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Abstract. This is the �rst in a series of papers devoted to the development and ap-
plications of a new general theory of moving frames. In this paper, we formulate a practical
and easy to implement explicit method to compute moving frames, invariant di�erential
forms, di�erential invariants and invariant di�erential operators, and solve general equiva-
lence problems for both �nite-dimensional Lie group actions and in�nite Lie pseudo-groups.

A wide variety of applications, ranging from di�erential equations to di�erential geometry
to computer vision are presented. The theoretical justi�cations for the moving coframe
algorithm will appear in the next paper in this series.
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1. Introduction.

First introduced by Gaston Darboux, and then brought to maturity by �Elie Cartan,

[6], [8], the theory of moving frames (\rep�eres mobiles") is acknowledged to be a powerful

tool for studying the geometrical properties of submanifolds under the action of a transfor-

mation group. While the basic ideas of moving frames for classical group actions are now

ubiquitous in di�erential geometry, the theory and practice of the moving frame method
for more general transformation group actions has remained relatively undeveloped and is

as yet not well understood. The famous critical assessment by Weyl in his review, [45], of

Cartan's seminal book, [8], retains its perspicuity to this day:

\I did not quite understand how he [Cartan] does this in general, though in the
examples he gives the procedure is clear." \Nevertheless, I must admit I found the book,

like most of Cartan's papers, hard reading."

Implementations of the method of moving frames for certain groups having direct
geometrical signi�cance | including the Euclidean, a�ne, and projective groups | can
be found in both Cartan's original treatise, [8], as well as many standard di�erential geo-
metric texts; see, for example, the books of Guggenheimer, [17], which gives the method
center stage, Sternberg, [42], and Willmore, [47]. The method continues to attract the
attention of modern day researchers and has been successfully extended to some additional
examples, including, for instance, the geometry of holomorphic curves in projective space
and Grassmannians. The papers of M. Green, [15], Gri�ths, [16], and the lecture notes
of Jensen, [21], are particularly noteworthy, attempting to place Cartan's intuitive con-
structions on a �rm theoretical and di�erential geometric foundation. However, none of
the proposed modern geometrical formulations of the theory incorporates the full scope
or range of applicability of the method as originally envisioned by Cartan. To this day,
both the formulation and construction of moving frames for general Lie group actions has
remained obscure, particularly for anyone interested in new applications. Although they
strive for generality, the range of examples treated remains rather limited, and Weyl's
pointed critique of Cartan's original version still, in our opinion, applies to all of these
later e�orts.

There are two main goals of this series of papers devoted to a study of Cartan's method
of moving frames. The �rst, of utmost importance for applications and the subject of the
present work, is to develop a practical and easily implementable algorithm for construct-
ing moving frames, that can be systematically applied to concrete problems arising in a

wide variety of applications. Our new algorithm, which we name the method of \moving
coframes", not only reproduces all of the classical moving frame constructions, often in a
simpler and more direct fashion, but can be readily applied to a wide variety of new situ-

ations, including in�nite-dimensional pseudo-groups, intransitive group actions, restricted
reparametrization problems, joint group actions, and many more. Although one can see
the germs of our ideas in the above mentioned references, our approach is di�erent, and, we
believe, signi�cantly easier to implement in practical examples. Standard presentations of

the method rely on an unusual hybrid of vector �elds and di�erential forms. Our approach
is inspired by the powerful Cartan equivalence method, [11], [14], [36], which has much
of the avor of moving frame-type computations, but relies solely on the use of di�erential

forms, and the operation of exterior di�erentiation. The moving coframe method we de-
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velop does have a complete analogy with the Cartan equivalence method; indeed, we shall

see that the method includes not only all moving frame type equivalence problems, under
both �nite-dimensional Lie transformation groups and in�nite Lie pseudo-groups, but also

includes the standard Cartan equivalence problems in a very general framework.

Our second goal is to justify the moving coframe method by proposing a new the-
oretical foundation for the method of moving frames. The rigorous justi�cation for our

moving coframe algorithm will form the subject of the second paper in the series. The key

new idea is to initially avoid the technically complicated normalization procedure during

the implementation of the method, leading to a fully regularized version of the method
that avoid branching and singularity complications inherent in the standard approach, and

enabling one to treat both generic and singular submanifolds on the same general foot-

ing. Once the regularized solution to the problem has been properly implemented, the a

posteriori justi�cation for the usual normalization and reduction procedure can be readily

provided. Details and further examples will appear in part II.

Beyond the traditional application to the di�erential geometry of curves and surfaces
in certain homogeneous spaces, there are a host of applications of the method that lend
great importance to its proper implementation. Foremost are the equivalence and symme-
try theorems of Cartan, that characterize submanifolds up to a group transformation by
the functional relationships among their fundamental di�erential invariants. The method
provides an e�ective means of computing complete systems of di�erential invariants and
associated invariant di�erential operators, which are used to generate all the higher order
invariants. The fundamental di�erential invariants and their �rst order derived invariants
serve to parametrize the \classifying manifold" associated with a given submanifold; the
Cartan solution to the equivalence problem states that two submanifolds are (locally) con-
gruent under a group transformation if and only if their classifying manifolds are identical.
Moreover, the dimension of the classifying manifold completely determines the dimension
of the symmetry subgroup of the submanifold in question. We note that the di�erential
invariants also form the fundamental building blocks of basic physical theories, enabling
to construct suitably invariant di�erential equations and variational principles, cf. [36].
Closely related to the determination of di�erential invariants are the rigidity theorems,
[16], [21], that state that two submanifolds which are congruent by a group element are,
in fact, identical, if and only if they have nth order contact at a point for some well de-

termined n. Typically the rigidity order n is one more than the order of the fundamental

di�erential invariants, although there may exist exceptional submanifolds having a higher
order of rigidity.

Additional motivation for pursuing this program comes from new applications of mov-

ing frames to computer vision promoted by Faugeras, [12], with applications to invariant
curve and surface evolutions, and the use of the classifying (or \signature") manifolds in

the invariant characterization of object boundaries that forms the basis of a fully group-
invariant object recognition visual processing system, [5]. Although di�erential invariants

have evident direct applications to object recognition in images, the often high order of
di�erentiation makes them di�cult to compute in an accurate and stable manner. One

alternative approach, [33], is to use joint di�erential invariants, or, as they are known in

the computer vision literature, \semi-di�erential invariants", which are based on several
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points on the submanifold of interest. Although a few explicit examples of joint di�eren-

tial invariants are known, there is, as far as we know, no systematic classi�cation of them
in the literature. We show how the method of moving coframes can be readily used to

compute complete systems of joint di�erential invariants, and illustrate with some exam-

ples of direct interest in image processing. The approximation of higher order di�erential

invariants by joint di�erential invariants and, generally, ordinary joint invariants leads to
fully invariant �nite di�erence numerical schemes for their computation, �rst proposed in

[5]. The moving coframe method should aid in the understanding and extension of such

schemes to more complicated situations.

In this paper, we begin with a brief survey of the basic equivalence problems for sub-
manifolds under transformation groups that form a primary motivation for the method

of moving frames. Section 3 provides a brief introduction to one of the basic tools that

the moving coframe method uses | the left-invariant Maurer{Cartan forms on a Lie

group. Two practical means of computing the Maurer{Cartan forms, including a novel
method based directly on the group transformation rules, are discussed. Section 4 begins
the presentation of the moving coframe method for the simplest category of examples |
�nite-dimensional transitive group actions | and illustrates it with a non-conventional
equivalence problem arising in the calculus of variations and in classical invariant theory.
Section 5 extends the basic method to intransitive Lie group actions. The simplest exam-
ple of an in�nite-dimensional pseudo-group, namely the reparametrization pseudo-group
for parametrized submanifolds, is discussed in Section 6 and illustrated with a simple ge-
ometrical example | the case of curves in the Euclidean plane. This is followed by a
discussion of curves in a�ne and projective geometry, reproducing classical moving frame
computations in a simple direct manner based on the moving coframe approach; in Sec-
tion 7, the connections between the classical and moving coframe methods are explained
in further detail. Section 8 employs the moving coframe method to completely analyze the
joint di�erential invariants in two particular geometrical examples | two-point di�erential
invariants for curves in the Euclidean and a�ne plane. Section 9 discusses how to analyze
more general pseudo-group actions, illustrating the method with two examples arising in
classical work of Lie, Vessiot and Medolaghi. In addition, we show how to solve the equiv-

alence problem for second order ordinary di�erential equations under the pseudo-group of
�ber-preserving transformations using the moving coframe method, thereby indicating how
all Cartan equivalence problems can be treated by this method. Finally, we discuss some

open problems that are under current investigation. In all cases, the paper is designed for a

practically oriented reader, in that only the basic algorithmic steps are discussed in detail.
In order not to cloud to exposition, all of the theoretical justi�cations for the algorithms
proposed here will appear in the second paper in this series.

2. The Basic Equivalence Problems.

We begin our exposition with a discussion of the basic equivalence problems which

can be handled by the method of moving frames; see also Jensen, [21; p. VI], for addi-
tional details. Suppose G is a transformation group acting smoothly on an m-dimensional

manifold M . In classical applications, G is a �nite-dimensional Lie group, but, as we shall
see, the method can be extended to in�nite-dimensional Lie pseudo-group actions, e.g.,
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the group of conformal transformations on a Riemannian surface, the group of canonical

transformations on a symplectic space, or the group of contact transformations on a jet
space. In either situation, a basic equivalence problem is to determine whether two given

submanifolds are congruent modulo a group transformation. We shall divide the basic

problem into two di�erent versions, depending on whether one allows reparametrizations

of the submanifolds in question. Formally, these can be stated as follows.

The Fixed Parameter Equivalence Problem: Given two embeddings �:X !
M and �:X ! M of an n�dimensional manifold X into M does there exist a group

transformation g 2 G such that

�(x) = g � �(x) for all x 2 X: (2:1)

The Unparametrized Equivalence Problem: Given two submanifoldsN;N �M

of the same dimension n, determine whether there is exists a group transformation g 2 G
such that

g �N = N: (2:2)

In both problems we shall only consider the question in the small, meaning that (2.1)
only needs to hold on an open subset of X, or that (2.2) holds in a suitable neighborhood
of given points z0 2 N , �z0 2 N . Global issues require global constructions that lie outside
the scope of the Cartan approach to equivalence problems.

Note that the problem of determining the symmetries of a submanifold, meaning the
set of all group elements that preserve the submanifold, forms a particular case of the
equivalence problem. Indeed, a symmetry of a submanifold is merely a self-equivalence.
For instance, the unparametrized symmetries of a given submanifold N � M are those
group elements that (locally) satisfy g �N = N . Note that the symmetry group of a given
submanifold forms a subgroup H � G of the full transformation group.

Example 2.1. A classical example is inspired by the geometry of curves in the
Euclidean plane. A curve C � R

2 is parametrized by a smooth map x(t) = (x(t); y(t))
de�ned on (a subinterval of) R. The underlying group for Euclidean planar geometry is
the Euclidean group E(2) = O(2) n R2 consisting of translations, rotations and (in the

non-oriented case) reections.

In the �xed parametrization problem, we are given two parametrized curves x(t) and

x(t), and want to know when there exists a Euclidean motion such that x(t) = R �x(t)+ a

for all t, where the rotation R 2 O(2) and translation a 2 R2 are both independent of t.
Physically, we are asking when two moving particles di�er by a �xed Euclidean motion at
all times, a problem that has signi�cant applications to motion detection and recognition
of moving objects.

In the unparametrized problem, we are interested in determining when two curves are

congruent under a Euclidean motion, meaning C = R � C + a for some �xed Euclidean

transformation (R; a) 2 E(2). This occurs if and only if there exists a change of parameter
�t = � (t) such that x(�t) = R � x(t) + a for some �xed Euclidean transformation (R; a).

A Euclidean symmetry of a curve C is a Euclidean transformation (R; a) that preserves
the curve: R �C+ a = C. For instance, the Euclidean symmetries of a circle consist of the
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rotations around its center. In the �xed parameter version, the circle must be parametrized

by a constant multiple of arc length for this to hold.

Example 2.2. Consider the action

A: (x; u) 7�!
�
�x+ �

x+ �
;

u

x+ �

�
; A =

�
� �

 �

�
2 GL(2); (2:3)

of the general linear group GL(2) on R2. This forms a multiplier representation of GL(2),

cf. [13], [36], which lies at the heart of classical invariant theory. We restrict our attention
to curves given by the graphs of functions u = f(x), thereby avoiding issues of reparam-

etrization. Two such curves are equivalent if and only if their de�ning functions f and �f

are related by the formula

f(x) = (x + �) �f

�
�x+ �

x+ �

�
= (x + �) �f (�x); (2:4)

for some nonsingular matrix A. Equation (2.4) is the fundamental equivalence condition
for �rst order Lagrangians that depend only on a derivative coordinate in the calculus of

variations, cf. [34]. Moreover, if f(x) = n

p
P (x), and �f(�x) = n

q
P (�x), then (2.4) becomesy

P (x) = (x+ �)nP

�
�x + �

x + �

�
= (x+ �)n P (�x); (2:5)

which, when P and P are polynomials of degree n, forms the fundamental equivalence
problem of classical invariant theory.

In the general unparametrized equivalence problem, typically, the submanifolds N
and N are formulated via explicit parametrizations �:X !M , with image N = �(X) and
�:X !M , with N = �(X), where, for simplicity, the parameter spaces are taken to be the
same. (Indeed, since our considerations are always local, we shall not lose any generality by
assuming that X � Rn is an open subset of Euclidean space.) In such cases, we can easily
reformulate the unparametrized equivalence problem in the following equivalent form.

