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Abstract

This work is devoted to the investigation of the quantum mechanical systems on the two
dimensional hyperboloid which admit separation of variables in at least two coordinate sys-
tems. Here we consider two potentials introduced in a paper of C.P.Boyer, E.G.Kalnins and
P.Winternitz, which haven’t yet been studied. We give an example of an interbasis expansion
and work out the structure of the quadratic algebra generated by the integrals of motion.

1 Introduction

Superintegrable systems on the two-dimensional hyperboloid were introduced and developed
in the papers [1, 2, 3]. In distinction to the cases of two-dimensional Euclidean space and
the two-sphere, the classification of superintegrable systems on the hyperboloid is difficult.
To date only the four potentials studied in [3] and two more listed in [1] are known. In
the present paper two potentials are considered, which were constructed in the work [1] but
have not previously been investigated. These potentials both have only a finite number of
bound states. At this point we have treated all the potentials that arise by restriction from
hermitean hyperbolic space. We follow the approach of [3], which contains an introduction
and motivation.

The two dimensional hyperboloid is characterized via the cartesian coordinates wg, wy,ws

where w2 — w? —w? = 1,wy > 1. The requirement wy > 1 means that we consider only



upper sheet of the double-sheet hyperboloid. Throughout this paper we will consider the
Schrodinger equation on the hyperboloid in the form (A =m = 1)

HY = (37 +V) U= B (1)
where V is a potential function and the Laplace-Beltrami operator Appg is written as
Apg = K + K; — M. (2)
Here K3, Ky, My generate the Lie algebra so(2,1) [4, 5]
K3 = w0y, + w10y, K =wol,, +w0,,, M =w0,, —w0,,. (3)
and
[Ks3, K] = My, [Ky, Mi]=—Ks, [Ks, M| =K, (4)

The Schrodinger equation (1) for V' = 0 separates in nine coordinate systems [6]. Introduc-
tion of a potential breaks the symmetry and, in general, reduces the number of coordinate
systems permitting separability, usually to zero. We consider the following two potentials
(see Table), constructed in [1], for which (1) is superintegrable.

Table

Potential V(w) Coordinate system
Equidistant
Elliptic-parabolic

_ a2 A 2_wotw

1=~ Gy TGl
Hyperbolic-parabolic
Horicyclic
Equidistant

V= 4 4 42 e

Wa (‘*’(2)"""%)2

Semi-Hyperbolic
_I_(a2 _ 32) wg_wf

/ (Wg _|_w% )2

Recall that (1) is superintegrable for a given potential V' if it is separable simultane-
ously in at least two coordinate systems.

2 First Potential

The first considered potential is




where «, 3, are positive constants . The corresponding Schrodinger equation admits separa-
ble solutions in four coordinate systems: equidistant, elliptic-parabolic, hyperbolic-parabolic
and horicyclic.

2.1 Solutions of the Schrodinger equation

1.1 Equidistant coordinates. In this coordinate system

wg = cosh 7y cosh 73, w; = cosh 7y sinh 75, wy = sinh 7y

[1, T2 € (—o0,00)] the potential Vi has the form

ol 1 % —~*(cosh 7y —sinh 73)?
v = 0
i(m,72) sinh?7  cosh’ry (coshry —sinhry)* v
After putting
U(ry,79) = (Coshrl)_1/251(7'1)52(72) (7)
we come to the system of equations:
d252 2 Q2 4719 .2 279
d—7'22 + [—,u — 203%™ 4+ 2v%e ]52:0 (8)
d251 1 /1‘2 — 3 20
g 2F — — 4 _ S1=0 9
dr? + [( 4) + cosh?7  sinh®*7 ! ®)

where p is the equidistant separation constant. The first equation (8) could be considered as
a one dimensional Shrodinger equation for the Morse potential [9] and the orthonormalised
solution is given by the expression:

