APPROXIMATION OF A MARTENSITIC LAMINATE WITH VARYING VOLUME FRACTIONS

By

Bo Li

and

Mitchell Luskin

IMA Preprint Series # 1471
March 1997

INSTITUTE FOR MATHEMATICS AND ITS APPLICATIONS
UNIVERSITY OF MINNESOTA
514 Vincent Hall
206 Church Street S.E.
Minneapolis, Minnesota 55455
APPROXIMATION OF A MARTENSITIC LAMINATE WITH VARYING VOLUME FRACTIONS

BO LI AND MITCHELL LUSKIN

ABSTRACT. We consider multi-well energy minimization problems modeling martensitic crystals that can undergo either an orthorhombic to monoclinic or a cubic to tetragonal transformation. We give results for the approximation of a laminate with varying volume fractions. We construct energy minimizing sequences of deformations which satisfy the corresponding boundary condition, and we establish a series of error bounds in terms of the elastic energy for the approximation of the limiting macroscopic deformation and the simply laminated microstructure. Finally, we give results for the corresponding finite element approximation of the laminate with varying volume fractions.

1. Introduction

The recently developed geometrically nonlinear theory of martensite predicts the martensitic microstructure to be the limiting configuration of energy minimizing sequences of deformations for a nonconvex energy [2, 3, 10, 14, 15, 18, 19, 21, 24]. In this theory, the energy density is minimized on multiple energy wells $\text{SO}(3)U_1 \cup \cdots \cup \text{SO}(3)U_N$ where U_1, \cdots, U_N for $N > 1$ are symmetry-related strains and $\text{SO}(3)$ is the set of all 3×3 real orthogonal matrices with determinant equal to one. Although the effect of surface energy makes a homogeneous deformation most stable, for certain boundary constraints or loading conditions the elastic energy of a martensitic crystal can be lowered as much as possible only by the fine-scale mixing of deformation gradients from distinct energy wells. A common example of such a microstructure is a simple laminate in which the deformation gradient oscillates in parallel layers of fine-scale between two compatible, stress-free, homogeneous states [4, 5]. More complex microstructures have been described using the notion of Young measure which gives the volume fraction for the mixing of the deformation gradients of the energy minimizing sequences of deformations [2, 3, 20, 32, 33].

We focus on martensitic crystals that can undergo either an orthorhombic to monoclinic or a cubic to tetragonal transformation [3, 24]. A martensitic crystal which can undergo an orthorhombic to monoclinic transformation has two symmetry-related martensitic variants ($N = 2$), and hence the elastic energy density has two wells. The more commonly observed cubic to tetragonal transformation has three symmetry-related martensitic variants ($N = 3$), so the elastic energy density has three wells. For both transformations, Ball and

Date: March 25, 1997.

1991 Mathematics Subject Classification. 49M15, 65C20, 65N30, 73C50, 73K20.

Key words and phrases. martensitic transformation, simple laminate, volume fraction, Young measure, finite element, error estimate.

This work was supported in part by the NSF through grant DMS 95-05077, by the AFOSR through grant AF/F 49620-96-1-0057, by ARPA/URI/ONR N00014-92-J-1890, by the Institute for Mathematics and its Applications, and by a grant from the Minnesota Supercomputer Institute.
James have shown for boundary data which are consistent with a first-order laminate with constant volume fractions that the unique energy minimizing microstructure is the first-order laminate [3].

In this paper, we present an approximation theory for first-order laminates with varying volume fractions. We establish a series of error bounds in terms of the elastic energy of deformations for the L^2 approximation of the directional derivative of the limiting macroscopic deformation in any direction tangential to the parallel layers of the laminate, for the L^2 approximation of the limiting macroscopic deformation, for the approximation of volume fractions of the participating martensitic variants, and for the approximation of nonlinear integrals of deformation gradients.

We also give corresponding error estimates for conforming finite element approximations of the laminate with varying volume fractions. For simplicity of exposition, we restrict our analysis to continuous, piecewise linear, tetrahedral finite elements; but our analysis can be directly extended to higher order finite elements. We construct quasi-optimal finite element deformations, and we give corresponding error estimates for quasi-optimal finite element deformations.

The main framework of our analysis was given by the approximation theory developed for simple laminates with constant volume fractions for a two-well problem which applies to the orthorhombic to monoclinic transformation [25]. This analysis was extended to the cubic to tetragonal transformation in [23]. For constant volume fractions, an analysis for a nonconforming finite element approximation was given in [22].

A theory of numerical analysis for the microstructure in non-convex variational problems was developed in [12, 13], and extended in [7, 8, 9, 17, 26]. Analyses of the approximation of relaxed variational problems have been given in [6, 16, 27, 28, 29, 31]. We refer to the recent article [24] for a survey of models, computation, and numerical analysis for martensitic microstructure.

In §2, we describe the multi-well energy minimization problems. In §3, we construct energy minimizing sequences of deformations which satisfy the corresponding nonhomogeneous boundary condition. In §4 and §5, we establish a series of error bounds in terms of the elastic energy of deformations for the approximation of the limiting macroscopic deformation and the approximation of the microstructure. Finally, in §6, we give error estimates for the approximation by quasi-optimal finite element deformations.

2. Energy Minimization Problems

We first briefly review some basic definitions and properties of orthorhombic to monoclinic and cubic to tetragonal martensitic transformations. For more details, we refer to [2, 3, 24].

An orthorhombic to monoclinic transformation for a martensitic crystal is determined by its martensitic variants

\[U_1 = (I + \eta e_1 \otimes e_2)D, \quad U_2 = (I - \eta e_1 \otimes e_2)D, \]

where I is the identity transformation from \mathbb{R}^3 to \mathbb{R}^3, $\eta > 0$ is a material parameter, \{e_1, e_2, e_3\} is an orthonormal basis for \mathbb{R}^3, and D is a symmetric, positive definite, linear transformation from \mathbb{R}^3 to \mathbb{R}^3, given by

\[D = d_1 e_1 \otimes e_1 + d_2 e_2 \otimes e_2 + d_3 e_3 \otimes e_3 \]
for some \(d_1, d_2, d_3 > 0 \). A cubic to tetragonal transformation for a martensitic crystal is determined by its martensitic variants
\[
U_1 = \eta_1 I + (\eta_2 - \eta_1) e_1 \otimes e_1, \quad U_2 = \eta_1 I + (\eta_2 - \eta_1) e_2 \otimes e_2, \\
U_3 = \eta_1 I + (\eta_2 - \eta_1) e_3 \otimes e_3,
\]
where \(\eta_1 > 0 \) and \(\eta_2 > 0 \) are material parameters such that \(\eta_1 \neq \eta_2 \), and \(\{e_1, e_2, e_3\} \) is again an orthonormal basis for \(\mathbb{R}^3 \).

For convenience, we define the set of indices \(K = \{1, 2\} \) for the orthorhombic to monoclinic transformation and \(K = \{1, 2, 3\} \) for the cubic to tetragonal transformation. We also denote
\[
\mathcal{U}_i = \text{SO}(3)U_i, \quad i \in K, \quad \text{and} \quad \mathcal{U} = \cup \{\mathcal{U}_i : i \in K\}.
\]
It is easy to see that
\[
\det F = d_1 d_2 d_3 > 0, \quad \forall F \in \mathcal{U}, \tag{2.1}
\]
for the orthorhombic to monoclinic transformation, and that
\[
\det F = \eta_1^2 \eta_2 > 0, \quad \forall F \in \mathcal{U}, \tag{2.2}
\]
for the cubic to tetragonal transformation.

We now denote by \(\mathbb{R}^{3 \times 3} \) the set of all \(3 \times 3 \) real matrices. We call two matrices rank-one connected if their difference is a rank-one matrix. The classical Hadamard compatibility condition states that, given a plane with unit normal \(n \) and two distinct constant matrices \(F_0, F_1 \in \mathbb{R}^{3 \times 3} \), there exists a continuous deformation \(y : \mathbb{R}^3 \to \mathbb{R}^3 \) such that \(\nabla y \) takes the value \(F_0 \) on one side of the plane and \(F_1 \) on the other side if and only if \(F_0 \) and \(F_1 \) are rank-one connected as
\[
F_1 - F_0 = a \otimes n \tag{2.3}
\]
for some non-zero vector \(a \in \mathbb{R}^3 \). The following lemma which is proved in [2, 3, 24] classifies all possible simple laminates formed by pairs of variants up to multiplication of rotations for the martensitic crystals in discussion and serves as a key crystallographical basis for our analysis.

Lemma 2.1. (1) For each \(i \in K \), there is no rank-one connection between \(\mathcal{U}_i \) and itself, that is, any two matrices \(R_1 U_i \) and \(R_2 U_i \) with \(R_1, R_2 \in \text{SO}(3) \) and \(R_1 \neq R_2 \) are not rank-one connected.

(2) For any \(i, j \in K, i \neq j \), there are exactly two rank-one connections between \(\mathcal{U}_i \) and \(\mathcal{U}_j \), that is, there are exactly two different \(Q \in \text{SO}(3) \) such that
\[
QU_i - U_j = a \otimes n
\]
for some \(a, n \in \mathbb{R}^3, |n| = 1 \), respectively. In this case, we also have for any \(\lambda \in (0, 1) \) that
\[
\lambda QU_i + (1 - \lambda) U_j \notin \mathcal{U}.
\]
Moreover, we have that
\[
n \in \{ \pm e_1, \pm e_2 \}
\]
for the orthorhombic to monoclinic transformation, and that
\[
n \in \left\{ \pm \frac{1}{\sqrt{2}} (e_i + e_j), \pm \frac{1}{\sqrt{2}} (e_i - e_j) \right\}
\]
for the cubic to tetragonal transformation.