The Reparametrization Equivalence Problem: Given two embeddings �:X !
M and �:X ! M of an n�dimensional manifold X into M does there exist a local
di�eomorphism �:X ! X, i.e., a change of parameter, and a group transformation g 2 G
such that

�(�(x)) = g � �(x); for all x 2 X: (2:6)

We shall see that by solving the �xed parametrization problem, �rst in the case of

G being a �nite dimensional Lie transformation group, then extending this to the case

of G being an in�nite Lie pseudo-group of transformations, that we will then be able to

y We are ignoring the branching of the nth root here. See [34], [36] for a more precise version

of this construction.
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solve the reparametrization problem. For instance, we can reformulate the unparametrized

equivalence problem for curves in the Euclidean plane as a �xed parametrization problem
for curves in the extended space E = R�R2, which has coordinates (t;x) = (t; x; y). The

extended curve is given as the graph f(t;x(t))g of the original parametrized curve, and

the pseudo-group G = D(1) �E(2) acting on E consists of a �nite-dimensional group, the

Euclidean group E(2) acting on R2, together with the in�nite-dimensional pseudo-group
D(1) consisting of all smooth (local) di�eomorphisms �t = � (t) of the parameter space R.

The formulation of the reparametrization problem in the form (2.6) indicates an in-

termediate extension of the two cases, in which one only allows a subclass of all possible

reparametrizations.

The Restricted Reparametrization Equivalence Problem: Given two embed-

dings �:X ! M and �:X ! M of an n�dimensional manifold X into M and a Lie
pseudo-group of transformations H acting on X, determine whether there exists a group

transformation g 2 G such that (2.6) holds for some reparametrization � 2 H in the
prescribed pseudo-group.

For example, one might consider the problem of equivalence of surfaces in Euclidean
space, in which one is only allowed conformal, or area preserving, or Euclidean reparame-
trizations. The general reparametrization equivalence problem is, of course, a special case
when the pseudo-group H = D(X) is the entire local di�eomorphism group.

In general, the solution to any equivalence problem is governed by a complete system of
invariants. In the present context, the invariants are the fundamental di�erential invariants
for the transformation group action in question. Thus, any solution method must, as a
consequence, produce the di�erential invariants in question.

Example 2.3. In the case of curves in Euclidean geometry, the ordinary curvaturey

function � = jx
t
j�3 (x

t
^ x

tt
) is the fundamental di�erential invariant. For the �xed

parametrization problem, there is a second fundamental di�erential invariant | the speed
v = jx

t
j. Furthermore, all higher order di�erential invariants are obtained by successively

di�erentiating the curvature (and speed) with respect to arc length ds = v dt = jx
t
j dt,

which is the fundamental Euclidean invariant one-form. (In the �xed problem, one can

replace s derivatives by t derivatives since dt is also invariant if we disallow any changes
in parameter.) A similar result holds for general transformation groups | one can obtain
all higher order di�erential invariants from the fundamental ones by successively applying

certain invariant di�erential operators to the basic di�erential invariants, cf. [36].

The functional relationships between the fundamental di�erential invariants will solve
the equivalence problem. Roughly speaking, one uses the di�erential invariants to param-

etrize a \classifying" or \signature" manifold associated with the given submanifold, and

the result is that, under suitable regularity hypotheses, two submanifolds will be congruent
under a group transformation if and only if their classifying manifolds are identical . For
example, in the unparametrized Euclidean curve problem, the classifying curve is param-

etrized by the two curvature invariants (�; �
s
), whereas in the �xed problem, one uses all

y Here jaj is the usual Euclidean norm and a ^ b is the scalar-valued cross product between

vectors in the plane.
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four invariants (v; �; v
s
; �

s
) to parametrize the classifying curve. See [5] for applications of

the classifying curve to the problem of object recognition in computer vision. Of course,
this \solution" reduces one to another potentially di�cult identi�cation problem | when

do two parametrized submanifolds coincide? One approach to the latter problem is to

use the Implicit Function Theorem to realize the classifying submanifold as the graph of

a function, which eliminates the reparametrization ambiguity. Alternatively, in an alge-
braic context, a solution can be provided by Gr�obner basis techniques, cf. [4]. Neither

approach can completely resolve the identi�cation problem, but particular cases can often

be handled e�ectively.

The di�erential invariants can also be used to e�ectively determine the structure of

the symmetry group. In the case of an e�ectively acting Lie group G, the codimension

of the symmetry subgroup H of the submanifold N , i.e., dimG � dimH, is the same

as the number of functionally independent di�erential invariants on the submanifold. In

particular, the maximally symmetric submanifolds occur when all di�erential invariants
are constant; if G acts transitively, then these can be identi�ed with the homogeneous
submanifolds of M , i.e., the orbits of suitable closed subgroups of G. For instance, in
the Euclidean case, the maximally symmetric curves are where the curvature is constant,
which are the circles and straight lines, since these are the orbits of the one-parameter
subgroups of E(2). (Technically, these retain the in�nite-dimensional reparametrization
group D(1) as an additional symmetry group.) In the �xed parameter version, the circles
and straight lines must be parametrized by a constant multiple of their arc length in order
to retain their symmetry distinguished status.

For the Euclidean reparametrization equivalence problem, the associated rigidity theo-
rem states that two curves which are congruent under a Euclidean transformation and have
third order contact at a point are, in fact, identical. the rigidity order, namely 3, refers to
the maximal order of the di�erential invariants parametrizing the classifying curve. Note
that the symmetric curves have rigidity order 2, since they are uniquely determined, up to
a Euclidean transformation, by their constant second order curvature invariant.

Finally, we remark that di�erential invariants can be used to construct the general
invariant di�erential equations admitting the given transformation group. Speci�cally,
if J1; : : : ; JN form a complete system of functionally independent kth order di�erential

invariants, de�ned on an open subset V k � Jk of the jet space where the prolonged group
action is regular, then, on V k, any kth order systems of di�erential equations admitting G as
a symmetry group can be written in terms of the di�erential invariants: H

�
(J1; : : : ; JN) =

0. For example, the most general Euclidean-invariant third order di�erential equation has

the form d�=ds = H(�), equating the derivative of curvature with respect to arc length

to a function of curvature. Similar comments apply to invariant variational problems,
and we refer the reader to [35], [36], for details. These results form the foundations of
modern physical �eld theories, in which one bases the di�erential equations or variational

principle, on its invariance with respect to the theory's underlying symmetry group. The

groups in question range from basic Poincar�e and conformal invariance, to the exceptional
simple Lie groups lying at the foundations of string theory, as well as in�nite-dimensional

gauge groups and groups of Kac{Moody type. Remarkably, though, complete systems of
di�erential invariants are known for only a small handful of physically relevant groups,
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a collection that includes none of the above mentioned groups! Our moving coframe

algorithm provides an direct and e�ective means for providing such classi�cations.

3. The Maurer{Cartan Forms.

In our approach to the theory and practical implementation of the method of moving
frames, the left-invariant Maurer{Cartan forms on a �nite-dimensional Lie group play an

essential role. We therefore begin by reviewing the basic de�nition, and then present two

computationally e�ective methods for �nding the explicit formulae for the Maurer{Cartan

forms. The theoretical justi�cation for the second method will appear in part II.

Throughout this section, G will be an r-dimensional Lie group. We let L
g
:h 7! g � h

denote the standard left multiplication map.

De�nition 3.1. A one-form � on G is called a (left-invariant) Maurer{Cartan form

if it satis�es
(L

g
)�� = � for all g 2 G: (3:1)

The space of Maurer{Cartan forms on G is an r-dimensional vector space, which can
naturally be identi�ed with the dual to the Lie algebra g of left-invariant vector �elds
on G. If we choose a basis v1; : : : ;vr of the Lie algebra g, then there is a dual basis
�
1
; : : : ; �

r, consisting of Maurer{Cartan forms, satisfying h�i ;v
j
i = �

i

j
, where �i

j
is the

usual Kronecker delta. The basis Maurer{Cartan forms satisfy the fundamental structure
equations

d�
i = �

X
j<k

C
i

jk
�
j ^ �k; (3:2)

where the coe�cients Ck

ij
are the structure constants corresponding to our choice of basis

of the Lie algebra g. The Maurer{Cartan forms are a coframe on the Lie groupG, meaning
that they form a pointwise basis for the cotangent space T�G, or, equivalently, that we
can write any one-form ! on G as a linear combination ! =

P
f
i
�
i thereof, where the f

i

are suitable smooth functions.

The most common method for explicitly determining the Maurer{Cartan forms on a
given Lie group is to realize the group G � GL(n) as a matrix Lie group. The independent

entries of the n� n matrix of one-forms

� = A
�1
dA (3:3)

form a basis for the left-invariant Maurer{Cartan forms on G. Here A = A(g1; : : : ; gr) 2 G
represents the general matrix in G, which we have parametrized by local coordinates
(g1; : : : ; gr) near the identity, and dA =

P
(@A=@gi) dgi is its di�erential, which is an n�n

matrix of one-forms.

For example, in the case G = GL(2), the four independent Maurer{Cartan forms are

the components of the matrix

� =

�
�1 �2

�3 �4

�
= A

�1
dA =

1

�� � �

�
� d�� � d � d� � � d�

� d �  d� �d� �  d�

�
: (3:4)
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Similarly, if G = E(2) = O(2) n R2 is the Euclidean group in the plane, then we can

identify E(2) � GL(3) as a subgroup of GL(3) by identifying (R;a) 2 E(2) with the 3� 3
matrix �

R a

0 1

�
=

0
@ cos� � sin� a

sin� cos� b

0 0 1

1
A :

Substituting into (3.3) leads to

� =

�
R
�1 �R�1a
0 1

��
dR da

0 0

�
=

0
@ 0 �d� cos� da+ sin�db

d� 0 � sin� da+ cos�db

0 0 0

1
A :

Thus, the three independent Euclidean Maurer{Cartan forms are

�1 = d�; �2 = cos� da+ sin� db; �3 = � sin�da+ cos� db: (3:5)

In cases when the group is explicitly realized as a local group of transformations on a
manifoldM , and not necessarily as a matrix Lie group, it is useful to have a direct method
for determining the Maurer{Cartan forms. Given g 2 G and z 2 M , we explicitly write
the group transformation �z = g � z in coordinate form:

�zi = H
i(z; g); i = 1; : : : ; n:

We then compute the di�erentials of the group transformations:

d�zi =

nX
k=1

@H
i

@zk
dz

k +

rX
j=1

@H
i

@gj
dg

j
; i = 1; : : : ; n;

of, more compactly,
d�z = H

z
dz +H

g
dg: (3:6)

Next, set d�z = 0 in (3.6), and solve the resulting system of linear equations for the
di�erentials dzk. This leads to the formulae

�dz = F dg = (H�1
z

�H
g
) dg;

or, in full detail,

� dzk =
rX

j=1

F
k

j
(z; g) dgj ; k = 1; : : : ; n: (3:7)

Then, for each k and each �xed z0 2M , the one-form

�0 =

rX
j=1

F
k

j
(z0; g) dg

j
; (3:8)

is a left-invariant Maurer{Cartan form on the group G. Alternatively, if one expands the
right hand side of (3.7) in a power series (or Fourier series, or : : : ) in z,

rX
j=1

F
k

j
(z; g) dgj =

1X
i=0

z
i
�
i
; (3:9)

then each coe�cient �
i
also forms a left-invariant Maurer{Cartan form on G. In particular,

when G acts locally e�ectively, the resulting collection of one-forms spans the space of

Maurer{Cartan forms.
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Example 3.2. Consider the action of GL(2) given by

�x =
�x + �

x + �
; �u =

u

x+ �
; (3:10)

as discussed above. Di�erentiating (3.10), we �nd, as in (3.6),

d�x =
(x+ �)(� dx + xd�+ d�)� (�x + �)( dx + xd + d�)

(x+ �)2

=
(�� � �) dx + (x+ �)(xd� + d�)� (�x + �)(xd + d�)

(x+ �)2
;

d�u =
(x+ �) du+ u( dx+ xd + d�)

(x + �)2
:

Setting d�x = 0 = d�u and solving for dx and du, we obtain

�dx = � d� � � d�

�� � �
+

�
� d�+  d� � �d� � � d

�� � �

�
x +

�
 d�� �d

�� � �

�
x
2
;

�du =
�
� d� �  d�

�� � �

�
u+

�
�d �  d�

�� � �

�
xu:

(3:11)

Note that the coe�cients of 1, x and x2 in the �rst formula, i.e.,

b�1 = � d� � � d�

�� � �
; b�2 = � d�+  d� � � d� � � d

�� � �
; b�3 =  d�� � d

�� � �
; (3:12)

recover three of the Maurer{Cartan forms in (3.4), while the coe�cient of either u or xu
provides the remaining one.

If G does not act e�ectively onM , then the forms computed by this method will form
a basis for the annihilator

(g
M
)? =

�
! 2 g

� �� h! ;vi = 0 for all v 2 g
M
g

of the Lie algebra of the global isotropy subgroup

G
M

= fg 2 G j g � z = z for all z 2Mg ;

and thus can be identi�ed with the Maurer{Cartan forms for the e�ectively acting quotient
group eG = G=G

M
. For example, if we only treat the linear fractional transformations

in x in (3.10), then the resulting three Maurer{Cartan forms (3.12) all annihilate the

generator v = �@
�
+ �@

�
+ @


+ �@

�
of the isotropy subgroup f�11g � GL(2) consisting

of scalar multiples of the identity matrix. Hence, the three one-forms can be identi�ed
with a basis for the Maurer{Cartan forms of the e�ectively acting projective linear group

PSL(2) = GL(2)=f�11g.
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4. Compatible Lifts and Moving Coframes.

In this section, we start our development of the moving coframe method. We shall
explain how to implement the computational steps in the procedure, which leads to a

complete determination of the general moving frame, the associated invariant di�erential

one-forms, which we call the moving coframe, and, consequently, the di�erential invariants,

and the solution to the equivalence problem for submanifolds under the group action. We
will begin with the simplest problems and gradually work our way up to more complicated

situations.

Throughout this section, we assume that G is an r-dimensional Lie group which acts

locally e�ectively and transitively on an m-dimensional manifoldM . (As remarked above,

we can always assume local e�ectiveness by quotienting by the global isotropy subgroup.)
Let z0 2M be a given point.

