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1. Introduction

Advances in the understanding of material microstructure are playing an
important role in the development of many new technologies that depend
on material properties such as shape-memory, magnetostriction, and ferro-
electricity. Microstructure occurs in many materials as the fine-scale spatial
oscillation between symmetry-related states. In this article, we survey the
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95-05077, by the AFOSR through grant AFOSR-91-0301, by the ARO through grant
DAALO03-92-G-0003, by the Institute for Mathematics and its Applications, and by a
grant from the Minnesota Supercomputer Institute.
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Fig. 1. Photomicrograph of an austenitic-martensitic phase boundary (See
Section 3.9) for a single crystal of Cu-14 at.% Al-3.9 at.% Ni from the laboratory
of C. Chu and R. James. The martensitic phase is laminated or “twinned.” (Field

of view: 1.25 mm x 0.86 mm.)

recent development of numerical methods and their analysis to compute
microstructure in materials. We will be mainly concerned here with the
microstructure of martensitic crystals whose lattice structure oscillates be-
tween “twinned” states (see Fig. 1 and Fig. 2).

During the past several years a geometrically nonlinear continuum theory
for the equilibria of martensitic crystals based on elastic energy minimiza-
tion has been developed (Ericksen 1986, Ericksen 1987a, Ericksen 19875, Ball
and James 1987, James and Kinderlehrer 1989, Ball and James 1992). The
invariance of the energy density with respect to symmetry-related states
implies that the elastic energy density is non-convex and must have mul-
tiple energy wells. For a large class of boundary conditions, the gradients
of energy-minimizing sequences of deformations must oscillate between the
energy wells to allow the energy to converge to the lowest possible value.
Even though the deformation gradients of such energy-minimizing sequences
do not converge pointwise, certain kinds of averages of the deformation gra-
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Fig. 2. Photomicrograph of a second order laminate (See Section 3.10) for a single
crystal of Cu-14 at.% Al-3.9 at.% Ni from the laboratory of C. Chu and R. James.
(Field of view: 1.25 mm x 0.86 mm.)

dients converge for a large class of boundary conditions. This convergence
has been studied intensively using the Young measure (Tartar 1984, Kinder-
lehrer and Pedregal 1991, Ball and James 1992) and the H-measure (Tartar
1990, Kohn 1991).

A geometrically linear theory for the equilibria of martensitic crystals
was developed by Eshelby (1961), Khachaturyan (1967), Khachaturyan and
Shatalov (1969), Roitburd (1969), and Roitburd (1978), and Khachaturyan
(1983). This theory is nonlinear, though, because the energy density has
local minima at multiple stress-free strains. The relationship between the
geometrically linear theory and the geometrically nonlinear theory has been
explored by Kohn (1991), Ball and James (1992), and Bhattacharya (1993).
Most of the results for the geometrically nonlinear theory that we discuss in
this article have related counterparts for the geometrically linear theory.

These theories have presented a major challenge to the development and
analysis of numerical methods since they have features very unlike those of
the physical theories usually approximated by numerical methods. The pres-
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ence of microstructure has motivated the development of numerical methods
that can capture macroscopic information without resolving the microstruc-

ture on the physical length scale (which can vary from nanometers to mil-
limeters).

Although much progress has been made in the analysis of global minima of
models for the energy of martensitic crystals, such crystals typically exhibit
hysteretic behavior and are usually observed in local minima or in meta-
stable states (Burkart and Read 1953, Basinski and Christian 1954, Ball,
Chu and James 1994, Ball, Chu and James 1995). Since the analytic study
of these local minima is difficult, the computational approach offers an im-
portant tool for the exploration of meta-stable states. Thus, a further com-
putational challenge is presented by the multitude of local minima which
the numerical models necessarily inherit from the continuum models (Ball,
Holmes, James, Pego and Swart 1991), as well as the local minima that occur
from representing the same microstructure on the different scales possible
for a given grid.

Early three-dimensional computations and numerical algorithms for a ge-
ometrically nonlinear model of microstructure in martensitic crystals have
been given by Collins and Luskin (1989) for the In-20.7 at.% TI alloy,
and Silling (1989) has reported computations for a two-dimensional model
which exhibits microstructure. Later computational results and numeri-
cal algorithms for equilibrium problems are given in (Collins, Luskin and
Riordan 1993, Collins 1993a). Computations and numerical algorithms
for geometrically linear models of martensitic crystals have been given by
(Wen, Khachaturyan and Morris Jr. 1981, Wang, Chen and Khachaturyan
1994, Kartha, Castdn, Krumhansl and Sethna 1994, Kartha, Krumhansl,
Sethna and Wickham 1995).

A theory for the numerical analysis of microstructure was proposed in
(Collins, Kinderlehrer and Luskin 19914, Collins and Luskin 1991b) and ex-
tended in (Chipot 1991, Chipot and Collins 1992, Gremaud 1994, Chipot,
Collins and Kinderlehrer 1995). This theory has been used to give an analy-
sis of the convergence of numerical methods for three-dimensional, physical
models of microstructure in ferromagnetic crystals (Luskin and Ma 1992)
and in martensitic crystals with an orthorhombic to monoclinic (double
well) transformation (Luskin 1996a, Luskin 1996b) and a cubic to tetrago-
nal transformation (Li and Luskin 1996).

The theory for the numerical analysis of microstructure gives error esti-
mates for the local mixture, rather than the pointwise values, of the de-
formation gradients; so the representations of the same microstructure on
different scales are shown to yield almost identical macroscopic properties.
These estimates show that many macroscopic properties converge as the
length scale of the underlying microstructure converges to zero, which gives
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a justification for computing microstructure on a length scale that can be
orders of magnitude larger than the physical length scale.

The relaxed energy density for a given deformation gradient F € R3*3 is
given by the infimum of the average energy of deformations defined on a
smooth domain and constrained to be equal to an Fz on the boundary. Un-
der appropriate conditions, the infimum of the relaxed energy is attained by
deformations that are the limit of energy-minimizing (for the original energy)
sequences of deformations (Ekeland and Temam 1974, Dacorogna 1989). Al-
though an explicit formula or practical computational algorithm for the re-
laxed energy density (the quasi-convex envelope) is generally not known for
the non-convex energies used to model martensitic crystals, representations
of the polyconvex and rank-one convex envelopes have been given which
can be numerically approximated to give lower and upper bounds for the
relaxed energy density (Dacorogna 1989). These representations, especially
that given by Kohn and Strang (1986), have been used in (Nicolaides and
Walkington 1993, Roubitek 1994, Carstensen and Plechac 1995, Roubiéek
19964, Pedregal 1995a, Pedregal 1995b, Kruzik 1995).

The computation of the dynamics of the development and propagation of
microstructure is important for the modelling and control of materials with
microstructure. Swart and Holmes (1992) have studied the “viscoelastody-
namics” of a scalar, two-dimensional model, and Klouc¢ek and Luskin (1994a)
and Kloucek and Luskin (1994b) have computed the viscoelastodynamics of
a three-dimensional model for the In-20.7 at.% TI alloy.

This article focuses on computational methods for continuum theories for
single martensitic crystals. Our bibliography contains references to many
topics that we do not consider in detail in the text such as homogenization,
polycrystals, surface energy, and dynamics. We refer the reader to (Luskin
and Ma 1992, Luskin and Ma 1993, Ma 1993) for recent developments in
numerical methods and numerical analysis for the computation of the mi-
crostructure in the magnetization of ferromagnetic crystals.

2. Continuum Theory for Martensitic Crystals

We give here a brief outline of the geometrically nonlinear continuum theory
for martensitic crystals (Ericksen 1986, Ericksen 19874, Ericksen 19875, Ball
and James 1987, Ball and James 1992). The crystallographic background
for the topics treated in this section will be given in the forthcoming book by
Pitteri and Zanzotto (1996a). Martensitic crystals have a high-temperature
phase known as austenite, and a low-temperature, less symmetric phase
known as martensite. The austenitic phase exists in one variant, but the
martensitic phase exists in several symmetry-related variants and can form
a microstructure by the fine-scale mixing of the variants.
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2.1. The elastic energy and admissible deformations

We use the austenitic phase at the transformation temperature as the ref-
erence configuration @ C R? of the crystal. We assume that Q is either
a polyhedron or a smooth, bounded domain. We denote deformations by
functions y(z) : @ — R? and we denote the corresponding deformation
gradients by F(z) = Vy(z).

We shall denote the elastic energy per unit volume at temperature § and
deformation gradient F' € R3*® by ¢(F, ), which shall always be assumed
to be continuous and to satisfy the growth condition

#(F,0) > Ci||F||P — Co  forall F € R®*3, (2.1)

where Cy and C; are positive constants independent of F' € R**3, where we
assume p > 3 to ensure that deformations with finite energy are continuous
(see (2.4) below), and where we are using the matrix norm

3
| F|)? = Z F for I € R3*3.
ij=1

It is not realistic to consider deformations with arbitrarily large deforma-
tion gradients F(z) = Vy(z) within the theory of elasticity (we can expect
non-elastic behavior such as fracture and plasticity to occur at large defor-
mation gradients), so our use of the growth condition (2.1) can be viewed as
a mathematical convenience. Also, we will be concerned only with tempera-
tures in a neighborhood ( 6, 6y ) of the transformation temperature 7, so
we need only assume that the growth condition (2.1) is valid uniformly for
6€ (0L, 00).

We expect that observed deformations §(z) are local minima of the total
elastic energy

£@) = [ 6(Vi(z),0)de (22)

among all deformations satisfying appropriate boundary conditions and hav-
ing finite energy. However, we will see that there generally do not exist
energy-minimizing deformations to (2.2) for the non-convex energy densi-
ties ¢ that we use to model martensitic crystals, and so we must consider
energy-minimizing sequences.

Since p > 3 in the growth condition (2.1), we have that the deformations
with finite energy are uniformly continuous (Adams 1975), so we can denote
the set of deformations of finite energy by

W = {y € C(yR%): /ﬂqﬁ(Vy(a:),H) dz < oo} . (2.3)

We note that
W Cc WP (R C C(Q;R?), (2.4)
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where W1P(); R?) is the Sobolev space of measurable deformations y:Q -
R® such that (Adams 1975)

L lw@)P + V(@] de < oo.

In what follows (and above in the definition of & and W?), we shall often
suppress the explicit dependence on temperature where we do not think that
there is a danger of misunderstanding.

To model an unconstrained crystal, we define the admissible set of defor-
mations A to be the set of deformations of finite energy

A=W?,

and we consider energy-minimizing sequences of deformations for the prob-
lem

inf £(y). (2.5)
For a crystal that is constrained on the entire boundary by the condition
y(z) = yo(2), for all z € 09, (2.6)

for some yo(2) € W¢, we consider energy-minimizing sequences of defor-
mations for the problem (2.5), where the set A of admissible deformations
consists of all deformations of finite energy constrained on the boundary by
(2.6), that is,

A={yeW?:y(z) = yo(a), for z € IV} .

Our model and analysis can also accommodate more general boundary con-
ditions, such as the inclusion of boundary loads.

Admissible deformations should be orientation-preserving isomorphisms,
that is, det Vy(z) > 0 for all z € 2. However, we shall not explicitly impose
this constraint since we have found that computed solutions have always
satisfied this condition.

2.2. Frame Indifference and Crystal Symmetry

The elastic energy density ¢ is required to be frame indifferent or Galilean
invariant (Gurtin 1981), that is,

¢(RF,0) = ¢(F,0) for all R € SO(3) and F € R**3, (2.7)

where SO(3) denotes the set of orthogonal matrices with determinant equal
to 1. We assume that the energy density inherits the symmetry of the more
symmetric high temperature phase of the crystal when the domain of the
energy density is suitably restricted (Ericksen 1980, Pitteri 1984), so

S(R;FRT,0) = ¢(F,0)  forall R; € G, (2.8)
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where G = { R1,..., Ry} is the symmetry group of the austenite.

2.3. Local minima of the energy density

Near the transformation temperature, we will assume that the energy density
@(F,0) has local minima at the deformation gradients that describe the
austenitic and the martensitic phases, and is therefore non-convex. The
reference configuration has been taken to be the austenitic phase at the
transformation temperature, so the identity deformation gradient I describes
the austenitic phase, and by the frame-indifference of the energy density
(2.7), every R € SO(3) should then be alocal minimum of the energy density
@(F,0). We note that for simplicity we have neglected the thermal expansion
of the austenite in the above conditions, since the deformations describing
the austenitic phase are taken to be independent of temperature.

We shall assume that the energy density ¢(F,0) for the temperature 6
near the transformation temperature 67 also has local minima at the set of
variants

{R,U\RT : R; € G} ={Uy,...,Upy} (2.9)

which describe the martensitic phase. Here the U; = U;(6) are deforma-
tion gradients for an unstressed crystal in the low-temperature, martensitic
phase. It follows from the symmetry of the energy density (2.8) that

(U, 0) = --- = ¢(Un,0). (2.10)
Since M (defined in (2.9)) is equal to the number of cosets of the subgroup
in G, we have by Lagrange’s Theorem (Herstein 1975) that
ol
M|
It follows from (2.10) and the frame-indifference of the energy density (2.7)

that #(F,6) has local minima at the energy wells of each variant given by

U = SO(3)U; = { RU; : R € SO(3)} . (2.11)

M

If we denote the union of the energy wells by
U:UIUUUM,

then it follows from the frame-indifference (2.7) of the energy density and
(2.10) that

O(U,0) = p(Uy,0) = -+ = ¢(Upr,0)  forall U € U.

