Finite Element Methods and Domain Decomposition Algorithms for

a Fluid-Solid Interaction Problem*

X1A0BING FENGT, PING LEEI AND YUTING WET*

ABsTRACT. This paper concerns with the finite element Galerkin approximations for a fluid—
solid interaction model proposed in [10]. Both Continuous-time and discrete—time approx-
imations are formulated and analyzed. Optimal order a priori estimates for the errors in
L>®°(H') and L>°(L?) are derived. The main difficulty for the optimal order error estimates
is caused by the interface conditions which describe the interaction between a fluid and a
solid on their contact surface, and it is overcome by using a boundary duality argument of
Douglas and Dupont [5] to handel the terms involving the interface conditions. Finally, sev-
eral parallelizable domain decomposition algorithms are proposed and analyzed for efficiently
solving the finite element systems.

§0. Introduction. The problems of wave propagation in composite media have long been
subjects of both theoretical and practical studies, important applications of such problems
are found in inverse scattering, elastoacoustics, geosciences, oceanography. Different math-
ematical and/or numerical composite models were proposed and studied in [3], [4], [10],
[16], [15] and [17].

The purpose of this paper is to analyze the finite element Galerkin approximations for
a fluid—-solid interaction model which was proposed recently by the authors in [10], and
to develop some parallelizable domain decomposition algorithms for efficiently solving the
finite element systems. In [10] we gave a detailed derivation and the complete mathematical
analysis for the model, which will serve as the theoretical foundation for the numerical
analysis of this paper. The primary goal of this paper is to establish optimal order a
priori error estimates in the L(H!)-norm and in the L°°(L?)-norm for the Galerkin
approximations to the solution of the model. The main difficulty for obtaining the optimal
estimates is caused by the interface conditions which describe the interaction between a
fluid and a solid on their contact surface, To overcome the difficulty, the critical idea is
to use a boundary duality argument due to Douglas and Dupont [5] to handel the terms
involving the interface conditions.

The model and the finite element methods studied in this paper are related to those
previously studied by Santos et al [16] and by Sheen [17], where the propagation of waves
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through single—phase and two—phase fluid saturated porous media near a fluid—filled bore-
hole region was studied, respectively. Displacements were used as the primary variables
in the fluid region (borehole) and in the fluid—saturated porous solid region, and no at-
tempt was made to address the optimality issue of the error estimates for the Galerkin
approximations in both [16] and [17].

The domain decomposition methods developed in this paper are based on the idea of
using the convex combinations of the interface conditions in place of the original interface
conditions to pass the information between subdomains, see [11], [2], [6], [9] and references
therein for the expositions and discussions on this approach for problems posed in ho-
mogeneous media. So the domain decomposition methods of this paper may be regarded
as the generalizations of the methods proposed in those papers to the time-dependent
heterogeneous problems.

The organization of this paper is as follows. In §1 we introduce space notations, and
state the fluid—solid interaction model and some basic facts about the model. In §2 we
formulate the continuous—time Galerkin approximation and establish a priori L°(H*') and
L*>(L?) estimates under different assumptions on the the solution and data functions. In
§3 two second order (in time) discrete—time Galerkin methods are defined and analyzed.
Finally, in §4, several parallelizable non—overlapping domain decomposition algorithms are
proposed and analyzed for the problem at the differential level, and these algorithms can
be readily adapted for solving the discrete systems of the Galerkin approximations for the
fluid—solid interaction problem.

Throughout the paper, unless stated otherwise, C' will denote a general positive con-
stant, not necessarily the same in any two places.

§1. Preliminaries. We consider the propagation of waves in a composite medium
which consists of a fluid part 2y and a solid part Q, that is, 2 = Qf U Q,. Q will be
identified with a domain in RY for N = 2, 3, and will be taken to be of unit thickness when
N =2. Let I' = 9Q4 N 9§ denote the interface between two media, and let I'y = 924\ T
and 'y = 99, \ I'. The fluid—solid interaction model we are going to study in this paper is
given by

. 1 .
(2.1.1) P~ Ap = gy, in Qy,
(2.1.i) psuy — div(o(u)) = gs, in Qg

3}
(2.1.iii) B—np; — pfuy -ng =0, on I,
(2.1.iv) o(u)n, —pny =0, on I,
1 Op
2.1. - — =0 r
(217) it =0, on T,
(2.1.vi) psAsus + o(u)n, =0, on I,
(2.1.vii) p(2,0) = po(z), pe(z,0) =pi(z), in Oy,
(2.1.viii) u(z,0) =ug(z), uyz,0)=u(z), in Q,,
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where
1
(2.1.ix) o(u) = A; divul 4 2p.¢(u), e(u) = §[Vu + (Vu)T].

In the above description, p is the pressure function in 1y and u is the displacement
vector in Q. p; (2 = f,s) denotes the density of Q;, n; (¢ = f,s) denotes the unit outward
normal to 8Q;. A; > 0 and p; > 0 are the Lamé constants of Q,. Equation (2.1.ix) is
the constitutive relation for ;. I stands for the N x N identity matrix. The boundary
conditions in (2.1.v) and (2.1.vi) are the first order absorbing boundary conditions for
acoustic and the elastic waves, respectively. These boundary conditions are transparent
to waves arriving normally at the boundary (cf. [8], [12]). Finally, equations (2.1.iii) and
(2.1.iv) are the interface conditions which describe the interaction between the fluid and
the solid. For a detailed derivation of the above model and its analytical analysis, we refer
to [10].

The standard space notations are adopted in this paper. For example, H*(D), k > 0
integer, denotes the Sobolev spaces over the domain D. When k = 0, H*(D) = L?*(D), and
(+,*)p is used to denote the standard inner product on L?(D). || - ||x,p denotes the usual
norms on H*(D). For a Banach space B, L4(0,T; B) stands for the space of L?-integrable
functions with range in B. W*4([0,T]; B) is the space of functions whose up to kth order
derivatives with respect to ¢ are in L4(0,T; B). B denotes (B)N, N = 2,3, and a vector
in B is denoted either by v or by v. In addition, we also introduce the following special

space notations:

P = (VW) 0 {pe PO @) % € 10,120}

o ot
2 82
Qs = Fr0 (| WH(0, s ) n {p e 0T @) SF e 0.z
k=1
! ou
U, = (| Wh>(0,T;H'"%(Q,)) N {u € L*(0,T5L*()); -, € LQ(o,T;LQ(Fs))} :
k=0

2
32
V,=U,n [ Wh>=(0,T;H*(Q.)) N {u € L*(0,T; L*(Qs)); W;l € L2(0,T;L2(FS))} :
k=1

@f = Qf N Loo(oaT;HZ(Qf))7 Vs =V, N LOO(O7T;H2(QS))'

We shall make the following physical and mathematical assumptions throughout the
paper. The same assumptions were made in [10].

