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A PRIORI ERROR ESTIMATES FOR NUMERICAL METHODS FOR
SCALAR CONSERVATION LAWS. PART II: FLUX-SPLITTING
MONOTONE SCHEMES ON IRREGULAR CARTESIAN GRIDS

BERNARDO COCKBURN* AND PIERRE-ALAIN GREMAUDY

Abstract. This paper is the second of a series in which a general theory of a priori error
estimates for scalar conservation laws is constructed. In this paper, we focus on how the lack of
consistency introduced by the nonuniformity of the grids influences the convergence of flux-splitting
monotone schemes to the entropy solution. We obtain the optimal rate of convergence of (Az)!/?
in L°°(L!) for consistent schemes in arbitrary grids without the use of any regularity property of
the approximate solution. We then extend this result to less consistent schemes, called p'—consistent
schemes, and prove that they converge to the entropy solution with the rate of (Az)™in{1/2.7} in
L*°(L'); again, no regularity property of the approximate solution is used. Finally, we propose a new
explanation of the fact that even inconsistent schemes converge with the rate of (Az)*/2 in L*(L').
We show that this well-known supraconvergence phenomenon takes place because the consistency of
the numerical flux and the fact that the scheme is written in conservation form allows the regularity
properties of its approximate solution (total variation boundedness) to compensate for its lack of
consistency; the nonlinear nature of the problem does not play any role in this mechanism. All
the above results hold in the multidimensional case, provided the grids are Cartesian products of
one-dimensional nonuniform grids.

Key words. A priori error estimates, irregular grids, monotone schemes, conservation laws,
supraconvergence

AMS(MOS) subject classifications. 65M60, 65N30, 35L65

1. Introduction. This is the second of a series of papers in which we develop a
theory of a priori error estimates, that is, estimates given solely in terms on the exact
solution, for numerical methods for the scalar conservation law [11]

v+ V-f(v)=0, in(0,T)x RY, (1.1a)
v(0) = vy, on RY. (1.1b)

In the first paper of this series [4], we constructed a general approach aimed at ob-
taining a priori error estimates for numerical methods for scalar conservation laws
by a suitable modification of Kuznetsov approximation theory [12]. We illustrated
the approach by establishing optimal error estimates for the Engquist-Osher scheme
[5] on one-dimensional uniform grids without using any smoothness property of the
approximate solution generated by the scheme; in previous work, [2], [3], [13-16], [18],
(19], [20], [22], [24], [26], regularity properties of the approximate solution were always
used (see also [23]). The extension of this result to the case of nonuniform grids is by
no means trivial since the nonuniformity of the grids introduces a “loss” of consistency
(see, for example, Hoffman [9], Pike [21], and Turkel [25]) which, nevertheless, does
not deteriorate the rate of convergence of the global error. This paper is devoted to
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the study of this supraconvergence phenomenon, that is, to the study o_f the rel:;tli)ln
between the part of the truncation error generated by the lack of consistency of the
e and the global error. '
SCherg'upmconvefgence of numerical schemes has been analyzed in a va?lety of case;.
For example, Manteuffel and White [17] studied supraconvergence for_ hnea:,. second-
order boundary value problems, Kreiss et al. [11] for high-order hne&}r differential equa-
tions, B. Wendroff and A.B. White [27, 28] for nonlinear hyperbolic systems, G:arma—
Archilla and Sanz-Serna [7] for third-order finite differences, and Garcfa-Archilla (6]
for the Korteweg-de-Vries equation. To illustrate this supraconvergence phenom.enon
in our setting, let us consider the standard Engquist-Osher scheme on nonuniform
grids, i.e.,

@t —u)/At+ (50}, uf) — OG-, uf))/ 85 =0, neENJELD,

with numerical flux fZ°(a,b) = f*(a) + f~(b), f* and f~ being respectively the
increasing and decreasing part of f. As usual, Aj = Zjy1/2 — Tj-1/2 denotes the cell
centered around the node z;. Assuming that the solution v is smooth, the (formal)
truncation error is given by TE/ (t*,z;) = TE!,, + TEL,., + TE{ ,, where

visc cons

A%, + A2 ,
TEL,, = 5 0./ (0])o.0p) - —EET I 5,1/ (w)10e0})

visc 4Aj
A2 - A2
+1/2 j—1/2 n
+ . 4A_1 6z(fl(v?)azvj )1
Djyaja+ A —Djy12 + A .
TELp, = (=2 v 2 _ 1) f'(6})B,0] + ’“/;Aj 121/ | f1(u7)] B,

f A?‘+1/2 A?—1/2 2
TE;,. = O( )+ O( ) +O(A),
Aj Aj
where v}, stands for v(t",z;) and Aj1/2 = (Aj + Ajy1)/2. The above terms cor-
respond respectively to the numerical viscosity of the scheme, to the consistency of
the scheme, and to some “high-order” terms; note that the term TE/ _ vanishes
if uniform grids are considered. It is easy to see that the (formal) truncation error
tends to zero upon refinement if A; varies smoothly with respect to j. Convergence
can thus reasonably be expected in this case. On the other hand, if non smooth
grids are considered, the scheme is not consistent. Indeed if, for instance, the grids
..., Az[2,Az,Az/2, Az, ... are considered, the term TEZ,, does not tend to zero,
and thus neither does the (formal) truncation error TE/(t", z;).

The following numerical example shows that the inconsistency of the scheme
on rough grids does not prevent it from converging at the optimal rate. In Figure
1 below, we display the performance of the Engquist-Osher scheme on the classical
example of the Burgers’ equation with periodic boundary conditions and a sinusoidal
initial condition (see [8] for details).