By Lemma 2.1, we shall assume without loss of generality that $F_1 \in \mathcal{U}_1$ and $F_0 \in \mathcal{U}_2$, and we shall also assume that

$$n = e_1$$

for the orthorhombic to monoclinic transformation and that

$$n = \frac{1}{\sqrt{2}}(e_1 + e_2)$$

for the cubic to tetragonal transformation.

For a given martensitic crystal, we denote by Ω the reference configuration which is taken to be the homogeneous austenitic state at the transformation temperature. We assume that $\Omega \subset \mathbb{R}^3$ is a connected, bounded domain with a Lipschitz continuous boundary. We also denote the elastic energy density of the crystal at a fixed temperature below the transformation temperature by the continuous function $\phi : \mathbb{R}^{3 \times 3} \to \mathbb{R}$. The elastic energy of a deformation $y : \Omega \to \mathbb{R}^3$ is given by

$$\mathcal{E}(y) = \int_{\Omega} \phi(\nabla y(x)) \, dx,$$

(2.4)

where $\nabla y : \Omega \to \mathbb{R}^{3 \times 3}$ is the deformation gradient. We define the set of deformations of finite energy by

$$W^\phi = \left\{ y \in C(\bar{\Omega}; \mathbb{R}^3) : \int_{\Omega} \phi(\nabla y(x)) \, dx < \infty \right\}.$$

To model the orthorhombic to monoclinic and the cubic to tetragonal martensitic transformations, we assume that the energy density ϕ is minimized on the energy wells $\mathcal{U}_i = \text{SO}(3)\mathcal{U}_i$, $i \in K$. Thus, we may assume after adding a constant to the energy density that

$$\phi(F) \geq 0, \quad \forall F \in \mathbb{R}^{3 \times 3},$$

$$\phi(F) = 0 \quad \text{if and only if} \quad F \in \mathcal{U} = \bigcup \{ \mathcal{U}_i : i \in K \}. \quad (2.5)$$

We shall also assume that the energy density ϕ grows quadratically away from the energy wells, that is,

$$\phi(F) \geq \kappa \|F - \pi(F)\|^2, \quad \forall F \in \mathbb{R}^{3 \times 3},$$

(2.6)

where $\kappa > 0$ is a constant and $\pi : \mathbb{R}^{3 \times 3} \to \mathcal{U}$ is a Borel measurable projection defined by

$$\|F - \pi(F)\| = \min_{G \in \mathcal{U}} \|F - G\|, \quad \forall F \in \mathbb{R}^{3 \times 3},$$

and where

$$\|F\| = \left(\sum_{i,j=1}^{3} F_{ij}^2 \right)^{\frac{1}{2}}, \quad \forall F = (F_{ij}) \in \mathbb{R}^{3 \times 3}.$$

The projection $\pi(F)$ exists for any $F \in \mathbb{R}^{3 \times 3}$, since \mathcal{U} is compact, although the projection may not be unique. It is unique, however, if $\|F - \pi(F)\|$ is small enough [24].
We shall assume that $F_0, F_1 \in \mathcal{U}$ are rank-one connected as in (2.3), so
\[(1 - \lambda)F_0 + \lambda F_1 = F_0 + \lambda a \otimes n, \quad \lambda \in \mathbb{R}. \] \hspace{1cm} (2.7)

The following lemma shows that any deformation with a gradient that is a mixture of the two matrices F_0 and F_1 must be a simple laminate.

Lemma 2.2. Let $y \in W^{1, \infty}(\Omega; \mathbb{R}^3)$ satisfy
\[\nabla y(x) = (1 - \lambda(x))F_0 + \lambda(x)F_1, \quad \text{a.e. } x \in \Omega, \]
for the volume fraction $\lambda \in L^\infty(\Omega)$ satisfying $0 \leq \lambda(s) \leq 1$. We then have that there exist unique $l(x) \in W^{1, \infty}(\Omega)$ and $\tilde{y} \in \mathbb{R}^3$, $\tilde{y} \cdot a = 0$, such that
\[y(x) = F_0 x + l(x)a + \tilde{y}, \quad x \in \Omega, \]
\[\nabla l(x) = \lambda(x)n, \quad \text{a.e. } x \in \Omega. \]

If $\hat{\Omega} \subset \Omega$ is a Lipschitz subdomain with the property that \(\{ x \in \hat{\Omega} : x \cdot n = \xi \} \) is connected for each $\xi \in \mathbb{R}$, then there exist $\bar{l}(s) \in W^{1, \infty}(\mathbb{R})$ and $\bar{\lambda}(s) \in L^\infty(\mathbb{R})$ such that
\[l(x) = \bar{l}(x \cdot n), \quad x \in \hat{\Omega}, \]
\[\lambda(x) = \bar{\lambda}(x \cdot n), \quad \text{a.e. } x \in \hat{\Omega}, \]
\[\bar{l}'(s) = \bar{\lambda}'(s), \quad \text{a.e. } s \in \mathbb{R}. \]

Proof. The proof is identical to the proof of Proposition 1 in [2] for the case when λ is a characteristic function. It follows by noting that if $w \in \mathbb{R}^3$, $w \cdot a = 0$, then
\[\nabla [(y(x) - F_0 x) \cdot w] = 0, \quad \text{a.e. } x \in \Omega. \]

\[\square \]

In this paper, we consider the minimization of the elastic energy (2.4) with respect to deformations which are constrained on the boundary to take the value
\[y_\lambda(x) = F_0 x + l(x)a, \quad x \in \Omega, \]
\[\nabla l(x) = \lambda(x)n, \quad \text{a.e. } x \in \Omega, \] \hspace{1cm} (2.8)

where $l(x) \in W^{1, \infty}(\Omega)$ and $\lambda(x) \in L^\infty(\Omega)$ satisfies $0 \leq \lambda(x) \leq 1$. Our energy minimization problem is to minimize the energy (2.4) in the set of admissible deformations defined by
\[W_\lambda^\phi = \left\{ y \in W^\phi : y = y_\lambda \text{ on } \partial \Omega \right\}. \]

3. CONSTRUCTION OF ENERGY MINIMIZING SEQUENCES

We first consider the special case of (2.8) where $\lambda(x) = \tilde{\lambda}(x \cdot n)$ for $\tilde{\lambda}(s) \in L^\infty(\mathbb{R})$, so
\[y_\lambda(x) = F_0 x + \left[\int_0^{x \cdot n} \tilde{\lambda}(s)ds + \zeta \right] a, \quad x \in \Omega, \] \hspace{1cm} (3.1)

for some $\zeta \in \mathbb{R}^3$.

We construct in two steps a family of deformations $\hat{u}_\gamma \in W^\phi_\lambda$, $\gamma \in (0, \gamma_0]$, for any fixed $\gamma_0 > 0$, satisfying
\[\lim_{\gamma \to 0} \mathcal{E}(\hat{u}_\gamma) = 0. \]
First, we construct \(u_\gamma \in W^{1,\infty}(\mathbb{R}^3; \mathbb{R}^3), \gamma \in (0, \gamma_0] \), which are simple laminates of scale \(\gamma \) such that \(\nabla u_\gamma(x) = F_0 \) or \(F_1 \) for almost all \(x \in \mathbb{R}^3 \). Second, we construct \(\hat{u}_\gamma \in W^{1,\infty}_\lambda, \gamma \in (0, \gamma_0] \), by modifying \(u_\gamma \) by interpolation on the boundary.

Step 1. Construction of \(u_\gamma \in W^{1,\infty}(\mathbb{R}^3; \mathbb{R}^3), \gamma \in (0, \gamma_0] \). Set

\[
I^{(i)}_\gamma = ((i - 1)\gamma, i\gamma) \quad \text{and} \quad \lambda^{(i)}_\gamma = \frac{1}{\gamma} \int_{I^{(i)}_\gamma} \hat{\lambda}(s) \, ds, \quad \forall i \in \mathbb{Z}.
\]

Define the piecewise constant function \(\hat{\lambda}_\gamma : \mathbb{R} \to \mathbb{R} \) by

\[
\hat{\lambda}_\gamma(s) = \lambda^{(i)}_\gamma \quad \text{if} \ s \in I^{(i)}_\gamma, \quad \forall i \in \mathbb{Z},
\]

and define the characteristic function \(\chi_\gamma : \mathbb{R} \to \mathbb{R} \) by

\[
\chi_\gamma(s) = \begin{cases}
1 & \text{if } (i - 1)\gamma < s \leq (i - 1 + \lambda^{(i)}_\gamma)\gamma \quad \text{for some } i \in \mathbb{Z}, \\
0 & \text{if } (i - 1 + \lambda^{(i)}_\gamma)\gamma < s \leq i\gamma \quad \text{for some } i \in \mathbb{Z}.
\end{cases}
\]

Since \(0 \leq \hat{\lambda}(s), \hat{\lambda}_\gamma(s), \chi_\gamma(s) \leq 1 \) for almost all \(s \in \mathbb{R} \), we have for any bounded interval \(I \subset \mathbb{R}^1 \) that

\[
\left| \int_I \left[\chi_\gamma(s) - \hat{\lambda}(s) \right] \, ds \right| \leq 2\gamma. \quad (3.2)
\]

Define now

\[
u_\gamma(x) = F_0 \mathbf{v} + \left[\int_0^{||\mathbf{v}||} \chi_\gamma(s) \, ds + \zeta \right] \mathbf{a}, \quad x \in \mathbb{R}^3.
\]

Obviously, \(u_\gamma \in W^{1,\infty}(\mathbb{R}^3; \mathbb{R}^3) \). Moreover, we have by (2.3) that

\[
\nabla u_\gamma(x) = F_0 + \chi_\gamma(x \cdot \mathbf{n})\mathbf{a} \otimes \mathbf{n} \in \{ F_0, F_1 \}, \quad \text{a.e. } x \in \mathbb{R}^3. \quad (3.3)
\]

