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Abstract. This paper concerns with the �nite element Galerkin approximations for a uid{

solid interaction model proposed in [10]. Both Continuous{time and discrete{time approx-

imations are formulated and analyzed. Optimal order a priori estimates for the errors in

L
1(H1) and L1(L2) are derived. The main di�culty for the optimal order error estimates

is caused by the interface conditions which describe the interaction between a uid and a

solid on their contact surface, and it is overcome by using a boundary duality argument of

Douglas and Dupont [5] to handel the terms involving the interface conditions. Finally, sev-

eral parallelizable domain decomposition algorithms are proposed and analyzed for e�ciently

solving the �nite element systems.

x0. Introduction. The problems of wave propagation in composite media have long been

subjects of both theoretical and practical studies, important applications of such problems

are found in inverse scattering, elastoacoustics, geosciences, oceanography. Di�erent math-

ematical and/or numerical composite models were proposed and studied in [3], [4], [10],

[16], [15] and [17].

The purpose of this paper is to analyze the �nite element Galerkin approximations for

a uid{solid interaction model which was proposed recently by the authors in [10], and

to develop some parallelizable domain decomposition algorithms for e�ciently solving the

�nite element systems. In [10] we gave a detailed derivation and the complete mathematical

analysis for the model, which will serve as the theoretical foundation for the numerical

analysis of this paper. The primary goal of this paper is to establish optimal order a

priori error estimates in the L1(H1){norm and in the L1(L2){norm for the Galerkin

approximations to the solution of the model. The main di�culty for obtaining the optimal

estimates is caused by the interface conditions which describe the interaction between a

uid and a solid on their contact surface, To overcome the di�culty, the critical idea is

to use a boundary duality argument due to Douglas and Dupont [5] to handel the terms

involving the interface conditions.

The model and the �nite element methods studied in this paper are related to those

previously studied by Santos et al [16] and by Sheen [17], where the propagation of waves
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through single{phase and two{phase uid saturated porous media near a uid{�lled bore-

hole region was studied, respectively. Displacements were used as the primary variables

in the uid region (borehole) and in the uid{saturated porous solid region, and no at-

tempt was made to address the optimality issue of the error estimates for the Galerkin

approximations in both [16] and [17].

The domain decomposition methods developed in this paper are based on the idea of

using the convex combinations of the interface conditions in place of the original interface

conditions to pass the information between subdomains, see [11], [2], [6], [9] and references

therein for the expositions and discussions on this approach for problems posed in ho-

mogeneous media. So the domain decomposition methods of this paper may be regarded

as the generalizations of the methods proposed in those papers to the time{dependent

heterogeneous problems.

The organization of this paper is as follows. In x1 we introduce space notations, and

state the uid{solid interaction model and some basic facts about the model. In x2 we

formulate the continuous{time Galerkin approximation and establish a priori L1(H1) and

L1(L2) estimates under di�erent assumptions on the the solution and data functions. In

x3 two second order (in time) discrete{time Galerkin methods are de�ned and analyzed.

Finally, in x4, several parallelizable non{overlapping domain decomposition algorithms are

proposed and analyzed for the problem at the di�erential level, and these algorithms can

be readily adapted for solving the discrete systems of the Galerkin approximations for the

uid{solid interaction problem.

Throughout the paper, unless stated otherwise, C will denote a general positive con-

stant, not necessarily the same in any two places.

x1. Preliminaries. We consider the propagation of waves in a composite medium 


which consists of a uid part 
f and a solid part 
f , that is, 
 = 
f [ 
s. 
 will be

identi�ed with a domain in RN for N = 2; 3, and will be taken to be of unit thickness when

N = 2. Let � = @
f \ @
s denote the interface between two media, and let �f = @
f n�
and �s = @
s n�. The uid{solid interaction model we are going to study in this paper is

given by

1

c2
ptt ��p = gf ; in 
f ;(2.1.i)

�sutt � div(�(u)) = gs; in 
s;(2.1.ii)

@p

@nf
� �futt � ns = 0; on �;(2.1.iii)

�(u)ns � pnf = 0; on �;(2.1.iv)

1

c
pt +

@p

@nf
= 0; on �f ;(2.1.v)

�sAsut + �(u)ns = 0; on �s;(2.1.vi)

p(x; 0) = p0(x); pt(x; 0) = p1(x); in 
f ;(2.1.vii)

u(x; 0) = u0(x); ut(x; 0) = u1(x); in 
s;(2.1.viii)
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where

(2.1.ix) �(u) = �s div uI + 2�s�(u); "(u) =
1

2
[ru+ (ru)T ]:

In the above description, p is the pressure function in 
f and u is the displacement

vector in 
s. �i (i = f; s) denotes the density of 
i, ni (i = f; s) denotes the unit outward

normal to @
i. �s > 0 and �s � 0 are the Lam�e constants of 
s. Equation (2.1.ix) is

the constitutive relation for 
s. I stands for the N �N identity matrix. The boundary

conditions in (2.1.v) and (2.1.vi) are the �rst order absorbing boundary conditions for

acoustic and the elastic waves, respectively. These boundary conditions are transparent

to waves arriving normally at the boundary (cf. [8], [12]). Finally, equations (2.1.iii) and

(2.1.iv) are the interface conditions which describe the interaction between the uid and

the solid. For a detailed derivation of the above model and its analytical analysis, we refer

to [10].

The standard space notations are adopted in this paper. For example, Hk(D), k � 0

integer, denotes the Sobolev spaces over the domainD. When k = 0, H0(D) = L2(D), and

(�; �)D is used to denote the standard inner product on L2(D). k � kk;D denotes the usual

norms on Hk(D). For a Banach space B, Lq(0; T ;B) stands for the space of Lq{integrable

functions with range in B. W k;q([0; T ];B) is the space of functions whose up to kth order

derivatives with respect to t are in Lq(0; T ;B). B denotes (B)N , N = 2; 3, and a vector

in B is denoted either by v or by v
�
. In addition, we also introduce the following special

space notations:

Pf =

1\
k=0

W k;1(0; T ;H1�k(
f )) \
�
p 2 L2(0; T ;L2(
f ));

@p

@t
2 L2(0; T ;L2(�f ))

�
;

Qf = Pf \
2\

k=1

W k;1(0; T ;H2�k(
s)) \
�
p 2 L2(0; T ;L2(
f ));

@2p

@t2
2 L2(0; T ;L2(�f ))

�
;

Us =

1\
k=0

W k;1(0; T ;H1�k(
s)) \
�
u 2 L2(0; T ;L2(
s));

@u

@t
2 L2(0; T ;L2(�s))

�
;

Vs = Us \
2\

k=1

W k;1(0; T ;H2�k(
s)) \
�
u 2 L2(0; T ;L2(
s));

@2u

@t2
2 L2(0; T ;L2(�s))

�
;

bQf = Qf \ L1(0; T ;H2(
f )); bVs = Vs \ L1(0; T ;H2(
s)):

We shall make the following physical and mathematical assumptions throughout the

paper. The same assumptions were made in [10].

Assumption A:

(A1). �f = constant > 0; �s = �s(x) � �s > 0: �f , �s, �s are all positive constants.

(A2). 
f � RN, 
s � RN for N = 2; 3 are bounded open sets with Lipschitz continuous

boundary @
f and @
s, respectively.

(A3). 
 = 
f [ 
s, meas(
f ) 6= ;, meas(
s) 6= ;. Assume that � 6= ;. Note that it is

acceptable if one of �f and �s is empty.
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(A4). Suppose that the initial datum functions satisfy the following compatibility condi-

tions.

Compatibility Condition C:

(C1). u0 2 H2(
s) and u1 2 H1(
s) are said to be compatible on �s if �sAsu1 +

�(u0)ns = 0, on �s.