De�nition 4.1. A smooth map :M ! G is called a compatible lift with base point
z0 if it satis�es

(z) � z0 = z: (4:1)

In order to compute the most general compatible lift, we solve the system of m equa-
tions (4.1) for m of the group parameters in terms of the coordinates z on M and the
remaining r �m = dimG � dimM group parameters, which we denote by h. This leads
to a general formula g = 0(z; h) for the solution to the compatibility equations (4.1). In
other words, by solving the compatibility conditions (4.1), we have e�ectively \normal-
ized" m of the original group parameters. Since our considerations are always local, in
practice, we only need to solve the compatibility equations (4.1) near z0. We will call the
general compatible lift 0(z; h) the moving frame of order zero for the given transformation
group. If �:X !M de�nes a parametrized submanifold N = �(X), then one can view the
composition 0(�(x); h) as a restriction of the order zero moving frame to the submanifold
N , where the unnormalized parameters h determine the degree of indeterminacy of the
moving frame on N . In geometrical situations, such restrictions can be identi�ed with the
classical moving frames; see also Section 7 below.

Example 4.2. Consider the planar action (2.3) of the general linear group GL(2):

A � (x; u) =
�
�x + �

x+ �
;

u

x+ �

�
; A =

�
� �

 �

�
2 GL(2); (4:2)

The action (4.2) is transitive onM = R2nfu = 0g. Choose the base point to be z0 = (0; 1).
Since A � z0 = (�=�; 1=�), any compatible lift A = (x; u) must satisfy �=� = x, 1=� = u,
and hence the solution to (4.1) is

� =
x

u
; � =

1

u
: (4:3)

The most general compatible lift thus has the form

0(x; u; �; ) =

�
� x=u

 1=u

�
; (4:4)

where � = �(x; u),  = (x; u) are arbitrary functions, subject only to the condition

� 6= x, so that the determinant of (4.4) does not vanish, and hence 0 does take its values
in the group GL(2).
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Note that since G acts transitively, we can locally identify M ' G=H with a ho-

mogeneous space, where H = G
z0

is the isotropy group of the base point. Therefore, a
compatible lift is merely a (local) section of the �ber bundle G! G=H.

Proposition 4.3. Two maps ;b:M ! G are compatible lifts with the same base

point if and only if they satisfy b(z) = (z) � �(z);
where �:M ! H is an arbitrary map to the isotropy subgroup of the base point z0.

Thus, in the previous example, the isotropy subgroup H of the point z0 = (1; 0)

consists of all invertible lower triangular matrices of the form

�
�
0 0

0 1

�
. Indeed, we can

rewrite (4.4) in the factored form

0(x; u; �; ) =

�
� x=u

 1=u

�
=

�
1 x=u

0 1=u

��
�
0 0

0 1

�
;

where �0 = � � x, 0 = u, recon�rming Proposition 4.3 in this particular example.

Although the remaining unspeci�ed group parameters can be identi�ed with the
isotropy subgroup coordinates, in any practical implementation of the moving coframe
algorithm, it is not necessary to identify the isotropy subgroup explicitly, nor to adopt its
particular coordinates to characterize the order zero moving frame. Thus, in the present
example, the coordinates �; , are just as e�ective as the subgroup coordinates e�; e. (The
interested reader can follow through the ensuing calculations using the subgroup coordi-
nates instead, reproducing the �nal result.)

The order zero moving frame 0(z; h), which is the general solution to the compatible
lift equations (4.1), de�nes a map from the zeroth order moving frame bundle C0 =M�H '
G=H �H, coordinatized by (z; h) to the group G, which is, in fact, a local di�eomorphism
0:C0 �!f G. There is an induced action of G on the moving frame bundle C0 that
makes 0 into a G-equivariant map: 0(g � (z; h)) = g � 0(z; h). Thus, the action on the
unnormalized group parameters h can be explicitly determined by multiplying the moving
frame on the left by a group transformation. The action of G on C0 projects to the original
action of G on M , so that g � (z; h) = (g � z; �(g; z; h)) for g 2 G.

In the present example, we can the induced action of GL(2) on the unspeci�ed pa-
rameters �; , by multiplying the moving frame (4.4) on the left by a group element�
a b

c d

�
2 GL(2); we �nd

�
� �x=�u
 1=�u

�
=

�
a b

c d

�
�
�
� x=u

 1=u

�
=

�
a�+ b (ax + b)=u
c�+ d (cx+ d)=u

�
; (4:5)

Therefore, the induced action of G = GL(2) on the moving frame bundle C0 is given by

�x =
ax + b

cx+ d
; �u =

u

cx+ d
; � = a� + b;  = c�+ d: (4:6)

Note that the (x; u) transformations coincide with the original action (2.3), as they should.
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Remark : In practical implementations of the moving coframe algorithm, we do not

have to explicitly compute this group action. We do this here so as to give the reader some
justi�cation for our claims.

Remark : The action of G on C0 = M � H does not project to an action on the

isotropy subgroup H, even if we use the associated subgroup coordinates. In the present

example, we �nd (4.6) implies that the subgroup coordinates �0, 0 transform according to

�
0 =

ad� bc

cx+ d
�
0
; 

0 = 
0 +

cu

cx+ d
�
0
:

The next step is to characterize the group transformations by a collection of di�eren-
tial forms. In the �nite-dimensional situation we are currently considering, these will be

obtained by pulling back the left-invariant Maurer{Cartan forms � on G to the order zero
moving frame bundle C0 using the compatible lift. The resulting one-forms �0 = 

�
0� will

provide a coframe on C0, which we name the moving coframe of order zero. The moving
coframe forms �0 clearly satisfy the same Maurer{Cartan structure equations (3.2).

Theorem 4.4. The order zero moving coframe forms completely characterize the

group transformations on the bundle C0. In other words, a map 	:C0 ! C0 satis�es

	��0 = �0 if and only if 	(z; h) = g � (z; h) coincides with the action of a group element

g 2 G on C0.

In the present example, we substitute the formulae (4.3) characterizing our compatible
lift (4.4) into the Maurer{Cartan forms (3.4). The result is the order zero moving coframe

�1 =
d� � xd

�� x
; �2 =

dx

u(�� x)
;

�3 =
u(� d �  d�)

� � x
; �4 = �  dx

�� x
� du

u
;

(4:7)

which forms a basis for the space of one-forms on C0. The skeptical reader can explicitly
check that these four one-forms really do completely characterize the group action (4.6),
as described in Theorem 4.4.

Let us now consider a curve N � M . For simplicity, we shall assume that the curve
coincides with the graph of a function u = u(x). However, this restriction is not essential
for the method to work, and later we show how general parametrized curves can also be

readily handled by the general method. We restrict the moving coframe forms to the curve,
which amounts to replacing the di�erential du by its \horizontal" component u

x
dx. If we

interpret the derivative u
x
as a coordinate on the �rst jet space J1 = J1(M) ' R

3 of
curves in M , then the restriction of a di�erential form to the curve can be reinterpreted

as the natural projection of the one-form du on J1 to its horizontal component, using the
canonical decomposition of di�erential forms on the jet space into horizontal and contact
components. Indeed, the vertical component of the form du is the contact form du�u

x
dx,

which vanishes on all prolonged sections of the �rst jet bundle J1M . We refer the reader

14



to [36; Chapter 4] for a comprehensive review of the contact geometry of jet bundles.

Therefore, the restricted (or horizontal) moving coframe forms are explicitly given by

�1 =
d� � xd

�� x
; �2 =

dx

u(�� x)
;

�3 =
u(� d �  d�)

� � x
; �4 =

(xu
x
� u)� �u

x

u(�� x)
dx;

(4:8)

which now depend on �rst order derivatives.

The next step in the procedure is to look for invariant combinations of coordinates

and group parameters. Each such invariant combination will either provide us with a
basic di�erential invariant for the problem, or, in the case that it explicitly depends on

the remaining group parameters, a \lifted invariant" which can be normalized and thereby

eliminate one of the remaining group parameters, as discussed below. Speci�cally, in
the present example, a function J(�; ; x; u; u

x
) will be a lifted invariant provided it is

una�ected by the group action on its arguments, meaning that

J(�; ; �x; �u; �u�x) = J(�; ; x; u; u
x
); (4:9)

wherever �; ; �x; �u, are related to �; ; x; u, according to the induced action (4.6) of the
group on the moving frame bundle, and �u�x is related to u

x
according to the standard

prolongation, [36], of the action of G on M to the �rst jet bundle J1. In the present
case, if �x; �u are given by (4.6), then a straightforward chain rule computation provides the
prolonged action of GL(2) on the derivative coordinate:

�u�x =
(cx+ d)u

x
� cu

ad� bc
: (4:10)

In other words, we interpret �; ; x; u; u
x
as coordinates on a bundle eC0 ! J1 over the

�rst jet space, which is merely the pull-back eC0 = (�10)
�
C0 of the zeroth order moving

frame bundle via the standard projection �
1
0 : J

1 ! M . There is an induced action of

G on eC0 which projects to its prolonged action on J1. A (�rst order) lifted invariant,

then, is just a function J : eC0 ! R which is invariant under the action of G on eC0. If the
lifted invariant J = J(x; u; u

x
) does not, in fact, depend on the group parameters �; ,

then it will be a (�rst order) di�erential invariant. (However, in the present example,
there are no non-constant �rst order di�erential invariants, since GL(2) acts transitively

on J1.) Alternatively, if J actually depends on either � or  then it can be used in the
normalization procedure.

Fortunately, the lifted invariants can be determined without explicitly computing the
prolonged group action, or solving any di�erential equations. They are systematically

found by looking at the linear dependencies among the restricted (horizontal) moving
coframe forms! Indeed, because the one-forms are invariant, each coe�cient J

i
in a linear

relation �0 = J1 �1 + � � �+ J
k
�
k
, in which the forms �

i
on the right hand side are linearly

independent, is automatically under the action of the group. In our example, we note that,
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among the restricted one-forms (4.8), there is one linear dependency, namely �4 = J�2,

where
J = (xu

x
� u)� �u

x
: (4:11)

One can explicitly verify that J is indeed a lifted invariant, meaning that it satis�es (4.9)
whenever �; ; �x; �u; �u�x, are related to �; ; x; u; u

x
, according to (4.6), (4.10).

The ultimate goal of the moving frame method is to eliminate all the ambiguities, i.e.,

the undetermined group parameters, in the original moving frame, in a suitably invariant

manner. Cartan's crucial observation is that, we can, without loss of generality, normalize

any lifted invariant by setting it equal to any convenient constant value,

J(�; ; x; u; u
x
) = c; (4:12)

without a�ecting the equivalence problem. In (4.12), c can be any convenient constant,

subject only to the requirement that the solutions to (4.12) remain in the group, e.g., that
the determinant of any resulting matrix (4.4) remains nonzero. Typically, c is taken to
be 0; 1, or �1, although other values can be chosen to simplify the resulting formulae.
Assuming that J does actually depend on the parameters �; , we can solve the normal-
ization equation (4.12) for one of them; e.g., � = �(; x; u; u

x
). Because J is an invariant,

such a normalization will not alter the solution to the equivalence problem, and hence we
can use it to eliminate � from the original formulae for the moving frame and moving
coframe. The result is a �rst order moving frame, depending on one fewer unnormalized
group parameter. This produces to a corresponding �rst order moving coframe, to which
one can apply the same procedure, leading to a chain of successive normalizations and re-
ductions, eventually enabling one to completely eliminate all the undetermined parameters
and specify a uniquely de�ned moving frame on some suitable jet bundle Jn = Jn(M).

In accordance with the general procedure, then, we can normalize our particular lifted
invariant (4.11) by setting it equal to zero, J = 0, which can be e�ected by setting

� =

�
xu

x
� u

u
x

�
: (4:13)

Substituting (4.13) into (4.4) produces the �rst order moving frame

1(x; u; ux; ) =

�
(xu

x
� u)=u

x
x=u

 1=u

�
; (4:14)

which now depends on �rst order derivatives of u, and just one unnormalized parameter.
We can regard the coordinates (x; u; u

x
; ) as parametrizing a bundle C1 ! J1 sitting

over the �rst jet space, which is realized as a G-invariant subbundle of eC0, namely C1 =

J
�1f0g � eC0. As before, one can restrict the �rst order moving frame to a curve u = u(x)

by restricting the map 1 to the �rst prolongation or jet of the curve, i.e., we set u = u(x),
u
x
= u

0(x), in (4.14), with  indicating the remaining ambiguity. There is an induced

action of GL(2) on C1, which projects to the usual �rst prolonged action G(1) of the group
on J1, cf. (4.6), (4.10), and makes the �rst order moving frame 1:C1 �!f G into a local
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G-equivariant di�eomorphism. In our case, the explicit transformation rules on C1 are

given by

�x =
ax + b

cx + d
; �u =

u

cx+ d
; �u�x =

(cx + d)u
x
� cu

ad � bc
;  =

�
(cx+ d)u

x
� cu

ad� bc

�
; (4:15)

which coincide with left multiplication of the �rst order moving frame (4.14) by the given

group element. (Again, these are provided for illustration only, and are not essential for

application of the method.) Furthermore, substituting (4.13) into (4.7), we �nd the �rst
order moving coframe

�1 =
d


� du

x

u
x

+
du� u

x
dx

u
; �2 = �ux dx

u2
;

�3 =
udu

x

u
x

� (du� u
x
dx); �4 =

du� u
x
dx

u
:

(4:16)

As in the order zero case, cf. Theorem 4.4, the �rst order moving coframe completely
characterizes the group transformations on C1.

