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Abstract. In this paper, we present an overview of the evolution of the discontin-
uous Galerkin methods since their introduction in 1973 by Reed and Hill, in the
framework of neutron transport, until their most recent developments. We show
how these methods made their way into the main stream of computational fluid
dynamics and how they are quickly finding use in a wide variety of applications.
We review the theoretical and algorithmic aspects of these methods as well as their
applications to equations including nonlinear conservation laws, the compressible
Navier-Stokes equations, and Hamilton-Jacobi-like equations.

1 Introduction

Problems of practical interest in which convection plays an important role
arise in applications as diverse as meteorology, weather-forecasting, oceanog-
raphy, gas dynamics, aeroacoustics, turbomachinery, turbulent flows, gran-
ular flows, oil recovery simulation, modeling of shallow water, transport of
contaminant in porous media, viscoelastic flows, semiconductor device simu-
lation, magneto-hydrodynamics, and electro-magnetism, among many others.
This is why devising robust, accurate, and efficient methods for numerically
solving these problems is of considerable importance and, as expected, has
attracted the interest of many researchers and practitioners.

This endeavor, however, is far from trivial because of two main reasons.
The first is that the exact solution of (nonlinear) purely convective problems
develops discontinuities in finite time; the second is that these solutions might
display a very rich and complicated structure near such discontinuities. Thus,
when constructing numerical methods for these problems, it must be guar-
anteed that the discontinuities of the approximate solution are the physically
relevant ones. Also, it must be ensured that the appearance of a discontinuity
in the approximate solution does not induce spurious oscillations that spoil
the quality of the approximation; on the other hand, while ensuring this, the
method must remain sufficiently accurate near that discontinuity in order to
capture the possibly rich structure of the exact solution.

These difficulties were successfully addressed during the remarkable devel-
opment of the high-resolution finite difference and finite volume schemes for
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nonlinear hyperbolic systems by means of suitably defined numerical fluzes
and slope limiters. Since discontinuous Galerkin (DG) methods assume dis-
continuous approximate solutions, they can be considered as generalizations
of finite volume methods. As a consequence, the DG methods incorporate
the ideas of numerical fluxes and slope limiters into the finite element frame-
work in a very natural way; they are able to capture the physically relevant
discontinuities without producing spurious oscillations near them; see an il-
lustration of this fact in Fig. 1. Notice that the solution itself is not monotone,
however the overshoot and undershoot are not significant and the averages
of the solution on the elements are monotone.
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Fig. 1. Burgers equation with periodic boundary conditions and initial data 1/4 +
sin(m(2x — 1)) /2. Comparison of the exact and the approximate solutions obtained
with Az = 1/40 at T = 0.40. Top: full domain, bottom: detail; exact solution
(solid line), piecewise linear solution (dotted line), and piecewise quadratic solution
(dashed line).
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Owing to their finite element nature, the DG methods have the following
main advantages over classical finite volume and finite difference methods:

— The actual order of accuracy of DG methods solely depends on the ex-
act solution; DG methods of arbitrarily high formal order of accuracy
can be obtained by suitably choosing the degree of the approximating
polynomials.

— DG methods are highly parallelizable. Since the elements are discontin-
uous, the mass matrix is block diagonal and since the size of the blocks
is equal to the number of degrees of freedom inside the corresponding
elements, the blocks can be inverted by hand (or by using a symbolic
manipulator) once and for all.

— DG methods are very well suited to handling complicated geometries
and require an extremely simple treatment of the boundary conditions in
order to achieve uniformly high-order accuracy.

— DG methods can easily handle adaptivity strategies since refinement or
unrefinement of the grid can be achieved without taking into account
the continuity restrictions typical of conforming finite element meth-
ods. Moreover, the degree of the approximating polynomial can be easily
changed from one element to the other. Adaptivity is of particular im-
portance in hyperbolic problems given the complexity of the structure of
the discontinuities.

Although the original DG method has been known since 1973, it was only
recently that DG methods have evolved in a manner that made them suitable
for use in computational fluid dynamics and the aforementioned applications.
In this paper, we introduce the DG methods and give an overview of their
evolution since their introduction in 1973 by Reed and Hill [145], in the
framework of transport of neutrons, until their most recent applications, as
well as their theoretical and computational developments.

This paper is organized as follows. In section 2, we present the original DG
method and describe its theoretical and computational developments in the
framework of linear hyperbolic systems and ordinary differential equations.
We also review other early applications, its use to discretize in time parabolic
problems, and its introduction to the numerical approximation of viscoelastic
flows.

In section 3, we present the evolution of the DG method for nonlinear
hyperbolic problems. We show how the first attempts to extend the origi-
nal DG method lead to implicit schemes and how the efforts to use explicit
schemes lead to the construction of the so-called Runge-Kutta DG (RKDG)
methods. We show how the RKDG methods incorporated the ideas of nu-
merical flux and slope limiter into the finite element framework to produce
formally high-order accurate, nonlinearly stable schemes. Finally, numerical
applications to the Euler equations of gas dynamics are displayed.

In section 4, we review how the DG methods were extended to convection-
diffusion systems. After presenting some early attempts involving the use of
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standard mixed methods, we describe the method used by Bassi and Rebay
whose generalization lead to the so-called local DG (LDG) methods. Then,
we display applications to the compressible Navier-Stokes equations and to
MHD. Finally, we mention the Baumann-Oden DG method for the discretiza-
tion of second-order equations and several new developments.

In section 5, we describe the extension of the RKDG method to Hamilton-
Jacobi equations and the extension of the LDG method to second-order non-
linear degenerate parabolic equations. We present an application to move-
ment by mean curvature.

In section 6, we briefly discuss parallelization and adaptivity for the DG
methods. We also discuss several implementational issues. The first is the use
of an orthogonal, tensor-product basis for unstructured grids in 2D and 3D.
We also discuss quadrature-free implementations of DG methods and point
out the object-oriented codes currently in use.

We end this review in section 7, which is devoted to the discussion of open
problems and future developments.

2 Linear hyperbolic systems

2.1 The original DG method for the neutron transport problem

The original DG finite element method was introduced in 1973 by Reed and
Hill [145] for solving the neutron transport equation

cu+V-(au)=f, in 02,

where ¢ is a real number and a a constant vector. The relevance of the method
was recognized by LeSaint and Raviart who in 1974 [117] published its first
mathematical analysis.

To display the method, we multiply the equation by a test function v and
integrate over an arbitrary subset of (2, say K. After a formal integration by
parts, we get

o (u,0)k — (u,a-Vou)k +(a-nk u,v)ox = (f,v)k,

where ng denotes the outward unit normal of 0K, and

(u,v)K:/ uvdz, (w,v)aK:/ wuwds.
K 0K

Next, we construct a triangulation T, = { K } of {2, and take our approx-
imate solution uy to be a polynomial of degree at most k on each element K
of the triangulation. The approximate solution wuy, is then determined as the
unique solution of the following weak formulation:

VK €Ty :
o (un,v)k — (un,a- Vo) + <il:'U>BK =(f,v)k, Vo € Pk(K),
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where P*(K) denotes the space of polynomials of degree at most k on the
element K and h is the numerical flux given by

h(x) = a-ng(x) lsiﬁ)luh(x — sa).

Note that the value limg o up(x — s a) is nothing but the value of uj, upstream
the characteristic direction a. As a consequence, the degrees of freedom of
the approximate solution wu; in the element K can be computed in terms
of the values of uy upstream the characteristics hitting 0K . In other words,
the approximate solution up can be computed element by element when the
elements are suitably ordered according to the characteristic direction a.

2.2 The DG method for ODEs

The first analysis of the DG method as applied to ODEs, was performed in
1974 by LeSaint and Raviart [117] who showed that the method is strongly A-
stable of order 2 k+1 at mesh points, and that the Gauss-Radau discretization
of the DG method is also of order 2 k41 when piecewise polynomials of degree
k are used.