(C2). p0 2 H1(
f ) and u0 2 H2(
s) are said to be compatible on � if �(u0)ns�p0nf = 0,

on �.

The weak formulation of above problem is de�ned by seeking (p;u) 2 Pf � Vs which

satisfy (2.1.vii){(2.1.viii), and the following two identities

(
1

c2
ptt; q)
f

+ (rp;rq)
f
+ h1

c
pt; qi�f � h�futt � ns; qi�(2.2.i)

= (gf ; q)
f
; 8q 2 H1(
f );

(�sutt;v)
s
+ (�(u); "(v))
s

+ h�sAsut;vi�s + hp;v � nsi�(2.2.ii)

= (gs; v)
s
; 8v 2 (H1(
s))

N :

We conclude this section by briey summarizing some basic facts about the solution of

the initial{boundary value problem (2.1). For the precise statements of these results and

their proofs, we refer to [10].

Theorem 1.1. The initial{boundary value problem (2.1) has a unique weak solution

(p;u) 2 Pf �Vs. Moreover, if 
f and 
s are convex polygon or polyhedron domains, then

(p;u) 2 bQf � bVs; and both p and u are smooth in t variable if the source functions and

the initial datum functions are smooth in t variable,

x2. The continuous{time Galerkin approximation. In this section we shall formu-

late the continuous{time Galerkin approximation to the solution of the initial{boundary

value problem (2.1), and derive a priori estimates for the errors in L1(H1) and in L1(L2)

under di�erent assumptions on the approximate starting values and on the smoothness of

the solution.

x2.1. Formulation of semi{discrete �nite element methods. Let Ph1 � H1(
f ),

Vh2 � H1(
s) be two �nite dimensional (�nite element) subspaces associated with the

triangulation T f

h1
and T s

h2
of 
f and 
s with mesh sizes h1 and h2, respectively. Suppose

there exist two integers k � 1 and r � 1 such that

(i) for any q 2 H`(
f ), there exists qh 2 Ph1 such that for 0 � j � `,

(2.3) kq � qhkj;
f
� Chm1 kqk`;
f

; m = minf`� j; k � jg;

(ii) for any v 2 H`(
f ), there exists vh 2 Vh2 such that for 0 � j � `

(2.4) kv � vhkj;
s
� Chm2 kvk`;
s

; m = minf`� j; r � jg:
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Then the continuous{time �nite element method for (2.2) is de�ned by seeking (P;U) 2
Ph1 �Vh2 such that

(
1

c2
Ptt; qh)
f

+ (rP;rqh)
f
+ h1

c
Pt; qhi�f � h�fUtt � ns; qhi�(2.5.i)

= (gf ; qh)
f
; 8qh 2 Ph1 ;

(�sUtt; vh)
s
+ (�(U); "(vh))
s

+ h�sAsUt;vhi�s + hP;vh � nsi�(2.5.ii)

= (gs;vh)
s
; 8vh 2 Vh2 ;

P (0) = P0; Pt(0) = P1; in 
f ;(2.5.iii)

U(0) = U0; Ut(0) = U1; in 
s;(2.5.iv)

where P0, P1, U0 and U1 are the approximate starting values which will be speci�ed in

the next subsection.

Remark. Since (2.5) can be rewritten as a linear system of second order ordinary di�erential

equations (cf. [10]), it is easy to show the well{posedness of (2.5).

x2.2. Optimal H1 a priori error estimate. To estimate the errors r = p � P and

e = u �U, we use the idea of [19] by comparing the Galerkin approximation with so{

called elliptic projection (P̂ ; Û) 2 Ph1 �Vh2 of (p;u), de�ned by

(r(p � P̂ );rqh)
f
+ (p � P̂ ; qh)
f

= 0; 8qh 2 Ph1 :(2.6)

(�(u � Û); "(vh))
s
+ (u� Û;vh)
s

= 0; 8vh 2 Vh2 :(2.7)

Introduce the notations

r = p̂� P = (p � P̂ ) + (P̂ � P ) = � + �;

e = Û�U = (u � Û) + (Û�U) = �
�

+ �
�

:

The following estimates of � and �
�

are well{known. The proof of which can be found in

[1] and [19].

Lemma 2.1. Suppose p 2W j;1(Hk(
f )),
@
j+1

p

@tj+1
2 L2(Hk(
f )), u 2W j;1(Hr(
s)) and

@
j+1

u

@tj+1
2 L2(Hr(
s)) for j � 0. Then there exists an h{independent constant C > 0 such

that (
h1k

R t
0
�(� )d�kL1(H1(
f )); (j = 0)

h1k�kW j�1;1(H1(
f )); (j � 1)

)
+ k�kW j;1(L2(
f ))(2.8.i)

+

@j+1�@tj+1


L2(L2(
f ))

� Chk1Ej(p;
f );

8<
:

h2k
R t
0
�
�

(� )d�kL1(H1(
s)); (j = 0)

h2k�
�
kW j�1;1(H1(
s)); (j � 1)

9=
;+ k�

�

kW j;1(L2(
s))(2.8.ii)

+


@j+1�

�

@tj+1


L2(L2(
s))

� Chr2Ej(u;
s);
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where

Ej(p;
f ) = kpkW j;1(Hk(
f ))
+

@j+1p@tj+1


L2(Hk(
f ))

;(2.9.i)

Ej(u;
s) = kukW j;1(Hr(
s)) +

@j+1u@tj+1


L2(Hr(
s))

:(2.9.ii)

To estimate � and �
�
, we notice from (2.2), (2.5){(2.7) that

(
1

c2
P̂tt; qh)
f

+ (rP̂ ;rqh)
f
+ h1

c
P̂t; qhi�f � h�f Ûtt � ns; qhi� = (gf ; qh)
f

(2.10.i)

� [(
1

c2
�tt; qh)
f

+ h1
c
�t; qhi�f � h�f �

�
tt � ns; qhi� + (�; qh)
f

]; 8qh 2 Ph1 ;

(�sUtt;vh)
s
+ (�(Û); "(vh))
s

+ h�sAsÛt;vhi�s + hP̂ ;vh � nsi� = (gs;vh)
s
(2.10.ii)

� [(�s�
�
tt;vh)
s

+ h�sAs�
�
t;vhi�s + h�;vh � nsi� + (�

�

;vh)
s
]; 8vh 2 Vh2 :

Subtracting (2.5) from (2.10) gives

(
1

c2
�tt; qh)
f

+ (r�;rqh)
f
+ h1

c
�t; qhi�f � h�f �

�
tt � ns; qhi�(2.11.i)

= (� � 1

c2
�tt; qh)
f

� h1
c
�t; qhi�f + h�f �

�
tt � ns; qhi�; 8qh 2 Ph1 ;

(�s�
�
tt;vh)
s

+ (�(�
�

); "(vh))
s
+ h�sAs�

�
t;vhi�s + h�;vh � nsi�(2.11.ii)

= (�
�

� �s�
�
tt;vh)
s

� h�sAs�
�
t;vhi�s � h�;vh � nsi�; 8vh 2 Vh2 :

Now we �rst di�erentiate (2.11.ii) with respect to t and then choose the test functions

qh = 1
�f
�t, vh = �

�
tt in (2.11) to get

1

2

d

dt

" 1

c
p
�f

�t


2

0;
f

+

 1
p
�f
r�

2

0;
f

#
+

���� 1
p
�sc

�t

����
2

0;�f

� h�
�
tt � ns; �ti�(2.12.i)

� 1

2

 1

c
p
�f

�t


2

0;
f

+

 1

c
p
�f

�tt


2

0;
f

+

 c
p
�f

�


2

0;
f

� [h 1

c�f
�t; �ti�f � h�

�
tt � ns; �ti�];

1

2

d

dt

�
kp�s�

�
ttk20;
s

+ 2kp�s"(�
�
t)k20;
s

+ k
p
�s div(�

�
t)k20;
s

�
(2.12.ii)

+ jp�sc0�
�
ttj20;�s + h�t; �

�
tt � nsi�

� 1

2
kp�s�

�
ttk20;
s

+ kp�s�
�
tttk20;
s

+

 1
p
�s
�
�
t


2

0;
s

+ [hc1�s�
�
tt; �
�
tti�s � h�t; �

�
tt � nsi�]:
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The inequalities in (2.12) will be integrated in t in order to get relations to which we

can apply Gronwall's Lemma if we can bound the four boundary integrals on the right

hand sides of (2.12.i) and (2.12.ii). We could handle two integrals on �f and �s directly by

using Schwarz inequality, however this would cause us to loose a factor h
1
2 . In addition, we

should not bound two integrals on � directly since this will lead to \unclosed" inequalities

from which we can not get any estimates. In the following we shall use a boundary duality

argument due to Douglas and Dupont (cf. [5], [7] ) to bound these four boundary integrals.

