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1. Introduction.

This paper is devoted to the classi�cation of certain non-commutative generalizations

of classical integrable soliton equations. In the literature, integrable multi-component

equations have been considered by Svinolupov, [48], [49], [51], [50], Fordy, [17], [18],

and Marchenko, [29], and many other scientists. Svinolupov started the systematic clas-

si�cation of such systems, and observed that many arise from certain special types of

nonassociative structures, such as Jordan algebras, Jordan triple systems, and so on. This

approach leads to many new examples of integrable matrix and vector equations, [45],

[47], which are becoming the focus of signi�cant research activity, [19].

Our starting point is the fact that most of the interesting examples appearing in these

papers arise when the �eld variables take their value in an associative algebra. Particularly

important cases are matrix or operator algebras, Cli�ord algebras, including the algebra

of quaternions, and group algebras. Indeed, since the �eld variables can be regarded

as taking values in an operator algebra, our classi�cation approach can be considered

as a constructive procedure for quantizing classical integrable systems. The associative

algebra systems are the simplest, meaning that the algebraic theory and the computations

are most easily understood. Svinolupov investigated integrable equations associated with

special kinds of non-associative algebras, although he did not consider integrable equations

arising from with the simpler associative algebras in any depth.

The existence of higher order symmetries has been e�ectively used to classify inte-

grable evolution equations with commutative �eld variables, [36], [53], [16], [38]. Higher

order symmetries typically occur in in�nite hierarchies, obtained by successively applying

a recursion operator to a trivial \seed" symmetry. (Bakirov, [5], proposes an example of a

fourth order system with a single sixth order symmetry and no higher symmetries of order

� 60; however, to date, no-one has been able to rigorously prove that Bakirov's system

has no additional higher order symmetries.) Ibragimov, Shabat, Sokolov, and Mikhailov,

[22], [31], [44], introduced the concept of a formal symmetry. Their method was then

successfully used to classify several basic types of integrable evolutionary systems. We

further refer the reader to the extensive tables in [31], [32], [33], for a summary of known

examples. Due to the complexity of the computation, some of these classi�cation tables

relied on the existence of higher order conserved densities, and hence may not be com-

plete. Indeed, as we demonstrate in our analysis of two-component systems of nonlinear

Schr�odinger (NLS) type, there are two integrable commutative two-component systems of

NLS type which do not admit conserved densities and thus do not appear in the tables.

In this paper, we develop the symmetry classi�cation of integrable systems arising from

associative algebras in a systematic fashion. We have been able to �nd quite a few new and

interesting examples of integrable systems using these methods. Many of our examples do

not come from Jordan algebras, and thus lie outside the class of equations considered by

Svinolupov, [51]. To make the classi�cation procedure tractable, it is important that the

dependent variable is not viewed as a matrix or vector with entries that can be combined

arbitrarily, but only appears using intrinsic algebra operations of multiplication, addition,

scalar multiplication, and, possibly, trace and transpose. One of our main points is that

the higher order symmetries of the integrable matrix equations should themselves be local

matrix equations. Although this is perhaps not surprising, it is not obvious from the work
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of Svinolupov and Fordy. Although we are as yet unable to conclusively demonstrate the

locality of all the higher order symmetries, all known examples admit at least one higher

order local matrix symmetry, and we choose this property to classify the equations.

A key question is how many of the known commutative examples extend to non-

commutative integrable equations. We now list some known examples of integrable equa-

tions in which the �eld variable takes its values in an associative algebra. (For simplicity,

the reader can view u as a matrix-valued function.) The simplest case is, of course, a linear

equation:

ut = un = Dn
x (u): (1:1)

The matrix-valued Burgers' equation comes in a right and left handed version,

ut = uxx + uux; or ut = uxx + uxu: (1:2)

Note that reversing the order of multiplication (or, in the matrix case, taking the transpose

u 7! u�) interchanges the two versions of Burgers' equation. The matrix Korteweg{deVries

equation

ut = uxxx + 3uux + 3uxu = uxxx + 6fu; uxg (1:3)

is invariant under transpose. Here fu; vg = 1
2
(uv + vu) is the standard anti-commutator

between �elds u and v. There are, remarkably, two di�erent matrix versions of the modi�ed

Korteweg-deVries equation. The �rst is

ut = uxxx + 3u2ux + 3uxu
2 = uxxx+ 6fu2; uxg; (1:4)

and is invariant under both u 7! u� and u 7! �u. The matrix Miura map

u = �vx + v2 (1:5)

maps this mKdV equation (for v) to the matrix KdV equation (1.3) for u. The second

version is

ut = uxxx + 3uuxx� 3uxxu� 6uuxu = uxxx+ 3 [u; uxx]� 6uuxu; (1:6)

which is invariant under only u 7! �u�. This equation was �rst described in [26], where

the Lax pair formulation and the inverse scattering problem were studied. Equation (1.6)

does not admit a Miura transformation. Finally, the nonlinear Schr�odinger equation has

a noncommutative version

ut = uxx + 2uvu; vt = �vxx � 2vuv; (1:7)

which is invariant under simultaneous transposes u 7! u�, v 7! v�. The system (1.7) can

be identi�ed with the usual (noncommutative) form

 t = i xx + 2   
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of the nonlinear Schr�odinger equation if we identify u =  , v =  and perform a complex

scaling of the x coordinate. Such complex transformations do not a�ect the algebraic

integrability of the equation, but do, of course, have ssigni�cant e�ects on its analytical

properties and (real) solutions.

Not every scalar integrable system has a noncommutative counterpart. There are no

purely matrix analogues of the �fth order Sawada-Kotera, [42], and Kaup, [25], equations

when the right hand side of the evolution equation only involves the �eld variable u and

its derivatives, but we suspect there may be a form that also depends on the transpose u�

and its derivatives. However, the complexity of the calculations have so far prevented us

for determining the precise forms of the desired equations.

Symmetry reductions of classical soliton equations lead to ordinary di�erential equa-

tions of Painlev�e type, meaning those whose movable singularities are only poles, [2].

Analogous reductions of our noncommutative integrable systems will therefore lead to new

associative algebra-valued ordinary di�erential equations of Painlev�e type. In particular,

we exhibit analogues of some of the classical Painlev�e transcendents. However, it remains

to determine the types of singularities and perform a Painlev�e classi�cation of such sys-

tems in a direct fashion. We refer the reader to [41], [52], for additional applications of

associative, Jordan, and other types of algebras to ordinary di�erential equations.

A particularly powerful approach to integrability was discovered by Magri, [28], who

showed how equations possessing two distinct compatible Hamiltonian structures have a re-

cursion operator, and corresponding in�nite hierarchy of commuting biHamiltonian 
ows

and associated conservation laws. As in the commutative case, some of the integrable

equations over associative algebras, notably the analogues of the KdV, mKdV, and non-

linear Schr�odinger equations are also biHamiltonian systems. In order to understand this

additional structure, we shall need to develop the theory of functionals and Hamiltonian

operators over associative algebras having an additional trace operation. The veri�ca-

tion of the all-important Jacobi identity requires us to develop the associated theory of

noncommutative functional multi-vectors, in direct analogy with the commutative version

developed in [38; Chapter 7]. The biHamiltonian approach provides a simpli�ed proof of

the existence of suitable recursion operators.

Remarkably, one consequence of our studies is that the �rst order Hamiltonian op-

erators associated with systems of hydrodynamic type, as considered by Dubrovin and

Novikov, [12], [13], [14], do not naturally generalize to local Hamiltonian operators in

noncommutative variables: one is required to append certain nonlocal terms in order to

satisfy the Jacobi identity. The resulting noncommutative operators have some similarities

with the non-local (but commutative) Hamiltonian operators of hydrodynamic type intro-

duced by Mokhov, Ferapontov, [15], [34], [35]. Given the beautiful and deep connections

between such Hamiltonian operators and classical Riemannian geometry, this result invites

an interesting speculation on the proper form of a noncommutative Riemannian geometry,

[8], that will produce such nonlocal Hamiltonian operators.