2ul’ 1
52(7—2) = S(ﬁvu)(z) — \l /'[’ (m —I_ /LL + )e—z/ZZu/Z 2F1(_m’ ﬂ/ _I_ 1’ Z)

m m!I%(p 4+ 1)
2um!
B e /e = V2pe*™ 10
e z z), =z Be
'm+p+1) m(2) (10)

where L” (z) are the Laguerre polynomials [7]. The separation constant is quantized as

PR L
peEme it g S SL(@% 1)1 )

The second equation (9) represents the modified Poschl-Teller equation [3, 8]. The orthonor-
malised wave function is given by:

Si(m) = S(%M)(T ) = 2(p — \/m— 2n — 1)I'(p — n)n!
o - ' 1 F(ﬂ_\/m—n)r(l—{—n—}—\/M)

« (Sinh 7_1)%+1/2a2—|—1/4(cosh Tl)%_lup"gw/2a2+1/47—ﬂ)(cosh 27_1)7 (12)
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with n=0,1,... [% (N —1—/2a% + 1 ], where P{*F)(z) is the Jacobi polynomial [7]. The

quantized energy 1s

1
Ey = _§(u—,/2a2+1/4—2n—1)2+
1 2\ 1
= ——[2N 424+ /202 4+ 1/4 — - 13
2( +2+14/2a%2 + 1/ ﬂﬁ) +3 (13)

where N = m + n is the principal quantum number and the bound states occur for

3 (7~ o) v

The orthonormalized total wave function W,,, (7, 72) is given by (7), (10) and (12).

QO | =

0<NL

The symmetry operator describing this coordinate system is

wo + w wo + w
qu;nm(Tla 7-2) = l 2/32 <WZ — (.()1) + QVQﬁ] q}nm(Tlv 7-2)
2 2
= 2m — 1 + ) Uom (71, 72) (15)
(=14 75

1.2 Horicyelic coordinates. In the horicyclic coordinates

:E2+y2—|—1 $2—|—y2—1 T
_ - 7 - == 1
o Zy y W1 Zy y W2 ya ( 6)
[y > 0,2 € (—oo, 00)] the potential V] is
Vilea) = | % + a4 = 7 )
and the Schrodinger equation has the following form
2 2
- —y Jan. Zi gt L _agyy 272]\11(:1%1/) = EV(z,y) (18)
dx?  a? @y2
Via putting
U(z,y) = ¢i(x)¥a(y) (19)
it admits a separation
N 22 O ‘
d*y E .
2 0 ) = g ] v = 2
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where Ay and A, are the horicyclic separation constants with the relation: Ay + Ay = 1.
The orthonormalized solutions of the equations (20), (21) for (—2F + 1/4) > 0 are

(z) = @ () = ni!(v23)1/2
Ya(z) = b P(e) JF(”HF\/MJA)

2

< VR IR gy .

na!(v23)1/2
, = 5B =
¢2(y) = 'L/}nz (y) \IF(nQ_}_\/W‘i‘l)
o NI sy

The separation constants Ay, Ay are quantized as:

2 2
)\1:%(2”1—“/202—%1/4—%1)—1; Ay = \/;ﬂ(2n2+\/—2E+1/4+1)+1 (24)

v

and according to the relation Ay + Ay = 1, we come to the energy spectrum as in (13). The
operator characterizing the separation in horicyclic coordinates is:
23%ws3 2a% (wo — wy)?

2 —I_ 272] \I}nan ($7y)

(wo — w1)? w3

LQ\I}MTLQ ('1;7 y) = l([(Q - M1)2 -

- _ [zﬂﬂ(znl +y/202 +1/4+ 1)+ 272] Uyns (2, 9) (25)

1.3 Elliptic—parabolic coordinates. In this coordinate system

cosh? a + cos? f sinh?a — sin? 6
W =

wy = , wy = tanhatané, (26)

2coshacosf ’ 2 cosh a cos 0

[a >0, 0 € (—7,7)] the potential V; has the form:

2 2
Vi(a,0) = cosh”acos” 0 [ﬂ%cosh2 asinh?® a + cos® 0 sin® )

cosh? a — cos? f

1 1
- 72(Cosh2 a — cos? 0) + a? ( + )] (27)

sinh?a  sin%é

The Shrodinger equation is:

1 cosh?acos?8 [ 02 2a?
- = —— — 283%cosh? a sinh? 2~% cosh?aq — ———
2 cosh? a — cos? 0 [Da? P coshasinh”a + 2y cosh™a sinh” a
0? 202
+ == —23%cos’Osin® 0 — 2y* cos’ — ——|¥(a,0) = E¥(a,0) (28)
00? sin” 6



Putting for the wave function W(a,8) = S(a)S(0), after separation of variables we get two
identical equations:

d*S(p) 9132 2 12 9.2 2 207 2K ‘
i + |A — 28% cosh” psinh® p + 29" cosh® p — b N ,0] S(ip)=0 (29)
where X\ is the elliptic—parabolic separation constant and p = a,:0. After changing the

variables = cosh® p in eq. (29), we obtain

d? d
4ax—mz£+2@x—mgg+ A —28%x(x — 1)+ 2%z —

202 2F

z—1 z

]Szo (30)

Thus the region = € [1,00] in eq. (30) belongs to the wave function S(a) and = € [0, 1] to
the wave function S(6). Putting

S(z) = (x — 1)°ae V2G(2), (31)
where
1 1 1 1 1 1
— — - 2 _ == - _E - ‘ 2
s= 1t BV g it +3 (32)
we get
4G I714+4 1+4s 4571dG N
PR H_l—ﬁ]a (33)
N 1{ (292 —4B(1 +2(1 4 5))/V2]x + v+ V2B(1 + 4t) + 4(t + 3)2}G 0
4 z(x—1) B
If we now substitute
N
G(a) = [](x — ) (31)
=1

Q<

and take into account (32), we find that 6; satisfies the equation:

. B V2y?
20,(1 -6, +—=+2(1-6,)N + 0;
( ) kZ::l O —0; V2 ( ) 45
ki
+ L + 22+1+1 0 (35)
a? 4+ — = 0.
Vo VR
The quantization for the energy is given via:
\/ 2E+1+\/2 2+1+2N+2 L 0 (36)
J— p— a — —_— =
1 1 NG



and we obtain the expression (13). The separation constant A is:

Z: (\/_23 1)2+f/—%(1—|—\/2a2—|—i)—272. (37)

Thus the total solution ¥(a, 8) is represented as:

Unpo(a,0) = Sny(a)Sn,(0) = (sinhasin0)5+V2+E (cosh a cos ) 755~V 2+ 572V =3

ﬁ 2 2 al 2 _p. 2p_p. :
exp{—ﬁ(cosh a + cos 9)}g(cosh a—0;)(cos*6 —0,) (38)

where p and ¢ is the number of zeroes for the wave functions S(a) and S(6) in the regions
[0,1], [1, 00] correspondingly; and the total number of zeroes is N = p + q.

Eliminating the energy E from equation (30), we see that the additional integral of
motion here is

2 2

! cosh? aa— + cos? 98— — 26 ((:osh4 asinh? a

LsWnpg(a,6) = cos? @ — cosh? a{ Oa? 002

+ cos*#sin? ) + 2"}/2(COSh4 a — cos® ) — 20z2(coth2 a — cot? 0)}\11Npq(a, 6)

. , 2 o2 . . 2
_ {—(1(2—M1)2—K§+2ﬂ2(w0+w1) T2 492 (L wl)

(‘wo - 'w1)2 w2

2 Wo

- 1 b, 0) = MWy (a,0). (39)

Wy — W

1.4 Hyperbolic-parabolic coordinates. In this coordinate system

cosh? b + cos? 6 _ sinh? b — sin% 6
2sinh bsin 6 wr = 2sinh bsinf ’

wo = wy = coth beot 6, (40)

[b>0,0 € (-7, 7%)] the potential V; has the form:

sinh? bsin® 6

sinh? b + sin? 0

Vi(b,0) = |8*(sinh? b cosh? b+ sin? 0 cos? 0)

— 72(sinh2 b+ sin? ) + o’ ( ! — ! ) ] (41)

cos?f  cosh?b

The Shrodinger equation is

1 sinh?bsin?6 [ 92 2a?
— Sl Sl Zﬁ sthbcosh?b—l—Z’y sinh?b+ ——— @

2sinh? b + sin? 6 b2 cosh? b
s in? o0+ 297 sin? 0 — 22 U(b,0) = EV(b,0) (42)
592 sin” # cos 7% sin Y, ,0) = ,0).