As before, we determine new lifted invariants by restricting the �rst order moving
coframe one-forms to a curve u = u(x). This amounts to replacing du and du

x
by their

horizontal components u
x
dx and u

xx
dx respectively, leading to the restricted forms

�1 =
d


� u

xx
dx

u
x

; �2 = �ux dx
u2

; �3 =
uu

xx
dx

u
x

; �4 = 0; (4:17)

that now depend on second order derivatives. Alternatively, one could deduce these re-
stricted forms by substituting the normalization (4.13) into the previous restricted forms
(4.8). Note in particular that the fact that �4 vanishes is an automatic consequence of
our normalization condition �4 = J�2 = 0; alternatively, we note that �4 is an invariant
contact form, which hence vanishes when restricted to any submanifold. Now there is an
additional dependency, namely �3 = K�2, where

K = �
2
u
3
u
xx

u2
x

;

is a new lifted invariant. Again, the reader can check that K is invariant under the

prolonged action of GL(2) on the bundle eC1 = (�21)
�
C1 ! J2, where �21 : J

2 ! J1 is
the natural projection, provided by (4.15) and the second order prolongation (chain rule)
formula

�u�x�x =
(cx + d)3u

xx

(ad� bc)2
: (4:18)

We can be normalize K = �1 by setting

 =
u
xp

u3u
xx

: (4:19)

17



Note that we cannot normalize K = 0 since this would require  = 0, but then the lift

(4.14) would have zero determinant, violating the group conditions. The �nal lift

2(x; u; ux; uxx) =

0
BB@
xu

x
� up

u3u
xx

x

u

u
xp

u3u
xx

1

u

1
CCA (4:20)

de�nes the second order moving frame on the jet space. Now the lift has been completely

speci�ed, and (4.20) contains a complete description of the geometry of curves (functions)

under the transformation group (2.3). The second order moving frame provides an explicit
G-equivariant identi�cation 2:V

2 �!f G of the open subset V 2 = fuu
xx
6= 0g � J2 of the

second jet bundle with an open subset of the group G, identifying the prolonged action of

G
(2) on J2 with the ordinary left multiplication on G; thus

2(g
(2) � z(2)) = g � 2(z(2)); g 2 GL(2); z

(2) 2 V 2
:

Substituting (4.19) produces the �nal set of invariant one-forms

�1 = � du
xx

2u
xx

� du

2u
� u

x
dx

u
; �2 = �

r
u
xx

u
dx;

�3 =
du

xp
uu

xx

� u
x
(du� u

x
dx)p

u3u
xx

; �4 =
du� u

x
dx

u
;

(4:21)

which form the second order moving coframe. Note that the second order moving frame
(4.20) provides an equivalence, �2 �i = �

i
, mapping the moving coframe forms on the

second order jet space to the Maurer{Cartan forms (3.4) on the group. Consequently, the
forms �

i
uniquely characterize the second order prolonged action of GL(2) on V 2 � J2.

Finally, the restricted (horizontal) moving coframe forms become

�1 = �uuxxx+ 3u
x
u
xx

2uu
xx

dx; �2 =

r
u
xx

u
dx; �3 = ��2; �4 = 0:

There is one �nal linear dependency, namely �1 = �I �2, where

I =
uu

xxx
+ 3u

x
u
xx

2
p
uu3

xx

(4:22)

is the fundamental di�erential invariant of the transformation group, also known as the
group invariant curvature. The remaining one-form ds = �2 is the fundamental invariant
one-form, or group-invariant arc length element. All higher order di�erential invariants
can be found by di�erentiating the curvature invariant with respect to the invariant arc

length; for instance, the fundamental fourth order di�erential invariant is

J =
@I

@�2
=
dI

ds
=

r
u

u
xx

dI

dx

=
2u2u

xx
u
xxxx

� 3u2u2
xxx

� 2uu
x
u
xx
u
xxx

+ 6uu3
xx
� 3u2

x
u
2
xx

4uu3
xx

:

(4:23)
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From the general theory, we conclude that every di�erential invariant for the group (2.3) is

a function of the curvature and its successive derivatives with respect to the arc length. On
the regular part V 2 of the jet space J2, all GL(2) invariant ordinary di�erential equations

can be written in terms of these invariants; for instance the most general invariant third

order ordinary di�erential equation has the form

uu
xxx

+ 3u
x
u
xx

= k

p
uu3

xx
; (4:24)

for some constant k.

Applications to the equivalence problem for curves (which include the equivalence

problem for �rst order Lagrangians as well as that of classical invariant theory) follow

directly from the general results. Given a function u = u(x), we de�ne its classifying

curve C to be the planar curve parametrized by the fundamental di�erential invariants

I(x); J(x). The general result states that two curves are mapped to each other by a group
transformation (2.3), so C = g � C, if and only if their classifying curves are identical,

C = C. A curve C is maximally symmetric if and only if its classifying reduces to a point;
in this case the original curve is, in fact, is an orbit of a one-parameter group subgroup of
GL(2). Thus, we have, in a very simple and direct manner, recovered the results in [34]
on the equivalence and symmetry of binary forms, which were found by a much less direct
approach based on the standard Cartan equivalence problem for particle Lagrangians. A
corresponding rigidity result also follows: two curves that are equivalent under a group
transformation are identical if and only if they have fourth order contact at a point, four
referring to the order of the fundamental di�erential invariant J .

There are a few technical points that should have been addressed during the preceding
discussion. First, one needs to impose certain conditions on the function u(x) in order to
ensure that the computation is valid. For instance, the normalization (4.13) requires
u
x
6= 0, i.e., the curve does not have a horizontal tangent. (We have already assumed

that it does not have a vertical tangent by requiring that it be the graph of a smooth
function.) If u

x
= 0, then we can still normalize J = 0 as long as u 6= xu

x
, in which case

we normalize by solving for  instead of �. Actually, both cases can be simultaneously
handled by the normalization � = �(xu

x
� u),  = �u

x
, where � 6= 0 is a new parameter

whose normalization will be speci�ed at the next stage of the procedure. The reader can

check that this alternative procedure leads to the same lift and di�erential invariants as
before. In the second normalization, we have assumedy u

xx
> 0 in order to take the square

root. For u
xx

< 0 we would need to normalize K = +1, and use
p
� u

xx
instead. Thus

the problem actually separates into two branches, with the inection points u
xx

= 0 being

interpreted as singular points for the group action. The straight lines, for which u
xx
� 0,

form a special class and must be analyzed separately. Finally, the square root itself has a
sign ambiguity (or, in the complex case, an ambiguity in its choice of branch). Both signs
must, in fact, be allowed in the �nal expression for the lift and the di�erential invariants.

Such branching and ambiguous sign phenomena will be familiar to practitioners of the
Cartan equivalence method; see [36] for a detailed discussion of these issues.

y In the complex-valued problem, there is no sign restriction.
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Let us �nish this section by summarizing the basic method, in a form which will apply

to much more general problems. The basic steps are:

(a) Determine the general invariant lift, or moving frame of order zero, by solving (4.1)

for the given group action.

(b) Determine the invariant forms. In the �nite-dimensional case, they are the Maurer{

Cartan forms, which can be computed either by using the matrix approach, or by
direct use of the transformation group formulae.

(c) Use the invariant lift to pull-back the invariant forms, leading to the moving coframe

of order zero.

(d) Determine lifted invariants by �nding linear dependencies among the restricted or
horizontal components of the moving coframe forms.

(e) Normalize any group-dependent invariants to convenient constant values by solving

for some of the unspeci�ed parameters.

(f ) Successively eliminate parameters by substituting the normalization formulae into
the moving coframe and recomputing dependencies.

(g) After the parameters have all been normalized, the di�erential invariants will appear
through any remaining dependencies among the �nal moving coframe elements.
The invariant di�erential operators are found as the dual di�erential operators to
a basis for the invariant coframe forms.

Note that we do not need the explicit isotropy groups for the transformation group
actions, nor do we need compute explicit formulae for the prolonged group action in order
to successfully apply the method.

Remark : If one is solely interested in the �nal di�erential invariants and invariant
horizontal one-forms (i.e., invariant forms on the submanifold itself), then one need only
compute the e�ect of the normalizations on the horizontal components of the moving
coframe forms during the computation. The moving coframe itself will also include in-
variant contact forms, which vanish upon restriction, but which, nevertheless, play an
important role in other aspects of the geometry. See [36], [38], [18], for applications of
invariant contact forms to the study of invariant evolution equations, with applications to
image processing. Applications to the computation of the invariant cohomology of the vari-

ational bicomplex, cf. [2], are also of particular importance in the analysis of symmetries

and conservation laws of variational problems.

Remark : The proposed method of moving coframes has the same basic structure as

the Cartan equivalence method, [11], [14], [36], in that one deals with a system of di�er-

ential forms depending on arbitrary parameters, and seeks to normalize all the parameters
by a suitable collection of lifted invariants. One can, indeed, view the two methods as par-
ticular cases of a completely general equivalence procedure. However, it is worth pointing

out a few of the di�erences between the two. First, the Cartan method only deals with

lifted coframes, whose constituents are linearly independent di�erential forms, whereas the
di�erential forms occurring in the moving coframe method are linearly dependent. The
invariant combinations (lifted invariants) used to normalize the parameters are found via

linear dependencies in the moving coframe method, whereas they arise as unabsorbed tor-

sion coe�cients in the di�erentials of the lifted coframe forms in the Cartan equivalence
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method. In the moving coframe method, the di�erentials of the moving coframe one-forms

satisfy the Maurer{Cartan structure equations, and hence do not provide any nonconstant
invariants. Finally, and perhaps most signi�cantly, the group parameters g only occur

algebraically in the lifted coframe elements in the Cartan equivalence method, whereas in

the moving frame problems their di�erentials dg occur as well, since they appear in the

Maurer{Cartan forms. One can, of course, imagine solving hybrid equivalence problems,
in which aspects of both problems occur during the normalization procedure, although we

are not currently aware of any interesting examples where these occur naturally.

5. Intransitive Lie Group Actions.

Our next task is to extend the moving coframe method to the case of �nite-dimensional

Lie groups whose action is no longer transitive. In the intransitive case, we still assume

that G is an r-dimensional Lie group acting e�ectively, and regularly, which implies that
its orbits, which we take to have dimension s, form a foliation of M . We choose a local
cross-section K �M to this foliation, i.e., a submanifold of dimension m� s intersecting
the orbits transversally, and introduce a compatible lift :M ! G by requiring that, for
each z near K, the lift  satis�es

z = (z) � z0; for some z0 2 K: (5:1)

The general solution to the compatible lift equations (5.1) will be of the form (z; h)
depending on r � s parameters h. Note that unless the isotropy subgroups at each point
in the cross-section happen to be identical, we cannot identify the unspeci�ed parameters
as local coordinates on any subgroup H � G, leading us beyond any principal bundle-
theoretic interpretation of the method. Nevertheless, the Implicit Function Theorem will
allow us to locally write the general compatible lift in this form. In addition, the group
admits (locally) m� s functionally independent invariants, I1(z); : : : ; Im�s(z), whose level
sets characterize the orbits. The zeroth order moving frame will then be the map

0(z; h) = ((z; h); I(z)); (5:2)

whose �rst components g = (z; h) are those of the general compatible lift (for the given
cross-section) and, in addition, has the invariants w = I(z) = (I1(z); : : : ; Im�s(z)) as

further components. Note that 0 is only locally de�ned, since z must lie near the cross-
section K, and, moreover, the remaining parameters h are determined in accordance with

the Implicit Function Theorem.

Note: We can view the range G�Rm�s of 0 as having the structure of a Cartesian
product Lie group, the additive group structure on the second factor formalizing the fact

that we can add invariants.

The moving coframe forms in this case are constructed from the Maurer{Cartan forms

� on the group G, together with the coordinate one-forms dw = fdw1; : : : ; dwm�sg on
R
m�s. The group transformations are then characterized by the conditions

��w = w; ��dw = dw; �� � = �: (5:3)
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Using the moving frame lift g = (z; h), w = I(z), to pull back these one-forms, we are led

to the zeroth order moving coframe, consisting of the pulled-back Maurer{Cartan forms

�
0�, along with the di�erentials �0 dw�

= dI
�
of the group invariants. At this stage,

the set up of the intransitive problem is complete, and one proceeds to solve it, as in the

transitive case, by looking for dependencies among the restricted coframe forms and then

normalizing the resulting lifted invariants.

Example 5.1. The intransitive action

A : (x; u) 7�!
�
x;
�u+ �

u+ �

�
; A =

�
� �

 �

�
2 SL(2); (5:4)

of the special linear group SL(2) on M = R2 arises in complex function theory, [19]. (We

restrict to SL(2) in order to maintain local e�ectiveness.) The group orbits are vertical lines
and so the basic invariant is merely I(x; u) = x. We choose the cross-section K = fu = 0g.
Solving the equation A(x; u)�z0 = (x; u), where z0 = (y; 0), leads to the general compatible
lift

A0(x; u; �; �) =

0
@ � �u

�� � 1

�u
�

1
A ; (5:5)

which forms the group component of the zeroth order moving frame. The other component
is just the invariant

w = I(x; u) = x: (5:6)

Pulling back the Maurer{Cartan forms � = A
�1
dA and dw via the lift (5.5), (5.6), leads

to the order zero moving coframe

�1 = (�� � 1)
du

u
� d�

�
; �2 = �

2
du;

�3 =
ud(��) + ��(1 � ��) du

�2u2
; �4 = dx:

(5:7)

As before, we restrict to a curve u = u(x) by replacing du by u
x
dx. Letting �

i
denote the

horizontal component of �
i
, we �nd that there is one resulting linear dependency, namely

�2 = �
2
u
x
dx = J dx = J�4:

The leads to the �rst normalization � = 1=
p
u
x
resulting from setting J = 1. Substituting

this normalized value into (5.5), (5.6), provides the �rst order moving frame. Further-
more, substituting into (5.7) produces the second order moving coframe, with horizontal
restrictions

�1 =

 
2�u3=2

x
+ uu

xx
� 2u2

x

2uu
x

!
dx; �2 = �4 = dx; �3 =

p
u
x

u
( d� � ��1): (5:8)
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Now we normalize �1 = 0 by setting � = u
�3=2
x

(u2
x
� 1

2
uu

xx
). The �nal moving frame (of

order 2) is

A2 =
1

u
3=2
x

�
u
2
x
� 1

2
uu

xx
uu

x

�1
2
u
xx

u
x

�
; w = x: (5:9)

The corresponding restricted moving coframe has reduced to

�2 = �4 = dx; �3 = �1
4
S �2; �1 = 0; (5:10)

where

S =
2u

x
u
xxx

� 3u2
xx

u2
x

(5:11)

is the classical Schwarzian derivative of the function u(x), whose invariance under lin-
ear fractional transformations is of fundamental importance in complex function theory.
Since the one-form dx is invariant, all the higher order di�erential invariants are found by
di�erentiating S with respect to x.

