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Abstract

We consider families of analytic area-preserving maps depending on two pa-

rameters: the perturbation strength " and the characteristic exponent h of the

origin. For " = 0, these maps are integrable with a separatrix to the origin,

whereas they asymptote to 
ows with homoclinic connections as h ! 0+. For

�xed " 6= 0 and small h, we show that these connections break up. The area of

the lobes of the resultant turnstile is given asymptotically by " exp(��2=h)�"(h),

where �"(h) is an even Gevrey-1 function such that �"(0) 6= 0 and the radius

of convergence of its Borel transform is 2�2. As " ! 0, the function �" tends

to an entire function �0. This function �0 agrees with the one provided by the

Melnikov theory, which cannot be applied directly, due to the exponentially small

size of the lobe area with respect to h.

These results are supported by detailed numerical computations; we use an

expensive multiple-precision arithmetic and expand the local invariant curves up

to very high order.

Keywords: Area-preserving map, singular separatrix splitting, Melnikov method,
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1 Introduction

The problem

In this paper, we consider the following family of planar standard-like maps

F (x; y) = (y;�x+ U 0(y)); U(y) = �0 log(1 + y2) + "V (y);
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where V (y) =
P

n�1 Vny
2n is an even entire function.

Provided that �0 + V1" > 1, the origin O = (0; 0) is a hyperbolic �xed point with
Spec[ dF (O)] = fexp(�h)g, and its characteristic exponent h > 0 is given by

cosh h = �0 + V1":

Moreover, when " vanishes, F becomes integrable with a separatrix to the origin. Thus,
the map F can be considered as a perturbation of an integrable map, " being the
perturbation strength. These two parameters, h > 0 and ", will be considered the
intrinsic parameters of the map F under study.

Our goal is to show that for " 6= 0 and for a general perturbation, the separatrix
splits and exactly two (transverse) primary homoclinic points, z+ and z�, appear on the
quadrant fx; y > 0g. By primary homoclinic orbits we mean that these orbits persist
for all " small enough.

The pieces of the perturbed invariant curves between the points z� enclose a region
called lobe. Our measure of the splitting size will be the area A of this lobe, see �gure 2.
This lobe area is a homoclinic symplectic invariant, that is, it does not depend on
the symplectic coordinates used, and all the lobes have the same area. Lobe areas
also measure the 
ux along the homoclinic tangle, which is related to the study of
transport [MMP84, MMP87, Mei92].

Both parameters, h and " > 0, will be small `enough', but the exact interpretation of
this sentence is crucial for understanding the di�erent kinds of results to be presented.
Speci�cally, we are going to deal with the following situations:

1. The regular case: �xed h > 0, and "! 0.

2. The singular case: h! 0+. In its turn this case subdivides in two sub-cases:

(a) The non-perturbative case: " �xed and h! 0+.

(b) The perturbative case: " = o(hp) and h! 0+, for some p � 0.

Both analytical and numerical results for the splitting of separatrices are obtained.
The analytical results are expressed in terms of the Melnikov potential of the problem,
which gives explicit formulae for our map. This is the reason for our choice of the map
above as a model for this paper, instead of more celebrated maps like the H�enon map
or the standard map.

The name \singular" for the case h! 0+, is due to the fact that the lobe areas are
exponentially small in h. The measure of such small quantities requires a very careful
treatment, both from a numerical and an analytical point of view.

Outline of results

In the regular case, for 0 < j"j < "�(h) = o(exp(��2=h)), the discrete version of the
usual Melnikov method [DR96, DR97b] ensures the existence of two transverse, pri-
mary homoclinic orbits, and provides the �rst order approximation, in the perturbation
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strength ", of the lobe area:

A = "AMel +O("2); AMel = e��
2=h
h
�0(h) + O(e�2�

2=h)
i
;

where �0(h) =
P

n�0�
0
nh

2n is an even entire function. If V (y) is a polynomial, �0(h)
can be explicitly computed in a �nite number of steps. For instance, �0(h) = 8�2
2h�2

for V 0(y) = y, and �0(h) = 8
3
�2
4h�2[1 + �2h�2] for V 0(y) = y3. The non-polynomial

case is harder, although some closed formulae can be obtained. In particular, �0(0) =
�0

0 = 8� bV (2�), where bV (�) = P
n�1 Vn�

2n�1=(2n� 1)! is the Borel transform of V (y).
In the singular case, the result above cannot be applied, since it requires " to be

exponentially small in h. There are, however, a couple of analytical results that hold.
In the non-perturbative case, under the assumption

(V1 + 2V2)" < 1;

there exist homoclinic orbits for h > 0 small enough, and an exponentially small in
h > 0 upper bound is provided for the lobe area.

In the perturbative case " = o(hp), with p > 6, under the assumption bV (2�) 6= 0, the
existence of two transverse, primary homoclinic orbits in the �rst quadrant is proved,
and an asymptotic expression for the area lobe is given:

A = " e��
2=h
h
8� bV (2�) + O(h2)

i
(h! 0+):

Most of these analytical results are spread out over several recent papers of the
authors [DR96, DR97b, DR97a]. For the convenience of the reader, we have collected
in the present paper the main ideas.

The heart of this paper is dedicated to study numerically the situations not covered
by the analytical results for the singular case. The numerical experiments have been
performed for the simplest even perturbed potentials, that is, for the linear perturbation
"V 0(y) = "y, and the cubic one "V 0(y) = "y3.

In the non-perturbative case, the following asymptotic expansion for the lobe area
A is numerically established

A � " e��
2=h

X
n�0

�"
nh

2n (h! 0+; " �xed):

The sign � means that the series
P

n�0�
"
nh

2n is an asymptote, that is, if one retains a
�nite number of the �rst successive terms, the error has the order of the �rst missing
term: �����A� " e��

2=h
NX
n=0

�"
nh

2n

����� = O("h2N+2 e��
2=h):

The coe�cients �"
n are real numbers such that

�"
n = (2n)!(2�2)�2n(2n)4

h
�"
1 +O(n�1)

i
(n! +1);
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for some non-zero constant �"
1. In particular,

P
n�

"
nh

2n is divergent for all h 6= 0, but
its Borel transform c�"(h) =

P
n�

"
n�

2n�1=(2n � 1)! is convergent for j�j < 2�2. This
implies that the function �"(h) � "�1 exp (�2=h)A is Gevrey-1 of type � = 1=2�2. Let
us recall that a function f(x) �

P
n�0 fnx

n is said to be Gevrey-r of type � if there are
positive constants C; � > 0 such that jfnj � C�rn�(rn+ �), where �(z) stands for the
Gamma function. (We follow the notations of [RS96].)

In the perturbative case, we study the behavior of the objects �"(h), �"
n, �

"
1, check-

ing that all of them tend to well-de�ned limits, as "! 0. (That is, for " = o(1). In the
notation " = o(hp), this means that p = 0.)

First, the function �"(h) tends to the Melnikov prediction �0(h) when the pertur-
bation strength " tends to zero; more precisely,

�"(h) = �0(h) + O("); uniformly in h 2 (0; 1]:

The coe�cients �"
n of the Gevrey series for �"(h) also converge to the Taylor coe�-

cients �0
n of the entire function �

0(h). ( For example, �"
0 = 8� bV (2�)+O(").) Obviously,

this convergence cannot be uniform in the index n, since

lim
n!+1

j�"
nj =

(
0 if " = 0
+1 otherwise.

Finally, lim"!0 �
"
1 = 0, since �"

1 quanti�es the growth of the coe�cients �"
n, and

�0
n = lim"!0�

"
n gives a decreasing sequence. In fact, one has

�"
1 = "�0

1 +O("
2); where �0

1 =

(
�12��4 if V 0(y) = y

�16=3 if V 0(y) = y3
:

Relation to other work

By now, there is a well-developed literature on singular perturbations for maps. Results
showing that the splitting size is exponentially small in the characteristic exponent
h have been obtained by many authors. For the sake of brevity, we review results
concerning analytic area-preserving maps, both from a theoretical and a numerical point
of view. For a review of the results concerning 
ows, we refer to [DS97, DRS97], and
the references therein.