In view of (3.1) and (3.2), we also have

\[
|u_\gamma(x) - y_{\lambda}(x)| \leq 2|\alpha|\gamma, \quad x \in \mathbb{R}^3. \quad (3.4)
\]

Step 2. Construction of \(\hat{u}_\gamma \in W^{1,\infty}_\lambda, \gamma \in (0, \gamma_0] \). Set

\[
\Omega_\gamma = \{ x \in \Omega : \text{dist}(x, \partial \Omega) > v\gamma \}
\]

for some constant \(v > 0 \) which will be specified later. Define \(\psi_\gamma : \Omega \to \mathbb{R} \) by

\[
\psi_\gamma(x) = \begin{cases}
1 & \text{if } x \in \Omega_\gamma, \\
(v\gamma)^{-1} \text{dist}(x, \partial \Omega) & \text{if } x \in \Omega - \Omega_\gamma.
\end{cases}
\]

It is easy to see that \(\psi_\gamma \in W^{1,\infty}(\Omega) \) and

\[
0 \leq \psi_\gamma(x) \leq 1, \quad x \in \Omega, \\
\psi_\gamma(x) = 1, \quad x \in \Omega_\gamma, \\
\psi_\gamma(x) = 0, \quad x \in \partial \Omega, \\
|\nabla \psi_\gamma(x)| \leq (v\gamma)^{-1}, \quad \text{a.e. } x \in \Omega. \quad (3.5)
\]

Now we define \(\hat{u}_\gamma : \Omega \to \mathbb{R}^3 \) for \(\gamma \in (0, \gamma_0] \) by

\[
\hat{u}_\gamma(x) = \psi_\gamma(x)u_\gamma(x) + (1 - \psi_\gamma(x))y_{\lambda}(x), \quad x \in \Omega.
\]
It is easy to verify that
\[\nabla \hat{u}_\gamma(x) = [u_\gamma(x) - y_\lambda(x)] \otimes \nabla \psi_\gamma(x) + \psi_\gamma(x) \nabla u_\gamma(x) + (1 - \psi_\gamma(x)) \nabla y_\lambda(x) \] (3.6)
for almost all \(x \in \Omega \). By (3.3) – (3.6), we have for all \(\gamma \in (0, \gamma_0] \) that
\[\| \nabla \hat{u}_\gamma(x) \| \leq C \quad \text{a.e. } x \in \Omega, \] (3.7)
where \(C \) here and below is a constant independent of \(\gamma \), and that
\[\nabla \hat{u}_\gamma(x) \in \{ F_0, F_1 \}, \quad \text{a.e. } x \in \Omega_\gamma. \] (3.8)
Therefore \(\hat{u}_\gamma \in W^\phi_\lambda \) for any \(\gamma \in (0, \gamma_0] \) by the continuity of the energy density \(\phi \). Moreover, since \(\text{meas}(\Omega - \Omega_\gamma) = O(\gamma) \), as \(\gamma \to 0 \), we have by (3.7), (3.8), and (2.5) that
\[\mathcal{E}(\hat{u}_\gamma) = O(\gamma), \quad \text{as } \gamma \to 0. \]
By the rank-one connection (2.3), we have that
\[\det F_1 = \det(F_0 + a \otimes n) = (\det F_0)(1 + F_0^{-1}a \cdot n). \]
This together with the fact that \(\det F_0 = \det F_1 > 0 \) (see (2.1) and (2.2)) implies that
\[F_0^{-1}a \cdot n = 0. \]
Consequently, for any \(\xi \in \mathbb{R} \), we have
\[\det(F_0 + \xi a \otimes n) = (\det F_0)(1 + \xi F_0^{-1}a \cdot n) = \det F_0. \]
It now follows from the equations (2.7) and (3.3) that
\[\psi_\gamma(x) \nabla u_\gamma(x) + (1 - \psi_\gamma(x)) \nabla y_\lambda(x) = F_0 + \xi(x) a \otimes n, \quad \text{a.e. } x \in \Omega, \]
where \(\xi(x) = \psi_\gamma(x) \chi_\gamma(x \cdot n) + (1 - \psi_\gamma(x)) \lambda(x), \quad \text{a.e. } x \in \Omega. \)
Thus,
\[\det [\psi_\gamma(x) \nabla u_\gamma(x) + (1 - \psi_\gamma(x)) \nabla y_\lambda(x)] = \det F_0 = \det F_1 > 0, \quad \text{a.e. } x \in \Omega. \]
Choosing \(\nu > 0 \) large enough, we can therefore conclude from (3.4) – (3.6) that
\[\det \nabla \hat{u}_\gamma(x) \geq C > 0, \quad \text{a.e. } x \in \Omega, \quad \forall \gamma \in (0, \gamma_0]. \] (3.9)
We summarize our results in the following theorem.

Theorem 3.1. If \(y_\lambda(x) \) has the form (3.1), then there exist a family of deformations \(\hat{u}_\gamma \in W^\phi_\lambda, \gamma \in (0, \gamma_0] \), for any fixed \(\gamma_0 > 0 \), such that (3.9) holds and such that
\[\lim_{\gamma \to 0} \mathcal{E}(\hat{u}_\gamma) = 0. \]

Theorem 3.1 can be directly extended to more general deformations \(y_\lambda(x) \) such as described in the following lemma.

Lemma 3.1. Suppose that \(\Omega_i \subset \Omega \) for \(i = 1, \ldots, M \) are disjoint Lipschitz subdomains such that
\[\bar{\Omega} = \bigcup_{i=1}^M \bar{\Omega}_i, \]
and we suppose that there exist \(\tilde{\lambda}_i(s) \in L^\infty(\mathbb{R}) \) for \(i = 1, \ldots, M \) such that
\[
\lambda(x) = \tilde{\lambda}_i(x \cdot n), \quad x \in \Omega_i.
\]
It then follows that there exist a family of deformations \(\hat{u}_\gamma \in W^\phi_\lambda \), \(\gamma \in (0, \gamma_0] \), for any fixed \(\gamma_0 > 0 \), such that (3.9) holds and such that
\[
\lim_{\gamma \to 0} E(\hat{u}_\gamma) = 0.
\]

Proof. We construct deformations \(\hat{u}_{i\gamma} \) defined on \(\tilde{\Omega}_i \) for \(i = 1, \ldots, M \) such that
\[
\hat{u}_{i\gamma}(x) = y_\lambda(x), \quad x \in \partial\Omega_i,
\]
by the technique of Theorem 3.1 applied to \(\Omega_i \), and we then construct \(\hat{u}_\gamma \in W^\phi_\lambda \) by
\[
\hat{u}_\gamma(x) = \hat{u}_{i\gamma}(x), \quad x \in \Omega_i, \quad i = 1, \ldots, M.
\]
\[\square\]

4. APPROXIMATION OF THE LIMITING MACROSCOPIC DEFORMATION

In this section and in the next section, we assume only that \(y_\lambda(x) \) is of the general form (2.8). Our first lemma below is a direct consequence of the growth rate of the energy density around the energy wells (2.6).

Lemma 4.1. We have
\[
\int_\Omega \| \nabla y(x) - \pi(\nabla y(x)) \|^2 \, dx \leq \kappa^{-1} E(y), \quad \forall y \in W^\phi.
\]

Notice that by the above lemma we have that \(W^\phi \subset W^{1,2}(\Omega, \mathbb{R}^3) \). In what follows we shall denote by \(C \) a generic positive constant which will be independent of all \(y \in W^\phi_\lambda \).

Lemma 4.2. There exists a constant \(C > 0 \) such that
\[
\int_\Omega \| \pi(\nabla y(x)) - \nabla y_\lambda(x) \| w \|^2 \, dx \leq C E(y)^{1/2}, \quad \forall y \in W^\phi_\lambda,
\]
for all \(w \in \mathbb{R}^3 \) satisfying \(w \cdot n = 0 \) and \(|w| = 1 \).

Proof. We first consider the orthorhombic to monoclinic transformation. In this case, we have
\[
\pi(F) \in \text{SO}(3)F_0 \cup \text{SO}(3)F_1, \quad \forall F \in \mathbb{R}^{3 \times 3}.
\]
Fix \(w \in \mathbb{R}^3 \) with \(w \cdot n = 0 \) and \(|w| = 1 \). By (2.3) and (2.7), we have that
\[
\nabla y_\lambda(x)w = F_0w = F_1w, \quad \text{a.e. } x \in \Omega,
\]
leading to
\[
|\pi(F)w| = |\nabla y_\lambda(x)w|, \quad \forall F \in \mathbb{R}^{3 \times 3}, \quad \text{a.e. } x \in \Omega.
\]
Fix \(y \in W^\phi_\lambda \). Since \(y(x) = y_\lambda(x) \) on \(\partial\Omega \), we have by the divergence theorem that
\[
\int_\Omega \nabla y(x) \, dx = \int_\Omega \nabla y_\lambda(x) \, dx.
\]
It follows from (4.1) – (4.3), the Cauchy-Schwarz inequality, and Lemma 4.1 that
\[
\int_{\Omega} \left| \nabla y(x) - \nabla y_\lambda(x) \right|^2 dx = 2 \int_{\Omega} \nabla y_\lambda(x) w \cdot \left[\nabla y_\lambda(x) - \pi(\nabla y(x)) \right] w dx \\
= 2 F w \cdot \int_{\Omega} \left[\nabla y(x) - \pi(\nabla y(x)) \right] w dx \\
\leq 2 |F| \left(\text{meas } \Omega \right)^{\frac{1}{2}} \left[\int_{\Omega} \left\| \nabla y(x) - \pi(\nabla y(x)) \right\|^2 dx \right]^{\frac{1}{2}} \\
\leq C \mathcal{E}(y)^{\frac{1}{2}} \cdot (4.4)
\]

Now let us consider the cubic to tetragonal transformation. Recall that in this case the normal \(n \) is given as \(n = (e_1 + e_2)/\sqrt{2} \). Set
\[
w_1 = \frac{1}{\sqrt{3}} (e_1 - e_2 + e_3) \quad \text{and} \quad w_2 = \frac{1}{\sqrt{3}} (e_1 - e_2 - e_3).
\]
It is easy to check that
\[
w_1 \cdot n = w_2 \cdot n = 0, \quad |w_1| = |w_2| = 1,
\]
and
\[
|U_i w_j| = \sqrt{\frac{2 \eta_1^2 + \eta_2^2}{3}}, \quad i = 1, 2, 3, \ j = 1, 2.
\]
We can thus conclude by (4.1) that (4.2), hence (4.4), also holds true for \(w = w_1 \) and \(w = w_2 \), respectively. We have in fact proved the desired inequality in this case as well, since \(\{w_1, w_2\} \) is a basis for the two-dimensional subspace \(\{w \in \mathbb{R}^3 : w \cdot n = 0\} \).