Actually, the preceding computation can be slightly simpli�ed by extending our gen-
eral method to non-e�ective actions. We consider (5.4) as de�ning a non-e�ective (and
intransitive) action of the general linear group GL(2) on R2. We may apply the second
algorithm for computing the required Maurer{Cartan forms, leading to the three one-forms
(3.12) that annihilate the global isotropy subalgebra. We substitute the compatible lift

formulae � = �u for the order zero moving coframe, which is now A0 =

�
� �u

 �

�
, into

(3.12), leading to the restricted moving coframe forms

b�1 = �u
x
dx

�� u
; b�2 = d�� ud + u

x
dx

�� u
� d�

�
;

b�3 =  d�� � d

�(�� u)
; b�4 = dx:

(5:12)

The �rst dependency between b�1 and b�4 leads to the normalization � = (� � u)=u
x
.

Substituting into b�3 leads to a second dependency, and the resulting normalization yields

� = (u�2u2
x
=u

xx
). At this stage, even though we have not normalized the �nal parameter

, it no longer appears in the coframe, which coincides with our earlier one, (5.10). It does,

of course, occur in the �nal moving frame lift, which is obtained by multiplying the matrix
A2 in (5.9) by . However,  plays no other role in the problem, and merely reects a �nal
indeterminacy stemming from the ine�ectiveness of the group action. The main point in
this solution method is that one does not have to implement the e�ectivity restriction by

hand, as was done in the original lift (5.5), in order to solve the problem. Indeed, in more
complicated examples, it may be relatively straightforward to write down the compatible
lift to an ine�ective group action, whereas doing the same for the e�ectively acting quotient

group G=G
M

may be considerably more complicated.
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Example 5.2. Consider the elementary similarity group G = R
+
n R

2 acting

transitively on M = R2 via

A : (x; u) 7�! (�x + a; �u+ b): (5:13)

For the base point z0 = (0; 0), the associated moving frame of order 0 is the lift with a = x,

b = u. The Maurer{Cartan forms fd�=�; da=�; db=�g are pulled back to provide the zeroth

order moving coframe, whose horizontal components are

�1 =
d�

�
; �2 =

dx

�
; �3 =

u
x
dx

�
: (5:14)

There is a single linear dependency �3 = I�2, but the resulting invariant I = u
x
does

not depend on the remaining group parameter, and hence cannot be used to normalize

it. To proceed further in such cases, we work in analogy with the preceding intransitive
case. Here the intransitivity is on the �rst order jet bundle, and is an indication of the fact
that this particular group exhibits the pathology of \pseudo-stabilization" of its prolonged
group orbits, cf. [36]. We therefore introduce an additional invariant one-form du

x
, whose

horizontal component is
�4 = u

xx
dx = K�2:

The resulting dependency leads to the lifted invariant K = �u
xx

which yields the desired
normalization � = 1=u

xx
and the second order moving frame. The associated invariant

coframe is
�2 = �4 = u

xx
dx; �1 = �J�2; �3 = I�2; (5:15)

yielding two fundamental di�erential invariants

I = u
x
; J = u

�2
xx
u
xxx

: (5:16)

The higher order invariants are found by di�erentiating J with respect to to �4 = u
xx
dx '

du
x
, so that a basic fourth order invariant is

K =
dJ

du
x

=
1

u
xx

dJ

dx
=
u
xxxx

u2
xx

� 2J2:

Note that dI=du
x
= 1, so that di�erentiating I produces nothing new. Thus, in this

case, we �nd two fundamental di�erential invariants, and require three, namely (I; J;K),
to parametrize the classifying curve that solves the associated equivalence problem. We

conclude that the phenomenon of pseudo-stabilization of group orbits is reected in the
moving coframe procedure by the premature appearance of di�erential invariants, whose

di�erentials are required to �nish the procedure. See [36], [37], for further discussion.

Remark : Interestingly, if the scaling acts di�erently on x and u, so the group is

A : (x; u) 7�! (�x + a; �
k
u+ b); (5:17)

for k 6= 1, then pseudo-stabilization does not occur. Such cases can be readily handled via
our basic method without any such intransitive normalizations.
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6. Reparametrization Pseudo-Groups.

The classical di�erential geometric applications of moving frames to curves and sur-

faces in Euclidean, a�ne, and projective geometry, cf. [6], [8], [17], can all be readily

implemented using the moving coframe algorithm. In each case, we consider the repara-

metrization equivalence problem for submanifolds, so that the underlying transformation

group is the Cartesian product of an in�nite Lie pseudo-group, namely the local di�eo-
morphism group D(X) of the parameter space, and a �nite-dimensional Lie group acting

on the manifold M . In this case, one can proceed by including the one-forms de�ning the

di�eomorphism pseudo-group in addition to the Maurer{Cartan forms corresponding to

the group action as in the original formulation. Once the problem has been formulated,
one can proceed to reduce and normalize as before. For simplicity, we just deal with planar

curves, although extensions to surfaces and curves in higher dimensional ambient spaces

can also be handled.

Example 6.1. Euclidean geometry of curves. The most well-known classical exam-
ple is the reparametrization equivalence problem for curves in the Euclidean plane, intro-
duced in Example 2.1 above. In this case, we are dealing with a �nite-dimensional group,
the Euclidean group E(2) on the plane, together with the pseudo-group D(1) consisting
of all smooth (local) di�eomorphisms of the line representing the change of parameter.
Thus, the entire pseudo-group G = D(1) � E(2) acts on the total space M = R�R2 with
coordinates (t;x) = (t; x; y). For the Euclidean component, we use a compatible lift

A0(x; y; �) =

�
R x

0 1

�
=

0
@ cos� � sin� x

sin� cos� y

0 0 1

1
A ; (6:1)

and compute the pull-back of the associated Euclidean Maurer{Cartan forms:

� = A
�1
0 dA0 =

�
R
�1
dR R

�1
dx

0 0

�
=

0
@ 0 �d� cos� dx+ sin� dy
d� 0 � sin� dx+ cos�dy
0 0 0

1
A : (6:2)

On the other hand, the pseudo-group D(1) is characterized by the invariance of the canon-
ical one-form � dt on the frame bundle F(R), cf. [25], and hence we include this additional
one-form in our moving coframe formulation. Restricting these four one-forms to a para-

metrized curve (x(t); y(t)) leads to

�1 = d�; �2 = (x
t
cos� + y

t
sin�) dt; �3 = (�x

t
sin�+ y

t
cos�) dt; �4 = � dt:

(6:3)

Now �2 = J1�4 and �3 = J2�4 are the linear dependencies, with associated lifted invariants

J1 =
x
t
cos�+ y

t
sin�

�
; J2 =

�x
t
sin�+ y

t
cos�

�
:

We normalize J1 = 1, J2 = 0 by setting

� = tan�1(y
t
=x

t
); � =

p
x
2
t
+ y

2
t
: (6:4)
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This immediately produces the �rst order moving frame

R =
1p

x
2
t + y

2
t

�
x
t

�y
t

y
t

x
t

�
; a =

�
x

y

�
; � =

p
x
2
t
+ y

2
t
: (6:5)

The canonical one-form � dt has been reduced to the fundamental arc length form ds =p
x
2
t + y

2
t dt for the Euclidean group. Substituting into (6.3), we are left with a �nal set

of one-forms on the parameter space

�1 = � �4; �2 = �4 = ds =
p
x
2
t
+ y

2
t
dt; �3 = 0: (6:6)

Here

� =
x
t
y
tt
� x

tt
y
t

(x2t + y
2
t )

3=2
=
x
t
^ x

tt

jx
t
j3

= x
s
^ x

ss
(6:7)

is the fundamental di�erential invariant for the Euclidean group | the curvature of the
plane curve. All higher order di�erential invariants are obtained by successively di�eren-
tiating the curvature with respect to arc length.

The classical Frenet equations for curves in the Euclidean plane are reformulations
of our �nal moving frame formulae. The rotational component in (6.5) is traditionally
written as R = (e1; e2), where e1 is the unit tangent and e2 the unit normal. (See
Section 7 below for details on the connection with the classical theory.) The translation
Maurer{Cartan forms �2 = ds, �3 = 0 are computed by the original formula as the entries

of R�1dx =

�
ds

0

�
, which reduces to the �rst Frenet equation

dx

ds
= e1. Similarly, the

Maurer{Cartan matrix

R
�1
dR =

�
0 ��
� 0

�
ds implies that

dR

ds
= R

�
0 ��
� 0

�
:

The columns of the latter matrix di�erential equation complete the system of Frenet equa-
tions:

dx

ds
= e1;

de1
ds

= � e2;
de2
ds

= �� e1: (6:8)

Finally, the Maurer{Cartan structure equations (3.2) for the Euclidean group reduce to

the classical Frenet{Serret equations for curves. See [12; p. 23], [17; p. 20], for details.

Remark : The reader can check that, if we restrict to curves which are the graphs
y = u(x) of functions, then the moving frame and moving coframe immediately reduce to
those obtained by the preceding method.

Remark : One can also compute, as in our original example, the full moving coframe

forms on the jet bundle, leading to a corresponding set of fundamental Euclidean-invariant
contact forms.
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Remark : Actually, since we are dealing with the full pseudo-group D(1) consisting

of all di�eomorphisms of R, the �nal one-form �4 = � dt in our moving coframe (6.3) is,
in fact, irrelevant | one could perform the same normalization (6.4) of � based on the

dependency between �2 and �3, the lifted invariant now being J2=J1 which is normalized to

zero by setting J2 = 0, leading to the same �nal moving coframe and curvature invariant.

Thus the calculations for parametrized curves and surfaces can, in fact, be done without
invoking the di�eomorphism pseudo-group. Nevertheless, in all examples we have treated,

the inclusion of the canonical one-form �4 on the parameter space leads to an immediate

identi�cation of the �nal invariant arc length element. Moreover, the restricted repara-

metrization equivalence problem does require the introduction of suitable one-forms that

characterize the pseudo-group of reparametrizations.

Remark : The problem of Euclidean equivalence of curves with �xed parametrizations,

as discussed in Example 2.1, can also be formulated and solve in the moving frame context.
Now we are in the intransitive framework, where the parameter t provides a scalar invariant.
Consequently, we retain the �rst three one-forms �1; �2; �3 in (6.3), but replace �4 by dt to

form the moving coframe. We normalize J1 = 0 as before, but now J2 = v =
p
x
2
t
+ y

2
t

forms a �rst order di�erential invariant | the speed of the particle. The �nal moving
frame has �1 = K dt, �2 = 0, �3 = v dt, �4 = dt, where K = x

t
y
tt
� x

tt
y
t
= v

3
� is a

second order di�erential invariant. The higher order di�erential invariants are found by
di�erentiating with respect to t. Note that the arc length ds = v dt is also an invariant
one-form, being an invariant multiple of dt, and hence one can, without loss of generality,
apply the arc length derivative d=ds to produce the higher order di�erential invariants
instead. Thus, in this case, a complete list of di�erential invariants is provided by v, �,
and their derivatives with respect to arc length.

Example 6.2. The equia�ne geometry of curves in the plane is governed by the
special a�ne group SA(2) = SL(2) nR2, acting on M = R2 according to

g : x 7�! Ax + a; x 2M; A 2 SL(2); a 2 R2
: (6:9)

We shall adopt a vector notation for the matrix A = (��) 2 SL(2), so that the column

vectors are subject to the unimodularity constraint

� ^ � = 1: (6:10)

It will be computationally convenient not to explicitly implement the unimodularity con-
straint (6.10) by solving for one of the parameters, but retain it as an additional constraint

that is to be respected during the course of the calculation. This method, i.e., treating
a subgroup of a larger Lie group via a collection of algebraic constraints, rather than
parametrizing it directly, has general applicability, and can be readily implemented as is

done in this particular case.

The Maurer{Cartan forms are computed directly as in Section 3, leading to

�1 = � ^ d�; �2 = � ^ d�; �3 = � ^ d�; �1 = � ^ da; �2 = � ^ da: (6:11)
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Note that the unimodularity constraint (6.10) implies that

� ^ d� = � ^ d�; (6:12)

which means that the matrix of Maurer{Cartan forms � = A
�1
dA must be trace free.

