| A(r,v;q —TIg,u —TIu) [ < | (7, 0) |4 KB(q,u) (3.3)
for any (r,v) € My x Vi and (g,u) € H*(Q)? x H%(Q).

By Galerkin orthogonality, all the error estimates can then be solely expressed in
terms of K 4 and Kp as can be seen in the following result.
LeEMMA 3.1 ([3]). We have
(g = qn,u—un)|a < Ky{*(q,u;q,u) + Kn(q,u).
Furthermore,
Ka(q,u;®, Kgp(®,
lu—unllo< sup Ba@ui2,¢) + Kp(g,u) sup K5(®.9)
AEL3(Q) 1 X lo aerr@ Ao
with @ denoting the solution of the adjoint problem
—Ap=2A in Q,
=0 onTp,

op

8_71_0 on Ty,

and ® = —Vo.
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3.2. Projections. In this section we define the projections IT and II we are
going to use to prove Theorem 2.1 and list their properties. To this end, we start by
introducing one-dimensional projections. Let I = (a—,a™) be an arbitrary interval,
and let P*(I) be the space of the polynomials of degree at most k on I. We denote
by 7 the L2(I)-projection onto P¥(I), i.e., for a function w € L2(I) the projection mw
is the unique polynomial in P*(I) satisfying

/I [w(z) — rw(@)] pz)dz =0 Vp e PE(I).

Furthermore, for w € H2+¢(I), we define the projections 7w € P¥(I) by the follow-
ing k + 1 conditions:

/I [w(z) — Wiw(a:)]p(a:) de =0 Vp € PF (1),
+

mFw(at) = w(a®).

On a rectangle K = I; x I, we define the following tensor product operators:
%y := 7r1jE ® 7r2iv,
I*r = (7ri'E ® mary, T ® 7r§tr2),

with the subscripts indicating the application of the one-dimensional operators m or
7+ with respect to the corresponding variable.
Finally, we define the projections IT and II as

Mg =T q, Mu g = M ug, VK eT. (3.4)

In our error analysis, we use key properties of these projections displayed in the
following result.
LEMMA 3.2. With the notation indicated in Figure 3.1, we have

/[r—Hir]-Vpdmzo Vp € QF(K),
K

i[7“—1'Ijtr]-n;todszO Vp € Pr(vE), i =1,2.
i

We also need several approximation results which we gather in the lemma below.
LeEMMA 3.3 (Cf. [5]). Let v € H*"2(K) and r € H**1(K)?, s > 0. Then for m
integer, 0 < m < s+ 1, we have

i 1,k}+1—
[0 = T 0| e < R 01 o i

i 1
lo = ¥0]lo.e < O P 2 o)l pn i, Ve C OK,
o
[ = Tr | i < CR M 04 i,
i 1
lr — Ir|o.. < CRER M2 10k, Ve C OK.

Furthermore, for any edge e; parallel to the x;-azis, i = 1,2, we have
i 1
lw = 7Fwlloe, < CREEFE ol Lo Yw € B (ey).
Finally, if u € W*tL°(K), then

o = 0| oo (o) < CRE S 0llyesrw (i), Ve C OK.
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3.3. The functionals K 4 and K. In this subsection, we obtain the functionals
K 4 and Kp introduced in Section 3.1.
We consider the stabilization parameter C41, defined by (2.14), in order to highlight
the fact that any choice of a # 0 in (2.14) deteriorates the rates of convergence of the
estimates of Theorem 2.1.
In [3, Corollary 3.4], K 4 has been investigated for general projection operators IT and
II satisfying the approximation results in Lemma 3.3 with m = 0,1. Thus, we we just
report here the final result.
LEMMA 3.4 ([3]). Let u € H**2(Q), s > 0, and ¢ € H2(Q) , t > 0. Assume Cy1
to be given by (2.14). Then, if we set ¢ = Vu and ® = £V, the approrimation
property (3.2) holds true with