It is interesting to note that only one year before the introduction of
the DG method by Reed and Hill, Hulme [107,108] had studied a method
for ODEs which used the same weak formulation as the DG method but
employed a continuous approximate solution up; this method is, however,
only of order 2 k at mesh points. A study of global error control for ODEs for
this method was carried out in 1994 by Estep and French [84]. Another very
interesting work on DG methods for ODEs was done in 1981 by Delfour,
Hager and Trochu [70]; they introduce a class of DG methods which are
proven to give an order of accuracy up to 2 k+2 at the mesh points. Recently,
Schotzau and Schwab have obtained a new estimate on the size of the time
step needed to solve the implicit system of equations determined by the DG
method by means of a simple fixed point iteration technique; see the reference
in the lecture notes by Schwab [152].

In 1988, Johnson [112] gave an analysis of error control for the DG method
for stiff ODEs and later in 1995, Estep [83] extended this analysis to gen-
eral non-autonomous ODEs. Finally, in 1996, Bottcher and Rannacher [37]
introduced a new adaptive error control technique for ODEs by using the DG
method.

2.3 Analysis of the original DG method

A priori error estimates. In 1974, LeSaint and Raviart [117] made the first
analysis of the DG method and proved a rate of convergence of (Az)* in the
L2(£2)-norm for general triangulations and of (Axz)**! for tensor products of
polynomials of degree k in one variable defined on Cartesian grids. In 1986,
Johnson and Pitkarénta [113] proved a rate of convergence of (Az)*+1/2 for
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general triangulations and in 1991, Peterson [140] numerically confirmed this
rate to be optimal. In 1988, Richter [146] obtained the optimal rate of conver-
gence of (Az)**! for some structured two-dimensional non-Cartesian grids.
The issue of the loss of order of convergence was addressed again in 1991
by Lin and Zhou [120] who proved that the standard Galerkin method using
bilinear approximations defined on almost uniform Cartesian is of order 2;
the order of this method for arbitrary meshes is only one. In 1994, Zhou and
Lin [180] extended this result to piecewise-linear approximations in almost
uniform triangulations. Then, in 1996 Lin, Yan, and Zhou [119] showed first
order convergence for the DG method using piecewise-constant approxima-
tions. Their result holds for almost uniform grids of rectangles and for almost
uniform grids of triangles; their technique is based on a key approximation re-
sult. In this volume, Lin [118] reviews this technique and applies it to several
finite element approximations for hyperbolic problems. Also in this volume,
Falk [86] reviews several techniques of analysis for finite element methods for
hyperbolic problems including the DG method and the continuous Galerkin
method.

All the above mentioned papers assume that the exact solution is smooth.
In 1993, Lin and Zhou [121] proved convergence to the weak solution assum-
ing only that the exact solution belongs to H'/2(£2). More recently, Houston,
Schwab and Siili [102] proved spectral convergence of the DG method assum-
ing that the exact solution is piecewise analytic. In this volume, E. Siili, Ch.
Schwab, and P. Houston [162] review these results and extends them to hp-
DGFEM for PDEs with non-negative characteristic form. Finally, Cockburn,
Luskin, Shu and Siili [54] showed that if the exact solution is in L? but is
locally smoother, error estimates can be obtained between the exact solution
and a suitably post-processed approximate solution.

Concerning the issue of super-convergence, in 1994, Biswas, Devine and
Flaherty [36] discovered that the approximate solution of the DG method
super-converges at the Gauss-Radau points. A rigorous proof of this fact was
recently found by Adjerid, Flaherty, and Krivodonova [3]; the groundwork
for this analysis was carried out in 1998 by Adjerid, Aiffa and Flaherty [1].
Another indication of super-convergence was obtained by Lowrie [128] who
reported numerical evidence of the existence of a component of the error of the
DG method that was (2 k+1)-th. order accurate. This experimental indication
was put on firm mathematical basis by Cockburn, Luskin, Shu and Siili [55]
who showed that, assuming that the exact solution is sufficiently smooth, a
simple post-processing of the approximate solution obtained with polynomials
of degree k does produce an approximation of order 2k + 1; in this volume,
they present a short version of this result. Also in this volume, Lin [118]
proposes a new error estimation technique for finite element approximations
of hyperbolic problems.

A posteriori error analysis. In 1990, Stroubolis and Oden [158] studied
a posteriori error estimates for the DG method. Later, Bey and Oden [33]
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obtained the first hp- a posteriori error estimates for the DG method; paral-
lelization strategies based on these estimates were developed in 1995 by Bey,
Patra, and Oden [35] and in 1996 by Bey, Oden and Patra [34].

A posteriori error analysis of finite element methods for hyperbolic prob-
lems, including a slight modification of the original DG method, have been
studied in 1996 by Sili [159] and in 1997 by Siili and Houston [161]; see also
the 1999 lectures notes on this subject by Siili [160].

‘Wave propagation analysis. An analysis of wave propagation for the DG
method is given in this volume by Rasetarinera, Hussaini, and Hu [143].
Also in this volume is a paper by Sherwin [154] which is devoted to the
study of numerical phase properties of continuous and discontinuous Galerkin
methods using a high-order basis (see section 6.2).

2.4 Early applications of the DG method

Besides the application of the DG to the simulations of neutron transport
and to ODEs, applications of this method to the analysis of wave propa-
gation in elastic media was done from 1975 to 1976 by Oden and Wellford
[173,134,174,175], and to optimal control in 1978 by Delfour and Trochu [71].

2.5 Time discretization of parabolic equations

Also in 1978, Jamet [110] used the DG method to discretize in time parabolic
equations and showed that the method was of order k. Since then, several
authors have studied this method. Thus, in 1985, K. Eriksson, C. Johnson
and V. Thomée [82] proved that the method was of order 2k + 1 at the nodes
and later Erikson and Johnson studied the issue of error control in a series of
papers [77-81] starting in 1987 and ending in 1995. In 1997, Makridakis and
Babuska [132] studied the effect on adaptive mechanisms on the stability of
the method. In this volume, Machiels [130] investigates an adaptive proce-
dure for this method based on a new a posteriori error control. Also in this
volume, Estep and Freund [85] use it to solve nonlinear reaction-diffusion sys-
tems; they show how to use an inexact Newton method preconditioned with
Krylov-subspace iteration. Finally, Schétzau and Schwab have studied how
to actually solve the system of equations defined by the DG methods; they
show that it is possible to decouple the system into several scalar equations
of the same type; see the lecture notes by Schwab [152].

2.6 DG methods for viscoelastic flows

In 1989, the DG method of Reed and Hill was applied for the first time for
the numerical computation of viscoelastic flows by Fortin and Fortin [93].
The idea was to apply the DG method to the constitutive law relating the
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so-called extra-stress tensor in terms of the velocity. In this volume, Fortin,
Béliveau, Heuzey and Lioret [92] review the development of this idea and
Baaijiens, Bogaerds and Verbeeten [13] study the successes and failures of
the use of these methods in viscoelastic fluid analysis. A recent application
of the DG to these problems was pursued in 1998 by Sun, Smith, Armstrong,
and Brown [163].

Mathematical analysis of these methods have been carried out in 1992 by
Baranger and Sandri [21], in 1995 by Baranger and Wardi [22], in 1997 by
Baranger and Machmoum [20], and in 1998 by Bahhar, Baranger and Sandri
[14]. See also the 1996 paper by Baranger and Machmoum [19)].

2.7 New developments: DG methods for Maxwell’s equations

The equations of (viscous) magneto-hydrodynamics, that include the Maxwell’s
equations, have been discretized with DG methods by Warburton and Kar-
niadakis [171]. Other applications to the Maxwell’s equations are presented
in three papers in this volume. Warburton [169] presents the use of the DG
method with unstructured polymorphic hp-finite elements; Kopriva, Woodruff
and Hussaini [116] consider a spectral discontinuous method; and Cai [39]
deals with the problem of defining the basis functions for electromagnetic
scattering of curved surfaces.