We begin our paper with a review of the basic facts from the theory of associative

algebras. In section 3 we present classi�cation results for one-component evolution equa-

tions, of orders 2, 3, and 5. Section 4 discusses the classi�cation of two-component systems

of nonlinear Schr�odinger type. Section 5 provides a brief discussion of the theory of non-
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commutative Painlev�e equations. The last section develops the noncommutative theory of

Hamiltonian and biHamiltonian systems, with emphasis on the KdV and mKdV systems.

2. Associative Algebras.

In this paper, the �eld variables in our systems will take their values in a linear

associative algebra A. Three important examples are the algebras of n � n matrices,

Cli�ord algebras, and the group algebras appearing in the representation theory of �nite-

dimensional groups. Our results, though, do not depend on A being �nite-dimensional,

and so we could also view A as a suitable operator algebra over, say, Hilbert space.

For brevity, the noncommutative multiplication uv for u; v 2 A will be just denoted

by juxtaposition. We use the notation

Lu(v) = uv; Ru(v) = vu;

for the operators of left and right multiplication. The commutator and anti-commutator

on A are denoted by the standard bracket notations

[u; v] = uv � vu; fu; vg = 1
2
(uv + vu): (2:1)

We also introduce the notation

Cu(v) = [u; v]; Au(v) = 2fu; vg; (2:2)

so that

Cu = Lu �Ru; Au = Lu +Ru: (2:3)

Note that the anti-commutator de�nes a Jordan algebra structure on A, [24]. Finally, for
notational convenience, we introduce the \triple anti-commutator"

fu; v;wg = 1
2
(uvw +wvu): (2:4)

Note that fu; vg = fu; e; vg where e is the identity element of A.
Each of our associative algebras comes with an involution u 7! u�, called the transpose,

that interchanges the operations of left and right multiplication, so (uv)� = v�u�. In certain

instances, we will also require the existence of a trace form on the algebra, by which we

mean a scalar-valued invariant multilinear form tr:A�A ! R, that satis�es

truv = tr vu; so that tr[u; v] = 0: (2:5)

The simplest example of an associative algebra is, as mentioned above, the algebra of

real n � n matrices, which we denote by gl(n;R). More generally, if A is any associative

algebra, then the space gl(n;A) of n�n matrices whose entries belong to A also forms an

associative algebra. Since gl(m; gl(n;A)) ' gl(mn;A), iterating this procedure does not

produce anything new. Similarly, one can form \vector" associative algebras by taking the
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direct sum of two or more associative algebras, e.g., A�B, and using the component-wise

multiplication (a; b) � (c; d) = (ac; bd).

Cli�ord algebras form a second important class of associative algebras, cf. [40]. The

simplest non-commutative Cli�ord algebra is the algebra H of quaternions. We write

u = v + w where v 2 R is the scalar and w 2 R
3 the vector part of u. Note that the

associative quaternion multiplication is

uû = (vv̂ �w � bw) + v bw + v̂w +w � bw; (2:6)

where � is the ordinary dot product and � the ordinary cross product in three-dimensional

space. The general classi�cation of Cli�ord algebras can be found, for instance, in [40].

Theorem 2.1. Every Cli�ord algebra over R is isomorphic to one of the following

matrix algebras

gl(2k;R); gl(2k; C ); gl(2k;H ); gl(2k;R�R); gl(2k;H � H ): (2:7)

Therefore, every Cli�ord algebra is constructed as a matrix algebra (of a particular

size) over the basic algebras R, C , H , and the two vector algebras R�R, and H � H .

If G is a �nite group containing r elements, then the (real) group algebra AG = R[G]

is an r-dimensional vector space, whose basis elements are identi�ed with the elements of

G. Thus, the elements of R[G] have the form u =
P

g2G u
g � g, with coe�cients ug 2 R

indexed by the group elements. The group algebra multiplication is induced from that of

the group itself. Thus, if w = uv, then

wg =
X
h2G

uhvh
�1g ; (2:8)

where h�1g denotes the multiplication of elements h; g 2 G. Note that the group algebra

is commutative if and only if G is abelian. Thus, the simplest noncommutative group

algebra is the six-dimensional algebra R[S3] associated with the symmetric group on three

letters.

3. Classi�cation of One-Component Evolution Equations.

Let A be an associative algebra. We can use the linear structure on A to di�erentiate

maps u:R ! A, leading to an algebra of associative, but not necessarily commutative

di�erential polynomials, which we denote by D = D[x; u]. We use subscript notation for

derivatives, so that ux, uxx, etc. denote the �rst, second, etc. derivatives of u = u(x) with

respect to to its argument x. For simplicity, we only consider x-independent di�erential

polynomials in this paper, although the general methods readily extend to di�erential

polynomials that have x-dependent coe�cients.

A one-componenty A{valued evolution equation will then be of the general form

ut = K[u]; where K 2 D: (3:1)

y In the commutative case, a one-component equation is a scalar equation, but the use of the

term \scalar" here would be confusing.
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In the following section, we consider multi-component equations. Each evolution equation

describes the 
ow associated with an evolutionary vector �eld

vK =

1X
n=1

Dn
xK

@

@un
; (3:2)

which acts on the space of di�erential polynomials, cf. [38]. Two such equations are called

equivalent if they can be mapped to each other by a scaling transformation

(x; t; u) 7�! (�x; �t; �u): (3:3)

The evolution equation (3.1) is said to be integrable if it admits a higher order di�er-

ential polynomial symmetry, again described by an evolution equation

ut = S[u]: (3:4)

The symmetry condition that the two evolutionary 
ows (3.1), (3.4) commute implies that

the two evolutionary vector �elds commute: [vK ;vS ] = 0. De�ne the Fr�echet derivative

of the di�erential polynomial K by adapting the basic formula

DK [w] =
d

d"
K[u+ "w]

����
"=0

; (3:5)

from the commutative case, cf. [38]. Since vK [S] = DS [K], the commutativity of the 
ows

(3.1), (3.4), can then be written in the usual form

DK [S]�DS [K] = 0: (3:6)

Given an evolution equation (3.1), the determination of all symmetries (3.4) of a

given order m is a straightforward, but computationally intensive, calculation. We have

implemented a Mathematica package which will automatically do these computations.

The programs for e�ecting such computations are available at the web site

http : ==www:math:umn:edu=�olver:
Even so, due to time and memory resources, only a limited number of such computations

can be completed.

In all interesting examples, the right hand side of an integrable evolution equation (3.1)

turns out to be a homogeneous di�erential polynomial with respect to some weighting of its

constituent monomials. We introduce a weighting scheme on the algebra D by assigning a

weight m = deg u to the dependent variable and n = deg x to the independent variable, so

that the kth order derivative of u with respect to x has weight m+ kn. We shall, without

loss of generality, assume that deg x = 1. The weight of a monomial is the sum of the

weights of its multiplicands. We let D(n) denote the space of di�erential polynomials of

weight n. For example, the KdV weighting has

deg u = 2; deg x = 1: (3:7)

In the noncommutative case, there are three monomials of weight 5, namely uxxx, uux
and uxu. Every di�erential polynomial P 2 D(5) of weight 5 is thus a linear combination

of these three monomials. Clearly, if (3.1) is a homogeneous evolution equation, then the

homogeneous summands of any symmetry are automatically symmetries, and hence we

can, without loss of generality, restrict our attention to symmetries S 2 D(m) that are

homogeneous in the prescribed weighting.
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De�nition 3.1. Under a given weighting scheme, the weight of an evolution equa-

tion (3.1) is equal to the di�erence degK � deg u.