KA((],U; &, (P) — [hmin{s,k}—i-l(hmin{t,k}—i-l + hmin{t+1,k})
+hmin{s+1,k}+1 (hmin{t,k} + Chmin{t—i—l,k}—i—a)] ||U||s+2||90||t+2-

Furthermore, in the particular case where (®,p) = (q,u), there holds

KA((],U, q,'U,) — [h2 min{s,k}+2 + Chz min{s+1,k}+1+a] ||U||§+2

In [3], the functional Kg was only studied in the case where IT and II are L2-
projections. Next, we show that a better result for K can be obtained on Cartesian
grids for the projections defined by (3.4) and the numerical fluxes defined by (2.11).
To obtain such a result, we use the following standard inverse inequality.

LeEMMA 3.5 (Cf. [5]). There exists a positive constant C solely depending on k, d
and o such that for all s € M n we have

1
lIsllo,e < Chy?[lsllo,x

for all K € T, e being any side of K.
We set ur = ulr, and ||ur||§+%’F = 2;21 ||U1‘”§+%,Fj, where I';,j = 1,2,3,4, denote
the sides of I'. We are now ready to state our main lemma.

LEMMA 3.6. Let u € H*2(Q), s > 0, and set ¢ = Vu. Assume C1; to be given by
(2.14) and let II and II be the operators defined by (3.4). Then, for any (r,w) €

My x Vn, the approzimation property (3.3) holds true, with Kp given by

o

KB(q,U) = C [hmin{s,k}—i-l + C—%hmin{s,k}—i-%—f + C%hmin{s+1,k}+%+%]||u||s+2
+C [Ex NET 2 K™ T3 [ [lyyass ooy + C RT3 g g
where the constant C' solely depends on k, d and o.

Proof. In order to be able to distinguish the many parts of T' and facilitate the proof
of the above result, we introduce the following notation:

Et:={ecT: v-n >0}, E :={ecT: v-n<0},
& :={e € &Y| zo = const}, & :={e € &7| z = const},
Ef :={e € EF| 71 = const}, &y ={e€&7| xz1 = const},

and define &; := & U & ; these boundaries are indicated in Fig. 3.1.
We set gq := q — IIq and &, := u — u, write

JA(r, 03 €4, €4)] < la(r, Eg)| + b(v, Eg)| + [B(Ews )] + |e(€usv)| = Tt + To + Ts + T
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and estimate each of the forms separately.
a. Estimate of T7. We have

n=|Y [ rgqda| < (X Iria)’ (3 leglin)
KeT 7K KeT KeT

min{s,k 2
<Ol 0) (D0 BT a2 k)
KeT

[N

b. Estimate of T5. We can write

r,=|- % / Vo fgdz+ Y /[[u]]-(ggq}}—cu[[gq]])der ) /vﬁq-nds‘.
KeT /K ecEr Ve ecEp’®

Taking into account the definition of the fluxes in (2.11) and the properties of the

projection IT in Lemma 3.2, we conclude that

/VU'EqdmZO, VK €T, /qu-nd.S:O, Vee &,
K e

11 (g} ~ Culeghds =0, Ve e &

Consequently,

T2:| Z /Uﬁq-nds‘.

ecEtNED V€

1
Multiplying and dividing each term of the sum by C7;, and using the approximation
properties of I, we have

n=| ¥ [oggmas<( X cull) (T citlegld)’

ecETNED Y € e€ETNED e€cE+NEp
1
<Clro)la (¢ Y BT g2, )
eecEtNEp

Note that we have used the shape-regularity assumption (2.12) to bound Cfll by
Cc¢ _lh;{‘:‘.
c. The estimate of T,. We have

T4 = Z /Cnl[’l)]] [é.u]] ds + Z /0111)§u ds
ecEr Ve ecEp V€
< (Z Culllolllg + > 011||v||3,e) : (Z Cullléadlld,. + > Cuilléul (21,6)
ecér e€ép ecér ecép

< |(ryv)|a (Z Z Cn”fu”g,e)

KeT eCOK

[N

< C|(r,v)|a (c 3 himi“““”“}“*“||u||§+2,K)

KeT

1
<C |(,’17 'U)|.A (Ch2 min{s+1,k}+1+a|lu“§+2) 2 ]
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d. Estimate of T3. This estimate cannot be obtained as easily as the previous ones
since it is here that the key idea introduced by LeSaint and Raviart [10] has to be
suitably applied.