Assumption A:

(Al). py = constant >0, ps = ps(z) >p, > 0. A¢, A;, s are all positive constants.

(A2). Q; C RN, Q, C RN for N = 2,3 are bounded open sets with Lipschitz continuous
boundary 9€ s and 99, respectively.

(A3). O = QU Q,, meas(Qy) # ), meas(2;) # 0. Assume that I' # . Note that it is
acceptable if one of I'y and I', is empty.
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(A4). Suppose that the initial datum functions satisfy the following compatibility condi-
tions.
Compatibility Condition C:
(C1). up € H*(Q,) and u; € H!(Q;) are said to be compatible on T'; if p,A,u; +
o(ug)ns =0, on I',.
(C2). pp € H*(¢) and ug € H?*(£,) are said to be compatible on I' if o(ug)ns—pons = 0,
on I'.

The weak formulation of above problem is defined by seeking (p,u) € Py x V, which
satisfy (2.1.vii)—(2.1.viii), and the following two identities

L1 1
(2.24) (c—2ptt,Q)9f +(Vp,Vq)o, + <;pt,Q>rf — (pfug - ny, q)v

:(gf7Q)Qf7 VqEHl(Qf),
(2:2:) (pyu Vo, + (o(w)e(v))a, + ordsieIr, + (pyv - molr
= (g87v)937 Vv e (Hl(ﬂs))N'

We conclude this section by briefly summarizing some basic facts about the solution of
the initial-boundary value problem (2.1). For the precise statements of these results and
their proofs, we refer to [10].

Theorem 1.1. The initial-boundary value problem (2.1) has a unique weak solution
(p,u) € Pf X V. Moreover, if 0y and (), are convex polygon or polyhedron domains, then

(p,u) € Qf X VS; and both p and u are smooth in t variable if the source functions and
the initial datum functions are smooth in t variable,

62. The continuous—time Galerkin approximation. In this section we shall formu-
late the continuous—time Galerkin approximation to the solution of the initial-boundary
value problem (2.1), and derive a priori estimates for the errorsin L>(H?') and in L>(L?)
under different assumptions on the approximate starting values and on the smoothness of
the solution.

§2.1. Formulation of semi—discrete finite element methods. Let P,, C H'(Qy),
Vi, C H'(Qs) be two finite dimensional (finite element) subspaces associated with the

triangulation Thji and 7% of Q¢ and {25 with mesh sizes h; and hs, respectively. Suppose
there exist two integers £ > 1 and r > 1 such that

(i) for any g € H*(Qy), there exists g, € Py, such that for 0 < j < ¢,
(2.3) lg = arllie, < Ch*llgllea,, m=min{l—j,k—7};
(ii) for any v € H*(Qy), there exists vy, € Vj,, such that for 0 < j < £

(2.4) v —vnllj0, < Chy'llv]leq,, m=min{f—jr—j}.
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Then the continuous—time finite element method for (2.2) is defined by seeking (P, U) €
Py, xV}, such that

(2.5.1) (Cl_QPtt7Qh)Qf + (VP,Van)a, + <%Pt7Qh>I‘f — (psUst - ns, qu)r
=(gf,qn)0;» Van € Phy,

(258)  (poUsyona, + (0(U),e(va))a, + (psdsUs valr, + (P,vi - m)r
=(gs,Vr)a,, Vv € Vy,,

(2.54i) P(0) =Py, PJ(0)=P, inQy,

(2.54v) U(0)=U,, U, 0)=U;, inQ,,

where Py, P;, Uy and U; are the approximate starting values which will be specified in
the next subsection.

Remark. Since (2.5) can be rewritten as alinear system of second order ordinary differential
equations (cf. [10]), it is easy to show the well-posedness of (2.5).

§2.2. Optimal H! a prior: error estimate. To estimate the errors r = p — P and
e = u — U, we use the idea of [19] by comparing the Galerkin approximation with so—
called elliptic projection (P,ﬂ) € Py, x V}, of (p,u), defined by
(2.6) (V(p— P),Var)a, +(»— P,qn)a, =0, Vau € Py,.
(2.7) (a(u — ﬂ),s(vh))gs + (u — Ij,Vh)QS =0, Yvpé€ Vi,.
Introduce the notations
r=p—P=(p—P)+(P-P)=06+4,
e=U-U=u-U)+(U-U)=qy+¢.
The following estimates of § and n are well-known. The proof of which can be found in
[1] and [19].
Lemma 2.1. Suppose p € Wi*(H(Qy)), 2 ¢ L2(H*(Qy)), u € Wi(H"(2,)) and
%]t;r% € L>(H"(;)) for j > 0. Then there exists an h—independent constant C' > 0 such
that

| Rl [y 0(7)dT| pe crrrca, s (5 =0)
(2.8.) { 0 (H'(24)) > 1) —I—"e"wj,oo(L2(Qf))

~

hill8llwi-1.0 (m1(2,))) (7=
8itlg

oti+1 < Ch]lcEj(Z%Qf))

L2(L*(Q2y))

-

1 .
hall fy n(T)dT || a0,y (3 =0)
(2.8.ii) ~ . +lnllwie z20.)
ha||nllwi-1. (EH1(02,))5 (7=21) ~

3]’4—177

+ < Cthj(uaﬂS)7

i+l
L2(L2(Q,))
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where
3]+1p
(2.9.) Es(p,25) = [l a2t o +H ,
J (H*($2¢)) Stit+l LR y)
3 8itly
(2.9.1]) E](u, QS) = Hunj,oo(Hr(Qs)) —|— HW .
L2(H"™(2s,))

To estimate ¢ and ¢, we notice from (2.2), (2.5)—(2.7) that

R . 1. .
(2:104) (ZPusan)a, + (VP,Van)a, + (- Pran)r, = (psUn - nas an)r = (955 an)e;
1 1
- [(0_29tt7qh)9f —I_ <;9t,Qh>I‘f - <Pf2tt . ns,qh>]_" —I_ (9, Qh)Qf], \V/qh & Ph17

(2'10'ii)(pSUttavh)Qs + (U(ﬂ)7€(vh))93 + <p8~’48fjtavh>rs + <P7vh ) ’I’Ls>I‘ = (gs,Vh)Q
— (psmet,Vi)a, + (psAsne, Vi)r, + (8, Vi - ng)r + (777Vh) s Vv, € V.