For example, under the KdV weighting (3.7), the most general evolution equation of

weight 3 has the form

ut = auxxx + b uux + c uxu; (3:8)

where a; b; c 2 R. The reason for the de�nition of weighting is so that, when x has degree

1, the linear terms in an evolution equation of weight k are of order k, and so, in most

cases, the weight of the evolution equation equals its order. More speci�cally:

De�nition 3.2. A homogeneous evolution equation is nondegenerate if it contains

a linear term.

Lemma 3.3. If deg x = 1, then a nondegenerate homogeneous evolution equation

of weight k is a kth order di�erential equation.

As a consequence of De�nition 3.1, the commutator equation ut = DK [S] � DS [K]

of a weight k equation and weight l symmetry has weight k + l. (However, in the one

component case, it is never nondegenerate!)

We now summarize the results obtained to date through the symmetry classi�cation

of nondegenerate homogeneous polynomial evolution equations (3.1). The following results

are the consequences of extensive computer algebra computations using ourMathematica

package.

Theorem 3.4. For the KdV weighting (3.7), every nondegenerate polynomial equa-

tion of weight 3 over an associative algebra having a weight 5 symmetry is either linear or

equivalent to the Korteweg-deVries equation (1.3).

For example, the �fth order symmetry of the Korteweg-deVries equation (1.3) is

ut = uxxxxx+ 10fu; uxxxg+ 20fux; uxxg+ 20fu2; uxg+ 10uuxu: (3:9)

Note that, in the commutative case, this reduces to the standard �fth order symmetry of

the ordinary Korteweg-deVries equation, [38].

In the commutative case, there are three di�erent �fth order integrable polynomial

equations, [31], [27]; besides the �fth order KdV equation, these are the Sawada{Kotera

equation, [42], and the Kaup{Kupershmidt equation, [25]. We have shown that neither of

these has an associative counterpart where the right hand side is a di�erential polynomial

in u alone, although we believe that there do exist integrable versions involving u and its

transpose u�.

Theorem 3.5. For the KdV weighting, every nondegenerate polynomial equation

of weight 5 over an associative algebra having a weight 7 symmetry is either linear or

equivalent to the �fth order Korteweg-deVries equation (3.9).
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Using the triple bracket notation (2.4), we can write the seventh order symmetry of

the �fth order Korteweg-deVries equation (1.3) in the form

ut = uxxxxxxx+ 14fu; uxxxxxg+ 42fux; uxxxxg+ 70fuxx; uxxxg+
+ 42fu2; uxxxg+ 28uuxxxu+ 98fu; ux; uxxg+ 112fu; uxx; uxg+
+ 70fux; u; uxxg+ 70u3x + 70fu3; uxg+ 70fu2; ux; ug:

(3:10)

The second interesting weighting is that associated with both Burgers' equation and

the modi�ed Korteweg-deVries (mKdV) equation:

deg u = 1; deg x = 1: (3:11)

Theorem 3.6. For the equal weighting (3.11), every nondegenerate polynomial

equation of weight 2 over an associative algebra having a weight 3 symmetry is either

linear or equivalent to either the right or left handed Burgers' equations (1.2). Every

polynomial equation of weight 3 having a weight 5 symmetry is either linear or equivalent

to one of the following �ve equations:

ut = uxxx + 6 fu2; uxg;

ut = uxxx + 3 [u; uxx]� 6uuxu;

ut = uxxx + 3u2x;

ut = uxxx + 3uuxx+ 3u2x + 3u2ux;

ut = uxxx + 3uxxu+ 3u2x + 3uxu
2:

(3:12)

The �rst and second of these integrable equations are the two versions of the mKdV

equation discussed above. The third is the potential KdV equation. The fourth and

�fth are the third order symmetries of the right and left handed Burgers' equations (1.2),

respectively | these systems also admit fourth order symmetries.

Each of the preceding one-component noncommutative integrable equations can be

made into an integrable system by identifying the dependent variable as a matrix-valued

function u(x; t) =
�
u��(x; t)). A second interesting class of systems comes from the case

when u = v+w 2 H takes its values in the quaternions, where v 2 R, w 2 R3, as in (2.6).

The quaternion versions of our integrable equations are as follows:

(1) Quaternion Burgers' equation:

vt = vxx + vvx �w �wx;

wt = wxx + (vw)x +w �wx:
(3:13)
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(2) Quaternion Korteweg-deVries equation:

vt = vxxx + 3
�
v2 � jwj2�

x
;

wt = wxxx + 6(vw)x:
(3:14)

This coincides with the well-known vector KdV equation given in [45].

(3) The �rst quaternion modi�ed Korteweg-deVries equation is

vt = vxxx +
�
2v3 � 6v jwj2�

x
;

wt = wxxx + 6(v2w)x � 6 jwj2 wx:
(3:15)

This is also a well-known vector mKdV equation.

(4) The second quaternion mKdV is more interesting:

vt = vxxx + (6 jwj2 v � 2v3)x;

wt = wxxx + 6
�
w �wx � (v2 + jwj2)w�

x
+ 18 jwj2 wx:

(3:16)

Note that the reduction v = 0 leads to the three-dimensional vector equation

wt = wxxx + 6w �wxx � 6(w �wx)w + 6 jwj2wx: (3:17)

Finally, we can also consider cases in which the �eld variable u takes its values in a

group algebra R[G]. The multiplication rule (2.8) allows us to write out the component

form of the equation. For example, the Korteweg-deVries equation (1.3) on a group algebra

has the component form

u
g
t = ugxxx + 3

X
h2G

[uh
�1g + ugh

�1

]uhx; g 2 G: (3:18)

The indices in (3.18) are governed by the group multiplication. The G-KdV system (3.18)

is integrable for any �nite group G. In particular, if G is abelian, then the two summands

in (3.18) coincide.

Because of the variety of isomorphisms between matrix, Cli�ord, and group algebras,

our three classes of associative algebras very often lead to di�erent forms of the same equa-

tion. For example, in view of Theorem 2.1, the associative equations on higher dimensional

Cli�ord algebras are straightforward matrix versions of either the real, the complex, or the

quaternionic equations. The vector integrable systems in [45] arise from Cli�ord algebras.

The evolution equations associated with the last two matrix Cli�ord algebras R�R and

H � H automatically decouple into two independent evolution equations associated with

the real or quaternionic matrix algebra, and are thus not particularly interesting.
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4. Integrable Two-Component Systems on Associative Algebras.

The classi�cation of associative algebra valued systems having two or more �eld vari-

ables is even less well developed. We shall only consider second order systems of the

form

ut = Auxx + F(u;ux); (4:1)

where u = (u1; : : : ; un) and A is a constant n�n matrix. Note that, by a (complex) linear

transformation u 7! Bu, we can place A into Jordan canonical form. Moreover, scaling x

will allow us to make at least one of the diagonal entries of A equal to 1.

Mikhailov, Shabat and Yamilov, [32], [33], investigated the two component systems,

n = 2, in detail, and used the existence of higher order conservation laws to characterize

integrability. Here we continue their work in both the commutative and noncommutative

cases. For simplicity, we assume that the linear part of the system (4.1) is prescribed

by the simple diagonal matrix A = diag(1;�1), leaving other types of two component

systems to future investigations. We will consider a second order system to be integrable

if it possesses a fourth order symmetry. All known examples of integrable second order

systems satisfy this condition.

De�nition 4.1. A two component system is called triangular if it decouples into

the form

ut = F (u; ux; uxx); vt = G(u; v; ux; vx; uxx; vxx): (4:2)

Note that a triangular system can be solved by �rst solving the one-component equa-

tion for u and then using that to reduce the v equation to a second x; t dependent one-

component equation. In our classi�cation procedure, for brevity we have chosen not to

consider systems which are equivalent, under a point transformation, to triangular systems,

so we can concentrate on \genuinely" two-component systems.