Also, since admissible deformations are required to be orientation-preserving
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isomorphisms, we shall always assume that det U; > 0, so by (2.9) and (2.11)
we have that

detU =detU; >0  forall U € U. (2.12)

2.4. The Orthorhombic to Monoclinic Transformation

We next present two examples of martensitic phase transformations. First,
we describe the symmetry group G and the corresponding martensitic vari-
ants { R;U; RT : R; € G} for the orthorhombic to monoclinic transformation
(Ball and James 1992). The symmetry group of the orthorhombic (high-
temperature) phase is composed of the rotations of 7= radians about an
orthogonal set of axes, so

G={1,-1+2e;®e;,-I+2e,Qey, -] +2e3Qe€3},

where {ey, €5, e3} is an orthonormal basis of R®. We recall that v @ w €
R for v, w € R? is the tensor product defined by (v ® w)y = vywy, or,
equivalently, (v ® w)u = (w - u)v for u € R>.

The variants of the monoclinic (low-temperature) phase can then be given
by

Uy=(-ne;Q®e;)D and Uy=(I+nesQe)D, (2.13)
where 1 > 0 and where D € R**? is the positive diagonal matrix
D =die; @ e; + daes ® €3 + daez @ e
for d,, d5, d3 > 0. We note that
{R;U\RT : R, €G} ={Uy, Us}.

2.5. The Cubic to Tetragonal Transformation

For the more common cubic (high-temperature) to tetragonal (low-temperature)
transformation, the group G is the symmetry group of the cube

g: {Rla-'-vR?A} ) (214)
which is given by the group of matrices
Ri = (~1)"Wegay @ €1 + (—1)"Periy @ €2 + (=1)"Vera) @ €5,

where v :{1,2,3} — {0,1};7:{1,2,3} = {1,2,3} is a permutation;
and det R; = 1. We also assume as above that { e;, ey, e3} is an orthonormal
basis of R®. The variants of the tetragonal phase can be taken to be

Uy =vl+ (vy—vi)es ®e, Uy =il + (va — v1)e; @ ea,
U3 = V]I+(V2—l/1)€3®€3 (215)
where 0 < vy, 0 < vy, and v; # v,. For this transformation,

{R,U\RT : R, € G} ={Uy, Uy, Us}.
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2.6. Global Minima of the Energy Density

The reference configuration has been chosen so that F = I'is the deforma-
tion gradient for the high-temperature phase at the transformation temper-
ature 6 = 6r. The elastic energy density should then predict that the high-
temperature phase (represented by F € SO(3)) is a global minimum for >
fr and the low-temperature phase (represented by U € U = U, U- - “Ulyr) is
a global minimum for § < f7. Thus, the elastic energy density should satisfy
the conditions that, for 8 > 6,

#(F,0) > §(R,0) for all F ¢ SO(3), R € SO(3); (2.16)

for 6 = 6r,
¢(F,0r) > ¢(R,07) = ¢(U,07) forall F ¢ SOB)uU, Re SO(3),U € U;
(2.17)

and for 0 < 67,
O(F,0) > $(U,0) foral F¢U,UeclU. (2.18)

2.7. The Ericksen-James Energy Density for the Cubic to Tetragonal
Transformation

The development of a computational model for martensitic crystals requires
the construction of an energy density ¢(F,6) that is frame-indifferent (2.7),
has the symmetry group of the crystal (2.8), satisfies the qualitative proper-
ties of the first-order phase transition (2.16)—-(2.18), and matches available
experimental data such as the linear elastic moduli of the pure phases and
the dependence of the transformation temperature on stress. The following
such energy density for the cubic to tetragonal transformation was devel-
oped by Ericksen and James (Ericksen 1986, Ericksen 1987a, Collins and
Luskin 1989):

_b(8) [(3Cu )2 (3022_ >2 (3033_ )2
oI 0) = 6 [(trC’ -l trC L)+ trC 1
c(8) /3Cyy 3C 3Cs3
T (trC’ B 1) (trC’ a 1> trC 1) (2.19)
2
d() | /3Cy, ? (3022_ )2 (3033_ >2
+_36—[(tr0 _1> e 1) Tlwe !

+5(Ch+ Cly+ Chy 4 Chy 4+ Gy + Clo) + f(1C = 3

where C = FTF is the right Cauchy-Green strain and trC is the trace of
C. The energy density (2.19) is frame-indifferent since it is a function of the
right Cauchy-Green strain C. Ericksen has also shown that it has the cubic
symmetry group, and that the coefficients b, ¢, d, e, and f can be chosen so
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that the energy density satisfies the qualitative conditions for the first-order
phase transition with

vi =vV1—¢ vy = V14 2e.
for 0 < € < 1 (Ericksen 1986).

Ericksen and James have also determined moduli that fit experimental
data for the In-20.7 at% TI alloy. These moduli are given by (6 in °C and
moduli in gigapascals)

b=0.38+(1.22x 1073)(8 - 6r), c = —29.23, d = 562.13
e = 3.26, f=5.25,
where the transformation temperature is 6 = 70°C. The size of In-20.7
at% TI crystals used in laboratory experiments is typically on the order of

several centimeters in diameter.
An easy calculation establishes that

d(U(€),0) = b(0)e* + ce + de*,

where U(e) = diag(+/1 + 2¢,4/1 — €,4/1 —€). Thus, ¢(U(¢),8) has a local
minimum in € corresponding to the austenitic phase at

€f) =0,
for all temperatures satisfying b(6) > 0 (or for § > —240°C). Further, there
is a local minimum at
=3¢+ \/9c? — 32db(0)
«(6) = 8d

corresponding to the martensitic phase for § < 6*, where 6* = 108.92°C
satisfies 9¢? — 32db(6*) = 0. Thus, €(6r) = 0.026.

3. Microstructure

In this section we will describe some examples and properties of microstruc-
tures.

3.1. Interfaces and the Rank-One Property

We first give a necessary and sufficient condition for the existence of a con-
tinuous deformation with a planar interface separating two regions with
constant deformation gradients F, € R3*® and Fy € R**?.

Lemma 1 Let n € R? |n] = 1, and s € R. There exists a continuous
deformation w(z) € C(R? R*) such that

Fy, for all x such that z-n < s,

Vuw(z) = { Fy for all z such that z-n > s, (3-1)
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if and only if there exists a € R® such that

F,=FR+a®n. (3.2)

Proof. If w(z) € C(R* R%) satisfies (3.1), then the equality of the direc-
tional derivatives of w(z) in directions orthogonal to the normal of the in-
terface implies that

Fiv=Fw for all v € R® such that v-n = 0.
Thus, we have that (3.2) holds with
a = Fin — Fyn.
Conversely, if (3.2) holds, then the deformation

w(z) = Fox for all z such that z-n < s,
~ | Fiz —sa for all  such that z-n > s,

is continuous and satisfies (3.1). O

Lemma 1 can be strengthened to state that if w(z) is a continuous defor-
mation whose gradient takes constant values Fy € R3*3 and F; € R3*3, with
Fy # I} in two regions separated by a smooth interface, then the interface
is planar and (3.2) holds for some a, n € R?, |n| = 1, with n a normal to the
planar interface. A more general result for a deformation with a gradient
taking two values can be found in Ball and James (1987). We also note that
the condition |n| = 1 above is not essential since we can always rewrite a®@n
by |nla® 7 when n # 0.

The above lemma motivates the following definition.

Definition 1 We say that Fy € R**® and F, € R**® are rank-one connected
if there exist a € R* and n € R?, |n| = 1, such that

F=F+a@n. (3-3)

3.2. Laminated Microstructure

More generally, if Fy, and F; are rank-one connected as in (3.3), then we can
construct a continuous deformation having parallel planar interfaces

Si={z€Q:z-n=ys}

for s; < +-+ < s, with the same normal n separating the layers in which the
deformation gradient alternates between Fy and F; by

w(z) = Foz + [/ X (s) ds] a, (3.4)
0
where x(s) : R — R is the characteristic function

[0 ifz € (syu,Sup1) for 0 <21 < m where [ € Z,
x(s) = 1 if 2 € (sa141,S2142) for 1 <21 +1 < m where | € Z,
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where we take s, = —oo and Sm+1 = 00. This deformation satisfies the
property that

Iy for all z such that x(z - n) =0,

\Y = I ' =
w(z) o+ x(z-n)a@n { Fy for all z such that x(z - n) = 1.

Deformations w(z) of the form (3.4) with layer thickness s;,; — s; small for
t=1,...,m are the simplest examples of microstructure.

We define ¢nin(#) to be the lowest attainable energy at the temperature
6, that is,

n(8) = mi .
Prin(60) = min o(F0) (3.5)
For § < 7 and Fy, F; € U, we have that
qsmin(o) = ¢(F070) = d)(Flae)
Thus, if § < 67 and Fy, Fy € U, then the deformation w(z) defined by (3.4)
attains the minimum energy, since

E(w) = /Qqﬁ(Vw(a:),H) dz = Pmin(f)meas Q.

Furthermore, if 6 > 6r and Fp, F) € U, then the deformations w(z) defined
by (3.4) are equilibria, since every F' € i{ is a local minimum of ¢(F, 0) (see
Section 2.3), and hence

E(w+ 2) — E(w) = /ﬂ [6(Vw(z) + Va(z),0) — ¢ (Vw(z),0)] dz > 0

for all z € W1 (Q; R%) such that ess sup,cq ||Vz(2)]|| is sufficiently small.

3.8. Surface Energy

The surface energy S associated with all the interfaces S; can be modelled
by

S(w)=a)_areal;, (3.6)
i=1

where a > 0 is the surface energy density and m is the number of interfaces.
For 6 < 07 and F,, Fy € U, the total energy is the sum of the bulk energy
and the surface energy given by

E(w) + S(w) = Pmin(0) meas + « Z area S, (3.7)

i=1
which is minimized when the deformation w does not have any interfaces,
that is, when w(z) = Fyz or w(z) = Fiz. So, how do we explain the pres-
ence of interfaces in martensitic crystals? We will see later in this section
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that the constraint of boundary conditions or the constraint of continuity be-
tween austenitic and martensitic regions can make deformations with closely
spaced interfaces energetically advantageous. The presence of interfaces can
also be explained by the meta-stability of such deformations (Abeyaratne,
Chu and James 1994, Ball et al. 1995).

For analytical and computational purposes, the surface energy is usually
modelled by a strain gradient term such as

S(w) = dQ/QVVw(:J;)~AVVw(x)da:, (3.8)

where & is the strain gradient coefficient. Here A is a sixth-order tensor such
that the surface energy density VVw(z)- AVVw(z) is positive definite, is
frame-indifferent, and has the symmetry properties of the crystal (Barsch,
Horovitz and Krumhansl 1987, Horovitz, Barsch and Krumhansl 1991).
Kohn and Miiller (1992a), Kohn and Miiller (1992b), and Kohn and Miiller
(1994) have given an analysis of the relation between (3.6) and (3.8) for some
scalar models, and they have presented results for the geometry, energy,
length scale of the microstructure for energy-minimizing deformations. In
addition, Miiller (1993) has given a detailed study of energy-minimizing
deformations for one-dimensional problems with an energy of the form

/01 [(%(z) - 1>2 <%(x) + 1>2 + w(z)? + & (%(m))z] dz

for the singular limit given by & — 0. Miiller’s work gives rigorous asymp-
totic results on the periodicity, length scales, and energy of energy-minimizing
deformations.

We expect under appropriate conditions that there exist smooth energy-
minimizing deformations ws(z) to the total energy

/Q [6(Vw(z), 0) + &*VVw(z)- AVVw(z)] de,

and that the deformations ws(z) for & — 0 are an energy-minimizing se-
quence for the elastic energy

/d)(Vw(:L‘),H) de. (3.9)
Q
Now let Q be a reference configuration and suppose that the deformation

wl®(z) : LQ — R3 is an energy-minimizing deformation defined on the
domain LQ = { Lz : z € Q} , with L > 0 for the total energy

/L [#(Vu(@), 6) + 6"V Vu(z) - AVVu(z)] da. (3.10)



COMPUTATION OF CRYSTALLINE MICROSTRUCTURE 15

It can then be seen that

1 ..
e, (T) = zw[a’L] (Lz) forall z € Q

is an energy-minimizing deformation on the domain 2 with the total energy

d2

L‘o’/n [d)(Vw(x), 0) LzVVw(a:)-AVVw(a:) dz.

Thus, we see that the properties of energy-minimizing deformations for the
total energy given by (3.10) for crystals on a domain LQ with I > & can
be investigated by considering energy-minimizing sequences of deformations
for the elastic energy given by (3.9) on a reference configuration €. This
approach has been rigorously justified by DeSimone (1993) for the micro-
magnetics problem (with the exchange energy playing the role of the surface
energy).

For those energies that include a surface energy such as (3.7) or (3.8), we
see that the surface energy determines the length scale and the geometry of
the layers of energy-minimizing deformations, but it often does not influence
many of the macroscopic properties of interest (Ball and James 1987, Ball
and James 1992). Also, the length scale at which the surface energy is
significant is usually orders of magnitude smaller than our numerical grid
scale, and the surface energy is often orders of magnitude smaller than the
expected discretization error. For this reason, we shall usually neglect the
surface energy in our discussion in this article.

8.4. Classification of Interfaces

We give in this subsection a complete description for both the orthorhombic
to monoclinic transformation (2.13) and the cubic to tetragonal transforma-
tion (2.15) of all interfaces separating two regions with constant deformation
gradients in either the martensitic or the austenitic phase (Ball and James
1987).

We start by showing that there does not exist a continuous deformation
with a planar interface separating two regions of the austenitic phase (Ball
and James 1987).

Lemma 2 There do not exist Ry, R; € SO(3) with Ry # Ry, such that
Ry and R; are rank-one connected.