Subtracting (2.5) from (2.10) gives
. 1 1
(2110)  (Fdssan)o, + (Ve Vanla, + (Z8nanlr, — (préu - nssan)r

1 1
= (0 — 0_29tt7Qh)Qf - <;9t7Qh>Pf + <Pf77tt My qr)T5 Vqn € Py,
(21111) (psftt,vh)ﬁs + (0(5)75("’1))93 + <p8~’48€t7vh>rs + <¢>,Vh ’ 7’L3>I‘

~

(77 - Psntt,Vh) —(psAsne, V)T, — (0, Vi - ng)T, YV € Vi

~

Now we first differentiate (2.11.ii) with respect to ¢ and then choose the test functions
qn = #gﬁt, vy, = €4 in (2.11) to get

1d 1
2.12.1) —— tt " Mg, Pt
(212 2dt[ HJ_ | = . ~ (€ nen il
1 v IR B B v
< =
=5 \/_
- [<@9t,¢’t>1} - <Ztt : n37¢’t>I‘]7
1d
2123) 3% |IVoi€ull o, + 2 VA€l 0, + VA dv(€lR 0,

+ |vPsCOftt|0,1“s + (915 ftt “Mg)T

_

_H\/PsfttHOQ ‘|’H\/Ps77tttHOQ ‘|‘H
N Ps ~

+ [(c1psmtts Eve)T, — <9t7£tt ns>r]-

~ ~

[\V]
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The inequalities in (2.12) will be integrated in ¢ in order to get relations to which we
can apply Gronwall’s Lemma if we can bound the four boundary integrals on the right
hand sides of (2.12.i) and (2.12.ii). We could handle two integrals on I'y and I'; directly by
using Schwarz inequality, however this would cause us to loose a factor hz. In addition, we
should not bound two integrals on I' directly since this will lead to “unclosed” inequalities
from which we can not get any estimates. In the following we shall use a boundary duality
argument due to Douglas and Dupont (cf. [5], [7] ) to bound these four boundary integrals.
Note that

(2.13) I E/o [<%9t,¢’t>r,¢ - <Ztt : n37¢’t>I‘:| dt

- |:<L9t,¢>>1"f — <Ztt'ns7¢’>1":|

[ 1
_/0 [<E¢9tt,¢’>rf—<zttt.ns,¢,>r .

0

(2.14) I, E/O [{e1pamer Exer, — (B4, Eux - )r]dt

= [<Clps77tt7 ft>I‘s - <9t7 £t ns>I‘] - / [<clps77ttt7 ft>I‘s - <9tt, TR n3>r]dt.
~ ~ 0 0 ~ o~ ~

Using (2.13), (2.14), and the trace theorem |v[1 5p < C||v||1,p We get

1
2

(2.15)  |Ll+IL] < 8[l¢(T)I1 .o, +11&()I10,]
f
+0 [ 18I g, + €0 0,101
0 ~
+C/0 [16:e(t)]% 1 1, + [0ee(t)|Z s 1 + [mee(2) Zip, t |Zttt(t)|2_%’r]dt
+C[10UT)2s b, +10u(7) 21 1 + [74(7) Zip, Tt |Ztt(7-)|2_%’r]
‘|‘C[|9t(0)|2_%,rf + |9t(0)|2_%,r + [n+(0) 2_%,113 + |77tt(0)|2_%,r]

+Cl1$0)]13,0, + €013 2, -

Finally, using the relation

we have
(2.16) 16(T)llo.0, < 16(0)lls 0, +/0 [Hq—”(t)Hg,Qf + [l¢e(®)llo g, | dt-
(2.17) Hét(T)H%,QS < Hét(o)Hg,Qf +/0 [Hét(t)Hg,Qs + Hétt(t)Hg,Qs]dt'

Combing the above estimates we get the following lemma.
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Lemma 2.2. There exists a constant C > 0 such that
(2:18) el Toe 220,y + 1Dl Tm (rr1c0, ) + 19612222, ) + Hétt”%w(m(gs))
+ HétH%m(Hl(Qs)) + HéttH%z(Lz(rs))
< CONZ2 2200,y + 100l 22 2200, + 16l T2(z200,)) + 1Ml 222200, )
+ 1|67 | + [|64|I? | + 2 )
I tHLOO(H_E(BQf)) I ttHLz(H—a(an)) HzttHLOO(H_E(QQS))
+ || 7422 + 19:(0)[[5,0, + #(0)I13 o, + 1€:(0)1I5 . + [€:(0)[I3 o, ]-

L2(H™ % (o0.))
Proof. Adding (2.12.i) and (2.12.ii), integrating the sum and applying (2.15) we get that
there exists some constant C' > 0 such that for any = € (0,7),
(2:19)  ll¢u(7)llo.0, + V()5 0, +/ |6()]5 1, dt + 1[€e(T)IIT 2,
0 ~
+le(€e(m)lo.0, + [1div(E())I5 0, +/ |€0(t)o p, dt
~ ~ 0 ~

< Sl e, + 1Rl +0 [ (1800, + 160,
~ 0
€30, + Hft(t)H%,Qs] dt + C{HQH%Z‘(LZ(Qf)) + HettH?:z(Lz(Qf))

+ 1nell 3220,y + Zer2ca.) + 110 ;
HZtHL (L2(Q,)) HztttHL (L2(9,)) 16:]] ~(H"}(00,))

2
L2(H™7(8Q,))

2

+ [|64| + Hn”HLoo(H‘%(aﬂ )

L2(H™ 2 (89;))
+[[6:0)13 0, + 160)13 a, + [€::(0)I5 0, + 1€:(0)]17 g, }-

Recall that Korn’s inequality ([13])

+ HUtttH

(2:20) le(WIE.q, +IvIEa, = Collviia,, Yve (H' Q).
Take § = min{%, %}, add (2.16) and (2.17) to (2.19), the lemma then follows from the

resulting relation and Gronwall’s lemma.