The �rst relevant results are exponentially small upper bounds of the splitting size
for analytic area-preserving maps with a weakly hyperbolic �xed point and homoclinic
points to it [Nei84, FS90, Fon95, FS96, Gel96]. Roughly speaking, in these papers it
is proved that the maps asymptote to a Hamiltonian 
ow with a separatrix when the
characteristic exponent h tends to zero. Then, the splitting size is O (exp(��=h)), for
any positive constant � smaller than 2�d, d being the analyticity width of the separatrix
of the limit 
ow. No more general results are known. In order to compare this result
with the next ones, it is convenient to formulate it as

splitting size = e��=h�(h); �(h) bounded when h! 0+: (1.1)
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The next step was the attainment of exponentially small asymptotic formulae in
some standard-like maps, by V. Lazutkin and co-workers [Laz84, LST89, GLT91], see
also [HM93, Sur94, Tre96]. For instance, regarding the standard map and the H�enon

map, in these works it is claimed that the splitting has an asymptotic behavior of the
form !0h


 exp(��=h), for some constants !0 6= 0, � > 0, and 
, that is,

splitting size = h
 e��=h�(h); �(h) continuous at h = 0 and �(0) 6= 0: (1.2)

The constant !0 = �(0) is de�ned by means of a nonlinear parameterless problem which
only can be solved numerically, 
 is obtained by linearization about the separatrix in the
complex plane, and � = 2�d, where d is again the analyticity width of the unperturbed
separatrix. A complete proof of these asymptotic formulae has not been published yet,
but there is little doubt about its validity. It should be noted that there exist examples
where a formula like (1.2) cannot hold, because the splitting behaves asymptotically like
!0h


 exp(��=h) cos(�=h) with � 6= 0, see [GLT91, SMH91]. The maps here considered
do not fall into this class.

The strongest analytical results on the regularity of the function �(h) were contained
in [GLS94, Che95, Nik95], where it is stated (again without proofs) that

splitting size = h
 e��=h�(h); �(h) smooth at h = 0 and �(0) 6= 0; (1.3)

for the standard map [GLS94], the H�enon map [Che95], and the twist map [Nik95]. All
these works contains formulae like

![O] � h
 e��=h
X
n�0

!nh
2n;

where ![O] stands for the Lazutkin's homoclinic invariant introduced in [GLT91] for
some distinguished symmetric homoclinic orbit O. Only a few coe�cients !n were
explicitly computed in these works: the �rst �ve coe�cients in [GLS94], the �rst three
in [Nik95] and just two in [Che95]. Then, a natural question appears: Which is the
growth rate of the coe�cients !n when n ! +1? Or equivalently, is �(h) somewhat
stronger than smooth?

A numerical answer involves the computation of many of such coe�cients. Re-
cent numerical experiments performed by C. Sim�o suggest that the asymptotic seriesP

n�0 !nh
2n are divergent, although their Borel transforms are convergent, that is,

splitting size = h
 e��=h�(h); �(h) Gevrey-1 at h = 0 and �(0) 6= 0: (1.4)

Our numerical results fall just into this class, with the area A as our measure of the
splitting size, and the coe�cients �"

n playing the rôle of !n. The computation of !n for
relatively large values of n (namely, up to n = 100), requires the use of an expensive
multiple-precision arithmetic, so that these experiments are on the edge of the current
computer possibilities. Therefore, further numerical results improving these ones are
unlikely to appear in a near future.
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Regarding rigorous results, to the best of our knowledge, the paper [DR97a] is
the only place where a behavior like (1.2) has been rigorously proved for some area-
preserving maps. This makes evident that experimental studies are much more ad-
vanced than analytical ones. However, numerical results of the form (1.4) open the door
to new techniques, like resurgence tools, that have been already applied to the rapidly
forced pendulum [Sau95], and may be successful to �ll this gap between analytical and
numerical results.

Outline of the computations

The area of the lobes of the turnstile created when the separatrices split is computed
using the MacKay-Meiss-Percival action principle [MMP84, Eas91], in which the lobe
area is interpreted as a di�erence of actions. The numerical computation of such expo-
nentially small lobe areas with arbitrary precision forces us to:

� use an expensive multiple-precision arithmetic,

� expand the invariant curves up to an optimal order, which is very large,

� take the greatest advantage of symmetries and/or reversors.

Clearly, the �rst item is unavoidable, due to the strong cancellation produced when sub-
tracting the (exponentially close) actions, and also due to the requirement of arbitrary
precision in the �nal result. The second item is intended to take the initial iterates far
enough of the weakly hyperbolic point so that the homoclinic points z� can be attained
in (relatively) few iterations: we are able to �nd the (optimal) order which minimizes
the computer time. This optimal choice of order avoids an undesirable accumulation
of rounding errors due to the large number of operations. Finally, the third item is
crucial to overcome certain stability problems. Those algorithms for computing homo-
clinic points that do not take into account symmetries and/or reversors (if they exist,
of course) have condition numbers inversely proportional to the splitting size, see for
instance [BK97, pag. 1218]. Therefore, they would be exponentially ill-conditioned for
our singular maps!

We have improved the methods used in [LM96] to compute lobe areas. In that
paper a similar problem was studied, but the invariant curves were developed only to
�rst (linear) order and a standard double-precision arithmetic was used. Due to this,
the computations in [LM96] only gave accurate results for lobe areas A � 10�14, that
is, for characteristic exponents h not smaller than 1=3. In this work, we have been able
to compute lobe areas less than 10�4200 (that is, we have arrived up to h = 0:001), with
a relative error less than 10�900. The computation for such extreme cases takes between
two and three days on a Pentium 200 under a Linux operative system, depending on the
potential V (y). More than 5200 decimal digits in the arithmetic and 1300 coe�cients
in the Taylor expansion of the invariant curves have been needed for these accurate
computations.
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So far, and to the best of our knowledge, the most re�ned (published) experiments
about singular splittings for maps were those of [FS90], where splittings of order 10�200

were numerically computed following the above-mentioned items. Other experiments
with multiple-precision arithmetic are contained in [FS96], but only order one (that
is, linear) expansions of the invariant curves were used in that paper. In [BO93] a
quadruple-precision together with high order expansion were used to study the rapidly
forced pendulum.

Outline of the paper

The rest of the paper is devoted to explain how our results are be obtained. In the next
section, the model is introduced. In section 3, the regular case " ! 0 and h �xed is
discussed. We review how to compute the O(")-approximation of the lobe area using
the discrete version of the Melnikov method. In particular, the entire function �0(h) is
introduced. Section 4 is devoted to the singular limit h! 0+. The asymptotic behavior
of �"(h) is studied and the connection with the Melnikov theory is drawn. The results
in this section are the heart of the paper. In section 5, the algorithm used to compute
lobe areas with an arbitrary accuracy is described. This is the key tool in this work. The
numerical calculations are complicated by problems of stability, precision and computer
time, so we provide su�cient detail to show how these problems can be overcome.
Finally, further numerical experiments related to singular separatrix splittings for maps
are proposed in section 6. They will the subject of future research.

2 The model

The family of standard-like maps under study is given by

F (x; y) = (y;�x+ U 0(y)); U(y) = �0 log(1 + y2) + "V (y); (2.1)

where V (y) =
P

n�1 Vny
2n is an even entire function. For

� := �0 + "V1 > 1;

the origin O = (0; 0) is a hyperbolic �xed point with Spec[ dF (O)] =
n
e�h

o
, where the

characteristic exponent h > 0 is determined by cosh h = �.
We will consider the characteristic exponent h and the perturbation strength " as the

intrinsic parameters of our model. Accordingly, for every h > 0 and every real ", we
rewrite the map (2.1) in the form

F (x; y) = (y;�x+ U 0(y)); U(y) = U0(y) + "U1(y);

U0(y) = � log(1 + y2); U1(y) = V (y)� V1 log(1 + y2):
(2.2)

From now on, the subscript \0" will denote an unperturbed quantity, that is, " = 0,
and the following notations will be used without further comment:

� = cosh h; 
 = sinh h; � = eh : (2.3)
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�
Figure 1: The zero level of I0 for h = 2.