Choose the base point to be x0 = 0. Solving the compatible lift equations x = g�x0 = a

yields the zeroth order moving frame, which sets a = x. Substituting into the Maurer{

Cartan forms (6.11), we �nd that, for a parametrized curve x(t), the forms �1; �2 restrict

to the following two horizontal forms:

�1 = (� ^ x
t
) dt; �2 = (� ^ x

t
) dt: (6:13)

Their ratio produces the lifted invariant (� ^ x
t
)=(� ^ x

t
), which is normalized to 0 by

setting

� = �x
t
; (6:14)

for some scalar parameter �. Substituting (6.14) into the �rst Maurer{Cartan form �1 =
�^ d�, leads to the restricted form �

2(x
t
^x

tt
) dt. Assuming x

t
^x

tt
6= 0, the latter form

can be normalized to equal ��2 by setting

�� ^ x
t
= �

2(x
t
^ x

tt
); or � = �

2 x
tt
+ �x

t
; (6:15)

for some scalar �. However, applying the unimodularity constraint (6.10) to the normal-
izations (6.14), (6.15), we deduce that �3(x

t
^ x

tt
) = 1, and thus

� =
1

3

p
x
t
^ x

tt

: (6:16)

Note that (6.15), (6.16) reduce the form �2 to be minus the equi-a�ne arc length form

ds = 3

p
x
t
^ x

tt
dt: (6:17)

Furthermore, substituting (6.15), (6.16) into the second Maurer{Cartan form, we �nd

�2 = � ^ d� = J ds;

where the lifted invariant

J = �(x
t
^ x

tt
)1=3 +

x
t
^ x

ttt

3(x
t
^ x

tt
)4=3

is normalized to zero in the obvious manner. Therefore, the �nal moving frame is given by

� =
dx

ds
=

x
t

3

p
x
t
^ x

tt

; � =
d
2x

ds2
=

x
tt

(x
t
^ x

tt
)2=3

� x
t

3(x
t
^ x

tt
)5=3

; a = x: (6:18)
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The �nal Maurer{Cartan form becomes

�3 = � ^ d� = �ds;

where

� = x
ss
^ x

sss
=

(x
t
^ x

tttt
) + 4(x

tt
^ x

ttt
)

3(x
t
^ x

tt
)5=3

� 5(x
t
^ x

ttt
)2

9(x
t
^ x

tt
)8=3

(6:19)

de�nes the equi-a�ne curvature. As usual, all higher order di�erential invariants are
obtained by di�erentiating � with respect to the equi-a�ne arc length ds. This reproduces

the basic invariants of the equi-a�ne geometry of curves, [17]; see also [5] for applications

in computer vision.

As with the Euclidean case, we recover the classical Frenet equations as simple refor-

mulations of the �nal moving frame formulae. We identify the linear part

A = (e1; e2) = (x
s
;x

ss
)

of the �nal moving frame with the equi-a�ne frame at a point x(t) on the curve, so
that e1 = x

s
is the unit a�ne tangent vector, whereas e2 = x

ss
is the unit equi-a�ne

normal. Combining this with the Maurer{Cartan matrix A�1 dA =

�
0 1
� 0

�
ds leads to

the complete Frenet equations of planar equi-a�ne geometry, [12; p. 27]:

dx

ds
= e1;

de1
ds

= e2;
de2
ds

= � e1: (6:20)

See [17; x 7{3] for further details.
Example 6.3. The most complicated example treated in the literature, [7], is the

projective geometry of curves in the plane. Here the group is SL(3), acting on M = RP2

according to

g: (x; u) 7�!
�
�x+ �u+ 

�x+ �u+ �
;
�x + �u+ �

�x+ �u+ �

�
; detA = det

������
� � 

� � �

� � �

������ = 1: (6:21)

For simplicity, we deal with curves which can be expressed as the graphs of functions,
u = u(x), although the general case of parametrized curves can be handled via the same

sequence of normalizations. Choose the base point to be z0 = (0; 0). Solving g � (0; 0) =
(x; u) leads to the order zero moving frame in the formy

A =

0
@� � �x

� � �u

� � �

1
A ; where � =

1 + � [�(�� �u) + x(��� ��)]

� (�� �x)
: (6:22)

y In this example, we have chosen to implement the unimodularity constraint explicitly.
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The one-forms in the �rst order moving coframe are the entries of the pull-back of the

Maurer{Cartan matrix A�1 dA, which we label (in row order) as �1; : : : ; �8, the �nal entry
being �9 = ��1� �5, reecting the unimodularity of A. For simplicity, we just indicate the

salient features of the computation without dwelling on the details. (These computations

were done with the aid of some Mathematica routines written for this purpose.) The

�rst normalization comes from the ratio �6=�3, whose vanishing requires

� = �(u � xu
x
)� �u

x
:

Plugging this normalization back into the moving coframe forms and recomputing, we �nd

that we can normalize �3 = �2 by requiring

� = �x � u
�1=3
xx

:

In the next stage, we set �5 to zero by normalizing

� =
� (�u� �)u1=3

xx

u
x

� u
x
u
xxx

� 3u2
xx

3u
x
u
4=3
xx

:

At the next step, we can no longer just look at one-forms depending only on dx | these
do not produce any further invariants. However, we discover that �8 = J�2+�4, and hence
the rather complicated invariant J can be normalized to zero, leading to

� = �u�
u
x
u
xxx

� 3u2
xx

+

q
18��u8=3

xx
� P4

3�u5=3
xx

;

where
P4 = 3u

xx
u
xxxx

� 5u2
xxx

:

Next, the normalization �2 = ��7 requires

� =
3

p
L5

54u4
xx

; where L5 = 9u2
xx
u
xxxxx

� 45u
xx
u
xxx

u
xxxx

+ 40u3
xxx

:

The �nal normalization

� =
M

2
6 + P4L

2
5

3 3
p
4 u4=3

xx
L
7=3
5

; where M6 = (u
xx
D
x
� 4u

xxx
)L5

comes from setting �1 to zero. The �nal moving frame is explicitly given by

� =
�+ �(xu

x
� u)

u
x

� 3

u
x

3

s
2u5

xx

L5

;

� = x� � u
�1=3
xx

;

� =
uM

2
6 + 6u

x
u
xx
L5M6 +K4L

2
5

3 3

p
4u4

xx
L
7
5

;

� = u� � u
x

u
1=3
xx

;

� =
M

2
6 + P4L

2
5

3 3

p
4u4

xx
L
7
5

;

� =
M6

3u4=3
xx
L5

;

� =
L
1=3
5

3 3

p
2u4

xx

:

(6:23)
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The corresponding �nal coframe has

�2 = �6 = ��7 = ds =
3

p
L5

3 3
p
2 u

xx

dx = 3

s
9u2

xx
u
xxxxx

� 45u
xx
u
xxx

u
xxxx

+ 40u3
xxx

54u3
xx

dx;

(6:24)
which determines the well-known projective arc length element, while �4 = �8 = �� �3
yields the projective curvature invariant

� =
6u

xx
D
x
M6 � 7M2

6 � 32u
xxx

L5M6 + P4L
2
5

3
p
2L

8=3
5

: (6:25)

Again, all higher order di�erential invariants are found by di�erentiating the projective

curvature � with respect to the projective arc length ds. This relatively straightforward

computation reproduces the moving frame and the fundamental invariants for the projec-
tive geometry of curves. See Cartan, [7], for a variety of alternative methods to arrive at
the same basic result, and [36] for a Lie-theoretic approach to the projective di�erential
invariants.

In the classical moving frame method, one identi�es the columns of the 3� 3 moving
framematrixA = (P2;P1;P) as homogeneous coordinates for three points in the projective
plane RP2, the last columnP = � (x; u; 1) representing the point on the curve. The Maurer{
Cartan matrix

A
�1
dA =

0
@ 0 1 0
�� 0 1
�1 �� 0

1
A ds

reduces to the full set of projective Frenet equations,

dP

ds
= P1;

dP1

ds
= ��P+P2;

dP2

ds
= �P� �P1:

(6:26)

See also [12; p. 33 �.] for applications to projective curvature evolutions and computer
vision.

7. Connections with the Classical Moving Frames Method.

Although our initial identi�cation of a moving frame with a lift from the underlying
space to the Lie group appears in several other places, e.g., [16], [21], it is not completely

standard, so it is worth reviewing how it relates to the more usual geometric approaches,

e.g., [17]. Typically, the moving frame is realized as a collection of vectors (or, in the
projective case, points) in the underlying space. The reason that this works in the classical
cases, including Euclidean, a�ne, and projective geometry of submanifolds, is that it is

possible to identify the components of the group itself with objects in the underlying

transformation space. For example, in the Euclidean case, one identi�es a Euclidean group
element (R;a) 2 E(m) ' O(m)nRm with a vector a 2 Rm, together with an orthonormal

frame determined by the columns of the orthogonal matrix R. The zeroth order moving
frame, then, uses the lift a = x, where x is a point on the submanifold N � R

m, and
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the orthogonal matrix is identi�ed with an orthonormal frame in the ambient space based

at the point. The remaining ambiguity in the frame is up to orthogonal transformations,
which must then be resolved in an invariant manner. Similarly, in the equi-a�ne case, one

identi�es a group element (A;a) 2 SA(m) ' SL(m) nRm with a vector a 2 Rm together

with a unimodular frame determined by the columns of the matrix A. Again, the zeroth

order moving frame takes a = x to be a point on the submanifold, and the unimodular
frame becomes a set of vectors based at the point x. In both cases, the moving coframe

method introduces the Maurer{Cartan forms � = (�;�), where � = A
�1
dA, � = A

�1
da,

leading to the initial structure equations

dx = A � �; dA = A � �: (7:1)

The moving coframe forms satisfy the usual Maurer{Cartan structure equations (3.2),

which, in the classical cases, become the fundamental Cartan structure equations for Eu-
clidean or a�ne geometry.

Usually, one bypasses the order zero moving frame entirely, and proceeds directly to
the �rst order moving frame, in which the frame at the point x 2 N is split into two parts,
so that (using column vector notation)

A = (E;F ) = (e1; : : : ; en; f1; : : : ; fm�n); (7:2)

where the �rst n = dimN frame vectors form a basis for the tangent space TN to the
submanifold, while the remainder are left arbitrary, subject to the entire frame satisfying
the proper orthonormality or unimodularity condition. Thus, in the Euclidean case, the
vectors ff1; : : : ; fm�ng form an orthonormal basis for the normal space to N , whereas in the
equi-a�ne case they are left arbitrary subject only to the condition that the determinant
of the matrix (7.2) be unity. If we parametrize the submanifold by x(t1; : : : ; tn), then the
most general �rst order moving frame (7.2) will have the form

E = (e1; : : : ; en) = V �B; (7:3)

where

V = (v1; : : : ;vn); v
i
=
@x

@ti
; (7:4)

is the m � n Jacobian matrix, whose columns span the tangent space to N , while B is
an invertible n � n matrix. (In the Euclidean case, the matrix B is restricted so that the
columns of E are orthonormal, leaving an O(n) ambiguity.)

Let us show how this preliminary normalization to a �rst order moving frame is an
immediate consequence of our general normalization procedure. Using the zeroth order

moving frame lift, the pull-backs of the subset of Maurer{Cartan forms given by the entries
of � = A

�1
da can be written in matrix form as

� = A
�1
dx = A

�1
V dt:
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Precisely n of the m one-forms � are linearly independent, and hence we can normalize

so that the last m � n of these forms vanish. This requires that the matrix A satisfy the
block matrix equation

A
�1
V =

�
D

0

�
; (7:5)

where D is a nonsingular n�n matrix, while 0 denotes the zero matrix of size (m�n)�n.
Writing A = (E;F ) in block form (7.2), we see that (7.5) requires

V = E �D; or E = V � C; where C = D
�1
;

thereby recovering (7.3). Thus, we can see that in such cases, the �rst order frame recovered
by an order zero normalization coincides with the traditional �rst order frame involving

tangent and normal directions.

Similar considerations apply to the projective case. According to Cartan, [7], the

zeroth order frame can be identi�ed with a set of n+ 1 linearly independent points in the
projective space which are identi�ed with the columns of the matrix A 2 SL(n + 1). The
zeroth order lift, as in (6.22), amounts to identifying one of the columns with the point
on the curve x. More precisely, the column is a vector with n + 1 components, which are
interpreted as the homogeneous coordinates of x.

In more sophisticated versions, one realizes the moving frame on the submanifold
N �M as a section of the frame bundle F(M) over N , i.e., a section  :N ! F(M). One
can continue in this manner, and try to realize cases that do not so readily �t into this
simple framework by realizing them as sections of a suitable higher order frame bundle
Fk(M) over N , cf. [25]. Although this is possible to realize for all (regular, transitive)
transformation groups, the original geometrical realization has now been rather well ob-
scured, and such a reinterpretation does not, we think, o�er much insight or help in the
explicit implementation of the method.

Consequently, the method of moving coframes includes all the classical constructions
based on the indicated identi�cation of group elements with geometric objects on the trans-
formation space. However, once one steps beyond the traditional cases, such identi�cations
become much less apparent, and, in our opinion, attempting to mimic the Euclidean, a�ne,

and projective constructions directly on the transformation space has hindered the devel-
opment of any signi�cant extensions of the method. Furthermore, once one steps outside
the realm of \classical" moving frame geometries, one can no longer use the identi�cation

of the �rst order frame with tangent and normal directions. Our non-traditional exam-

ples all illustrate this | the �rst order frames do not include the tangent spaces to the
submanifolds in any obvious manner, because their na��ve identi�cation with subspaces of
Euclidean space is not necessarily invariant with respect to the given transformation group.

It is our view that, in order to attain their full range of applicability, the constructions

must be viewed in the purely group- or, more generally, bundle-theoretic framework that
we have presented here and develop in detail in part II.

8. Joint Di�erential Invariants.

New applications in computer vision, [33], have demonstrated the need for classi�ca-
tion and computation of the joint di�erential invariants or, as they are known in computer
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vision, semi-di�erential invariants, for a given transformation group. Speci�cally, one is

given a Lie group (or pseudo-group) G acting on M and considers its diagonal action
g � (z1; : : : ; zk) = (g � z1; : : : ; g � zk) on the k-fold Cartesian product M�k =M � � � � �M .

The invariants I(z1; : : : ; zk) of such a Cartesian product action are known as the k-point

joint invariants of the transformation group. Note that for j < k, any j-point invariant can

be regarded as a k-point invariant, in several di�erent ways. For example, the two-point
invariant I(z1; z2) produces three invariants on M

�3, namely bI(z1; z2; z3) = I(z1; z2), or

I(z1; z3) or I(z2; z3). If I is not symmetric in its arguments, these in turn lead to 3 further

invariants by interchanging the points. To avoid this trivial extension, we will reserve the

term k point invariant for a joint invariant which cannot be written as as one depending

on fewer than k arguments.

Similarly, the invariants of the prolonged diagonal action of G(n) on a k-fold Cartesian

product of jet space (Jn)�k are the joint di�erential invariants of k di�erent submanifolds

N1; : : : ;Nk
� M , which we view as a single submanifold N1 � : : : �N

k
of the Cartesian

product space M�k. In applications, the submanifolds N
j
= N are identical, but the joint

di�erential invariants are measured at k di�erent points along the given submanifold.

