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Abstract

Long time asymptotics are developed here for an Allen-Cahn/Cahn-Hilliard system derived
recently by Cahn & Novick-Cohen [11] as a di�use interface model for simultaneous order-
disorder and phase separation. Proximity to a deep quench limit is assumed, and spatial scales
are chosen to model Krzanowski instabilities in which droplets of a minor disordered phase
bounded by interphase boundaries (IPB) of high curvature coagulate along a slowly curved
antiphase boundaries (APB) separating two ordered variants. The limiting motion couples
motion by mean curvature of the APBs with motion by minus the surface Laplacian of the IPBs
on the same time scale. Quasi-static surface di�usion of the chemical potential occurs along
APBs. The framework outlined here should also be suitable for describing sintering of small
grains and thermal grain boundary grooving in polycrystalline �lms.
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1 Introduction.

The Allen-Cahn/Cahn-Hilliard system:

ut = 4�2r �Q(u; v)r
�F

�u
; (1.1)

vt = �
1

4
Q(u; v)

�F

�v
; (1.2)
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where

F =

Z



n�
2
f(u+v) ln(u+v)+(u�v) ln(u�v)+(1�(u+v)) ln(1�(u+v))+(1�(u�v)) ln(1�(u�v))g

+ �u(1� u)� �v2 +
1

2
�2fjruj2+ jrvj2g

o
dx (1.3)

is taken to be de�ned on a smooth bounded domain 
 � Rn; n = 1; 2; or 3. Neumann boundary

conditions are prescribed for u where u is a conserved order parameter, typically a concentration,

no-
ux boundary for the mass 
ux j = �Qr �F
�u

where Q = Q(u; v) is the mobility and � = �F
�u

is the chemical potential, and Neumann boundary conditions for v where v is a non-conserved

order parameter. Here � represents the temperature. This system of equations can be viewed as

a simplest prototype system which can exhibit simultaneous ordering and phase separation.

While a system similar in form to (1:1)-(1:3) with constant mobility Q and with a quartic

polynomial for the free energy F has been proposed by Eguchi, et. al. [19], a systematic derivation

of the Allen-Cahn/Cahn-Hilliard system has been given in Cahn & Novick-Cohen [11] based on

energetic exchange probabilities for an Fe-Al binary alloy system on a large but �nite BCC lattice.

In their derivation, the conserved and non-conserved order parameters u and v may be de�ned

roughly as

u(n) =
1

16

X
a2A

fc(n+ a) + c(n)g and v(n) =
1

16

X
a2A

fc(n+ a)� c(n)g

where c(n) represents the probability of �nding an Fe atom at site n of a given lattice segment and

A represents the set of nearest neighbors. The system (1:1)-(1:3) may then be obtained either by

taking respectively conserved and non-conserved gradient 
ow for u and v from a quasi-continuum

limit of a discretely de�ned free energy, or by further averaging the values of u and v over a

larger number of lattice neighbors and then taking a quasi-continuum limit in the discrete dynamic

equations. See also the discussions in Chen [15] and Chen & Khachaturyan [16]. An advantage of

the derivation given in [11] is that the relative size of the mobilities for the concentration equation

(1:1) and the order parameter equation (1:2) is predicted; in the derivation given in e.g. [19] this

is not the case.

Certain characteristics of the Allen-Cahn/Cahn-Hilliard system are easily ascertained. For

0 < � < �, linear stability analysis about a uniform homogeneous state indicates the onset of an

initial order-disorder instability. Under these conditions, it can be shown that at low temperatures

there exist two pairs of minimizers of the free energy with di�ering energies [11, x2]. The pair with

lower free energy can be approximated by (u; v) = (1
2
; �1

2
), and the other pair corresponds roughly

to (u; v) = (0; 0) and (1; 0). Since the mean mass u = 1

j
j

R


u dx is conserved under the evolution

of the (1:1)-(1:3) and since the Allen-Cahn/Cahn-Hilliard system corresponds to gradient 
ow in

H�1(
)�L2(
), if the mean concentration di�ers initially from 1

2
then the system can be expected

to evolve at late times towards a con�guration which is largely dominated by smoothly bounded

regions containing any of three equal depth minimizers of the free energy obtainable by a tie-line

construction. Combining the description of the early time behavior with the characteristics of late
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time behavior, it follows that conditional spinodal decomposition must occur, see Allen & Cahn

[2].

It is possible to envision a generalization of (1:1)-(1:3) involving n Allen-Cahn equations coupled

with m Cahn-Hilliard equations. Such a generalisation which also accounts for the underlying

lattice structure has been outlined in [11], see also Cahn, McFadden, and Novick-Cohen [12].

Recently, studies of systems of Cahn-Hilliard equations, known also as Morral-Cahn [29] systems,

have appeared, see for example Alt & Pawlow [4], Eyre [20], Elliott & Luckhaus [22], Elliott &

Garcke [21], Garcke and Novick-Cohen [23] and Bronsard, Garcke, and Stoth [7].

Questions of existence, uniqueness, regularity, and the existence of inertial sets have been ad-

dressed for the Allen-Cahn/Cahn-Hilliard system for the constant mobility case and with quartic

polynomial free energy F in Brochet, Hilhorst, and Novick-Cohen [6]. One should hope to prove

global existence and regularity of solutions (u; v) for the Allen-Cahn/Cahn-Hilliard system as given

in (1:1)-(1:3) for initial data in H2(
) � L2(
). Such solutions should be uniformly restricted to

the domain

0 < u+ v < 1 and 0 < u� v < 1:

As noted, during late times the system should to be dominated by a �nite number of regions in

which one of three minimizing phases prevail, and these regions can be expected to be separated by

thin interfacial regions. Since the system contains three types of minimizers, clearly the possibility

of "triple-junctions" or small transitional domains connecting the three types of minimizers arises.

The majority of this paper is devoted to formal asymptotics appropriate for the description of this

late time behavior and in particular for the description of the triple-junction motion. We outline

these formal asymptotics in a fair amount of detail, as we see them to di�er signi�cantly from the

triple-junction asymptotics given in the Allen-Cahn context [8].

It is useful to comment on the behavior which can be expected to occur. Note �rst that

the Allen-Cahn/Cahn-Hilliard system encompasses both the Allen-Cahn and the Cahn-Hilliard

equations, since taking the concentration u to be identically equal to 1

2
, the system reduces to a

Allen-Cahn equation, and by taking the non-conserved order parameter v is taken to be identically

equal to zero, the system is governed by a Cahn-Hilliard equation. Along interfaces separating

the minimizers (1
2
; �1

2
) known as ordered variants, the concentration should be roughly equal to

1

2
and hence in the neighborhood of such an interface, known as an antiphase boundary or APB,

the system should be approximately governed by the Allen-Cahn equation. In accordance with

the known behavior for Allen-Cahn equations [33], on a time scale � = t such an interface should

move by motion by mean curvature. Along interfaces known as interphase boundaries ( or IPB's

) which separate ordered variants and the minimizers (0; 0) or (1; 0) known as disordered phases,

both equations should be important though the slower behavior of the Cahn-Hilliard equation may

be expected to dominate. As formal asymptotics [32] rigorously justi�ed in [1], [17], [36] indicate,

on an appropriate time scale which is � times slower that the Allen-Cahn time scale for motion by

mean curvature, the Cahn-Hilliard equation evolves as a (non-local) Mullins-Sekerka type boundary

problem. Similar predictions have also been given recently by Giacomin and Lebowitz [25],[27] for

a Cahn-Hilliard like equation with non-local, derivable via Kawasaki lattice dynamics [26]. It has

been shown by Cahn, Elliott, and Novick-Cohen [9] that if the Cahn-Hilliard equation is considered
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with a mobility which vanishes in the pure phases u = 0 and u = 1 and with a free energy taken

to be of the form given by (1:3) with v � 0, then on the even slower time scale � = �2t, formal

asymptotics indicate that the interface moves by minus the surface Laplacian of the mean curvature.

Here, assuming similarly that the mobility vanishes in all three pure phases, we could expect to

obtain that the IPBs move by motion by minus the surface Laplacian of the mean curvature. The

di�culty which presents itself immediately is that in each of the previous analogue problems, the

limiting motion of interest occurs on di�erent time scales. This di�culty is addressed shortly.