About 400 randomly generated —and thus non smooth- grids were considered.
The global Ll-error at the final time is represented with respect to Az, size of the
largest element. In Figure 1 (left), the exact solution is smooth; the convergence rate
is one. In Figure 1 (right), the exact solution exhibits a discontinuity but, interestingly
enough, the scheme converges without any loss in the numerical rate of convergence.
This shows that the (formal) truncation error is a poor indicator of the quality of a
numerical algorithm.
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.

FIGURE 1. Ll-error vs. Az for a continuous (left), and discontinuous (right) solution,
on random grids.

In this paper, we obtain the proper definition of the truncation error and show
how to use it (i) to obtain a priori error estimates for flux-splitting monotone schemes
in nonuniform grids, and (ii) to explain the supraconvergence phenomenon. Although
Sanders [22] did establish an optimal error estimate for monotone schemes on nonuni-
form grids, his analysis relied on several regularity properties of the approximate solu-
tion, in particular total variation boundedness. To obtain our a priori error estimates,
we do not use any regularity property of the approximate solution; as a consequence,
we are forced to use suitable definitions of consistency. Thus, we obtain the optimal
rate of convergence of (Az)'/? in L*(L), for consistent schemes in arbitrary grids.
We also consider a class of numerical schemes of varying degree of consistency called
p—consistent and prove that they converge to the entropy solution with the rate of
(Az)min{1/2:p} iy L°(L'). In both cases, no regularity property of the approximate
solution is used.

To explain the supraconvergence of the numerical schemes under consideration
(which was proven by Sanders [22]) we allow ourselves to use the total variation bound-
edness of the approximate solution but only to estimate the term that appears in the
proper truncation error due to the inconsistency introduced by the nonuniformity of
the grids. We show that the optimal rate of convergence of (Az)/2 in L®°(L!) can
be obtained, even for inconsistent schemes, because the consistency of the numerical
flux and the fact that the scheme is written in conservation form allow the regularity
properties of the numerical approximation to compensate for the lack of consistency
of the scheme; the nonlinearity of the problem does not play any role in this mech-
anism. To the knowledge of the authors, this is the first rigorous explanation of a
supraconvergence phenomenon for hyperbolic problems with low regularity; the study
of B. Wendroff and A.B. White [27, 28] on hyperbolic systems is formal and applies
to smooth solutions only.

Finally, we strongly emphasize that, although all our results are stated and proved
in a one-dimensional framework, they can be immediately extended to the case of
multidimensional problems, provided the grids are Cartesian products of nonuniform
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one-dimensional grids. .
The paper is organized as follows. In §2, the numerical schemes under considera-

tion are presented, related technical assumptions are discussed, and the main results
are stated and discussed. In §3, we give a proof of our main result. Concluding
remarks are offered in §4.

2. The numerical schemes and the main results.

a. The numerical schemes. Given a partition of R, {t™ = nAt}nen, and
a grid or partition of R, {z;41/2 }jez, we define an approximation u to the entropy
solution v of (1.1) (with d = 1) as the piecewise-constant function

u(t,z) =u}, for (t,z) € [t™,t"*") X (Tj-1/2, Tj4+1/2)s (2.1)
constructed as follows. At t = 0, the degrees of freedom of u are given by
o 1 [Eivne
u; ZZ—/ uo(8) ds. (2.2a)
) Jz

i-1/2
The remaining degrees of freedom are defined by the following flux-splitting scheme
in conservation form:

(,u;}+l_u;l)/At+( j’_;_lﬂ—fj':lﬂ)/Aj:O, ne€Nj€Z,
(2.2b)

where Aj = zj,1/2 — ;12 and the numerical flux f_,,.'_‘,_l 2= fiv1 /2(u;-‘, u;{,_l) has the
form

jr-;-l/z =fc2nt,j+l/2 - fv'zu,j+1/2’ (2.3a)
with
Lmeirjs =22 fuf) + S fun ), (2.3b)
j+1/2 Ajpp 70 1
and
ae 41/ =ZJ%’/ (N(@},) - N@p)), (2.30)

where Ajy1/2 = (Aj + Ajy1)/2. We assume that the flux f{1/2 18 consistent with

the nonlinearity f, i.e, that fi+1/2(u,u) = f(u); this is equivalent to assume

ajy1/2 +bjv1/2 = Djra/a. (2.3d)
We also require
@jt1/2, bjy172 20, @jy12 LAz = Slelg Aj, (2.3¢)
and J
N'(s) > | f'(9) 1. (2.30)

Two standard examples of viscosity N are N(u) = %1 f'(s) | ds (Engquist-Osher flux)
and N(u) = Cu (Lax-Friedrichs flux), where C is chosen as to satisfy (2.3f). Asis well-
known, condition (2.3f) ensures the stability of the scheme under a suitable condition
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on the size of At which is our case turns out to be the following:

2wl ez, (24a)
j
where
cfi(j) = min{4;, B ”f(“) Ly, (2.4b)
2 2b; 1 2A
Ay = min { “’“’2@, 2A"f‘), DRG0
Qj41/2 bj—1/2 0‘;+1/2 Qj_1/2
B; = | 22 + + , (2.4d)
’ IAj+1/'z Bj-1/2 Bjt1/2 Aj—1/2)
| f'(w) |l = sup |f'(u(t,2))l, (2.4e)
te(0,T)
TER
[N'(w)|| = sup N'(u(t,z)). (2.4f)
te(0,T)
z€R

Note that (for the Engquist-Osher scheme, for example) the above stability condition
(2.4) boils down to the usual cfi(j) = 1 in the case of uniform grids. It should also
be noted that (2.4) is essentially a condition of the type At < k infjcz Aj, where k
is a positive constant independent of the grid. It is therefore the smallest element
Ag which limits the size of the time step At. Although customary, such a condition

might be unreasonably stringent for most of the elements. An interesting alternative
is discussed in [1].