Proof. If Ry € SO(3) and R; € SO(3) are rank-one connected, then
Ri=Ry+a@®n
for a € R® and n € R?, |n| = 1. Thus,
R'Ry =1+ R;'a®n.
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Hence,
Ry'Riv =10

for all v in the two-dimensional subspace { v € R? : n-v = 0} . Since Ry'R, €
SO(3), we have that R; = Ry, which proves the lemma. O

The following four lemmas (Ball and James 1987) show that for the or-
thorhombic to monoclinic transformation (2.13) and the cubic to tetragonal
transformation (2.15) each Fy € U; is not rank-one connected to any F; € U;
with Fy # Fy, but that every Fy € UY; is rank-one connected to two distinct
Fiel;forall j#1i,5€{1,---,M}.

Lemma 3 If F, € U; for some 7 € {1,---, M} , then there does not exist
Iy € U; with Fy # Fi, such that Fy and F; are rank-one connected.

Proof. If Fy = RyU; € U; and F, = R,U; € U; are rank-one connected
where R, R, € SO(3), then

RlUi = R()Ui +a®n
for a € R® and n € R?, |n| = 1. So,
Ri=Ry+a® U Tn. (3.11)

It then follows from (3.11) and Lemma 2 that R; = R, which proves the
lemma. O

The following lemma will allow us to reduce the problem of determin-
ing the rank-one connections for the orthorhombic to monoclinic transfor-
mation (2.13) and the cubic to tetragonal transformation (2.15) to a two-
dimensional problem.

Lemma 4 Suppose that U;, U, € U satisfy the conditions
Uses = Ules = Usez = Ules = ives (3.12)
for 7 # 0. If there exists R € SO(3), a € R?, and n € R® with |n| = 1, such
that
RU, =U; +a®n, (3.13)

then a-e3 = n-es = 0 and R = R(oe3) is the rotation matrix of angle o
about the axis ez, which satisfies

R(oe3)Uyv = Uyv (3.14)

for v € R3 satisfying v-n =v-e3 =0, v # 0.

Conversely, if (3.14) holds for some v € R® satisfying v - ez = 0, v # 0,
then (3.13) holds for R = R(oe3), n € R® satisfying n-e3 = n-v =0, || = 1,
and a = (RU, — Uy)n.
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Proof. We suppose that (3.13) holds. It then follows that
RU;=Ui+a®n=(I+a@ U Tn)U,, (3.15)
s0, since det U, = det U, # 0 by (2.12), we have that
det U, = det(RU,) = det(I + a ® U7 "n)detU; = (14 a - U; Tn) det U,.

Hence, it follows that

a-U7Tn =0. (3.16)
We have by (3.15) that
RU, U =T4+a@ U Tn, (3.17)
so we have for
C = (RULUNT (RULUTY) = (U,U7Y)T (U,U7Y) (3.18)
that
C=(I+U"n®a)(I+a® U Tn). (3.19)
Now it follows from (3.12) and (3.18) that
Ces = e3 (3.20)

and from (3.19) that
Ces=es+ (UTTn-es)a+ [a-es+ [a*(UTTn - e3)] U7 Tn. (3.21)

Since a and U Tn are linearly independent by (3.16), it follows from (3.20)
and (3.21) that

UTn-e3=0 and a-e3=0. (3.22)
Next, we have by (3.12) and (3.22) that
n-es=n- (U es) = 2U;7Tn-e3 = 0. (3.23)
We then obtain from (3.12), (3.13), and (3.23) that
VRez = RUjyez = (U, + a®n)es = Urez = ves. (3.24)

We have that Rez = ez by (3.24), so we can conclude that
R = R(oes),

where R(oe3) is a rotation matrix of angle o about the axis e3. The result
(3.14) now follows by (3.13) for v € R® satisfying v-n=v-e3 =0, v # 0.

Conversely, if (3.14) holds, then it is easy to check that (3.13) holds for
R = R(oe3), n € R® satisfying n-e3 = n-v = 0 with |n| = 1, and a =
(RU, — Up)n. O
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Lemma 5 We consider the orthorhombic to monoclinic transformation
(2.13). If Fy € U; fori € {1,2}, then for j #4,j € {1, 2}, there exist two
distinct Fy € U; such that F and F} are rank-one connected.

Proof.  Without loss of generality we may assume that Fy = U;, and we
show that there exist two distinct R € SO(3) such that

RU,=Uy+a®n (3.25)

for some a, n € R?, |n| = 1. Since (3.12) holds with # = 1, by Lemma 4 it is
sufficient to determine all o € R and v € Span{e;, es} , v # 0, such that

R(oe3)Usv = Uyv. (3.26)
Now there exist 0 € R and v € Span{e;, e;} , v # 0, such that
R(oes)Uyv = Uyv

if and only if there exists v € Span { e, e5} , v # 0, such that

|Uiv| = |Uyv]. (3.27)
For v = v,e; + vqey where vy, vy € R, we have that
|Uiv| = |Us| (3.28)
if and only if
109 = 0.

The solution to (3.28) given by v; = 0 or v = e, corresponds to the
obvious solution

Uy =U, +2n(ea®e1)D = Uy + 2ndies Q ey
to (3.25) given by n = e; and o = 0. The solution to (3.28) given by v, = 0

or v = e, corresponds to the solution to (3.25) given by
Upo-Upv _ d? — n?d?
[Uw||Uz0]  d} +7d3

n = ey, coso = for — 1< 0 <0.

We note that solutions v and —v to (3.28) give the same solutions to
(3.25). O

Lemma 6 We consider the cubic to tetragonal transformation (2.15). If
Fy € Y; for some ¢ € {1, 2,3}, then for any j # ¢, j € {1, 2,3}, there
exist two distinct F; € U; such that Fy and F are rank-one connected.

Proof. Without loss of generality we again assume that Fy = Uy and j = 2,
and we show that there exist two distinct R € SO(3) such that

RUQZ U1+G®TL (3.29)
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for some a, n € R?, |n| = 1. Since (3.12) holds with © = v;, by Lemma 4 it
is sufficient to determine all ¢ € R and v € Span{e;, es} , v # 0, such that

R(oe3)Uyv = Uyv. (3.30)
Again, there exist o € R and v € Span { e;, €2} , v # 0, such that
R(oes)Uyv = Uy

if and only if there exists v € Span{e;, e} , v # 0, such that

|Uyv| = |Usv|. (3.31)
For v = v,e; + voe, where v, v, € R, we have that
|Usv| = |Uao] (3.32)
if and only if
v? = v},

We have for the solution to (3.32) given by v = e; — e, the corresponding
solution to (3.29) given by

n — —
\/5 ! ?

and
Ul'l) . Uz’U 21/11/2
COS O = =

Uwol|Usv] v} + 03

where

™ .
0<0’<§ it vy >,

m .
——2‘<U<O lf vy > V.

We also have for the solution v = e; + e, of (3.32) the corresponding
solution to (3.29) given by

1
n = E(el —ey)

and
Ul’l) . Uz’v _ 21/11/2
|Uyo||Ugo| v} + v3

COsS O =

where

T .
0<a<§ it v > v,

vis .
—§<a<0 if vy > vy
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Thus, the solutions to (3.29) give two distinct families of parallel interfaces
corresponding to

1 1
n=——(e +e and n=—(e; —e,).
\/5( 1+ €2) \/5(61 €2)
It follows from symmetry that there are four additional distinct families of
parallel interfaces corresponding to

_—1—6 e n—ie—e
n—ﬂ(l"l' 3), —\/5(1 3)

and

1 1
n = E(ez + e3), n = %(ez — e3).

O

The homogeneous austenitic phase can be separated from the homoge-
neous martensitic phase by a planar interface with normal n if and only if
there exist a rotation R € SO(3) and vectors a € R® and n € R?, |n| = 1,
such that

RU;=I4+a®n (3.33)

for some ¢ € {1,...,M} where U; is one of the variants defined by (2.9).
The following theorem gives a necessary and sufficient condition for (3.33)
to have a solution.

Lemma 7 We suppose that U; for i € {1,..., M} is one of the variants
given in (2.9). There exist a rotation R € SO(3) and vectors ¢ € R3 and
n € R%, |n| = 1, such that

RUZ:I+a®n

if and only if the eigenvalues 0 < ? < 02 < 2 of UT U; satisfy the condition
that 72 = 1.

Proof. The proof of this lemma follows from a more general result in (Ball
and James 1987, Ball and James 1992). O

The condition 72 = 1 is rare and is only observed in some alloys at a specific
temperature and composition.

For the cubic to tetragonal transformation (2.15), we have that if v; < vs,
then 72 = 02 = v? and 92 = vi. (Note that the v; are defined by (2.15)

and that the 72 are defined above in Lemma 7.) If v, < vy, then #? = v2
) 1 2

and 72 = v = vi. It thus follows from Lemma 7 that the homogeneous
austenitic phase can be separated from the homogeneous martensitic phase
by a smooth interface if and only if v, = 1. We give a self-contained proof

of this result in the following lemma.
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Lemma 8 We consider the cubic to tetragonal transformation (2.15). If

vi # 1, then there does not exist a rotation R € SO(3) and vectors a € R3
and n € R% |n| = 1, such that

RU; =I4+a®n (3.34)
forany i€ {1,2,3}.If vy =1, then

Ui=T+(ra—1)e; Qe (3.35)
forany i € {1, 2, 3} .

Proof. We first assume that v; # 1 and v» = 1 and that there exist a
rotation R € SO(3) and vectors @ € R* and n € R?, |n| = 1, such that (3.34)
holds for some 7 € {1, 2, 3} . We have that |RU;v| = |v| if and only if v lies
in the one-dimensional subspace spanned by e;. However, |(I+a®n)v| = |v|
for all v that lie in the two-dimensional subspace, such that v-n = 0, which
contradicts (3.34).

We next assume that v; # 1 and v, # 1. By multiplying (3.34) by its
transpose, we have

U= (RU) RU; =(I+n®a)(I+a®n), (3.36)

since UT = U; and RT = R~! because R € SO(3). Further, a is nonzero,
because otherwise (3.34) implies that U; € SO(3). Now a X n is an eigen-
vector of (I +n®a) (I + a ® n) with eigenvalue 1, so we have reached a
contradiction, since 1 is not an eigenvalue of U? in this case.

The proof of the result (3.35) follows directly from the definition of the
U; given in (2.15). O

Bhattacharya (1992) has shown that martensitic crystals exhibiting the
shape-memory phenomenon that is important for many technological ap-
plications can be expected to have a transformation that is approximately
volume preserving, that is, det U; = detI or v?v, = 1. Hence, we do not
expect to observe the homogeneous austenitic phase separated from the ho-
mogeneous martensitic phase by a smooth interface in martensitic crystals
which exhibit the shape-memory phenomena. We shall see in Section 3.9
that if

1/1<1<1/2andﬁ—|—y—1,<2,
1 2
or vy <1< v and v +vi < 2,

then the homogeneous austenitic phase can be separated by a planar inter-
face from a martensitic phase that is composed of a fine-scale laminate of
two martensitic variants.
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3.5. Boundary Constraints and Fine-Scale Laminates

We can construct energy-minimizing deformations w with arbitrarily fine-
scale oscillations from energy-minimizing deformation gradients F, € & and
Fy € U that are rank-one connected as in (3.3). To construct a laminated
microstructure having deformation gradient Fy for volume fraction 1 — X
(where 0 < A < 1) and having deformation gradient F; for volume fraction
A, we construct the continuous deformation w, (@) with layer thickness y > 0
by
x

wy(z) = yw (;) . (3.37)

where

w(z) = For + [/Ox‘n X (s) ds] a

and where x(s) : R — R is the characteristic function with period 1 defined
by

(s) = 0 forall 0<s<1-A,
x(s) = 1 forall 1-A<s<]1.

Now

ose)-Bal =7]u (7) - 5 (7)

where

/ T () - N d’ <A(1-N)laly
(3.38)

=7

=(1-NF+XF =F+X®n.

We also have
Vuw,(z)=Fo+ x <¥> a®n, for almost all z € €,

SO

Vw(:z:):{Fo ifjy<z-n<(G+1-A)y for some j € Z,
i F, if(j+1-A)y<z-n<(j+1)y forsomejeZ.
(3.39)
The deformations w,(z) converge uniformly to Fhz as v — 0 by (3.38),
but the deformation gradients oscillate between Fy in layers of thickness
(1 — A)y and F in layers of thickness Ay. In the laboratory, we do not
observe laminates with arbitrarily small layer thickness 7. Laminates with
arbitrarily small layer thickness exist in our model because we neglect surface
energy. However, even with the inclusion of surface energy in the total
energy, the constraint of boundary conditions makes the formation of layers
of finite thickness with a deformation gradient oscillating between Fy and
Fy energetically advantageous.
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The infimum of the energy with respect to deformations constrained by
the boundary condition

y(z) = Fz for all z € 0Q (3.40)

for a fixed F' € R**® has been the subject of much research, since it gives the
minimum energy attainable by a microstructure with average deformation
gradient F. The value of this infimum is called the relazation of ¢ at F and
is discussed further in Section 7 and in more detail in (Ekeland and Temam
1974, Dacorogna 1989). For the boundary condition (3.40), we denote the
set of admissible deformations by

Wi ={veW?:v(z)= Fz forz € 00} .
We know from (3.5) that
inf £(2) > pmin(f)meas()

zEW;
for all F' € R**®. The following theorem shows that the infimum of the total
energy over deformations constrained by the boundary condition

y(z) = Fxa = [(1 - AN)Fo+ AF)Je for all z € 09,

where Fy € U and F; € U are rank-one connected as in (3.3) and 6 <
67, is equal to the lowest energy attainable for deformations that are not
constrained on the boundary. The proof of the following theorem also shows
that an energy-minimizing sequence can be constructed which is equal to
the laminate w,(z) except for a boundary layer whose thickness converges
to zero as v — 0.