The unperturbed model

Setting " = 0 in (2.2), we obtain the so-called McMillan map [McM71]

F0(x; y) = (y;�x+ U 0
0(y)) =

 
y;�x+

2�y

1 + y2

!
;

which is an integrable exact map, with a polynomial �rst integral given by

I0(x; y) = x2 � 2�xy + y2 + x2y2:

The phase space associated to F0 is rather simple, since it is foliated by the level
curves of the �rst integral I0, which are symmetric with respect to the origin. As
� > 1, the zero level of I0 is a lemniscate, whose loops are separatrices to the origin
(see �gure 1). From now on, we will concentrate on the separatrix � in the quadrant
fx; y > 0g, which can be parameterized by

z0(t) = (x0(t); y0(t)) = (�0(t� h=2); �0(t+ h=2)); �0(t) = 
 sech t: (2.4)

This parameterization is called natural since F0(z0(t)) = z0(t + h), a fact that can be
checked simply by noting that �0(t) is a homoclinic solution of the di�erence equation

�0(t + h) + �0(t� h) = U 0
0(�0(t)): (2.5)
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�
Figure 2: The homoclinic points z� and the lobe area A for "V 0(y) = y3=40 and h = 2.

A natural parameterization is unique except for a translation in the independent
variable. To determine it, it is worth looking at the reversors of the map.

Indeed, the involution R+(x; y) := (y; x) is a reversor of the McMillan map F0,
that is, F�1

0 = R+ � F0 � R
+. The separatrix � is R+-symmetric, i.e., R+� = �, and

intersects transversely the �xed set C+ := fz : R+z = zg of R+ in one point z+0 . The
parameterization (2.4) of � has been chosen to satisfy z0(0) = z+0 .

Moreover, the involution R�0 := F0 � R
+ is another reversor of F0. The separatrix

� is also R�0 -symmetric and intersects transversely the �xed set C�
0 of R�0 in one point

z�0 , and it turns out that z0(h=2) = z�0 . The associated orbits O+
0 := fz0(nh) : n 2 Zg,

O�
0 := fz0(h=2 + nh) : n 2 Zg, are called symmetric homoclinic orbits, since R+O+

0 =
O+

0 , R
�
0 O

�
0 = O�

0 .

The perturbed model

For " 6= 0, the phase portrait of the exact map (2.2) looks more intricate. The origin is
a hyperbolic �xed point with the same characteristic exponent h, since the perturbation
"U 0

1(y) = O(y3) does not not contain linear terms at the origin. We denote by Wu;s its
unstable and stable invariant curves with respect to F . Since the map (2.2) is odd, the
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invariant curves are symmetric with respect to the origin, so that we concentrate only
on the positive quadrant fx; y > 0g.

By the form of the perturbation, R+ is also a reversor of F , as well as the involution
R� := F � R+, which is given by R�(x; y) = (x;�y + U 0(x)). Their �xed sets C� =
fz : R�z = zg are important because R�(Wu) = Ws. Consequently, any point in the
intersection C� \Wu is a homoclinic point (see �gure 2), and gives rise to a symmetric
homoclinic orbit.

Since the separatrix � intersects transversely the unperturbed curve C�
0 at the point

z�0 , there exists a point z
� = z�0 +O(") 2 C� \Wu and, therefore, there exist at least

two symmetric homoclinic orbits on the quadrant fx; y > 0g, for j"j small enough. They
are called primary since they exist for arbitrary small j"j.

3 The regular case

Along this section, the characteristic exponent h > 0 will be considered �xed, and then
" ! 0. In particular, any sentence like \for j"j small enough" will mean: \there exists
"�(h) > 0 such that for j"j < "�(h)". Typically, "�(h) will be exponentially small in h.

3.1 The Melnikov theory for exact planar maps

We now recall some perturbative results to detect the existence of transverse homoclinic
orbits for exact maps. For simplicity, we will assume that all the objects are smooth
and we shall restrict the discussion to maps on the plane with the usual symplectic
structure: the area.

Given the symplectic form ! = dx ^ dy = d(�y dx) on the plane R2 , a map
F : R2 ! R2 is called exact if there exists some function S : R2 ! R such that
F �(y dx) � y dx = dS. The function S is called the generating function of F and,
except for an additive constant, it is uniquely determined.

Let F0 : R
2 ! R2 be an integrable exact di�eomorphism with a separatrix � to a

hyperbolic �xed point z10 . Next, consider a family of exact di�eomorphisms F" = F0 +
"F1+O("

2), as a general perturbation of the situation above, and let S" = S0+"S1+O("
2)

be the generating function of F".
We introduce the Melnikov potential of the problem as the smooth real-valued func-

tion L : �! R given by

L(z) =
X
n2Z

bS1(zn); zn = F0
n(z); z 2 �; (3.1)

where bS1 : R2 ! R is de�ned by bS1 = S1 � y dx(F0)[F1]. (In components, writing
F0 = (X0; Y0), F1 = (X1; Y1), bS1 is simply given by bS1 = S1� Y0X1.) In order to get an
absolutely convergent series (3.1), bS1 is determined by imposing bS1(z

1
0 ) = 0.

The di�erential of L is a geometrical object which gives the O(")-distance between
the perturbed invariant curves Wu;s

" . More precisely, let (t; e) be some cotangent coor-

dinates adapted to �|that is, in these coordinates the separatrix � is given locally by
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fe = 0g and the symplectic form ! reads as dt ^ de|and let fe = Eu;s
" (t)g be a part

of Wu;s
" . (Let us recall that cotangent coordinates can be de�ned in neighborhoods of

Lagrangian sub-manifolds [Wei73].) Then, in [DR97b] it is shown that

Eu
" (t)� Es

"(t) = "L0(t) + O("2);

and that the construction above does not depend on the cotangent coordinates used.
The following theorem [DR97b, Theorem 2.1] is a straightforward corollary of this

geometric construction.

Theorem 3.1 Under the above notations and hypotheses, the non-degenerate critical

point of L are associated to perturbed transverse homoclinic orbits. Moreover, when all

the critical points of L are non-degenerate, all the primary homoclinic orbits arising from

� are found in this way. Finally, if z and z0 are consecutive (in the internal order of

the separatrix) non-degenerate critical points of L, their associated perturbed homoclinic

orbits determine a lobe with area

A = "[L(z)� L(z0)] + O("2):

3.2 The regular analytical result

We are now ready to apply the theory above to our model. It is worth noting that the
knowledge of the natural parameterization (2.4) of the unperturbed separatrix � will
be the crucial point to compute explicitly the Melnikov potential (3.1).

The map F = F0 + "F1 + O("2) given in (2.2) is exact with generating function
S(x; y) = �xy + U0(y) + "U1(y). Writing its expression in components F0 = (X0; Y0),
F1 = (X1; Y1), it turns out that X1 = 0, and consequently bS1(x; y) = S1(x; y) = U1(y).

The parameterization (2.4) allows us to write the Melnikov potential (3.1) of our
problem as

L(t) := L(z0(t)) =
X
n2Z

U1(y0(t+ hn)) =
X
n2Z

[f(t+ hn)� g(t+ hn)];

where f(t) := V (�0(t+ h=2)) and g(t) := V1 log (1 + �0(t + h=2)2).
We are now confronted to the computation of a series for L(t), which is a doubly-

periodic function: L(t) = L(t+ h) = L(t+ � i). Consequently, the explicit computation
of L(t) can be performed through the study of its singularities for complex values of the
discrete time t [DR96].