b. Consistency and a priori error estimates. Before stating our error esti-
mates, we need to elaborate on the notion of consistency of the schemes.
The (formal) truncation error TE/(t", z;) for the schemes under consideration
can be split into three terms, TE/,, +TEZ , + TE,{_M., defined as follows:
At 2 A 1005 12+ 4 Q;
TEjy == 07 (v])0sv}) - L2 IBZ IR THE 5, (N'(v])8,v7)

vi8C

24;
bir1/28j1172 —aj_1728j_
+ R IR IR 0, (11 (0)00)),
bivisz + @i 12 — Aj e — s
TE!,,, =22 A"'llz : Bxf(v;‘)—aJLzAaLl_/zazN(v;r),
3 J

TE{,, =O(At?) +r; O(Az?),

where r; = ma.x{%{;—‘, %{—:j&}. Note that we can use the consistency of the numerical
flux (2.3) to write

d; —40;_ a; — ;i
TE!L ., = -J“_ﬂA-—]Jﬁ 8, f(v}) — LAJ_L/_'{ 8 N(v}), (2.5a)
J v
where
1
dj+1/2 = @jq1/2 — 584+ (2.5b)

Although it is not immediately clear at this point, it is this structure of the consistency
error TEf, . that allows the phenomenon of supraconvergence to take place. What
is clear, however, is that the consistency error is identically zero if both dj41/2 and



6 BERNARDO COCKBURN AND PIERRE-ALAIN GREMAUD

ajt1/2 are constant. It is thus reasonable to measure the degree of consistency of the
scheme by some seminorm related to the variation of § and a. As it turns out from
our analysis, this seminorm is the following:

_ Z|z,-_z|g(m)‘/2 [Givr/2 = G172 |
| C luar,1/2 = S;éﬁ (A$)1/2

. (2.6a)

This motivates the following concepts of consistency. We say that the scheme is
p—consistent with respect to the family of grids { { z;41/2 }jez } Az>o if there are two
nonnegative constants Cs and C, such that

IJ Ivar,}./2 < Cs (Az)p, | a |var,l/2 < Cq (Az)pa (26b)
If C; = Cy = 0, we say that the scheme is consistent. For example, for the one-
parameter family of schemes

1 1
ajy1/2 = 5(6A,-+(1 -0)Aj11), bipiz = 5081 +(1-0)4;), @jup= 382,

1
2
for 8 € [0,1], we have d;11/2 = —0(Aj41 — Aj)/2. Moreover, it is clear that the
schemes are consistent for = 0 regardless of the family of grids. For 8 € (0, 1], these
schemes are p—consistent if the grids are such that

> |Aj_1 — 20 + Aja | < (Az)Y/2 . Cj (Az)P.
|25 —z|<(Az)1/2

This property holds if the grids are p—smooth, that is, if there is a constant x such
that

|'r;. - 1| < kAZ?P, Th = sup iﬂ- (2.7)

jez A

Note that for 0—smooth grids like ...,Az/2,Az,Az/2,Az,..., the schemes above

are 0—consistent and clearly inconsistent, except for the scheme obtained with 6 = 0.

We are now ready to:state our error estimate which, following [4], is expressed in

terms of the numerical viscosity associated to the scheme under consideration and in
terms of the measure of consistency introduced above.

THEOREM 2.1. Let the Courant-Friedrichs-Levy condition (2.4) be satisfied. Letu

be the piecewise-constant solution given by the scheme (2.2) with coefficients satisfying

(2.3), let v be the entropy solution, and set R(vg) = [infzcr vo(z),5up,cp vo(z)]. Then

Iu(™) = v(t") 1) < 21 wo — vo llLr ) + 8v0 l7vw)y/2tN || vy || (Az)/2
+Clvolrvw) (16 lvar1/2 + | @lvara/2)
+ v lrvr) (B1(Az)*/* + by Az),

where || vy || = SUPjez SUPywer(vo) ¥i(w) and the local viscosity coefficient v; is given
by

oy = L Q12 A5+ 28541 @12 Aj+244,) .,
vi(w) = 2{( Az 38, ‘Az a4, )N®

3+1/2 B+ 28541 b1 A5+ 280\, At
+( s AL ) ) - S () ).
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The constant C is given by
C =4 | N'@) | (Y + /2N /|l v 1) (1 + bo (A2)'7%),

and the constants by, by, and by are locally bounded functions that depend solely on

the quantities || f'(v) |At/Az, || f'@)|I/Ilvyll, and {tV || v, I}1/2 . Moreover, if the

entropy solution has a finite number of discontinuities on each compact set of (0, T) xR,

we can take || vy || = sup,e(oﬁ) vj(v(t,z — 0),v(t, z + 0)), where vj(v=,v") is obtained
z€E

+
from vj(w) by replacing N'(w) and f'(w) by [ N'(s)ds/(vt —v~) and (f(v*) -
f(v™))/ (vt —v), respectively.
An immediate consequence of this result is the following.
COROLLARY 2.2 (p—CONSISTENT SCHEMES). With the notation and under the
assumptions of Theorem 2.1, if the scheme is p— consistent, we have
lw(t™) —v(tV) ||L @y < 2l wo — vo llLrw) + 81 vo [Tv®)y/ 2tV || v |l (Az)'/?
+ O((Ag)min{p3/4},
For consistent schemes, we have that d;41/2 = J, @j41/2 = @, and we can write

a+4] At

viw) < EL M) - ZE (p1w))? + 0(w),
where
0w <(F(+ Bl Im-1]+ (B +3Im-1) ra=1]) N
<CN'(w) (Aa)Y,

for g—smooth grids. Thus, Theorem 2.1 gives the following result.

COROLLARY 2.3 (CONSISTENT SCHEMES). With the notation and under the as-
sumptions of Theorem 2.1, if the grids are g—smooth and if the scheme is consistent,
we have

[ u@™) — (V) lLrm) < 211 wo — o 1) + 8| o lrv@)y/ 2tV || v || (Az) /2
+ O((Ax)min{l/2+q/2’3/4}),
where
a+|d|

_ , At
lli= sup (Sl Nw) - 7 (rw)?).