The following theorem gives an error bound for the \(L^2 \) approximation of the directional derivative of the limiting macroscopic deformation \(y_\lambda \) in any direction tangential to parallel layers of the laminate. It is a direct consequence of the triangle inequality and the above two lemmas.

Theorem 4.1. There exists a constant \(C > 0 \) such that
\[
\int_{\Omega} \left| \nabla y(x) - \nabla y_\lambda(x) \right|^2 dx \leq C \left[\mathcal{E}(y)^{\frac{1}{2}} + \mathcal{E}(y) \right], \quad \forall y \in W^\phi_\lambda,
\]
for all \(w \in \mathbb{R}^3 \) satisfying \(w \cdot n = 0 \) and \(|w| = 1 \).

We now give an error bound for the \(L^2 \) approximation of the limiting macroscopic deformation \(y_\lambda \) by the admissible deformations \(y \in W^\phi_\lambda \).

Theorem 4.2. There exists a constant \(C > 0 \) such that
\[
\int_{\Omega} \left| y(x) - y_\lambda(x) \right|^2 dx \leq C \left[\mathcal{E}(y)^{\frac{1}{2}} + \mathcal{E}(y) \right], \quad \forall y \in W^\phi_\lambda.
\]

Proof. Let \(z \in C^1(\overline{\Omega}; \mathbb{R}^3) \) and \(w \in \mathbb{R}^3 \) with \(|w| = 1 \). We can verify the identity
\[
\int_{\Omega} |z(x)|^2 dx = \int_{\partial \Omega} |z(x)|^2 (w \cdot x) (w \cdot \nu) dS - \int_{\Omega} (\nabla |z(x)|^2 \cdot w) (w \cdot x) dx \\
= \int_{\partial \Omega} |z(x)|^2 (w \cdot x) (w \cdot \nu) dS - 2 \int_{\Omega} (\nabla z(x) w \cdot z(x)) (w \cdot x) dx
\]
to get the Poincaré inequality [25, 34]
\[
\int_{\Omega} |z(x)|^2 \, dx \leq C \left[\int_{\partial \Omega} |z(x)|^2 \, dS + \int_{\Omega} |\nabla z(x)w|^2 \, dx \right],
\]
where \(C = C(\Omega) \) is a positive constant independent of \(z \). This inequality is also true for any \(z \in W^\phi \) by the density of \(C^1(\Omega; \mathbb{R}^3) \) in \(W^\phi \). Setting \(z = y - y_\lambda \) for any \(y \in W^\phi_\lambda \), we thus obtain the desired result by Theorem 4.1 with \(w \in \mathbb{R}^3 \) so chosen that \(w \cdot n = 0 \) and \(|w| = 1 \).

The next theorem states that the infimum of the energy is not generally attained on \(W^\phi_\lambda \).

Corollary 4.1. There does not exist \(y \in W^\phi_\lambda \) such that \(E(y) = 0 \) if
\[
\text{meas}\{ x \in \Omega : 0 < \lambda(x) < 1 \} > 0.
\]

Proof. We assume that there exist \(y \in W^\phi_\lambda \) such that \(E(y) = 0 \). By Theorem 4.2, we have that \(y = y_\lambda \). It follows from (4.6) that there is an integer \(p \geq 3 \) such that the set
\[
\omega_p = \left\{ x \in \Omega : \frac{1}{p} \leq \lambda(x) \leq 1 - \frac{1}{p} \right\}
\]
has positive measure. On the other hand, the set
\[
\Delta_p = \left\{ (1 - \lambda_0)F_0 + \lambda_0 F_1 \in \mathbb{R}^{3 \times 3} : \frac{1}{p} \leq \lambda_0 \leq 1 - \frac{1}{p} \right\}
\]
is compact in \(\mathbb{R}^{3 \times 3} \) and is disjoint with \(\mathcal{U} \) by Lemma 2.1. Consequently, the continuous energy density \(\phi \) reaches its minimum \(m(\Delta_p) > 0 \) on the set \(\Delta_p \). We obtain a contradiction since
\[
0 = E(y) = E(y_\lambda) - \int_{\omega_p} \phi(\nabla y_\lambda(x)) \, dx \geq m(\Delta_p) \, \text{meas} \omega_p > 0.
\]

Now we establish an error bound for the weak \(L^2 \) approximation of the limiting macroscopic deformation gradient \(\nabla y_\lambda \). It follows from such an error bound that for any energy minimizing sequence \(\{y_k\}_{k=1}^\infty \) the corresponding sequence of gradients \(\{\nabla y_k\}_{k=1}^\infty \) converges weakly to the deformation gradient \(\nabla y_\lambda \).

Theorem 4.3. For any Lipschitz domain \(\omega \subset \Omega \), there exists a constant \(C = C(\omega) > 0 \) such that
\[
\left\| \int_{\omega} [\nabla y(x) - \nabla y_\lambda(x)] \, dx \right\| \leq C \left[E(y)^{\frac{1}{2}} + E(y_\lambda)^{\frac{1}{2}} \right], \quad \forall y \in W^\phi_\lambda.
\]

Proof. It follows from the divergence theorem and the Cauchy-Schwarz inequality that
\[
\left\| \int_{\omega} [\nabla y(x) - \nabla y_\lambda(x)] \, dx \right\| = \left\| \int_{\partial \omega} [y(x) - y_\lambda(x)] \otimes \nu \, dS \right\|
\leq \int_{\partial \omega} |y(x) - y_\lambda(x)| \, dS \leq (\text{meas}_2 \partial \omega)^{\frac{1}{2}} \left(\int_{\partial \omega} |y(x) - y_\lambda(x)|^2 \, dS \right)^{\frac{1}{2}},
\]
\[
(4.7)
\]
for any \(y \in W^\phi_\nu \) where \(\nu \) is the unit exterior normal to \(\partial \omega \) and \(\text{meas}_2 \partial \omega \) is the surface area of \(\partial \omega \). By the trace theorem [1] we have

\[
\int_{\partial \omega} |y(x) - y_\lambda(x)|^2 dS \leq C \left[\int_\omega |y(x) - y_\lambda(x)|^2 dx + \int_\omega |\nabla y(x) - \nabla y_\lambda(x)|^2 dx \right]
\leq C \left[\int_\omega |y(x) - y_\lambda(x)|^2 dx + \int_\omega |y(x) - y_\lambda(x)||\nabla y(x) - y_\lambda(x)|| dx \right]
\leq C \left[\int_\Omega |y(x) - y_\lambda(x)|^2 dx + \left(\int_\Omega |y(x) - y_\lambda(x)|^2 dx \right)^{\frac{1}{2}} \left(\int_\Omega \|\nabla y(x) - \nabla y_\lambda(x)\|^2 dx \right)^{\frac{1}{2}} \right].
\]

(4.8)

We also have by the triangle inequality and Lemma 4.1 that

\[
\left(\int_\Omega \|\nabla y(x) - \nabla y_\lambda(x)\|^2 dx \right)^{\frac{1}{2}}
\leq \left(\int_\Omega \|\nabla y(x) - \pi(\nabla y(x))\|^2 dx \right)^{\frac{1}{2}} + \left(\int_\Omega \|\pi(\nabla y(x)) - \nabla y_\lambda(x)\|^2 dx \right)^{\frac{1}{2}}
\leq C \left[\mathcal{E}(y)^{\frac{1}{2}} + 1 \right].
\]

(4.9)

Hence, it follows by using Theorem 4.2 and (4.9) in (4.8) that

\[
\int_{\partial \omega} |y(x) - y_\lambda(x)|^2 dS \leq C \left[\mathcal{E}(y)^{\frac{1}{2}} + \mathcal{E}(y) \right],
\]

which, together with (4.7), leads to the desired inequality.

\[\square \]

5. APPROXIMATION OF THE SIMPLE LAMINATE

We define the projection operator \(\pi_{12} : \mathbb{R}^{3 \times 3} \rightarrow \mathcal{U}_1 \cup \mathcal{U}_2 \) by

\[
\|F - \pi_{12}(F)\| = \min_{G \in \mathcal{U}_1 \cup \mathcal{U}_2} \|F - G\|, \quad \forall F \in \mathbb{R}^{3 \times 3}.
\]

For the orthorhombic to monoclinic transformation, we have \(\pi_{12} = \pi \). We also define the operators \(\Theta : \mathbb{R}^{3 \times 3} \rightarrow \text{SO}(3) \) and \(\Pi : \mathbb{R}^{3 \times 3} \rightarrow \{F_0, F_1\} \) by the relation

\[
\pi_{12}(F) = \Theta(F)\Pi(F), \quad \forall F \in \mathbb{R}^{3 \times 3}.
\]

(5.1)

The following lemma reduces the three-well problem for the cubic to tetragonal transformation to a two-well problem. Its proof indicates that the measure of the set of points at which the deformation gradient for an energy minimizing sequence is near \(\mathcal{U}_3 \) converges to zero.