The �rst class of systems are the noncommutative versions of the nonlinear Schr�odinger

equation, which corresponds to the weighting

degu = 1; deg v = 1; deg x = 1: (4:3)

The general form of such a second order system in the commutative case is

ut = uxx + a1uux + a2vux + a3uvx + a4vvx + b1u
3 + b2u

2v + b3uv
2 + b4v

3

vt = �vxx � c4uux � c3vux � c2uvx � c1vvx � d4u3 � d3u2v � d2uv2 � d1v3:
(4:4)

The corresponding fourth order symmetry has the form

u� = uxxxx+ f(u; v; ux; vx; uxx; vxx; uxxx; vxxx);

v� = �vxxxx + g(u; v; ux; vx; uxx; vxx; uxxx; vxxx):
(4:5)

All known integrable commutative equations (4.4) have a polynomial symmetry of the

form (4.5).
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Theorem 4.2. Up to scaling of t, x, u, v, and the discrete transformation

u ! v; t !�t; (4:6)

every nonlinear, commutative nontriangular system of the form (4.4), possessing a poly-

nomial symmetry of the form (4.5) is equivalent to one of the following seven integrable

systems:

(
ut = uxx + 2u2v;

vt = �vxx � 2v2u;
(4.7)

(
ut = uxx + 2vvx;

vt = �vxx + 2uux;
(4.8)

(
ut = uxx + 2uux + 2vux;

vt = �vxx + 2uvx + 2vvx;
(4.9)

(
ut = uxx + 2uux + 2vux + 2uvx;

vt = �vxx + 2vux + 2uvx + 2vvx;
(4.10)

(
ut = uxx + 2uvx + 2vvx � 2

3
(u+ v)3;

vt = �vxx + 2uux + 2vux +
2
3
(u+ v)3;

(4.11)

(
ut = uxx � 2uux � 2vux � 2uvx + 2u2v + 2uv2;

vt = �vxx + 2vux + 2uvx + 2vvx � 2u2v � 2uv2;
(4.12)

(
ut = uxx + 2uux + 2vvx;

vt = �vxx � vux � uvx � 3
4
u2v � 1

2
v3;

(4.13)

The last two systems do not appear in the lists of Mikhailov, Shabat and Yamilov,

[32], [33], because they do not have higher order conserved densities. System (4.12) was

�rst obtained by A.E. Borovik, V.Yu. Popkov and V.N. Robuk, cf. [43; (4.5)], and can be

linearized by a di�erential substitution. System (4.13) looks new.

In the noncommutative case, we are classifying systems of the general form

ut = uxx + a1uux + a2uvx + a3vux + a4vvx + a5uxu+ a6uxv + a7vxu+ a8vxv +

+ b1u
3 + b2u

2v + b3uvu+ b4uv
2 + b5vu

2 + b6vuv + b7v
2u+ b8v

3; (4.14)

vt = �vxx � c1vvx � c2vux � c3uvx � c4uux � c5vxv � c6vxu� c7uxv � c8uxu�
� d1v3 � d2v2u� d3vuv � d4vu2 � d5uv2 � d6uvu� d7u2v � d8u3:

up to equivalence, where we allow scaling, the discrete transformation (4.6), as well as the

formal involution (u; v) 7! (u�; v�) that interchanges the order of multiplication.
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The complete list of the nonlinear, nontriangular noncommutative systems up to

equivalence is as follows. Interestingly, each of the �rst six commutative nontriangular

integrable systems has either one or two noncommutative counterparts; however, the �nal

new system does not generalize to the noncommutative regime. These integrable non-

commutative systems naturally split into three classes. The �rst group contains the six

systems

(
ut = uxx + 2uvu;

vt = �vxx � 2vuv;
(4.15)

(
ut = uxx + 2uux � 2uvx + 2vux + 2vxu� 2uuv + 4uvu� 2vuu;

vt = �vxx + 2vux � 2uxv + 2vxu+ 2vxv + 2uvv � 4vuv + 2vvu;
(4.16)

(
ut = uxx + 2uux + 2vux;

vt = �vxx + 2vxu+ 2vxv;
(4.17)

(
ut = uxx + 2uux + 2vux + 2vxu+ 2uvu� 2vu2;

vt = �vxx + 2vux + 2vxu+ 2vxv � 2vuv + 2v2u;
(4.18)

(
ut = uxx + 2uux + 2uvx + 2uxv + 2u2v � 2uvu;

vt = �vxx + 2vux + 2vvx + 2vxu+ 2vuv � 2v2u;
(4.19)

(
ut = uxx + 2uux � 2vux � 2vxu� 2uvu+ 2v2u;

vt = �vxx � 2uvx + 2vvx � 2uxv � 2u2v + 2vuv:
(4.20)

The commutative versions of these are the following: (4.15) is a noncommutative general-

ization of (4.7); both (4.16) and (4.17) reduce to (4.9); (4.18) and (4.19) reduce to (4.10),

while (4.20) reduces to (4.12).

The second group involves a primitive cube root of unity �, where �2 + �+ 1 = 0. We

can set

� = exp
2�i

3
= �1

2
+
i
p
3

2

without loss of generality. The following four systems lie in this class:

(
ut = uxx � 2�vvx + 2vxv � 2(1 + �)u2v + 2uvu+ 2�vu2

vt = �vxx + 2(1 + �)uux + 2uxu+ 2(1 + �)uv2 � 2vuv � 2�v2u
(4.21)

8>>>><
>>>>:

ut = uxx + 2uux + 2uvx � 2vux + 2(1 + �)vvx � 2uxu+ 2uxv � 2vxu+ 2�vxv +

+ 2(1� �)u2v � 6uvu+ 2(1 + 2�)uv2 + 2(2 + �)vu2 � 2(1 + 2�)v2u;

vt = �vxx � 2�uux � 2uvx + 2vux + 2vvx � 2(1 + �)uxu� 2uxv + 2vxu�
� 2vxv � 2(1 + 2�)u2v � 2(1� �)uv2 + 2(1 + 2�)vu2 + 6vuv � 2(2 + �)v2u;

(4.22)
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8>>>>>>>>>><
>>>>>>>>>>:

ut = uxx + 2uux � 2�uvx � 2vux + 2(1 + �)vvx � 2uxu+ 2uxv �
� 2(1 + �)vxu+ 2�vxv + 2u3 � 2(1 + 2�)u2v � 6uvu+

+ 4(1 + �)uv2 + 2(1 + 2�)vu2 + 2vuv � 4�v2u� 2v3;

vt = �vxx � 2�uux � 2uvx + 2(1 + �)vux + 2vvx � 2(1 + �)uxu+

+ 2�uxv + 2vxu� 2vxv + 2u3 � 4(1 + �)u2v � 2uvu+

+ 2(1 + 2�)uv2 + 4�vu2 + 6vuv � 2(1 + 2�)v2u� 2v3;

(4.23)

8>>>><
>>>>:

ut = uxx + 2(�+ 1)uvx + 2(� + 1)vvx + 2�vxu+ 2�vxv +

+ 2u3 + 2u2v + 2uvu+ 2uv2 + 2vu2 + 2vuv + 2v2u+ 2v3;

vt = �vxx + 2�uux + 2�vux + 2(� + 1)uxu+ 2(� + 1)uxv �
� 2u3 � 2u2v � 2uvu� 2uv2 � 2vu2 � 2vuv � 2v2u� 2v3:

(4.24)

Both (4.21) and (4.22) reduce to (4.8), while (4.23) and (4.24) reduce to (4.11). The �nal

noncommutative nontriangular equation is

8<
:

ut = uxx + 2uux � 2uvx + 2vux � 2uxv + 2vxu�
� 2uuv + 4uvu+ 2uvv � 2vuu� 2vuv;

vt = �vxx + 2vux + 2vxu+ 2vxv � 2vuv + 2vvu:

(4:25)

This case reduces to a commutative triangular system

ut = uxx + 2uux; vt = �vxx + 2vux + 2vxu+ 2vxv:

Theorem 4.3. Every associative algebra valued, two-component nontriangular sec-

ond order system of nonlinear Schr�odinger form (4.14) possessing a fourth order symmetry

is equivalent to one of the systems (4.15{4.25).