To bound the negative half norms appeared in (2.18), we need the following lemma of
Douglas and Dupont ([5]).

Lemma 2.3. Suppose E;(p,Q) and E;(u,Q;) are bounded for some integer j > 0. Then
there exists a constant C > 0 such that

(2.21) 191 o8 CHEE, (p, )
2.21 FIPUp— | + = < 185(p,8y).
Wioo (H™ 2 (094)) Ot || 12 (-3 (s0,)) I
3]’+177
(2.22) O - < ChIE,(u, ).
L2(H™%(89,))

From Lemmas 2.1-2.3 we get the following theorem.
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Theorem 2.1. Suppose E1(p,Qy) and E5(u,,) are bounded. Then there exists a con-
stant C > 0 such that

(2.23)”}) — PHWl,oo(LZ(QJ._)) + Hu — UHWZ,OO(LZ(QS)) <C [h’fEl(p,Qf) + hISEQ(u,QS)] .
(2.24)”}) — PHLOO(Hl(Q],_)) + Hu — UHWl,oo(Hl(QS)) <C [h’f_lEl(p,Qf) + h’;_lEQ(u,QS)] .
(2.25)1(p = Pellz2 22wy + (@ = Ulsellzzzzr,))

C (W Bs(p, ) + B Ba(un, 2)] F [B57 Ba(p, 0p) + BE o, 2,)]

[V

NS

N =2,
N =3.

O [hEEy(p, Q) + W Ea(u, 2] * [hE Eu(p, ©27) + RS Ea(n, 2]

Remark. The estimate (2.23) and (2.25) hold under the assumption

(2:26:) [[(£ = P)u(0)llo.g, + I(P = P)(O)]l10, + (T = U)(0)]14,
+ (T =)0, + (T = U)st(0)llo., < C(h + ki),
but (2.24) holds under the weaker assumption

(2.26.i) [|(P — P)e(0)lo,2; +II(P — P)(O)]l1.2, + (T — U)(0)l]1.0,
+ (0 = U)e(0)l[1.0. + (T = 0)ee(0)lo,0, < C(hy ™" +h571).

Proof. The inequalities (2.23) and (2.24) follow from Lemmas 2.1-2.3, (2.16)—(2.17), and
the triangle inequality; and (2.25) can be obtained by using Lemmas 2.2 and 2.3 and the
following fact

1 1 .
lolle pllvllg s i N =2,

|’U|0,6D =< N 2 ‘
[vllg pllvllg p»  if N =3.

§2.3. Optimal L? a prior: error estimate. In the previous subsection we derive optimal
L?-estimate for p — P, (p — P);, u — U, (u — U); and (u — U);; under the assumption
(2.26.1), which is a super approximation requirement for the approximate starting values
(see [7] and [15] for a discussion and for the strategies to construct such approximate
starting values). On the other hand, the L>°(H"') estimate (2.24) is obtained under the
assumption (2.26.ii), which is satisfied when L*-projections of the initial data are used as
the approximate starting values (cf. [1]).

In this subsection we shall derive optimal L?—estimates for p — P, u — U and (u — U),
under weaker requirements on the approximate starting values and on the smoothness of
the solution. The main idea is to employ a modified energy method of Baker [1] for the
p—equation and to use the standard energy method for the u—-equation.

First, we notice that (2.11.i) can be rewritten as

(221)  ~(Sduaua, + (Vo Vae, — (chaulr, + (pr€e ma i)

1 d 1 1
= (97Qh)9f + (0—29t7th)Qf - % (c_2rt7Qh)Qf + <;T7 Qh>I‘f

1
—(pses - ns,qn)r] + <;9,th>r,¢ —{PfNt - Mg, Qre)T-
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Take gp(t) = ftT d(A)dA in (2.27) and v (1) = Pfét(t) in (2.11.ii). Clearly, ¢1(7) = 0 and
q;,(t) = —¢(t). Hence,

1d K
(2.28) = H / P(A d>\ + ‘%Qﬁ or, - <Pf£t'ns,¢’>1“
- (6, / $(N)dN)a, - (0—29t,¢>)9f ~(26,8)r, + (prn0mesdir
+ o [( STty qn)Q, + <%T,Qh>rf - <Pfet‘n37Qh>I‘] -
d 2
(2.29) %d— !H\/Wét +2H\/ms H«/ oy div(€ ]
~ 10,0, ~ 110,82,

+ \/Copspfft

~

+ <¢’7pf€t : ns>I‘
0T, ~

<c [H&H%,m Flnulio, + Hnuz,gs] {paAuniy € e, — (8,p5E1 - M.

Adding (2.29) to (2.28) and integrating over (0,7) we get

(2.30) H¢’(T)H%,Qf+/ [#®)lo.r, @t + 11 €:(7)5.0, + 1e(€(TI5 .

oo,

+10:D)15 o,
0,9

Flldiv(E(r) R g, +/ €, dt +

‘)
0

+HIO@[G 0, + 16DE 0, + InaB)F 0, + Han,Qs] dt

e 0, + t 975(/\)61A

[

~2 [ G600, ~ o) 8O
Fo A0, €O, + (600, pr€d0) x|

2 (0, [ 00N, + (o), [ sax,
~loreu0) e, [ SN | + € 160N 0, + 1O,

(€150, + [l div(£(0)I[5 0, ]
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Since
(2.31) /¢> )d\)r, — (pres(0 n/ H(N)dM)p
"4(n)ax +o[| (O s 7, +led®)P 1 ] -
1 T T 2
232 |G [ e, [ < 5| [Coar| +cln@)Ra,
0 0 0,0y