For example, Lg(t) :=
P

n g(t + hn) is easily computed simply by noting that Lg(t)
has no singularities and, therefore, it must be constant by Liouville's theorem. The exact
value of the constant is not important for our purposes, since the intrinsic geometrical
object associated to the problem is L0(t) rather than L(t).

The computation of Lf (t) :=
P

n f(t + hn) follows the same lines, although is more
complicated. We sketch here the main ideas, and refer to [DR97a] for the details.
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First, we notice that the singularities of f(t) are just located on the set �h=2 +
� i=2+ � iZ. Next, we denote by

P
n2Zvn(h)�

2n the Laurent expansion around � = 0 of
the function � 7! f(�h=2+� i=2� ih�), and note that v�n(h) are even entire functions
such that v�n(0) = Vn, for all n � 1. Finally, we introduce the even entire function

�0(h) := 8�
X
n�1

(2�)2n�1

(2n� 1)!
v�n(h) = 8� bV (2�) + O(h

2); (3.2)

where bV (�) := P
n�1 Vn�

2n�1=(2n� 1)! is the so-called Borel transform of V (y).
Then, the following asymptotic formula holds for the Melnikov potential L = Lf �

Lg = Lf (modulo an additive constant):

L(t) = e��
2=h cos(2�t=h)

h
��0(h)=2 + O(e�2�

2=h)
i
: (3.3)

If V (y) is a polynomial, �0(h) can be explicitly computed in a �nite number of
steps [DR96]. For instance, for the perturbations used in the numerical experiments,

�0(h) =

(
8�2
2h�2 for V 0(y) = y
8
3
�2
4h�2[1 + �2h�2] for V 0(y) = y3

: (3.4)

From the formula (3.2), it is clear that if bV (2�) 6= 0 and h is small enough, the set of
critical points of the Melnikov potential (3.3) is hZ=2. All of them are non-degenerate,
and parameterize the two unperturbed, symmetric, primary homoclinic orbits O�

0 . Now,
the following result is a corollary of theorem 3.1.

Theorem 3.2 Assume that bV (2�) 6= 0. Then, for any small enough (but �xed) char-

acteristic exponent h > 0, there exists a positive constant "� = "�(h) such that the

map (2.2) has exactly two transverse, symmetric, primary homoclinic orbits O� in

the quadrant fx; y > 0g, for 0 < j"j < "�. These orbits determine a lobe with area

A = "AMel +O("2), where the �rst order in " approximation AMel is given by

AMel = L(h=2)� L(0) = e��
2=h
h
�0(h) + O(e�2�

2=h)
i
: (3.5)

Remark 3.1 We note that "AMel is the dominant term for the Melnikov formula of the
lobe area A only if j"j < "�(h) = o(exp(��2=h)). Otherwise, in the case " = O(hp), the
Melnikov theory as described is not useful, since it only gives the very coarse estimate
A = O(h2p), and not the desired exponentially small asymptotic behavior.

4 The singular case

Along this section, h! 0+, and we will study analytically and numerically two di�erent
situations for the parameter ":

� The non-perturbative case: " �xed and h! 0+.
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� The perturbative case: " = o(hp) and h! 0+, for some p � 0.

For the analytical results we only assume that the perturbed potential V (y) is an even
entire function. The numerical experiments have been performed for the simplest even
perturbed potentials, that is, for the linear perturbation "V 0(y) = "y, and the cubic one
"V 0(y) = "y3.

4.1 Singular analytical results

The non-perturbative case

The limit h ! 0+ in (2.2) is highly singular, since all the interesting dynamics is
contained in a O(h) neighborhood of the origin, which becomes a parabolic point of the
map for h = 0. To see clearly this behavior, we perform the following linear change of
variables:

z = Cw; C = h

 
��1=2 �1=2

�1=2 ��1=2

!
; z = (x; y); w = (u; v);

that is, we diagonalize the linear part of (2.2) at the origin and we scale by a factor h.
Then, �

C�1 � F � C
�
w = w + hX0(w) + O(h2); (4.1)

where

X0(u; v) =
�
u� �(u+ v)3;�v + �(u+ v)3

�
; � = 1� (V1 + 2V2)"; (4.2)

is a Hamiltonian vector �eld, with associated Hamiltonian

H0(u; v) = uv � �(u+ v)4=4: (4.3)

Expression (4.1) shows clearly that F is O(h)-close to the identity, and that, after
the change of variables z = Cw, the map (2.2) asymptotes to the Hamiltonian 
ow
associated to the vector �eld (4.2) when h ! 0+. When such situation takes place, it
is known [Fon89] that the map (2.2) will have homoclinic points to the origin for any
small enough h, if and only if the limit Hamiltonian 
ow has a homoclinic orbit to the
origin.

From the expression (4.3), we see that the zero level fH0(u; v) = 0g contains homo-
clinic connections to the origin if and only if � > 0, i.e., if

(V1 + 2V2)" < 1: (4.4)

Assuming � > 0, the homoclinic orbit of the Hamiltonian (4.3) is given by

w0(t) = ��1=2
 
cosh t� sinh t

2 cosh2 t
;
cosh t+ sinh t

2 cosh2 t

!
;

which is analytic on the strip ft 2 C : j=tj < d := �=2g. In this situation, it is also
well-known [FS90] that the splitting size is O(exp(��=h)), for all � < 2�d = �2. We
summarize these �rst analytical results.
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Theorem 4.1 For any real " verifying (4.4), and any � 2 (0; �2), there exists N =
N("; �) > 0 such that the area of the lobe between the invariant curves of the map (2.2)

satis�es:

jAj � N e��=h (" �xed; h! 0+):

The perturbative case

The previous theorem gives only an upper bound for the lobe area and not an asymp-
totic one (the constant N("; �) can blow up when � ! �2). In particular, it does not
exclude the case A = 0, that is, it cannot detect e�ective splitting of separatrices. In
the perturbative case " = o(hp), for p > 6, the following theorem gives an asymptotic
expression for the lobe area in terms of the Melnikov potential, and establishes transver-
sal splitting of separatrices. The version presented here is slightly more general that the
one contained in [DR97a], since we have dropped out the hypothesis V 0(0) = 2V1 = 0
of that paper.

Theorem 4.2 Assume that " = o(hp), p > 6. Then, if bV (2�) 6= 0, there exists h� > 0
such that the map (2.2) has exactly two transverse, symmetric, primary homoclinic

orbits in the �rst quadrant, for all 0 < h < h�. Moreover, they enclose a lobe with area

A = " e��
2=h
h
8� bV (2�) + O(h2)

i
(h! 0+):

If bV (2�) = 0, there may exist more primary homoclinic orbits, but the area of any

lobe is O("h2 e��
2=h).

Proof. For V1 = 0, the result above is just the Main Theorem of [DR97a]. For V1 6= 0,
the perturbative potential U1(y) = V (y)� V1 log(1 + y2) in (2.2) is not longer an entire
function, due to the term g(y) := V1 log(1 + y2), and the Main Theorem of [DR97a]
cannot be applied directly.

However, this result follows from the following observations:

1. As we have already seen in section 3.2, the Melnikov potential L(t) is not a�ected
by the contribution of Lg(t).

2. One can easily bound g0(�0(t)+ �) in such a way that the estimates of Lemma 3.5
in [DR97a] do not change.

Now, the rest of arguments in [DR97a] remain applicable, and the result follows. 2

We �nish this account of analytical results by remarking that, to the best of our
knowledge, the result above, jointly with [DR97a], are the �rst analytical results about
asymptotics for singular separatrix splitting for a map with a complete and rigorous
proof.
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4.2 Singular numerical results

In the regular case, we dispose of formula (3.5) for the lobe area A, in terms of an even
analytic function �0(h), with a fairly simple expression (3.4) for V 0(y) = y; y3.