Note that

I1 �
Z �

0

�
h 1

c�f
�t; �ti�f � h�

�
tt � ns; �ti�

�
dt(2.13)

=

�
h 1

c�f
�t; �i�f � h�

�
tt � ns; �i�

�����
�

0

�
Z �

0

�
h 1
�f

�tt; �i�f � h�
�
ttt � ns; �i�

�
dt:

I2 �
Z �

0

[hc1�s�
�
tt; �
�
tti�s � h�t; �

�
tt � nsi�]dt(2.14)

= [hc1�s�
�
tt; �
�
ti�s � h�t; �

�
t � nsi�]

����
�

0

�
Z �

0

[hc1�s�
�
ttt; �

�
ti�s � h�tt; �

�
t � nsi�]dt:

Using (2.13), (2.14), and the trace theorem jvj 1
2
;@D � Ckvk1;D we get

jI1j+jI2j � �[k�(� )k21;
f
+ k�

�
t(� )k21;
s

](2.15)

+C

Z �

0

[k�(t)k21;
f
+ k�

�
t(t)k21;
s

]dt

+C

Z �

0

[j�tt(t)j2� 1
2
;�f

+ j�tt(t)j2� 1
2
;�
+ j�

�
ttt(t)j2� 1

2
;�s

+ j�
�
ttt(t)j2� 1

2
;�
]dt

+C[j�t(� )j2� 1
2
;�f

+ j�t(� )j2� 1
2
;�
+ j�

�
tt(� )j2� 1

2
;�s

+ j�
�
tt(� )j2� 1

2
;�
]

+C[j�t(0)j2� 1
2
;�f

+ j�t(0)j2� 1
2
;�
+ j�

�
tt(0)j2� 1

2
;�s

+ j�
�
tt(0)j2� 1

2
;�
]

+C[k�(0)k21;
f
+ k�

�
t(0)k21;
s

]:

Finally, using the relation

v2(� ) = v2(0) + 2

Z �

0

v(t)vt(t) dt

we have

k�(� )k2
0;
f

� k�(0)k2
0;
f

+

Z �

0

h
k�(t)k2

0;
f

+ k�t(t)k20;
f

i
dt:(2.16)

k�
�
t(� )k20;
s

� k�
�
t(0)k20;
f

+

Z �

0

[k�
�
t(t)k20;
s

+ k�
�
tt(t)k20;
s

]dt:(2.17)

Combing the above estimates we get the following lemma.
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Lemma 2.2. There exists a constant C > 0 such that

k�tk2L1(L2(
f ))
+ k�k2L1(H1(
f ))

+ k�tk2L2(L2(�f )) + k�
�
ttk2L1(L2(
s))

(2.18)

+ k�
�
tk2L1(H1(
s))

+ k�
�
ttk2L2(L2(�s))

� C[k�k2L2(L2(
f ))
+ k�ttk2L2(L2(
f ))

+ k�
�
tk2L2(L2(
s))

+ k�
�
tttk2L2(L2(
s))

+ k�tk2
L1(H

�

1
2 (@
f ))

+ k�ttk2
L2(H

�

1
2 (@
f ))

+ k�
�
ttk2

L1(H
�

1
2 (@
s))

+ k�
�
tttk2

L2(H
�

1
2 (@
s))

+ k�t(0)k20;
f
+ k�(0)k21;
f

+ k�
�
tt(0)k20;
s

+ k�
�
t(0)k21;
s

]:

Proof. Adding (2.12.i) and (2.12.ii), integrating the sum and applying (2.15) we get that

there exists some constant C > 0 such that for any � 2 (0; T ),

k�t(� )k20;
f
+ kr�(� )k20;
f

+

Z �

0

j�t(t)j20;�f dt+ k�
�
tt(� )k20;
s

(2.19)

+ k"(�
�
t(� ))k20;
s

+ kdiv(�
�
t(� ))k20;
s

+

Z �

0

j�
�
tt(t)j20;�sdt

� �[k�(� )k21;
f
+ k�

�
t(� )k21;
s

] +C

Z �

0

h
k�t(t)k20;
f

+ k�(t)k21;
f

+k�
�
tt(t)k20;
s

+ k�
�
t(t)k21;
s

�
dt+ Cfk�k2L2(L2(
f ))

+ k�ttk2L2(L2(
f ))

+ k�
�
tk2L2(L2(
s))

+ k�
�
tttk2L2(L2(
s))

+ k�tk2
L1(H

�

1
2 (@
f ))

+ k�ttk2
L2(H

�

1
2 (@
f ))

+ k�
�
ttk2

L1(H
�

1
2 (@
s))

+ k�
�
tttk2

L2(H
�

1
2 (@
s))

+ k�t(0)k20;
f
+ k�(0)k21;
f

+ k�
�
tt(0)k20;
s

+ k�
�
t(0)k21;
s

g:

Recall that Korn's inequality ([13])

(2.20) k"(v)k20;
s
+ kvk20;
s

� C0kvk21;
s
; 8v 2 (H1(
s))

N :

Take � = minf1
2
; C0

2
g, add (2.16) and (2.17) to (2.19), the lemma then follows from the

resulting relation and Gronwall's lemma.

To bound the negative half norms appeared in (2.18), we need the following lemma of

Douglas and Dupont ([5]).

Lemma 2.3. Suppose Ej(p;
f ) and Ej(u;
s) are bounded for some integer j � 0. Then

there exists a constant C > 0 such that

k�k
W j;1(H

�

1
2 (@
f ))

+

@j+1�@tj+1


L2(H

�

1
2 (@
f ))

� Chk1Ej(p;
f ):(2.21)

k�
�
k
W j;1(H

�

1
2 (@
s))

+


@j+1�

�

@tj+1


L2(H

�

1
2 (@
s))

� Chr2Ej(u;
s):(2.22)

From Lemmas 2.1{2.3 we get the following theorem.
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Theorem 2.1. Suppose E1(p;
f ) and E2(u;
s) are bounded. Then there exists a con-

stant C > 0 such that

kp� PkW1;1(L2(
f )) + ku�UkW2;1(L2(
s)) � C
�
hk1E1(p;
f ) + hk2E2(u;
s)

�
:(2.23)

kp� PkL1(H1(
f )) + ku�UkW1;1(H1(
s)) � C
�
hk�11 E1(p;
f ) + hk�12 E2(u;
s)

�
:(2.24)

k(p� P )tkL2(L2(�f )) + k(u�U)ttkL2(L2(�s))(2.25)

�

8<
: C

�
hk1E1(p;
f ) + hk2E2(u;
s)

� 1
2
�
h
k�1
1 E1(p;
f ) + h

k�1
2 E2(u;
s)