233) | [ G008, — (orm0,80) + (o Amithps €00,
O3 €0 na)e | i
‘ /¢’ JaNr, = (psm:(0 /¢> )dN\)r
a0, o5 ED)r, 5 + (B2 05E(0)-mabr
v [Gedo, [ o0, - oedautv,seoin. | @
[ [tosmator, [ otvan <<>g<t>-ns>r}dt\
<3| emar e >H1,Qs]
v [ [ oa] +H£(t)H?,szs] at
010 3 m = 1 3 1 i 0
I gty + €O,
231) ) < Hé(O)Hﬁ,as + [ 16O, + 1R,
(2.35) /¢> dA <T/ ()5, -

11

Take § = min{3, $2} and add (2.34) and (2.35) to (2.30), and using (2.31)—(2.33) and
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Korn’s inequality (2.20) we get (let g(¢ fo
(236) 63, + 270, + / S0, dt + Hgtmuz,gs
FIEOIR 0, + [ 160,
<o [ 19000, -+ 160l o, + 1O, + 10, | d

+ HQH%Z(LZ‘(Q]:)) + HetH%z(Lz(Qf)) + HZH%z(Lz(Qs)) + HZ“H%Z’(LZ’(QS))

2 2
IO e -3 00, ) T 1090 e -3 00,

+ Hth

2
HL""(H_5(3Q )

+ |r(0 )|2_%’Qf + [e:(0 )|2—%,I‘

H77t

L2(H™ 3 (99,))

18Oz, + €050, + 1€O)IF.0, + Ir:(0)]13,, } :

Finally, (2.36) and Gronwall’s inequality yield
Lemma 2.4. There is a constant C > 0 such that

231) 161z + | s00]

+ 1€l 2200y + 1€l T zrrga))
Lee(H'(Qy)) ~ ~

+lllzeza.)) + 11T 22

C {HQH%Z‘(LZ‘(Qf)) + HetH%Z(LZ(Qf)) + HUH%Z(LZ‘(QS)) + HUttH%z(LZ(QS))

+ 116217

2
+él Lo} (09,))

L (H™ % (002))
+ Il

2
HL""(H_5(39 )

10 s p, + led0) s 1

H77t

L2(H™ 3 (09,))

HO)I5.0, +11€0)I[G.0, + 1EO7 0, + lr(0)5.0, } :

From Lemmas 2.1, 2.3 and 2.4 and triangle inequality we get the following theorem.

Theorem 2.2. Suppose Ey(p,Qy) and Eq(u,,) are bounded. Then there exists a con-
stant C > 0 such that

(2.40) Hp — PHLOO(LZ(QJ._)) + Hu — UHWLOO(LZ(QS)) < [h’ng(p,Qf) + hISEl(u,QS)] .

1
/0 (p— P)(\)dA T l[u = Ullz~garany)

Lee (H(824))
< C [Rf 7 Eo(p, Q) + RS Ei(u, Q)]
(2.42) l(p = P)llL2z2 sy + lI(w = U)tHL2<L2<r )
C [hh Eo(p, ) + b5 Ex (u,9,)]* [hE " Eo(p, Q) + 5 By(u,2.)]7

C [h’fEO(p,Qf)+h§]31(u,93)]Z [RY " Eo(p, Q) + RS E1(u, Q)] %,

(2.41) ‘

(M
I
[\

W

I
w



NUMERICAL METHODS FOR A FLUID-SOLID INTERACTION PROBLEM 13

Remark. Estimate (2.40) holds under the following assumption

(2.43.) (P = P)(0)]|o,2, + I(P = P)(0)]lo,a, + I(T —U)e(0)]lo.c.
+ (T = U)(0)||1,0, < C(hf + h3).
But estimate (2.41) holds when

(243i1)  [[(P = P)(0)log, + (P = P)O)og, + (T~ 1V)(0)]oe.
+ (0 = U)(0)|l1.0, < C(hy™ +h57).

63. The discrete—time Galerkin approximation. In this section we shall introduce
fully—discrete finite element methods for the initial-boundary value problem (2.1) by dis-
cretizing the system of ordinary partial differential system (2.5) using the finite difference
method. We shall derive error estimates analogous to Theorems 2.1 and 2.2, and show
that the time—stepping schemes are of second order accuracy.

63.1. Formulation of fully—discrete finite element methods. Let J be a positive
integer. Let At = %, t, = nAt, and

u” =u(t,), p"=pts), U"=U(t,), P"=P(ts)

We also let
pry P +2Pn+1, oy P" = LHN_ =
5 pn _ prrly prl 52pn — prtl_opr 4 prl
‘ 2At ’ A2 ’

P™Y = P71 4 (1 — 29)P™ 4 4 P11,
It is easy to check the following identities
prt: — pri
At ’

1
(3.1.i) 0.P" = [0 P" + oy P" 1 =
(3.1.ii) O*P™ = 9;(0, P™) = 8,(8; P™).

J

n=0

The discrete-time finite element method is defined by seeking a sequence {(P",U"™)
in P, x V}, such that for forn =1,2,--- ,J — 1,

(3:20) (5@ P"q")a, +(VP"¥, Vg ), + (-0.P", g,

—(ps8U" -y d")r = (977 ,d"a,, V4" € Pu,
(32d) (ps®U",v")g, + (a(U™3),e(v"))a, + (ps A0 U™, v")r,

+ <P",Vh ‘Mg)T = (g?’%,vh)gs, wvh e Vi,,
(3.2.ii) P, P'c Py, U, U c Vy,.