These regular results suggest that in the singular case, for every �xed " verify-
ing (4.4), the actual formula for the lobe area may have the form

A = " e��
2=h
h
�"(h) + O(e

�2�2=h)
i
; (�xed "; h! 0+); (4.5)

for a function �"(h) given by an asymptotic series of the form

�"(h) �
X
n�0

�"
nh

2n; (�xed "; h! 0+): (4.6)

The sign � means that the series
P

n�0�
"
nh

2n needs not to be convergent, but only
asymptotic, that is, if one retains a �nite number of the �rst successive terms, the error
has the order of the �rst missing term:

������"(h)�
NX
n=0

�"
nh

2n

����� = O(h2N+2):

We are interested in computing a relevant number of the coe�cients �"
n for some

signi�cant perturbations "V 0(y), in such a way that we can measure their asymptotic
behavior, and describe the analytical properties of the function �"(h).

To such end, once we have chosen a perturbation "V 0(y), we compute the lobe area
A with a relative error less than �, for a net N of values of the characteristic exponent
h. We take an equidistant net in h2, due to the fact that we expect that the asymptotic
series (4.6) will contain only even powers of h. That is, we take

N = fhj := j1=2 � : j = 1; : : : ; `+ 1g

for some (relatively) small positive number � and some (relatively) large natural `.
We have chosen the values

� = 10�900; � = 0:001; ` = 99: (4.7)

Another choices are also possible, but, taking into account our purposes, it is not worth
taking values of � much smaller than exp (�2�2=h`+1). Let us explain this.

We do not know how to compute directly the function �"(h), but only how to ap-
proximate it by "�1 exp (�2=h)A. Once obtained the approximated values of �"(h) on
the netN , they will be the input of some algorithmwhich computes the �rst `+1 asymp-
totic coe�cients �"

n. This explains why it is rather absurd to take � too much small,
being � � exp (�2�2=h) the greatest accuracy we can expect on approximating �"(h) by
"�1 exp (�2=h)A. Since all the values in the net are computed with the same accuracy,
we must take � not much smaller than exp (�2�2=h`+1) = max1�j�`+1 exp (�2�

2=hj).
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��
Figure 3: �"

n vs. n, for " = 0:1. The dashed lines correspond to the limit value �"
1,

which is found by extrapolation. Left: V 0(y) = y and �"
1 = �9:7737740885 : : :� 10�3.

Right: V 0(y) = y3 and �"
1 = �4:6302913918 : : :� 10�1.

An interpolation method based on Neville's algorithm has been used to compute the
asymptotic coe�cients of �"(h) from the values on the net N . That is, we compute the
polynomial P "(h) =

P`
n=0 P

"
nh

2n which interpolates �"(h) on N , and next we approxi-
mate �"

n by P "
n, for n = 0; : : : ; `. Although equidistant interpolation using polynomials

of high degree (in our case, degree ` in h2) is in some cases an ill-conditioned problem,
we have checked that the coe�cients �"

n so obtained are accurate enough for our pur-
poses. Concretely, with the choice (4.7), this method gives at least 860� 9n signi�cant
decimals digits for �"

n, n = 0; : : : ; 95. (The accuracy decreases as n increases, but this
seems unavoidable.) This can been checked simply by studying the dependence of the
coe�cients �"

n on the precision � and the degree `.

The non-perturbative case

To avoid the factorial increase of the coe�cients �"
n that is observed empirically, we

introduce other coe�cients �"
n de�ned by

�"
n = (2n)!(2�2)�2n(2n)4 �"

n;

expecting that the coe�cients �"
n will tend to a certain constant �"

1, as n ! 1.
Figure 3 shows clearly this behavior for the two di�erent perturbations: the linear case
V 0(y) = y, and the cubic case V 0(y) = y3. The limit constants �"

1 are found by applying
an extrapolation method on the coe�cients �"

n (see also the table 1).
In particular, we have that j�"

nj � C�2n�(2n+5) for some constant C and � = 1=2�2,
that is, the function �"(h) of (4.6) is Gevrey-1 of type � = 1=2�2 with respect to the
variable h.

We now summarize these numerical results.

Numerical result 4.1 For the linear and cubic perturbations, the following asymptotic
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expansion for the lobe area A holds

A � " e��
2=h

X
n�0

�"
nh

2n (" �xed; h! 0+);

where the coe�cients �"
n verify

�"
n = (2n)!(2�2)�2n(2n)4

h
�"
1 +O(n�1)

i
;

as n! +1, for some constant �"
1 6= 0. (�"

1 < 0 for " > 0.)

In other words, the formula (4.5) for the lobe area holds for an even �"(h) such that
its Borel transform c�"(h) =

P
n�

"
n�

2n�1=(2n� 1)! is convergent for j�j < 2�2.
Of course, we believe that the numerical result above holds for any even entire

perturbative potential "V (y).

The perturbative case

We now check that all the previous objects �"(h), �"
n, �

"
1, tend to well-de�ned limits,

as "! 0.
We begin by describing the results connecting the Gevrey-1 function �"(h) with the

Melnikov prediction �0(h) given in (3.2). Applying formula (3.4), we immediately get
that

�0(h) = 8�2
2h�2 = 8�2
"
1 +

h2

3
+
16

45
h4 +

8

315
h6 +O(h8)

#
;

for the linear perturbation "V 0(y) = "y, and

�0(h) =
8

3
�2
4h�2[1 + �2h�2]

=
8

3
�4
�
1 +

�
1 +

2

3
�2
�
h2 +

�
2

3
+
1

5
�2
�
h4 +

�
1

5
+

34

945
�2
�
h6 +O(h8)

�
;

for the cubic one "V 0(y) = "y3.
The numerical results comparing �"(h) with �0(h), for " ! 0, are displayed in

�gure 4. On the left-hand side of �gure 4 it is shown that �"(h) tends uniformly to
�0(h) as "! 0, whereas on the right-hand side we have checked that "�1[�"(h)��0(h)]
tends uniformly to some continuous function. Thus, we conclude that

�"(h) = �0(h) + O("); uniformly for h 2 (0; 1]:

Next, we compare the coe�cients �"
n in the expression (4.6) of the function �"(h)

with the coe�cients �0
n in the Taylor expansion of �0(h), as "! 0.

The results about the convergence of some of the coe�cients are shown in �gure 5,
where one can see that �"

n tends to �0
n as " ! 0. It is worth noting that we cannot

expect any kind of uniform convergence in n � 0, since �"(h) is a Gevrey-1 function (in
particular, divergent), whereas �0(h) is an entire function.
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��
��
Figure 4: Up & Left: graphs of h 7! �"(h), for V 0(y) = y and " = 0; 0:01; 0:03; 0:05; 0:07,
from top to bottom. Up & Right: graphs of h 7! (�"(h)��0(h))=", for V 0(y) = y and
" = 10�5; 10�4; 10�3; 10�2, from top to bottom. Down & Left: graphs of h 7! �"(h), for
V 0(y) = y3 and " = 0; 0:01; 0:03; 0:05; 0:07, from top to bottom. Down & Right: graphs
of h 7! (�"(h) � �0(h))=", for V 0(y) = y3 and " = 0:04; 0:02; 0:01; 0:001, from top to
bottom.

�	
Figure 5: �"

n vs. ", for n = 0; 1; 2; 3, from top to bottom. The marked points correspond
to the values �0

n|that is, " = 0|, obtained by the Melnikov approach. Left: V 0(y) = y,
where �0

0 = 8�2, �0
1 = 8�2=3, �0

2 = 16�2=45, and �0
3 = 8�2=315. Right: V 0(y) = y3,

where �0
0 = 8�4=3, �0

1 = 8�2(3 + 2�2)=9, �0
2 = 8�2(10 + 3�2)=45, and �0

3 = 8�2(189 +
34�2)=2835.
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Table 1: Computed values of �"
1 for the linear and cubic perturbations. The last row

contains the values of �0
1 = lim"!0 "

�1�"
1 found by extrapolation.