3 Nonlinear hyperbolic systems

3.1 The space DG-discretization

The success of the DG method for linear hyperbolic problems, made the
extension to the nonlinear hyperbolic systems

d
u + 3 (W), =0,
i=1

the natural step in the development of the method. An extension of the
original DG method can be obtained as follows. To simplify the presentation,
let us assume that w is a scalar-valued function; in the case of a vector-valued
u, we proceed similarly component by component. Thus, we multiply the
above equation by a test function and formally integrate by parts to get

d d

(ues0)k = D (£i(u), Bz,0) ke + D (fi(u)(nK)s, v)ox = 0.

i=1
The approximate solution uy is now defined as the solution of the following
weak formulation:

VK € Ty :
d

(wn)e;0)i — > _(Ei(un), 0s,0) K + (h,v)ox =0, Yo € PF(K),

=1
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where £ is an approximation to the trace of E;.izl f;(u) (nk); on the boundary
of the element K, in other workds, it is nothing but an approximate Riemann
solver; see, for example, Toro [166] and the references therein. This shows that
the treatment of the boundary conditions is natural and extremely simple.
Chavent and Salzano [44] used the above DG-space discretization in 1982 for
the first time in the framework of nonlinear conservation laws.

Now, it only remains to discretize the above equations in time. However,
it is not simple to find a time discretization that would result in a stable,
efficient, and formally high-order accurate method. At this point in the de-
velopment of the DG methods for hyperbolic conservation laws, this was the
main difficulty.

3.2 Implicit time-discretizations

Global time-discretizations. The presence of the nonlinearities f; prevents
the element-by-element computation of the solution that was possible in the
linear case considered by Reed and Hill [145]. This is so because it is no
longer possible to determine the characteristics explicitly. Thus, one is forced
to use implicit time discretizations and hence, to solve at each time step a
new nonlinear system of equations. This renders the method computationally
very inefficient for hyperbolic problems. In 1989, Bar-Yoseph [17] and in 1990,
Bar-Yoseph and Elata [18] explored this approach.

Local time-discretizations. A way around this difficulty was found inde-
pendently in 1994 by Richter [148], in 1996 by Lowrie [128] and Lowrie, Roe
and, van Leer [126], [127] and the work in [157], [179], and [40] by the group
of Haber and his collaborators. It consists of using space-time elements con-
structed in such a way that a local element-by-element computation is still
possible. In this volume, Lowrie and Morel [129] use this approach to deal
with hyperbolic systems with stiff relaxation; Carranza, Fang, and Haber [40]
use a space-time DM method to the simulation of oxidation-driven fractures
in super-alloys; and Yin, Acharya, Sobh, Haber, and Tortorelli [179] apply
this technique to perform elastodynamic analysis (see the application to pre-
cipitate nucleation and growth in aluminum alloy quench processes by Sobh,
Huang, Yin, Haber, and Tortorelli [157]). Also in this volume, Richter [149]
considers several ways to carry out this approach.

It is interesting to note that in 1990, Hulbert and Hughes [106] proposed a
space-time finite element method for elastodynamics that used a DG method
in time and a continuous-in-space approximation. This work, reminiscent of
the approach took in 1978 by Jamet [110] for parabolic equations, can now
be seen as a step toward the development of fully space-time DG methods
for hyperbolic problems.

Analysis of the DG method. To rigorously analyze the DG method in the
nonlinear case is very difficult; in fact, up to date there are only three results
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in this direction. The first was established in 1994 by Jiang and Shu [111] for
one-dimensional nonlinear conservation laws with strictly convex or concave
nonlinearities. It states that if the approximate solution converges, it con-
verges to the entropy solution; this holds for any degree of the approximating
polynomials.

The other two results hold for a version of the space-time DG method
for scalar nonlinear conservation laws that contains an additional term called
the shock-capturing term. In 1995, Jaffré, Johnson, and Szepessy [109] proved
the convergence of the approximate solution to the entropy solution. In 1996,
Cockburn and Gremaud [50] obtained the only a posteriori error estimate for
this method in the nonlinear case; they also proved, not only convergence,
but also an error estimate that yields the order of convergence of 1/4 in
L>(0,T; L) for possibly discontinuous solutions. These results hold in any
number of space dimensions and for any value of the polynomial degree.

3.3 Explicit schemes: The Runge-Kutta Discontinuous Galerkin
methods

The Euler method. To avoid the difficulty of implicit time discretizations,
in 1982, Chavent and Salzano [44] constructed an explicit version of the DG
method in the case of a one-dimensional scalar conservation law. They dis-
cretized in space by using the DG method with piecewise linear elements and
then discretized in time by using the simple forward Euler method. Unfortu-
nately, a classical von Neumann analysis shows that the resulting method is

unconditionally unstable when the ratio ﬁ—; is held constant; it is stable if ﬁ—;

is of order v/Az. This condition is reasonable if the method is used in con-
junction with explicit methods for convection-diffusion schemes, as done for
secondary oil recovery by Chavent and Jaffré [43], but it is a very restrictive
condition for hyperbolic problems.

Incorporation of the slope limiter. To improve the stability of the
scheme, in 1989, Chavent and Cockburn [42] modified the scheme by intro-
ducing a suitably defined slope limiter, following the ideas introduced in 1974
by van Leer [168]. They thus obtained a scheme that was proven to be to-
tal variation diminishing in the means (TVDM) and total variation bounded
(TVB) provided that the CFL number, f’ ﬁ—;, is less than or equal to 1/2;
convergence of a subsequence is thus guaranteed. Although the numerical
results indicate convergence to the correct entropy solutions, the scheme is
only first order accurate in time. Moreover, the slope limiter has to balance
the spurious oscillations in smooth regions caused by linear instability, hence
adversely affecting the quality of the approximation in these regions.

The first RKDG method. These difficulties were overcome by Cockburn
and Shu in [58], where the first Runge Kutta Discontinuous Galerkin (RKDG)
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method was introduced. This method was constructed by (i) retaining the
piecewise linear DG method for the space discretization, (ii) using a special
explicit TVD second order Runge-Kutta type discretization introduced by
Shu and Osher in 1988 [155] and in 1989 [156], and (iii) modifying the slope
limiter to maintain the formal accuracy of the scheme at extrema. The result-
ing explicit scheme was then proven to be linearly stable for CFL numbers
less than 1/3, formally uniformly second order accurate in space and time,
and total variation bounded in the means (TVBM). The numerical results
show second order convergence in smooth regions including at extrema, sharp
shock transitions (usually in one or two elements) without oscillations, and
convergence to entropy solutions even for non convex fluxes.

High-order accurate RKDG methods. In 1989, Cockburn and Shu
[56] generalized this approach and constructed (formally) high-order accu-
rate RKDG methods for the scalar hyperbolic conservation law. To device
RKDG methods of order k + 1, they used (i) the DG-space discretization
method with polynomials of degree k for the space discretization, (ii) a TVD
Runge-Kutta (k + 1)-th order accurate explicit time discretization, and (iii)
a generalized slope limiter. The generalized slope limiter was carefully de-
vised to enforce the TVBM property without destroying the accuracy of the
scheme. The numerical results, for k£ = 1,2, indicate (k + 1)-th order order in
smooth regions away from discontinuities as well as sharp shock transitions
with no oscillations; convergence to the entropy solutions was observed in all
the tests.

In 1994, Biswas, Devine, and Flaherty [36] introduced a new generalized
slope limiter. Although no stability results have been proven for this gener-
alized slope limiter, it has the advantage of dealing with local critical points
without the aid of any auxiliary parameter. Another distinctive feature is
that it can be readily used for hp-adaptivity purposes.

One-dimensional systems. These RKDG schemes were extended to one-
dimensional systems in 1989 by Cockburn, Lin and Shu [53].

Multi-dimensional scalar equations. The extension of the RKDG method
to the scalar multi-dimensional case was done in 1990 by Cockburn, Hou, and
Shu [51]. The main contributions of this extension are (i) some accuracy con-
siderations, and (ii) the extension of the generalized slope limiter.