Remark. P°,P',U° and U! are some approximations to the initial values pg,p1,uy and
uy, they will be specified later in the next subsection.
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63.2. Optimal H! a prior: error estimate. Introduce error functions
=t — P = (p" = P") (P — P") = 6" 4 4",
e"=u"—U" = (u" —U") 4+ (U" - U") =" + £
Since the error derivation for the discrete—time approximation is analogous to that of the

continuous—time approximation, in the following we shall only highlight the steps which
are worth noting. First note that (p™,u™) satisfies

. 1 (' ‘) 1 ]‘ n n
(3.3.1) (0—232}) ,qh)gf —I—(Vp ’4,th)9f ‘|‘< acp 7qh>I‘f - <pf8c2u 'nsaqh>I‘

C
= (g?’Z + an, "), + (B, d")T, + (6n - ne,q")r, V" € Py,

(3:34) (@ u",v")a, + (o(u™¥),e(v"))a, + (psAsdou™, vh)r, + (p",v" -n)r

h

= (gs'* + Zn,Vh)Qs + (én,th“s + (W, v my)r, WV eV,

It follows from Taylor’s formula that

tn-|—1
lomlZq, < CAF / pe(®)|2 0, dt,

th—1

tn-|—1
Il g, < CAF / I (DI o, dt,

tn—-1

tn-|—1
|/8n|2_1 S CAt3 |pttt(t) 2_1 dt7
2 Ty 2 ;08¢

tn—-1

tn-|—1
a2 5 1 < CAt?’/ erse(B)* 1 o, d,

th—1

tn-|—1
|én|2_%’l—‘s S CAt3/ |uttt(t)|2—%’693dt7

th—1

tn-|—1
|wn|2_%’r < CAt3/ |peee () 2_%’6% dt.

th—1

From (3.3) and the definition of P and U we get
(3.4.0) (01—232¢",qh)9f +(Vo™E, Vg, + <%3c¢>",qh>rf = (psB2€" nasg")r
= (o — 50"+ 6"%,4Ma, + (B, — 88" qu)r,
+{(8n = ps8n") nosau)r,  Vau € Pa,
(34)  (p0°€",vi)a, +(o(€™%),e(va))a, + (PuAuBel™,V")r,
+(¢",v"  ny)r

= (T = @0+ 0" F,vi)a, + (An — psAien™, V"),

h

+ (wn — en,V n3>r, \V/Vh € th.
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Apply the operator 8. to both sides of (3.4.i), take ¢* = 9.¢™ in (3.4.) and v, =
prO:(0:€™), add the resulting equations to get

1 2

(3.5) IAL

H— f¢>"

1 n n—
+|Ze0s o [mes0.6 R, - Ima0s0.6
0,I' ~ ~
il n—1
2 0. ), — 2 V(0.6 D) R,

HIVAaiv 0.6 i, ~ IV Auprdin(@:6" D)l
‘|‘CO|\/Pst8c(305 )|0,I‘S

1
| n—1
HC i

+IVe™ 2|5 q, — !\Vsﬁn_?!\ﬁ,gf]

oszf 0,Q;

< 124" I5.0, + llanlls.e, +1120°0"1[5.0, + 116" *llo.c
+1vP£0:(0:£") 5.0, + IVPr0emnlls o, + llv/P7p:0"(8en ™[5 0,

1 1 n n n n
+ H\/pfacnn“LH%,Qs + </8n - ;869 78c¢’ >Pf + <(£n - pf8277 ) ' n378c¢ >I‘

~

+ <8c(2‘/n - psAsacnn)ypfac(acén»I‘s + <8c(wn - en)apfac(acén) . ns>I‘-
Applying Eizl (£ < J—1) to (3.5) yields

(3:6)  [1958°l[5.0, + V2|50, +185(8:€) 5.0, + 1e(8E™ )3 0.,

)4
T {ldiv(@e )] 0, + ALY ['acgi’”l%,rf + |30<305")'3’“]

n=1

1 _1 1 _1
67+ = 6o, +10,67 — 0.6 H I3,
£
1
+atY [lanlia, + 176" a, + 16" o, + 107l 0,
n=1

£
HIE 0" R, + 100" R | + 0 3 |16, - 206" 0%,

n=1

(8 — ps2n™) -1y 0ed™)r + (e (wn — 67, p£0u(0:E™) - )

~

HO = A0, p1006 0. | + 1076 0, + V6,

850", + (et ), + o el |-
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For the boundary integral terms using discrete integration by parts we get

4
1
(3.7) J, =At Z [<5n - ;8c9n780¢n>rf + <(£n - Pf8c277n) Mgy ™)

+ <8c(2‘/n - psAsacZn)ypfac(acgn»I‘s + <8c(wn - en)apfac(acén) : ns>I‘:|

~ ~

4
At 1 1 n n+1
= G2 OB 08,8 e, + (070, — A0, p10, €,
n=1 ~ ~
At 1

1 1
(Boy1 — —3 o, ¢ 2, — (B — ;86917¢’5>Pf
+ <(fl+1 — 020"t ny, ¢t 3N — (61— prO2nt) may b7 )r

+ (Bc(Aer1 = pr@en™1), p0:6" T2 )r, — (8.(A1 — psBen) 5 0c €2 ),

‘|‘<8c(wl—|—1 - 94+1)7pf8c€l+% : ns>I‘ - <8 (wl — 6! )7pf8 5% : >

Hence,

J2
(3.8) |J| <CAtY

n=1

+ |8f8c277n|2_%’698 + |8fﬂn|2_%’rf + |8f£n|2_%’r + |8f8cén|2_l T

1674212 0, + 8.6 F | g, +1870.67 2, o

‘|‘|8f8cwn|2_l T

At |||68T 2|2 9,622 ] CAt[ 8,012 )
+ 1672 I 0, + | 3 1.0, |+ 19:6]1% B (-3 (02,))
2 2 2 2
+ 1|0 nHLOO(H_E(QQ ) HﬁHLm(H_E(P ) + 1|6 HLOO(H_E(P))

HIAI + [lwlf?

Sk 7|2
Lo (H™2(09,)) fer-day) I#*ll2.0, + Hc?cé 1.0,

Using the inequality

£

(3.9)  (¢MFF)2=(43)* + Z(¢”+2 FgnTE) (T — g )
< 2oty - L@y 4 Y oty 4 (00 - erhy)
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we obtain

n 2 n 1 TL——
(310)64 3, < 10 Hmf+2[ 16780, + S -6 H iR, |

1 1 4 il 2 il ol
AR g, <1064 R0, + 2 (410,67 e, + 2106 ]

n=1

Finally, add (3.10) and (3.11) to (3.6), then use (3.8), Lemmas 2.1 and 2.3, Korn’s
inequality, Gronwall’s lemma and the triangle inequality, we have the following theorem.

Theorem 3.1. Suppose E1(p,Qy) and E»(u,Q;) are bounded. Then there exists an h—
independent constant C' > 0 such that

(3.12)  [[0¢(p — P)llgez2(0,)) T IIP = Pllicz2(a,)) T 110£8e(u = Ul g (120, ))
+ [10e(u = Ul (£2(a,y) < C [h1 + 3 + (A1)°] .