Lemma 5.1. For the cubic to tetragonal transformation, there exists a constant \(C > 0 \) such that

\[
\int_\Omega \|\nabla y(x) - \pi_{12}(\nabla y(x))\|^2 dx \leq C \left[\mathcal{E}(y)^{\frac{1}{2}} + \mathcal{E}(y) \right], \quad \forall y \in W^\phi_{\lambda}.
\]

Proof. We have by a simple calculation that

\[
\inf_{F \in \mathcal{U}_3} |(F - \nabla y_\lambda(x)) e_3| \geq |\eta_2 - \eta_1|, \quad \text{a.e. } x \in \Omega.
\]
Denoting
\[\Omega_3 = \{ x \in \Omega : \pi(\nabla y(x)) \in \mathcal{U}_3 \} \]
for a fixed \(y \in W^\phi_\lambda \), we thus have by Lemma 4.2 that
\[\text{meas } \Omega_3 = \int_{\Omega_3} dx \leq |\eta_2 - \eta_1|^2 \int_{\Omega_3} ||\pi(\nabla y(x)) - \nabla y_\lambda(x)||^2 \, dx \leq C\mathcal{E}(y)^{1/2}, \]
(5.2)
since \(e_3 \cdot n = 0 \). Consequently, we have by Lemma 4.1 that
\[
\int_{\Omega} \| \nabla y(x) - \pi_{12}(\nabla y(x)) \|^2 \, dx \\
\leq 2 \int_{\Omega} \| \nabla y(x) - \pi(\nabla y(x)) \|^2 \, dx + 2 \int_{\Omega} \| \pi(\nabla y(x)) - \pi_{12}(\nabla y(x)) \|^2 \, dx \\
\leq 2 \int_{\Omega} \| \nabla y(x) - \pi(\nabla y(x)) \|^2 \, dx + 8(2\eta_1^2 + \eta_3^2) \text{meas } \Omega_3 \\
\leq C \left[\mathcal{E}(y)^{1/2} + \mathcal{E}(y) \right],
\]
completing the proof. \(\square \)

We now give an error bound for the projection operator \(\Pi : \mathbb{R}^{3 \times 3} \rightarrow \{ F_0, F_1 \} \).

Theorem 5.1. There exists a constant \(C > 0 \) such that
\[\int_{\Omega} \| \nabla y(x) - \Pi(\nabla y(x)) \|^2 \, dx \leq C \left[\mathcal{E}(y)^{1/2} + \mathcal{E}(y) \right], \quad \forall y \in W^\phi_\lambda. \]

Proof. For any \(w \in \mathbb{R}^3 \) such that \(w \cdot n = 0 \), we have
\[\Pi(F)w = F_0w = F_1w = \nabla y_\lambda(x)w, \quad \forall F \in \mathbb{R}^{3 \times 3}, \text{ a.e. } x \in \Omega. \]
Thus, it follows from (5.1) that
\[[\Theta(F) - I] F_0w = [\Theta(F) - I] \Pi(F)w = [\pi_{12}(F) - \nabla y_\lambda(x)]w = [\pi_{12}(F) - \pi(F)]w + [\pi(F) - \nabla y_\lambda(x)]w, \quad \forall F \in \mathbb{R}^{3 \times 3}, \text{ a.e. } x \in \Omega. \]
We can then apply the triangle inequality to the above identity with \(F = \nabla y(x) \) for any \(y \in W^\phi_\lambda \) and \(x \in \Omega \), and estimate the two terms by (5.2) and Lemma 4.2 to obtain
\[
\int_{\Omega} ||[\Theta(\nabla y(x)) - I] F_0w||^2 \, dx \\
\leq 2 \int_{\Omega} ||[\pi_{12}(\nabla y(x)) - \pi(\nabla y(x))]w||^2 \, dx + 2 \int_{\Omega} ||[\pi(\nabla y(x)) - \nabla y_\lambda(x)]w||^2 \, dx \\
\leq C\mathcal{E}(y)^{1/2}. \quad (5.3)
\]
Choose \(w_1 \in \mathbb{R}^3 \) and \(w_2 \in \mathbb{R}^3 \) so that \(w_1 \cdot n = w_2 \cdot n = 0 \) and that \(w_1, w_2 \) are linearly independent. Set \(m = F_0w_1 \times F_0w_2 \). Since
\[Qm = QF_0w_1 \times QF_0w_2, \quad \forall Q \in SO(3), \]
we have for all \(F \in \mathbb{R}^{3 \times 3} \) that
\[[\Theta(F) - I] m = [\Theta(F) F_0w_1 \times \Theta(F) F_0w_2] - \{ F_0w_1 \times F_0w_2 \} \\
= \{ [\Theta(F) - I] F_0w_1 \times \Theta(F) F_0w_2 \} - \{ F_0w_1 \times [I - \Theta(F)] F_0w_2 \}. \]
This, together with (5.3), leads to

\[\int_{\Omega} |(\Theta(\nabla y(x)) - I) m|^2 \, dx \leq C\varepsilon(y)^{1/2}. \]
(5.4)

Now \(\{F_0w_1, F_0w_2, m\}\) is a basis for \(\mathbb{R}^3\), so we have from (5.3) and (5.4) that

\[\int_{\Omega} \| (\Theta(\nabla y(x)) - I) \|^2 \, dx \leq C\varepsilon(y)^{1/2}. \]
(5.5)

We complete the proof by applying the triangle inequality to the identity

\[F - \Pi(F) = [F - \pi_{12}(F)] + [\pi_{12}(F) - \Pi(F)] \]
\[= [F - \pi_{12}(F)] + [\Theta(F) - I] \Pi(F), \quad \forall F \in \mathbb{R}^{3 \times 3}, \]

with \(F = \nabla y(x)\) for \(x \in \Omega\), and by estimating the two terms by Lemma 5.1 and (5.5).

For any subset \(\omega \subset \Omega\), \(\rho > 0\), and \(y \in W^\Phi_\lambda\), we define the sets

\[\omega^0_\rho(y) = \{ x \in \omega : \Pi(\nabla y(x)) = F_0 \text{ and } \|F_0 - \nabla y(x)\| < \rho \}, \]
\[\omega^1_\rho(y) = \{ x \in \omega : \Pi(\nabla y(x)) = F_1 \text{ and } \|F_1 - \nabla y(x)\| < \rho \} \]

and the mean value of \(\lambda\) on \(\omega\) by

\[\hat{\lambda}_\omega = \frac{1}{\text{meas } \omega} \int_{\omega} \lambda(x) \, dx. \]

The following theorem gives an estimate for the approximation of volume fractions. It states that for any energy minimizing sequence \(\{y_k\} \in W^\Phi_\lambda\), the volume fraction that \(\nabla y_k(x)\) is near \(F_0\) converges to \(1 - \lambda(x)\) and the volume fraction that \(\nabla y_k(x)\) is near \(F_1\) converges to \(\lambda(x)\).

Theorem 5.2. For any Lipschitz domain \(\omega \subset \Omega\) and any \(\rho > 0\) there exists a positive constant \(C\) such that

\[\text{meas} (\omega - \{\omega^0_\rho(y) \cup \omega^1_\rho(y)\}) \leq C \left[\varepsilon(y)^{1/2} + \varepsilon(y) \right], \quad \forall y \in W^\Phi_\lambda, \]
(5.6)

and

\[\left| \frac{\text{meas } \omega^0_\rho(y)}{\text{meas } \omega} - (1 - \hat{\lambda}_\omega) \right| + \left| \frac{\text{meas } \omega^1_\rho(y)}{\text{meas } \omega} - \hat{\lambda}_\omega \right| \leq C \left[\varepsilon(y)^{1/2} + \varepsilon(y) \right], \quad \forall y \in W^\Phi_\lambda. \]
(5.7)

Proof. Fix \(y \in W^\Phi_\lambda\). We have by the definition of \(\omega^0_\rho \equiv \omega^0_\rho(y)\) and \(\omega^1_\rho \equiv \omega^1_\rho(y)\) that

\[\text{meas} \left(\omega - \{\omega^0_\rho \cup \omega^1_\rho\} \right) \leq \frac{1}{\rho} \int_{\omega - \{\omega^0_\rho \cup \omega^1_\rho\}} \| \Pi(\nabla y(x)) - \nabla y(x) \| \, dx \]
\[\leq \frac{\left[\text{meas} \left(\omega - \{\omega^0_\rho \cup \omega^1_\rho\} \right) \right]^{1/2}}{\rho} \left[\int_{\Omega} \| \Pi(\nabla y(x)) - \nabla y(x) \|^2 \, dx \right]^{1/2}. \]

Consequently, we have

\[\text{meas} \left(\omega - \{\omega^0_\rho \cup \omega^1_\rho\} \right) \leq \frac{1}{\rho^2} \left[\int_{\Omega} \| \Pi(\nabla y(x)) - \nabla y(x) \|^2 \, dx \right]. \]
which together with Theorem 5.1 implies (5.6).