Previous work on triple-junctions given in the context of a system of Allen-Cahn equations [8]

dictates a balance of forces or "Young's law" ( see Young [39] ) to govern the angles at which the

three interfaces meet at the triple junction. Since the coupling of motion by minus the surface

Laplacian of the mean curvature requires a coupling of higher order, additional conditions occur

at the triple-junction, and not surprisingly an extra condition arises which is based on a balance

of mass 
ux, a condition which is not to be expected for a system of Allen-Cahn equations which

is not mass conservative. In forthcoming work [23], both Young's law and a balance of mass 
ux

law arise at triple-junctions which occur when studying systems of Cahn-Hilliard equations with a

degenerate mobility matrix. In a short note [13], it is shown that if the curvature of the APB's is

taken to be O(�) and the curvature of the IPB's is taken to be O(1), then the resulting behavior

leads to motion by mean curvature coupled to motion by minus the surface Laplacian of the mean

curvature, but these two motions do not occur on the same time scale. See Fig. 1.i.

In the present paper, long time asymptotics are considered employing scaling assumptions

chosen to model the Krzanowski instability [3] near the deep quench limit when the disordered

phase is taken to constitute a minor phase, in which small droplets of the minor phase coagulate

along smooth slowly varying antiphase boundaries and detach at points of high curvature. In

order to capture this behavior, the curvature of the interphase boundaries bounding the droplets

of the disordered phase is assumed to be asymptotically large (O(��1=2)), and the curvature of

the antiphase boundaries is taken to be asymptotically small (O(�3=2)). Furthermore a time scale

� = �7=2t is assumed. By considering our system as a perturbation of the zero temperature limit, it is

easily checked that the free energy as de�ned gives rise to complete wetting. The discussions which

follow, however, do not preclude the non-complete wetting case which can arise from an alternative

(non-quadratic) zero-temperature free energy limit. Under these assumptions we demonstrate that

the limiting behavior then does indeed couple motion by mean curvature with motion by minus

the Laplacian of the mean curvature on the same time scale. At triple-junctions, the limiting

behavior is governed by Youngs law, a mass 
ux balance, and a condition on the sum of mean

curvatures which is implied by the continuity of the chemical potential. Both APBs and IPBs meet

the external boundary at 90�, and a no-
ux through the external boundary condition arises. Along

APBs, the chemical potential obeys a null surface Laplacian condition which can be construed

as quasi-static surface di�usion. Since ABP's and IPB's cannot spontaneously detach from the

external boundary (unless they detach in pairs) and since an APB or IPB cannot spontaneously

detach from a triple-junction, a kinetic or "persistence" condition [23] follows in both instances.

See Fig. 1.ii.

For the limiting motion, the volume of the disordered phase is conserved, as is the volume of the

union of each of the ordered phases. If the sum is taken over the length of all interfaces, weighting
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Figure 1.i: The limiting motion when the curvature of APBs is assumed to be O(�) and the

curvature of IPBs is assumed to be O(1), see [13]:
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Figure 1.ii: The limiting equations of motion under the assumption that the curvature of APBs is

O(�3=2) and that the curvature of IPBs is O(��1=2), see text.
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each APB or IPB segment by its respective surface energy per unit length (surface tension), then this

weighted sum is a non-increasing function of time and acts as a Liapunov functional for the system.

See equation (7:54). In this sense the behavior obtained is to be compared with surface di�usion

(SD) and surface aggregation limited kinetics (SALK) [14], both of which are mass conservative

and perimeter decreasing, and can be described as gradient 
ows [37]. Other equations of motion

for interfaces in a volume conservative framework have been prescribed either on phenomenological

grounds as in the early work by Mullins [30] in the context of thermal grain boundary grooving or

as in the more recent work by Wong, et.al. [38] in the context of the dynamics of solid thin �lms,

or via a constituitive approach as formulated by Davi and Gurtin [18] in the context of surface

di�usion.

While the Allen{Cahn/Cahn{Hilliard system of equations and the accompanying limiting equa-

tions of motion were constructed in [11] with the Krzanowski instability in mind, this setting should

also be appropriate for the consideration of other microstructural dynamics such as

i) grain boundary grooving of polycrystalline �lms,

or

ii) sintering of small grains.

In the context of the evolution of �lm microstructure ( for a recent review, see Srolovitz and

Goldiner [34]), our equations may be appropriate for describing thermal pitting [24] and grooving

[30], [35], if the main mechanism of variation of the upper surface of the polycrystalline �lm is

via surface di�usion, and if the main mechanism of alteration of the grain boundary groove is

by quasi-static di�usion and surface minimization. A similar discussion might be appropriate in

considering the sintering of small grains, where after an initial transient period exterior boundaries

might act e�ectively like highly curved IPBs and the internal boundaries might act as APBs with

lesser curvature, see [5]. While it may be possible to prescribe sharp interface models to describe

the dynamics for these phenomena on physical and phenomenological grounds as described above,

the ability to embed these sharp interface models in a di�use interface theory is desirable as it

permits a numerical context in which to run these models past possible topological changes. It

also lends a coherent framework in which to determine conditions at triple-junctions and external

boundaries based on a uni�ed set of scaling assumptions.

The outline of this paper is as follows. In x1, the underlying assumptions for our analysis are

carefully prescribed. The assumptions concerning the asymptotic behavior of the outer solutions

dominated by one of the three minimizers are given in x2 and are shown to be self-consistent. In x3,

the asymptotics for the inner solutions governing the behavior within APBs and IPBs is outlined.

Youngs law, the balance of mass 
ux, and the condition on the sum of curvatures are derived in x4.

The limiting conditions satis�ed at intersections of APBs and IPBs with external boundaries are

given in x5. In x6 the limiting equations are summarized and the proof is given that the area of the

disordered phase is conserved and that the surface energy weighted perimeter is a non-increasing

function of time. A short discussion is given in x7.
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2 Preliminaries.

In this paper we work with a system of Allen-Cahn/Cahn-Hilliard equations, written below as:

ut = 4�2r �Q(u; v)r�; (2.1)

vt = �
1

4
Q(u; v)

�F

�v
; (2.2)

where

� =
�F

�u
; (2.3)

and where the free energy F is given by

F =

Z



n�
2
f(u+v) ln(u+v)+(u�v) ln(u�v)+(1�(u+v)) ln(1�(u+v))+(1�(u�v)) ln(1�(u�v))g

+ �u(1� u)� �v2 +
1

2
�2fjruj2 + jrvj2g

o
dx: (2.4)

The mobility is taken to vanish in the "pure" phases; i.e., at either of the ordered variants or at

a disorderd phases composed entirely of either of the two components of the binary system. This

assumption generalises the mobility

M(u) = u(1� u);

considered in the original derivation of Cahn and Hilliard [10]. For simplicity we take

Q(u; v) = ~Q�4
i=1

�
(u+ v � wi

1)
2 + (u� v � wi

2)
2
�1=2

; (2.5)

where wi
j = [i+ j]mod2. The arguments presented should be readily extendable to somewhat more

general forms of mobility. We remark also that the free energy prescribed in (2:4) corresponds

to that of a system in which the external boundary is inert. To consider the case of non-inert

boundaries, additional terms should be included in the free energy.