It was found that in order to ensure formal accuracy of order k + 1 when
using polynomials of degree k, quadrature rules, exact for polynomials of
degree 2 k, should be used for the integrals inside the elements and quadrature
rules, exact for polynomials of degree 2 k+ 1, should be used for the integrals
on the faces of the elements.

The construction of the generalized slope limiter was not simple. This
is so, not only because of the more complicated form of the elements but
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also because of inherent accuracy barriers imposed by the stability proper-
ties. Indeed, since the main purpose of the slope limiter is to enforce the
nonlinear stability of the scheme, it is essential to realize that in the multi-
dimensional case the constraints imposed by the stability of a scheme on
its accuracy are even greater than in the one-dimensional case. Although in
the one-dimensional case it is possible to devise high-order accurate schemes
with the TVD property, this is not true in several space dimensions, since in
1985, Goodman and LeVeque [96] proved that any TVD scheme is at most
first order accurate. Thus, any generalized slope limiter that enforces the
TVD property, or the TVDM property for that matter, would unavoidably
reduce the accuracy of the scheme to first order accuracy. This is why Cock-
burn, Hou and Shu [51] devised a generalized slope limiter that enforced a
local maximum principle only; maximum principles are not incompatible with
high-order accuracy. No other class of schemes of second or higher order of
accuracy has a proven maximum principle for general nonlinearities f and
unstructured triangulations.

In 1997, Wierse [177] introduced and studied several interesting new slope
limiters for formally high-order accurate schemes defined in unstructured
triangulations.

Multi-dimensional systems. The extension of the RKDG methods to
general multi-dimensional systems was initiated in 1991 by Cockburn and
Shu in [57] and was completed in 1998 in [60] where applications to the Euler
equations of gas dynamics were displayed. One of the contributions of [60]
is the construction of a new, practical generalized slope limiter which works
very well in triangles and rectangles and with piecewise linear and quadratic
elements.

In 1996, Devine and Flaherty [73] introduced a parallel adaptive hp-
refinement techniques for conservation laws using the RKDG methods.

Numerical experiments for the Euler equations of gas dynamics were per-
formed in 1991 by Bey and Oden [32], in 1997 by Bassi and Rebay [26], in
1998 by Baumann and Oden [31] and by Warburton, Lomtev, Kirby, and
Karniadakis [172].

3.4 Other explicit time-stepping schemes

Time-stepping schemes different from the TVD Runge-Kutta time-stepping
used by the RKDG can give very good computational results. However, it
remains to be proven that those methods share with the RKDG methods the
same nonlinear stability properties.

3.5 The DG methods of Allmaras and Halt

Totally independently of the just described development of DG methods,
Allmaras and then Halt explored schemes which would now be considered
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DG methods. In 1989, Allmaras [5] introduced a DG method for the Euler
equations of gas dynamics; an earlier version of his algorithm appeared in the
1987 paper by Allmaras and Giles [6]. He used the Roe parametric variables,
piecewise linear test functions, a two-point Gauss quadrature rule on the
edges, and a three-stage second-order Runge-Kutta time stepping method;
he also took into account the curvature of the boundaries of the domain.
In 1992, Halt [99] extended Allmaras’ work to higher degree polynomials
and to general unstructured grids in two- and three-space dimensions. His
numerical test cases include the Ringleb flow, 2-D airfoils and the 3-D Onera
M6 wing. See also the 1991 and 1992 papers by Halt and Agarwall [100] and
[101], respectively. No slope limiters were considered by the above mentioned
authors.

3.6 Numerical experiments: Gas Dynamics

In what follows, we present some numerical results from some of the papers
mentioned above and some new results that display the performance of the
method when applied to the Euler equations of gas dynamics.

Approximation of the boundaries. In 1997, Bassi and Rebay [26] showed
with a remarkable experiment, the importance of using a good approximation
of the boundaries of the space domain. Here, we reproduce some of their
results to illustrate that point.

The test problem is the classical two-dimensional isentropic flow around a
circle. In Fig. 2, part of the grid is displayed and the corresponding solution
using P! elements is shown. Note that in this grid, the circle is approximated
by a polygon; since each of the kinks of the polygon introduces non-physical
entropy production, the approximate solution presents a non-physical wake
which does not disappear by further refining the grid! By simply taking into
account the exact shape of the boundary, a remarkably improved approxima-
tion is obtained, as can be seen in Fig. 3. Note also the improvement of the
approximation as the degree of the polynomials is increased from 1 to 3!

Spectral convergence. We consider the isentropic flow in the geometry
shown in Fig. 4; the numerical results we show are from the work of Warbur-
ton, Lomtev, Kirby, and Karniadakis [172]. Low-order methods erroneously
produce entropy from inlet to outlet for this problem. In Fig. 4 (bottom),
we show that the entropy errors converge ezponentially fast to zero as the
degree of the polynomials increases. A comparison is shown on the plot of
the bottom between a fully unstructured and a hybrid discretization; more
elements are used in the unstructured grid.

Approximation of contact discontinuities. Now, we consider the classi-
cal double-Mach reflection problem; we show results from the work of Cock-
burn and Shu [60]. In Fig. 5, we show details of the approximation of the
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density. Note that the strong shocks are very well resolved with both P! and
P2 elements. Also, note that there is a remarkable improvement in the ap-
proximation of the density near the contacts when going from P! elements
to P? elements.

Conclusions. The first experiment illustrates the fact that very good ap-
proximations of the boundaries are crucial. The second experiment shows
that the DG method can achieve spectral accuracy, and so, that polynomials
of high degree should be used when dealing with a smooth solution. Finally,
the last experiment shows that this is also desirable even when the solution
is not smooth.

3.7 New developments and applications

In this volume, Barth [23] presents a new simplified version of the DG meth-
ods for conservation laws that incorporates a symmetrization technique; De-
spres [72] presents a DG method for solving the Euler equation in an axisym-
metric geometry; Gremaud [98] presents an application of the DG method
to granular flow; and, van der Ven and van der Vegt [167] present a study of
the accuracy, resolution and computational complexity of a DG method.

4 Convection-diffusion systems

4.1 A DG method for convection-diffusion problems

In 1992, Richter [147] proposed a direct extension of the original DG method
to linear convection-diffusion equations. Richter proved that if the convection
is dominant, that is, if the viscosity coefficients were of the order of the
meshsize, the optimal order of convergence is k + 1/2 when polynomials of
degree k are used.

4.2 A coupled Euler/Navier-Stokes solver

In 1989, Allmaras [5], see also Allmaras and Giles [7], proposed to couple
his DG method for the Euler equations of gas dynamics and a compressible
Navier-Stokes solver. The two solvers were applied to different, overlapping
regions of the computational domain.

4.3 The Upwind-mixed methods for advection-diffusion
equations

In 1991, Dawson [63] introduced the so-called upwind-mixed methods (UMM)
for advection-diffusion problems. The main idea of these methods is to com-
bine a mixed finite element approximation for the second-order terms with an
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Rectangles P2, Ax=Ay =1/240

2.0 22 2.4 26 28

Fig. 5. Double Mach reflection problem. Blown-up region around the double Mach

stems. Density p. Third order P? with Az = Ay = 515 (top); second order P* with

Az = Ay = 545 (middle); and third order P? with Az = Ay = &5 (bottom).
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upwinding for the advective terms. Since the UUM always use discontinuous
approximations for the solution, this is a very natural combination. In 1993,
Dawson [64] extended his analysis to multi-dimensions, and in 1998, [66],
analyzed the application of the method to nonlinear contaminant transport
equations. All this work was done for the lowest-order Raviart-Thomas space.
Recently, Dawson and Aizinger [67] considered the UMM that uses the DG
method as its so-called upwinding scheme and obtained error estimates for
arbitrary degree polynomial spaces. For applications of UMM to transport
problems arising in porous media, see the references in [67].