Note that even for 0—smooth grids, the optimal rate of convergence of O((Az)'/?)
is achieved by the above schemes.

c. Sketch of the proof. In what follows, we give an overview of the proof of
Theorem 2.1 which is given in full detail in §3. We start with the following approxi-
mation inequality [4]. If e(¢") denotes the error || u(t") — v(t") || 1(r), then

e(tN) < 2€(0) + 8 (ex + el F'W)II) [vo lrvwy + 2| £ () | | vo l7v(m) At
+ 2 lim supN {E:,‘,-u(u, v;t™) /W (™) — Egiss(un, v;t™)/W(t ")},

w—rx lsns

where the so-called dual form E};, (u,v;t"™) is, in this case, nothing but the truncation
error and the form Eg;s,(up, v;t™) contains the information on the entropy dissipation
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(or “hyperbolic coercivity”) of the numerical scheme. The third term in the right-hand
side reflects the fact that the scheme is first-order accurate in time. The parameters
- and €, are auxiliary positive numbers that will be suitably chosen after obtaining
the estimates of the forms E%; (u,v;t™) and Eugiss(un,v;t™). The functions w, x, and
W are auxiliary functions.

Since the numerical schemes under consideration are monotone, it can be easily
proven that

—Egiss(un,v;t") <0,

under the condition (2.4) on the size of At. To estimate the dual form E}; (u,v;t™),
we first show that it is bounded by the truncation error

E;iu(ua v tn) S TE(U, V3 tn)y

and then we obtain the corresponding estimate.

To illustrate the estimate of E¥; (u,v;t™), let us consider that both the entropy
solution v and the “approximate solution” u are smooth. We also assume that the
functions a, b, d, and «a defining the coefficients of the numerical scheme are smooth
functions. In this case, the truncation error TE = TE(u,v;T) can be written as the
sum of the following three terms

T T
TEyisc = / / / / Az V(u,v;1') g, dr' dt' dz dt
0 JRJO JR

T T
TEeons == [ [ [ [ {62) Plu,) + a0 (e) N u,0) b do'dt o

T T 2
TEh ot = / / / / wf(u, ‘U) Pzt dz' dt' dz dt
o JrRJo JrR 6

+ /0 TfR /OT/R {P(2") F(u,v) + Q&) N (1, v) }paaa dz’ dt’ da dt,

where, in order to render as clear as possible the manipulations that will be performed,
we abbreviated v(t,z) by v, u(t',z') by u, and the auxiliary function o(t, z,t',z') by
. The functions V', F', N and F are related to the numerical viscosity coefficient

(wia') =52 W) + XELZ8ED iy - BL (i,

and to the functions f and N as follows:

V(u,v;z') =/u v(s;2')U' (v — s)ds, F(u,v)= /“ F(8)U (u - s)ds,

N = [NV a-9ds, Fu) = [ (6P UE- s,
where U(w) = | w|. The functions P and Q satisfy
I Pl @) | Qo) < (Az)?/2.

Before estimating the truncation error TE, let us compare it with the (formal) trun-
cation error TE/, which is the sum of the following terms:

TEfj(t:) = ~a(@) 0ux(N(0(t, ) = 30(2) — a(2)) Sr2(f (0l )
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+ 3A68,((' (06, 2)))? B,0(t,2)),

TE!,..(t,z) = —{6:() 8- f (v(t, 2)) + az(2) B N(v(t, 7))},
TE{,, = O(A#) + O(Az?).

We see that the definition of the (formal) truncation error TE/ collapses when v is a
nonsmooth function. However, the truncation error TE remains defined even if v and u
are only bounded and measurable. Moreover, in the expression of the truncation error
TE, it is possible to integrate by parts very easily due to the fact that the functions
v = v(t,z) and v = u(t',2') are always evaluated at different points; this key feature
was introduced by Kruzkov [11]. In order to compensate for this “doubling of the
variables,” the auxiliary function ¢ is introduced and is defined to be an approximation
of the product of the Dirac delta functions with support {t = '} and {z = z'}
respectively; more precisely, (t,z,t',z') = {w((t — t')/er)/e:} {n((z — z')/ez)/ €z},
where w and 7 are positive, even, smooth functions of unit mass and support in
[-1,1).

We are now ready to estimate TE. To estimate T Ey;,., we integrate by parts in
the variable z and use the definition of the function V(u,v;z') to obtain

T T
TEV;,,::////Azu(v;z’)v,U'(u—v)cpzdz’dt’d:vdt
o JRJo JR
T T
5Az||u,,||//|v,|{// Iwzldz'dt’}d:cdt
o JR o JR
<20, V@ yng
€g
where Cp = T |vo|rvr) W (T), since

T T
| el do'ar asar <2 M@ | [ 1vcldza < Tioolrvim

To estimate the consistency truncation error, TEcons, we integrate once again by parts
in the variable z and use the definitions of the functions F(u,v) and NV(u,v):

TEcon,z—/oT/R/(;T/R{5,:(9:')F(u,v)+a,:(z’)./\/(u,v)}<p, dz' dt' dz dt
- /OT/R /OT/R {82(&") f'(0) + € (') N'(0) } U (w — v) g 0 de’ it dz dit
s/oT/;u'(v)Hvza{/OT/Rmaz:(x'ndz'dt'}dzdt
+ [ / IN’(v)IIvzl{/OT/Rwlaxf(x’)ldm’dt'}dzdt

1/2
<2Ch (1 + (Af)

) ” n ||L°°(R) (I d Ivar,l/? + I « |var,1/2)a
where C1 = Gy || N'(v)]], since

(Az)1/2

[

T
/0 /1R<P|Cz'(z')| de'dt' <2 W(T)(1+ )17l oo ®)y 1€ loari /2-
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Finally, to estimate T Eh_o.¢, we integrate by parts in z, use the definitions of F(u,v),
N (u,v), and F and proceed as before to get

t2 A 2 !
(At)* |n|TvR) a2 +2( z)?|n |TV(R)}.