Theorem 1 If Fy € U and F) € U are rank-one connected as in (3.3) and
6 < 67, then there exist deformations 1, € WlﬁfA defined for 4 > 0 such that

det (Vw,(z)) > 0, for almost all z €

and

limoé’(ul,) = @min(0)meas(Q).
’Y—’

Proof. The deformation . (z) that we construct is equal to w,(z) as de-
fined in (3.37) in the subset

Q) = {z € Q:dist(z,090) > vv},

where v > 0 is a constant to be determined to ensure that det (Vi,(z)) > 0;
,(z) is equal to Fyz on 99, and it interpolates between w,(z) and Fyz on
2\ Q2. To construct the interpolation, we define the scalar-valued function
Py(2): Q@ — R by

! for all z € ),
¥1(2) = { (vy)-'dist(2,0Q) for all z € 0\ Q.
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The function 1, (x) is easily seen to satisfy the following properties:

0<9,(z)<1 for all z € Q,
Py(z) =1 for all z € Q,
Py (z) =0 for all z € 99,
[V, (2)] < (vy)™! for almost all z € Q. (3.41)
We define the deformation ., (z): Q — R? by
Wy(z) = Py(z)wy(2) + (1 — Py(2))Frz for all z € Q, (3.42)

so we have for z € 2 that

Vi (2) = (0,(x) = F32) ® V(&) + b, (2)Vn (2) + (1 — ,(2)) Fy
It then follows from (3.38), (3.39), and (3.41) that

[, (2) — Fie| = () [ (&) — Fral <M1= Nlaly, @ €9,
Vi, (z) = Vw,(2) € { Fy, F1} CU, z e,
[V, (2)] <C, for almost all z € Q,
wy(z) = Fz, r €09, (3.43)

where C > 0 above and in what follows denotes a generic constant that is
independent of ~.

Since ¢ is continuous, it is bounded on bounded sets in R**3. Thus, it
follows from (3.5) and (3.43) that for 8 < 07

[ = buin0)] da| = [ [8(,(2),0) = Gmia(0)] do
=mew%uw»¢meum%£¢wmww—%ﬁmm

= / [q§ (Vfl)—y(.’]:),e) - ¢min(0)] dz
a\Ql

< Cry (3.44)

since meas (2 \ Q) < C.
We next show that

det (Vu,(z)) > 0, for almost all z € Q, (3.45)

for all v > 0 sufficiently large. Since Fy and F are rank-one connected as
in (3.3), we have for any £ satisfying 0 < ¢ <1 that

Fe=(1-Rk+{h=F+®n
=(I+¢a® Fy™n) Fy. (3.46)
Hence, we have by (3.46) that
det Fy = det (I + £a ® Fy Tn) det Fy
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= (1+¢&a- FyTn) det F, (3.47)
for all 0 < ¢ < 1. Since Fo, Fy € U, it follows from (2.12) that
det Fy = det F; > 0,

so we have from (3.47) that

a-F;Tn =0, (3.48)
and

det F; = det Fy (3.49)
forall 0 <¢< 1.

Now, by (3.41) and (3.43),
| (wy(z) — Frz) @ Vb, (z)|| < Co™t for almost all 2 € Q,  (3.50)
and
by (@)V 0 (2) + (1= 6,()) Fy = Fyey (351)
where
1- z))A if Vw,(z) = Fy,
6 ={ ) v e i Vo) =

So, (3.45) follows from (3.50), (3.49), and (3.51) for v > 0 sufficiently large.
O

The results of Kohn and Miiller (1992a), Kohn and Miiller (1992b), and
Kohn and Miiller (1994) for scalar problems with strain gradient surface
energies of the form (3.8) show that we can expect the energy-minimizing
deformations to have layers that branch in the neighborhood of the boundary
to form infinitesimally small layers, so that the deformation is compatible
with the boundary conditions. However, these layers are usually several
orders of magnitude smaller than our numerical grid, so the effect of the
surface energy is often negligible on macroscopic properties. Our results
in Section 6 show that we can approximate the macroscopic properties of
energy-minimizing microstructures for the energy (2.2) by solutions obtained
on a grid of finite mesh size.

There are affine boundary conditions

y(z) = Fz for all z € 002

for which energy minimization requires a construction more complicated
than first-order laminates of the form w,(z). Higher-order laminates than
the first-order laminates w, () are commonly observed (Arlt 1990) and can
be constructed from layers of compatible laminates (Bhattacharya 1991,
Pedregal 1993, Kohn 1991, Bhattacharya 1992). We shall give a construction
of a second-order laminate in Section 3.10. Furthermore, (Sverdk 1992) has
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given an energy density for which the infimum may only be attained by a
microstructure that is not even one of these higher-order laminates, although
it is not yet known whether such a property holds for the energy densities
used to model martensitic crystals.

3.6. The Young Measure and Macroscopic Densities

The Young measure is a useful device for calculating macroscopic densities
from microscopic densities and for describing the pointwise volume fractions
of the mixture of the gradient of sequences of energy-minimizing deforma-
tions (Tartar 1984, Chipot and Kinderlehrer 1988, Kinderlehrer and Pedre-
gal 1991, Ball and James 1992). We will give a description of the Young
measure following most closely the viewpoint of (Ball 1989).

We suppose that {y;} C W¢ is a sequence of deformations having uni-
formly bounded energy &(yx) < C, and enjoying the property that, for any
[ € C(R*?, R) such that f(F) = o(||F|))||F||P as ||F|| — oo there exists
f € L'(Q, R) so that

lim /w F(Vy(e)) de = /w f(z) da (3.52)

for every measurable set w C . It can then be shown that there exists a
family . of probability measures on R>*3_ depending measurably on z € ,
such that f(z) is given by the formula

f@) = [, S(F)disl ). (3.53)

The family of probability measures p, is the Young measure associated with
the sequence y;. In the above, we note that it follows from the growth
condition (2.1) that

/ [ Vo(z)|P dz < c;l/ $(Vo(2),0) de+Cr Comeas Q. for all v € W*.
Q Q
If a sequence of deformations y;, € W¢ with uniformly bounded energy
has a Young measure and if for some y € W*? we have that
Vyr(z) = Vy(z)  for almost all z € Q,

then we have by (3.52) and the Lebesgue dominated convergence theorem
(Rudin 1987) that

lin [ f(Vye(@)de = [ f(Vye)) da

for all measurable sets w C  and for all deformations f € C,(R**3;R) where
C.(R**?;R) denotes the set of continuous deformations f(F) € C(R**3;R)
with compact support. Thus, it follows from the representation (3.53) that

Ho = Ovy(e) for almost all z € Q.
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It can be shown by a compactness argument that every sequence has at
least one subsequence with the property that, for every f € C(R3*3) R) such
that f(F) = o||F|)||F||P as ||F|| — oo, there exists a f € L'(, R) such
that (3.52) holds. Thus, every bounded sequence of deformations in W¢
contains a subsequence with a Young measure.

The thermodynamic properties of materials, such as energy density and
stress, depend nonlinearly on the deformation gradient and can be described
by densities f(F') € C(R?**3 R) (the dependence of f on temperature is sup-
pressed in this paragraph). We can identify f(Vyi(z)) with a microscopic
density and f(a) with the corresponding macroscopic density. We observe
that the microscopic density f(Vyi(z)) can be oscillatory, while the corre-
sponding macroscopic density f(w) is smooth. For example, we have for the
energy-minimizing sequence ., (z) defined by (3.42) that the macroscopic
density

flz) = (1= N f(Fo) + Af(F)

is constant for every [ € C(R**® R) such that f(F) = o(||F|)||F||* as
||F|| — oo even though f(V,,(z)) is oscillatory.
For any deformation y € W%, z € Q, and R > 0, we can define a proba-
bility measure on the Borel sets T C R3*3 by
meas { Z € Bg(z): Vy(&) € T}

e,y (1) = meas Bg(z) (3.54)

where
Br(z)={z2€Q:|f -2 <R}.

The probability measure p, rvy(Y) gives the volume fraction such that
Vy(z) € T for & € Br(z). We can easily check that

/ (P dpta gy (F) = —— /B @) a5

meas Bgr(z)
for f(F) € C.(R**%R), so
1
= by () dT.
Hz,R,Vy meas Br(z) /Bﬂ(z) vy(z) 4T

If y; is a bounded sequence of deformations in W¢ with Young measure
Lz, SO that (3.52) holds for every f(F) € C,(R***R) for f given by (3.53);
then it follows from (3.55) that
limkqoo f]Raxa f(F) d/-Lx,R,Vyk(F) = meas BR(IL‘)_1 fBR(:c) f]Raxa f(F) dp,;;(F) dz
— fpoxs F(F) dpiz o(F) (3.56)

where

1
pRE ————— ; di. 3.57
ek = ) /Bn(z)ﬂ (3.57)



28 MITCHELL LUSKIN

The result (3.56) can be restated as

*
He,RVy, — Mz R as n — o0,

where the limit is understood to be in the sense of measures (weak-* con-
vergence). It further follows from (3.57) and the Lebesgue differentiation
theorem (Ball 1989) that

Mz R = g, as R — 0, for almost all z € Q.

We can thus characterize the Young measure by the result that

lim lim g = .
R—0 kﬂOOlh @R, Vyx /Jlx

3.7. Computation of the Young Measure for a First-Order Laminate

We next compute the Young measure of the sequence of first-order laminates
constructed in Section 3.5. For the energy-minimizing sequence of first-order
laminates 1., defined by (3.42), we have that if T C R**3 is an open set with
smooth boundary, such that

F0€T, Fl ¢T,

then we have by the above construction that

. Y
T w T S _,1 .
tiz,r,v ., (1) mln{R }

(In fact, if Br(z) C ), then we have that s g ve, (T) = 0.) Also, if
T C R®**3 is an open set with smooth boundary, such that

F,eT, Fi¢gT,
then
|tte,r, v, (T) = (1= A)| < min {%, 1} :
and if T C R**3 is an open set with smooth boundary, such that
FieT, e,

then we have that
lhens, (0) = Al < min { Z, 1.

Thus, we can conclude that for any open set T C R**® with smooth bound-
ary T C R®*3, we have that

e, (1) = (L= )3 (1) 4 M (T < min { L 1f (359)

where 67(T) is the Dirac measure of unit mass at ' € R>*°.
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It follows from (3.58) that we have for any sequence y; — 0 that
Mz,R = 7131_1'10 He R, i, = (1= A)or, + Abp,.

Hence, we have that the Young measure for the energy-minimizing sequence

., (z) defined by (3.42) satisfies
pe = Nm piz p = (1= A)8p, + Abp,.

We note that in this special case the Young measure p, is independent of
z € 0, although in general the Young measure depends on z € 2.

3.8. The Failure of the Direct Method of the Calculus of Variations to Give
an Energy-Minimizing Deformation

The direct method of the calculus of variations is widely used to con-
struct energy-minimizers to variational problems (2.5) by taking the limit of
energy-minimizing sequences of deformations (Dacorogna 1989). However,
if (1—A)Fy+ AF; ¢ U, then we cannot use this technique to construct an
energy-minimizing deformation for our models of martensitic crystals, since
we have by (3.44) and (2.18) that

lim /ﬂgb(Vul,(a:)) dz = $mmmeas () < &((1 — A)Fy + AT, )meas ()

y—0

= o 8 (V(F2)) do = [ (¥ (limy iy 0)) do.

This result, together with the fact that Vi, converges weakly to Fj, shows
that the functional &£(y) is not weakly lower semi-continuous (Dacorogna
1989).

The following lemmas show that (1 — A\)Fo+ AFy ¢ Y for 0 < A < 1in

the orthorhombic to monoclinic case (2.13) and the cubic to tetragonal case
(2.15).

Lemma 9 If Fy, € U and F, € U with Fy, # F; are rank-one connected
and

{R;U,RT : R € G} ={Uy, Uy},
then
(1=XNEF+ A ¢U
for0 < A< 1.

Proof. We prove the result by contradiction, so we assume that Fy € U
and I} € U are rank-one connected and that

(1=MNFR+AF el (3.59)
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for some 0 < A < 1. It follows by Lemma 3 that we may assume that

FO = R()U1 and F1 = Rlljg ' (360)
for Ry, Ry € SO(3) and that we may assume by (3.59) that
(1=MNF,+ AF, =QU, (3.61)

for @ € SO(3). Since Fy € U and F; € U are rank-one connected, we have
by (3.3) that there exist a € R? and n € R?, |n| = 1, such that

(]. — /\)Fo + /\F1 = Fo + Aa ® n. (362)
It follows from (3.60)—(3.62) that
QU] = R0U1+/\(L®'IL, (3.63)

so it follows from Lemma 3 that () = R,. Since 0 < A < 1, it follows from
(3.63) that @ = 0 and Fy = Fi, which is a contradiction with the hypothesis
of the lemma. O

Lemma 10 For the cubic to tetragonal transformation (2.15), if Fy € U
and F) € U are rank-one connected, then

(1-NF+ AR ¢U
for 0 < A< 1.

Proof. If Fy € U and F, € U are rank-one connected, then it follows from
Lemma 3 that we may assume without loss of generality that

Fy = RU,, Fo = Uy,
for R € SO(3), and by Lemma 6 that
RU,=U, +a@®n (3.64)

where

1 1
n= 7 (e1+€) or n= E(el —ey). (3.65)

We suppose that (1 — A\)Fo + AF; € U. It then follows from the proof of
Lemma 9 that

(1= NFo+ AF, € Uy Ulhy,

so we conclude that

(1= NFy + \F, = QUs (3.66)
for @ € SO(3). We next obtain from (3.64) and (3.66) that
Ul +)\(Z®'ILZQU3. (367)

We have thus reached a contradiction with (3.65) since it follows from
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Lemma 6 that

1
n:%(eli@)

for any solution to (3.67). O

The following result shows that for the orthorhombic to monoclinic case
(2.13) and for the cubic to tetragonal case (2.15) there does not exist an
energy-minimizing deformation (Ball and James 1992).