" "�1�"
1

V 0(y) = y V 0(y) = y3

10�1 �0:09773774088 : : : �4:6302913918 : : :
10�2 �0:12084203100 : : : �5:2302522778 : : :
10�3 �0:12295874638 : : : �5:3224971013 : : :
10�4 �0:12316850220 : : : �5:3322442111 : : :
10�5 �0:12318945876 : : : �5:3332243659 : : :
10�6 �0:12319155423 : : : �5:3333224360 : : :
! 0 �0:12319178706 : : : �5:3333333333 : : :

Finally, we study the behavior of the limit constant �"
1 that appears in the Numerical

Result 4.1, for "! 0.
We give in table 1 the values of "�1�"

1 for several values of the perturbation strength
". It is evident from this table that "�1�"

1 = �0
1+O("), for some constant �

0
1 = �12��4

for the linear perturbation, and �0
1 = �16=3 for the cubic one.

We summarize now the numerical results found for the perturbative case.

Numerical result 4.2 For the linear and cubic perturbations, the objects �"(h), �"
n,

�"
1, introduced in the Numerical Result 4.1, tend to well-de�ned limits, as "! 0. More

precisely,

1. �"(h) = �0(h) + O("), uniformly in h 2 (0; 1].

2. �"
n = �0

n +O("), non-uniformly in n � 0.

3. �"
1 = "�0

1 +O("2), where �0
1 =

(
�12��4 if V 0(y) = y

�16=3 if V 0(y) = y3
.

Again, we believe that the numerical results above hold for any even entire pertur-
bative potential "V (y). Concerning the value of �0

1, we conjecture that

V (y) 2 Q [y] ) �0
1 2 Q [�]:

5 The computations

In this section, we will express the lobe area as a di�erence of homoclinic actions. We also
explain how to compute this exponentially small di�erence with an arbitrary accuracy
as fast as possible.
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5.1 MacKay-Meiss-Percival action principle

Let F be an exact map on the plane with the usual symplectic structure ! = dx^ dy and
let S be its generating function: F �y dx � y dx = dS. Assume the z1 is a hyperbolic
�xed point of F and let Wu;s be its associated unstable and stable invariant curves.
Given a homoclinic orbit O = (zn)n2Z of F|that is, O � (Wu \ Ws) n fz1g and
F (zn) = zn+1|we de�ne its homoclinic action as

W [O] =
X
n2Z

S(zn); (5.1)

where, in order to get an absolutely convergent series, the generating function S has
been determined by imposing S(z1) = 0. Given an integer N , we denote by �u;s(N)
the paths contained in the invariant curves Wu;s from the hyperbolic point z1 to the
homoclinic one zN . Then, the following formulae hold [MMP84, Eas91, DR97b]

X
n<N

S(zn) =
Z
�u(N)

y dx;
X
n�N

S(zn) =
Z
�s(N)

y dx: (5.2)

These formulae are the key tool to get a computable expression for the lobe area A.
Let z� be two homoclinic points such that the pieces of the invariant curves between
them do not contain other points of their orbits. These pieces enclose a region called
lobe. Let O� be the homoclinic orbits generated by z�, and set � = �u � �s, where
�u;s � Wu;s are paths from z+ to z�. Thus, A =

H
� y dx is the algebraic area of the lobe;

the sign of A depends on the way the perturbed curves cross: A > 0 if and only if �
is traveled clockwise, like in �gure 2. Finally, from equations (5.1) and (5.2), the lobe
area A can be expressed as a di�erence of homoclinic actions:

A = W [O�]�W [O+]: (5.3)

5.2 Multiple-precision arithmetic

To motivate the multiple-precision arithmetic used in the computations, we note that
the lobe areas we want compute are O (exp(��2=h)), whereas the homoclinic actions
W [O�] are much larger since they are of the same order as the region enclosed by the
unperturbed separatrix, which is O(h3). Thus, equation (5.3) must be carefully used
due to the strong cancellation in the di�erence W [O�] �W [O+]. Even for moderate
values h, this causes an important loss of signi�cant digits, which can only be overcome
computing the actions with more correct digits than the lost ones. For instance, setting
h = 0:1, numerical computations with "V 0(y) = y3=10 give

W [O+] ' 7:02677� 10�4 ' W [O�]; A ' 3:01433� 10�42;

so that in order to get at least one correct (decimal) digit for the lobe area A one must
have approximately 40 correct digits for the actions W [O�]. This exceeds the range of
a quadruple-precision.
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The number P of decimal digits used in the computations is determined by the
following formula:

P = Q+ [�2h�1 log10 e] + 20;

where Q is the number of signi�cant decimal digits required for the lobe area (usually
Q = 100 or Q = 900), and [�] stands for integer part. The second term is a good
approximation for the decimal digits lost by cancellation, and the last one is a security
term.

The multiple-precision routines have been performed following the algorithms con-
tained in the Knuth's book [Knu69]. We have avoided the use of external packages in
order to have a total control on the program.

The use of an expensive multiple-precision arithmetic encourages us to study maps
as \cheap" as possible. Accordingly, we have restricted the experiments to the linear
(V 0(y) = y) and cubic (V 0(y) = y3) cases. For numerical purposes, the representa-
tion (2.1) is the one that involves less operations. Given " and h > 0, one computes
� = cosh h, �0 = �� "V1, and then, in the linear case, each evaluation of (2.1) requires
one division, two products, and three sums. In the cubic case, just one more product is
needed.

5.3 Invariant curves

Local invariant curves associated to weakly hyperbolic �xed points must be developed
up to high order (see [Sim90] for general comments). This fact is crucial to get the
lobe area with the required accuracy as fast as possible: the initial iterates can then be
taken far enough from the hyperbolic �xed point and the homoclinic points z� can be
attained in a few iterations. In this way, undesirable accumulation of rounding errors
due to the large amount of operations is avoided and computing time is reduced.

It is very well-known that there exist analytic parameterizations �u;s : R !Wu;s of
the invariant curves such that F (�u(r)) = �u(�r) and F (�s(r)) = �s(��1r), where � is
the characteristic multiplier of the hyperbolic point. Such parameterizations conjugate
the map F to r ! ��r on the invariant curves, and are determined except for a mul-
tiplicative constant in the variable r. (A natural parameterization is obtained via the
change of variables r = exp t.)

In order to accelerate the numerical computation of these parameterizations we must
take advantage of the symmetries, reversors, and peculiarities of the map (2.2).

First, �u;s are odd, since so is F . Second, the reversors R+, R� = F � R+, allow us
to obtain a parameterization of the stable curve in terms of the unstable one:

�s(r) := R+(�u(r)) = R�(�u(�r)): (5.4)

Finally, the particular form of the map (2.2) implies that �u(r) can be written as

�u(r) =
�
�(��1=2r); �(�1=2r)

�
; (5.5)
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for some analytic odd function � : R ! R such that

�(�r) + �(��1r) = U 0 (�(r)) : (5.6)

Therefore, to get the Taylor expansion of the invariant curves it is enough to solve
equation (5.6). Set �(r) =

P
k�0 �kr

2k+1 and Q(�(r)) =
P

k�0 qkr
2k+1, where Q(y) :=

U 0(y)� 2�y = O(y3). From (5.6), we get
h
�2k+1 � 2�+ ��(2k+1)

i
�k = qk, for all k � 0.

Since Q(y) begins with cubic terms, q0 is zero and qk only depends on �0,. . . ,�k�1.
Besides, 2� = � + ��1 (see equalities (2.3)) implies that �` � 2�+ ��` = 0 if and only
if ` = �1. Thus, the coe�cient �0 is the free parameter that multiplies the variable r,
and

�k =
h
�2k+1 � 2�+ ��(2k+1)

i�1
qk; k � 1:

If all the coe�cients are known up to the index k � 1, we can compute successively qk
and �k, and this recurrent process allows us to compute the coe�cients �k up to any
�xed index K.