Putting for the wave function W(b,80) = S(b)S(0), after separation of variables we get two
identical equations:
d*S(p) T a? E

2| = — 3% sinh? p cosh” ? sinh? ]S =0 43
dp? + 2 §7sinh” pcosh®p+ 77 sin p+cosh2p+sinh2p 2 (43)

where 7 is the hyperbolic—parabolic separation constant and p = b,:0. After changing the
variables x = sinh® p in eq. (43), we come to the equation

d*S ds o 9 22 2E
1z (r—i—l)ﬁ—}—Z(Zr—i-l)d——{- T=28%(x+ 1)+ 2y $+x—|—1 —i-?] S=0. (44)
Choosing
N
P(z) = (1 + 2)*zte V2] (x - 6;) (45)
=1

where t and s are given by the formulas (32), we obtain the energy spectrum (36). Here 6;
satisfies the equations

N s V27

v 1
—— —j2224+ - =1 = 0. 46
vas VT o)
The separation constant 7 is:
_ Y ( )2 43 / 1
—1) — —=[1+1/2a2+ — | + 29, (47)
Z_: V283 V2 4

so the total solution W(b,#) is represented as:

Unik(b,0) = Sni(b)Sni(6) = (cosh beos )7V 2%*+5 (sinh bsin 9)}7ﬁ_ V20 oINS

5 - 1.2 s 2 al c 2 N ain?2 .
exp{—ﬁ(smh b — sin 0)}2(81nh b—0;)(sin“ 0+ 0;). (48)

The total number of zeros is N, and k of them are located in the interval [—1,0] and [ are
in [0, oco].
Each solution Wy.(b,8) satisfies the eigenvalue equation

1 0* 0*
LyUny(b,0) = —m{ sinh? bw — sin GW —2/3? (COSh2 bsinh* b

— cos?#sin? ) + 272(sinh4 b — sin* 6) + 2&2(tanh2 b+ tan? 9)}\111\%(6, 6)

(wo + ‘wl)2 — UJ% 992 (‘wo — ’w1)2

(’wo - 'w1)2 ws

- {(](2 - M1)2 - [(:’3 —|— 262

2 W

— 4"}/ }\I/le(b,(g) = T\I/N”C(b,@). (49)

Wy — W



2.2 Algebra

Among the operators {Lq, Ly, L3, L4}, corresponding to the four separable coordinate sys-
tems, only two are independent, as

L3 - _L2 - Ll, L4 - L2 - Ll. (50)
Consider the operators Ny, Ny and R where

N1 = zg :Ll, N2 :[le :LQ—Q"}/Q,

_ 2
R = [NI,NZ]=z{fx’s,{f@,Ml}}—2{1&’371"3}—2{1"372‘43}*8[0‘2(%) T
2

2

w 2 1652w 8~2w
+ﬁ% 2)]m+Tf;me—MMH-72@m—m)

Wp — Wy wo — wi) Wp — Wy
[ ety e L2 61)
We have
[R,Ny] = —8N;—643*H — 167*Ny — 323*N; + 163%(4a® — 1) (52)
[R,N,] = 4{Ny, Ny} +32y*H — 16Ny + 16v*N; + 167*(2a — 1) (53)

8 176
R = SNy, Ny Ly} = 0 N2 4 320°N2 4 12802 B 4 649 HN, + 1285 H N,

128 359
+1@%%Nﬂ+«;+%m%ﬁﬂ+@mv__?Vw%

128

ERid

64
—p*— 4872)

352
+ <—§———128a 3 )Aﬁ—+(128a4ﬂ2—k12874a2 3

where {A, B} = AB 4+ BA and
{A,B,C}=ABC+ ACB+ BCA+ BAC + CAB+ CBA.