The free energy given in (2:4) has two minimizers known as ordered phase variants located

transcendentally close (O(e�c=�)) to (u; v) = (1
2
; �1

2
) and given implicitely by

u =
1

2
; 2�v = �

n
ln
�1
2
+ v

�
+ ln

�1
2
� v

�o
; (2.6)

as well as two minima located transcendentally close to (u; v) = (0; 0) and (u; v) = (1; 0) known

as disordered phases which satisfy

� �(1� 2u) = �fln(u)� ln(1� u)g; v = 0: (2.7)

If

0 < � < �;
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then the free energy of the minima given by (2:6) is lower than that of the pair of minima given by

(2:7). Moreover, if the mean concentration of the system

�u =
1

j
j

Z



u(x; t) dx

is not equal to 1

2
then a tie line construction shows there to be three equal depth minima consisting

of the pair of minima given in (2:6) and one of the twominima from (2:7). Without loss of generality,

we assume these minima to be located transcendentally close to

�1
2
; �

1

2

�
;
�1
2
; +

1

2

�
; (1; 0): (2.8)

We shall assume throughout that � / �1=2:

In undertaking our asymptotic analysis, the time scale � = �7=2t is introduced and the Allen-

Cahn/Cahn-Hilliard system is written as

�5=2ut = 4�r �Q(u; v)r�; (2.9)

�7=2vt = �
1

4
Q(u; v)[Fv(u; v)� �24v]; (2.10)

� = Fu(u; v)� �24v: (2.11)

In addition, the system is assumed to be initially composed of internal sub-domains dominated by

one of the three minimizers of the free energy. As we wish to model the Krzanowski instability, the

mean concentration is be assumed to be close to �u; i.e., the disordered phase is taken to be a minor

phase. For simplicity, it is possible to imagine the system to initially contain precisely three internal

domains: two large sub-domains containing ordered phase variants, and a smaller internal domain

containing the disordered phase. Thin interfacial partitions with width of order � are assumed to

separate these three sub-domains. Partitions between ordered variants and the disordered phase are

known as interphase boundaries (IPBs), whereas partitions between two di�ering ordered variants

are known as antiphase boundaries (APBs). Away from the interfacial partitions, the solution is

assumed to be transcendentally close to one of the minimizing con�gurations. More precisely, in

such regions the solution is taken to be given by an the outer solution satisfying

u = u0i + T:S:T:; v = v0i + T:S:T:; (2.12)

where (u0i ; v
0
i ) corresponds to one of the three minimizers of (2:8), and

� = �0i + �1=2�
1=2
i + O(�); j = 4Q(u; v)r� = T:S:T:; (2.13)

where i = 1; 2 refers to the two ordered phase variants and i = 3 refers to the disordered phase.

We shall assume that these features of the initial con�guration maintain themselves throughout

the evolution of the system. The behavior of the outer solution is described in greater detail in

x3. Since the internal domains containing ordered phase variants are assumed to be large, it is
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reasonable to assume that the curvature of the antiphase boundaries is small. More speci�cally, we

assume that

Kantiphase = �3=2K3=2 +O(�2):

Similarly, as the disordered phase is assumed to be a minor phase, we assume the curvature of the

antiphase boundaries to be large, or more explicitely that

Kinterphase = ��1=2K�1=2+K0 +O(�1=2):

Intuitively, the reason for employing the �1=2 scaling is to distinguish the characteristic radius of

the disordered domains from the characteristic width (O(�)) of the interfacial partitions. This also

explains the necessity of the �1=2-expansions employed in (2:12){(2:13). We apologise to the reader

in advance for the clumsiness of the expansions in �1=2 which appear throughout, but we believe

it most appropriate to employ the characteristic interfacial partition width � as the predominant

variable. We remark that in a recent note [13], a similar initial three phase con�guration was

considered, but the disordered phase was not assumed to be a minor phase, and hence according

the curvature of the antiphase boundaries was assumed to satisfy

Kantiphase = �K1 +O(�2);

and the curvature of the interphase boundaries was taken to satisfy

Kinterphase = K0 + �K1 + O(�2):

Within the framework of that asymptotic analysis, all expansions were made in terms of �, and there

was no necessity for introducing the half powers. The e�ects of the two di�erent sets of assumptions

is critical, as the scaling employed in the present paper leads to motion on similar time scales along

both the interphase and antiphase boundaries, whereas the scaling introduced in [13] lead to fast

evolution of interphase boundaries and slow evolution of antiphase boundaries. The present set of

scaling assumptions is seemingly more appropriate for modeling the Krzanowski instability. For

simplicity, the three interfacial regions are assumed to meet at a unique triple junction located at

some internal point within the domain 
. A description of the behavior of the solution within the

interfacial partitions is given in x4 within the framework of inner solutions. In the proximity of the

triple-junctions and points of contact of the interfacial partitions with the exterior of the domain,

additional expansions must be made which are presented respectively in x5 and x6.

3 Outer Solution.

In this section, we outline our assumptions on the form of the outer solution, and we show that

these assumptions are consistent with the equations (2:9)-(2:11). In particular, we assume that the

outer solution,

u(x; t) = ui0 + (�1=2u1=2 + �u1 + �3=2u3=2 + O(�2))e�c=�
1=2

; (3.1)
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v(x; t) = vi0 + (�1=2v1=2 + �v1 + �3=2v3=2 +O(�2))e�c=�
1=2

; (3.2)

�(x; t) = �1=2�1=2 + ��1 + �2�2 +O(�3); (3.3)

j = (j0 + �1=2j1=2+ �j1 + �3=2j3=2 +O(�2))e�c=�
1=2

: (3.4)

where the pairs fui0; v
i
0g denote the ( three ) minimizers of the constrained free energy described

in x2, and where the notation T:S:T: indicates transcendentally small terms; i.e., O(e�c=�
1=2

) where

c is the same coe�cient as appears in the expression for u0 and v0.

With this in mind, we write equations (2:9)-(2:11) as

�7=2vt = �1

4
Q(u; v)�v; (3.5)

�5=2ut = 4�r �Q(u; v)r�u; (3.6)

where

�v � Fv(u; v)� �24u; �u � Fu(u; v)� �24v: (3.7)

Furthermore, we de�ne

j = �Q(u; v)r�u: (3.8)

(In the sections which follow, we shall refrain from using the �u; �v notation, and shall revert to

using a single chemical potential: � = �u.)

We now show that these assumptions are consistent. Let us assume that both �u and �v have

expansions of the form given in (3:3). From the assumptions on u and v given in (3:1) and (3:2)

and noting that Q(u; v) has regular roots at the pure phases, it follows that

Q(u; v) = O(e�c=�
1=2

):

Therefore, employing these two estimates, (3:6) and (3:5) are seen to be consistent with the expan-

sions (3:1) and (3:2). Similarly, in the context of equation (3:8), the assumptions (3:1)-(3:4) are

seen to be self-consistent.

We now check that the assumptions on the expansions for u and v and for �u and �v are

consistent with equations (3:7) and (3:7). Note �rst that u0 and v0 obviously solve the equations

Fu(u
0; v0) = 0 Fv(u

0; v0) = 0:

Linearizing, u1=2 and v1=2 are given as the solutions to

�1=2u = Fuu(u
0; v0)u1=2 + Fuv(u

0; v0)v1=2;

�1=2v = Fuv(u
0; v0)u1=2 + Fvv(u

0; v0)v1=2:

It is easy to check by solving for u1=2 and v1=2 and noting the form of u0 and v0 and the structure

of F , that the assumed form of expansions are self-consistent within this framework. Proceeding

to the equations for u1 and v1:

�1u = Fuu(u
0; v0)u1+Fuv(u

0; v0)v1+Fuuu(u
0; v0)(u1=2)2+2Fuuv(u

0; v0)u1=2v1=2+Fuvv(u
0; v0)(v1=2)2;

�1v = Fuv(u
0; v0)u1+Fvv(u

0; v0)v1+Fuuv(u
0; v0)(u1=2)2+2Fuvv(u

0; v0)u1=2v1=2+Fvvv(u
0; v0)(v1=2)2;

similar considerations again yield self-consistency. Higher order self-consistency may be readily

demonstrated by induction.
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4 The inner solution.

4.1 The inner solution for antiphase boundaries.

We recall from x2 that along antiphase boundaries, it has been assumed that

K = �3=2K3=2+ �2K2 +O(�5=2): (4.1)

Similarly, we set

u(x; t) = U(�; s; t) = U0 + �1=2U1=2 + �U1 + O(�3=2)

v(x; t) = V (�; s; t) = V 0 + �1=2V 1=2 + �V 1 + O(�3=2)

and

W = W 0 + �1=2W 1=2 + O(�);

where W = W (s; t) represents the normal velocity. The analysis of the equations which arise for

the evolution of the inner solution of the antiphase boundaries at the various di�erent asymptotic

levels is given below.