We start by writing

Tg_‘ Z/guv rdm—Z/{{fu}}+Clg [€.Dr] ds — /§ur nds

KeT e€lr e€én

_‘ Z/&LV rd:z:— Z /Hfu}}+012 [€u])r - nds)

KeT KeT e%gK e
e A
- E /fur nds
ecEn Y E

Again with (2.11), we see that the contribution of an interior element K to this
expression is

Zk(r,u) ::/ §uV-rdm—/ {ur-nds—/ Uty . nds,
K AN 1 Yy

where the superscript ‘out’ denotes the traces taken from outside K. Since uf“; =u
h i

and [Hu]"“t = (U| ) for the corresponding one-dimensional projection w7, this

contrlbutlon can be wrltten as

ZK(r,u):/K(u—H+ u) V- 'r'da:—/ (u —mtu)r - nds—/ (u—7mfu)r-nds

+
2
J;

For boundary elements, we add and subtract corresponding terms to obtain

T3<|ZZKru +‘Z/ p—ﬁluprnds-i-Z/ r—7r2uprnds

(u — mFu)r - nds—/ (u— mfu)r - nds. (3.5)
72

1

KeT e€&a
+ Z Eur -nds|
e€€n
<3 1Zxewl+ Y /|ur—7r1ur ron|ds+
KeT ecE1\(ExNET)
—+ Z /|up—7r1ur'r n|ds+ Z /'|£u"1 n|ds,
e€&\(ExNET) e€EENNE™

with Zg (r,u) defined in (3.5).

We start by bounding the contributions to T3 stemming from a boundary edge e; € &\
(Ex NE) parallel to the z;-axis, i = 1,2. Since u € H*+2(Q) implies ur € H*+3(¢;),
see [9], by the property (3.3) and the inverse inequality in Lemma 3.5, we get

/ \(ur — 7ur) r-nlds < [lur — 7Eurlloe, [Irllo.,

i 1 1
< ORI

s+%,ei THO,Kei .
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Here, K., denotes again the element containing the edge e;. Consequently, the global
contribution to T3 of the boundary edges belonging to &; \ (E4 NE™) can be bounded
by

in{s+3.k}+3
DR el a7 PO [ 'S
e€(E1UE)\(EnNET)

1
2min{s+§,k}+1 2
<o( TR 2 ) (3 k)
eCl’

eCT

1
2

1
< CRmIntH R (3 a2, )7 | (r,0) L
g,

eCcll
< Chm TS lup s 1| (r,0) [

For the edges e in E4 NE~, we have to use a different argument. Thus, by Lemma 3.5,
we have

[16wrnlds <l 7l

1,1
<Clel? hg? [ ullLos(ey I 7 [0,k -

Hence, by the Cauchy-Schwarz inequality,

> |§ur-n|d8§CISN05_I%< sup h;?fll&llmo@))ll?‘llo;

e€ENNE™ e€ENNE
and so
_ 1 H 1
3 leur-nlds < ClEN NE F AR [y |ytic gy (r,0) 4
ecEnNE—

Finally, we estimate the contribution Zx (7, u), by using the following super-convergence
result, essentially due to LeSaint and Raviart [10], whose proof is postponed to Section
3.4.