We have by (2.7) that
\[
\left[\text{meas } \omega_0^0 - (1 - \lambda) \text{meas } \omega \right] F_0 + \left[\text{meas } \omega_1^1 - \lambda \text{meas } \omega \right] F_1 = \int_\omega \left[\Pi (\nabla y(x)) - \nabla y_\lambda(x) \right] dx - \int_{\omega - \{ \omega_0^0 \cup \omega_1^1 \}} \Pi (\nabla y(x)) \, dx. \tag{5.8}
\]

By the triangle inequality, the Cauchy-Schwarz inequality, Theorem 5.1, and Theorem 4.3, we have that
\[
\left\| \int_\omega \left[\Pi (\nabla y(x)) - \nabla y_\lambda(x) \right] dx \right\|
\leq \left\| \int_\omega \left[\Pi (\nabla y(x)) - \nabla y(x) \right] dx \right\| + \left\| \int_\omega \left[\nabla y(x) - \nabla y_\lambda(x) \right] dx \right\|
\leq (\text{meas } \omega)^{\frac{1}{2}} \left[\int_\Omega \left\| \Pi (\nabla y(x)) - \nabla y(x) \right\|^2 dx \right]^{\frac{1}{2}} + \left\| \int_\omega \left[\nabla y(x) - \nabla y_\lambda(x) \right] dx \right\|
\leq C \left[\mathcal{E}(y)^{\frac{1}{2}} + \mathcal{E}(y)^{\frac{1}{2}} \right]. \tag{5.9}
\]

We also have by (5.6) that
\[
\left\| \int_{\omega - \{ \omega_0^0 \cup \omega_1^1 \}} \Pi (\nabla y(x)) \, dx \right\| \leq C \text{meas } (\omega - \{ \omega_0^0 \cup \omega_1^1 \}) \leq C \left[\mathcal{E}(y)^{\frac{1}{2}} + \mathcal{E}(y) \right]. \tag{5.10}
\]

Finally, the inequality (5.7) follows from (5.8)–(5.10) and the linear independence of F_0 and F_1.

We now denote by \mathcal{V} the Sobolev space of all functions $f \in L^2 (\Omega \times \mathbb{R}^{3 \times 3})$ such that
\[
\| f \|_V = \int_\Omega \left[\text{ess sup} \left\| \nabla F f(x,F) \right\| \right]^2 dx + \| G_f \|_{W^{1,2}(\Omega)} < \infty,
\]
where
\[
G_f(x) = f(x,F_1) - f(x,F_0), \quad x \in \Omega.
\]
Functions in the space \mathcal{V} represent thermodynamic variables of the underlying crystal.

Theorem 5.3. There exists a constant $C > 0$ such that
\[
\int_\Omega \{ f (x, \nabla y(x)) - \left[(1 - \lambda(x)) f(x, F_0) + \lambda(x) f(x, F_1) \right] \} dx
\leq C \| f \|_V \left[\mathcal{E}(y)^{\frac{1}{2}} + \mathcal{E}(y)^{\frac{1}{2}} \right], \quad \forall y \in W^\phi_\lambda, \forall f \in \mathcal{V}. \tag{5.11}
\]

Proof. We have the decomposition
\[
\int_\Omega \{ f (x, \nabla y(x)) - \left[(1 - \lambda(x)) f(x, F_0) + \lambda(x) f(x, F_1) \right] \} dx
= \int_\Omega \{ f (x, \nabla y(x)) - f (x, \Pi (\nabla y(x))) \} dx
+ \int_\Omega \{ f (x, \Pi (\nabla y(x))) - \left[(1 - \lambda(x)) f(x, F_0) + \lambda(x) f(x, F_1) \right] \} dx
\]
\[J_2 = J_1 + J_2. \] (5.12)

The first term \(J_1 \) can be estimated by Theorem 5.1 as follows:

\[
|J_1| \leq \int_{\Omega} \left[\underset{F \in \mathbb{R}^{3 \times 3}}{\text{ess sup}} \|\nabla F f(x, F)\| \right] \|\nabla y(x) - \Pi (\nabla y(x))\| \, dx \\
\leq \left\{ \int_{\Omega} \left[\underset{F \in \mathbb{R}^{3 \times 3}}{\text{ess sup}} \|\nabla F f(x, F)\| \right]^2 \, dx \right\}^{\frac{1}{2}} \left[\int_{\Omega} \|\nabla y(x) - \Pi (\nabla y(x))\|^2 \, dx \right]^{\frac{1}{2}} \\
\leq C \|f\|_V \left[\mathcal{E}(y)^{\frac{1}{4}} + \mathcal{E}(y)^{\frac{1}{2}} \right]. \tag{5.13}
\]

By (2.3) and the definition of \(\Pi : \mathbb{R}^{3 \times 3} \to \{F_0, F_1\} \), we have the identity

\[
f(x, \Pi(F)) - [(1 - \lambda(x))f(x, F_0) + \lambda(x)f(x, F_1)] = \frac{1}{|a|^2} \{a \cdot [\Pi(F) - \nabla y_\lambda(x)] n\} G_f(x),
\]

for all \(F \in \mathbb{R}^{3 \times 3} \) and for almost all \(x \in \Omega \), leading to

\[
J_2 = \int_{\Omega} \{f(x, \Pi(\nabla y(x))) - [(1 - \lambda(x))f(x, F_0) + \lambda(x)f(x, F_1)]\} \, dx \\
= \frac{1}{|a|^2} \int_{\Omega} \{a \cdot [\Pi(\nabla y(x)) - \nabla y_\lambda(x)] n\} G_f(x) \, dx \\
= \frac{1}{|a|^2} \int_{\Omega} \{a \cdot [\Pi(\nabla y(x)) - \nabla y(x)] n\} G_f(x) \, dx + \frac{1}{|a|^2} \int_{\Omega} \{a \cdot [\nabla y(x) - \nabla y_\lambda(x)] n\} G_f(x) \, dx \\
= \frac{1}{|a|^2} \int_{\Omega} \{a \cdot [\nabla y(x) - \nabla y(x)] n\} \{\nabla G_f(x) \cdot n\} \, dx,
\]

where we used the divergence theorem and the fact that \(y(x) = y_\lambda(x) \) for any \(y \in W^\phi \) and for all \(x \in \partial \Omega \). We can thus conclude from the Cauchy-Schwarz inequality, Theorem 4.2, and Theorem 5.1 that

\[
|J_2| \leq C \left\{ \int_{\Omega} [\|\nabla G_f(x) \cdot n\|^2 + G_f(x)^2] \, dx \right\}^{\frac{1}{2}} \left[\mathcal{E}(y)^{\frac{1}{4}} + \mathcal{E}(y)^{\frac{1}{2}} \right] \\
\leq C \|f\|_V \left[\mathcal{E}(y)^{\frac{1}{4}} + \mathcal{E}(y)^{\frac{1}{2}} \right]. \tag{5.14}
\]

We finally obtain the inequality (5.11) from (5.12) – (5.14).

\[\square \]

6. Finite Element Approximations

For simplicity we assume in what follows that the reference configuration \(\Omega \subset \mathbb{R}^3 \) is a polyhedral domain. For a fixed positive number \(h_0 \), let \(t_h, 0 < h \leq h_0 \), be a family of tetrahedral finite element meshes of \(\Omega \), such that \(\hat{\Omega} = \cup_{T \in t_h} T \), where \(h \) is the maximum diameter of any tetrahedron \(T \) in the mesh \(t_h \). We shall assume as usual that any face of any tetrahedron in a mesh \(t_h \) has a disjoint interior with respect to any other tetrahedron in that mesh and that any face of a tetrahedron is either a subset of the boundary \(\partial \Omega \) or is the face of another tetrahedron in the mesh \(t_h \). Let \(\mathcal{A}_h, 0 < h \leq h_0, \) be the corresponding
family of piecewise linear, continuous finite element spaces with respect to the mesh \(\tau_h \) [11, 30].

We can define the interpolation operator \(I_h : C(\Omega; \mathbb{R}^3) \to A_h \) for each \(h \in (0, h_0] \) which interpolates the values at the vertices of the tetrahedral elements \(T \) of \(\tau_h \). We will assume that the family \(\tau_h \) of finite meshes is quasi-regular [11, 30], so that

\[
\text{ess sup}_{x \in \Omega} \| \nabla I_h y(x) \| \leq C \text{ ess sup}_{x \in \Omega} \| \nabla y(x) \|
\]

(6.1)

for all \(y \in W^{1, \infty}(\Omega; \mathbb{R}^3) \), where the constant \(C \) in (6.1) and below will always denote a generic positive constant independent of \(h \). We also note for \(y \in C(\Omega; \mathbb{R}^3) \) that

\[
I_h y(x)|_T = y(x)|_T \quad \text{for any } T \in \tau_h \text{ such that } y(x)|_T \in \{ P^1(T) \}^3,
\]

for \(h \in (0, h_0] \), where \(\{ P^1(T) \}^3 = P^1(T) \times P^1(T) \times P^1(T) \) and \(P^1(T) \) denotes the space of linear polynomials defined on \(T \).

To approximate the boundary data \(y_\lambda \in W^\phi \), given in (3.1), we define the finite element deformation \(y_{\lambda h} \in A_h \) by

\[
y_{\lambda h} = I_h y_\lambda(x), \quad x \in \Omega,
\]

and define the finite element space of admissible deformations

\[
A_{\lambda h} = \{ y_h \in A_h : y_h(x) = y_{\lambda h}(x) \text{ on } x \in \partial \Omega \}.
\]

Since \(\lambda \in L^\infty(\mathbb{R}) \), we have that \(\nabla y_\lambda = F_0 + \lambda a \otimes n \in L^\infty(\Omega; \mathbb{R}^3) \). Thus, it follows from well-known estimates for the interpolation error [11, 30] that

\[
\| y_\lambda - y_{\lambda h} \|_{L^\infty(\partial \Omega; \mathbb{R}^3)} \leq C h \| y_\lambda \|_{W^{1, \infty}(\partial \Omega; \mathbb{R}^3)}.
\]

In what follows we shall use the result that \(y_{\lambda h} \in A_{\lambda h}, 0 < h \leq h_0 \), satisfies the condition

\[
\| y_\lambda - y_{\lambda h} \|_{L^2(\partial \Omega; \mathbb{R}^3)} \leq C h.
\]

(6.2)

We begin our analysis of the finite element approximation of a laminate with varying volume fractions with the following result on the minimization of the energy \(E \) on the space \(A_{\lambda h} \).