Interestingly, most of these integrable systems are not associated with a Jordan alge-

bra, and thus lies outside the class of equations considered by Svinolupov, [50], [51].

Next, we consider the weighting

degu = 1; deg v = 1; deg x = 2; (4:26)

which governs the derivative nonlinear Schr�odinger equation. We have not performed a

complete classi�cation in this case. We did �nd two nontriangular integrable systems of

second order with the given diagonal matrix as linear part:(
ut = uxx + 2(uvu)x;

vt = �vxx � 2(vuv)x:(
ut = uxx + 2uxvu;

vt = �vxx + 2vuvx;

(4:27)

14



The �rst system is a noncommutative generalization of the derivative nonlinear Schr�od-

inger equation. The second system is interesting, since it gives another example of an

integrable equation not associated with a Jordan algebra. The corresponding third order

symmetry is �
ut = uxxx + 3uxxvu+ 3uxvux + 3uxvuvu;

vt = vxxx � 3vuvxx � 3vxuvx + 3vuvuvx:
(4:28)

5. Matrix Painlev�e Equations.

It is well known that the symmetry reductions of integrable systems are ordinary di�er-

ential equations of Painlev�e type, [2], [30]. Thus, we can seek symmetry reductions of our

noncommutative integrable equations, leading to associative algebra-valued counterparts

of the classical Painlev�e transcendents P-I, : : : , P-VI, [23].

First of all, the �rst Painlev�e transcendent P-I appears as a symmetry reduction of

the matrix KdV equation (1.3). Namely, the classical Galilean symmetry

@

@t
� t @

@x
+

1

6

@

@u

gives us the group-invariant solution

u = 1
6
t e + v

�
x+ 1

2
t2
�
;

where e is the identity (or any other constant) element of the algebra, and v satis�es the

matrix ordinary di�erential equation

v000 + 3vv0 + 3v0v = 1
6
e:

By integrating we obtain the �rst matrix Painlev�e equation

v00 + 3v2 = 1
6
z e+ a (5:1)

with arbitrary constant matrix a. Of course, we can use the scaling to normalize the

constants 3 and 1
6
. By a suitable shift of z and a conjugation of the form v 7! mvm�1,

we can make a into a matrix having zero trace in Jordan canonical form. Note that the

Painlev�e equation (5.1) admits a symmetric reduction v� = v.

The two matrix mKdV equations lead to two di�erent matrix version of the second

Painlev�e equation P-II. Namely, the simple scaling gives us the substitution

u = t�1=3v(xt�1=3):

Starting with the standard matrix mKdV (1.4), we obtain

v000 + 3v2v0 + 3v0v2 + 1
3
v + 1

3
zv0 = 0: (5:2)

The second mKdV (1.4) (and the same reduction) gives rise to di�erent third order ODE

v000 + 3vv00 � 3v00v � 6vv0v + 1
3
v + 1

3
zv0 = 0: (5:3)
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In contrast with the scalar case, we are unable to lower the order of either version of the

second Painlev�e transcendent, which remain third order equations.

In the scalar case the fourth Painlev�e equation P-IV is equivalent to the following

system of Riccati type:
y0 = c1 � 1

2
zy � y2 � 2yw;

w0 = c2 +
1
2
zw + w2 + 2yw;

(5:4)

where c1, c2 are arbitrary constants. The system (5.4) can be most simply obtained from

the commutative nonlinear Schr�odinger type system (4.10) via the similarity reduction

u = t�1=2y(z), v = t�1=2w(z), with z = t�1=2x. There are two di�erent noncommutative

counterparts to this equation, leading to two noncommutative versions of P-IV. Performing

the same similarity reduction on (4.18) leads to

y00 + 2yy0 +
�
wy + 1

2
zy
�0
+ 2ywy � 2wy2 = 0;

w00 � 2w0w �
�
wy + 1

2
zw
�0
+ 2wyw � 2w2y = 0;

(5:5)

whereas (4.19) yields the alternative system

y00 + 2yy0 +
�
yw + 1

2
zy
�0
+ 2y2w � 2ywy = 0;

w00 � 2ww0 � �wy + 1
2
zw
�0 � 2wyw + 2w2y = 0:

(5:6)

Unlike the commutative version, neither of these can be reduced to a �rst order system.

The classical matrix chiral model

uxy = fux; u�1; uyg = 1
2

�
uxu

�1uy + uyu
�1ux

�
; (5:7)

is one of the most important integrable matrix equations. In [45], [46], [47], this equation

was generalized to the case of arbitrary Jordan triple system. The general scaling symmetry

reduction of (5.7) leads to the substitution

u = xpyqv(x�y�); �� 6= 0:

Without loss of generality we can put q = 0, but the resulting reduced matrix ordinary

di�erential equation does not depend on p; q; �; � and is as follows:

vzz +
vz
z

= vzv
�1vz; z = x�y� : (5:8)

In the standard case, this equation is a special case of P-III.

It would be interesting to investigate the analytical properties, B�acklund transfor-

mations and the corresponding isomonodromic problems for these matrix Painlev�e equa-

tions. We do not know if there exist other matrix Painlev�e equations (for instance P-VI).

It seems possible to transfer our \associative approach" from symmetry analysis to the

Painlev�e analysis. This could be allow one to classify matrix ordinary di�erential equa-

tions of Painlev�e type. For example, recently Balandin and the second author, [6], have

shown that the matrix P-II equation

v00 = 2v3 + zv + � e;

where u(z) is an unknown n � n-matrix, e is the unit matrix, � is a scalar parameter,

although it does not arise as a reduction of either of the matrix mKdV equations, passes

through the Painlev�e-Kovalevskaya test.
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6. Hamiltonian structures.

A scalar evolution equation (3.1) is said to be Hamiltonian if it can be written in the

form

ut = D �H: (6:1)

Here H =
R
H(u; ux; : : :) dx is the Hamiltonian functional, � is the variational derivative,

and the Hamiltonian operator D determines a Poisson bracket

fF ;Hg =
Z
�F � D �H dx (6:2)

on the space of functionals. The Hamiltonian operator D is required to be a skew-adjoint

di�erential operator, D� = �D, in order that the Poisson bracket (6.2) be skew-symmetric,

fF ;Hg = �fH;Fg. In addition, we require that (6.2) satisfy the Jacobi identity

fF ; fG;Hgg+ fG; fH;Fgg+ fH; fF ;Ggg = 0: (6:3)

Any skew-adjoint operator which does not explicitly depend on the �eld variable u auto-

matically satis�es the Jacobi identity. For �eld dependent operators, (6.3) is a nontrivial

condition which we discuss in more detail below. We refer the reader to [38; Chapter 7],

for details on the general theory of (commutative) Hamiltonian systems.