At O(��1)

0 = 4(Q(U0; V 0)�0�)�;

which integrated yields

Q(U0; V 0)�0� = b(s; t): (4.2)

Matching of the 
uxes within the interfacial region with the 
uxes in the outer region and noting

that Q(U0; V 0)�0� = n � j�1 , it follows that

b(s; t) = 0:

Assuming Q(U0; V 0) to be non-vanishing almost everywhere within the inner region, which is

reasonable since by matching considerations the inner solution must connect values which are

transcendentally close to the roots of Q(U; V ), we conclude from (4:2) that

�0� = 0;

and hence,

�0 = c(s; t): (4.3)

At O(��1=2), using (4:3)

0 = 4(Q(U0; V 0)�1=2� )�:

Following the same steps as in the O(��1) analysis,

�1=2 = d(s; t): (4.4)

At O(1) employing (4:3) and (4:4),

0 = 4(Q(U0; V 0)�1�)� (4.5)
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�0 = FU(U
0; V 0)� U0

�� (4.6)

0 = �
1

4
Q(U0; V 0)[FV (U

0; V 0)� V 0
��]: (4.7)

From (4:6)-(4:7) assuming Q(U0; V 0) to be non-vanishing almost everywhere in the inner region,

a heteroclinic orbit connecting equilibrium points which are transcendentally close to (1
2
; 1

2
) and

(1
2
; �1

2
) exists only if

�0 = 0:

With this in mind, we set �0 = 0 and assume U0 and V 0 to correspond to the heteroclinic orbit

given by the equations

0 = FU(U
0; V 0)� U0

�� (4.8)

0 = FV (U
0; V 0)� V 0

��: (4.9)

Integrating (4:5), noting that Q(U0; V 0)�1� = n � j0, and matching with the 
uxes in the outer

solution yields

�1 = e(s; t);

where e(s; t) = O(e�c=�
1=2

):

At O(�1=2),

0 = 4(Q(U0; V 0)�3=2� )� (4.10)

�1=2 = FUUU
1=2 + FUVV

1=2 � U1=2
�� (4.11)

0 = �
1

4
Q(U0; V 0)[FUVU

1=2 + FV V V
1=2 � V 1=2

�� ]: (4.12)

Again, (4:10) leads to the conclusion that

Q(U0; V 0)�3=2� = f(s; t) (4.13)

where f(s; t) is T:S:T:. By considering the boundary conditions at +1 and �1 and the de�nition

of the free energy F , it follows from (4:8) and (4:9) that U0 is symmetric and V 0 is anti-symmetric.

These considerations allow us to conclude from (4:11) and (4:12) that the null adjoint condition

imposes no constraint on �1=2, U1=2, and V 1=2, and that U1=2 is a symmetric function and V 1=2 is

an anti-symmetric function.

At O(�),

0 = 4
h
Q(U0; V 0)�2� + (QU(U

0; V 0)U1=2 + QV (U
0; V 0)V 1=2)�3=2� )�

i
(4.14)

�1 = FUUU
1 + FUV V

1 � U1
�� + FUUU(U

1=2)2 + 2FUUVU
1=2V 1=2 + FUVV (V

1=2)2 (4.15)

0 = �
1

4
Q(U0; V 0)[FUVU

1+FV V V
1�V 1

��+FV UU(U
1=2)2+2FV UVU

1=2V 1=2+FV V V (V
1=2)2]: (4.16)

Integrating (4:14) and matching with the outer solution

0 = 4
h
Q(U0; V 0)�2� + (QU(U

0; V 0)U1=2 +QV (U
0; V 0)V 1=2)�3=2�

i
+ g(s; t); (4.17)
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where g(s; t) is T:S:T:. From equations (4:15)-(4:16), since FUUU = FUV V is symmetric and FUUV =

FV V V is anti-symmetric no new condition is imposed on �1, U1, and V 1 by the null adjoint condition,

and it is easy to ascertain that U1 is symmetric and V 1 is anti-symmetric.

At O(�3=2)

�W 0U0
� = 4

h
(Q(U0; V 0)�5=2� + (QU(U

0; V 0)U1=2 + QV (U
0; V 0)V 1=2)�2�

+(QU(U
0; V 0)U1 + QV (U

0; V 0)V 1)�3=2� + (QUU(U
0; V 0)(U1=2)2 + 2QUV (U

0; V 0)U1=2V 1=2

+ QVV (U
0; V 0)(V 1=2)2)�3=2�

i
�
+ 4Q(U0; V 0)4s�

1=2 (4.18)

�3=2 = FUUU
3=2 + FUVV

3=2 � U3=2
�� + FUUUU

1U1=2 + FUUV (U
1V 1=2 + U1=2V 1) + FUV V V

1V 1=2

+
1

6
FUUUU(U

1=2)3 +
1

2
FUUUV (U

1=2)2V 1=2 +
1

2
FUUV VU

1=2(V 1=2)2 +
1

6
FUVV V (V

1=2)3 (4.19)

0 = �
1

4
Q(U0; V 0)

h
FV UU

3=2 + FV VV
3=2 � V 3=2

�� + FV UUU
1U1=2 + FV UV (U

1V 1=2 + U1=2V 1)+

FV V V V
1V 1=2 +

1

6
FV UUU(U

1=2)3 +
1

2
FV UUV (U

1=2)2V 1=2+

1

2
FUV VVU

1=2(V 1=2)2 +
1

6
FV V V V (V

1=2)3
i
: (4.20)

Imposition of the null-adjoint condition on (4:19)-(4:20) and symmetry considerations yield that

f(s; t) = 0: (4.21)

Integrating equation (4:18) between ���1=4 and ��1=4 and matching the 
uxes n � j1 with the

associated 
uxes in the outer solution, gives to leading order

�W 0[U0]1�1 = 4

Z 1

�1

Q(U0; V 0) dx4s�
1=2 = 0;

which reduces by virtue of the symmetry of the functions U0 and U1=2 and the positivity of

Q(U0; V 0) to the condition

4sd(s; t) = h(s; t) (4.22)

where h(s; t) is T:S:T:. Returning to (4:17) and using (4:21),

�2 =
1

4

Z �

�1

g(s; t)

Q(U0; V 0)
d~�+ k(s; t): (4.23)

Using (4:22) in (4:18) and integrating, an implicit formula for �5=2 is obtained

�W 0[U0]��1 = 4
h
Q(U0; V 0)�5=2� + (QU(U

0; V 0)U1=2 +QV (U
0; V 0)V 1=2)�2�

i
+ l(s; t) (4.24)

where l(s; t) is T:S:T:. By (4:19) and (4:20), U3=2 is symmetric and V 3=2 is anti-symmetric.

14



At O(�2)

�W 0U1=2
� �W 1=2U0

� = 4
h
Q(U0; V 0)�3� + (QUU

1=2 + QV V
1=2)�5=2�

+(QUU
1 + QV V

1)�2� + (QUU(U
1=2)2 + 2QUVU

1=2V 1=2 +QV V (V
1=2)2)�2�

i
�

+ 4Q(U0; V 0)4s�
1 + 4(QU(U

0; V 0)U1=2 +QV (U
0; V 0)V 1=2)4s�

1=2 (4.25)

and

�2 = FUUU
2 + FUV V

2 � U2
�� + symmetric terms in U i; V i; i = 0; : : : ;

3

2
: (4.26)

0 = �
1

4
Q(U0; V 0)

h
FV UU

2+FV V V
2�V 2

��+ anti-symmetric terms in U i; V i; i = 0; : : : ;
3

2

i
: (4.27)

Integrating (4:25) over the interval (���1=4; ��1=4) and applying symmetry considerations yields

4se(s; t) = m(s; t)

where m(s; t) is T:S:T:. Applying the null-adjoint condition (4:26)-(4:27) gives

Z 1

�1

�2U0
� d� = 0:

Noting by (4:13) and (4:14) that

4

Z 1

�1

�2U0
� d� =

Z 1

�1

U0
�

Z �

�1

g(s; t)

Q(U0; V 0)
d~�;

and integrating by parts

Z 1

�1

U0
�

Z �

�1

g(s; t)

Q(U0; V 0)
d~� = �g(s; t)

Z 1

�1

U0(�)� U0(1)

Q(U0; V 0)
d� = T:S:T:;

hence g(s; t) = 0:

At O(�5=2), it su�ces to consider the relevant asymptotic expansions for (2:9) and (2:10),

�5=2 = FUUU
5=2 + FUV V

5=2 � U5=2
�� � K3=2U

0
� + symmetric terms in U i; V i; i = 0; : : : ; 2;

�W 0V 0
� = �

1

4
Q(U0; V 0)[FUVU

5=2 + FV V V
5=2 � V 5=2

�� � K3=2V 0
�

+ anti-symmetric terms in U i; V i; i = 0; : : : ; 2]:

By the null-adjoint condition and symmetry considerations, to leading order

0 = W 0

"Z 1

�1

4(V 0
� )

2

Q(U0; V 0)
d�+

Z 1

�1

U0(�)� U0(�1)

Q(U0; V 0)
d�

#
+ K3=2

Z 1

�1

f(U0
� )

2 + (V 0
� )

2g d�: (4.28)
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4.2 The inner solution for interphase boundaries.