The method of moving coframes readily adapts to this slightly more general situation,
and immediately provides complete classi�cations of joint di�erential invariants for all of
the standard geometric transformation groups. Further examples and applications will be
discussed in a subsequent paper.

Example 8.1. Euclidean joint di�erential invariants. Consider the Euclidean group
E(2) acting on the plane M = R

2. We consider two-point di�erential invariants, corre-
sponding to the Cartesian product action

(x;y) 7�! (R � x+ a; R � y + a); x;y 2M; (R; a) 2 E(2); (8:1)

on M�2 ' R4. Note that the action is intransitive on M�2, with the interpoint distance

r = jzj ; where z = x� y; (8:2)

is the fundamental joint Euclidean invariant. (See [46] for a proof that all Euclidean joint
invariants can be written in terms of the elementary two-point invariants.) We can choose
the cross section to the orbits given by x0 = 0, y0 = (r; 0), which leads to the compatible

lift with

a = x; (r cos �; r sin �) = z = x� y: (8:3)

Therefore, all the group parameters are normalized by the initial compatible lift, and it
only remains to substitute (8.3) into the Euclidean Maurer{Cartan forms (3.5). The net
result is the following system of invariant forms:

�1 = z � dx; �2 = z � dy; �3 = r
2
d� = z ^ dz; (8:4)

where a � b and a ^ b are the standard dot and cross products between vectors in the

plane. Note that the forms (8.4) include the di�erential of the joint invariant (8.2) since

r dr = �1 + �2. Therefore, given two parametrized curves

x = x(t); y = y(s); (8:5)
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the �rst two one-forms (8.4) restrict to de�ne two invariant one-forms

�1 = (z � x
t
) dt; �2 = (z � y

s
) ds; (8:6)

while �3 = I1 �1 + I2 �2, where

I1 =
z ^ x

t

z � x
t

; I2 =
z ^ y

s

z � y
s

; (8:7)

are the two fundamental �rst order di�erential invariants, which, along with the original

joint invariant (8.2), form a complete system of �rst order joint di�erential invariants. The
identity

(a � b)2 + (a ^ b)2 = jaj2 jbj2 ; (8:8)

demonstrates that

J
2
1 =

jx
t
j2

(z � x
t
)2

= 1 +
(z ^ x

t
)2

(z � x
t
)2

is also a joint di�erential invariant, and hence (in the orientation-preserving case) one can
replace the one-forms (8.6) by the two Euclidean arc-length forms

�1 = J1 �1 = jx
t
j dt; �2 = J2 �2 = jy

s
j ds: (8:9)

Theorem 8.2. Every two-point Euclidean joint di�erential invariant is a function

of the interpoint distance r = jx� yj and its derivatives with respect to the two arc length

forms (8.9).

For example, to recover the Euclidean curvature �1 = jx
t
j�3 (x

t
^ x

tt
) of the �rst

curve, we di�erentiate

@I1

@�1

=
z ^ x

tt

(z � x
t
)2
� (z ^ x

t
)[(z � x

tt
) + jx

t
j2]

(z � x
t
)3

=
(z ^ x

tt
)(z � x

t
)� (z ^ x

t
)(z � x

tt
)

(z � x
t
)3

� I1J
2
1

=
(x

t
^ x

tt
) jzj2

(z � x
t
)3

� I1J
2
1 = �1r

2 � I1J
2
1 ;

where we have used the �rst of the following equivalent identities

(a ^ b)(c � d) + (b ^ c)(a � d)� (a ^ c)(b � d) = 0;

(a ^ b)(c ^ d) + (b ^ c)(a ^ d)� (a ^ c)(b ^ d) = 0:
(8:10)

Example 8.3. A more substantial example is provided by the two-point di�erential

invariants for the special a�ne group SA(2) = SL(2) n R2, acting on M = R
2. The

Cartesian product action

(x;y) 7�! (Ax + a; Ay + a); x;y 2M; A 2 SL(2); a 2 R2
; (8:11)
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is transitive on M�2. As in Example 6.2, we use the vector notation A = (��) 2 SL(2),

where � ^ � = 1.

In view of (8.11), we can choose the base point x0 = 0, y0 = (1; 0), noting that the

diagonal � = fx = yg � M
�2 is a singular two-dimensional orbit. This leads to the

compatible lift with
a = x; � = z = x� y: (8:12)

Substituting into the Maurer{Cartan forms (6.11), we �nd that, for a pair of parametrized

curves as in (8.5), the following horizontal forms:

(z ^ x
t
) dt; (� ^ x

t
) dt; (z ^ y

s
) ds; (� ^ y

s
) ds;

the �rst two being the pull-backs of �1; �2, and the latter being that of �1 � �1, �2 � �2.

Generically (i.e., provided x � y is not parallel to the tangent x
t
) we can normalize the

second form to zero, leading, in view of (8.12) and the unimodularity constraint, to

� =
x
t

z ^ x
t

; (8:13)

which, combined with (8.12) provides the complete moving frame. The remaining one-
forms are

�1 = z ^ dx = (z ^ x
t
) dt; �2 = z ^ dy = (z ^ y

s
) ds; (8:14)

which provide the fundamental invariant one-forms, and

�3 = �� ^ dy =

�
x
t
^ y

s

z ^ x
t

�
ds; �4 = �� ^ d� =

�
x
t
^ x

tt

(z ^ x
t
)2

�
dt:

The resulting linear dependencies provide the two basic di�erential invariants, consisting
of a single �rst order invariant

I =
x
t
^ y

s

(z ^ x
t
)(z ^ y

s
)
; (8:15)

and the �rst of the two second order invariants

J1 =
x
t
^ x

tt

(z ^ x
t
)3
; J2 =

y
s
^ y

ss

(z ^ y
s
)3
: (8:16)

Clearly J2 can be obtained from J1 by the interchange symmetry x $ y. Alternatively,
we use (8.10) to compute

@I

@�1

� I
2 = � (x

tt
^ y

s
)(z ^ x

t
)� (x

t
^ y

s
)(z ^ x

tt
)

(z ^ x
t
)3(z ^ y

s
)

=
(x

tt
^ x

t
)(z ^ y

s
)

(z ^ x
t
)3(z ^ y

s
)
= J1;

so that (8.16) are equivalent to the invariant �rst order derivatives of the single basic joint
invariant I.

Theorem 8.4. Every two-point equi-a�ne joint di�erential invariant is a function

of the fundamental �rst order invariant (8.15) and its derivatives with respect to the two

\joint arc length" forms (8.14).

The reader is invited to try to express the ordinary a�ne curvature in terms of the

derivatives of I. the same general method readily extends to multi-point invariants of
more general groups, including the projective group, as well as joint invariants for surfaces
and higher dimensional submanifolds. Additional examples and applications will appear

elsewhere.
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9. Pseudo-Group Actions.

The next case is that of in�nite Lie pseudo-groups, cf. [27], [29], [10], [40], [41].

See also [28], [43], for classical results on di�erential invariants of Lie pseudo-groups.

These are readily �t into the same general framework as follows. Assume, initially, that

the pseudo-group G acts transitively on the space M . By de�nition, a Lie pseudo-group

consists of an in�nite-dimensional family of invertible (local) transformations that form
the general solution to an involutive system of partial di�erential equations. We can

always characterize the transformations  :M !M in G as the projections of bundle maps

	:B ! B, de�ned on a principal �ber bundle B !M , that preserve a system of one-forms

� = f�1; : : : ; �kg de�ned on B:
	�� = �: (9:1)

The forms � will play the role of the moving coframe forms for the pseudo-group, and the

�ber coordinates of the bundle B will play the role of the undetermined group parameters.
Of course, in this case � does not form a full coframe on B. (It cannot, because the sym-
metry group of a coframe is necessarily a �nite-dimensional Lie group, [36].) A compatible
lift, or moving frame of order zero, is just an arbitrary section 0:M ! B. Such a section
de�nes a corresponding moving frame  = 0

� �:X ! B on any parametrized submanifold
�:X ! M . With these provisos, the normalization and reduction procedure proceeds as
in the �nite-dimensional situation.

Example 9.1. Consider the pseudo-group G consisting of (local) di�eomorphisms
on M = R2 of the form

�x = f(x); �u =
u

f 0(x)
: (9:2)

The Lie algebra of G is generated by vector �elds of the form

v
h
= h(x)@

x
� uh

0(x)@
u
:

This pseudo-group was �rst introduced by Lie, [27; p. 353], [31], in his classi�cation of
in�nite-dimensional pseudo-groups acting on the plane. We are interested in the action of
G on curves.

The �rst step is to construct a bundle B and one-forms on the bundle whose invariance

characterizes the pseudo-group transformations. In this case, away the axis u = 0, the
group transformations (9.2) form the general solution to the de�ning system of partial
di�erential equations

z
u
= 0; z

x
=
u

w
; w

u
=
w

u
; (9:3)

for �x = z(x; u), �u = w(x; u), cf. [44; p. 325]. The system (9.3) de�nes a submanifold
�:R ,! J

1(R2
;R

2) of the �rst jet space, parametrized by the coordinates (x; u; z;w;w
x
).

The pull-backs of the basic contact forms on J
1(R2

;R
2) to the equation submanifold R

are given by

�
z
= ��(dz � z

x
dx� z

u
du) = dz � u

w
dx;

�
w
= ��(dw � w

x
dx� w

u
du) = dw � w

x
dx � w

u
du:

(9:4)
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The Pfa�an system
�
z
= 0; �

w
= 0;

with independence condition dx ^ du 6= 0 is involutive on R, cf. [9], [3], [36]. Indeed, the
�rst Cartan character is s1 = 1, as it should be. Following a general procedurey presented

by Kamran, [23], we set dz = dw = 0, which amounts to pulling back to a level set of R
where u = u0 and w = w0 are constant. Choosing w0 = 1 we �nd that the contact forms

(9.4) reduce to the invariant one-forms

�1 = �udx; �2 = �w
x
dx � du

u
:

Therefore, the desired bundle B ' M � R will be coordinatized by x; u, and the
remaining jet coordinate, which we rewrite as � = w

x
for clarity. In other words, the

zeroth order moving coframe forms for the pseudo-group (9.2) will be

�1 = udx; �2 = �dx +
du

u
: (9:5)

Restricting to a curve u = u(x), and letting �
i
denote the horizontal component of �

i
, we

have the relation
�2 = (u�+ u

x
) dx = (u�+ u

x
)�1;

and so we normalize � = �u
x
=u. Thus the �nal invariant moving coframe is

�1 = udx; �2 =
du� u

x
dx

u
; (9:6)

the �rst providing a pseudo-group invariant arc length form, and the latter an invariant
contact form. Note that there are no dependencies among these one-forms, and hence
there are no di�erential invariants in this example. Indeed, it is not hard to see that
the prolonged actions of G are transitive on every jet space JnM , justifying the preceding
statement.

Example 9.2. We now extend the pseudo-group discussed in the previous example

to an intransitive action obtained by augmenting the transformation rules (9.2) by an
additional invariant coordinate y, so that the pseudo-group now has the form

�x = f(x); �y = y; �u =
u

f 0(x)
: (9:7)

This pseudo-group was introduced by Lie, [30; p. 373], in his study of second order partial
di�erential equations integrable by the method of Darboux. In his paper on group split-

ting and automorphic systems, Vessiot, [44], used (9.7) as one of two principal examples
illustrating his method. More recently, Kumpera, [26] again employed this pseudo-group

y Interestingly, this method is similar to our construction of the Maurer{Cartan forms in the

�nite-dimensional case.
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to illustrate his formalization of the Lie theory of di�erential invariants. Now we are inter-

ested in the equivalence problem and di�erential invariants for surfaces u = u(x; y) under
the pseudo-group (9.7). The Maurer{Cartan forms are given by supplementing (9.5) by

an additional coframe element �0 = dy. The linear dependency

�2 = �(u�+ u
x
) �1 �

u
y

u
dy

again produces the normalization � = �u
x
=u, along with the basic �rst order di�erential

invariant

I =
u
y

u
:

The �nal invariant moving coframe is

�0 = dy; �1 = udx; �2 =
du� u

x
dx

u
: (9:8)

The invariant total di�erential operators associated with the �rst two forms are

@

@�0

= D
y
;

@

@�1

=
1

u
D
x
: (9:9)

Applying them to the fundamental invariant I produce the second order di�erential in-
variants

J1 =
uu

yy
� u

2
y

u2
; J2 =

uu
xy
� u

y
u
x

u3
;

agreeing with the classical formulae. All higher order di�erential invariants are obtained
by successively applying the invariant total derivative operators (9.9) to the invariant I.
Similarly, the classifying surface associated with a generic surface u(x; y) is parametrized
by the three invariants (I; J1; J2); two surfaces are congruent under a pseudo-group trans-
formation if and only if their classifying surfaces are identical. Surfaces with higher order
symmetry occur when J1; J2 are functionally dependent upon I, in which case the classi-
fying surface, reduces to a curve, or when I is constant, so that u(x; y) = f(x)eky . Finally,
the most general second order partial di�erential equation admitting (9.7) (supplemented

by �y = y) can be written in the form

H

 
y;
u
y

u
;
uu

yy
� u

y

2

u2
;
uu

xy
� u

y
u
x

u3

!
= 0: (9:10)

These are the class of equations considered by Lie, [30; p. 374].