Theorem 2 For the orthorhombic to monoclinic case (2.13) and for the
cubic to tetragonal case (2.15) there does not exist a deformation y(z) € Wg,
such that

E(y)= inf &(2). (3.68)

zEW:X

Proof. We give a proof that covers both the orthorhombic to monoclinic
case (2.13) and the cubic to tetragonal case (2.15). We assume that (3.68)
holds, so by Theorem 1 (which holds for both the orthorhombic to monoclinic
case (2.13) and the cubic to tetragonal case (2.15)) and (3.68) we have that

£(y) = /ﬂ $(Vy,8) dz = Goin (§)meas 0. (3.69)

Since (3.68) holds, we can conclude from Theorem 7 in Section 6 (which also
--holds for both the orthorhombic to monoclinic case (2.13) and the cubic to
tetragonal case (2.15)) that for all 2 € @ and R > 0 we have that

meas { & € Br(z): Vy(z) = Fo} = (1 — X)meas Bgr(z),

meas {Z € Br(z): Vy(z) = F;} = Ameas Bg(z). (3.70)
It then follows from (3.70) that
1 N
m/]gn(x) Vy(ib)dill— (1—)\)F0+)\F1 —F)‘. (371)

Now y(z) is an element of W¢, so the Lebesgue differentiation theorem
(Rudin 1987) implies that that

lim ;) /BR(z) Vy(z)dz = Vy(z), (3.72)

R—0 meas Br(a

for almost all z € Q. Hence, we can conclude from (3.71), (3.72), and (3.69)
that

¢((1 - A)FO + /\F1,0) = ¢min(0)a
which is a contradiction, since (1 — A)Fo + AF; ¢ U by Lemma 9. O
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3.9. The Austenitic-Martensitic Interface

Microstructure is observed in phase transformations between the austenitic
and the martensitic phases (see Fig. 1). A phase boundary is observed to
separate a homogeneous austenitic region from a microstructured marten-
sitic region (Basinski and Christian 1954, Burkart and Read 1953). Ball
and James (1987) have shown that this phenomenon can be explained by
the geometrically nonlinear continuum theory, and Chu and James (1995)
have used this theory to explain the austenitic-martensitic phase boundary
presented in Fig. 1. The kinematic condition that the martensitic phase be
compatible with the austenitic phase imposes a boundary condition similar
to that of (3.40).

For the cubic to tetragonal case (2.15), Ball and James (1987) have shown
that if

I/]<1<I/23,Ild’/—12'-’-VL2<27
1 2
or v, < 1< and v+ v <2,

then the continuum theory predicts that there are fine-scale mixtures of any
two variants of the martensite that can be separated from a homogeneous
austenitic phase by a planar interface. For example, we can construct the
mixture w, using Fy = U; and F; = RU,, where RU, and U, are as defined
in (3.29). By (3.38), w, — F\z uniformly as 7 — 0. It turns out that, for
the volume fraction 0 < A* < 1/2 given by

AT = % [1 — (2(vs = V)W =)W +vd)(vi —vi) P+ 1)1/2]

there exists a continuous deformation with deformation F).z on one side of a
planar interface with normal m, and the homogeneous austentic deformation
Qz, where @ € SO(3), on the opposite side. Here we have used the fact that
there is a Q € SO(3) and corresponding b, m € R*® with |m| = 1, such that

Py ==X U+ A RU, =Q(I+b®m) (3.73)
where in the orthonormal basis { e}, e, €3}
b=1+x>+72)(=Cx+7), {(x—7),8),
m=(1+x"+7)" (=(x+7), (x —7), 1),
with
= 503 +0f -2 - )T,
:%me—w—%x v,
=1 -v)Q+w),
ﬁ = uy(v? = 1)(1 4 1)

All of the remaining austenitic-martensitic interfaces can be obtained from
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(3.73) by symmetry considerations, and we obtain that there are 24 distinct
ways a parallel, planar interface can separate the homogeneous austenitic
phase from a microstructured martensitic phase.

We say (3.73) represents an austenitic-martensitic interface because Ball
and James (1987) have constructed an energy-minimizing sequence u., of
continuous deformations, such that

/ d(Vu,(x),07)dz — ¢min(07) meas Q (3.74)
Q
and u,(z) — u(z) uniformly as v — 0, where

[ Qz forz-m <O,
wz) _{ Fy.z forz-m > 0.

We note that
¢min(0T) = d’(Q,@T) = ¢(RU2,0T) = ¢(U170T)-

We can construct u,(z) by

[ Qz forz-m <0,
Uy (2) = { Py (2)wy(2) + (1 = y(2))Frez forz-m >0

where w,(z) is the first-order laminate defined by (3.37) and where

[ y7'zem f0<z-m<y,
¢7(x)—{ 1 ifz-m>~.
It is easy to check that u,(z) satisfies the scaling u,(z) = yui(y~'z) for
7 > 0 and = € R®. We also note that we can ensure det Vu,(z) > 0 almost
everywhere by replacing ¥,(z) by ¥,(v~'z) in the definition of u,(z) if the
constant v > 0 is sufficiently large (cf. Theorem 1).
Then u,(z) satisfies

Q ifz-m <0,
Uy fz-m>vyandjy<z-n<(J+1-N)y
Vu,(z) = for some j € Z,
RU, ifz-m>vyand (J+1-M)y<z-n<(G+1)y
for some j € Z,

and

IVu,(2)|| < C for almost all z € Q,
luy(z) — u(z)| < Cr, z €,
u(z) € C(R%R?).
The estimate (3.74) now follows by the argument (3.44).

The microstructure represented by the deformations u,(z) for v — 0 is
austenite for - m < 0, and is finely twinned martensite for z - m > 0 with
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volume fraction 1 — A\* of the deformation gradient U; and volume fraction
A* of the deformation gradient RU,. The plane of the interface satisfies
z-m = 0. It is easily checked that any sequence of deformations u., (z) with
vx — 0 has the Young measure

_ 6Q 1f@m<0,
He =0 (1= A6y, + ANbpy, ifz-m > 0.

Note that u() is not an energy-minimizing deformation, since by Lemma 10
é((1 = A )Uy + X RU,, 07) > ¢(Uy,07) = ¢(RU,, 07).

The austenitic-martensitic phase transformation has been the subject
of many numerical studies (Collins and Luskin 1989, Klou¢ek and Luskin
1994qa, Kloucek and Luskin 1994b), since it is one of the primary mech-
anisms for the creation of microstructure. These numerical studies have
been three-dimensional since the following lemma does not seem to allow
for an adequate two-dimensional model. Two-dimensional models (Collins
et al. 1993) usually represent the martensitic variants by SO(2)U; where the
eigenvalues 92, 72 of UTU; satisfy 0 < #2 < 1 and 72 > 1, so the following
lemma shows that these variants have a rank-one connection to the matrices
SO(2), which represent the austenitic phase.

Lemma 11 If U € R**? and the eigenvalues 2, 72 of UTU satisfy 0 <
p? < 1and #2 > 1, then there exist a rotation R € SO(2) and vectors a € R?
and n € R?, |n| = 1, such that

RU=I1I4+a®n. (3.75)

Proof. Since UTU € R?*? has eigenvalues 72, 72 such that 0 < #? < 1 and
72 > 1, there exists a v € R?, v # 0, such that

|Uv| = |v].
So, there exists R € SO(2) such that
RUv = v.

Hence, for n € R? satisfying n-v = 0 and |n| = 1, we have that (3.75) holds
with a = RUn —n. O

3.10. Higher-Order Laminates

Higher-order laminates of layers within layers are common in martensitic
materials. For example, the photomicrograph in Fig. 2 shows a second-
order laminate that has been explained by Chu and James (1995) using
the geometrically nonlinear continuum theory . More general treatments
of higher-order laminates than ours may be found in (Kohn and Strang
1986, Kohn 1991, Pedregal 1993).
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Collins (1993a) has reported computational results for affine boundary
conditions that have a second-order laminate as an optimal microstructure,
but do not have a first-order laminate as an optimal laminate. He reported
that his algorithm computed a first-order laminate until the mesh was suf-
ficiently fine. He explained this by an argument that the energy associated
with the lack of compatibility of the first-order laminate with the boundary
conditions is less than the additional energy associated with the additional
interfaces needed to represent the second-order laminate until the mesh is
sufficiently fine.

We will construct a second-order laminate by layering two first-order lam-
inates. To construct the first-order laminates, we assume that Fyy, Fo; € U
and Fig, Fy; € U are pairs of rank-one connected matrices, that is, we as-
sume that there exist ag, no € R?, |ng| = 1, and a1, n; € R?, |n;| = 1, such
that

Fo1 = Foo + ao ® no,
Fiy = Fio+a, ®@ny.

We can construct first-order laminates with layer thickness y; > 0 and a
mixture of F;, with volume fraction 1 — A; and F;; with volume fraction A;

following (3.37) by

wi(z) = 7,0l (l> for all z € R®
gt
where ‘
w[i](m) = Foz + [/ 'Xi (s) ds] a; for all z € R3
0
for 7+ = 0, 1 and where x;(s) : R — R is the characteristic function with
period 1 defined by
[0 forall 0<s< 1= A
Xi(s) = 1 forall 1-X<s<l1.
We recall that by (3.38) we have that
0ld(@) ~ Fael =7 0! () = B ()] <ra-2ladn 376)
Y1 Y1
for all 2 € R® where
F, = (1= X)Fo+ XNFy = Fo+ Aia; @ny
for 1 = 0, 1.
We can construct a second-order laminate from the first-order laminates

w[’](’e) if there exist 0 < A, A; < 1 such that Fy,, € R*3 and Fy,, € R¥*®
are rank-one connected, that is, there exist a, n € R?, |n| = 1, such that

l‘ﬁll,\l = F0A0+a®n. (377)
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If (3.77) holds, then for 2y; < min {1 — A, A} we can construct a second-
order laminate for any 0 < A < 1 by the periodic extension to R® of the
continuous deformation

w, (2) = {me w%‘) )+ (1 — ¥y, (2))Fop,e for0<a-n<1-=),
n Yy (2)w () + (1 — 9, (2))Fia,z forl—-A<z-n<1

where wl(z) is the first-order laminate defined by (3.76), and where

Mnwlz-n if 0<a2-n<ny,

1 if m<z-n<l—A—1,
Po(@) = { yMoen— (L= N if Jon - (1- 2] < 7,

1 if 1-A4+m<z-n<l-—m,

(7)) e -n —1] if l-mm<z-n<l.

We can scale the second-order laminate w.,,(z) by v, > 0 to obtain the
second-order laminate w,,,,(z) defined by

T
Wy, (T) = YoWs, <£> for all z € R®.

As v, — 0, the second-order laminate w.,,(z) converges to a mixture with
layer thickness 7, of the first-order laminate wl’)(z) with volume fraction

1 — X and of the first-order laminate wl!(z) with volume fraction A. The
analysis in Section 3.5 can then be used to prove that

vam(fc) - FN' < max {A(1 = Ar)lai], As(1 = Az)las|} 1172
for all 2 € R® where
Py = (1= N Fox, + AFyy,.
We can check that
IVw,,,,(z)]| < C  for almost all z € R, (3.78)
and that
Vs, (2) € { Foo, For, Firo, Fii} CU  forallz € R\ Q,,  (3.79)

where

=U{zerR: |- n—jrl<mmorle-n—(G+1- XNyl <mny}.
JjEL

Since © C R® is a bounded domain,

meas (2 N Q,,) < Cy1, (3.80)

because 2N sz is the union of O(y; ') non-empty planar layers of thickness
7172. (Note that only O(y5 ') of the sets in the definition of €.,, have a
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non-empty intersection with €2.) We thus have from (3.78)—(3.80) that for
6 S 0Ta

/Q (Vs (2), 0) do

= fﬂ\ﬂ72 ¢(Vw’)'1"/2(x)’ 0) dx + fnnﬂw qs(vw’n‘h(x)v 0) dz
< @min(0) meas Q 4+ C;.

It can also be shown that for any pair of sequences such that v;; — 0 and
Y21, — 0 as k — oo we have that the sequence of deformations w,,,,, (z) has
the Young measure

(1= A)(1 = Ao)brg + (1 = MAobry, + AL = A)bpy + AMi6i,.

Higher-order laminates than second-order laminates can be constructed
by iterating the above construction.

4. Finite Element Methods

We wish to compute an approximation to the microstructure defined by
energy-minimizing sequences of deformations to the problem

inf [ 6(Vy(2),0) de, (4.1)

where A denotes a set of admissible deformations. The most accurate finite
element method depends on the scale of the microstructure relative to the
scale of the mesh and whether it is possible to align the mesh with the
microstructure.

4.1. Conforming Finite Flements

The most commonly used finite element spaces in solid mechanics are con-
forming spaces that approximate the admissible set of deformations A by
a finite-dimensional subset A, C A of continuous deformations which are
piecewise polynomials with respect to a finite element mesh. We can com-
pute approximations to energy-minimizing sequences of deformations for
problem (4.1) by computing energy-minimizing deformations of the prob-
lem

min /ﬂqb(Vyh(:v),H) dz. (4.2)

YyrEAp

We note that since A, is finite-dimensional and the energy &(yn) =
Jo @ (Vyn(z),0) dz is continuous, the infimum of the energy £(yx) is at-
tained for at least one finite element deformation y, € Ay, since it follows
from the growth property (2.1) that ¢(F,0) — oo as ||F|| — oo. The lack
of attainment of the infimum for the continuous problem (4.1) is the re-
sult of the development of arbitrarily fine oscillations by the gradient of
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energy-minimizing sequences of deformations. The restriction of the admis-
sible deformations to a finite element space limits the possible fineness of
the oscillations to the scale of the mesh, and, therefore, the infimum of the
energy is attained among deformations which are constrained to lie in the
finite element space.