LEMMA 3.7. Let Zk(r,u) be defined by (3.5). Then we have for s >0

|Zx (r,u)| < CRE™ Y | po g [|7]

0,K-

By combining the result of Lemma 3.7 with the above estimates of the contribution
of boundary edges, we obtain

Ty < C |(7';'U)|.A (hmin{s,k}-i-l ||U||s+2 + hmin{s+%ak}+%||uF||s+%’F

F|En N ET |3 pmin{sRE |y ||Ws+1,°o(EN))_

Conclusion. The result now follows by simply gathering the estimates for T;, i =
1,2, 3,4, obtained above. This completes the proof. O
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3.4. Proof of Lemma 3.7. We can write

Zk(r,u) = Zki(ri,u) + Zk 2(r2, u),

where
Zga(ri,u) = / (u— H+u)% dzidzs — / (u — 7 u) r1 dos
' K Oy v
+/ (u — 75 u) 7y dzo
2y
and

Zga(re,u) = / (u— H+u)% dridzs — / (u — mfu) re doy
K P 7

+/ (u — mfu) rodoy.
T

The proof of the approximation results for Zx,; and Zk» are analogous; therefore,
we just present the one for Zg 1, essentially following the same arguments as in [10].
First, we consider Zk,; on the reference square (—1, 1)2. We claim that

Zg(ri,u) =0 Yu € PHMU(K), r € QF(K). (3.6)

To prove (3.6), fix r; € QF(K). Since It and 7+ are polynomial preserving operators,
(3.6) holds true for every u € Q¥(K). Therefore, we just have to consider the cases
u(zy, zs) = 28 and w(xy, zg) = ok

+

Let us start with u(z1,22) = ¥+, On 75" we have u = 77u = 1, and on v, we have

or
u = mju = (—1)k*1. Since —Lisa polynomial of degree at most £k — 1 in z;, we

6.(13'1
obtain
or or
/K(u - H+u)6—$1 dzridzy = /K(u - ﬂ;ru)(‘i—mi dzidzy = 0.

Thus, Zk1(r1,u) =0 for u(z1,z2) = :c'f'H.

In the case u(z1,zs) = 257", we integrate by parts and obtain

0 O(u — 10t
/ (u — H+U)£ d.Z'ldl'Q = —/ uTj diEld.'L'Q
K o1 K 0z
—|—/ (u — 75 u)ry doy — / (u — Tt u)r; deos.
v Y2

O(u — Tt u)

8.771
that Zx1(r1,u) = 0 also for u(z1,z2) = 5. This completes the proof of (3.6).
For fixed r1 € QF(K), the linear functional u — Zk 1 (r1,u) is continuous on H*+%(K)
with norm bounded by C||r1]jo,x. Due to (3.6), it vanishes over P*+1(K) for 0 < s <

k. Hence, by applying Bramble-Hilbert’s Lemma (see [6, Lemma 6], for instance), we
obtain for v € H*+2(K) that

Since = 0and H+u| _ = 71';_ u| _ due to the special form of u, we conclude
T2 Y2

|Zr1(r1,u)| < Clulsta,x||71]lo,x-

This proves the assertion on the reference element (—1,1)2. The general case follows
from a standard scaling argument.
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3.5. Proof of Theorem 2.1. If the exact solution of our model problem, (g, u),
belongs to H¥*t1(Q)? x H¥+2(Q), with k¥ > 0, Lemmas 3.4 and 3.6 give

Ka(g,u;q,u) < hB2FHFe |y,
and
1_ || 1
Kp(q,u) < B*F27 2 Jullpyn + A2 llurlleq 3,0
HEvNE |% hmin{s,k}+%||u llwe+1.00 (Brr)

with ur = w|,. The estimate of the error |(q — qy,u — un) |4 follows now from
Lemma 3.1. Notice that a = 0 gives the best order of convergence in h equal to k+ %
Our assumptions on the domain imply that the solution ¢ of the adjoint problem in
Lemma 3.1 belongs to H2(2) and that we have ||¢||2 < C||A|lo; see [8, 9]. Hence, we
conclude that

R [ulle2ll Ao k=1,

Ki(q,u;@,0) < C X
Alg p) < {h1+m1n(0,a)”u”2||)\||0 k=0,

1 el
Kp(®,9) < Ch>" 2 [|Allo-

The estimate of ||u — un||o thus follows from Lemma 3.1. Notice that o = 0 gives
again the best order of convergence in h which is k + 1.