Theorem 6.1. There exists \(y_h \in A_{\lambda h} \) for each \(h \in (0, h_0] \) such that

\[
E(y_h) = \min_{z_h \in A_{\lambda h}} E(z_h) \leq C h^{1/2}.
\]

(6.3)

Proof. The existence of \(y_h \in A_{\lambda h} \) can be proven by the same argument as in the proof of Theorem 6.1 in [23]. To prove the inequality in (6.3) we follow the argument given in [24] to show that \(\hat{y}_h = I_h \hat{u}_\gamma \in A_{\lambda h} \) with \(\hat{u}_\gamma(x) \) defined by Lemma 3.1 and \(\gamma = h^{1/2} \) satisfies

\[
E(\hat{y}_h) \leq C h^{1/2}.
\]

We note that since \(\Omega \) is assumed to be polyhedral in this section, \(\Omega \) is the disjoint union of tetrahedra.

We next give a series of estimates for the finite element approximation of the deformation \(y_\lambda \) by deformations \(y_h \in A_{\lambda h} \). These estimates follow those for the deformations \(y \in W^\phi_\lambda \) given in previous sections.
Theorem 6.2. We have for any \(w \in \mathbb{R}^3 \) such that \(w \cdot n = 0 \) and \(|w| = 1 \) that
\[
\int_{\Omega} |[\nabla y_h(x) - \nabla y_\lambda(x)] w|^2 \, dx \leq C \left[\mathcal{E}(y_h)^{\frac{1}{2}} + \mathcal{E}(y_h) + \|y_\lambda - y_{\lambda h}\|_{L^2(\partial \Omega; \mathbb{R}^3)} \right], \quad \forall y_h \in A_{\lambda h}.
\]

Proof. Fix \(y_h \in A_{\lambda h} \) and \(w \in \mathbb{R}^3 \) such that \(w \cdot n = 0 \) and \(|w| = 1 \). By the decomposition
\[
y_h - y_\lambda = [y_h - \pi(y_h)] + [\pi(y_h) - y_\lambda]
\]
and Lemma 4.1, we need only to prove
\[
\int_{\Omega} |[\pi(\nabla y_h(x)) - \nabla y_\lambda(x)] w|^2 \, dx \leq C \left[\mathcal{E}(y_h)^{\frac{1}{2}} + \|y_\lambda - y_{\lambda h}\|_{L^2(\Omega; \mathbb{R}^3)} \right]. \tag{6.4}
\]

We only consider the orthorhombic to monoclinic transformation, since the cubic to tetragonal transformation can be treated similarly (see the proofs of Lemma 4.2 and Theorem 4.1). Noting that \(y_h(x) = y_{\lambda h}(x) \) for \(x \in \partial \Omega \), we have by (4.1) and the divergence theorem that
\[
\int_{\Omega} |[\pi(\nabla y_h(x)) - \nabla y_\lambda(x)] w|^2 \, dx
\]
\[
= 2 F_0 w \cdot \int_{\Omega} [\nabla y_\lambda(x) - \pi(\nabla y_h(x))] \, w \, dx
\]
\[
= 2 F_0 w \cdot \left\{ \int_{\Omega} [\nabla y_\lambda(x) - \nabla y_h(x)] \, dx + \int_{\partial \Omega} [\nabla y_h(x) - \pi(\nabla y_h(x))] \, dS \right\} w
\]
\[
= 2 F_0 w \cdot \left\{ \int_{\partial \Omega} [y_\lambda(x) - y_{\lambda h}(x)] \otimes \nu \, dS + \int_{\Omega} [\nabla y_h(x) - \pi(\nabla y_h(x))] \, dx \right\} w
\]
This, together with Lemma 4.1 and the Cauchy-Schwarz inequality, leads to (6.4).

Theorem 6.3. We have
\[
\int_{\Omega} |y_h(x) - y_\lambda(x)|^2 \, dx \leq C \left[\mathcal{E}(y_h)^{\frac{1}{2}} + \mathcal{E}(y_h) \right] + \left[\|y_\lambda - y_{\lambda h}\|_{L^2(\partial \Omega; \mathbb{R}^3)}^2 + \|y_\lambda - y_{\lambda h}\|_{L^2(\partial \Omega; \mathbb{R}^3)}^2 \right], \quad \forall y_h \in A_{\lambda h}.
\]

Proof. Fix \(y_h \in A_{\lambda h} \). Setting \(z = y_h - y_\lambda \) and choosing \(w \in \mathbb{R}^3 \) so that \(w \cdot n = 1 \) and \(|w| = 1 \), we obtain the desired inequality by (4.5) and Theorem (6.2).

By an argument similar to the proof of Theorem 4.3, we can use the above theorem to obtain the following result on the weak convergence estimate for finite element deformations.

Theorem 6.4. For any Lipschitz domain \(\omega \subset \Omega \), there exists a positive constant \(C > 0 \), independent of \(h \), such that
\[
\left\| \int_{\omega} [\nabla y_h(x) - \nabla y_\lambda(x)] \, dx \right\| \leq C \left[\mathcal{E}(y_h)^{\frac{1}{2}} + \mathcal{E}(y_h) \right] + C \left[\|y_\lambda - y_{\lambda h}\|_{L^2(\partial \Omega; \mathbb{R}^3)}^2 + \|y_\lambda - y_{\lambda h}\|_{L^2(\partial \Omega; \mathbb{R}^3)}^2 \right], \quad \forall y_h \in A_{\lambda h}.
\]
Recall the operator $\Pi : \mathbb{R}^{3 \times 3} \to \{F_0, F_1\}$ defined by (5.1). We have the following result which is parallel to Theorem 5.1. The key estimate is (6.4).

Theorem 6.5. We have
\[
\int_{\Omega} \|\nabla y_h(x) - \Pi(\nabla y_h(x))\|^2 \, dx \leq C \left[\mathcal{E}(y_h)^{\frac{1}{2}} + \mathcal{E}(y_h) + \|y_\lambda - y_{\lambda h}\|_{L^2(\partial \Omega; \mathbb{R}^3)} \right], \quad \forall y_h \in \mathcal{A}_{\lambda h}.
\]

Recall that λ_ω is the average of λ on ω. Using the same argument as in the proof of Theorem 5.2, we can obtain the following result from Theorem 6.4 and Theorem 6.5.

Theorem 6.6. For any Lipschitz domain $\omega \subset \Omega$ and any $\rho > 0$ there exists a positive constant $C = C(\omega, \rho)$, independent of h, such that
\[
\text{meas} \left(\omega - (\omega^0_h(\cdot) \cup \omega^1_h(\cdot)) \right) \leq C \left[\mathcal{E}(y_h)^{\frac{1}{2}} + \mathcal{E}(y_h) + \|y_\lambda - y_{\lambda h}\|_{L^2(\partial \Omega; \mathbb{R}^3)} \right], \quad \forall y_h \in \mathcal{A}_{\lambda h},
\]
and
\[
\left| \frac{\text{meas} \omega^0_h(y_h)}{\text{meas} \omega} - (1 - \lambda_\omega) \right| + \left| \frac{\text{meas} \omega^1_h(y_h)}{\text{meas} \omega} - \lambda_\omega \right| \leq C \left[\mathcal{E}(y_h)^{\frac{1}{2}} + \mathcal{E}(y_h) + \|y_\lambda - y_{\lambda h}\|_{L^2(\partial \Omega; \mathbb{R}^3)} + \|y_\lambda - y_{\lambda h}\|_{L^2(\partial \Omega; \mathbb{R}^3)} \right], \quad \forall y_h \in \mathcal{A}_{\lambda h}.
\]

By slightly modifying the proof of Theorem 5.3, we can obtain the following result corresponding to Theorem 5.3 for admissible finite element deformations.

Theorem 6.7. We have
\[
\left| \int_{\Omega} \{f(x, \nabla y_h(x)) - [(1 - \lambda(x))f(x, F_0) + \lambda(x)f(x, F_1)]\} \, dx \right| \leq C \|f\|_V \left[\mathcal{E}(y_h)^{\frac{1}{2}} + \mathcal{E}(y_h)^{\frac{1}{2}} + \|y_\lambda - y_{\lambda h}\|_{L^2(\partial \Omega; \mathbb{R}^3)}^{\frac{1}{2}} + \|y_\lambda - y_{\lambda h}\|_{L^2(\partial \Omega; \mathbb{R}^3)}^{\frac{1}{2}} \right]
\]
for all $y_h \in \mathcal{A}_{\lambda h}$ and all $f \in V$.

The number of local minima of the problem
\[
\inf_{y_h \in \mathcal{A}_{\lambda h}} \mathcal{E}(y_h)
\]
grows arbitrarily large as the mesh size $h \to 0$. Many of these local minima are approximations on different length scales to the same optimal microstructure [24]. Thus, it is reasonable to give error estimates for finite element deformations $y_h \in \mathcal{A}_{\lambda h}$ that satisfy the following quasi-optimality condition
\[
\mathcal{E}(y_h) \leq \alpha \inf_{z_h \in \mathcal{A}_{\lambda h}} \mathcal{E}(z_h) \tag{6.5}
\]
for some constant $\alpha \geq 1$ independent of h.

It follows directly from the previous theorems in this section and (6.2) that we can obtain the following error estimates for quasi-optimal finite element deformations $y_h \in \mathcal{A}_{\lambda h}$.

Corollary 6.1. We have
\[
\int_{\Omega} |\nabla y_h(x) - \nabla y_\lambda(x)|^2 \, dx \leq C h^{\frac{1}{4}}
\]
for any $w \in \mathbb{R}^3$ such that $w \cdot n = 1$ and $|w| = 1$ and for any $y_h \in \mathcal{A}_{\lambda h}$ which satisfies the quasi-optimality condition (6.5).