(3.13)  |lp = Pllgeemr(a,y + 10:(0 = U)l|z2g1(q,)) < C [y + R5H + (A1)

(3:14)  18:(p = P)llz2(z2r,)) + 182(0 = U)llz2z2(r, )

C [hY 4+ Ay + (At)ﬂ% [RE71 4+ R+ (AL)?] 7,

(M

= 2,

W

N
C [hY + by + (A1) ¥ [RE-1 4 hI71 4 (A)2]*, N =3,

where :

[l o (x) = max 1F57% ) x, 1l z2x) = At lz £ HX]

0<e<J

§3.3. Optimal L? a priori error estimate. We consider a modified version of (3.2),
which is obtained by replacing P™ by P™3% in (3.2.ii). By repeating the above derivation
and that of Theorem 2.2, we can show the following theorem.

Theorem 3.2. Suppose Ey(p,Qy) and E1(u,Q;) are bounded. Then there exists an h—
independent constant C' > 0 such that

£

At) (p" - P")

n=1

(3.15) |lp = Pllgecr2(0,) + + 1w = Ullge (22¢0,))

Lo (L2(2y))
+187(u = U)ll e (1202, < C [T + P35 + (A)] .

£

A3 P

=0

(3.16) I = Ullzee gy, < C [0+ by + (A1)
Lo (HY(24))

(3.17) (e = P)llz2(z2r,y) + 19c(u = U)llz2(g2r,),)
C [hf +hg + (A?]? [ + Ry ™! + (A1)

=

I
B

W

C [hY 4+ Ay + (At)ﬂi [RY7T + R+ (A5

I
W
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where (P, U) is defined by

: 1 n n.L 1 n
(318.4)  (F0°P"q")a, +(VP™%,Vq")a, +(-8.P",¢")r,
_<pf8c2Un'n37qh>P :(g?’z7qh)9f7 vqh EPhU
(3.18ii))  (ps82U",v")q, + ((U™3),e(v"))a, + (psA:0.U", v*)r,
+ <Pn’%7"h Mg )T = (g?’z,vh)ﬁm vvh e Vi,.

Proof. We use the same error function notations as in the previous subsection. Define
n—1
1
=0, fr=at) ¢mtr
m=0
Notice that

(¢7F5 4773,
§E = (87 £ agn 4 gn) = (nE ),

£

J2
(3.19.) D (8.f" 9" Z ,0:9" 2; [(F4 65 + (£ 95)
n=1 =
_(f ' g )_ (f07gl)] )

£
1

£
(3.19.1) Y (Bef",g™) =~ > (f*TF,0p9™) + i [(f”%,g”l) —(f7,9Y)] .

n=1 n=1

Taking ¢" = f and v" = p;9.¢", applying Eizl to the error equations corresponding to

(3.18), wusing (3.19.ii) on the term (Vgﬁn’%,th)Qf and (3.19.4) on the term
(pfO2E™ - ng,q")r yield the desired estimates.

Remark. One may consider the following family of discrete schemes

. 1oy n 1
(3.204)  (58°P"q")q, + (VP™,Vq")q, +(-0.P ,4")r,

C
—(psB2U" - ns,¢")r = (977,4")e;, V4" € Pu,,
(3.20i)  (p.8°U™,vMa, + (c(U™7),e(v"))a, + (ps A8, U™, v")r,
+ (P, v g = (g7, v")a,, W' eV,

In particular, for ¥ = % It can be shown that these schemes are absolutely stable if v > %.
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64. Non-overlapping domain decomposition methods. In this section we shall
present a couple of parallelizable non—overlapping domain decomposition iterative algo-
rithms for efficiently solving the finite element systems (3.2), (3.18) and (3.20). Consid-
ering the heterogeneous nature of the fluid—solid interaction problem, it is very nature
to use non—overlapping domain decomposition method to solve the problem. Indeed, the
non—overlapping domain decomposition approach is a natural and effective way for solving
heterogeneous and/or interface problems arising from many scientific applications. We
refer to [14] and reference therein for more discussions in this direction.

For simplicity we shall only describe and analyze our domain decomposition algorithms
at the differential level in this section. Following the ideas of [2], [6] and [9], it is not very
hard but rather technical and tedious to construct and analyze the discrete analogues of
the differential domain decomposition algorithms to be introduced in the following. Those
analyses along with the computation test results will be reported elsewhere in a forthcom-
ing paper. Another point which is worth mentioning is that the domain decomposition
algorithms of this paper can be used for solving the discrete systems of the fluid—solid
interaction problem (2.1) which arise from using other discretization methods such as fi-
nite difference and spectral methods, even hybrid methods of using different discretization
methods in different media (subdomains).

64.1. Algorithms. Recall the interface conditions on the fluid—solid contact surface are

Op

(4.1) s

= pfUy - Mg, pny =o(u)ns, onl.

Rewrite the second equation in (4.1) as
(4.2) —p: = o(u)ns - ng, 0=o(uy)ns - 75, onl,

where 7, denotes the unit tangential vector on 9Q,. The equivalence of (4.1.ii) and (4.2)
holds if the initial conditions satisfy the compatibility conditions (C1) and (C2) (cf. §1).

Lemma 4.1. The interface conditions in (4.1) are equivalent to

(4.3.1) 8—p + ap; = psug - ns — ao(uy)ns - ng, onl,
ny
. op
(4.3.ii) prusy + Bo(ug)n, = B—nfns — Bping, onT,
(4.3.iii) o(uy)nsts =0, onT,

for any pair of constants o and 8 such that a + 3 # 0.
Proof. Trivial.