4. Numerical Experiments. In this section, we display a series of numerical

experiments showing the computed orders of convergence of the LDG method; we
show (i) that the orders given by our theoretical results are sharp, (ii) that they
can deteriorate when the stabilization parameter Cj; is not of order one, (iii) that
the exact capture of the boundary conditions induces an unexpected increase of % in
the order of convergence of the gradient, and (iv) that the orders of convergence are
independent of the dimension.
In all experiments, we estimate the orders of convergence of the LDG method as
follows. We consider successively refined Cartesian grids 7y, £ > 0, consisting of 2¢*
uniform d-dimensional cubes with corresponding mesh size 27¢*1; we present results
in two and three space dimensions. If e(7;) denotes the error on the ¢-th mesh, then
the numerical order of convergence is computed as follows:

log (;7(_2)1)) /10g(0.5), £>1.

The results have been obtained with the object-oriented C++ library deal.II devel-
oped by Bangerth and Kanschat [1].

4.1. The sharpness of the orders of convergence of Theorem 2.1. We
consider the two-dimensional model problem (1.1) on the square Q = (—1,1)? with
f and boundary conditions chosen in such a way that the exact solution is given by
u(z1, z2) = exp(z1 z2). We consider two cases: In the first, we impose inhomogeneous
Dirichlet boundary conditions on the whole boundary, and in the second, we also im-
pose inhomogeneous Neumann boundary conditions on the edge {—1} x (—1,1). The
results are contained in Tables 4.1 and 4.2 where the numerical orders of convergence
in the L2- and L*®-norm in u, ¢; and ¢y of the LDG method with QF elements for
k=0,...,3 are shown. We take Cy; = 1.0 and the coefficients C5 as in (2.11) with
v=(1,1).
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In Table 4.1, we report the results for Dirichlet boundary conditions imposed on the
whole boundary. Note that, because of the symmetry of the problem, the orders of
convergence are exactly the same for ¢; and g2. For k = 0, we see the optimal order
of convergence of 1 in the L2-norm of the error of both u and q; note that Theorem
2.1 predicts an order of convergence of % only for q. However, for k > 1 the L2-rates
are of order k+1 in u and k+ % in g, in full agreement with Theorem 2.1. The orders
on convergence in the L*-norm of the error in u and q appear to be k£ + 1 and k,
respectively.

The results displayed in Table 4.2 are those for the case of inhomogeneous Neumann
boundary conditions on part of the boundary. We see that the orders of convergence
in this case are the same as the ones in the previous case.

Thus, the above experiments show that the orders of convergence given by Theorem
2.1 are sharp.

TABLE 4.1
Orders of convergence for the LDG method with C11 = 1.0: T'xr = 0.

U q1 and go
element | / L2 L L2 L
1 || 0.5043 | 0.1284 || 0.7401 | 0.3036
2 (] 0.7974 | 0.3682 || 0.7257 | 0.4175
Qo 3 || 0.9975 | 0.6029 | 0.7892 | 0.4574
4 || 1.0095 | 0.7873 || 0.8803 | 0.1365
5 || 0.9736 | 0.9019 || 0.9398 | 0.2937
6 || 0.9683 | 0.9624 || 0.9724 | 0.3856
1| 1.7570 | 0.9753 || 1.5354 | 1.3116
2 || 1.7999 | 1.3976 | 1.2669 | 0.7766
ot 3 || 1.8496 | 1.6995 | 1.2857 | 0.7150
4 || 1.8941 | 1.8549 || 1.3640 | 0.8670
5 (] 1.9390 | 1.9305 || 1.4251 | 0.9422
6 || 1.9681 | 1.8971 || 1.4610 | 0.9747
1| 2.7300 | 1.9615 || 2.3151 | 1.5921
2 || 2.8570 | 2.5254 || 2.3071 | 1.6811
Q2 3 || 2.8676 | 2.7695 || 2.3280 | 1.8300
4 || 2.8999 | 2.8862 || 2.3901 | 1.8988
5 || 2.9382 | 2.9428 || 2.4387 | 1.9392
6 || 2.9661 | 2.8316 || 2.4678 | 1.9658
1| 3.6933 | 2.9236 || 3.1730 | 1.8719
2 || 3.8108 | 3.5453 || 3.2270 | 2.5280
Q3 3 || 3.8660 | 3.7719 || 3.3094 | 2.7551
4 | 3.9120 | 3.8827 || 3.3859 | 2.8770
5 || 3.9490 | 3.9398 || 3.4380 | 2.9415
6 || 3.9661 | 3.8249 || 3.4676 | 2.9724