€t €z €2

TEho: <Cy {

Now, we pick 7 such that:

Inlrvey= 1+€ |7 lrvwy=2+€e+1/e, |nllew)= (1 +¢€)/2,

and insert the above estimates into the right-hand side of the approximation inequality.
To prove Theorem 2.1, we simply have to minimize the right-hand side of the approx-
imation inequality with respect to the parameters €z, €, and €. It turns out that the
optimal parameters are ¢, = O((Az)!/2), ¢ = O((Az)%*), and e = O((Az)/4).
The estimates of the truncation errors take then the form

TEyise(u,9;T)/W(T) < Cg(Az)'/?,
TEcona(ua v T)/W(T) < C{ (I d Ivar,1/2 + | a |var,1/2);
TEh.o..(u,9;T)/W(T) < C3 (Az)*/*,

where the constants C}, i = 0, 1,2, are independent of Az for Az small enough.

d. An explanation of the supraconvergence. To illustrate the idea that allows
the supraconvergence phenomenon to take place, we only need to show how to exploit
the structure of the term TFE,,,, to obtain a better estimate. Since both terms of
TE.ons are similar in structure, we concentrate only on the first:

T T
(_):_//// §o(2') Flu, v)ps do’ dt' dz dt.
0 JRJO JR

Note that if we do not want to use the variation of ¢ to estimate ©, we can exploit
the fact that it is possible to integrate by parts, this time with respect to z', to get
an estimate involving a bound on the L*°-norm of § only. It is this structure of the
consistency error (which, as we saw in §2.a, is a reflection of the consistency of the
numerical flux and the conservativity of the scheme) what allows the phenomenon of
supraconvergence to take place. The price to pay, however, is that we must give up

the restriction of not using regularity properties of the approximate solution u, as we
show next.

Thus, to estimate ©, we integrate by parts in the variable =’ and use the definition
of the function F(u,v) to obtain

G=—/0T/;AT/lz F(u,v) @z (6(z') — 8) 5 dz’ dt' dz dt
=/0T/|1/0T/|R {U' (v = v) f'(u) uorps + F(u,v) g } {8(z") — §} da' dt' dz dt
- /0 ! /R /0 ’ /R U'(u =) { ' (0) ugrpe + f'(0) vz 0ur } {6(2") — 6} do’ dit’ dv dt
S/OTAIf’(u)IquII{/OTA |soz|{6(z'>—5}dxdt}dm'dt'
+/0T/R If'(v)llvzl{/oT/R|<Pz'|{5(w')—5}d“"dt'}d-"’dt'
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At this point, it becomes clear that in order to estimate ©, we must obtain a bqung
on the L®-norm of u and on its total variation. Since u is the “approximate solution
of a monotone scheme in one-space dimension, it is well-known that we have

I @) || |l %l Lo ensrvy <N @) o lrv ),

With the above regularity property of the “approximate solution”, we can obtain

0<4C

§|lL>®r)/R
u-e;)-/—lﬂhvm),

T

where || 8 || Lo (r)/R = infger | § — 0 || Lo (w), SinCE

T T
//|sox/|dz'dt'=f/|mdzdts 12— _w(T)
0 JR 0o JR |77|TV(1R)

This implies the following upper bound for the consistency error:

16 lc=®)/r + || @llLe®)/R
TEcona(u,'U;T) S4Cl|anV(IR) (R)/ (R)/ .

€z

The error estimate follows as in the previous section. A discrete version of the above
argument can be easily obtained which, under the notation and assumptions of The-
orem 2.1, leads to the error estimate:

u@) = v(t™) i) € 21l uo — vo lLamy
+8|vo |TV(IR)\/2 tN (v Il Az + 2| N'() | (10 [l o)/ + | @ [l 2= R)/R))
+(b1(Az)** 4+ by Az) | vo |Tv (),

which gives the optimal rate of convergence of (Az)!/2, as expected. Although the
above error estimate is new, we are more interested in the technique to obtain it since
it sheds light into the supraconvergence phenomenon. As we have just shown, the
optimal rate of convergence of (Az)!/2 can be obtained even though the scheme is not
consistent because the consistency of its numerical flux and its conservativity makes
possible for the lack of consistency of the scheme to be compensated by the regularity
of its approximate solution u. The fact that the problem is nonlinear does not play
any fundamental role in this mechanism.

3. Proof of Theorem 2.1. In this section, we prove our Theorem 2.1. This
section is closely related to section 7 of [4] in which we establish the same result for
the Engquist-Osher scheme defined in uniform grids. Thus, we shall use the same
notation and omit detailed proofs when those are variations of similar proofs in [4].

a. The approximation inequality. We start by displaying the following in-
equality proven in [4]. If e(t") denotes the error || u(t") — v(t") |1 (r), then
e(tV) < 2e(0) + 8 (ez + ellf' ) lvo lrvwy + 21| £/() || vo |Tv (r) At
+2lim sup {E},(u,v;t")/W(t"™) — Egies(un, v;t™)/W(t™)},
N

w—x 1<n<

where, in this case, the form Eg;s(un,v;t") is given by

tN . N-1
Egisa(un, v;t") = / / >~ > LRED](v(t,z)) §(t, z,t"*,5;) A; At dzdt,
0 JR

n=0 j€Z
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where the local rate of entropy dissipation LRED*(c) is given by