The integrals of motion Ny, N, and H generate a quadratic algebra.

2.3 Interbasis expansion

For a fixed value of energy, we can write the equidistant wave function (7) in terms of the
horicyclic ones (19) as

ni+ng

s (2, ) }: Wi (e, B,7)¥m(a, b) (54)

where ny + ny = n + m. The connection between the equidistant (a,b) and horicyclic (z,y)

coordinates is |
b

cosha’

(55)

¢ =e"tanha, y=c¢e



Going over to the horicyclic coordinates in the left side of expansion (54), then considering
the limit & — oo and using the asymptotic formula for Laguerre polynomials [7]

x?’b

lim L%(z) — (—1)"— (56)

we see that dependence on b cancels on both sides of (54). Now using the orthogonality con-
dition for the angular wave functions (12) we find the following expression for the interbasis
coefficients W™ .

wn_(q) m!n!28(pu —d —2n — DI'(p +m + 1)I(g — n) o (57)
mnz nilnglpl'(ng +d+ Dl'(ne+d+ 1)I'(n+d+ D' (g —d —n) ™™
where
+co
B = / (sinh a)1+2d+2”1(cosh a)l_QM_QmPéd’_“)(cosh 2a) da (58)

and d = /2a? + 1/4. The integral B"™ can be evaluated by expressing the Jacobi polyno-

mial through the hypergeometric function oFy [T]:
L4 41) (—n,n—l—oz—l—ﬁ—l—l‘l—l-l’)
TG+ 1L)n! 27 B+1 2 )
Representing the function 5/} as a series we come to a sum of integrals, each of which can
be calculated by using the formula [7]:
1 (1 +a -«

+oo
/ (sinh 7)*(cosh 7)™ dr = =B ,
0 2 2 2

(59)

) , [Rea > —1,Re(a— ) <0]. (60)

We thus obtain

— (-1)% mIV28(p —d — 2 — 1) (4 + m)T(ny + d+ 1) 1)

g 2 nlnynalpl(ng +d+ D' (n+d+ D)I'(g —n —d)

() (p+m—d—mny —1) 2 <—n,n—}—d—/¢+1,1—u—m 1)'
VG =N+ m) Lo 2 d g
Alternatively, by using the formula [10] for the Hahn polynomials A{*%)(z, N).
_ (=" I(N)I(B+n+1) o (—n s a+B8+n+1; —x
T (N —n)D(B+1) >2\B+1;1-N
we obtain the following expression for the expansion coefficients

W (=)™ | m!n!28(p —d —2n — 1)(p + m)
mnz 2 nilnalpl'(n +d+ DI'(g —n — d)

1) (62)

'g+m—-—d—ny—n—1) (63)

I'(ni+d+ DI —n)
I(ne+d+ 1)I'(p+m)

hgzd’_“)(p—{—m—{—l,,u—{—m—d—nl - 1),

in terms of Hahn polynomials.
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3 Second Potential.

The second considered potential is

2 2 _ 2
2 Wowr +(a? - 3?) Wo w1

R P (@ 1)

Ve = (64)

where «, 3 and ~ are positive constants. The corresponding Schrodinger equation admits
separable solutions in two coordinate systems: equidistant and semi-hyperbolic.

3.1 Solutions of the Schrodinger equation

2.1 Equidistant coordinates. In this coordinate system

wg = cosh 7y cosh 75, w; = cosh 7y sinh 7y, wy = sinh 7y, (65)

(11,72 € (—o0, 0)], the potential V5 has the form

o? 1 a? — 32 + 4? cosh 7y sinh 75
V. = — 66
(71,72) sinh’7,  cosh?7 (Cosh2 75 + sinh? 72)? (66)
After putting
U(71,72) = (cosh Tl)_l/QS(Tl)Z(TQ) (67)
we arrive at two equations:
d*s o 2(a? — %) + 4% sinh(27,)
— —u® - S=0 68
dr} + l a cosh®(27) (68)
d?s 12 =3 20
— 2F — — 1 _ S=0 69
dr} + l 4 + cosh’r;  sinh’m (69)

where p is the equidistant separation constant.
Let us consider the first equation (68). The substituon & = sinh 27, transforms this
equation to