Proceeding as in the case of antiphase boundaries, but with the assumption now that

K = ��1=2K�1=2+ K0 + �1=2K1=2 + �K + �3=2K3=2+ O(�2);

similar expansions are assumed for U , V , and W as in x4:1, and the equations of evolution at the

various asymptotic levels are found.

At O(��1);

0 = 4(Q(U0; V 0)�0�)�;

which integrated yields

Q(U0; V 0)�0� = b(s; t):

Matching the mass 
ux in the inner region with the mass 
ux in the outer region, gives b(s; �) = 0:

Assuming as in x4:1 that Q(U0; V 0) is non-vanishing almost everywhere in the inner region then

yields that �0� = 0; or integrating

�0 = c(s; t): (4.29)

At O(��1=2); using (4:29)

0 = 4(Q(U0; V 0)�1=2� )�:

Following the steps of the O(��1) analysis, we obtain here similarly

�1=2 = d(s; t): (4.30)

At O(1); by (4:29) and (4:30)

0 = 4(Q(U0; V 0)�1�)� (4.31)

�0 = FU(U
0; V 0)� U0

�� (4.32)

0 = �
1

4
Q(U0; V 0)[FV (U

0; V 0)� V 0
��]: (4.33)

From (4:31), by integrating and matching with the 
uxes of the outer solution

n � j0 = Q(U0; V 0)�1� = e(s; t);

where e(s; t) is O(e�c=�
1=2

): Noting thatQ(U0; V 0) is also T:S:T: in the limit �! �1 and matching

the chemical potential with the chemical potential in the outer region yields that e(s; t) = 0.

Assuming that Q(U0; V 0) does not vanish almost everywhere in the inner region, (4:32)-(4:33)

reduce to

�0 = FU(U
0; V 0)� U0

�� (4.34)

0 = FV (U
0; V 0)� V 0

��: (4.35)

Matching the chemical potential with the chemical potential in the outer region,

�0 = c(s; t) = 0; (4.36)
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and (4:34)-(4:35) determine the heteroclinic orbit prescribed by (U0; V 0).

At O(�1=2);

0 = 4(Q(U0; V 0)�3=2� )� (4.37)

�1=2 = FUUU
1=2 + FUV V

1=2 � U1=2
�� � K�1=2U0

� (4.38)

0 = �
1

4
Q(U0; V 0)[FUVU

1=2 + FV V V
1=2 � V 1=2

�� �K�1=2V 0
� ]: (4.39)

From (4:37),

Q(U0; V 0)�3=2� = f(s; t)

where f(s; t) is T:S:T:. From (4:38) and (4:39) and the null-adjoint condition,

�1=2 = �
K�1=2

[U0]+�

Z 1

�1

f(U0
� )

2 + (V 0
� )

2g d�: (4.40)

At O(�),

0 = 4
h
Q(U0; V 0)�2� + (QU(U

0; V 0)U1=2 +QV (U
0; V 0)V 1=2)�3=2�

i
�
: (4.41)

Integrating (4:41) and matching the 
uxes with the outer region

Q(U0; V 0)�2� + (QU(U
0; V 0)U1=2 +QV (U

0; V 0)V 1=2)�3=2� = h(s; t) (4.42)

where h(s; t) is T:S:T:.

At O(�3=2), from (4:36)

�W 0U0
� = 4(n � j3=2)� + 4Q(U0; V 0)4s�

1=2: (4.43)

Integrating (4:43) between ���1=4 and �1=4 and matching with the outer solution, and using (4:40)

W 0 = �
44sK

�1=2

([U0]+�)2

Z ��1=4

���1=4
Q(U0; V 0) d� �

Z ��1=4

���1=4
f(U0

� )
2 + (V 0

� )
2g d�+ T:S:T:; (4.44)

which to lowest order may be written

W 0 = �
44sK

�1=2

f[U0]+�g2

Z 1

�1

Q(U0; V 0) d� �

Z 1

�1

f(U0
� )

2 + (V 0
� )

2g d�: (4.45)
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5 Triple-junction conditions.

5.1 Youngs law.

In this section, Young's law is derived O(�1=2) accuracy. Our analysis here follows closely the

analysis presented in [8]. The stretched variable

� =
x�m(t)

�

is introduced, where m(t) denotes the location of the triple-junction. The index i refers to one of

the three interfaces �i which meet at the triple-junction. For convenience, we denote the antiphase

boundary by �1 and the interphase boundaries which meet at the triple-junction by �2 and �3. An

isosceles triangle R� with base length proportional to �� ; 1=2 < � < 1 is constructed at the triple-

junction, such that its base is orthogonal to �i; i = 1; 2; or 3. Here we set �i = (�i; �i); where

�i is orthogonal to �i and �i is tangent to �i. See Fig. 5.i. In terms of this notation, equations

(2:10)-(2:11) may be written as

� = FU(U; V )�4�U

�7=2Vt = �1

4
Q(U; V )[FV (U; V )�4�V ]:

Figure 5.i: The T� construction used at the triple-junction.

Noting that

�7=2Vt = ��5=2r�V �m0(t) + �7=2
@V

@t
;
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the above equations may be written as

� = FU(U; V )�4�U (5.1)

0 = �1

4
Q(U; V )[FV (U; V )�4�V ] +O(�

2): (5.2)

Examining equation (5:2), clearly either Q(U; V ) must vanish or else FV (U; V ) � 4�V = 0.

However, since the roots of Q(U; V ) lie at the points (1
2
;�1

2
); (1; 0); (0; 0) and since the solution in

the transitional region contained in the triangle under consideration must connect the minimizers

of F (U; V ) which lie transcendentally close to points at which Q(U; V ) vanishes, we may assume

that Q(U; V ) 6= 0 almost everywhere within this transition region, and hence (5:1)-(5:2) may be

written as � �

0

�
= rUF (U)�4�U + O(�2); (5.3)

where U =
� U

V

�
: Following the expansions employed in x4, set

U = U0 + �1=2U1=2 + �U1 + �3=2U3=2 + O(�2)

V = V 0 + �1=2V 1=2 + �V 1 + �3=2V 3=2 +O(�2)

� = �1=2�1=2 + ��1 + �3=2�3=2 +O(�2)

and

W = W 0 + �1=2W 1=2 + �W 1 + �3=2W 3=2 +O(�2):

To obtain Young's law, we multiply (5:3) by @�1U and integrate over the triangle T�Z
T�

@�1U �
� �

0

�
dA =

Z
T�

[@�1U � rUF (U)� @�1U � 4�1U ] dA+O(�2(1+�));

which, following [8] may be written asZ
T�

@�1U �
� �

0

�
dA =

Z
T�

@�1 [F (U) +
1

2
j@�1U j

2 �
1

2
j@�1U j

2] dA�

Z
T�

@�1(@�1U � @�1U) dA: (5.4)

Noting that Z
T�

@�1U �
� �

0

�
dA = �1=2

Z
T�

[@�1U
0]�1=2 dA+ O(�(1+2�));

it follows by writing (5:4) schematically as I = II and employing Gauss's theorem that

0 = J � II�I = �

Z
@T�

[F (U)��U+
1

2
j@�1U j

2�
1

2
j@�1U j

2] �1 ds��

Z
@T�

[@�1U �@�1U ] �2 ds+O(�
1+2�);

where � = (�1; �2) is the unit exterior normal to T� and ds indicates counterclockwise integration

around the periphery of the triangle T�. From here, following the discussion in [8], it is possible to

conclude that

0 = 2 cos
2

Z 1

�1

F (U(�2); V (�2)) d�2
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+ 2 cos
3

Z 1

�1

F (U(�3); V (�3)) d�3 + o(1): (5.5)

Introducing the notation

Ei =

Z 1

�1

F (U(�i); V (�i)) d�i;

(5:5) may be written as

0 = cos 
2E2 + cos
3E3 + o(1): (5.6)