n

LRED[(c) = 7 /u (p](u ) — p}(s)) U'(s—c)ds

1[4
s [ ) - BT - 9 ds
J Ju}

1 i+ 3/ n 3 1"
ta; /,,m (p5(uf1) — P5(8)) U (s = ) ds,
At a; 1AL, Az Az
1_ g 2t Gtz bj-1/2 + N(s),
Pj A Ajyi2 Aj-aye 1) 2A (AJ+1/2 Aa‘—l/2) ©)
1 Az
p? = AJ 1/2 f( )+ - N(S),
j—1/2 J 1/
b; 1 Az
3 9j+1/2
P = N )
R vt (OB ()

and the dual form E%; (us,v;t") is given by

2 tN
E’;,-,,(uh,v;tN)z-—/o /R/o /RU(u(t’,:v’)—-v(t,m))got(t,z,t',a:')dzdtdm'dt’

tN

+/ //U(u(t',z')—v(tN,a:))<p(tN,:v,t’,:1:')d:vdtdz'
0 R JR
‘N

- / / / Ulu(t', ') — v0(2)) 9(0, z, ¢!, 3') dz dt da’

— E Z/t A {aj+1/2¢(t,l',tl,xj)—¢(t,$,t',$j+1)

oy Ry Bjtiy2

+ bj—1/2 ¢(ta T, t’v xj—l) — ¢(t’ z, tl7 z]) }

ABj_1/2
- F(uf',v(t, z)) dzdt At

= e #(t, 2, ', 3;) — $(t, 7, b, 2341)
+ZZ//{"QJ'+1/2 gLy b ydLy y Ly by Lg41
w05z to Jr Bjt1/2
/ . — / .
+aj—l/2 ¢(t’ z7t ,273_.1) ¢(t, .'E,t 7:”.7)}
AVERYS
“N(ufl,vo(t, z)) dz dt At,
The function U(-) is nothing but | - |, and F(u,c) and N (u,c) are defined as
follows:

F(u,c) = /cu f'(8)U'(s—c)ds, N(u,c)= /u N'(s)U'(s — c)ds. (3.1)

The function ¢ is given by

, ]_ Tj+1/2 ,
stz =g [ gt s)ds (3.2)

] 15_1/2
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where the function ¢ = (¢, z,t',2') is defined as follows:

= we, (t — ') Ne, (& — '), (z,t),(z',t") € R x RF, (3.3a)
where ¢; and €, are two arbitrary positive numbers and
1 38 1 ]
=—w(— = —n(— 3.3b
we(s) = (D), M) = (), (3.3b)

for any s € R Finally, the functions w and 7 are smooth approximations to x = Xo
and x., where

(1+¢€)/2, for |z] < (1 —¢€)/(1 +¢),
ye(z) = (1+¢€)2(1—|z|)/4e, for|z| € [(1—¢€)/(1+¢€),1],
0, elsewhere .

It is easy to verify that we can find a sequence of functions 7 such that

lim |[7|rvw) = |XelTvey = 1+ ¢ (3.4a)
nN—+Xe
,,11{1,1( 7' lrvw) = Xt lrvey = 2+ e+ 1/e (3.4b)
lim ||7|Le®) =l Xelze®) = (1+¢€)/2. (3-4c)
N—*Xe

b. Estimate of Eg;z,(un,v;t™). To estimate of Egies(un,v;t™), it is enough to
follow the proof of the corresponding result in [4, Proposition 7.1].

PROPOSITION 3.1. Under condition (2.3f) on the viscosity term N, and if the
Courant-Friedrichs-Levy (CFL) condition (2.4) is satisfied, the local rate of entropy
dissipation LRED [*(c) is nonnegative. Hence

—Ed.-a,(uh,v;t“) <0.

Sketch of the proof. The above conditions ensure that the functions pi(s), i = 1,2, 3,
are nondecreasing in s. The result follows form this fact and the definition of Eg;qs (up, v;t™).

c. Estimate of E¥;, (up,v;tV).
ProrosITION 3.2. We have

Ii_xPx <sup {E}iy(u,v;t™)/W(t™)} < TEWyisc + TEWeons + TEWh 0.4.,
wx g

where
At
TEWuiclu,it™) < Co { 2 HDAR (14 6—)}||u.,u,
t

n Aa:
TEWeons(u,v;t™) < 201 (1+ ) (14—— ( ) Y llzo®)y (18 lvara/2 + @ lvara/2),

Az
TEWh.o.,.(u,v;t")scl{——( L nlrviey |If||+2———( L o4 541,

€4 € €2 €t

where Co = tnlvOITV(R) and Cl = Co ||f’(v)|[.
To prove this result, we proceed in several steps.

First step: Relating the dual form E¥; (u,v;t) to the truncation er-
ror. We start by suitably relating the dual form to the truncation error. To do that,
we will need the following averages of the function ¢:

o
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1 t"+l
(_i)-(t,m,tn+1,$j) = E / ¢(t,$, S,:L'j)ds, (3.5&)
tn
1 1/2 /3i+1+Ai+1 P
z

o(t,z,t",s) dsdp, (3.5b)
Aj+1/2 -1/2

¢(ta z, tn+1 3 zj+l/2) =
itBip

where qft(t, z,t"*1, z;11/2) has been defined in such a way that the following equality
holds:
¢(t1 z, gl ) z)) - ¢(t’ T, tn+1a xj+l)

Ajyi/2

&z(tv z, gt amj+1/2) = (3.50)

With the above notation, we have the following upper bound for EZ;, (un, v;t").
LEMMA 3.3. We have

N-1 N
At n
By (un,vitN) < 0D /0 /R 5 Bibae(t, 2, ™ 25) F(uf,0(t,2)) dzdt At

n=0 j€Z

N-1 N
+2.2 L /R B2t z) N (u], v(t, 7)) de dt At

n=0 j€Z
N-1 tN -

- / / 87 (t,2) Ful',o(t, 2)) dedt A,
n=0 jez /0 YR

where
‘i’jn(tv T) =412 =(t, z, " Zi41/0) + b2 2(t, z, "t 25 12)
- A ¢y (t,z, " ;) + %t-qusz,(t,x,t"“,z,-),
and

‘i’j"(tv 27) = - aj+1/2¢z(ta z, tn+1:zj+1/2) + aj—l/2¢z(t’ z, tn+11xj—1/2)'

To prove this result, we use the fact the v is the entropy solution and make some
algebraic manipulations; see the proof of the similar result [4, Proposition 7.9].