28 — a?) — %
(1+ %)

d
4(1—|—.172)——|-4:E——|- [—;LQ—I— ] S=0 (70)
T T
where the physical region is € (—o0, 00). The equation (68) has three regular singularities
in the point + = —i,7,00 and may be solved in term of hypergeometric functions. The
solution of the equation (68) for a large |z| can be written as:

btu

S(x)=A;(x —0)" 2z ~

ST

1 b+1 b— 1 2

2 ’ 2 i

b—n_ 1

+ Ay(z—e)" 2 f(x+1)

Nl

1 b+1l—p b—at1— 2
Hop (48 s Eo—p; 71
21( 5 ) 9 ; 'u’z'—x (71)

11



with

=y = 2L

(72)

Let the separation constant g be a positive number (the equation (71) is symmetric with
respect to the replacement ¢ — —p). Then the second term in formula (71) behaves like
2|7 at oo and must be omitted. Thus for S(z) we obtain

btpu

S(z)=A(x—1)" 2~

ST

by
2ty F 1:
(13—|—L)2 ¢ 1 9 ’ 9 ,,U‘I‘ Yy _

1 (a—l—b—l—l—l—ﬂ b—a—l—l—l—ﬂ‘ 21 ) (73)

The hypergeometric function in equation (73) converges if x lies out of the circle C on Fig.1,

Y

Re(x)

Figure 1: Domain of Convergence

defined by |¢ — 2| = 2, and converges on the circle C' with the condition Re(b) < 0. The
function S(z) exists everywhere inside C' except the interval @ € [—i,1] (see 1), since the
hypergeometric function in (73) ¢ [1,00)). That means
that the solution (73) along the real axes inside C' in general is not a continuous function
and may have a jump at the point x = 0. Let us now consider the analytic continuation of

(73) inside the circle C

apl byl I'(p+1)T(=a)

S(x =A{m—z24r+g4 EazIE
(x) o
a+b+14p a+b+1—1p 1 — T

2F1 9 ) 9 7

(p + DT (a)
(B (e 21) =5

[

+ (z—i)TETE(p 40)7 T

12



—a+b+1+p —a+b4+1—p 1 — }
F ;— 1; . 4
241 ( 9 ) 9 ;—a+ 1 % (74)
iFrom equation (72) follow two possibilities
a=b", a= —b". (75)

Putting the a = b* (Re(a) = Re(b) < 0) we find that the first term in (74) represents an
analytic function, while the second term is discontinuous at # = 0. [Note since the both
terms in equation (74) transform to each other with replacement ¢ — —a the choice ¢ = —b*
means that the first term in (74) is discontinuous while the second term is continous at
z = 0.] Thus the sufficient condition for the existence of the continuous solution requires
the relation

*+ 1
p+a+a +1=—-2m, sz,l,Q...,[—%] , (76)
so from (72) we have
1
n = —2m — 1 + ﬁ\/Q/BQ —2a2 + 1 + \/(2[32 — 202 + 1)2 + 74_ (77)

Finally, the orthonormalized eigenfunction of equation (68) may be written in the form

3

S(n) = (—1)Tmf(—a)J

(=2m —a—a* = 1)I'(—m — a*)
am!20t" L (—m — a)I'(—m — a — a*)

N

(1+ iSiHhQTQ)%-}—‘l*_(l — isinhZZTg)aT*"'

1 + 2sinh 272)

gFl(—m,m+a+a*+1;a+1; 5

m (=2m —a—a* = 1)m!I'(=m — a)['(=m — a¥)
720t (—m — a — a*)

(1 + ¢sinh 272)%+1_(1 — 2sinh 272)(12_*+}4_P7(rba’a*)(—i sinh 273) (78)
where
_i _\/\/(2ﬂ2_2 2_|_1)2_|_ 4_|_262_2 2_|_1
a= o a 0l a

+i \/\/(2/32 — 202 4 1)2 444 — (232 — 202 + 1)}.