Generalizing the calculus of Poisson brackets and variational derivatives to the non-

commutative case is relatively straightforward. The basic functionals must still be scalar-

valued, and thus must be expressed as integrals of certain trace forms. For example, the

functional

H1 =

Z
tr
��1

2
u2x + u3

�
dx (6:4)

turns out to be a conservation law for the non-commutative Korteweg-deVries equation

(1.3). We can compute its variational derivative as follows

h�H1 ; vi =
d

dt
H[u+ tv]

����
t=0

=

Z
tr
�
�1

2
uxvx � 1

2
vxux + vu2 + uvu+ u2v

�
dx

=

Z
tr
��uxvx + 3u2v

�
dx =

Z
tr
�
(uxx + 3u2)v

�
dx:

Here we are using the fundamental property (2.5) of the trace operation as well as inte-

gration by parts. Therefore, the variational derivative of the functional (6.4) is

�H1 = uxx + 3u2:

The associative algebra-valued Korteweg-deVries equation (1.3) can thus be written in the

Hamiltonian form

ut = Dx �H:
The total derivative operator Dx, being skew-adjoint and independent of the �eld variable,

is automatically Hamiltonian.
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For general skew-adjoint di�erential operators, the simplest method for verifying the

Jacobi identity (6.3) is based on the calculus of \functional multi-vectors" developed in [38;

Chapter 7]. We assume that the reader is familiar with the method for the commutative

case as explained there. The non-commutative version is very similar; in the one component

case, one introduces the basic uni-vectors �k � Dk
x �, which are, in a certain sense, \duals"

to the one-forms duk = Dk
x du. The main di�erence is that, since ordinary multiplication

is no longer commutative, the wedge product of such multi-vectors is no longer skew

symmetric. Thus, in order to avoid confusion, we shall drop the explicit wedge product

symbol entirely, denoting � ^ �x, say, by just concatenation � �x. The only identity that

is retained in the case of an associative algebra is the skew analogue of the trace formula

(2.5), which requires

tr � � = (�1)mn tr � �; (6:5)

for any m-vector � and n-vector �. An associative algebra-valued functional multi-vector

has the form � =
R
tr � dx, where � is a multi-vector built on the underlying associative

algebra. We note that, besides the trace identity (6.5), one can also integrate functional

multi-vectors by parts:

Z
tr (� Dx�) dx = �

Z
tr ((Dx�) �) dx = �

Z
tr (� Dx�) dx: (6:6)

The most important functional multi-vector is the bivector

� =

Z
tr (�D �) dx; (6:7)

associated with a skew-adjoint linear operator D. The operator D de�nes a noncommuta-

tive Poisson bracket

fF ;Hg =
Z

tr
�
�F � D �H � dx; (6:8)

if and only if the bivector � satis�es the quadratic bracket condition

[�;�] = 2vD�(�) = 0: (6:9)

Here [ � ; � ] denotes the noncommutative Schouten bracket, cf. [37], between functional

multi-vectors. The functional trivector (6.9) can be e�ectively computed via the noncom-

mutative version of a standard formula based on the formal evolutionary vector �eld vD�
which has multi-vector characteristic D�. In other words, we replace K in (3.2) by the

uni-vector D�, and allow vD� to act as an anti-derivation on the space of multi-vectors,

meaning that

vD�(� �) = vD�(�) � + (�1)m� vD�(�) (6:10)

whenever � is an m-vector. In other words, vD� picks up a minus sign each time it \moves

past" another uni-vector. See [38] for details, which are straightforwardly adapted here to

the non-commutative case.
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Two Hamiltonian operators D and E is said to form a Hamiltonian pair provided any

linear combination aD + bE, a; b 2 R, is also Hamiltonian. This is equivalent to requiring

that D and E are individually Hamiltonian, meaning that their associated bivectors

� =

Z
tr (�D �) dx; � =

Z
tr (� E �) dx;

satisfy the bracket condition (6.9). Moreover, they must satisfy a compatibility condi-

tion that the Schouten bracket between their associated bivectors vanishes, leading to the

complete system of bracket conditions

[�;�] = 0; [�;�] = 0; [�;�] = 0; (6:11)

Magri's theorem, [28], [38], demonstrates the integrability of any biHamiltonian sys-

tem

ut = D�H1 = E�H0: (6:12)

Indeed, the operator

R = E � D�1; (6:13)

forms a recursion operator for the system (6.12), leading to the hierarchy of commuting

higher order 
ows

ut = D �Hn+1 = E �Hn; (6:14)

associated with the hierarchy Hn of higher order conservation laws. The main technical

issue is whether the higher order 
ows generated by recursion are local.

We now discuss what is known concerning the Hamiltonian and biHamiltonian struc-

tures of noncommutative integrable systems.

Theorem 6.1. The noncommutative Korteweg-deVries equation (1.3) is a biHamil-

tonian system for the compatible Hamiltonian pair

D = Dx; E = D3
x +AuDx +DxAu + CuD

�1
x Cu: (6:15)

Here Au and Cu are the anti-commutator and commutator maps as in (2.3).

Proof :

Note that

Dv = vx; Ev = vxxx + 4 fu; vxg+ 2 fux; vg+ [D�1[v; u]; u]: (6:16)

Therefore, it su�ces to prove that E is Hamiltonian, since the linear combination E + cD
can be simply obtained from E via translation u 7! u + c. We write E = E0 + E1 + E2,
where

E0 = D3
x; E1 = 2AuDx +Aux

; E2 = CuD
�1
x Cu: (6:17)
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Note that the subscript on the E's denotes their degrees (weights) under scaling in u.

We similarly decompose the associated functional bivector: � = �0 + �1 + �2. Let us

introduce the noncommutative uni-vectors

� = D�1
x (u�); � = D�1

x (�u): (6:18)

Then using integration by parts (6.6) and the trace identity (6.5), we �nd the following

simpli�ed formulae:

�0 =

Z
tr
�
� �xxx

�
dx;

�1 = 2

Z
tr
�
u � � �x � u �x �

�
dx = 2

Z
tr
�
(�x + �x) �x

�
dx;

�2 =

Z
tr
�
(�� �)(�x � �x)

�
dx:

(6:19)

Since the Schouten bracket condition (6.9) is quadratic in �, we can split the trivector

� = [�;�] into homogeneous components � = �0 +�1 +�2 +�3, where

�0 = v0(�1);

�1 = v0(�2) + v1(�1);

�2 = v1(�2) + v2(�1);

�3 = v2(�2):
(6:20)

Here vk = vEk�, and we are using the fact that vk(�0) = 0 since E0 is a constant coe�cient

operator. When evaluating (6.20), it is important to remember the anti-derivational rules

(6.10) for the formal vector �elds vk = vEk�. In particular,

v0(�x) = �xxx �; whereas v0(�x) = �� �xxx: (6:21)

Similarly, we �nd

v1(�x) = 2u �x � + 2 �x �x + ux � � + � ux �;

v1(�x) = �2� �x u� 2�x �x � � ux � � � �ux;
v2(�x) = (�� �)�x � u(�� �) �;
v2(�x) = �x(�� �)� � (�� �)u:

(6:22)

We can now compute the relevant brackets. First, applying (6.21) and integrating the

result by parts, we �nd

v0(�1) =

Z
tr
�
v0(�x) + v0(�x) �x

�
dx =

Z
tr
�
�xxx � �x � �xxx �x �

�
dx

=

Z
tr
���xx �x �x � �xx � �xx + �xx �xx � + �xx �x �x

�
dx = 0;

the �nal equality relying on (2.5). Similarly,

v2(�2) =

Z
tr
�
v2(�x) � v2(�x)(� � �)

�
dx

=

Z
tr
�
(�x � �x)(�� � ��� ��+ ��)

�
dx = 0:

The last equality follows by noting that the various terms combine to form total derivatives

and hence integrate to zero; for example, using (6.5),

Dx tr ��� = tr(�x��+ ��x�+ ���x) = 3 tr�x��;

and hence
R
tr (�x��) dx = 0. The veri�cation that �1 = 0 = �2 is similar, although

more tedious. Q.E.D.
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Corollary 6.2. The operator

R = D2
x + 2Au +Aux

D�1
x + CuD

�1
x CuD

�1
x (6:23)

is a recursion operator for the non-commutative Korteweg-deVries equation (1.3).