Since deformations with microstructure are typically approximately piece-
wise linear, the use of piecewise linear or piecewise trilinear elements is a
good choice of finite element space for the approximation of microstructure.
Although these spaces of continuous finite elements effectively approximate
microstructure with layers that are parallel to the planes across which the
finite element deformation gradients can be discontinuous, they have dif-
ficulty approximating microstructure on the scale of the mesh when the
layers are not oriented with respect to the mesh. Computational experi-
ments with the continuous, piecewise linear element for a two-dimensional
model have shown that numerical solutions for microstructure given by con-
forming spaces have a layer thickness that depends on the orientation of the
microstructure with respect to the mesh (see Fig. 3 and (Collins 1994)).

However, we proved in Section 3 that the number of families of parallel
planes (the ‘twin planes’) across which the deformation gradients of energy-
minimizing deformations can be discontinuous is finite, so it is possible for
many problems to orient the mesh to the possible twin planes. (By Lemma 5
there are two families of twin planes for the orthorhombic to monoclinic
transformation (2.13) and by Lemma 6 there are six families of twin planes
for the cubic to tetragonal transformation (2.15).)

Luskin (19964a) and Luskin (1996b) have given the use of conforming meth-
ods a theoretical validiation by giving error estimates for the convergence of
the conforming finite element approximation of a laminated microstructure
for the rotationally invariant, double well problem (4 = U, UlU,), and Li and
Luskin (1996) have given error estimates for the finite element approxima-
tion of a laminated microstructure for the cubic to tetragonal transformation
(2.15). We will give error estimates for this convergence in Section 6.

4.2. Optimization and Local Minima

It would be most correct to pose the problem of interest as the computa-
tion of local minima of the non-convex energy &(y) = [, ¢ (Vy(z),0) dz,
which represent physically observable equilibrium states. The continuous
problem (4.1) can be expected to have multiple local minima (Ball et al.
1991, Truskinovsky and Zanzotto 1995, Truskinovsky and Zanzotto 1996),
only some of which represent states that can be observed in the laboratory.
However, the restriction of our computational interest to global minima is
not appropriate, since martensitic crystals typically exhibit hysteresis and
meta-stability (Abeyaratne et al. 1994, Ball et al. 1995).
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In addition to the local minima which the finite-dimensional problem (4.2)
inherits from the continuous problem, there are also local minima, created by
the numerical discretization, which are the representation of the same mi-
crostructure on different length scales and which give the same macroscopic
properties.

Gradient iterative methods, which reduce the energy at each iteration, can
be used to compute the local minimum corresponding to the energy well of
the initial state. Conjugate gradient and other accelerations can be used to
develop more efficient iterative methods (Collins and Luskin 1989, Collins
1993a, Collins et al. 1993). Since the iterates of gradient methods remain
in the energy well of the initial state, the addition of random perturbations
to an initial state can be used to explore new local minima (Collins 1993a,
Collins et al. 1993).

The addition of random perturbations to the initial states for gradi-
ent methods suggests the use of more systematic Monte Carlo techniques.
Luskin and Ma (1993) used a variant of the simulated annealing algorithm
to compute microstructures of fine domains in ferromagnetic crystals. They
constructed a discrete set of magnetizations that were close to the set of local
minima and then utilized a gradient method to compute the optimal solu-
tion within the energy well they had computed with the simulated annealing.
The key to the generalization of this algorithm to the case of martensitic
crystals is the construction of a discrete set of deformations that represent
the energy wells of the martensitic crystal. Kartha et al. (1994) have used
a Monte Carlo method to investigate the properties of a two-dimensional
model of martensite, and Gremaud (1995) has developed a Monte Carlo
method to compute global minima of two-dimensional variational problems
with local minima.

To ensure that one computes physically observed states in a quasi-static
or dynamical process, one should start with a physically observed state
and then compute the change in the state as environmental conditions such
as boundary conditions or temperature are varied. For quasi-static pro-
cesses, continuation methods can be used. For example, Kinderlehrer and
Ma (1994a) and Kinderlehrer and Ma (1994b) have used a continuation
method to compute hysteresis in the response of a ferromagnetic crystal to
changes in the applied magnetic field. The techniques reported in (Kloucek
and Luskin 1994a, Kloucek and Luskin 1994b) for the computation of the
dynamics of martensitic crystals offer another possibility for exploring phys-
ically observed local minima and hysteretic phenomena by computing the
physical dynamics of the response of the crystal to changes in its environ-
ment.
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4.3. Rotation of the Coordinate System

We discussed in Section 4.1 that it can be advantageous to orient the mesh
with respect to the planes across which the gradients of energy-minimizing
deformations are allowed to be discontinuous. This can often be achieved
by rotating the coordinate system describing the reference domain with the
mesh fixed in the coordinate system. It is also convenient to rotate the
coordinate system with the mesh fixed in the coordinate system to test
the effect of the orientation of the finite element mesh with respect to the
microstructure.

_If we rotate the coordinate system of the reference domain by the rotation
RT where R € SO(3), then the energy density for the crystal in the rotated
coordinate system is given by

(i(F,B) = ¢(FR?9)'

For the transformed energy density ¢(F,6), it follows from (2.18) that for
6 < 07 we have that ¢pin(0) = dmin(8) and that

B(F, 0) = ¢pmin(0) if and only if F € SO(3)U; U---USO(3)Up
where
U; = RU;RT fori=1,..., M.
We also note that we have that
QU;=U; +a®n if and only if QU; = Ui+a®n
for @ € SO(3), a € R?, and n € R®, where
Q = RQRT, a=Ra, 7= Rn.

Hence, it follows that # = Rn is the normal to a plane across which the
gradient of an energy-minimizing deformation for the energy density ¢(F,6)
can be discontinuous if and only if n is the normal to a plane across which
the gradient of an energy-minimizing deformation for the energy density
¢(F,0) can be discontinuous.

4.4. Visualization Techniques

The development of techniques to visualize the results of the computation
of microstructure has been important to the study of microstructure. It
is possible to visualize the deformation by displaying the transformation of
the finite element mesh (Collins and Luskin 1989). However, it is generally
easier to study microstructure by displaying the deformation gradient.
Several techniques have been developed to visualize the deformation gra-
dient. Collins and Luskin (1989) developed the technique of coloring el-
ements according to the closest energy well to the deformation gradient.
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They assigned the martensitic variant U, to a given element K with right
Cauchy-Green strain C(z) = (Vy(z))" Vy(z) if and only if
|C — CIlK = m111{|C' — CllK" cey IC — CMIK,|C — IlK,T},

where C; = UTU;, where 7 > 0 is a user-supplied sensitivity, and where the
matrix norm |C|g is defined by

Cle= |— [. ||c<z>||2dx]”2.

meas I{

They assigned the austenitic phase I to the element K if and only if
|C— IlK = Hlill{'C — C'l'](,...,'C— CMlK’|C— I|K,T}.

Finally, they assigned the ‘unidentified phase’ to the element K if it is not
assigned to the austenitic or martensitic phases by the above formulae. The
different variants of martensite and austenite are then represented by dis-
tinct colors or shades of gray. Collins and Luskin (1989) visualized the
gradients of three-dimensional deformations by displaying the gradients on
a series of parallel cross-sections.

We know from (Ball and James 1992, Luskin 1996a, Li and Luskin 1996)
or Theorem 7 that the microstructure which minimizes the energy among
deformations constrained on the boundary by the condition

y()=[(1=NFy+ AFi]Je  forall z € 90Q

is a mixture only of the deformation gradients F, and Fj for the orthorhom-
bic to monoclinic transformation (2.13) and for the cubic to tetragonal trans-
formation (2.15) when Fy and F} are rank-one connected, Fy, Iy € U, and
6 < Op. Thus, for this problem (Collins, Luskin and Riordan 1991b) and
(Collins et al. 1993) displayed the interpolant of the function

|FTF — FT Fy|g
|FTF — F§ Fy|lx + |FTF — FT Fy|g

defined at the center of gravity of the elements I to display the proximity
of the deformation gradient to the energy wells corresponding to Fy (where
¥ = 0) and to F, (where ¢ = 1). They represented the function % by a map
of (0,1) into color space or into a gray scale. Other useful variants of the
function ¢ are given by

b(F)k =

|FTF — Ff Folk
|FTF — F{ Foly + |[FTF = FT R’

which increases the range of deformations that are represented to be nearly
in the energy wells of Fy and Fj, and

W(F)x =

P(F)x = (4.3)

|F — Folk
|F — Fylg + |F = Fi|g’

(4.4)
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which measures the proximity of the deformation gradient to F, and F
rather than to their respective energy wells.

The use of isosurfaces of the energy density and surface energy density
was developed and used in (Klou¢ek and Luskin 1994a, Klou¢ek and Luskin
1994b) to identify the austenitic-martensitic interface.

4.5. Numerical Ezperiments for the Continuous, Piecewise Linear
Approzimation of a Two-Dimensional Model

We can investigate the computation of a simple laminated microstructure
by a two-dimensional model (Collins and Luskin 1990, Collins et al. 19915,
Collins 1993a, Collins et al. 1993, Collins 1994). For the two-dimensional
model, we have that the reference configuration @ C R?, the deformation
y(z) : R* — Q, and the energy density ¢(F): R?*? — R (where we suppress
the dependence of the energy density on temperature). We present in Fig. 3
and Fig. 4 the results of two-dimensional computations by Collins using the
continuous, piecewise linear finite element for the problem that will next be
described.

The three-dimensional orthorhombic to monoclinic problem (2.13) can be
modelled in two-dimensions by the energy density

¢(F) =k (Cu— (1 + 772))2 + Ko(Coa — 1) + £3(CF, — 7°), (4.5)

where C = FTF is the right Cauchy-Green strain, and where 7, k;, K9, K3
are positive constants. It can then be checked that

#(F)>0  forall F e R

and
#(F)=0 if and only if F € SO(2)U,USO(2)U, (4.6)
where
U=I-neQ e and Uy=1+1ne,® e
for e; € R? and e, € R? given by the canonical basis
e =(1,0) and ey =(0,1).

The proof of Lemma 5 can be used to show that there exists a continuous
deformation with a linear interface with normal n separating two regions
with constant deformation gradients Fy € SO(2)U; and F; € SO(2)U, if and
only if n = e, or n = e;. It can be checked that the energy density (4.5)
does not have a local minimum at deformations F' € SO(2) representing the
austenitic phase. This is a desired property for a two-dimensional model,
since otherwise, by Lemma 11, there would be rank-one connections between
stress-free deformation gradients representing the martensitic and austenitic
phases.
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To allow for interfaces with arbitrary orientation with respect to a fixed

mesh or coordinate system (see Section 4.3), we define for the rotation R €
SO(2) the energy density

(F) = ¢(FR)  forall F e R (4.7)
For this energy density, it follows from (4.6) that

¢(F)=0 ifandonly if F e SO(2)U; U SO(2)0,
where
Uy=I-né,@é;, and Up=I+1n6Q8é
for
é, = f{el and €y = Rez.

It follows by the above that there exists a continuous deformation with a lin-
ear interface, with normal 7 separating two regions with constant deforma-
tion gradients Fy € SO(2)[71 and F} € SO(Q)UZ if and only if 2 = é; = Re,
Or N = €5 = Reg.

We now give computational results for the approximations to the energy-
minimizing microstructure for the energy

/n $(Vy(2)) da (4.8)

for the reference configuration @ = (0, 1) x (0, 1), where the deformation
y(2) is constrained on the boundary by

1~ 1.

All of the results in Section 6 hold for the two-dimensional problem (4.7)-
(4.9), so we can conclude that the gradients of energy-minimizing sequences
of deformations to the two-dimensional problem (4.7)-(4.9) computed using
the continuous, piecewise linear finite element approximation on a uniform
mesh converge to the Young measure

1 1
Vy = 5501 + 5 U,-
In Fig. 3, we present Collins’ numerical results for the approximation
of an energy-minimizing microstructure to the problem (4.7)-(4.9) with

R = R(45°) (where R(f) denotes the rotation matrix of 6 degrees) by the
piecewise linear finite element approximation on a uniform mesh of size
h = 1/N where N = 16, 32, 64. Thus, we have that the lines that can sepa-

rate regions with constant deformation gradients U, and U, have normal

L= é 1( + e3)
n=e = —F—|\€ y
1 \/5 1 2
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Fig. 3. Deformation gradients for the problem (4.7)-(4.9) with n = .1 and
R = R(45°) computed by continuous, piecewise linear finite elements for a
uniform finite element mesh of size h = 1/N with N = 16, 32, 64. The finite
element mesh for N = 32 is shown below. Courtesy of C. Collins.
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and are parallel to lines along which the gradients of deformations in the
finite element space are allowed to be discontinuous.

The optimization problem was solved by the Polak-Ribiére conjugate gra-
dient method (Polak 1971, Glowinski 1984) with initial data

1 1.~ 1 .
Yinis(2) = [51]1 + §U2] T+ Enhr(:v) for all z € Q, (4.10)

where h is the mesh size and where 7(z) = (r,(z), r2(z)) was obtained by
getting values for r;(z) on the interior vertices from a random number gen-
erator for the interval (—1, 1) and then extending r;(z) to all of by inter-
polation. We note that ||V [phr(z)]|| = O (1), so the deformation gradients
of the initial state need not be close to the energy wells.

To visualize the results of the computations of microstructure, we use the
function 1 defined by (4.4) with F, = U, and F; = U, and enhanced by the
continuous function

o L(2¢)? for 0 <¢ < 1,
9(s) —{ [ 1@21-q) forl<e<l.

We display a map from g(z,b(F )) into a gray scale so that elements are colored
white if g($(F)) = 0 (corresponding to F' = U;) and elements are colored
black if g(1(F)) = 1 (corresponding to F = U,).

We see in Fig. 3 that microstructure has been obtained on the scale of
each successively refined mesh. Since the computed microstructure shown
in Fig. 3 is not completely regular, a local minimum of the finite element
optimization problem has been computed and not a global minimum. How-
ever, the energy of the computed local minimum is close enough to that of a
global minimum to give the microstructure and the macroscopic properties
of a global minimum.