4.2. The effect of the choice of C;;. Next, we test the effect of the choice of
the coefficients C1; on the orders of convergence of the LDG method. We consider
the same problem as in the previous experiments, case I'yy = (§, and use Q! and Q2
elements. We only show the numerical orders of convergence for the finest grids.



The LDG method on Cartesian grids for elliptic problems 15

TABLE 4.2
Orders of convergence of the LDG method with C11 = 1.0: Txr # 0.

u il q2
element | / L2 L L2 L L2 L
1 || 0.4279 | 0.0833 || 0.5632 | 0.1687 || 0.7419 | 0.2817
2 || 0.7818 | 0.3935 || 0.6860 | 0.2553 || 0.7330 | 0.4255
Qo 3 || 0.9281 | 0.6447 || 0.9021 | 0.4920 || 0.8168 | 0.5801
4 || 0.9589 | 0.8134 || 1.0231 | 0.7055 || 0.9221 | 0.2833
5 || 0.9687 | 0.9083 || 1.0463 | 0.8479 || 0.9793 | 0.4939
6 || 0.9795 | 0.9555 || 1.0303 | 0.9283 || 0.9954 | 0.6270
1 || 1.5640 | 0.8492 || 1.4414 | 0.8857 || 1.4867 | 1.0768
2 || 1.7767 | 1.4022 || 1.4194 | 1.1787 || 1.3096 | 1.1126
ot 3 || 1.8567 | 1.6995 || 1.4695 | 1.1444 || 1.3162 | 0.7155
4 || 1.9167 | 1.8549 || 1.5024 | 0.8670 || 1.3843 | 0.8669
5 || 1.9559 | 1.9305 || 1.5117 | 0.9422 || 1.4379 | 0.9422
6 || 1.9777 | 1.8971 || 1.5097 | 0.9747 || 1.4683 | 0.9746
1| 2.6095 | 1.8429 || 2.4038 | 1.8936 || 2.3275 | 1.8386
2 || 2.8329 | 2.5220 || 2.4372 | 2.1265 || 2.3217 | 1.8231
Q2 3 || 2.8806 | 2.7695 || 2.4719 | 1.9471 || 2.3803 | 1.8300
4 || 2.9230 | 2.8862 || 2.4963 | 1.8988 || 2.4320 | 1.8988
5 || 2.9563 | 2.9428 || 2.5042 | 1.9392 || 2.4631 | 1.9392
6 || 2.9770 | 2.8316 || 2.5044 | 1.9658 || 2.4806 | 1.9658
1 || 3.6125 | 2.8600 || 3.3206 | 2.7792 || 3.1634 | 2.5820
2 || 3.8202 | 3.5475 || 3.3839 | 2.9180 || 3.2859 | 2.5593
Q3 3 || 3.8916 | 3.7719 || 3.4665 | 2.7551 || 3.3743 | 2.7551
4 || 3.9375 | 3.8827 || 3.4950 | 2.8770 || 3.4318 | 2.8770
5 || 3.9664 | 3.9398 || 3.5022 | 2.9414 || 3.4643 | 2.9414
6 || 3.9805 | 3.8264 || 3.5024 | 2.9722 || 3.4815 | 2.9721

The results are displayed in Tables 4.3 and 4.4. We must compare all these results
with those with C1; = 1 obtained in the first set of experiments. We see that when
C11 is of order h~1, the order of convergence in u remains k + 1 but the order of
convergence in q degrades from k + % to only k, as predicted by our analysis; see
section 3.5.