4.4 A DG method for semiconductor device simulation

Strongly related with the above UMM method are the extensions of the
RKDG method to nonlinear, convection-diffusion systems of the form

Ou+V - -F(u,Du) =0, in (0,T) x {2,

proposed in 1995 by Chen, Cockburn, Jerome, and Shu [46] for the hydrody-
namic model for semiconductor device simulation and by Chen, Cockburn,
Gardner, and Jerome [45] for the quantum hydrodynamic model for semi-
conductor device simulation. In these extensions, approximations of second
and third-order derivatives of the discontinuous approximate solution were
obtained by using simple projections into suitable finite elements spaces. This
projection requires the inversion of global mass matrices, which in [46] and
[45] are ‘lumped’ in order to maintain the high parallelizability of the method.
Since in [46] and [45] polynomials of degree one are used, the ‘mass lump-
ing’ is justified; however, if polynomials of higher degree were used, the ‘mass
lumping’ needed to enforce the full parallelizability of the method could cause
a degradation of the formal order of accuracy.

In this volume, Cockburn, Jerome, and Shu [52] review some of the above
results and addresses the issue of the utility of modeling and simulation in
determinining properties of semiconductors.

4.5 DG-mixed methods for Compressible Navier Stokes

In 1998, Lomtev, Quillen and Karniadakis [125] used the DG-space discretiza-
tion method to deal with the convective part of the compressible Navier-
Stokes equations and used a mixed method to approximate the diffusive part
of the equations.

4.6 The method of Bassi and Rebay and the LDG method

In 1997, Bassi and Rebay [25] proposed an extension of the DG-space dis-
cretization method for the compressible Navier-Stokes equations. In this ap-
proach, the original idea of the DG-space discretization method is applied to



20 Cockburn, Karniadakis, Shu

both u and D u which are now considered as independent unknowns. Like the
RKDG methods, the resulting methods are highly parallelizable methods of
high-order accuracy which are very efficient for time-dependent, convection-
dominated flows. In 1998, Cockburn and Shu [59] introduced the local dis-
continuous Galerkin (LDG) methods, which are a generalization of Bassi and
Rebay’s approach, and proved stability and error estimates for the method.
The basic idea to construct the LDG methods is to suitably rewrite the
original system as a larger, degenerate, first-order system and then discretize
it in space by the DG method. By a careful choice of this rewriting and of
the numerical fluxes, nonlinear stability can be achieved even without slope
limiters, just as for the RKDG method in the purely hyperbolic case; see Jiang
and Shu [111]. The resulting method is element-wise conservative, a property
which is particularly difficult to preserve with high-order finite elements.
The large amount of degrees of freedom and the restrictive conditions of
the size of the time step for explicit time-discretizations, render the LDG
methods inefficient for diffusion-dominated problems; in this situation, the
use of methods with continuous-in-space approximate solutions is recom-
mended. However, as for the successful RKDG methods for purely hyperbolic
problems, the extremely local domain of dependency of the LDG methods
allows a very efficient parallelization that by far compensates for the extra
amount of degrees of freedom in the case of convection-dominated flows.

4.7 The LDG method for purely diffusive problems

The parabolic case. Next, we illustrate the definition of the LDG method
as applied to the heat equation with variable diffusion coefficient v(x):

ug— V- (vVu) = f, in (0,T) x £2,

We then rewrite the above equation as the following first-order degenerate
system:

u+V-q=Ff, in (0,T) x £2,
q+vVu =0, in (0,T) x £2.

and after multiplying by test functions w and v and formally integrating by
parts, we obtain

(utaw)K - (qJ vw)K + <q -1, ’lU)aK = (f: w)KJ
1
(V)K= (u, V- V)k +{u,v-ng)ox = 0.
We are now ready to define the LDG-space discretization method:

VK €Ty :

(un)e,w)k — (a, Vo)k + (h,w)ox = (fiw)k,  Yw € PHK),

1
(;qfhv)K - (Uh,v : V)K + <ﬁ/7v . n)f)K = 07 Vv e (Pk(K))d7
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where ¢ and @ are numerical fluxes that must be carefully defined.

Independently, in 1994 Giannakouros [95] and in 1997 Bassi and Rebay
[25], took their numerical fluxes q and 4 to be the arithmetic average of the
two values of q; and up at the boundary of the elements. Bassi and Rebay
[25] reported an order of convergence of order k + 1 for even values of the
polynomial degree k and of order k for odd values and in 1998, Cockburn and
Shu [59] proved this result. In 1999, Lomtev and Karniadakis [123], showed
numerical evidence that the method is exponentially accurate even for highly
distorted grids.

In 1998, Cockburn and Shu [59] showed that for a fairly general class
of numerical fluxes, the LDG methods are of order k when polynomials of
degree k are used. However, their numerical experiments indicate that the
order of convergence varies with the definition of the numerical fluxes and
that a simple choice gives the optimal rate of k + 1; in this volume, Castillo
[41] gives a proof of this fact.

The elliptic case. It must be pointed out that when applied to elliptic
problems, the LDG method can be ill-posed if the numerical fluxes are not
carefully chosen; this happens, for example, for the fluxes chosen by Gian-
nakouros and by Bassi and Rebay for their original DG scheme. This difficulty
was overcome in 1997 by Bassi, Rebay, Mariotti, Pedinotti, and Savini [28]
by means of a suitable modification of their original DG scheme; the result-
ing scheme was then further developed in 1998 by Bassi and Rebay [27]. At
the same time, Brezzi, Manzini, Marini, Pietra and Russo [38] analyzed this
problem and found several modifications resulting in well posed numerical
methods for which they proved optimal error estimates; the scheme devel-
oped in [28] and [27] is one of these methods.

4.8 Numerical experiments: Compressible Navier-Stokes

From now on, as is customary in the finite element community, we use p
instead of k to denote the degree of polynomials. The numerical results we
show next are from Lomtev and Karniadakis [123].

Transonic flow past an airfoil. First we consider a refinement study for
a transonic flow past an airfoil NACAQ012 at an angle of attack a = 10°,
freestream Mach number Ma = 0.8, and Reynolds number based on the
freestream velocity and the airfoil chord equal to Re = 73. The wall tem-
perature is equal to the freestream total temperature. The same problem is
considered in [25] and is one of the benchmark problems suggested in the
GAMM (1986) workshop [94]. The mesh is shown in Fig. 6; it extends 4
chords downstream and consists of 592 elements, which is about one-fourth
of the number used in [25]. Three different discretizations with p-refinement
were used corresponding to order 2, 4 and 6. The maximum order used in [25]
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was 3. In Fig. 7, we plot Mach contours for the first two discretizations (p = 2
and 4) that show the improvement in the solution as the polynomial order
is increased. A more quantitative comparison is shown in Table 1 where we
present the drag and lift coefficients for the three meshes; very good agree-
ment with the results of [25] is obtained. The same is true for the distribution
of the pressure and friction coefficients around the airfoil as shown in Fig. 8.

Table 1. Drag and lift coefficients corresponding to different p-refinements.

Item p=2 p=4 p=6

Cq 0.68287 0.67858 0.6758
Cy 0.47625 0.53022 0.53173
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Fig. 6. Discretization around a NACAQ0012 airfoil; 592 elements are used.

Supersonic flow past an airfoil. We now consider a supersonic flow past
a NACA 4420 airfoil at Mach number 2 and Reynolds number (based on
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and crosses are from the current simulation for p = 6.
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the chord length) 2400; the angle of attack is 20°. The domain extends from
1.25 chords upstream to 3.75 chords downstream and is discretized with 1492
triangles. Discretization and density contours and streamlines are shown in
Fig. 9; the results are identical to earlier results obtained with results using
a mixed formulation in [125]. Variable polynomial order is used from zero
(constant elements) around the shock to p = 5 in the wake. No flux limiters
or filtering were used in this simulation.

4.9 Numerical experiments: viscous MHD

The numerical results we show next are from the work of Warburton and
Karniadakis [171].