Rotating the axes and undertaking the same analysis again,

0 = cos 
3E3 + cos
1E1 + o(1); (5.7)

and

0 = cos 
1E1 + cos
2E2 + o(1): (5.8)

Since E2 and E3 both represent interfacial energies for IPBs, clearly

E2 = E3

from which it follows that


2 + 
3 = �: (5.9)

A special case to consider is the completely wetting case in which

E2 = E3 =
1

2
E1;

which by (5:6)-(5:8) implies


1 =
3�

2
and 
2 = 
3 =

�

2
:

5.2 The balance of 
uxes.

In this subsection, equation (2:9) and the construction presented in x5:1 are employed to derive a

"balance of 
ux" or "mass balance" condition at the triple-junction. Thus the stretched coordinates,

� =
x�m(t)

�

are introduced, where m(t) denotes the location of the triple-junction, and � = (�i; �i) where �i is

tangent to �i, �i is perpendicular to �i, and T� is an isosceles triangle whose sides are proportional

to �� ; 1=2 < � < 1 and whose base is perpendicular to �1 where �1 corresponds to the APB

separating the two ordered variants. Thus, in the present construction the isosceles triangle has a

�xed orientation relative to the three phases which meet at the triple-junction. Here � is the angle

at base of the isosceles triangle, and recall that by (5:9)


3 = � � 
2; (5.10)

20



where 
3(
2) is the angle between �3 (�2) and the �1-axis. See Fig. 5.i.

Within the triple-junction region, a solution is sought of the form

U = U0(�1; t) + �1=2U1=2(�1; t) + O(�);

V = V 0(�1; t) + �1=2V 1=2(�1; t) + O(�);

� = �1=2�1=2(�1; t) + O(�);

and we write (2:9) as

� �3=2m0(t) � r�1U = �r�1 � j +O(�
2); (5.11)

where, in accordance with the behavior of the normal velocities seen in x5, it is assumed that

m0(t) = O(1):

Integrating (5:11) over the isosceles triangle T�

��3=2m0(t) �

Z
T�

r�1U dA = �

Z
T�

r�1 � j dA+O(�2(1+�));

and using Gauss' theorem and the divergence theorem,

� �5=2m0(t) �

Z
@T�

�U ds = ��

Z
@T�

� � j ds+O(�2(1+�)); (5.12)

where � = (�1; �2) is the unit exterior normal to T�. Let us parametrize the contributions to these

integrals by expressing them in terms of the (�1; �1) coordinates. Denoting the integral on the l.h.s.

of (5:12) as I and the integral on the r.h.s. of (5:12) as II , each of these integrals is evaluated by

examining the contributions over the three sides @Tbottom, @Tleft, and @Tright of the triangle T�.

The integral II is treated �rst. Using the above construction it is easy to check thatZ
@Tbottom

� � j ds =

Z A2

A1

ê�1 � j ds; (5.13)

Z
@Tright

� � j ds =

Z A3

A2

"
�
cos(
2 + �)

sin(
2 + �)
ê�2 � j + ê�2 � j

#
ds; (5.14)

Z
@Tleft

� � j ds =

Z A1

A3

"
cos(
3 � �)

sin(
3 � �)
ê�3 � j + ê�3 � j

#
ds; (5.15)

where for i = 1; 2; 3; Ai is the vertex of the triangle T� opposite the angle �i. Noting now that since

it was shown in x4 that both for APB and for IPB interfaces �i, �
1=2, �1, and �3=2 are all functions

of s and t only,

j = �Q(U0; V 0)r� = ��1=2Q(U0; V 0)�1=2s (0+; t)ê�i + O(�
1); (5.16)

it follows from (5:13)-(5:15) that

lim
�!0

Z
@Tbottom

� � j ds = ��3=2
@

@s1
�
1=2
1 (0+; t)

Z 1

�1

Q(U0(�1); V
0(�1)) d�1+ O(�

(1+�)); (5.17)
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lim
R!1

Z
@Tright

� � j ds = ��3=2
@

@s2
�
1=2
2 (0+; t)

Z 1

�1

Q(U0(�2); V
0(�2)) d�2+O(�

(1+�)); (5.18)

and

lim
R!1

Z
@Tleft

� � j ds = ��3=2
@

@s3
�
1=2
3 (0+; t)

Z 1

�1

Q(U0(�3); V
0(�3)) d�3+O(�

(1+�)); (5.19)

where by the subscript i, it is implied that �
1=2
i has been obtained by matching the transition

layer solutions with the "outer" transition layer around the �i interface and si corresponds to an

arc-length parametrization along the �i interface. De�ning,

M0
APB =

Z 1

�1

Q(U0(�1); V
0(�1)) d�1

and

M0
IPB =

Z 1

�1

Q(U0(�2); V
0(�2)) d�2 =

Z 1

�1

Q(U0(�3); V
0(�3)) d�3;

II = �5=2M0
APB

@

@s1
�
1=2
1 (0+; t) + �5=2M0

IPB

"
@

@s2
�
1=2
2 (0+; t) +

@

@s3
�
1=2
3 (0+; t)

#
+ o(�5=2): (5.20)

Returning now to the integral I , we evaluate the contributions to I from each of the sides of

the isosceles triangle T�. Using the same parametrization as before

I = ��5=2m0 �

Z
@R�

�U0 ds

= ��5=2m0 �

Z
@Rbottom

�U0 ds� �5=2m0 �

Z
@Rright

�U0 ds� �5=2m0 �

Z
@Rleft

�U0 ds+ o(�5=2): (5.21)

Noting that all contributions to I are O(�5=2+�), and returning and noting that II = O(�5=2),

we see that I = o(II): Hence to lowest order the balance of 
uxes at the triple junction may be

expressed as

0 = M0
APB

@

@s1
�
1=2
1 (0+; t) +M0

IPB

"
@

@s2
�
1=2
2 (0+; t) +

@

@s3
�
1=2
3 (0+; t)

#
: (5.22)

5.3 Continuity of the chemical potential.

Under the assumption that the chemical potential is continuous at the triple-junction, it is possible

to demonstrate that the sum of the curvatures of the two interphase boundaries which meet at the

triple-junction should vanish. This is accomplished as follows. Recall that by equation (4:40)

�1=2[U0(+1)� U0(�1)] = �K�1=2

Z 1

�1

f(U0
� )

2 + (V 0
� )

2g d�:

Thus, summing together the two equations of this sort which arise along the interphase boundaries

which meet at a triple-junction, and noting that the energy per unit length along each interface
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are identical by construction and that the rôles of U0(+1) and U0(�1) are exchanged as we pass

from one IPB to the other, it is readily seen that

2X
i=1

K
�1=2
i = 0 (5.23)

where K
�1=2
i ; i = 2; 3 denote the mean curvatures of the two IPB's. Note further that continuity

of the chemical potential yields that

d(0+; t) = �1=2(0+; t)

where �1=2(0+; t) is determined by (4:40).

6 Conditions at junctions with the external boundary.

In this section conditions are developed which must hold at points of intersection of APBs and

IPBs with the external boundary of the domain, @
: As was the case with the conditions at the

triple-junction, it is convenient to look for Neumann type conditions and balance of 
ux conditions

separately.

6.1 The Neumann type condition.

The analysis here follows closely the analysis undertaken in x5:1. See also the discussion in [31].

Let

� =
x�m(t)

�
; (6.24)

wherem(t) is the point of intersection of an interface � (either an APB or an IBP) with the external

boundary, and set

� = (�; �);

where � is the component of � which is tangent to the interface at the point m(t) and � is the

component of the vector � which is normal to the interface at the point m(t), and a rectangle R�

of �xed proportions and with sides proportional to �� where 1=2 < � < 1 is constructed with the

point m(t) at the center of its lower side. The sides of the rectangle R� are denoted respectively by

@Rbottom; @Rleft; @Rtop; and @Rright, see Fig. 6.i.