Remark : The operator (6.23) is a special case of a formula due to Svinolupov, [49],

for the recursion operator for multi-component Jordan systems. The proof that E satis�es
the Jacobi identity would be almost impossible to do using the component form of the

operator.

Remark : It is an open problem to prove that, as with the commutative KdV recursion

operator, applying (6.23) recursively to the elementary symmetry K0 = ux produces a

hierarchy of local , mutually commuting, higher order 
ows. We have veri�ed this up to

order 11, but do not have a general proof.

There are several interesting points associated with this result, indicating that the non-

commutative Hamiltonian theory is more complicated than the well-studied commutative

theory. First, and most noticeable, is the fact that the operator E is non-local, requiring

the formal integral operator D�1
x . This is in contrast with the scalar Korteweg-deVries

equation, whose second Hamiltonian structure is a local operator.

Second, and even more surprising, is that, except for the constant coe�cient opera-

tor D3
x, the other two homogeneous summands of the second Hamiltonian operator E are

not individual Hamiltonian operators | only when they appear in the particular linear

combination (6.15) does the operator de�ne a genuine Poisson bracket! In particular, the

combination D3
x+AuDx+DxAu, which would appear to be a more natural noncommuta-

tive generalization of the second KdV Hamiltonian operator, is not Hamiltonian. Indeed,

[�1;�1] = v1(�1) 6= 0, and hence E1(v) = 4fu; vxg + 2fux; vg does not de�ne a Hamil-

tonian operator! This is remarkable, since this appears to be the direct analogue of the

commutative Hamiltonian operator 2uDx + ux, which is the simplest Hamiltonian oper-

ator appearing in commutative Hamiltonian systems of \hydrodynamic type", [12], [13],

[14], [39], which are �rst order quasilinear systems of partial di�erential equations. The

operator 2uDx+ ux de�nes the �rst of four known Hamiltonian structures for the inviscid

Burgers' equation ut = uux, [39]. Our result indicates that the noncommutative theory

of systems of hydrodynamic type is considerably more complicated than the commutative

theory. However, this theory is clearly worth developing, since, in view of the connections

between such Hamiltonian operators and Riemannian geometry in the commutative case,

the resulting theory may help shed new light on how to construct a \noncommutative

Riemannian geometry", cf. [8].

The general form for a �rst order Hamiltonian operator for the mKdV-type equations

is

D = Dx + �Cu + �CuD
�1
x Cu: (6:24)

In other words,

D(v) = vx + �[u; v] + �[u;D�1
x [u; v] ]: (6:25)

Therefore, the operators Dx, Cu, and CuD
�1
x Cu, form a compatible Hamiltonian triple,

although the latter is an immediate consequence of the compatibility of the �rst two
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operators. Interestingly, in contrast with the scalar modi�ed Korteweg-deVries equation,

whose �rst order Hamiltonian structure is the local operator Dx, the structure here is

non-local, requiring the formal integral operator D�1
x .

Theorem 6.3. For any scalar constants �; �, the operator (6.24) is Hamiltonian.

The proof is similar to Theorem 6.1 and is omitted. Choosing � = 0, � = 1, so

D1 = Dx +CuD
�1
x Cu; (6:26)

we �nd the that the �rst matrix mKdV equation (1.4) can be written in Hamiltonian form

(6.1), with Hamiltonian

H1 =

Z
tr
�
�1

2
u2x +

1
2
u4
�
dx: (6:27)

Choosing � = 3, � = 2, so

D2 = Dx + 3Cu + 2CuD
�1
x Cu; (6:28)

we �nd the that the second matrix mKdV equation (1.6) can be written in Hamiltonian

form (6.1), with Hamiltonian

H2 =

Z
tr
��1

2
u2x � 1

2
u4
�
dx: (6:29)

For general �; �, and Hamiltonian

H =

Z
tr
��1

2
u2x +

1
2
"u4

�
dx: (6:30)

we obtain the family of matrix Hamiltonian equations

ut = uxxx + �[u; uxx] + (� + ")fu2; uxg+ (" � 2�)uuxu: (6:31)

However, Theorem 3.6 indicates that not all of these are integrable. More speci�cally, only

the �rst and second matrix mKdV equations (1.4), (1.6), admit a �fth order symmetry.

7. Conclusions and Further Research.

In this paper, we have initiated the systematic classi�cation of integrable evolution

equations whose �eld variables take values in an associative algebra. Complete classi�-

cations are found for equations of KdV type, where the only integrable noncommutative

examples found so far are the noncommutative KdV and its higher order symmetries.

A similar result holds for noncommutative generalizations of the mKdV equation. The

classi�cation of two-component systems generalizing the nonlinear Schr�odinger equation

and has been completed. In both the commutative and noncommutative cases, new ex-

amples of integrable systems were discovered. In some cases, commutative equations have

one or two noncommutative counterparts, whereas some integrable commutative equations

22



cannot be extended to the noncommutative regime. The computer packages used to e�ect

these computations can be readily applied to other types of systems, although the required

amount of computing power and memory increases rapidly, leaving many interesting cases

unexplored. Explicit solutions, including solitons, as well as the possible linearizations and

integration via a noncommutative inverse scattering method will be the subject of future

research.

Symmetry reduction of the noncommutative integrable equations leads to a variety of

associative algebra valued ordinary di�erential equations of Painlev�e type, whose properties

await a more detailed development. A systematic study of both symmetry reductions, and

integrable reductions through specialization of the �eld variables, will be discussed in a

future work.

Noncommutative Hamiltonian structures for some of the integrable equations were

found, although the second Hamiltonian structure for the two noncommutative variants

of the mKdV equation have not yet been determined. Another important problem is

to prove that all the higher order symmetries of our noncommutative systems obtained

through application of the nonlocal recursion operator are local equations.

Since the �eld variables in our systems take their value in an arbitrary associative

algebra, our results can thus be equally well applied to algebras of operators over Hilbert

spaces and other in�nite dimensional spaces. This leads one to speculate on a possible

nonlinear quantum mechanical evolution, governed by a operator evolution equation. Our

approach to the classi�cation of nonabelian equations can therefore be regarded as a con-

structive procedure of \nonlinear" quantization that can be applied to classical integrable

systems. The e�ect of such evolutions on such basic physical assumptions as the superpo-

sition principle remains to be explored.

Acknowledgments: We would like to thank the Ordway endowment for supporting

V. Sokolov's visit to Minnesota, during which this project was initiated. We would also

like to thank V.E. Adler, I.Z. Golubchik and R.I. Yamilov for helpful discussions.

23



References

[1] Ablowitz, M.J., and Clarkson, P.A., Solitons, Nonlinear Evolution Equations and the

Inverse Scattering Transform, L.M.S. Lecture Notes in Mathematics, Vol. 149,

Cambridge University Press, Cambridge, 1991.

[2] Ablowitz, M.J., Ramani, A., and Segur, H., A connection between nonlinear

evolution equations and ordinary di�erential equations of P -type, J. Math.

Phys. 21 (1980), 715{721.

[3] Antonowicz, M., and Fordy, A.P., Coupled KdV equations with multi-Hamiltonian

structures, Physica D 28 (1987), 345{357.

[4] Athorne, C., and Fordy, A.P., Generalised KdV and MKdV equations associated

with symmetric spaces, J. Phys. A 20 (1987), 1377{1386.

[5] Bakirov, I.M., On the symmetries of some system of evolution equations, preprint,

1991.

[6] Balandin, S.P., and Sokolov, V.V., On the Painlev�e test for nonabelian equations,

preprint, Ufa, 1996.

[7] Chen, J.Q., Group Representation Theory for Physicists, World Scienti�c,

Singapore, 1989.