The second equation (69) is quite like (9) and has a solution:

() = Q(N_\/m—%l—l)r(ﬂ—n)n!
U\ T — 202 + 1/4 — )T (1 +n + /202 + 1/4)

X (sinh 7'1)%-'— V 2CY2""1/4(cosh Tl)%_ﬂpéo"_“)(cosh 27) (79)

Il
2
Q
&

Z(m)
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withn =0,1,....
The quantized energy is

1 ; . , 1 1, ) ;
Ez—i(p—\/2a2—|—1/4—2n—1) —|—§:—§{2N—|—2—|—\/2a2—|—1/4

1¢ S
— —1\/28%2 = 2a% + 1 2632 —2a% 4+ 1) 4 - 80
5\ =20t 41420 a+)+v}+8 (80)

where N = n + m is the principal quantum number and the bound state occurs for

;%¢mp—mﬁ+1+¢@m—2¢+¢y+¢—éwmﬁ+w4—4. (81)

The additional operator describing this coordinate system is

0< N <

2 2\ 2 2 2
wo_“ﬁ) o wowi (wg — wy)

LV, (11, 72) = {K; —2(a’® - %) ( 2 (w2 + w2
0T wi

q}nm(le TZ)

1 2
= 2m+1——\/22—20z2—}—1+ 202 =202+ 1)2+~4%r W, (71, 72). 82
{ 5\ V25 ) 7} (rrom). (82)

2.2 Semi—hyperbolic coordinates. Here

SV U I S 0 X (T
o 2[(es—a)?+ 06 2 2b (e3 —a)? 4 b?

2 _ (p—e)v—e) 1 17[(p—a)*+8[(r—a)®+ 1"/ .
“1 = m%—@tmq_i_%[ (€5 — a)? + b2 ] (83)
W = _(M—GS)(V—GB)

(e3 —a)? + b?

[v < es < p], where sinh2f = (e5 — a)/b and 2f is the distance between the focii of the
semi-hyperbolas and the bases of their equidistants [6].
If we change variables according to

wo = (s1+ 32)/\/5, w = —i(s1 — 52)/\/5, Wy = —183, (84)

the Schrodinger equation becomes

s (ovg; o)+ (g ooay) + (o o) 19
2 81882 82881 81883 83881 83682 82683
[ E 1%_i+%_éF$&]W—O (85)
2 T a1t
with
1 1 1 2 1 1 1 2 1 1
SR I = (32— o) = a2 L2 IV = (32— o) S (k2 1) = o2



Noting
2 2 2_ 2 2 2 _
wi—wj —wy =587 +s,+s5=1

and considering eq.(85) we see that the problem we wish to solve using the real coordinates
wo,w; and wq is a real case of the corresponding problem on the sphere with coordinates

51,82, 83 and energy ¢ = — K.
Inverting the relations (84) we have

S1 = (C{JO + Lwl)/\/i, S9 = (UJQ — Lwl)/ﬂ, S3 = LCUQ
Now choose elliptic coordinates on the complex sphere according to
$2 = (n—e)(v —e) § — (1 —€2)(v — es) §2 — (1 — es)(v — es)
Pla—e)la—e) 7 (e2—ea)lea—e) 7 (ea—e)(es —e)
This choice of real coordinates u,r will work for the real coordinates wy,k = 0,1,2 if we

take ey = €5 = a4+ 1b,a,breal and v < e3 < p.
In terms of the coordinates ¢ and v the Schrodinger equation has the form:

4 {( 5 \( )[82\11+1< 1 1 N 1 )8\11]
—e —e —e3)|l=—+ = —
(o) VT TG e T o\ — g T e w—es) Op

(S (S s B (S U B )
VoW e)ir e v 2\v—e5 v—e v—e3) OV

1
2y

+ [(k% _ l) (63 — 62)(63 — 63) (k2

)(62 —e3)(ez — e3)
47 (p—e3)(v —€3)