Following the discussion in x4, let us rewrite the second and third equations of the scaled

Allen-Cahn/Cahn-Hilliard system (2:10)-(2:11) as

� �

0

�
= rUF (U)�4�U + O(�2); (6.25)
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Figure 6.i: The R� construction used at points of intersection of APBs and IPBs with the external

boundary.

where U =
� U

V

�
. In accordance with the behavior of the inner solutions, it is assumed that within

the transitional region,

U = U0 + �1=2U1=2 + �U1 + �3=2U3=2 + O(�2)

V = V 0 + �1=2V 1=2 + �V 1 + �3=2V 3=2 +O(�2)

and

� = �1=2�1=2 + �� + �3=2�3=2 + O(�2):

To proceed, multiply (6:25) by @��U , where � denotes the unit vector which is tangent to @
 at

the point m(t) and �� denotes a variable which is parallel to � and scaled as �, and integrate over

the rectangle R�.Z
R�

@��U �
� �

0

�
dA =

Z
R�

@��U � [rUF (U)�4�U ] dA+ O(�2(1+�)): (6.26)

Noting that

� = �1=2�1=2(s; t) + ��1(s; t) + O(�3=2) = �(0+; t) + O(�3=2);

it follows that Z
R�

@��U �
� �

0

�
dA =

Z
R�

@��(�U) dA+ O(�3=2+2�):
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Hence (6:26) may be written as

0 = J �

Z
R�

@��U � [rU(F (U)� �U)�4�U ] dA+ O(�3=2+2�): (6.27)

The treatment of the integral J is similar to the asymptotic analysis which appears in x5:1.

Thus we write J as

J =

Z
R�

@��

h
F (U) + �U +

1

2
j@��U j

2 �
1

2
j@n�U j

2
i
dA�

Z
R�

@n�(@��U � @n�U) dA+O(�3=2+2�);

where n denotes the unit exterior normal to @
 at m(t) and n� denotes a variable parallel to n and

varying on the �-scale. By Gauss' theorem

J = �

Z
@R�

h
F (U)��U+

1

2
j@��U j

2�
1

2
j@n�U j

2
i
� �� ds��

Z
@R�

h
@��U �@n�U

i
n�� ds+O(�3=2+2�); (6.28)

where � = (�1; �2) denotes the outward unit normal to @R�. All contributions to these integrals

along the boundary @R� vanish except in an (��; �) neighborhood of the point, taken to be unique,

where � intersects @Rtop and @Rbottom. For simplicity, � is taken to be proportional to �� . Other

contributions are O(�1=2+�) as we are essentially in the outer region where @�U = @�U = 0 and

F (U) � �U = ai(t) + O(�2) where ai(t) = O(�1=2) and the value of ai(t) depends on whether it

corresponds to one of the two ordered variants, or to the disordered phase. Moreover, since � �� = 0

along @Rtop and @Rbottom, only the second integral in J as written above is non-vanishing. In this

remaining integral, let us denote the two non-vanishing components as

J = Jtop + Jbottom:

Since the Neumann boundary conditions imply that @nU = 0 along @
, the contribution Jbottom

vanishes leaving only the contribution to Jtop to evaluate.

To this end, note that along @Rtop

� = cos � ê� + sin � ê� ;

and � = �n along @Rtop. Furthermore,

@n�U = � cos � U� � sin � U� ;

@��U = sin � U� � cos � U� :

Hence, changing variables by setting ds = �� sin � d�;

J = �2
Z �=�

��=�

h
�
1

2
sin 2� jU�j

2 + cos 2� U� �U� +
1

2
sin 2� jU�j

2
i
sin � d� +O(�3=2+�):

To evaluate this term, note that it follows from x4 that U is of the form

U = U0(�) +O(�1=2):

25



Similarly,

�(�) = �0 +O(�1=2): (6.29)

Therefore,

J =
1

2
�2 sin 2�0 sin �0

Z 1

�1

jU0
� j

2 d� + O(�1=2+�): (6.30)

Since the integral in (6:30) may be assumed to be non-vanishing and since both u and v satisfy

Neumann boundary conditions along the external boundary, we obtain from (6:30) that

� =
1

2
� + O(���1=2): (6.31)

Hence to lowest order

� =
1

2
�: (6.32)

6.2 The 
ux condition.

At this point we reintroduce the rectangle R� and the variable � = (�; �) constructed in x6:1, and

write equation (2:8) as

� �3=2m0(t) � r�U = �r� � j +O(�
2): (6.33)

Similarly, we set

U = U0 + �1=2U1=2 +O(�)

V = V 0 + �1=2V 1=2 +O(�);

and

� = �1=2�1=2 +O(�):

In accordance with the behavior of the normal velocity of the IPB and APB interfaces, it is assumed

that m0(t) = O(1). Integrating equation (6:33) over the rectangle R�,

� �3=2m0(t) �

Z
R�

r�U dA =

Z
R�

r� � j dA+O(�2(1+�)): (6.34)

By Gauss' theorem and the divergence theorem, (6:34) becomes

� �5=2m0(t) �

Z
@R�

�U0 ds = �

Z
@R�

� � j ds+ O(�2(1+�)) (6.35)

where as in x6:1, � denote the unit exterior normal to R�. Denoting the l.h.s. of (6:35) by I and

the r.h.s. of (6:35) by II , we evaluate the various contributions. To this end, we set

II =

Z
@Rbottom

+

Z
@Rleft

+

Z
@Rtop

+

Z
@Rright

:
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By the no 
ux boundary condition Z
@Rbottom

� � j ds = 0:

Similarly, the terms Z
@Rleft

� � j ds and

Z
@Rright

� � j ds

are vanishingly small as � ! 0 since these correspond to contributions evaluated in the outer

region where j = T:S:T:. Looking lastly at the remaining contribution which arises from @Rtop,

clearly away from an interval of width 2� around the point where � intersects the top section of

the rectangle, the rectangle is in the outer region where the 
ux is transcendentally small and

hence there is no non-neglible contribution. Using the notation � = (cos �; sin �) and ds = � sin �d�

introduced in x6:1 and recalling that

j = Q(U0; V 0)r� = �1=2Q(U0(�); V 0(�))�1=2s (0+; t)ê� +O(�);

it follows that

II = �5=2 sin2 ��1=2s (0+; t)

Z �=�

��=�

Q(U0(�); V 0(�)) d�+ O(�(2+�)):

Since by (6:31),

cos � = O(�1=2) and sin � = 1 +O(�1=2);

we �nd now that

II = �5=2�1=2s (0+; t)

Z �=�

��=�

Q(U0(�); V 0(�)) d�+ o(�5=2): (6.36)

It remains to examine the integral I . Clearly by (6:35), I = O(�5=2+�). Since II = O(�5=2), it

follows that I = o(II), and returning to (6:36), we see that for both APB and IPB interfaces,

@

@s
�1=2(0+; t) = 0: (6.37)

For IPB interfaces, this implies that

K1=2
s (0+; t) = 0; (6.38)

and for APB interfaces, this yields

ds(0+; t) = 0: (6.39)

7 Summary.

In summary, it has been shown in the previous sections under the assumption that time scales like

� = �7=2t and that the curvatures of the APBs and IPBs scale like �3=2 and ��1=2 respectively, that

the limiting equations of motion are given by
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W 0 = c1K
3=2 and

@2

@s2
�1=2 = 0 along APBs, (7.40)

W 0 = �c2
@2K�1=2

@s2
and K�1=2 = �
1�

1=2 along IPBs, (7.41)

where

c1 =

R1
�1f(U

0
� )

2 + (V 0
� )

2g d�R1
�1

4(V 0

� )
2

Q(U0; V 0)
d�+

R1
�1

U0(�)�U0(�1)

Q(U0; V 0)
d�

;

c2 =
4

f[U0]+�g
2

Z 1

�1

Q(U0; V 0) d� �

Z 1

�1

f(U0
� )

2 + (V 0
� )

2g d�;

and


1 = [U0]+�

"Z 1

�1

f(U0
� )

2 + (V 0
� )

2g d�

#�1
:

At triple-junctions:

Young's law: E1

sin �1
= E2

sin �2
= E3

sin �3
Ei =

R1
�1 F (U(�i); V (�i))d�i (7.42)

Balance of 
uxes:
@K

�1=2

1

@s1
(0+; t) +

@K
�1=2

2

@s2
(0+; t) = 
1

@�1=2

@s3
(0+; t) (7.43)

Continuity of chemical potential: �
1=2
1 (0+; t) = �

1=2
2 (0+; t) = �

1=2
3 (0+; t) (7.44)

A kinetic constraint: Persistence of triple-junctions. (7.45)

At points of contact of interfaces with the external boundary @
 :

APBs and IPBs intersect the external boundary at �=2: (7.46)

@�1=2

@s
= 0 along APBs and

@K�1=2

@s
= 0 along IPBs. (7.47)

APBs and IPBs do not detach from the external boundary. (7.48)

Certain properties of the limiting system are easy to ascertain. In particular,

Lemma 7.1 The area of the disordered phase is conserved.