To choose adequately �0, we take into account that in the unperturbed case " = 0,
the parameterization �0(r) is given by �0(exp t) = �0(t) (see (2.4) and (2.5)), and it takes
the form

�0(r) = 2

r

1 + r2
= 2


X
k�0

(�1)kr2k+1; (5.7)

i.e., �0(r) only has odd Taylor coe�cients given by (�1)k2
.
In the perturbed case, we choose �0 = 2
 to get a controlled growth for the coe�cients

�k:
�k � (�1)k�0 = (�1)k2
: (5.8)

This stable behavior of the coe�cients �k is particularly suitable for their numerical
computation, and makes the previous algorithm very robust in avoiding cancellation
problems.

5.4 Homoclinic points

In order to �nd numerically the symmetric homoclinic points z� 2 C�, we move along
the unstable curve Wu to the �rst point that intersects C�. We explain the process for
z+; the computation of z� follows the same lines.

First, given the number P of decimal digits used in the arithmetic, and an order K
for the invariant curve expansions, we must choose a positive number � such that

EK(�) :=

�������(�)�
X
k�K

�k�
2k+1

������ =
������
X
k>K

�k�
2k+1

������ < � := 10�P ;

and as large as possible, because the size of � determines the number N of iterates
needed to reach the homoclinic point. From equation (5.8), we get that

EK(�) < 2
�2K+3 < �2K+3;
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for h small and � 2 (0; 1). Thus, a good choice is �2K+3 = � = 10�P , that is,

� = 10�P=(2K+3):

Once we have determined �, we �nd the �rst natural N such that FN(�u(�)) and
FN+1(�u(�)) = FN(�u(��)) are separated by C+ = fy = xg, so that the function

g+(r) = �1F
N (�u(r))� �2F

N (�u(r)) ; (5.9)

has a zero r̂+ in the interval [�; ��]. Here, �1(z) and �2(z) stand for the projections over
the �rst and second components of z, respectively.

Next, we use Newton's method to determine r̂+ with the precision � we are dealing
with. For the sake of e�ciency, we �rst work in double-precision and the result is later
re�ned by doubling the number of digits in the multiple-precision arithmetic after each
Newton's iteration. (The convergence of Newton method is quadratic.) In this way,
the complete Newton's method takes (at most) thrice what the last Newton's iteration
takes.

Finally, z+ = FN(�u(r̂+)) = �u(r+) is the homoclinic point over C+ we are looking
for, where r+ = �N r̂+. In the unperturbed case r+ = 1, because �0(r) = �0(1=r),
see (5.7). Therefore, for moderate perturbation strengths ",

e�Nh = ��N � r̂+ 2 [�; ��];

where � = 10�P=(2K+3), and we can express (approximately) the number of iterates N
in terms of the characteristic exponent h, the precision P , and the order K:

N �
P

(2K + 3)h log10 e
: (5.10)

Numerical experiments show that this �t gives, for h ranging in (0; 0:1] and " in
(�0:5; 0:5), a maximum relative error below 4%, so that it can be used to approximate
the index K minimizing the computer time. In order to do it, we move along the index
K, determine the number of iterations N by means of (5.10), and estimate a priori the
computer time counting the total number of products and divisions performed in the
algorithm. Afterwards, we choose the index K associated to the smallest estimate. It
should be noted that this method is very accurate: It turns out that the true optimal
choice of K is (at most) a ten per cent faster than our estimation.

Let us explain how, for each value of K, the computer time can be estimated a

priori. The algorithm to get the lobe area A has several parts: the expansion of the
local invariant curves, the Newton's method to �nd the pair of homoclinic orbits, the
computation of the action of each homoclinic orbit, and other negligible parts. For
the sake of the brevity, we shall only discuss how to estimate the time that takes the
Newton's method. We can normalize the time scale in such a way that one product
takes just one unit of time. Then, numerical experiments show that one division takes
approximately 2:75 units of time, for large enough P .
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�
Figure 6: Estimated computer time T vs. the order K, for " = 0:1 and Q = 900.
The dashed lines correspond to V 0(y) = y and the continuous ones to V 0(y) = y3. The
marked points correspond to the estimated optimal order. Left: h = 0:01 and the time
scale has been chosen in such a way that 106 products with P = 1353 decimal digits
take one unit of time; the estimated optimal orders are 194 (linear case) and 186 (cubic
case). Right: h = 0:001 and the time scale has been chosen in such a way that 107

products with P = 5211 decimal digits take one unit of time; the estimated optimal
orders are 677 (linear case) and 644 (cubic case).

Let #� (respectively, #�) be the number of products (respectively, divisions) re-
quired to evaluate the map (2.1) together with its di�erential. (Of course, #� and #�

depend on the perturbation; for instance, in the linear case #� = 6 and #� = 1, whereas
in the cubic one #� = 7 and #� = 1.) Then, the evaluation of the function g+(r) given
in (5.9) together with its di�erential takes 4K + (#� + 2:75#�)N units of time. The
�rst term|4K|comes from the Horner's rule to evaluate the Taylor expansions of
�u(r) and d�u(r). The second one|(#� + 2:75#�)N|is due to the computation of
FN(z) and its di�erential. Therefore, the time spent during the Newton's computations
is 6[4K + (#� + 2:75#�)N ], since Newton's method takes approximately thrice what
the last Newton's iteration takes, as already said, and we need compute two homoclinic
orbits (6 = 2� 3).

The other parts of the algorithm can be analyzed in the same way, and so one gets a
closed formula T = T (K) for the estimated computed time T in terms of the order K.
Then, we take as the (estimated) optimal order the point which realizes the minimum
of the function T (K). See �gure 6 for a sample of this idea.

To end, we note that the reversibility of the map allows us to reduce the com-
putation of homoclinic points to a one-dimensional root-�nding problem, instead of a
two-dimensional one. This simpli�es the study, avoids stability problems and saves
computer time.
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5.5 Lobe areas

The lobe area A is the di�erence of actions, according to formula (5.3). Therefore, it
is enough to compute the actions W [O�], but this is not so simple as applying directly
formula (5.1). Let us describe brie
y the problem that this simple method has. For the
sake of brevity, we restrict our study to the homoclinic orbit O+.

The problem is to compute the action W [O+] =
P

n2ZS(z
+
n ), where z

+
n = F n(z+),

and z+ = �u(r+) 2 C+ is the homoclinic point previously computed. Obviously, the
action must be computed to the precision � = 10�P � exp (��2=h) we are dealing with.
The simplest way to get the previous in�nite sum is to cut the terms with jnj > L, for

some threshold L chosen in such a way that
���Pjnj>L S(z

+
n )
��� < �.

The generating function of the map (2.1) is

S(x; y) = �xy + �0 log(1 + y2) + "V (y): (5.11)

From S(z) = O(z2), �u;s(z) = O(hz), and r+ = O(1), we get:

S(z+n ) =

(
S(�u(��jnjr+)) = O(h2 e�2jnjh) for n! �1,
S(�s(��jnjr+)) = O(h2 e�2jnjh) for n! +1.

Now, we note that the lowest natural number L such that
P
jnj>L h

2 exp (�2 jnjh) < � �

exp (��2=h) is at least O(h�2). This cost of O(h�2) evaluations of the function S(z) to
compute the action W [O+] becomes prohibitive for small h.

We proceed now to explain a better method, which requires only O(h�1) evaluations
of S(z). First, the reversibility of the map allows us to reduce the computational e�ort
to one half. Indeed, we can write the action as a di�erence of path integrals, see (5.2),

W [O+] =
X
n2Z

S(z+n ) =
Z
�u
y dx�

Z
�s
y dx;

where �u;s are the paths contained in the invariant curves Wu;s from the saddle point
z1 = (0; 0) to the homoclinic one z+ = z+0 = (x+; x+) 2 C+.