Simulation of the Orszag-Tang Vortex. We have performed a series of
detailed simulations in order to investigate the small-scale structure exhib-
ited in MHD turbulence. In particular, we consider a problem first studied
by Orszag & Tang (1979) [136] in the compressible case and later extended
by Dahlburg & Picone (1989) [62] to the compressible case. The initial condi-
tions are non-random, periodic fields with the velocity field being solenoidal.
The total initial pressure consists of the superposition of appropriate in-
compressible pressure distribution upon a flat pressure field corresponding
to an initial average Mach number below unity. It was found in [136] and
[62] that the coupling of the two-dimensional flow with the magnetic field
causes the formation of singularities, i.e. excited small-scale structure, which
although not as strong as the singularities in three-dimensional turbulence,
they are certainly much stronger than two-dimensional hydrodynamic turbu-
lence. Moreover, it was found in [62] that compressibility causes formation
of additional small-scale structure such as massive jets and bifurcation of ed-
dies. Our interest here is to investigate if we can capture these fine features
both on structured and unstructured meshes, as shown in Fig 10.
The initial conditions we used were:

. 271y . 27z .27y . dnx
p=1 u= —sm(T),v = sm(T),Bm = —sm(T),By = sm(T),
_ 1 8rx 4 drx 27y 2nx 27y 1 4y
p=C+ ZCOS(T) + gcos(T)cos(T) cos(T)cos(T) + ZCOS(T)’

where C fixes the initial average Mach number and p is the instantaneous
pressure for the equivalent incompressible flow.

We first simulate this MHD flow on a hybrid grid consisting of quadrilat-
erals and triangles as shown in Fig.10. We perform the simulations using the
formulation of Powell [141] for the magnetic field as well as the streamfunc-
tion formulation with the objective of investigating divergence errors in the
magnetic field. The rest of the parameters of this simulation are given in the
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Fig. 9. Discretization around a NACA 4420 airfoil (top) and density contours and

streamlines (bottom) at Mach number 2.
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Fig. 10. Hybrid mesh on the left and unstructured mesh on the right used for the
Orszag-Tang vortex simulations.

paper by Warburton and Karniadakis [171]. In Fig. 11, we plot streamlines
of the incompressible flow as well as the compressible flow at Mach number
0.4 and non-dimensional time ¢ = 2.0. These results agree very well with
the simulations of [62] at the same set of parameters. We note here that
the compressible flow exhibits structures of finer features compared to the
incompressible flow but the differences in the magnetic field are less obvious.

4.10 Baumann-Oden DG method

In 1998, Baumann and Oden [29] introduced a new DG method for the dis-
cretization of second-order problems; see also the paper by Oden, Babuska
and Baumann [133]. Since the method is not a mixed method, it results in
fewer degrees of freedom per element, a property that may make it competi-
tive in Navier-Stokes approximations. For diffusion problems, this method is
stable when polynomials of degree greater or equal to 2; adaptive hp-versions
for Navier-Stokes equations have been implemented which exhibit exponential
convergence rates. In this volume, Oden and Baumann [135] consider their
method for convection-diffusion and the Navier-Stokes equations; see also the
work done in 1998 by Baumann and Oden in [30]. In this volume, Arnold,
Brezzi, Cockburn and Marini [8] propose a unified framework which contains
almost all DG methods for elliptic equations including the Baumann-Oden
method.

In this volume, Béatrice Riviere and Mary Wheeler [150] presents an
error analysis of three interior penalty methods, some of which are related
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Fig. 11. Compressible Orszag-Tang vortex (t=2, instantaneous fields, Mach = 0.4).
Top: Incompressible flow; Left: Flow streamlines; Right: Magnetic Streamlines. Bot-
tom: Compressible flow; Left: Flow streamlines; Right: Magnetic Streamlines.
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to the Baumann and Oden method. Also in this volume, an extension of
the error analysis of the Baumann-Oden DG method to partial differential
equations with non-negative characteristic form, is presented by Siili, Schwab,
and Houston [162].

4.11 New developments and applications

In this volume, there are several new contributions to the development of DG
methods for convection-diffusion problems:

— Bassi [24] reviews his recent work on the high-order, implicit, DG solution
of the Reynolds Averaged Navier-Stokes equations coupled with the k-
omega turbulence model closure; Rebay [144] shows how to use a GMRES
solver in conjunction with the DG method for the compressible Navier-
Stokes equations; and Liu and Shu [122] consider the use of the DG
method for 2D incompressible flows.

— Prasad, Milovich, Shestakov, Kershaw, and Shaw [142] present a 3D un-
structured ALE hydrodynamic DG method; and Lomtev, Kirby, and Kar-
niadakis [124] introduce a discontinuous Galerkin ALE method for com-
pressible flows in moving domains.

— Dawson, Aizinger and Cockburn [68] apply the LDG method to contam-
inant transport; Schwanenberg and Kongeter [153] use the method for
shallow water equations; and Carranza, Fang, and Haber [40] introduce
an adaptive DG method for coupled viscoplastic crack growth and chem-
ical transport.

— Atkins [10] outlines the construction of a robust, high-order simulation
tool for aerospace applications.

5 Hamilton-Jacobi and second-order nonlinear
equations
5.1 The method

Recently, Hu and Shu [104] extended both the RKDG and the LDG method
to the Hamilton-Jacobi equation

us + H(Du) = f,
and to the general nonlinear second-order differential equation
us + F(u, Du, D?u) = f,

for which the mapping r — F(r,-,-) is increasing and F(-,-,X) > F(-,-,Y)
provided that X <Y.

The main idea is to exploit the equivalence of the Hamilton-Jacobi equa-
tion with the conservation law systems satisfied by the gradient of the solu-
tion and utilize the advantage of finite elements in maintaining the solution
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(not individual components of its gradient) as piecewise polynomials. A least
square procedure is used to apply the discontinuous Galerkin framework to
the conservation law system satisfied by the gradients, and the solution is
recovered from its gradients by using again the Hamilton-Jacobi equation.
Numerical results indicate that it is very important to keep the solution itself
a polynomial and use the least square procedure.

5.2 Numerical experiment: Motion by mean curvature

To illustrate the performance of the DG method, we consider the initial value

problem for the following nonlinear second-order differential equation:
cpt—(l—sK),/1+go§+go§:0, 0<zr<1l,0<y<1,
¢(2,y,0) = 1 = f(cos(2mz — 1)) (cos(2my — 1)),

where K is the mean curvature defined by

_ Paa(1+0)) — 2020200y + 0y (1+ ¢7)

K= 2 2\3
(1+¢2+¢7)2

?

and ¢ is a small constant. Periodic boundary conditions are imposed. This
problem was studied in 1998 by Osher and Sethian [137] by using the finite
difference ENO schemes.

We can see that the resolution is excellent even without using any lim-
iters. The singularity of the solution is captured sharply without noticeable
oscillations.

5.3 New developments

In this volume, Hu, Lepsky and Shu [103] present a study of the least square
procedure for DG methods for Hamilton-Jacobi equations. Also, Augoula and
Abgrall [12] develop a new algorithm for Hamilton-Jacobi equations.

6 Parallelization, adaptivity and implementational
issues

6.1 Parallelization and adaptivity

Parallelization strategies for the steady-state transport equation were devel-
oped in 1995 by Bey, Patra, and Oden [35] and in 1996 by Bey, Oden and
Patra [34]. They were based on the 1996 hp- a posteriori error estimate ob-
tained by Bey and Oden [33].