� 1
2
; N = 2;

C
�
hk1E1(p;
f ) + hk2E2(u;
s)

� 1
4
�
h
k�1
1 E1(p;
f ) + h

k�1
2 E2(u;
s)

� 3
4
; N = 3:

Remark. The estimate (2.23) and (2.25) hold under the assumption

k(P̂ � P )t(0)k0;
f
+ k(P̂ � P )(0)k1;
f

+ k(Û� U)(0)k1;
s
(2.26.i)

+ k(Û � U)t(0)k1;
s
+ k(Û �U)tt(0)k0;
s

� C(hk1 + hr2);

but (2.24) holds under the weaker assumption

k(P̂ � P )t(0)k0;
f
+ k(P̂ � P )(0)k1;
f

+ k(Û� U)(0)k1;
s
(2.26.ii)

+ k(Û� U)t(0)k1;
s
+ k(Û � U)tt(0)k0;
s

� C(hk�11 + hr�12 ):

Proof. The inequalities (2.23) and (2.24) follow from Lemmas 2.1{2.3, (2.16){(2.17), and

the triangle inequality; and (2.25) can be obtained by using Lemmas 2.2 and 2.3 and the

following fact

jvj0;@D �

8<
:
kvk

1
2

0;Dkvk
1
2

0;D; if N = 2;

kvk
1
4

0;Dkvk
3
4

0;D; if N = 3:

x2.3. Optimal L2 a priori error estimate. In the previous subsection we derive optimal

L2-estimate for p � P , (p � P )t, u � U, (u �U)t and (u �U)tt under the assumption

(2.26.i), which is a super approximation requirement for the approximate starting values

(see [7] and [15] for a discussion and for the strategies to construct such approximate

starting values). On the other hand, the L1(H1) estimate (2.24) is obtained under the

assumption (2.26.ii), which is satis�ed when L2{projections of the initial data are used as

the approximate starting values (cf. [1]).

In this subsection we shall derive optimal L2{estimates for p� P , u�U and (u�U)t
under weaker requirements on the approximate starting values and on the smoothness of

the solution. The main idea is to employ a modi�ed energy method of Baker [1] for the

p{equation and to use the standard energy method for the u{equation.

First, we notice that (2.11.i) can be rewritten as

� (
1

c2
�t; qht)
f

+ (r�;rqh)
f
� h1

c
�; qhti�f + h�f �

�
t � ns; qhti�(2.27)

= (�; qh)
f
+ (

1

c2
�t; qht)
f

� d

dt

�
(
1

c2
rt; qh)
f

+ h1
c
r; qhi�f

�h�fet � ns; qhi�] + h1
c
�; qhti�f � h�f �

�
t � ns; qhti�:
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Take qh(t) =
R �
t
�(�)d� in (2.27) and vh(t) = �f �

�
t(t) in (2.11.ii). Clearly, qh(� ) = 0 and

q0h(t) = ��(t). Hence,

1

2

d

dt

1c�

2

0;
f

� 1

2

d

dt

r
Z �

t

�(�)d�


2

0;
f

+

���� 1pc�
����
2

0;�f

� h�f �
�
t � ns; �i�(2.28)

= (�;

Z �

t

�(�)d�)
f
� (

1

c2
�t; �)
f

� h1
c
�; �i�f + h�f �

�
t � ns; �i�

+
d

dt

�
(
1

c2
rt; qh)
f

+ h1
c
r; qhi�f � h�fet � ns; qhi�

�
:

1

2

d

dt

"p�s�f �
�
t


2

0;
s

+ 2

p�s�f "(�
�

)


2

0;
s

+

p�s�f div(�
�

)


2

0;
s

#
(2.29)

+

����pc0�s�f �
�
t

����
2

0;�s

+ h�; �f �
�
t � nsi�

� C

�
k�
�
tk20;
s

+ k�
�
ttk20;
s

+ k�
�

k20;
s

�
� h�sAs�

�
t; �f �

�
ti�s � h�; �f �

�
t � nsi�:

Adding (2.29) to (2.28) and integrating over (0; � ) we get

k�(� )k20;
f
+

Z �

0

j�(t)j20;�fdt+ k�
�
t(� )k20;
s

+ k"(�
�
(� ))k20;
s

(2.30)

+ kdiv(�
�
(� ))k20;
s

+

Z �

0

j�
�
t(t)j20;�sdt+

r
Z �

0

�(�)d�


2

0;
f

� C

Z �

0

"
k�(t)k20;
f

+


Z �

t

�(�)d�


2

0;
f

+ k�t(t)k20;
f

+k�(t)k20;
f
+ k�t(t)k20;
s

+ k�
�
tt(t)k20;
s

+ k�
�

k20;
s

�
dt

� 2

Z �

0

�
h1
c
�(t); �(t)i�f � h�f �

�
t(t) � ns; �(t)i�

+h�sAs�
�
t(t); �f �

�
t(t)i�s + h�(t); �f �

�
t(t) � nsi�

�
dt

+ 2

�
(
1

c2
rt(0);

Z �

0

�(�)d�)
f
+ h1

c
r(0);

Z �

0

�(�)d�i�f

�h�fet(0) � ns;
Z �

0

�(�)d�i�
�
+ C

�
k�(0)k20;
f

+ k�
�
t(0)k20;
s

+k"(�
�
(0))k20;
s

+ kdiv(�
�
(0))k20;
s

�
:
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Since

����h1c r(0);
Z �

0

�(�)d�i�f � h�fet(0) � ns;
Z �

0

�(�)d�i�
����(2.31)

� �

2


Z �

0

�(�)d�


2

1;
f

+ C

h
jr(0)j2

� 1
2
;�f

+ jet(0)j2� 1
2
;�

i
:

����( 1c2 rt(0);
Z �

0

�(�)d�)
f

���� � 1

2


Z �

0

�(�)d�


2

0;
f

+ Ckrt(0)k20;
f
:(2.32)

����
Z �

0

�
h1
c
�(t); �(t)i�f � h�f �

�
t(t); �(t)i� + h�sAs�

�
t(t); �f �

�
t(t)i�s(2.33)

+h�(t); �f �
�
t(t) � nsi�

�
dt

����
=

����h1c �(0);
Z �

0

�(�)d�i�f � h�f �
�
t(0);

Z �

0

�(�)d�i�

+ h�sAs�
�
t(t); �f �

�

(t)i�s j�0 + h�(t); �f �
�

(t) � nsi� j�0

+

Z �

0

�
h1
c
�t(t);

Z �

t

�(�)d�i�f � h�sAs�
�
tt(t); �f �

�
(t)i�s

�
dt

�
Z �

0

�
h�f �

�
tt(t);

Z �

0

�(�)d�i� + h�t(t); �
�

(t) � nsi�
�
dt

����
� �

2

"
Z �

0

�(�)d�


2

1;
f

+ k�
�
(� )k21;
s

#

+ C

Z �

0

"
Z t

0

�(�)d�


2

1;
f

+ k�
�
(t)k21;
s

#
dt

+ C

�
k�tk2

L2(H
�

1
2 (@
f ))

+ k�
�
ttk2

L2(H
�

1
2 (@
s))

+ k�k2
L1(H

�

1
2 (@
f ))

+k�
�
tk2
L1(H

�

1
2 (@
s))

+ k�
�
(0)k21;
s

�
:

k�
�
(� )k20;
s

� k�
�
(0)k20;
s

+

Z �

0

�
k�
�
(t)k20;
s

+ k�
�
t(t)k20;
s

�
dt:(2.34)


Z �

0

�(�)d�


2

0;
f

� �

Z �

0

k�(t)k20;
f
:(2.35)