Based on the above new form of the interface conditions we propose the following iter-
ative algorithms, one of which resembles to Jacobi type iteration and the other resembles
to Gauss—Seidel type iteration.
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Algorithm 1: (Jacobi type iteration)

Step 1 \V/po € Py, vul e V,.
Step 2 Generate {(p",u")},>1 iteratively by solving

. 1 ., n .
(4.4.1) =P~ A" =95, in Qy,
. 1, op"
(4.4.1) e + B—nf =0, on I'y,
ees apn n n—1 n—1
(4.4.iii) B—nf + apy = pruy;  -ng —aoc(uy” )ng -ng, on I}
(4.4.iv) psuy, — dive(u”) = gs, in Qg
(4.4.v) psAsuy +o(u”)n, =0, on Iy,
: n n _ apn—l n—1
(4.4.vi) pruy, + Bo(ul)n, = Wns — Bpy T ns, on I,
(4.4.vii) o(uy)n, - 75 =0, on I

Algorithm 2: (Gauss-Seidel type iteration)

Step 1 Yu® € V,.
Step 2 Generate {p”},>o and {u"},>1 iteratively by solving

. 1 ., n .
(4.5.1) =P — A" = g5, in Qy,
1 op™
4.5.11 -p+—=0 r
(4.5 i o, on T,
(4.5.1ii) B—nf + apy = pruy, - ns — ao(uy)ns -ng, on I}
(4.5.iv) psupt — dive(u™tt) = g,, in Q,,
(4.5.v) psAsuf T+ a(utn, =0, on I,
. n 7 8 " i3
(4.5.vi) pfutt+1 + Bo(uy +1)n3 - GL;fns — Bp;ns, onl,
(4.5.vii) U(U?"H)ns -1y =0, onTI.

Remark. Appropriate initial conditions must be provided in the above algorithms. We
omit these conditions for notation brevity, and assume no ambiguity will be caused by the
omission.
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§4.1. Convergence Analysis. In this subsection we shall establish the utility of Algo-
rithms 1 and 2 by proving their convergence. Because the convergence proof for Algorithm
2 is almost same as the proof of Algorithm 1, we only give the proof for Algorithm 1 in
the following.

Introduce the error functions at the nth iteration

It is easy to check that (r™,e™) satisfies the error equations

1
(4.6.1) — 7y — Ar" =0, in Qy,
c
1 or™
4.6.11 —-r 4+ — =0 r
(4.6.1i) T + By , on Iy,
s or" n—1 n—1
(4.6.1ii) o +ary = psey, " -ng, —ao(ey” )ng-n,, on I
nf
(4.6.iv) psep —dive(e™) =0, in Q,,
(4.6.v) psAsey +o(e")ng, =0, on Iy,
: n n arn—l n—1
(4.6.vi) ps€y + Bo(ey )ns = 5 e Bry "ns, on I,
nf
(4.6.vii) o(ef)ns - 75 =0, on I
Define the “pseudo—energy”
(47)  E.=E({r"e"}) = ‘8r"+ 2 +|lpsef + Bo(e™n.ll;
. n = r,e"}) = ||— + ar” pres a(e™)ns||72 72000 -
Ony L2(L3(T)) L2(L*(T))

Lemma 4.2. There holds the following inequality
(4.8) En—l—l(T) < En(T) - Rn(T)7

where

— 4:/ / |:O[8—fn/f'f't —I_ /Ba(et ) e.’?t dwdt.
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Proof.

opntl 2

Ong

+ arp™? +||psef + Bo(e; ™) SH2LZ<L2<P>>

En—l—l - H
L2(L*(T))

2

or™
= [lpsef; - me = Bo(efns - mal gz + H D

L2(L*(T))

n 2

§ . or n
< llpsers + Bo(ed)ns|Ze 2y + Hc‘?—nf e

L2(L*(T))

— 25/ / [o(ef)ns -nsprel, - ns + prey, - o(ey )ng| ded,
o Jr
T or™ or™

+ 2a/ / [Lr?ns “ns + Lr?] dzdt
o Jr |[Ong Ong

4/ / ozair?—l—ﬂpsa(e?)ns-eﬁ dzxdt
o Jrl Ong

=F, — R,.
Here we have used the fact that
o(ey)ns -nsepy -ns = o(e;)n, - ey, since o(ey)ns -7, =0.

The proof is completed.

To find a lower bound for R, (7), we test (4.6.1) against r}* to get
1d |1 | 1d ) 1 orn
—— ||=ry ——||Vr" —ry = | —ryd
2 dt H Crt 0.9, + 2 dt H r HO,Qf + ‘\/Ert O’I‘f anfrt )
which implies that
11 2 1 ) 1
portdndt = 3|1+ IO, + | St .
/ / Ony 2l 0.0, 2 P IVe Pl ey

Here we have implicitly assumed that »"(0) = r}*(0) = 0.
Differentiating (4.6.iv) with respect to ¢t and testing it against e}, give us

1d
2di IV/pse ttHOQ + = I H pse(ey) HOQ -I- 5 J H\/ div(e})

s Vetlip, < [ otel) neeids,
r

0,0,

which implies that
T n 2 n
@10)[* [ peoterin. - ehdedt >3 | ren(mls g, + Vit (D)l o,
0
2
+ 5[V, + el
1 " 9
) H\/Psett(o)Ho,Qs .
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Finally, suppose €™(0) = e}(0) = 0, it follows from (4.6.i) that

1
ps€r:(0)]o,0, = H div(e™(0 = 0.
lv/Psei:(0)]o N> (e™(0)) o
Combining (4.9) and (4.10) we get the following lemma.
Lemma 4.3. R, (7) satisfies the following inequality
1 2
Ryr) 220 || 20|+ IR, 2| St
¢ 0.9 Ve L2(L2(Ty))

+28 [IlVpeei()I o, + IVise(el () I3,
IV Adiv(ed ()l g, + 20 |VAwer e e, ) -

We are now ready to state our convergence theorem.

Theorem. For o > 0 and 8 > 0 we have

(i) p™ — p strongly in Py,
i1) u”™ — u strongly in V.
(ii) sly

Proof. The conclusion of the theorem is just an immediate consequence of the combination
of Lemmas 4.2 and 4.3.

Remark. If we choose @ = 0, 8 = oo, Algorithms 1 and 2 become N-N alternating type

algorithms. This is possible because the Neumann data anf and o(u)n, are not related

to each other directly on the interface. In addition, at the end of each N—N iteration one
can add the following relaxation step to speed up the convergence

n—1

p" i=pp"™ + (L — p)p" ",

n—1

uy, = pug + (1 —pugy ",
where p is any constant satisfying 0 < p < 1.
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