We also see that taking C1; = h~! at the outflow boundary and Cj; of order one
elsewhere only results in a slight reduction of the L*°-orders of convergence.

In the remaining cases, we take C1; to be of order h in all the domain and then in all
but the outflow boundary where it is taken to be of order h=1. We observe a slight
degradation of all the orders of convergence.

These results indicate that the best choice of the stabilization parameter Cy; for the
LDG method is to take it of order one, as predicted by our analysis.

4.3. Piecewise polynomial boundary conditions. The purpose of these nu-
merical experiments is to show that if the boundary data are piecewise polynomials
of degree k, the order of convergence of the L2-norm of the error in q is optimal, that
is, k + 1, and not only k + % as predicted by Theorem 2.1 and shown to be sharp in
sub-section 4.1.
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TABLE 4.3
Orders of convergence of the LDG method with Q! elements.

u q1 and ¢o

Ci1 / L2 Lee L2 Lee
1/h 5 || 1.9607 | 1.9550 || 1.1409 | 0.8816
6 || 1.9792 | 1.9057 | 1.1019 | 0.9366
1/h on et 5 || 1.9331 | 1.7799 || 1.4240 | 0.8619
1.0 elsewhere | 6 || 1.9646 | 1.7914 || 1.4605 | 0.9268
h 5 || 1.8916 | 1.8810 || 1.4167 | 0.9405
6 || 1.8603 | 1.7887 || 1.4564 | 0.9701
1/h on &t 5 || 1.8837 | 1.8810 || 1.4157 | 0.8698
h elsewhere | 6 || 1.8563 | 1.7887 || 1.4556 | 0.9319

TABLE 4.4
Orders of convergence of the LDG method with Q2 elements.

u q1 and q2

Ci1 J4 L2 L L2 L
1/h 5 || 2.9555 | 2.9541 || 2.2223 | 1.8475
6 || 2.9754 | 2.9584 || 2.1685 | 1.9228
1/hon & 5 || 2.9340 | 2.8836 || 2.4358 | 1.8828
1.0 elsewhere | 6 || 2.9634 | 2.7424 || 2.4663 | 1.9427
h 5 || 2.8559 | 2.9524 || 2.4350 | 1.9483
6 || 2.8240 | 2.5482 || 2.4656 | 1.9742
1/hon £* 5 || 2.8505 | 2.8642 || 2.4325 | 1.8760
h elsewhere | 6 || 2.8211 | 2.4554 || 2.4643 | 1.9365

We consider two test problems. In the first, we take homogeneous Dirichlet boundary
conditions and f such that the exact solution is u(z1,22) = cos(§x1) cos(5x2). In the
second, we take piecewise quadratic Dirichlet boundary conditions and f such that
the exact solution is u(z1,z2) = 23 + 23 + cos(5z1) cos(5x2).

The results of the first problem are reported in Table 4.5 where we can see that the
optimal order of convergence of k + 1 for the L2- and L*-norms of the errors in both
u and q are obtained; the results for £k = 0,1, 2, 3 are displayed.

The results of the second problem are reported in Table 4.6, where we see that the
optimal order of convergence of k + 1 for the L2- and L*-norms of the errors in both
u and q are obtained for £ > 2, as claimed. For k < 2, the order of convergence in the
L2-norm of the error in q is k + % only which nothing but the order of convergence
predicted by Theorem 2.1.

To better understand this phenomenon, we plot the errors in ¢; for Q! and Q2 ele-
ments in Figs. 4.1 and 4.2, respectively; the triangulation has 16 x 16 elements and
corresponds to the index £ = 4. We immediately see the oscillatory behavior of the
error typical of finite element methods. In Fig. 4.1, we see that the error obtained
with Q' elements is bigger at the boundary than at the interior. This, together with
the fact that the order of convergence in L? is % whereas the order of convergence in

L is only 1, suggests that the error at the boundary is a factor of order h-z bigger
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than the error at the interior of the domain. On the other hand, the behavior of the
error with Q2 elements is rather different, as can be seen in Fig. 4.2. Indeed, the
error behaves in the same way at the boundary and at the interior; this is further
confirmed by the fact that both the the order of convergence in L2 and the one in L>®
are equal to k + 1.