In 1994, Biswas, Devine, and Flaherty [36] carried out the first study of
parallelization and adaptivity for RKDG methods for nonlinear conservation
laws; a remarkable feature of this study is the use of their generalized slope
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Fig. 12. Propagating surfaces, rectangular mesh, ¢ = 0.

limiter to perform adaptive limiting. In 1996, Devine and Flaherty [73] de-
vised a parallel adaptive hp-refinement techniques for hyperbolic systems in
2 space dimensions; a local time-stepping was used. The crucial issue of load
balancing, which addresses the tension between parallelization and adaptiv-
ity, was considered in 1993 by Devine, Flaherty, Wheat, and Maccabe [75]
for two-space dimension problems, and for three-space dimension problems in
1994 by deCougny, Devine, Flaherty, Loy, and Ozturan [69], and by Ozturan,
deCougny, Shephard, and Flaherty [138], and in 1995 by Devine, Flaherty,
Loy, and Wheat [74]. Parallel strategies, like predictive load-balancing, with
local time-stepping techniques in the three-dimensional case have been de-
vised and tested in 1997 by Flaherty, Loy, Shephard, Szymanski, Teresco, and
Ziantz [91], in 1998 by Flaherty, Loy, Ozturan, Shephard, Szymanski, Teresco
and Ziantz [89], and in 1999 by Flaherty, Loy, Shephard, Simone, Szymanski,
Teresco and Ziantz [90]. Recently, Teresco, Beall, Flaherty, and Shephard
[165] extended this work and developed the TRELLIS framework and the
RPM parallel data management. In this volume, Flaherty, Loy, Shephard
and Teresco [88] report on the newest development of this technique.

In this volume, Aharoni and Barak [4] present an iterative, asynchronous
parallel algorithm for PDEs using DG discretizations.
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6.2 Spectral/hp Element Methods - The Basis

DG methods are particularly efficient when they are combined with high-
order discretization. To this end, Karniadakis and Sherwin [114] and War-
burton [170] have developed a hierarchical tensor-type basis extending the
original ideas of Dubiner [76]. This basis is appropriate for hybrid discretiza-
tions, it is a combination of structured and unstructured domains consisting
of polymorphic subdomains; for example, tetrahedra, hexahedra, triangular
prisms, and pyramids. For each of these subdomains they have developed a
polynomial expansion based upon a new local co-ordinate system [114]. These
expansions are polynomials in terms of the local co-ordinates as well as the
Cartesian co-ordinates (&1,&2,&3). This is a significant property as primary
operations such as integration and differentiation can be performed with re-
spect to the local co-ordinates but the expansion may still be considered as
a polynomial expansion in terms of the Cartesian system.

An important property is that these expansions are orthogonal in the Leg-
endre inner product. To wit, we define three principle functions ¢2(2), ¢?;(z)

ij
and ¢¢;;,(2) in terms of the Jacobi polynomial Pz?*ﬂ (2) as:

$¢(2) = P(2), L) = (152) P02,
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)1+J P2z+2]+2 0( )

¢z]k( ) (

Using these functions we can construct the orthogonal polynomial expansions:

Hexahedral expansion: Prismatic expansion:

bpar (&1,62,63) = B%(E1) 93 (E2) 97 (€3)  Bpgr(bn, Ea,E3) = 5 (€1) P2 (12) P, (€3)

Pyramidic expansion: Tetrahedral expansion:

Gpar (€1, €2,83) = ¢Z(7)_1)¢Z(772)¢§qr (m3) Ppgr(&1,&2,83) = ¢$(n1)¢f,q(n2)¢§qr(n3)

where
2(1 + 2(1 + 2(1 +
( &) -1 T = &_17 ne = &_17 n3 = &3,

T (h-&) (1—&) 1-&)

are the local co-ordinates illustrated in figure 14.

& & L one 2{;;‘3 I
13 & &l) 21y
20 21
“f n,=§, . Cirts gt Mk

%&% LNK@

Fig. 14. The local coordinates (£1,&2,&3).

The hexahedral expansion is simply a standard tensor product of Legendre
polynomials (since P)%(z) = L, (2)). In the other expansions the introduction
of the degenerate local co-ordinate systems is linked to the use of the more
unusual functions d)ﬁ-’j (2) and ¢f;;(2). Both these functions contain factors

of the form (152)17 which is necessary to keep the expansion a polynomial
of the Cartesian co-ordinates (&;,&s,£&3). For example, the co-ordinate 7y in
the prismatic expansion necessitates the use of the function ¢? (£3) which

q
introduces a factor of (%) . The product of this factor with ¢7(n2) is a

polynomial function in & and £3. Since the remaining part of the prismatic
expansion, ¢5(£1), is already in terms of a Cartesian co-ordinate, the whole
expansion is a polynomial in terms of the Cartesian system.

The polynomial space, in Cartesian co-ordinates, for each expansion is:

P =Span{¢} & &3} (1)
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where pgr for each domain is

Hexahedron 0 < p< P,0< ¢ < Py, 0<r <P,

Prism 0<p<Ph,0<¢<P, 0<qg+r<Ph;, )
Pyramidic 0<p<P,0<¢< P, O0<p+q+r<bh;,
Tetrahedron0 < p < P,0<p+qg< P, 0<p+qg+r < Ps.

The range of the p, g and r indices indicate how the expansions should be
formed to generate a complete polynomial space. We note that if P, = P, =
Pj then the tetrahedral and pyramidic expansions span the same space and
are in a subspace of the prismatic expansion which is in turn a subspace of
the hexahedral expansion.

An important property of the hybrid spectral basis is that it is orthogo-
nal in the new coordinate system. This simplifies greatly the discontinuous
Galerkin formulation, since all mass matrices are diagonal and their inversion
is trivial.

6.3 Quadrature-free implementations

In 1998, Atkins and Shu [11] introduced the first quadrature-free implemen-
tation of the RKDG and LDG methods. The idea is to use an easily manipu-
lated local basis, such as the local basis used in the Taylor expansions at the
center of the cell, and expand the nonlinear terms in a (suitably truncated)
polynomial in this local basis based on the solution itself. The integration of
products of polynomials in this local basis can be precomputed and stored,
in fact a similarity transformation allows one to only store extensive data for
one reference object in each class of elements (triangles, quadralaterals, ele-
ments with curved boundaries, etc.). Significant speed up can be obtained for
linear problems and simple nonlinear problems such as Euler equations with
only multiplicative nonlinearity and one division (by density). The coding
structure is also simplified in this formulation.

6.4 Object-oriented implementations

Several object-oriented implementations of DG methods have already been
developed. The code NEKTAR (freeware), developed at Brown University,
is written in C++ and MPI for parallel implementation, is being currently
used in more than twenty universities, national laboratories, and industries.
As pre-processor, it uses the code FELISA [139] to generate 2D and 3D grids
and METIS [115] for parallel domain decomposition. Specifically, to obtain
the partition of the 3D mesh for simulation of compressible Navier-Stokes
and viscous MHD, NEKTAR uses a multi-level graph theoretical approach,
similar to the one used in METIS, which, however, takes into account the
p-modes on each element by using appropriate weights. The code allows for a
variable polynomial order per element and for all different shapes of elements
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including tetrahedra, hexahedra, triangular prisms, and pyramids using the
tensor-product Jacobi basis described earlier. This discretization flexibility is
useful for complex geometry simulations, especially for viscous compressible
and MHD flows and leads to large parallel efficiencies due to the high volume-
over-surface ratio associated with the p-expansions.

The TRELLIS framework and the RPM data management system are
also object-oriented implementations; see the 1998 paper by Teresco, Beall,
Flaherty and Shephard [165].

In this volume, Atkins [10] reports on efforts towards the contruction of a
high-order simulation tool for aerospace applications based on DG methods.
Also, Prasad, Milovich, Shestakov, Kershaw and Shaw [142] describe a 3D
ALE version of a DG method for solving hydrodynamic problems relevant to
inertial confinement fusion.

7 Open problems and concluding remarks

7.1 Open problems and future developments

One of the main challenges for the development of finite element methods is
the construction and analysis of efficient techniques for problems in computa-
tional fluid dynamics. In what follows, we discuss open questions and future
developments for one of those methods, the DG methods.

Local conservativity. It is well known that practioners in the area of nu-
merics for nonlinear conservation laws, overwhelmingly prefer locally conser-
vative numerical schemes. This is not the case for elliptic or parabolic equa-
tions, however, for which the widely used classical finite element methods are
not locally conservative. These points of view clearly clash when the issue of
how to approximate convection-diffusion problems arises. A deep analysis of
these two properties constitutes a very interesting open problem. An effort
in this direction can be found in this volume in the paper by Hughes, Engel,
Mazzei, and Larson [105].