Take � = minf1
2
; C0

2
g and add (2.34) and (2.35) to (2.30), and using (2.31){(2.33) and
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Korn's inequality (2.20) we get (let q(t) =
R t
0
�(�)d�)

k�(� )k20;
f
+ kq(� )k21;
f

+

Z �

0

j�(t)j20;�fdt+ k�
�
t(� )k20;
s

(2.36)

+ k�
�
(� )k21;
s

+

Z �

0

j�
�
t(t)j20;�sdt

� C

�Z �

0

�
k�(t)k20;
f

dt+ kq(t)k21;
f
+ k�

�
t(t)k20;
s

+ k�
�
(t)k21;
s

�
dt

+ k�k2L2(L2(
f ))
+ k�tk2L2(L2(
f ))

+ k�
�
k2L2(L2(
s))

+ k�
�
ttk2L2(L2(
s))

+ k�k2
L1(H

�

1
2 (@
f ))

+ k�tk2
L2(H

�

1
2 (@
f ))

+ k�
�
tk2
L1(H

�

1
2 (@
s))

+ k�
�
ttk2

L2(H
�

1
2 (@
s))

+ jr(0)j2
� 1

2
;
f

+ jet(0)j2� 1
2
;�

+k�(0)k20;
f
+ k�

�
t(0)k20;
s

+ k�
�

(0)k21;
s
+ krt(0)k20;
f

�
:

Finally, (2.36) and Gronwall's inequality yield

Lemma 2.4. There is a constant C > 0 such that

k�k2
L1(L2(
f ))

+


Z t

0

�(�)d�


2

L1(H1(
f ))

+ k�
�
tkL1(L2(
s)) + k�

�

k2
L1(H1(
s))

(2.37)

+ k�k2L2(L2(�s)) + k�
�
tk2L2(L2(
s))

� C

�
k�k2L2(L2(
f ))

+ k�tk2L2(L2(
f ))
+ k�

�
k2L2(L2(
s))

+ k�
�
ttk2L2(L2(
s))

+ k�k2
L1(H

�

1
2 (@
f ))

+ k�tk2
L2(H

�

1
2 (@
f ))

+ k�
�
tk2
L1(H

�

1
2 (@
s))

+ k�
�
ttk2

L2(H
�

1
2 (@
s))

+ jr(0)j2� 1
2
;�f

+ jet(0)j2� 1
2
;�

+k�(0)k20;
f
+ k�

�
t(0)k20;
s

+ k�
�
(0)k21;
s

+ krt(0)k20;
f

�
:

From Lemmas 2.1, 2.3 and 2.4 and triangle inequality we get the following theorem.

Theorem 2.2. Suppose E0(p;
f ) and E1(u;
s) are bounded. Then there exists a con-

stant C > 0 such that

kp� PkL1(L2(
f )) + ku�UkW1;1(L2(
s)) � C
�
hk1E0(p;
f ) + hk2E1(u;
s)

�
:(2.40) 

Z t

0

(p� P )(�)d�


L1(H1(
f ))

+ ku�UkL1(H1(
s))(2.41)

� C
�
hk�11 E0(p;
f ) + hk�12 E1(u;
s)

�
:

k(p� P )kL2(L2(�f )) + k(u�U)tkL2(L2(�s))(2.42)

�

8<
: C

�
hk1E0(p;
f ) + hk2E1(u;
s)

� 1
2
�
hk�11 E0(p;
f ) + hk�12 E1(u;
s)

� 1
2 ; N = 2;

C
�
hk1E0(p;
f ) + hk2E1(u;
s)

� 1
4
�
hk�11 E0(p;
f ) + hk�12 E1(u;
s)

� 3
4 ; N = 3:
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Remark. Estimate (2.40) holds under the following assumption

k(P̂ � P )t(0)k0;
f
+ k(P̂ � P )(0)k0;
f

+ k(Û�U)t(0)k0;
s
(2.43.i)

+ k(Û �U)(0)k1;
s
� C(hk1 + hr2):

But estimate (2.41) holds when

k(P̂ � P )t(0)k0;
f
+ k(P̂ � P )(0)k0;
f

+ k(Û�U)t(0)k0;
s
(2.43.ii)

+ k(Û �U)(0)k1;
s
� C(hk�11 + hr�12 ):

x3. The discrete{time Galerkin approximation. In this section we shall introduce

fully{discrete �nite element methods for the initial{boundary value problem (2.1) by dis-

cretizing the system of ordinary partial di�erential system (2.5) using the �nite di�erence

method. We shall derive error estimates analogous to Theorems 2.1 and 2.2, and show

that the time{stepping schemes are of second order accuracy.

x3.1. Formulation of fully{discrete �nite element methods. Let J be a positive

integer. Let �t = T

J
, tn = n�t, and

un = u(tn); pn = p(tn); Un = U(tn); Pn = P (tn):

We also let

Pn+1
2 =

Pn + Pn+1

2
; @fP

n =
Pn+1 � Pn

�t
;

@bP
n =

Pn � Pn�1

�t
; @cP

n =
Pn+1 � Pn�1

2�t
;

@cP
n =

Pn+1 + Pn�1

2�t
; @2Pn =

Pn+1 � 2Pn + Pn�1

�t2
;

Pn; = Pn�1 + (1� 2)Pn + Pn+1:

It is easy to check the following identities

@cP
n =

1

2
[@fP

n + @fP
n�1] =

Pn+1
2 � Pn�1

2

�t
;(3.1.i)

@2Pn = @f (@bP
n) = @b(@fP

n):(3.1.ii)

The discrete{time �nite element method is de�ned by seeking a sequence f(Pn;Un)gJn=0
in Ph1 �Vh2 such that for for n = 1; 2; � � � ; J � 1,

(
1

c2
@2Pn; qh)
f

+ (rPn; 1
4 ;rqh)
f

+ h1
c
@cP

n; qhi�f(3.2.i)

� h�f@2cUn � ns; qhi� = (g
n;1

4

f
; qh)
f

; 8qh 2 Ph1 ;

(�s@
2Un;vh)
s

+ (�(Un; 1
4 ); "(vh))
s

+ h�sAs@cU
n;vhi�s(3.2.ii)

+ hPn;vh � nsi� = (g
n;1

4
s ;vh)
s

; 8vh 2 Vh2 ;

P 0; P 1 2 Ph1 ; U0;U1 2 Vh2 :(3.2.iii)

Remark. P 0; P 1;U0 and U1 are some approximations to the initial values p0; p1;u0 and

u1, they will be speci�ed later in the next subsection.
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x3.2. Optimal H1 a priori error estimate. Introduce error functions

rn = pn � Pn = (pn � P̂n) + (P̂n � Pn) = �n + �n;

en = un �Un = (un � Ûn) + (Ûn �Un) = �
�

n + �
�

n:

Since the error derivation for the discrete{time approximation is analogous to that of the

continuous{time approximation, in the following we shall only highlight the steps which

are worth noting. First note that (pn;un) satis�es

(
1

c2
@2pn; qh)
f

+ (rpn; 14 ;rqh)
f
+ h1

c
@cp

n; qhi�f � h�f@2cun � ns; qhi�(3.3.i)

= (g
n;1

4

f
+ �n; q

h)
f
+ h�n; qhi�f + h�

�
n � ns; qhi�; 8qh 2 Ph1 ;

(�s@
2un;vh)
s

+ (�(un;
1
4 ); "(vh))
s

+ h�sAs@cu
n;vhi�s + hpn;vh � nsi�(3.3.ii)

= (g
n;1

4
s + �

�
n;v

h)
s
+ h�

�
n;v

hi�s + hwn;v
h � nsi�; 8vh 2 Vh2 :