Corollary 6.2. We have

$$\int_{\Omega} |y_h(x) - y_\lambda(x)|^2 \, dx \leq C h^{1/4}$$

for any $y_h \in \mathcal{A}_{\lambda h}$ which satisfies the quasi-optimality condition (6.5).

Corollary 6.3. For any Lipschitz domain $\omega \subseteq \Omega$ and any $\rho > 0$, there exists a positive constant $C = C(\omega, \rho)$, independent of h, such that

$$\text{meas} \left(\omega - \left(\omega^0_{\rho}(y_h) \cup \omega^1_{\rho}(y_h) \right) \right) \leq C h^{1/4}$$

and

$$\left| \frac{\text{meas} \omega^0_{\rho}(y_h)}{\text{meas} \omega} - (1 - \lambda_\omega) \right| + \left| \frac{\text{meas} \omega^1_{\rho}(y_h)}{\text{meas} \omega} - \lambda_\omega \right| \leq C h^{1/16}$$

for any $y_h \in \mathcal{A}_{\lambda h}$ which satisfies the quasi-optimality condition (6.5).

Corollary 6.4. We have

$$\left| \int_{\Omega} \left\{ f(x, \nabla y_h(x)) - ((1 - \lambda(x))f(x, F_0) + \lambda(x)f(x, F_1)) \right\} \, dx \right| \leq C \| f \|_{V} h^{1/8}$$

for any $f \in V$ and any $y_h \in \mathcal{A}_{\lambda h}$ which satisfies the quasi-optimality condition (6.5).

References

Bo Li, Department of Mathematics, University of California, Los Angeles, 405 Hilgard Avenue, Los Angeles, CA 90095-1555, U.S.A.
E-mail address: bli@ucla.umn.edu

Mitchell Luskin, School of Mathematics, University of Minnesota, 206 Church Street, S.E., Minneapolis, MN 55455, U.S.A.
E-mail address: luskin@math.umn.edu

1384. D.N. Arnold, R.S. Falk & R. Winther, Preconditioning in $H(div)$ and applications.

1387. O.P. Bruno, F. Reitich, & P.H. Leo, The overall elastic energy of polycrystallin martensitic solids.

1390. J.M. Berg & H.G. Kwatny, Unfolding the zero structure of a linear control system.

1391. A. Sei, High order finite difference approximations of the wave equation with absorbing boundary conditions: A stability analysis.

1392. A.V. Coward & Y.Y. Renardy, Small amplitude oscillatory forcing on two-layer plane channel flow.

1395. C. Liu, Inverse obstacle problem: Local uniqueness for rougher obstacles and the identification of a ball.

1397. G. Avalos & I. Lasiecka, Exponential stability of a thermoelastic system without mechanical dissipation II: The case of simply supported boundary conditions.

1398. B. Brighi & M. Chipot, Approximation of infima in the calculus of variations.

1399. G. Avalos, Concerning the well-posedness of a nonlinearly coupled semilinear wave and beam-like equation.

1400. R. Lipton, Variational methods, bounds and size effects for composites with highly conductive interface.

1403. Y. Diao, C. Ernst, & E.J.J. Van Rensburg, Energies of knots.

1404. Xiaoqin Ren, Multi-layer local minimum solutions of the bistable equation in an infinite tube.

1405. Vlastimil Pták, Krylov sequences and orthogonal polynomials.

1406. T. Aktosun, M. Klaus, & C. van der Mee, Factorization of scattering matrices due to partitioning of potentials in one-dimensional Schrödinger-type equations.

1409. M.A. Kouritzin, On exact filters for continuous signals with discrete observations.

1410. R. Lipton, The second Stekloff eigenvalue and energy dissipation inequalities for functionals with surface energy.

1411. R. Lipton, The second Stekloff eigenvalue of an inclusion and new size effects for composites with imperfect interface.

1413. C.R. Collins, Spurious oscillations are not fatal in computing microstructures.

1414. M.A. Horn, Sharp trace regularity for the solutions of the equations of dynamic elasticity.

1415. A. Friedman, B. Hu & Y. Liu, A boundary value problem for the Poisson equation with multi-scale oscillating boundary.

1418. P. Klouček, Toward the computational modeling of nonequilibrium thermodynamics of the Martensitic transformations.

1420. B. Li & M. Luskin, Nonconforming finite element approximation of crystalline microstructure.

1423. G. Frieske, Pair correlations and exchange phenomena in the free electron gas.

1424. Y.A. Li & P.J. Olver, Convergence of solitary-wave solutions in a perturbed Bi-Hamiltonian dynamical system.

1425. C. Huang, On boundary regularity of vortex patches for 3D incompressible euler systems.

1426. C. Huang, A free boundary problem with nonlinear jump and kinetics on the free boundaries.
X. Chen, C. Huang & J. Zhao, A nonlinear parabolic equation modeling surfactant diffusion
A. Friedman & B. Hu, Optimal control of chemical vapor deposition reactor
A. Friedman & B. Hu, A non-stationary multi-scale oscillating free boundary for the Laplace and heat equations
X. Chen, Existence, uniqueness, and asymptotic stability of traveling waves in nonlocal evolution equations
J. Yong, Finding adapted solutions of forward-backward stochastic differential equations – Methods of continuation
J. Yong, Linear forward-backward stochastic differential equations
D.A. Dawson & M.A. Kouritzin, Invariance principles for parabolic equations with random coefficients
R. Lipton, Energy minimizing configurations for mixtures of two imperfectly bonded conductors
D.C. Dobson & F. Santosa, Nondestructive evaluation of plates using Eddy current methods
W. Littman & B. Liu, On the spectral properties and stabilization of acoustic flow
S. Sarkar & S. Sundar Sarkar, Normal distribution as a method for data replication in a parallel data server
S. Sarkar & S. Sundar Sarkar, Parallel view materialization with dynamic load balancing: A graph theoretic approach
S. Sarkar & S. Sundar Sarkar, Internet and relational databases in a multi-tier client/server model
J. Liang & S. Subramaniam, Numerical computing of molecular electrostatics through boundary integral equations
J. Wu, Inviscid limits and regularity estimates for the solutions of the 2-D dissipative quasi-geostrophic equations
P. Constantin & J. Wu, Statistical solutions of the Navier-Stokes equations on the phase space of vorticity and the inviscid limits
M.A. Kouritzin, Stochastic processes and perturbation problems defined by parabolic equations with a small parameter
M.A. Kouritzin, Approximations for singularly perturbed parabolic equations of arbitrary order
A. Novick-Cohen Triple junction motion for Allen-Cahn/Cahn-Hilliard systems
P. Klouček, Approximations of the laminated microstructures
S. Sarkar & S.S. Sarkar, A graph theoretic approach for parallel view materialization with dynamic load balancing
S. Chawla, A minmax problem for parabolic systems with competitive interactions
B. Luong & F. Santosa, Quantitative imaging of corrosion in plates by Eddy current methods
R. Jordan & B. Turkington, Ideal magnetofluid turbulence in two dimensions
M. Fels & P.J. Olver, Moving coframes. I. A practical algorithm
S.Y. Maliassov, On the Schwarz alternating method for eigenvalue problems
R. Lipton, Design of particle reinforced heat conducting composites with interfacial thermal barriers
J. Berg, A. Yezzi, & A. Tannenbaum, Phase transitions, curve evolution, and the control of semiconductor manufacturing processes
G. Avalos & I. Lasiecka, Uniform decay rates of solutions to a structural acoustics model with nonlinear dissipation
M. Nitsche, Siemens/IMA technical report
L. Wang, J.A. Cox, & A. Friedman, Model analysis of homogeneous optical waveguides by boundary integral method
C.P. Fung & S. Lototsky, Nonlinear filtering: Separation of parameters and observations using Galerkin approximation and Wiener chaos decomposition
S. Northshield, Several proofs of Ihara’s theorem
T. Aktosun, M. Klaus & C. van der Mee. Wave scattering in one dimension with absorption
F. Santosa, M. Vogelius, & J.-M. Xu, An effective nonlinear boundary condition for a corroding surface. Identification of the damage based on electrostatic data
J. Wu, Well-posedness of a semilinear heat equation with weak initial data
J. Wu, Quasi-geostrophic type equations with weak initial data
J. Ma & J. Yong, Approximate solvability of forward-backward stochastic differential equations
T.-P. Tsai, On Leray's self-similar solutions of the Navier-Stokes equations satisfying local energy estimates
M.K. Gobbert, T.P. Merchant, L.J. Borucki, & T.S. Cale, A multiscale simulator for low pressure chemical vapor deposition
M.C. Tesi, E.J. Janse van Rensburg, E. Orlandini, & S.G. Whittington, Torsion of polygons in \(\mathbb{Z}^3 \)
M. Grinfeld & A. Novick-Cohen, The viscous Cahn-Hilliard equation: Morse decomposition and structure of the global attractor
M. Mascagni, Polynomial versus matrix methods for leap-ahead in shift-register type pseudorandom number generators
M. Mascagni, Parallel linear congruential generators with prime moduli
B. Li & M. Luskin, Approximation of a Martensitic laminate with varying volume fractions
D. Yang, Stabilized schemes for mixed finite element methods with applications to elasticity and compressible flow problems
P.J. Olver & V.V. Sokolov, Integrable evolution equations on associative algebras
A. Bondarenko, Singular structure of the fundamental solution of the transport equation
S. Sarkar & S.S. Sarkar, Views and data mining in a parallel data server
P.E. Bigeleisen & M. Cheney, Models for an anesthesia breathing circuit
R. Lipton, Influence of interfacial surface conduction on the DC electrical conductivity of particle reinforced composites
B. Cockburn & C.-W. Shu, The local discontinuous Galerkin method for time-dependent convection-diffusion systems