Next, we need to relate the functions ¢ and ¢ as defined in (3.5). The relations
we need are displayed in the following result, which can be obtained by using simple
Taylor expansions.

LEMMA 3.4. We have

- A; +20;
¢(ta z, tn+1amj+l/2) :¢(t, z, tn+1 ) .’E]) - ]Tm(ﬁz(t, z, tn+1, :D])
Tjt+3/2 , 1 ,
+ / PJ+(37 ) Pzrzi (L, 2, ¢t vxl) dz
Tit1/2

241/2 T~ 1, '
+/ Qj (x)(lezf(t,.’E,tn-'- ,z')dz’,
T

i-1/2
and
Aj + 2Aj_1
6
Tj+1/2
M / QJ_(II) paa (b, T, tn+lvml) dz’
T

i—-1/2

¢(ta Z, tn+1a zj—l/?) =¢(t7 z, ¢t ) 23_1') + ¢z(t7 z, tn+1azj)
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Tj-1/2
+/ P (2') pwrar (t,3,8", 2") da.
Tj-3/2
The polynomials P and Q* are given by

(Tjq3/2 — ')} (o' - m:‘—3/2)3

P+ 'y — , P~ ml — ,
=% Bjr1/2 g =)=3% Aj 172851
(@' —2j_12 = Bjpas2)° + (Bjr12)® | Aj — 4,

F (W — J ] J 3 J _ .
=)= 684172 8 + 124; (@ = zj-1/2),

— (xj+1/2 -z - Aj_1/2)3 + (Aj_1/2)3 A1 — A

Y = J J 3 o

Q (-T ) = 6Aj_1/2 Aj + 12 AJ‘ ($J+1/2 z )

With the above lemma, we can now rewrite the upper bound of E;iv(uh,v;tN )

as the sum of three terms. The first, TEyisc(u, v;t"), is that part of the truncation

error which contains the information of the viscosity of the numerical scheme. The

second term, T Econs(u, v; tYV), contains information concerning the consistency of the

numerical scheme; indeed, if the scheme is consistent then T Econs(u,v;t"¥) = 0. The

third term, TEp ... (u,v;t"), contains the high-order terms in the truncation error

and, as expected, will be dominated by the term T Ey;sc(u, v;t) and T Eons (u, v; tV).
LEMMA 3.5. We have

E;iu (uhv CH tN) < TEuiac(u’ v; tN) + TEcona(“y v; tN) + TEh.o.t.(u’ CH tN)’
where

N-1 N
TEvisc(u,v;t"N) = Z Z/o /H;VISCJ-"(v(t,x);t,z) dz dt At

n=0 j€Z

N-1 At
-3 3 /R F(u;-‘,v(tN,z))T%,(tN,x, "+ z;) dz At

n=0 je€Z

N-1
+O.> / F(u;',v(to,m))%cbzg(o,z, "1 2;) dz At,
R

n=0 j€Z

N-1 tN
TEeoms(u,53¢) = 37 3 / / CONS(v(t,z);t, ) ddt At
0 R

n=0 j€Z

N-1 tN
TEnou(u,v;t¥) =3 3 / / HOT(u(t, 2);t,z) do d At
0 R

n=0 j€Z

N-1
+ Z Z/ F(u;‘,v(tN,z))%d,m(tN’x, t““,z,-)dm At
n=0 jez’R

= At
- Z Z/R F(u;‘,v(to,z))—2—¢m(0, z,t"t! ;) dz At.

n=0 jeZ

The *viscosity’ term VISC[*(c;t,z) is given by

ti cent viac
VISCP(cit,a) =VISCP(c;t,3) + VISCP (et 2) + VISCI (et 2),
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where

time At
VISCP (et z) = — F(uf',c) {585 barlt 3,8, 2)]},
cent A QA A+2A_
VISC}(c;t,z) =F(ul',c) { i1 ,2—1%”-1- —b;_, /2_1—6Li} baz(t, z, 11, 25),
Aj 4284 +a Aj+245_,

visc
VISC}(ct,z) =N (uf,c) {aj+1/2 64, j—1/2 64,

} ¢zz(tyma tn+lazj)'

The ‘consistency’ term CONS[*(c;t,z) is given by

cent visc
CONS(c;t,z) =CON S} (c;t, z) + CONS [ (c; t, z),

where
cent n n ntl
C'ONS_7 (C; t, 17) =F(’ILJ y C) (—6j+1/2 + 6]'_1/2) (ﬁz(t, z,t y .'Dj),
CONSP(c;t,@) =N(ul,0) (—aj41/2 + @j-1/2) ba(t, T, "1, 25).