It follows from Taylor's formula that

k�nk20;
f
� C�t3

Z tn+1

tn�1

kptttt(t)k20;
f
dt;

k�
�
nk20;
s

� C�t3
Z tn+1

tn�1

kutttt(t)k20;
s
dt;

j�nj2� 1
2
;�f

� C�t3
Z tn+1

tn�1

jpttt(t)j2� 1
2
;@
f

dt;

j�
�
nj2� 1

2
;�
� C�t3

Z tn+1

tn�1

jutttt(t)j2� 1
2
;@
s

dt;

j�
�
nj2� 1

2
;�s

� C�t3
Z tn+1

tn�1

juttt(t)j2� 1
2
;@
s

dt;

jwnj2� 1
2
;�
� C�t3

Z tn+1

tn�1

jpttt(t)j2� 1
2
;@
f

dt:

From (3.3) and the de�nition of P̂ and Û we get

(
1

c2
@2�n; qh)
f

+ (r�n;14 ;rqh)
f
+ h1

c
@c�

n; qhi�f � h�f@2c �
�

n � ns; qhi�(3.4.i)

= (�n �
1

c2
@2�n + �n;

1
4 ; qh)
f

+ h�n �
1

c
@c�

n; qhi�f
+ h(�

�
n � �f@

2
c �
�

n) � ns; qhi�; 8qh 2 Ph1 ;

(�s@
2�
�

n;vh)
s
+ (�(�

�

n;1
4 ); "(vh))
s

+ h�sAs@c�
�

n;vhi�s(3.4.ii)

+ h�n;vh � nsi�
= (�

�
n � �s@

2�
�

n + �
�

n;1
4 ;vh)
s

+ h�
�
n � �sAs@c�

�

n;vhi�s

+ hwn � �n;vhnsi�; 8vh 2 Vh2 :
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Apply the operator @c to both sides of (3.4.ii), take qh = @c�
n in (3.4.i) and vh =

�f@c(@c �
�

n), add the resulting equations to get

1

2�t

"1c@f�n

2

0;
f

�
1c@f�n�1


2

0;
f

+ kr�n+1
2 k20;
f

� kr�n�1
2 k20;
f

#
(3.5)

+

���� 1pc@c�n
����
2

0;�f

+
1

2�t

�
kp�s�f@f @c�

�

nk20;
s
� kp�s�f@f@c �

�

n�1k20;
s

+ 2kp�s�f "(@c�
�

n+1
2 )k20;
s

� 2kp�s�s"(@c�n�
1
2 )k20;
s

+k
p
�s�fdiv(@c �

�

n+1
2 )k20;
s

� k
p
�s�fdiv(@c �

�

n� 1
2 )k20;
s

�
+ c0j

p
�s�f@c(@c �

�

n)jn0;�s

� k@c�nk20;
f
+ k�nk20;
f

+ k1
c
@2�nk20;
f

+ k�n; 14 k0;
f

+ kp�f@c(@c �
�

n)k20;
s
+ kp�f@c�

�
nk20;
s

+ kp�f�s@2(@c�
�

n)k20;
s

+ kp�f@c�
�

n; 1
4 k20;
s

+ h�n �
1

c
@c�

n; @c�
ni�f + h(�

�
n � �f@

2�
�

n) � ns; @c�ni�

+ h@c(�
�
n � �sAs@c�

�

n); �f@c(@c �
�

n)i�s + h@c(wn � �n); �f@c(@c �
�

n) � nsi�:

Applying
P`

n=1 (` � J � 1) to (3.5) yields

k@f�`k20;
f
+ kr�`+1

2 k20;
f
+ k@f (@c�

�

`)k20;
f
+ k"(@c�`+

1
2 )k20;
s

(3.6)

+ kdiv(@c �
�

`+ 1
2 )k20;
s

+�t

`X
n=1

�
j@c�nj20;�f + j@c(@c �

�

n)j20;�s

�

� C

(
`X

n=1

�
k�n+1

2 � �n�
1
2 k20;
f

+ k@c �
�

n+1
2 � @c�

�

n� 1
2 k20;
s

�

+�t

`X
n=1

h
k�nk20;
f

+ k@2�nk20;
f
+ k�n; 14 k20;
f

+ k@c�
�
nk20;
s

+k@2(@c�
�

n)k20;
s
+ k@c�

�

n; 1
4 k20;
s

�
+�t

`X
n=1

�
h�n �

1

c
@c�

n; @c�
ni�f

+ h(�
�
n � �f@

2
c �
�

n) � ns; @c�ni� + h@c(wn � �n); �f @c(@c �
�

n) � nsi�

+h@c(�
�
n � �sAs@c�

�

n); �f @c(@c �
�

n)i�s
�
+
h
k@f�0k20;
f

+ kr� 1
2 k20;
f

+k@f (@c �
�

0)k20;
s
+ k"(@c �

�

1
2 )k20;
s

+ kdiv(@c �
�

1
2 )k20;
s

��
:
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For the boundary integral terms using discrete integration by parts we get

J` =�t

`X
n=1

�
h�n �

1

c
@c�

n; @c�
ni�f + h(�

�
n � �f@

2
c �
�

n) � ns; @c�ni�(3.7)

+ h@c(�
�
n � �sAs@c�

�

n); �f@c(@c�
�

n)i�s + h@c(wn � �n); �f@c(@c �
�

n) � nsi�
�

=� �t

2

`X
n=1

�
h@f (�n �

1

c
@c�

n); �n+
1
2 i�f + h@f @c(�

�
n � �sAs@c�

�

n); �f@c �
�

n+1
2 i�s

+h@f (�
�
n � �f@

2
c �
�

n) � ns; �n+
1
2 i� + h@f (@c(wn � �n)); �f@c �

�

n+1
2 � nsi�

�

+
�t

2

�
h�`+1 �

1

c
@c�

`+1; �`+
1
2 i�f � h�1 �

1

c
@c�

1; �
1
2 i�f

+ h(�
�
`+1 � �f@

2
c �
�

`+1) � ns; �`+
1
2 i� � h(�

�
1 � �f@

2
c �
�

1) � ns; �
1
2 i�

+ h@c(�
�
`+1 � �f@c�

�

`+1); �f @c�
�

`+ 1
2 i�s � h@c(�

�
1 � �f@c�

�

1); �f@c �
�

1
2 i�s

+h@c(w`+1 � �`+1); �f @c�
�

`+ 1
2 � nsi� � h@c(w1 � �1); �f@c�

�

1
2 � nsi�

�
:

Hence,

jJ`j �C�t
`X

n=1

�
k�n+1

2 k21;
f
+ k@c�

�

n+1
2 k21;
s

+ j@f@c�nj2� 1
2
;@
f

(3.8)

+ j@f@2c �
�

nj2
� 1

2
;@
s

+ j@f�nj2� 1
2
;�f

+ j@f �
�
nj2� 1

2
;�
+ j@f@c�

�
nj2� 1

2
;�

+j@f@cwnj2� 1
2
;�

i
+�t

�
k�`+1

2 k21;
f
+ k@c�

�

`+1
2 k21;
s

�
+C�t

�
k@c�k2~L1(H

�

1
2 (@
f ))

+ k@2c �
�
k2
~L1(H

�

1
2 (@
s))

+ k�k2
~L1(H

�

1
2 (�f ))

+ k�
�
k2
~L1(H

�

1
2 (�))

+k�
�
k2
~L1(H

�

1
2 (@
s))

+ kwk2
~L1(H

�

1
2 (�))

+ k� 1
2 k21;
f

+ k@c �
�

1
2 k21;
s

�
:

Using the inequality

(�`+
1
2 )2 = (�

1
2 )2 +

`X
n=1

(�n+
1
2 + �n�

1
2 )(�n+

1
2 � �n�

1
2 )(3.9)

� 3

2
(�

1
2 )2 � 1

2
(�k+1)2 +

kX
n=1

h
2(�n+

1
2 )2 + (�n+

1
2 � �n�

1
2 )2
i
;
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we obtain

k�`+1
2 k20;
f

� k� 1
2 k20;
f

+

`X
n=1

�
4

3
k�n+1

2 k20;
f
+

2

3
k�n+1

2 � �n�
1
2 k20;
f

�
:(3.10)

k@c �
�

`+1
2 k20;
s

� k@c�
�

1
2 k20;
s

+

`X
n=1

�
4

3
k@c�

�

n+1
2 k20;
s

+
2

3
k@c(�

�

n+1
2 � �

�

n� 1
2 )k20;
s

�
:(3.11)

Finally, add (3.10) and (3.11) to (3.6), then use (3.8), Lemmas 2.1 and 2.3, Korn's

inequality, Gronwall's lemma and the triangle inequality, we have the following theorem.