[8] Connes, A., Noncommutative Geometry, Academic Press, San Diego, 1994.

[9] Crumeyrolle, A., Orthogonal and Symplectic Cli�ord Algebras, Kluwer, Boston, 1990.

[10] Curtis, C.W., and Reiner, I., Representation Theory of Finite Groups and

Associative Algebras, Interscience, New York, 1962.

[11] Drinfeld, V.G., and Sokolov, V.V., Lie algebras and equations of Korteweg-de Vries

type, J. Soviet Math. 30 (1985), 1975{2036.

[12] Dubrovin, B.A., and Novikov, S.P., Hamiltonian formalism of one-dimensional

systems of hydrodynamic type and the Bogolyubov-Whitham averaging

method, Sov. Math. Dokl. 27 (1983), 665{669.

[13] Dubrovin, B.A., and Novikov, S.P., On Poisson brackets of hydrodynamic type, Sov.

Math. Dokl. 30 (1984), 651{654.

[14] Dubrovin, B.A., and Novikov, S.P., Hydrodynamics of weakly deformed soliton

lattices. Di�erential geometry and Hamiltonian theory, Russian Math. Surveys

44:6 (1989), 35{124.

[15] Ferapontov, E.V., Di�erential geometry of nonlocal Hamiltonian operators of

hydrodynamic type, Func. Anal. Appl. 25 (1991), 195{204.

[16] Fokas, A.S., A symmetry approach to exactly solvable evolution equations, J. Math.

Phys. 2 (1980), 1318{1325.

[17] Fordy, A.P., Derivative nonlinear Schr�odinger equations and Hermitian symmetric

spaces, J. Phys. A 17 (1984), 1235{1245.

[18] Fordy, A.P., and Kulish, P.P., Nonlinear Schr�odinger equations and simple Lie

algebras, Commun. Math. Phys. 89 (1983), 427{443.

[19] G�urses, M., and Karasu, A., Degenerate Svinolupov KdV systems, Phys. Lett. A

214 (1996), 21{26.

24



[20] Habibullin, I.T., Sokolov, V.V., and Yamilov, R.I., Multi-component integrable

systems and nonassociative structures, in: Nonlinear Physics: Theory and

Experiment, World Scienti�c, Singapore, 1996, pp. 139{168.

[21] Ibragimov, N.H., and Shabat, A.B., Evolutionary equations with nontrivial

Lie{B�acklund group, Func. Anal. Appl. 14 (1980), 19{28.

[22] Ibragimov, N.H., and Shabat, A.B., In�nite Lie{B�acklund algebras, Func. Anal.

Appl. 14 (1980), 313{315.

[23] Ince, E.L., Ordinary Di�erential Equations, Dover, New York, 1956.

[24] Jacobson, N., Structure and Representations of Jordan Algebras, American Math.

Soc. Colloquium Publ., vol. 39, Providence, R.I., 1968.

[25] Kaup, D.J., On the inverse scattering problem for cubic eigenvalue problems of the

class  xxx + 6Q x + 6R = � , Stud. Appl. Math. 62 (1980), 189{216.

[26] Khalilov, F.A., and Khruslov, E.Ya., Matrix generalisation of the modi�ed

Korteweg-deVries equation, Inv. Prob. 6 (1990), 193{204.

[27] Kichenassamy, S., and Olver, P.J., Existence and non{existence of solitary wave

solutions to higher order model evolution equations, SIAM J. Math. Anal. 23

(1992), 1141{1166.

[28] Magri, F., A simple model of the integrable Hamiltonian equation, J. Math. Phys.

19 (1978), 1156{1162.

[29] Marchenko, V.A., Nonlinear Equations and Operator Algebras, D. Reidel Pub. Co.,

Boston, 1988.

[30] McLeod, J.B., and Olver, P.J., The connection between partial di�erential equations

soluble by inverse scattering and ordinary di�erential equations of Painlev�e

type, SIAM J. Math. Anal. 14 (1983), 488{506.

[31] Mikhailov, A.V., Shabat, A.B., and Sokolov, V.V., The symmetry approach to

classi�cation of integrable equations, in: What is Integrability?, V.E. Zakharov,

ed., Springer Verlag, New York, 1990, pp. 115{184.

[32] Mikhailov, A.V., Shabat, A.B., and Yamilov, R.I., The symmetry approach to

classi�cation of nonlinear equations. Complete lists of integrable systems,

Russian Math. Surveys 42:4 (1987), 1{63.

[33] Mikhailov, A.V., Shabat, A.B., and Yamilov, R.I., Extension of the module of

invertible transformations. Classi�cation of integrable systems, Comm. Math.

Phys. 115 (1988), 1{19.

[34] Mokhov, O.I., Hamiltonian systems of hydrodynamic type and constant curvature

metrics, Phys. Lett. A 166 (1992), 215{216.

[35] Mokhov, O.I., and Ferapontov, E.V., Non-local Hamiltonian operators of

hydrodynamic type related to metrics of constant curvature, Russian Math.

Surveys 45:3 (1990), 218{219.

[36] Olver, P.J., Evolution equations possessing in�nitely many symmetries, J. Math.

Phys. 18 (1977), 1212{1215.

[37] Olver, P.J., Hamiltonian perturbation theory and water waves, Contemp. Math. 28

(1984), 231{249.

25



[38] Olver, P.J., Applications of Lie Groups to Di�erential Equations, Second Edition,

Graduate Texts in Mathematics, vol. 107, Springer{Verlag, New York, 1993.

[39] Olver, P.J., and Nutku, Y., Hamiltonian structures for systems of hyperbolic

conservation laws, J. Math. Phys. 29 (1988), 1610{1619.

[40] Porteous, I., Cli�ord Algebras, Cambridge Stud. Adv. Math., vol. 50, Cambridge

University Press, Cambridge, 1995.

[41] R�ohrl, H., Algebras and di�erential equations, Nagoya Math. J. 68 (1977), 59{122.

[42] Sawada, K., and Kotera, T., A method for �nding N-soliton solutions of the K.d.V.

equation and K.d.V.-like equation, Prog. Theor. Physics 51 (1974), 1355{1367.

[43] Sokolov, V.V., On the symmetries of evolution equations, Russian Math. Surveys

43:5 (1988), 165{204.

[44] Sokolov, V.V., and Shabat, A.B., Classi�cation of integrable evolution equations,

Soviet Math. Phys. Reviews C 4 (1984), 221{280.

[45] Sokolov, V.V., and Svinolupov, S.I., Vector{matrix generalizations of classical

integrable equations, Theor. Math. Phys. 100 (1994), 959{962.

[46] Sokolov, V.V., and Svinolupov, S.I., Deformations of nonassociative algebras and

integrable di�erential equations, Acta Appl. Math. 41 (1995), 323{339.

[47] Sokolov, V.V., and Svinolupov, S.I., Deformations of Jordan triple systems and

integrable equations, Theor. Math. Phys. 108 (1996), 388{392.

[48] Svinolupov, S.I., On the analogues of the Burgers equation, Phys. Lett. A 135

(1989), 32{36.

[49] Svinolupov, S.I., Jordan algebras and generalized KdV equations, Theor. Math.

Phys. 87 (1991), 611{620.

[50] Svinolupov, S.I., Generalized Schr�odinger equations and Jordan pairs, Commun.

Math. Phys. 143 (1992), 559{575.

[51] Svinolupov, S.I., Jordan algebras and integrable systems, Func. Anal. Appl. 27

(1993), 257{265.

[52] Walcher, S., Algebras and Di�erential Equations, Hadronic Press, Palm Harbor,

Fla., 1991.

[53] Zhiber, A.V., and Shabat, A.B., Klein{Gordon equations with a nontrivial group,

Sov. Phys. Dokl. 24 (1979), 607{609.

26