In his classi�cation of planar second order partial di�erential equations which admit

symmetry pseudo-groups, Medolaghi, [32], treats the same example, but rewritten in a
slightly di�erent coordinate system. The group transformations take the form

�x = f(x); �y = y + f
0(x); �u = u: (9:11)
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Applying the same method (or merely changing variables) leads to the invariant moving

coframe

�1 = e
�y
dx; �2 =

u
y

u
x

dx+ dy; �3 = du:

The basic di�erential invariants are

u; I = u
y
; J1 = u

yy
; J2 = e

y(u
y
u
xy
� u

x
u
yy
);

the latter two being obtained by applying the invariant di�erential operators

D
y
; e

y
�
D
x
� (u

x
=u

y
)D

y

�
;

to I. This recovers Medolaghi's form, [32; p. 249],

H
�
u; u

y
; u

yy
; e
y(u

y
u
xy
� u

x
u
yy
)
�
= 0; (9:12)

of Lie's equation (9.10). The pseudo-group (9.11) is the second of nine di�erent pseudo-
groups acting on a three-dimensional space that are isomorphic to the di�eomorphism
pseudo-group D(1), as classi�ed by Medolaghi, [32; p. 242]. The other eight pseudo-
groups can be handled by the same method, reproducing the di�erential invariants and
invariant di�erential equations catalogued there.

Example 9.3. Consider the in�nite Lie pseudo-group

�x = f(x) ; �y = yf
0(x) + g(x); �u = u+

f
00(x)y + g

0(x)

f 0(x)
: (9:13)

acting on the space M ' R
3 with coordinates (x; y; u). Here f(x) and g(x) are arbi-

trary smooth functions of a single variable x. The case g � 0 corresponds to the third of
Medolaghi's pseudo-groups, [32]; the present generalization was introduced by J. Pohjan-
pelto. The pseudo-group transformations can be characterized in terms of an involutive
system of invariant one-forms on a �ve-dimensional bundle B ! M , with coordinates
(x; y; u; �; �; ; �; "). These can be found by a similar method to that used in Example 9.1:

�1 = ��dx; �4 =
d�

�
� 

�
dx;

�2 = ��dy + u�dx; �5 =
d�

�
+
u

�
d � � � u"

�
dx � "

�
dy;

�3 = �du� � dx�  dy; �6 =
d

�
� "

�
dx:

(9:14)

It is easy to checked that a local di�eomorphism 	:B ! B satis�es 	�
�
i
= �

i
, i = 1; : : : ; 6,

if and only if it is a bundle map whose projection  :M !M has the form (9.13).

We now consider the equivalence problem for surfaces u = u(x; y) under the pseudo-

group (9.13). In order to invariantly normalize the bundle parameters, we replace du by
its horizontal component u

x
dx+ u

y
dy, which leads to the linear relation

�3 = J1 �1 + J2 �2;
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between the horizontal components �
i
of �

i
. The lifted invariants are

J1 =
u
x
+ � + u(u

y
+ )

�
; J2 =

u
y
+ 

�
:

Both J1 and J2 can be normalized to zero by choosing � = �u
x
and  = �u

y
, which

de�nes the �rst order moving frame. Substituting these values in the last two moving
coframe forms yields

�5 = �uxx dx+ u
xy
dy

�
� u(u

xy
dx+ u

yy
dy)

�
� � � u"

�
dx� "

�
dy

=
u
xx

+ 2uu
xy

+ u
2
u
yy

+ �

�2
�1 �

u
xy

+ uu
yy
+ "

�2
�2;

�6 = � (u
xy

+ ") dx + u
yy
dy

�
= �uxy + uu

yy
+ "

�2
�1 +

u
yy

�2
�2:

We can normalize the coe�cients of �1; �2 in both formulae by choosing

� =
p
u
yy
; " = �u

xy
� uu

yy
; � = �u

xx
� 2uu

xy
� u

2
u
yy
;

which produces the second order moving frame, given by

� =
p
u
yy
; � = �u

x
;  = �u

y
; � = �u

xx
� 2uu

xy
� u

2
u
yy
; " = �u

xy
� uu

yy
:

Finally, substituting into the last moving coframe form leads to �4 = �I1�1 � I2�2, where

I1 =
uu

yyy
+ u

xyy
+ 2u

y
u
yy

2u
3=2
yy

I2 =
u
yyy

2u
3=2
yy

(9:15)

are the principal di�erential invariants of the pseudo-group. The fundamental invariant
one-forms are

�1 = �
p
u
yy
dx; �2 = �

p
u
yy
(dy � udx);

so that the invariant total di�erential operators are

D1 =
1p
u
yy

(D
x
+ uD

y
); D1 =

1p
u
yy

D
y
:

As above, these can be applied to the basic di�erential invariants (9.15) to generate all
higher order di�erential invariants.

Example 9.4. In this example, we show how the well-known equivalence problem of
characterizing second order ordinary di�erential equations under the pseudo-group of �ber-
preserving transformations, cf. [20], [36], can be recast into the moving frame formulation,

and thereby solved by our moving coframe techniques. This example indicates a general
procedure for reformulating all Cartan-type equivalence problems, as in [11], [14], [36],

as moving frame equivalence problems under a suitable in�nite-dimensional Lie pseudo-
group. The main idea is to cast the original pseudo-group of equivalences into the involutive

bundle formulation presented above, and then view the original equivalence as a suitable
equivalence of submanifolds under the pseudo-group.
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We consider the trivial bundle M ' R�R, with coordinates x; u. Let G denote the

pseudo-group of �ber-preserving transformations, i.e., bundle maps

�x = �(x); �u =  (x; u): (9:16)

We let G(2) denote the associated second prolongation acting on J2, cf. [36]. A (regular)
second-order di�erential equation

�(x; u; u
x
; u

xx
) = 0 (9:17)

can be identi�ed with a hypersurface S� � J
2. Two such second order ordinary di�erential

equations are equivalent if and only if their associated surfaces are mapped to each other,

g
(2)(S

�
) = S�; (9:18)

by a prolonged �ber-preserving transformation g(2) 2 G(2).
In order to use the method of moving frames we need the structure equations of the

pseudo-group. These can be found by the Cartan prolongation algorithm, [11], [14], [36],
leading to the structure equations

d�1 = �1 ^ �1;
d�2 = �2 ^ �2 � �3 ^ �1;
d�3 = (�2 � �1) ^ �3 + �3 ^ �2 � �4 ^ �1;
d�4 = (�2 � 2�1) ^ �4 + �4 ^ �1 + �5 ^ �2 + �6 ^ �3;
d�1 = (�6 � 2�3) ^ �1;
d�2 = ��2 ^ �2 � �3 ^ �1;
d�3 = ��1 ^ �2 � �2 ^ �3 + �3 ^ �1 � �5 ^ �1;
d�4 = ��3 ^ �1 � �4 ^ �3 � �5 ^ �2 � 3�1 ^ �4 � �4 ^ �2 + 3(�3 � �6) ^ �4;
d�5 = �2�1 ^ �3 � �2 ^ �4 � �5 ^ �1 � �6 ^ �2 + 2�5 ^ �1 � �3 ^ �6;
d�6 = �2�1 ^ �2 � 2�2 ^ �3 � �4 ^ �1 � �1 ^ �6 + �5 ^ �1:

The Cartan characters are s1 = 5 and s2 = 1, the kernel dimension is 7, hence this system
is involutive.

The parametric values of the one-forms �
i
, �

j
, are determined by introducing the

group transformation matrix

S =

0
B@

�1 0 0 0
0 �2 0 0

0 �3�2�
�1
1 �2�

�1
1 0

�4�2�
�2
1 �5�2�

�2
1 �6�2�

�2
1 �2�

�2
1

1
CA ; (9:19)

where �
i
, �

i
are the �ber coordinates on the prolonged bundle. Equation (9.19) paramet-

rizes the structure group corresponding to the action of the �ber-preserving pseudo-group
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on J2; see, for instance, [36; p. 398] for the corresponding group on J1. The �rst set of

lifted forms are

0
B@
�1

�2

�3

�4

1
CA =

0
B@

�1 0 0 0

0 �2 0 0
0 �3�2�

�1
1 �2�

�1
1 0

�4�2�
�2
1 �5�2�

�2
1 �6�2�

�2
1 �2�1

�2

1
CA
0
B@

dx

du� u
x
dx

du
x
� u

xx
dx

du
xx

1
CA :

Furthermore, 0
B@
�1 0 0 0

0 �2 0 0

0 �3 �2 � �1 0
�6 �5 �4 �2 � 2�1

1
CA = S

�1
dS +
;

where 
 represents the absorbed torsion terms. The explicit formulas are

�1 =
d�1

�1

+
�6 � 2�3

�2

�1;

�2 =
d�2

�2

+
�3

�1

�1 � �2�2;

�3 =
d�3

�2

+
�3�6 � �5 � �

2
3

�
2
1

�1 � �1�2 � �2�3;

�4 =
�2

�
3
1

d�4 � �3�1 +
�6�5 + �3�5 � �3�

2
6 � �

2
2�5

�
2
2

�2 +
�
2
6 � �5 � �4�

2
1

�
2
1

�3 + 3
�3 � �6

�1

�4;

�5 =
d�5

�
2
1

� �3

�
2
1

d�4 + �6�2 � 2�1�3 � �2�4 � �5�1;

�6 =
d�6

�1
� �4�1 � 2�1�2 � 2�2�3:

We now assume, for simplicity, that the second order ordinary di�erential equation
(9.17) is given by the graph of a section �: J1 ! J2; this is equivalent to assuming that the
equation is normal, and solved

u
xx

= Q(x; u; u
x
); (9:20)

for its highest order derivative. (However, the moving frame method could be applied
without this assumption; doing the corresponding problem for non-normal equations using

the Cartan equivalence approach would be harder.) Pulling back the Maurer-Cartan forms

under the map � amounts to substituting for u
xx

according to (9.20) where-ever it occurs.
We denote the pull-back of �

i
by �

i
and of �

i
by $

i
. To apply the moving frame method,

we look for dependencies among the resulting one-forms. The �rst of these is

�4 = J1�1 + J2�2 + J3�3;
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where

J1 =
�2

�
3
1

�
�4 +

dQ

dx

�
;

J2 =
1

�
2
1

�
�5 � �6�3 +

@Q

@u
� �3

@Q

@u
x

�
;

J3 =
1

�1

�
�6 +

@Q

@u
x

�
:

(9:21)

Here
dQ

dx
=
@Q

@x
+ u

x

@Q

@u
+Q

@Q

@u
x

denotes the total derivative of Q, restricted to the equation manifold (9.20). The lifted

invariants (9.21) can all be translated to zero by choosing

�4 = � dQ

dx
; �5 = � @Q

@u
; �6 = � @Q

@u
x

:

We then pull-back the forms �5; �6, leading to

$5 � �
�
2�1 +

1

�2�1

Q
uux

� �3

�2
2
Q
uxux

�
�3;

$6 � �
�
2�2 +

Q
uxux

�2

�
�3;

modf�1; �2g

Translating the coe�cients of �3 to zero in $5 and $6 gives

�1 = � 1

2�1�2
Q
uux

+
�3

2�2
2
Q
uxux

; �2 = � 1

2�2
Q
uxux

;

which then leads to the pulled-back forms

$1 =
d�1

�1

�
�
Q
ux

+ 2�3
�1

�
�1;

$2 =
d�2

�2

� �3

�1

�1 +

�
1

2�2
Q
uxux

�
�2;

$3 =
d�3

�1

+

�
Q
u
� �

2
3 � �3Qux

�
2
1

�
�1 +

1

2�1�2

�
Q
uux

� �3Quxux

�
�2 +

�
1

2�2
Q
uxux

�
�3:

At this stage, we have reproduced the one-forms produced by the equivalence method in

[20; p. 394], to which we refer the reader for a further discussion of this example.
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10. Conclusions.

In this paper we have described, albeit without theoretical justi�cation, a systematic

procedure for determining moving frames and invariant di�erential forms for very general
Lie group and Lie pseudo-group actions. The moving frame and moving coframe can be

used to directly determine a complete system of fundamental di�erential invariants and

invariant di�erential operators for the given transformation group. These, in turn, have

immediate applications, including the solution to equivalence problems, classi�cation of
symmetry groups, rigidity theorems, construction of invariant equations and variational

principles, and so on. As we have demonstrated, the method not only readily reproduces

all of the standard examples of moving frames known in the literature, but is also in a form

that can immediately be applied to a host of new and interesting group actions, including
intransitive and ine�ective actions, in�nite-dimensional Lie pseudo-groups, joint actions,

and so on. The theoretical foundations of our method will be presented in the second
paper in this series. Additional applications, to di�erential invariants, to the theory of
Lie pseudo-groups, to automorphic systems, and to computer vision, will be the subject of
subsequent papers in this series. Some additional extensions that we intend to investigate
include:

(1) The moving coframe method, as described in this paper, parallels the explicit \para-
metric" approach to the solution of Cartan equivalence problems. Gardner, [14],
showed how, in such situations, one could perform an \intrinsic" computation,
based on the in�nitesimal group action on the torsion coe�cients, and thereby
determine the general structure of the solution. An interesting question is whether
one can implement an intrinsic version of the moving coframe algorithm.

(2) In [24] a inductive approach to complicated equivalence problems, based on the
solution to a simpler problem based on a subgroup of the full structure group, was
proposed; see also [36]. This method not only simpli�es the computations, but
also provides direct correspondences between the invariants of the two problems.
Is there a similar inductive version of the moving coframe method? For example,
does the computation of the moving frame for curves in the plane under, say, the

equi-a�ne group help simplify the corresponding projective computation, thereby
expressing the projective arc length and curvature directly in terms of its equia�ne
counterparts?

(3) In [5], a new scheme for generating invariant numerical approximations to di�eren-

tial invariants based on the use of joint invariants was proposed, and illustrated in
the planar Euclidean and equi-a�ne cases. The computation of joint di�erential
invariants using the moving coframe method strongly indicates that it could be ap-
plied to the general problem of invariant numerical formulae for more complicated

transformation groups. In particular, determining how joint invariants converge
to di�erential invariants as the points coalesce would be of great importance.

(4) An immediate and important application of the moving method would be to the clas-
si�cation of the di�erential invariants associated many of the fundamental groups

arising in physics. As remarked above, to date such classi�cations have not been

completed, even for some of the most fundamental groups of physical import.
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