Slope limiters. An important component of the RKDG method for tran-
sient nonlinear hyperbolic systems is the generalized slope limiter. Although
this slope limiter does not seem to be needed in computations involving dif-
fusive flows, it is necessary for the current DG methods for purely hyperbolic
problems. The slope limiter used in the RKDG methods involve a parameter
(which in one-dimensional scalar conservation laws is nothing but an upper
bound of the second-order derivative of the solution at critical points) by
means of which the limiting does not destroy accuracy at critical points. An
efficient way of estimating this parameter in terms of the computed approx-
imate solution remains to be obtained. Another challenging problem is how
to devise a slope limiter that is free from such a parameter. Finally, since the
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slope limiter is computationally expensive, it would be very useful to devise a
DG method that does not have a slope limiter and remains nonlinearly stable
and high-order accurate.

Time-steppping. High-order accurate time-discretizations which are capa-
ble of treating the convective terms explicitly and the diffusive term implicitly,
if necessary, have not been developed yet and are in high demand nowadays.

Also, in order to be able to do adaptivity while maintaining the high
parallelizability of the DG methods, new high-order accurate time-stepping
methods would have to be created which could use different time steps at dif-
ferent locations. The use of space-time DG methods could be a possible way
of overcoming this difficulty, but they tend to be rather difficult to code— and
are not very efficient. Another possibility is to extend to high-order accurate
schemes the approach used in 1995 by Dawson [65] to devise a first-order ac-
curate, conservative variable time-stepping schemes. Non-conservative time-
stepping methods can also lead to efficient time-discretizations, but one has
to be very careful to exert a tight control on the loss of mass, especially
near the discontinuities. A very interesting example is the local time step-
ping technique introduced in 1997 by Flaherty, Loy, Shephard, Szymanski,
Teresco, and Zianz [91].

Quadrature crimes and over-integration. In 1998, Atkins and Shu [11]
introduced a quadrature-free implementation of the RKDG method. They
used truncated expansions of the nonlinear integrands that could then be
evaluated exactly. A challenging problem is to determine the way the above
mentioned expansions have to be truncated to ensure both stability and ac-
curacy of the resulting DG method.

In this volume, Lomtev, Kirby, and Karniadakis [124] show that, in or-
der to produce high-quality approximations, over-integration of one or even
two extra degrees of accuracy is necessary when steep gradients on the ap-
proximate solution appear near the boundary. Although the LDG method
have been proven to be stable, even for nonlinear convection, see [59], such
result assumes ezact integration. A systematic study of the dependence of
the stability of the LDG method for nonlinear convection with respect to the
quadrature rules is an interesting open problem. For elliptic equations, work
in this direction was pursued in 1990 by Maday and Ronquist [131] on the
hp-Galerkin/spectral method.

Approximation of singularities. It is very well known that singularities
often appear in nonlinear and even linear flows. In the past, to deal with those,
ad hoc strategies have been employed. An example is the idea introduced in
1984 by Woodward and Colela [178] to deal with the corner singularity of
the forward facing step test problem. In 1998, Cockburn and Shu [60] showed
that to deal with that singularity, it is enough to simply refine the mesh
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around the corner, as it is customary in standard finite element methods. A
significant effort towards a systematic handling of singularities, in particular
in fluid dynamics, is being carried out by Schwab [151], [152].

Steady-state computations Efficient solvers for steady-state computa-
tions need to be developed; these solvers are also needed when implicit dis-
cretizations in time are used. In this volume, Rebay [144] shows how to use
the GMRES for DG methods for compressible Navier-Stokes equations.

Error estimation. Several a priori and a posteriori error estimates are
currently available for DG methods. For the linear case, see, for example, the
review of a priori error estimates in the lecture notes of Cockburn [47], [48];
for a posteriori error estimates, see the lecture notes of Siili [159], [160]. See
also the recent papers by Falk and Richter [87], by Houston, Schwab, and Siili
[102] and the paper in this volume by Siili, Schwab, and Houston [162]. For
the nonlinear case, see the 1996 paper by Cockburn and Gremaud [50] and
the 1999 lecture notes by Cockburn [49]. This is a rapidly developing area
that deserves special attention since its development will lead to computations
with a preassigned, guaranteed accuracy. Refinements of the above mentioned
results and adaptivity strategies based on them which fully take advantage
of the use of discontinuous approximations will be developed in the coming
years.

Super-convergence. In 1994, Biswas, Devine, and Flaherty [36] gathered
numerical evidence that, when rectangular elements are used, the approxi-
mate solution of the DG method super-converges at the Gauss-Radau points
and exploited this for adaptivity purposes. This fact was recently proven [3];
see also the papers by Adjerid, Aiffa and Flaherty [2] and [1]. The search for
super-convergence points in simplexes remains an interesting open problem.
Also, the way to exploit the super-convergence of the postprocessed solution
obtained by Cockburn, Luskin, Shu and Sili [54] for adaptivity purposes
remains a challenging open problem.

Multiresolution analysis. The incorporation of multiresolution analysis
into the finite element method is an exciting undertaking (which has to be
differentiated from the standard finite element hp-refinement). One of the
main difficulties is devising of wavelets satisfying boundary conditions, but
with the use of the DG method this is no longer a requirement. As a conse-
quence, the use of wavelet-based discontinuous Galerkin methods constitutes
a possible breakthrough in this direction. In this volume, Coult [61] provides
a most needed introduction to the subject.
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Relation of the LDG method with other methods.

Mixed methods for elliptic equations. When applied to elliptic equa-
tions, the LDG method can be considered to be a mixed method. How-
ever, it was originally devised by using discretization techniques closer to
convective problems rather that to elliptic ones. This is reflected, for ex-
ample, in the fact that error estimates for LDG methods can be obtained
without having to deal (explicitly) with the classical inf — sup condition!
The relationship of the LDG method with standard and stabilized mixed
methods (and their hybridization) for elliptic equations is still unexplored.
Penalty methods for elliptic equations. The relation of the LDG
method with the DG method of Baumann and with the interior penalty
methods of Baker [15] (1977), Wheeler [176] (1978), Arnold [9] (1982),
and Baker, Jureidini, and Karakashian [16] (1990), is another interesting
open problem. In this volume, Arnold, Brezzi, Cockburn and Marini [8]
propose a unified framework that includes almost all the numerical meth-
ods proposed for elliptic equations that use totally discontinuous finite
element discretizations.

Upwind-Mixed Methods The relation between the Upwind-Mixed
Methods introduced by Dawson [63], [64], [65], [66], and [67] and the
LDG methods remains unexplored. In this volume, a first step towards a
thorough comparison of these methods is presented by Dawson, Aizinger,
and Cockburn [68]. An interesting point is to find out if the use of dis-
continuous discretizations of second-order terms have any advantage over
the classical mixed finite element approximations.

Streamline diffusion methods. The relationship between DG meth-
ods and streamline-diffusion methods is quite close but has never been
studied. For example, Cockburn and Gremaud [50] analyzed these two
methods as applied to the nonlinear scalar conservation law with the
same technique. See the work of Houston, Schwab and Siili [102] in this
direction. Also, there is a close relationship between the generalized slope
limiters that some DG methods use and the so-called shock-capturing
terms embedded in the definition of the streamline diffusion methods;
this relation is still unexplored. An effort in this direction is the paper
in this volume by Hughes, Engel, Mazzei, and Larson [105] in which a
comparison of discontinuous and continuous methods is offered.

The cell discretization method. In this volume, Greenstadt [97] and
Swann [164] review their work on the so-called cell discretization method.
This is a very interesting method related to nonconforming methods for
elliptic equations and possibly to some DG methods.

7.2 Conclusion

Let us conclude this review by saying that the future development of DG
methods which will take place in the next few years is an exciting scien-
tific undertaking. Witnesses to the rapid incorporation of the finite element
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methodology in computational fluid dynamics are the books by Schwab [151]
and Sherwin and Karniadakis [114]; see also the lecture notes of Cockburn
[47], [48], Schwab [152], and Siili [159], [160].
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