Theorem 3.1. Suppose E1(p;
f ) and E2(u;
s) are bounded. Then there exists an h{

independent constant C > 0 such that

k@f (p � P )k~L1(L2(
f ))
+ kp� Pk~L1(L2(
f ))

+ k@f@c(u�U)k~L1(L2(
s))
(3.12)

+ k@c(u�U)k~L1(L2(
s))
� C

�
hk1 + hr2 + (�t)2

�
:

kp� Pk~L1(H1(
f ))
+ k@c(u�U)k~L2(H1(
s))

� C
�
hk�11 + hr�12 + (�t)2

�
:(3.13)

k@c(p� P )k~L2(L2(�f)) + k@2c (u�U)k~L2(L2(�s))(3.14)

�

8<
: C

�
hk1 + hr2 + (�t)2

� 1
2
�
hk�11 + hr�12 + (�t)2

� 1
2 ; N = 2;

C
�
hk1 + hr2 + (�t)2

� 1
4
�
hk�11 + hr�12 + (�t)2

� 3
4 ; N = 3;

where

kfk~L1(X) = max
0�`<J

kf`+ 1
2 kX ; kfk~L2(X) = �t

"
J�1X
`=0

kf`k2X

# 1
2

:

x3.3. Optimal L2 a priori error estimate. We consider a modi�ed version of (3.2),

which is obtained by replacing Pn by Pn;1
4 in (3.2.ii). By repeating the above derivation

and that of Theorem 2.2, we can show the following theorem.

Theorem 3.2. Suppose E0(p;
f ) and E1(u;
s) are bounded. Then there exists an h{

independent constant C > 0 such that

kp� Pk~L1(L2(
f ))
+

�t
`X

n=1

(pn � Pn)


~L1(L2(
f ))

+ ku�Uk~L1(L2(
s))
(3.15)

+ k@f (u�U)k~L1(L2(
s))
� C

�
hk1 + hr2 + (�t)2

�
:�t

`X
n=0

(p � P )


~L1(H1(
f ))

+ ku�Uk~L1(H1(
s))
� C

�
hk�11 + hr�12 + (�t)2

�
:(3.16)

k(p� P )k~L2(L2(�f )) + k@c(u�U)k~L2(L2(�s))(3.17)

�

8<
: C

�
hk1 + hr2 + (�t)2

� 1
2
�
hk�11 + hr�12 + (�t)2

� 1
2 ; N = 2;

C
�
hk1 + hr2 + (�t)2

� 1
4
�
hk�11 + hr�12 + (�t)2

� 3
4 ; N = 3;
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where (P;U) is de�ned by

(
1

c2
@2Pn; qh)
f

+ (rPn;1
4 ;rqh)
f

+ h1
c
@cP

n; qhi�f(3.18.i)

� h�f@2cUn � ns; qhi� = (g
n;1

4

f
; qh)
f

; 8qh 2 Ph1 ;

(�s@
2Un;vh)
s

+ (�(Un; 1
4 ); "(vh))
s

+ h�sAs@cU
n;vhi�s(3.18.ii)

+ hPn; 1
4 ;vh � nsi� = (g

n; 1
4

s ;vh)
s
; 8vh 2 Vh2 :

Proof. We use the same error function notations as in the previous subsection. De�ne

f0 = 0; fn = �t

n�1X
m=0

�m+1
2 :

Notice that

@cf
n =

1

2
(�n+

1
2 + �n�

1
2 );

�n;
1
4 =

1

4
(�n+1 + 2�n + �n�1) =

1

2
(�n+

1
2 + �n�

1
2 );

`X
n=1

(@cf
n; gn) =�

`X
n=1

(fn; @cg
n) +

1

2�t

�
(f`+1; g`) + (f`; g`+1)(3.19.i)

�(f1; g0)� (f0; g1)
�
;

X̀
n=1

(@cf
n; gn) =�

X̀
n=1

(fn+
1
2 ; @fg

n) +
1

2�t

h
(f`+

1
2 ; g`+1)� (f

1
2 ; g1)

i
:(3.19.ii)

Taking qh = fn and vh = �f@c�
�

n, applying
P`

n=1 to the error equations corresponding to

(3.18), using (3.19.ii) on the term (r�n;14 ;rqh)
f
and (3.19.i) on the term

h�f@2c �
�

n � ns; qhi� yield the desired estimates.

Remark. One may consider the following family of discrete schemes

(
1

c2
@2Pn; qh)
f

+ (rPn;;rqh)
f
+ h1

c
@cP

n; qhi�f(3.20.i)

� h�f@2cUn � ns; qhi� = (g
n;

f
; qh)
f

; 8qh 2 Ph1 ;

(�s@
2Un;vh)
s

+ (�(Un;); "(vh))
s
+ h�sAs@cU

n;vhi�s(3.20.ii)

+ hPn;;vh � nsi� = (gn;s ;vh)
s
; 8vh 2 Vh2 :

In particular, for  = 1
2
. It can be shown that these schemes are absolutely stable if  � 1

4
.
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x4. Non{overlapping domain decomposition methods. In this section we shall

present a couple of parallelizable non{overlapping domain decomposition iterative algo-

rithms for e�ciently solving the �nite element systems (3.2), (3.18) and (3.20). Consid-

ering the heterogeneous nature of the uid{solid interaction problem, it is very nature

to use non{overlapping domain decomposition method to solve the problem. Indeed, the

non{overlapping domain decomposition approach is a natural and e�ective way for solving

heterogeneous and/or interface problems arising from many scienti�c applications. We

refer to [14] and reference therein for more discussions in this direction.

For simplicity we shall only describe and analyze our domain decomposition algorithms

at the di�erential level in this section. Following the ideas of [2], [6] and [9], it is not very

hard but rather technical and tedious to construct and analyze the discrete analogues of

the di�erential domain decomposition algorithms to be introduced in the following. Those

analyses along with the computation test results will be reported elsewhere in a forthcom-

ing paper. Another point which is worth mentioning is that the domain decomposition

algorithms of this paper can be used for solving the discrete systems of the uid{solid

interaction problem (2.1) which arise from using other discretization methods such as �-

nite di�erence and spectral methods, even hybrid methods of using di�erent discretization

methods in di�erent media (subdomains).

x4.1. Algorithms. Recall the interface conditions on the uid{solid contact surface are

(4.1)
@p

@nf
= �futt � ns; pnf = �(u)ns; on �:

Rewrite the second equation in (4.1) as

(4.2) �pt = �(ut)ns � ns; 0 = �(ut)ns � �s; on �;

where �s denotes the unit tangential vector on @
s. The equivalence of (4.1.ii) and (4.2)

holds if the initial conditions satisfy the compatibility conditions (C1) and (C2) (cf. x1).

Lemma 4.1. The interface conditions in (4.1) are equivalent to

@p

@nf
+ �pt = �futt � ns � ��(ut)ns � ns; on �;(4.3.i)

�futt + ��(ut)ns =
@p

@nf
ns � �ptns; on �;(4.3.ii)

�(ut)ns�s = 0; on �;(4.3.iii)

for any pair of constants � and � such that �+ � 6= 0.