(1 —e2)(v —e3)

L2 = Lyleszealles = e;)]q} — 2EW.  (86)

The separation equations are:

. Pv 1701 1 1 \dU
(0 =)o —elo— o) r +5(—= +—— )7
dp*  2\p—e€; p—e p—e3/dp

1 [ L (es —ea)(es — e3) L. (e2 —€e})(ez — e3)
T BN 2 LRz 2
-0 g TR DT o
1 (e3—ez)(es —€h)
L2t _9R +)\] _ 0 87
o - ple=alle p+Alu(n (57)
where p = p,v. The operator L, with eigenvalue X is
—4 v 1 1 1 1 ov
Ly = — - — — 4 = —
: (,u—l/){y(ﬂ e1)(i = e2)(p = ea) ou? + 2(#—63 + p— €z + /,L—eg) a,u]

[ ci Y R ——— )
—pl(v = e)(v — &) (v — e3) o2 T3 y—e§+z/—ez+1/—€3 v

2 L5 —ea)(e; —es) o o 1 (e2 —e5)(e2 — €3) e
I:(kl ) (N _ 6;)(1/ — 6;) (:u + 2) + (kQ 4) (N _ 62)(1/ — 62) (/L + 2)




In order to find the bound state solutions of this system in semi-hyperbolic systems we first
observe the identity

52 52 52 _(w§ —wi)(8; — a) — 2wowr b w3

0 —c 0 —e 0 —e 0, — a)2 + 12 R

(1 —0;)(v — 0;)
T 0, — )0, — e2) (0, — e3) (89)

If we then look for solutions of the form

N 2 2 2
U= sz-l— H<951*+ 85 4+ LH )7 (90)

jmMi—es Oi—er 0 —es

we see that the corresponding zeros satisty the equations

ki +1 k2+1+k3+1 N 2

— = 0. 91
b3 On =2 O —cs | 22 (00— 0,) (51)
For the energy K we have
L, ‘ 2, 1 ‘

which coincides with the formula (73), note (86). For the separation constant A we obtain:

A= —2lki(es + es) + ka(e; + e3) + ks(ea + 6;)] — 2[eskiky + exkiks + €§k2k3]
3 9 9
— (€2+€2+€3) —46263 kl +1 Z - —6263 k2+1 E
2 m—l - 62) m=1 - 62)
q
— 46262 kg —|—1 Z (93)
m—l - 63)
In terms of variables w,; the total wave function is written:
U= <w0+iw1>k1+%<wo—iw1)k2+ (i) k3-|— H [ —a) — 2wowi b B w3 .
V2 V2 9 — a) + b2 0; — es

The algebra of second order symmetries for this potential is generated by the operators

1 52 1 52
Li = (50, = 10,)" + (7 = K)) % k)= (94)
J

5% (4 52

for 7,k =1,2,3 and j # k. The Hamiltonian of the system is expressed in terms of L;; as:

3

1
H = 2(L12+L13+L23 ——ZkQ 1

=1

(95)
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The relevant generators in the real case we are considering are then

1 wo — 1w\ 2 1 wo + twp \ 2
12 XS —I_ 4 ! o —|— iwl —I_ 4 2 Wy — iwl ( )
18 g ! 2 : 2 (wo + twy)? w3
1 ) 7 w? (wo — iwl)Q
Ly = —(M; +iK,)? (32— 2 —2) 2 2 . 98
23 2( 1FiKg)" + o+ 57 (wo—iw1)2+a o (98)

The commutation relations and resulting quadratic algebra can then be deduced from the
relations for the complex forms in terms of the L;;. It is easy to show that the additional
integrals of motion, corresponding to the separation in equidistant and semi-hyperbolic
coordinates can be written as

Ly =—Li,+ 3 - o (99)
and
Ly = e3lig+esliz+eilay —ki(eg+es—er) —ki(er+ ez —ey) — ki(er + €3 — €3)
+ i(el + €3 + e3). (100)

The algebra for the operators (99), (100) is found in the work [11].
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