The results in Fig. 4 illustrate the effect of mesh orientation with respect
to the lines of discontinuity of the deformation gradient. We see that the
layers are several mesh widths thick when they are not oriented with respect
to the mesh.

4.6. Nonconforming Finite Elements

An alternative approach is that given by the use of non-conforming finite
elements (Ciarlet 1978, Quarteroni and Valli 1994), that is, Ay ¢ A. The use
of non-conforming finite elements is intuitively appealing for problems with
microstructure because the admissible finite element deformations should
then have more flexibility to approximate oscillatory deformation gradients.
Collins (1994) has reported the results of numerical experiments for a two-
dimensional model for the Crouzeix-Raviart piecewise linear, triangular ele-
ment which is constrained to be continuous at the midpoints of line segments
which are edges of adjacent triangles (Ciarlet 1978).
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Fig. 4. Deformation gradients for the problem (4.7)-(4.9) with n = .5 and the
mesh N = 64 for the orientation defined by R = R(f) with
§ = 25°, 0°, —25°, —45°. Courtesy of C. Collins.
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In (Kloucek and Luskin 1994a), microstructure was approximated for a
dynamics problem by deformations constrained to be in the polynomial
space P x P x P, where

P= Span { ]-7 L1,T2,T3, (IL‘? - :L‘g)’ (:E:l2 - ’l‘.g) }7

when restricted to the subdomains
Qijk = ((Z - l)hl’ihl) X ((] - 1)h27]h’2) X ((k - 1)h37kh3)’ 2,],]\, € Z»

where hy, hq, hs are the mesh lengths, and the deformations are constrained
to be continuous at the centers of gravity of the faces of ;. These ap-
proximate deformations are not generally continuous across the faces of Q;;;.
This non-conforming element has been analyzed for Stokes equation by Ran-
nacher and Turek (1992) and for general second-order linear elliptic problems
by Kloucek, Li and Luskin (1996).

5. Approximation of Microstructure

In this section, we present estimates for the approximation of microstruc-
ture following Luskin (1996a) and Luskin (1996b) (for transformations with
a double well energy density such as the orthorhombic to monoclinic trans-
formtion) and Li and Luskin (1996) (for the cubic to tetragonal transforma-
tion) for the problem

inf £(v), (5.1)

vewg
where we recall that
Wi = {veW?:v(z) = Fya for z € 9Q}
for F\ = (1= A)Fy+ AFy, and where Fy € U and Fy € U satisfy the rank-one
condition that there exist a € R® and n € R?, |n| = 1, such that
FiF=F+a®n. (5.2)

We will assume in this section that § < 6r and that the energy density
#(F,0) is minimized either on two rotationally invariant energy wells (such
as given by the orthorhombic to monoclinic transformation (2.13)) or on the
three rotationally invariant wells of the cubic to tetragonal transformation
(2.15). The proofs of the main results in this section are given in (Luskin
1996a) and (Li and Luskin 1996).

We recall that if the energy density ¢(F,6) is minimized on two rotation-
ally invariant wells (the double well case), then

{R,UlR;T RZEQ} :{Ula U2} ) (53)
so the energy density ¢(F,6) has minima at F' € U for
U - Z/{l U UQ
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where the energy wells are given by
Uy =S50(3)U; and U, = SO(3)U,.

If the energy density ¢(F,#) is minimized on the three rotationally invariant
wells of the cubic to tetragonal transformation, then

{RlUlR;r : Ri € g} = {Uh U27 U3} )

where

Uiy =wnl+ (v, —1)er ®ey, Uy =l + (v —vi)es @ e,
Us=uvil+ (vs —v)ez®es (5.4)
for 0 < vy, 0 < vy, and v; # vy, so the minima of the energy density are
F el for
L( - Ul U Z/{Q U Z//g
where the energy wells are given by
Ul = SO(3)U1, Z/{Q = SO(3)U2, and Z/{3 = SO(B)U3

All of the results given in Sections 5 and 6 and in the next section on error
estimates for the finite element approximation apply to both the double well
problem (5.3) and to the cubic to tetragonal problem (5.4).

Since Fy € U and F; € U satisfy the rank-one condition (5.2), it follows
from Lemma 3, Lemma 5, and Lemma 6 that we may assume without loss of
generality for both the double well problem (5.3) and the cubic to tetragonal
problem (5.4) that

Fy el and FLel,.
We will also assume in this section without loss of generality that
Dmin(0) =0 (5.5)

(by replacing ¢(F,8) by ¢(F,0) — ¢min(0)). Also, in what follows we shall
not explicity denote the dependence of ¢, £, and U; on the temperature 6.

The results in this section give a bound for v € W in terms of £(v) =
Jo #(Vo(2) 8) dz. Since we proved in Theorem 1 that

inf &(v) =0,

UEW::,\

all of the results in this section give related results for the convergence of
energy-minimizing sequences. In Section 6 we will give an estimate for

inf  E(vy),

VpEAR,F,

where A, r, is a conforming finite element approximation to W, }i, which
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is then used to give estimates for the finite element approximation of mi-
crostructure.

We shall also assume that ¢ grows quadratically away from the energy
wells, that is, we shall assume that there exists £ > 0 such that

$(F) > &||F — n(F)|]?  forall F e R®*3 (5.6)
where 7 : R®*® — If is a Borel measurable projection defined by

|F = n(F)|| = pin || F - U]l

The projection 7 exists since U is compact, although the projection is not
uniquely defined at FF € R®*® where the minimum above is attained at
more than one U € U. We also define the Borel measurable projection
T R33 = Uy UU, by

”F — 7T1,2(F) mi

” :UELI )

1
Uld,

|1F— Ul (5.7)

We note that m = 7, 5 in the double well case (5.3), but that 7 # 7, , in the
cubic to tetragonal case (5.4), since U # U; UU,. We shall also find it useful
to utilize the operators R(F) : R3*® — SO(3) and II : R**® — { F,, F\},
which are defined by the relation

7['1’2(F) = RI'Q(F)HI’Q(F) for all F € ]RBXB. (58)

The following theorem demonstrates that the directional derivatives or-
thogonal to n (where Fy = Fy + a ® n) of sequences of energy-minimizing
deformations converge strongly in L2. It is crucial to the proof of all of the
other results.

Theorem 3 If w € R3? satisfies w - n = 0, then there exists a positive
constant C such that

/ (Vo(z) = By )wl’de < CE(v)? + CE(w)  forallve WE. (5.9)
N

Proof. See (Luskin 1996a) for the case of two rotationally invariant energy
wells (5.3) and (Li and Luskin 1996) for the case of three rotationally in-
variant energy wells given by the cubic to tetragonal transformation (5.4).
O

It follows from the convergence of the directional derivatives orthogonal
to n of energy-minimizing sequences of deformations and the Poincaré in-
equality (Wloka 1987) that energy-minimizing sequences of deformations
converge in L?.

Corollary 1 There exists a positive constant C' such that

/ o(z) — Fra|?dz < CE()/? + CE()  forallve WE.  (5.10)
i
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For the double well case (5.3), it follows trivially from the quadratic
growth of the energy density away from the energy wells (5.6) that the de-
formation gradients of energy-minimizing sequences converge to the union of
the energy wells U = U, UU,. However, for the cubic to tetragonal case (5.4)
the proof of this result relies on the bound for the directional derivatives
orthogonal to n given by Theorem 3. We state this result in the following
Theorem.

Theorem 4 For the double well case (5.3) we have the estimate
/ IVo(z) — 71 o(Vo(z))|]* de < k1E(v) for all v € W§, .
Q

For the cubic to tetragonal transformation (5.4), there exists a positive con-
stant C' such that

/ (IVo(z) = 7y o(Vo(@)|| de < CEV*(v)+ CE(W)  forall v e WE. .
Q

Proof. The proof for the double well case (5.3) follows trivially from the
quadratic growth of the energy density away from the energy wells (5.6).

See Li and Luskin (1996) for the proof in the cubic to tetragonal case (5.4).
O

The next theorem shows that the gradients of energy-minimizing sequences
of deformations converge weakly to F). It is a consequence of the convergence
of the deformations in L2

Theorem 5 If w C Q is a smooth domain, then there exists a positive
constant C such that

/w(Vv(:I:) - F\)dz

Proof. The proof for the double well case (5.3) is given in (Luskin 1996a),
and the proof for the cubic to tetragonal transformation (5.4) is given in (Li
and Luskin 1996). O

< CE)YE 4+ CEW)Y? forall v e WE.

The following theorem shows that the gradients of energy-minimizing se-
quences converge to the set { Fy, F1} . The proof relies on the bound for
the directional derivatives orthogonal to n given in Theorem 3.

Theorem 6 We have the estimate
/ [[Vo(z) — H1,2(Vv(a:))||2 dz < CE(v)V? + CE(v) for all v € W .
)

Proof. See (Luskin 1996a) for the case of two rotationally invariant energy
wells (5.3) and (Li and Luskin 1996) for the case of three rotationally in-
variant energy wells given by the cubic to tetragonal transformation (5.4).
0
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The next theorem states that in any smooth domain w C Q and for
any energy-minimizing sequence the volume fraction that Vu(z) is near F
converges to 1 — A and the volume fraction that Vo(z) is near F, converges
to A. This result follows from the weak convergence of the deformation
gradients (see Theorem 5) and the convergence of the deformation gradients
to the set { Fy, F1} (see Theorem 6). We recall from Theorem 2 that the
result of the following theorem implies that there does not exist an energy-
minimizing deformation y € W to the problem (5.1).

To make the result of the following theorem precise, we define for any
smooth domain w C Q, p > 0, and v € VVg, the sets

W) =wd(v) = {2 €w: 1 5(Vo(z)) = Fy and [|[Fy — Vo(z)| < p},
wy =w,(v) = {2 €w: 1 5(Vou(z)) = Fy and ||F} — Vo(z)|| < p} .

We can then use Theorem 5 and Theorem 6 to prove the following theorem
which describes the convergence of the microstructure (or Young measure)
of the deformation gradients of energy minimizing sequences.

Theorem 7 For any smooth domain w C  and any p > 0 we have that

MEASE) _ (1 - N)| < CEWY® + CE)?, (5.11)
Moteelt) 3| < CE)e + Ce(w)? (5.12)

for all v € W2 . The constants C in the estimates (5.11) and (5.12) are
independent of v € VV,?A , but they depend on w and p.

Proof. The proof for the double well case (5.3) is given in (Luskin 1996a),
and the proof for the cubic to tetragonal transformation (5.4) is given in (Li
and Luskin 1996). O

We have by the compactness of SO(3)U; and SO(3)U, that there exists a
positive constant pg, such that

dist (SO(3)Us, SO(3)Us) = po > 0 (5.13)
where
dist (SO(B)Ul, SO(3)U2) = min { ”V1 — VQH . Vl € SO(3)U1, V2 € SO(3)U2} :

By the definition of 7 5 (see (5.7)) and the definition of II, ; (see (5.8)), we
have for 0 < p < po/2 that

|F; — F|| < p implies that II; o(F) = F,

for all F € R**® and i € {0, 1} . Thus, for any 0 < p < pg/2, any smooth
domain w C , any v € W¢, and any i € {0, 1} we have that

wi(v)={z €w:Vu(z)€ B,(F,)}
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where the set B,(F') for p > 0 and F € R**® is defined by
B,(F) = (G B> ||G ~ Pl < p} .

Hence, it follows from the definition of the probability measure Ko rvo(T)
given by (3.54) that we have for 2 € Q, R > 0, v € W?, and 0 < p < po/2
that

meas w’ (v)

Har vy (Bo(F)) = (5.14)

meas w
for w = Bg(2).

The following corollary is a direct consequence of Theorem 7 and the
identity (5.14) and implies the result on the uniqueness of the Young measure

for energy-minimizing sequences of the problem (5.1) that was given by Ball
and James (1992).

Corollary 2 If 2 € Q, R > 0, and p < po/2, where p, is given by (5.13),
then there exists a positive constant C' such that

e R .90 (B, (F0)) = (1= M) < CE(v)/8 + CE(v)'V2,
|te,r,o0 (Bo(F1)) = A < CEw)!/E + CE(v)'?

forall v € Wffk.

Next, we show that the estimates for the weak convergence of the defor-
mation gradients (see Theorem 5) and the convergence of the deformation
gradients to the set { Fy, F1} (see Theorem 6) can be used to give estimates
for the nonlinear integrals of Vo(z) that approximate macroscopic densities.

For linear transformations £ : R¥*3 — R we define the operator norm

L] = max |L(F

1£] = max |£(F).
and for uniformly Lipschitz functions g(F) : R>*® — R we define the function
norm

dg dg “

— —(B)|| -
’ oF oF (5)
We will give estimates of nonlinear integrals of Vo(z) for the Sobolev space
V of measurable functions f(z, F): Q x R**3 — R such that

= ess sup  paxs
Lo

2

LlFl,

G(z) = f(z, Fy) — f(z, Fy).

We note that if f(z,F) € V, then f(z,F) is Lipschitz continuous as a
function of F' € R**® for almost all z € Q.

+|VG(z) - n|* + G(m)z} dz < o0

where
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Theorem 8 We have for all v € VV,‘?} and all functions f(z, F') € V that

[ 7@ = 10 = 0)f(e, B+ Afte, F) de

<ol

1/2
_HIVG@)al 4 G(xf] dw} ()" + £(0)7?)
where

0
2@

G(z) = f(z, F) — f(z, Fp).