Proof. Trivial.

Based on the above new form of the interface conditions we propose the following iter-

ative algorithms, one of which resembles to Jacobi type iteration and the other resembles

to Gauss{Seidel type iteration.
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Algorithm 1: (Jacobi type iteration)

Step 1 8p0 2 Pf ; 8u0 2 Vs.

Step 2 Generate f(pn;un)gn�1 iteratively by solving

1

c2
pntt ��pn = gf ; in 
f ;(4.4.i)

1

c
pnt +

@pn

@nf
= 0; on �f ;(4.4.ii)

@pn

@nf
+ �pnt = �fu

n�1
tt � ns � ��(un�1t )ns � ns; on �;(4.4.iii)

�su
n
tt � div �(un) = gs; in 
s;(4.4.iv)

�sAsu
n
t + �(un)ns = 0; on �s;(4.4.v)

�fu
n
tt + ��(unt )ns =

@pn�1

@nf
ns � �pn�1t ns; on �;(4.4.vi)

�(unt )ns � �s = 0; on �:(4.4.vii)

Algorithm 2: (Gauss-Seidel type iteration)

Step 1 8u0 2 Vs.

Step 2 Generate fpngn�0 and fungn�1 iteratively by solving

1

c2
pntt ��pn = gf ; in 
f ;(4.5.i)

1

c
pnt +

@pn

@nf
= 0; on �f ;(4.5.ii)

@pn

@nf
+ �pnt = �fu

n
tt � ns � ��(unt )ns � ns; on �;(4.5.iii)

�su
n+1
tt � div �(un+1) = gs; in 
s;(4.5.iv)

�sAsu
n+1
t + �(un+1)ns = 0; on �s;(4.5.v)

�fu
n+1
tt + ��(un+1t )ns =

@pn

@nf
ns � �pnt ns; on �;(4.5.vi)

�(un+1t )ns � �s = 0; on �:(4.5.vii)

Remark. Appropriate initial conditions must be provided in the above algorithms. We

omit these conditions for notation brevity, and assume no ambiguity will be caused by the

omission.
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x4.1. Convergence Analysis. In this subsection we shall establish the utility of Algo-

rithms 1 and 2 by proving their convergence. Because the convergence proof for Algorithm

2 is almost same as the proof of Algorithm 1, we only give the proof for Algorithm 1 in

the following.

Introduce the error functions at the nth iteration

rn = p� pn; en = u� un:

It is easy to check that (rn; en) satis�es the error equations

1

c2
rntt ��rn = 0; in 
f ;(4.6.i)

1

c
rnt +

@rn

@nf
= 0; on �f ;(4.6.ii)

@rn

@nf
+ �rnt = �fe

n�1
tt � ns � ��(en�1t )ns � ns; on �;(4.6.iii)

�se
n
tt � div �(en) = 0; in 
s;(4.6.iv)

�sAse
n
t + �(en)ns = 0; on �s;(4.6.v)

�se
n
tt + ��(ent )ns =

@rn�1

@nf
ns � �rn�1t ns; on �;(4.6.vi)

�(ent )ns � �s = 0; on �:(4.6.vii)

De�ne the \pseudo{energy"

(4.7) En = E(frn; eng) =
 @rn@nf

+ �rn

2

L2(L2(�))

+ k�fentt + ��(en)nsk2L2(L2(�)) :

Lemma 4.2. There holds the following inequality

(4.8) En+1(� ) � En(� ) �Rn(� );

where

Rn(� ) = 4

Z �

0

Z
�

�
�
@rn

@nf
rnt + ��(ent )ns � entt

�
dxdt:



22 XIAOBING FENG, PING LEE AND YUTING WEI

Proof.

En+1 =

@rn+1@nf
+ �rn+1t


2

L2(L2(�))

+
�fen+1tt + ��(en+1t )ns

2
L2(L2(�))

= k�fentt � ns � ��(ent )ns � nsk
2

L2(L2(�))
+

 @rn@nf
ns � �rnt ns


2

L2(L2(�))

� jj�fentt + ��(ent )nsjj2L2(L2(�)) +
 @rn@nf

+ �rnt


2

L2(L2(�))

� 2�

Z �

0

Z
�

[�(ent )ns � ns�fentt � ns + �fe
n
tt � �(ent )ns] dxdt

+ 2�

Z �

0

Z
�

�
@rn

@nf
rnt ns � ns +

@rn

@nf
rnt

�
dxdt

= En � 4

Z �

0

Z
�

�
�
@rn

@nf
rnt + ��s�(e

n
t )ns � entt

�
dxdt

= En �Rn:

Here we have used the fact that

�(ent )ns � nsentt � ns = �(ent )ns � entt; since �(ent )ns � �s = 0:

The proof is completed.

To �nd a lower bound for Rn(� ), we test (4.6.i) against r
n
t to get

1

2

d

dt

1c rnt

2

0;
f

+
1

2

d

dt
krrnk20;
f

+

���� 1pcrnt
����
2

0;�f

=

Z
�

@rn

@nf
rnt dx;

which implies that

(4.9)

Z �

0

Z
�

@rn

@nf
rnt dxdt =

1

2

1c rnt (� )

2

0;
f

+
1

2
krrn(� )k20;
f

+

 1p
c
rnt


L2(L2(�f))

:

Here we have implicitly assumed that rn(0) = rnt (0) = 0.

Di�erentiating (4.6.iv) with respect to t and testing it against entt give us

1

2

d

dt
kp�senttk

2

0;
s

+
d

dt
kp�s"(ent )k

2

0;
s

+
1

2

d

dt

p�s div(e
n
t )
2
0;
s

+ c0 j
p
�se

n
t j
2

0;�s
�
Z
�

�(ent ) � nsenttdx;

which implies thatZ �

0

Z
�

�s�(e
n
t )ns � enttdxdt �

1

2
kp�sentt(� )k

2

0;
s

+ kp�s"(ent (� ))k20;
s
(4.10)

+
1

2

p�s div(e
n
t (� ))

2
0;
s

+ c0jj
p
�se

n
t jj2L2(L2(�s))

� 1

2
kp�sentt(0)k

2

0;
s

:
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Finally, suppose en(0) = ent (0) = 0, it follows from (4.6.i) that

kp�sentt(0)k0;
s
=

 1
p
�s
div(en(0))


0;
s

= 0:

Combining (4.9) and (4.10) we get the following lemma.

Lemma 4.3. Rn(� ) satis�es the following inequality

Rn(� ) � 2�

"1c rnt (� )

2

0;
f

+ krrn(� )k20;
f
+ 2

 1p
c
rnt


2

L2(L2(�f ))

#

+ 2�
�
kp�sentt(� )k20;
s

+ kp�s"(ent (� ))k20;
s

+ k
p
�sdiv(e

n
t (� )k20;
s

+ 2c0 k
p
�se

n
t k2L2(L2(�s))

i
:

We are now ready to state our convergence theorem.

Theorem. For � > 0 and � > 0 we have

(i) pn ! p strongly in Pf ,

(ii) un ! u strongly in Vs.

Proof. The conclusion of the theorem is just an immediate consequence of the combination

of Lemmas 4.2 and 4.3.

Remark. If we choose � = 0, � = 1, Algorithms 1 and 2 become N{N alternating type

algorithms. This is possible because the Neumann data @p

@nf
and �(u)ns are not related

to each other directly on the interface. In addition, at the end of each N{N iteration one

can add the following relaxation step to speed up the convergence

pn := �pn + (1� �)pn�1;

untt := �untt + (1� �)un�1tt ;

where � is any constant satisfying 0 < � < 1.
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