These experiments justify our contention that the optimal order of convergence in g
can be reached if the boundary conditions are piecewise polynomials of degree k. Our
theoretical analysis does not explain this phenomenon.

TABLE 4.5
Orders of convergence for the LDG method with C11 = 1.0: gp =0, Tpr = 0.

u q1 and ¢
element | £ L2 Le® 1.2 Le°
Qo 5 || 0.8913 | 0.9278 || 0.9299 | 0.8973
6 || 0.9456 | 0.9658 | 0.9662 | 0.9483
ot 5 || 2.0352 | 1.9750 || 2.0000 | 1.9748
6 || 2.0213 | 1.9878 || 2.0003 | 1.9858
Q2 5 || 2.9637 | 3.0266 | 2.9689 | 3.0292
6 || 2.9815 | 3.0150 | 2.9855 | 3.0161
o3 5 || 4.0435 | 3.9806 || 4.0087 | 3.9771
6 || 4.0247 | 3.9918 || 4.0041 | 3.9748

TABLE 4.6
Orders of convergence for the LDG method with C11 = 1.0: gp quadratic, T'xr = 0.

u q1 and ¢
element | £ L2 L® 1.2 L
Qo 5 || 0.9886 | 0.9739 || 0.7359 | 0.0052
6 || 0.9935 | 1.0066 | 0.8009 | 0.0142
ot 5 || 2.0030 | 1.9552 || 1.4906 | 1.0160
6 || 2.0015 | 1.9775 | 1.4976 | 1.0091
0?2 5 || 2.9637 | 3.0266 || 2.9689 | 3.0292
6 || 2.9815 | 3.0150 | 2.9855 | 3.0162
Q3 5 || 4.0435 | 3.9804 | 4.0087 | 3.9762
6 || 4.0245 | 3.9909 | 4.0036 | 3.9717
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F1G. 4.1. The error in the first component of the gradient for Q': gp quadratic, T = 0.
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FIG. 4.2. The error in the first component of the gradient for Q2: gp quadratic, Tp = 0.
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4.4. A three-dimensional example. In this experiment, we consider the model
problem (1.1) on the three-dimensional domain @ = (—1,1)3. We take Dirichlet
boundary conditions and f such that the exact solution is

™ ™ T
u(z1,T2,23) = 3 + 25 + 235 + cos(aa:l) cos(axg) cos(§w3).

The results are displayed in Table 4.7; the computation on level 5 with Q2 did not
fit into the computers available to us. We can see that the orders of convergence
are similar to those obtained in the corresponding two-dimensional test problem in
the previous sub-section, cf. Table 4.6. This gives an indication that the orders of
convergence of the LDG method in three space dimension behave in the same way
they do in the two-dimensional case.

TABLE 4.7
Orders of convergence for the LDG method with C11 = 1.0 in 8D: gp quadratic, Tar = 0.

u q1 and go
element | £ 1.2 1.2
3 || 0.9389 0.5118
Qo 4 | 0.9367 0.6177
5 || 0.9452 0.7203
3| 1.8573 1.3374
ot 4 | 1.9278 1.4345
5 || 1.9636 1.4723
3 || 2.9204 2.8642
0?2 4 | 2.9326 2.9338
5 n/a n/a

5. Concluding remarks. In this paper we have shown that the LDG method
on Cartesian grids and with a special numerical flux super-converges; the proof of
this result is based on suitable defined projections IT and IT exhibiting a tensor prod-
uct structure. This work extends the corresponding result by LeSaint and Raviart
[10] for the DG method for linear hyperbolic problems and that by Castillo [2] and
Castillo, Cockburn, Schétzau and Schwab [4] for the LDG method applied to the
one-dimensional transient convection-diffusion. Extensions of this work to more gen-
eral elliptic and both steady and transient convection-diffusion problems can easily
be made.
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