Proof of Lemma 7.1
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Recall [28] that if r(t) is a closed curve, then

_A =

Z
r(t)

V ds; (7.49)

where A is the area enclosed by the curve r(t). From the information given in x2, disordered

regions are considered to be bounded by a �nite number of curves, connecting triple-junctions and

points on the exterior boundary. These bounding curves must either be IPBs or segments of the

exterior boundary. Let us denote by riIPB for i 2 IIPB the set of interphase boundary curves.

Furthermore, let us denote by Adisordered the total area of the disordered regions. For simplicity,

the perturbational indices on K and � will not be indicated.

Employing (7:49), and noting that the segments of the exterior boundary which surround dis-

ordered regions do not move, it follows by (7:41) that

_Adisordered =
X

i2IIPB

Z
ri
IPB

V ds = �c2
X

i2IIPB

Z
ri
IPB

Kss ds:

Hence, integrating
_Adisordered = �c2

X
i2IIPB

[Ks(s
i
2)� Ks(s

i
1)];

where si2 and si1 denote the upper and lower endpoints respectively of the curve ri(t). Let us now

regroup the contributions to the above expression in terms of IPBs emerging from particular triple-

junctions, noting in doing so that there is no contribution from the intersection of IPBs with the

exterior boundary by (7:47). Thus,

_Adisordered = c2
X

j2Jtriple

[Ks(s
j
1) + Ks(s

j
2)];

where Jtriple denotes an indexing of the set of triple-junctions and sj1 and sj2 denote the two IPBs

at the point at which they emerge from the jth triple-junction. Here, the convention has been

employed that that locally at each triple-junction the parametrization along each IPB is taken

to commence at the triple-junction. Employing the balance of 
uxes condition (7:43), the above

expression becomes
_Adisordered = �c2
1

X
j2Jtriple

�s(s
j
3):

Noting that each of the contributions lies on an APB, this last expression may be writtten as

_Adisordered = c2
1
X

i2IAPB

Z
ri
APB

�ss ds;

which vanishes by virtue of (7:40). 2

Lemma 7.2 The surface energy weighted interfacial length is a non-increasing function of time.

Proof of lemma 7.2
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It is well known, see e.g. [28], that if r(t) is a given curve in the plane, then

d

dt
Lr(t) = �

Z
r(t)

KV ds� ( _R+(t))tan + ( _R�(t))tan

where Lr(t) is the length of the curve r(t) and where R+(t), R�(t) denote the location of the

endpoints of the curve r(t), and ( _R+(t))tan and ( _R�(t))tan denote the tangential velocities of the

endpoints; i.e.,

( _R+(t))tan = _R+(t) � T+ ( _R�(t))tan = _R�(t) � T�

where T� denotes the unit tangent has been taken in the direction of the arc-length parametrization.

Using the convention that �+ = T+ and �� = �T� are unit tangent vectors emerging from the

triple-junctions and external boundaries,

d

dt
[�IPBLIPB + �APBLAPB ] = ��APB

X
i2IAPB

Z
ri
APB

KV ds� �IPB
X

i2IIPB

Z
ri
IPB

KV ds

� �APB
X

i2IAPB

h
_R+
i (t) � �

+ + _R�
i (t) � �

�
i
��IPB

X
i2IIPB

h
_R+
i (t) � �

+ + _R�
i (t) � �

�
i
: (7.50)

Note that all contributions in (7:50) are independent of the direction of the arc-length parametriza-

tion.

Claim: There is no net contribution from the motion of the endpoint of the curves friAPB ; r
i
IPBg

to (7:50).

Proof of the Claim.

It follows from (7:46)-(7:48) that there is no contribution from the points of intersection of

the APB and IPB curves with the exterior boundary. Regrouping the remaining contributions by

triple-junctions,

Contributions from endpoints =X
j2Jtriple

h
�IPBf _R

j
1(t) � �

j
1 + _Rj

2(t) � �
j
2g+ �APBf _R

j
3(t) � �

j
3g
i
: (7.51)

where _Rj
i and � ji denote respectively the velocity of the endpoint of �i and the emergent tangent

vector along the jth triple-junction. The subscripts i = 1; 2 and i = 3 refer to properties of the two

IPB's and of the APB respectively. It is easy to check that (7:42) implies that

�APB = 2 cos � �IPB ; (7.52)

where � = 1

2
�3; i.e., half the angle at the triple-junction opposite the emerging APB. Persistence of

triple-junctions implies the following kinetic condition

_Rj
1(t) � �

j
1 cos � = _Rj

2(t) � �
j
2 cos � = _Rj

3(t) � �
j
3 cos �: (7.53)
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Substitution of (7:52) and (7:53) into (7:51) completes the proof of the Claim.

To complete the proof of the lemma, the second integral on the right hand side of (7:50) is

integrated by part:

X
i2IIPB

Z
ri
IPB

KKss ds = �
X

i2IIPB

Z
ri
IPB

K2 ds+
X

i2IIPB

[K(si2)Ks(s
i
2)� K(s

i
1)Ks(s

i
1)]:

Taking arc-length parametrizations originating locally along each interface at every triple-junction

and noting that by (7:47) it is possible to neglect contributions from intersections with exterior

boundaries, we obtain

X
i2IIPB

[K(si2)Ks(s
i
2)� K(s

i
1)Ks(s

i
1)] = �

X
j2Jtriple

[K(sj1)Ks(s
j
2) + K(s

j
1)Ks(s

j
2)]:

From continuity of the chemical potential across the interface, the above expression may be

written as

= �
X

j2Jtriple

K(sj1)[Ks(s
j
1) + Ks(s

j
2)];

or, employing the balance of 
uxes and continuity of the chemical potential at the triple-junction,

=
X

j2Jtriple


21�(s
j
3)�s(s

j
3):

Pairing the ends of APB curves

= 
21
X

i2IAPB

[�(si2)�s(s
i
2) + �(si1)�s(s

i
1)]:

Noting that by (7:40)

�s(s
i
2) = ��s(s

i
1);

and

�(si2) = �(si1) + �s(s
i
1)(s

i
2 � si1);

it follows that

I = �
X

i2IAPB


21 [�s(s
i
1)]

2(si2 � si1):

Returning to (7:50),

d

dt
[�APBLAPB + �IPBLIPB ] =

� c1
X

i2IAPB

Z
ri
APB

K2 ds� c2
X

i2IIPB

Z
ri
IPB

K2
s ds� c2


2
1

X
i2IAPB

Z
ri
APB

[�s(s1)]
2 ds: 2 (7.54)
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8 Discussion.

Under low temperature, long time, and scaling assumptions appropriate for modeling the Krzanowski

instability, limiting equations of motion have been derived by formal asymptotics for an Allen-

Cahn/Cahn-Hilliard system with a minor disordered phase. The resultant motion couples motion

by mean curvature and motion by minus the surface Laplacian of the mean curvature, with quasi-

static di�usion of the disordered phase along the APBs. Further numerical studies are necessary

to test the applicability of the limiting equations to describe Krzanowski instabilities, sintering of

small grains, and grain boundary grooving in polycrystalline �lms. A rough count of the number

of equations derived indicates that the resultant system can be expected to be well posed, though

questions of existence and uniqueness for the resulting system of equations can be resolved using

the methods of [8] and [23].

Clearly though now that it has been shown to be feasible to couple di�ering types of geometric

motions, it should be possible to implement our approach in the context of systems of Allen-

Cahn/Cahn-Hilliard equations with degenerate mobilities and generalisations thereof, in order to

capture via asymptotics an understanding of further modes of microstructural evolution.
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Figure Captions.

1:i: The limiting motion when the curvature of APBs is assumed to be O(�) and the curvature of

IPBs is assumed to be O(1), see [13].

1:ii: The limiting equations of motion under the assumption that the curvature of APBs is O(�3=2)

and the curvature of IPBs is O(��1=2), see text.

5:i: The T� construction used at the triple-junction.

6:i:TheR� construction used at points of intersection of APBs and IPBs with the external boundary.
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