Proof.  See (Luskin 1996a) for the case of two rotationally invariant energy
wells (5.3) and (Li and Luskin 1996) for the case of three rotationally in-

variant energy wells given by the cubic to tetragonal transformation (5.4).
0O

6. Numerical Analysis of Microstructure

We shall give in this section error estimates for the finite element approxi-
mation of a laminated microstructure for rotationally invariant, double well
energy densities (Luskin 1996a, Luskin 1996b) and for energy densities for
the cubic to tetragonal transformation (Li and Luskin 1996). These error
estimates follow directly from the approximation theory given in Section 5
and the theorem proved in this section for the infimum of the energy
inf &(v
vh€AR,F, ( h)

where A, p, is a conforming finite element space. We shall assume that all
of the assumptions described in Section 5 hold.

6.1. Properties of the Conforming Finite Element Approzimation

We now define the properties of conforming finite element spaces required
for our analysis of microstructure in Section 6. We assume that 7, for
0 < h < hyg is a family of decompositions of 2 into polyhedra { K} such that
(Quarteroni and Valli (1994)):

1 Q = UKETh IX’;

2 interior K, Ninterior Ky = 0 if K # K, for K;, Ky € 73;

3 ifS =K nNKy#0for K, # Ko, 1, Ky € T, then S is a common
face, edge, or vertex of I{; and Ko;

4 diam K < h for all K € 73.

The admissible deformations have finite energy and are constrained on the
part of the boundary where the deformation of the crystal is given. Hence,
we have by (2.4) that our family of conforming finite element spaces, Ay,
defined for mesh diameters in the range 0 < h < hg, satisfies

An CACW?® C WHP(Q;R?) C C(1R?)
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fOI‘O<h<h0.

We assume that there exists an interpolation operator Z;, : W1 ((; R?) —
Ay, such that

ess sup,eq[|VZro(z)|| < Cess sup,eq|Vo(a)| (6.1)

for all v € Wh*(Q; R*), where the constant C in (6.1) and below will always

denote a generic positive constant independent of h. We also assume for
v € Whe(Q; R?) that

Iyv(z)lx = v(z)|k for any K € 7, such that o(z)|x € {P'(K)}°, (6.2)

where { P(K)}° = P(K) x P}(K) x P'(K) and P!(K) denotes the space
of linear polynomials defined on K.

We denote the finite element space of admissible functions satisfying the
boundary condition

v (2) = Fz for all z € 02
for F = R3X3 by
Anr = Ay NWE = {v, € Ay : vp(z) = Fz for z € 09} ,

and we further assume that the interpolation operator 7, satisfies the prop-
erty that

Iw € Ayp i ve WL (6.3)

The most widely used conforming finite element methods based on contin-
uous, piecewise polynomial spaces have interpolation operators Z, satisfying
(6.1) (for quasi-regular meshes), (6.2), and (6.3) (see (Ciarlet 1978, Quar-
teroni and Valli 1994)). In particular, (6.1)~(6.3) are valid for trilinear ele-
ments defined on rectangular parallelepipeds as well as for linear elements
defined on tetrahedra.

6.2. Approzimation of the Infimum of the Energy

Our analysis of the approximation of microstructure begins with an esti-
mate on the minimization of the energy over deformations v, € A, that are
constrained to satisfy the boundary condition

v(z) = [(1 =N Fy+ AF ]z = Fhe for all z € 0Q (6.4)

for Fy € U and F; € U rank-one connected as in (3.3) and 6 < 6. We recall
by (2.18) and (5.5) that

¢min(0) = ¢(F070) = ¢(F170) =0 (6‘5)

if Fy, Iy € U and 6 < 7. The following estimate is an extension of similar
results in (Gremaud 1994, Chipot et al. 1995, Luskin 1996a). We note that
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improved estimates for all of the results in this section can be obtained for
finite element meshes that are aligned with the microstructure.

Theorem 9 If Fy € U and Iy € U are rank-one connected as in (3.3) and
0 < 07, then

inf  &(vy) < ChY? for all 0 < h < hy. (6.6)

v €AR,Fy

Proof. By (6.3), we can define the deformation v,(z) € A, p, by

on(2) = In (y(x))
for ¥ = h'/2 where w,(z) € W2 is defined by (3.42) in Theorem 1. It follows
from property (6.2) of the interpolation operator Z, that
vp(z) = wy(2) = wy(z)  forall z € Q, (6.7)
for (recalling that |n|=1)
Qh = Qi \Ah
where
Q2 = {z € Q:dist(z,00) > vh'/? + h} ,
Ay =Ujeg{z € ilz-n—jh'?|<horle-n—(j+1-Nr?| <h}.
Now meas (2 \ Q3) < Ch'/?, since Q \ Q2 is a layer of width vh'/2 + h
around the boundary of 2, and meas (A;) < Ch'/? since Ay, is the union of
O(h~1/?) planar layers of thickness h. (Note that only O(h~1/2) of the sets

in the definition of A, are non-empty.) So, since 2\ Q;, = {Q\ Q2} UA,,
we have that

meas (Q\ Q) < ChYZ (6.8)
and we have by (6.1), (3.39), and (6.7) that

Vouu(z) € { Fo, 1} C U, for almost all z € O,
IVon(2)]| < C, for almost all z € Q. (6.9)

Since ¢ is continuous, it is bounded on bounded sets in R®*3. Thus, it

follows from (6.5), (6.8) and (6.9) that

/nqs(vvh(x)) - /Q\n 6 (Vou(2)) de < Cmeas (2 \ Q4) < ChH/2,
O

We have seen in Section 4.2 that we generally expect to compute local
minima of the problem

inf g(’l)h)

vh€EAR,Fy
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rather than global minima. The local minima that we compute often repre-
sent the energy-minimizing microstructure on a length scale 2k rather than
h. So, it is reasonable to give error estimates for finite element approxima-
tions u, € Ay p, satisfying the quasi-optimality condition

E(uy) < Cu;lelﬂf,n E(vy) (6.10)
for some constant C' > 1 independent of h. For instance, if we compute a
local minimum that oscillates on a scale of 2h, then it is reasonable from
Theorem 9 to take C' = /2.

The following corollaries are direct consequences of the estimate given in
Theorem 9 and the bounds given in Section 5. We note that the results
in this section hold for both the case of a double well energy density (5.3)
and the case of an energy density for the cubic to tetragonal transformation
(5.4).

We recall that these estimates hold for general finite element meshes sat-
isfying only the conditions given at the beginning of this section. Improved
estimates are possible for meshes which are aligned with the microstructure.

Corollary 3 If u;, satisfies the quasi-optimality condition (6.10) and w €
R® satisfies w - n = 0, then there exists a positive constant C such that

/ |(Vup(z) — Fy)w|?dz < Ch'V*.
Q

Corollary 4 If u, satisfies the quasi-optimality condition (6.10), then
there exists a positive constant C such that

/ lun(z) — Frz|?dz < ChY4.
Q

Corollary 5 If u, satisfies the quasi-optimality condition (6.10) and w C
Q is a smooth domain, then there exists a positive constant C such that

/u)(Vv(a:) — F)\)dz

Corollary 6 If u, satisfies the quasi-optimality condition (6.10) and w C
Q is a smooth domain, then there exists a positive constant C such that

meas(b)) g, el
meas(w) B , -

< CRhY'®  forallve Wi .

meas(w)

Corollary 7 If u, satisfies the quasi-optimality condition (6.10), then
there exists a positive constant C such that

l/nf(w,Vuh(w)) (1= N f (e, F) + Af(z, F1)] de
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2
of

sc{/ﬂ[ 5|

for all f(z, F) € V where
G(z) = f(z, F\) — f(z, Fy).

1/2
+|VG(z) - n|* + G(a:)z} d:v} Rl/®

7. Relaxation

We have seen that the deformation gradients of energy-minimizing sequences
of the non-convex energy £(y) develop oscillations that allow the energy to
converge to the lowest possible value. The minimum energy attainable by a
microstructure that is constrained by the boundary condition y(z) = Fz for

z € Jw, where w C R® is a bounded domain, is given by the relaxed energy
density Q@(F'), which can be defined by

1
Q¢(F) = inf { oas /w d(Vo(z))de:
v € Wh*(w;R%) and v(z) = Fz for z € dw} . (7.1)

The definition of Q@(F') can be shown to be independent of w (Dacorogna
1989).

An energy density ¥(F) is defined to be quasi-convez if Qi(F) = (F') for
all F' € R3*3. It can be shown that Q¢(F) is quasi-convex and that Q@(F)
is the quasi-convex envelope of ¢(F’), since

Qé = sup { ¢ < ¢ : ¥ quasi-convex} .

We note that in general the relaxed energy density Q(F') is not convex
(Kohn 1991). '

To make the following discussion simple, we will assume that the energy
density satisfies the growth condition that for positive constants Cy,C1,C2,C3
and p > 3 we have

CL||F||P = Co < ¢(F,0) < Co||F|IP 4+ Cs for all F € R®*®. (7.2)
Hence, we have that
Wé = WP (Q; R?).
We shall also assume that the admissible deformations belong to the set
A={yeW?:y(z) = yo(z) for z € 90}

for yo(z) € W*.
It can then be shown under appropriate conditions on the energy density

¢(F) that
int [ Qo(Vy(e))do = junf, [ o(Vy(2)da (7.3)
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and that there exists an energy-minimizing deformation y(z) € A for the
relaxed energy density Q¢(F), such that

| @é(Vat@) do = int. [ Qa(vy(w))d. (7.4)

Further, it can be shown that there exists an energy-minimizing sequence
{yx} C A for the energy density ¢ such that

lim [ 6(Vin(e)) do = [ Qo(Vi(a))da

and that
yr(z) — gy(x) weakly in WP (Q; R?)

as k — oo (Dacorogna 1989).

It is natural to consider the computation of the numerical solution of
(7.4) for the deformation y(z) that is the macroscopic deformation for the
energy-minimizing microstructure defined by the sequence {y;}. We can
also consider the computation of a microstructure at each & € 2 by com-
puting the energy-minimizing microstructure for the problem (7.1) which
defines the relaxed energy density Q¢(Vy(z)). However, explicit formulae
or effective algorithms to compute the relaxed energy density (7.1) for the
energy densities used to model martensitic crystals have not been found.
(See (Kohn 1991), though, for an explicit solution to (7.1) for a double well
energy density with a special ‘Hooke’s law.”)

We can approximate (7.1) by considering as test functions the first-order
laminates v(z) = W, () defined by (3.42) with boundary values w,(z) = Fz
for z € dw. To construct the class of all first-order laminates v(z) = w,(z)
with boundary values w,(z) = Fz for ¢ € dw we consider all Fy, F; € R**®
and all 0 < A <1 such that

F=00Q-X\NF+AF, (7.5)
where
FF=F,+a®n (7.6)
for a, n € R®, |n| = 1. We note that it follows from (7.5) and (7.6) that
Fb=F-Xa®n and FF=F+(1-X\a®n.

The volume fraction that w.,(z) has deformation gradient Fy converges to
1—Xasvy — 0, and the volume fraction that . (z) has deformation gradient
F; converges to A as ¥ — 0. Thus, it follows from the proof of Theorem 1
that

lim, o mekes fo #(Vioy(2)) do = (1= N@(Fo) + Ad(F})
=(1=XN$(F—Aa®@n)+ Ap(F + (1 - A)a®n).
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If we optimize (7.1) by restricting v € Wt (w;R3) to the first-order
laminates of the form b, (z) discussed in the preceding paragraph, then we
obtain the energy density R,#(F) defined by

Rigp(F) =inf{(1 - N)p(F - Xa®@n)+ A$(F + (1 - N)a®n):
0<A<1,a,neR |n| =1}
for all I € R**3. We can more generally optimize (7.1) over the laminates

of order k discussed in Section 3.10 and obtain the energy density Ry¢(F),
which can be defined by Ro¢(F) = ¢(F) and inductively for k = 1,... by

Ri¢(F) = inf{(1 = N)Ry_1¢(F — Aa®n) + AR, _1¢(F + (1 — Na®n) :
0<A<Il,aneR|n =1}

for all F' € R**® (Kohn and Strang 1986).
It can be seen that

QI(F) < Rp(F) < ... < Rip(F) < ¢(F)  forall FeR>3,

so we can conclude from (7.3) that
inf / Qé(Vy(z))dz = inf / Red(Vy(z))dz = inf / $(Vy(z)) dz. (7.7)
yeA Jo yeA Jo yeEA Jq

An energy density (F): R**® — R is rank-one convexz if
B((1= N By + AF) < (1 Nb(Fy) + Ap(F)
for all 0 < A < 1 and all Fy, Fy € R**® such that rank (F} — Fy) < 1. The
rank-one convex envelope R¢(F) is then defined by
R¢ = sup {9 < ¢: 1 rank-one convex } .
We note that Kohn and Strang (1986) have shown that
R$(F) = kh—{l;IO Ryo(F) for all F € R3*3,

and that Sverdk (1992) has shown that in general Q@(F) # R@(F).
The approximation

inf /ﬂ Rip(Vy(z))da

yEAL

for finite element spaces A, C A has been considered in (Nicolaides and
Walkington 1993, Roubitek 1994, Carstensen and Plechac 1995, Roubictek
19964, Pedregal 1995a, Pedregal 19956, Kruzik 1995).

An energy density (F) : R**® — R is polyconvez if it is a convex function
of the minors of F' € R**® (Ball 1977, Dacorogna 1989). The polyconvex
envelope P¢(F) is then defined by

P¢p =sup {9 < ¢ : 9 polyconvex } .
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Since a polyconvex energy density is always quasi-convex by Jensen’s in-
equality, we have that P¢(F) < Qé(F) for all F' € R**3. It can be shown
that in general P#(F) # Q¢(F). Representations of the polyconvex enve-
lope P@(F'), especially that due to Dacorogna (1989), have been used to
develop numerical approximations of the lower bound for the energy given

by
int [ Po(Vy()) do

(Roubitek 1996a, Pedregal 19954, Pedregal 19955, Kruzik 1995).
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