Since �s = R+�u, we get

W [O+] =
Z
�u
[y dx� x dy] =

Z
�u
[2y dx� d(xy)] = �(x+)2 + 2

X
n<0

S(z+n );

where in the last equality we have used again (5.2). To compute the last sum, we split
it as follows:

X
n<0

S(z+n ) = �1 + �2; �1 =
X

n<�N

S(z+n ); �2 =
�1X

n=�N

S(z+n );

where N is the number of iterates that it takes to arrive at z+ from the fundamental
domain in which the Taylor expansion of �u(r) holds with the required precision �.
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We write the in�nite sum �1 as a path integral along the path �̂ � Wu from the
saddle point z1 to the homoclinic one z+�N = �u(r̂+), r̂+ 2 [�; ��):

�1 =
X

n<�N

S(z+n ) =
Z
�̂
y dx = ��1=2

Z r̂+

0
�(�1=2r)� 0(��1=2r) dr;

which can be computed with the required accuracy using the Taylor expansion of �(r).
The second sum

P�1
n=�N S(z+n ) is �nite with only N = O(h�1) terms, so it can be

computed easily in a relatively fast way. A crucial fact to increase the e�ciency of the
program is the number of logarithmic evaluations required to perform this �nite sum,
because of the expensive multiple-precision arithmetic we are working on. Although in
equation (5.11) appears a logarithm, the sum

P�1
n=�N S(z+n ) requires just one logarithmic

evaluation, since a sum of logarithms can be rewritten as the logarithm of a product.
Now we are ready to compare the two methods. The �rst one required at least

O(h�2) evaluations of the generating function S(z), whereas the second one requires
only O(h�1) evaluations plus the computation of an integral by Taylor's method, which
takes less time than the O(h�1) evaluations of S(z). Therefore, the di�erence is at least
one order of magnitude in h.

To end this section, we show some values of P , K, and N in table 2. These results
were obtained setting " = 0:1 and requiring Q = 900 correct decimal digits for the lobe
area. It is also displayed the true computer time T in seconds (the runs have been
performed on a Pentium 200 under Linux). The choice " = 0:1 in
uences very little on
the quantities P , K, N , and T . In fact, P does not depend on the perturbation, but
only on Q and h. As expected, the computations in the linear case|V 0(y) = y|are
somewhat faster than in the cubic one|V 0(y) = y3|. This is due to the following
reasons: 1) The evaluation of the map F with a cubic perturbation requires one more
product than with the linear one, and 2) The computation of the Taylor expansion
of the local invariant curve is more expensive in the cubic case, because the recurrent
formulae for the Taylor coe�cients require more products.

6 Further experiments

An interesting problem is to �nd an algorithm for computing the coe�cients �"
n in

equations (4.5), (4.6), di�erent from the one used in this paper, which is based on the
numerical continuation of lobe areas for many values of h, jointly with an extrapola-
tion method. These coe�cients are the unknown component in the exponentially small
asymptotic formula for the splitting size. For some celebrated standard-like maps, sim-
ilar quantities (like the Lazutkin's constant !0 = 1118:827706 : : : for the standard map)
have been de�ned by means of nonlinear parameterless problems which only can be
solved numerically [GLT91, HM93, GLS94, Sur94, Che95, Nik95, Tre96]. It would be
useful to �nd such a problem for �"

n, since the absence of parameters makes easier its
resolution.



Singular splitting and Melnikov method 27

Table 2: Values of P (decimals digits in the multiple-precision arithmetic), K (local
order), N (iterations), and T (computing time in seconds), for Q = 900 (decimal digits
required for the lobe area) and " = 0:1.

V 0(y) = y V 0(y) = y3

h P K N T K N T

0.010 1353 194 800 1437 186 834 1371
0.009 1401 204 876 1652 195 916 1879
0.008 1459 215 974 1935 206 1016 2205
0.007 1536 230 1096 2369 220 1145 2736
0.006 1637 248 1264 3038 237 1322 3379
0.005 1782 271 1511 4134 259 1581 4643
0.004 1994 305 1879 6195 291 1969 7091
0.003 2350 356 2532 11154 339 2658 12613
0.002 3068 447 3951 31614 426 4145 36389
0.001 5211 677 8869 207007 644 9321 240530

To perform a similar study for (large and/or small) perturbations of other integrable
maps is the most natural continuation of this work.

As a �rst example, we mention the integrable standard-like maps given by Suris
in [Sur89]. (The McMillan map is a particular case of the Suris maps.) For in-
stance, [LM96] contains a exponentially small Melnikov prediction in the characteristic
exponent for the lobe area in a perturbed trigonometric Suris map, together with a
numerical study in double-precision of its validity. It would be interesting to work out
these computations in multiple-precision.

As a second example, we mention the twist maps associated to the perturbations of
elliptic billiards. The papers [LT93, Tab94, DR96, Lom96, Lev97] contain exponentially
small predictions for the splitting size when the eccentricity is small, that is, when the
unperturbed ellipse is near to a circle. The numerical experiments can be specially
helpful, since there is still a lack of analytical results. However, it is worth noting that
the numerical study of billiards is somewhat harder than the one performed here. This
has to do with the fact that the twist maps associated to billiards have not explicit
expressions, since they are de�ned implicitly by means of their generating functions.
Therefore, the evaluation of the map is more expensive: one needs to solve implicit
equations with trigonometric terms.

Volume-preserving maps form the third example where a detailed numerical analysis
would be interesting. In [AC�92, RK�93], one can �nd several families of volume-
preserving maps, depending on a small parameter h, such that the splitting distance
between certain invariant curves behaves with respect to h as in (1.2). The arguments
in these papers are semi-analytical. It would be interesting to study numerically the
asymptotic behavior of these distances. Maybe, a behavior like (1.3) or even (1.4) may
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be established, if a multiple-precision arithmetic is used.
As a last application, we consider the symplectic high-dimensional case. In [DR97b]

we obtained exponentially small asymptotic predictions via Melnikov methods for some
perturbations of the McLachlan map (a high-dimensional generalization of the McMillan
map here studied). The computations in the high-dimensional case must be performed
very carefully. The main di�culties associated to the increase of dimension are the
computation of the invariant manifolds, which takes much more time than in the planar
case, and the sensitive dependence of Newton's method on the initial approximation.
Following [Tab95], we suggest a way to overcome these problems. The �rst di�culty
can be soften using the Lagrangian property of the invariant manifolds of symplectic
maps, which can be written as graphs of gradients of a scalar function called generating
function of the manifold. The idea is to compute the Taylor expansion of such generating
functions instead of dealing with the invariant manifolds. To overcome the sensitive
dependence of Newton's method on the initial approximation, one can use �rst the
method developed in [Tab95] to �nd homoclinic points, based on the computation of
critical points of a scalar function, usually a more robust problem. Then, one can re�ne
the homoclinic point using the Newton's method (or a quasi-Newton method), which
converges faster.

Finally, we want to mention an outstanding conjecture, due to C. Sim�o, on the
asymptotic behavior of the splitting size for some area-preserving maps like the standard
map, the H�enon map, the twist map, and the perturbed McMillan map studied here.
Roughly speaking, this conjecture claims that

splitting size =
X
m�1

h
m e�m�=h�m(h); �m(h) Gevrey-1 and �m(0) 6= 0; (6.1)

that is, smaller exponentials must be added to (1.4) in order to get a more exact for-
mula. These exponentials do not play any rôle for \small" values of h, but they become
signi�cant for \larger" ones. There are strong reasons for believing that (6.1) holds, but
nowadays there is a lack of analysis and computer power to tackle this conjecture. We
hope that this will be a stimulating challenge for some of the readers.
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