Finally, the ‘high-order’ term H OTj"(c; t,z) is given by

time cent visc
HOT"(¢;t,2) =HOT }'(c;t, ) + HOT(c;t,z) + HOT [*(c; t, T),

where

time

HOT}(c;t,z) =F(u},c) {Aj 6, (t, 2, t" 1, z5) — Aj ¢a(t, 2, t"F, 3;)

At
+7A,- bz (t, 2, t", z)}, -

cent n Ti+3/2 i bl o ,
HOT @t ) ={ —apaa [ B () prwaltya, ™, 2') da
T

i+1/2

Ti+1/2 o 1
= Qt1/2 / QF (") pzraia(t, z,t"+, 2') da'
T

j-1/2

Ti+/z , 1 ,
= Uj-1/2 / QJ' (22 )‘P-’Z'I’z(t’z’tn+ X )d.’l!
Tj-1/2

Tj-1/2
“tan [ B @) et ) ds' ) P 0,
Zj_3/2

T;5+3/2

visc
HOT)”(C7 i .’l,') ={ - 0fj-{-l/2/. R;-(ml)ﬂoz’z'z(t’ z, tn+lazl)dzl
z

i+1/2

Ti+1/2 e 1
— Qjt1/2 / Q.‘i (z )(pz’z'z(t’ z, "t axl) dz'
T

i-1/2

Ti+1/2 - 1
+aj-1/2 / QJ' (') pzraia(t, 2, "t ,2') dz’
z

i—-1/2

Tj-1/2
+ Qj_1/2 / Pj_(zl)soz’l"z(ta z, tn+1az1) dz’ }N(u_?n’ C)'
z

i-3/2

Second step: Estimating TE,,(u,v;t"). In this section, we prove the fol-
lowing result.
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LEMMA 3.6. If (2.3) and (2.4) hold, we have
TEuine(w051") < 200 T2® (14 ) g,

where Co = tva(JlTV(lR) W(tN).

We need the following auxiliary result whose proof can be found in the proof of
[4, Lemma 7.13].

LEMMA 3.7. We have

N-1
sup { > wﬁ(t—t"“)At} <2 (1+ﬂ) w(tN).

te(0,tN) n=0

Proof of Lemma 3.6. As in the proof of [4, Lemma 7.11), it is enough to consider
an entropy solution v that is everywhere smooth except on a single discontinuity curve

C = {(=(t),t) : t € (0,tM)}.

We have
N-1
T-Em'ac(u’ v, tN) = Z Z E(tn-'—la zj) Aj At,
n=0 j€Z
where

tN
(4N n At n
(", z5) =/o /R{F(uj,v(t, :c))?gbu(t,:c,t +1 ;)

A +24; A;+2A;
+ F(u}, v(t, 7)) (aj+1/2j—6A,-m - ”‘1/2;6&_]1) oz (t, z,t"H, 75)
J J

. Aj+24; Aj+24;
+ N (u7, (2, z)) (C’ti+1/2j_6A",—]-'i +aj1/2 —;A—’l) bz (B, 2, £, 3’1)} dzdt
i j

/F(u ,o(tN, )——¢,t(tN " z) dz
+/RF(u}‘,v(O,z))?¢,¢(0,z,t"+l,zj)dx.

A couple of integrations by parts yields

tN z(t) 1 . ) ‘ ‘
S(t"+1,zj) = —/ / {§AtFt + (aj+1/2 AJ + 2A3+1 _ bj_1/2 A', + 2A‘7_1)Fz
0 —00

64; 64;
Aj+244, Aj+24;,

+ (a' vl i J_J)N} - dxdt

j+1/ GAJ j—1/2 GAJ z ¢

tN [e]
1 A; +2A; A; +2A;_
- —AtF, . e Bt i L S 9 2y T emgl
L L {geems (s Bigoe —o St

Aj+2A Aj+2A;_
+ (‘%‘ﬂ/z'TJJﬂ +aj_ 1/2’—M;’—1)N,}¢,, dzdt

tN
4] Aj+24; A +24;_
- [ + (R SRR
A+ 2851 A, +2A, 1)

+ <%'+1/2—5A,— @j_1/2 [N]}¢z dt,
J
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where the last integral is understood to be along the discontinuity line C. The jump
of a function G(v) across C at a point (z(t),t) is denoted [G] = G(v(t, z(t) + 0)) —
G(v(t, z(t) — 0)).

We introduce the following auxiliary viscosity coefficient ¥;

, 1{( Aj;+28;1 Aj+24;_ 1)[A/]
Otj+1/2—'—'— Y

;= 5 3AJ +a Qji_1/2 3A_1 [’U]
Aj + 2Aj+1 ‘ Aj + 2Aj—1 [F] [F] [f] }
+<aj+1/2Tj R Y.y [CITIT
We get

tN z(t) oo
E(™t z) = — D;vp bz dT + Dj[V]ds + V0.0 dz ¢ dt.
J o J J 2(t)

—0Q

Proceeding again as in [4], we set

|7;]l = sup sup |7,
te(0,tV) u€R
z€R

and thus

tN z(t) oo
2™, 55)) < 1551 /0 { [ oaligel o+ ol + /(t)|v,||¢z|dz}dt. (3.6)

We would like to analyze further the dependence of #; with respect to u. We denote
the corresponding function v#(u). Taking into account (3.1), direct calculations yield

lU — oD -U'(u—v A; +2A Aj+24;
B (u) = (u vv_z_v (u ){(aj+l/2i13A—J+1+ ;- 1/2_4_3A__) N'(w)
] J
A+ 24 Aj; +2A +
+ (aa‘+1/24‘§r]+1— -1 2T”)f( ) — A75&)—":(9--)'}’( )}

Therefore v#(u) is constant for any value of u which does not lie between v~ and v*.
Using (2.3e) and (2.4a), it is easily seen that 8,v#(u) > 0 for all u in [v~ A
vt,o” vot]if

TS el (ACETUC) PRV S = (ORI

At—(v)—f(_)-f( ) > 0.

In case f'(u) > 0, the above inequality is verified if

Aj+24;
2aj+1/2—_3TJ+1 At f'(u)|| > 0.

Assuming now that f'(u) < 0, we obtain in the same way

Aj+2A5_4

2b5-1/2= 34;

- At f'(w)]| 2 0.
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Consequently, the function »# is monotone, if (2.4a) and the (2.4c¢) are satisfied. This,
in turn, implies

sup |7;] = sup |v#(x)] < max{v#(v_),v¥(v4)} = v;(v™,0") Az
u€R u€R

Inserting vj(v~,v") in the bound (3.6) and using the definition of lvwll, we get, since
v is the entropy solution

tN z(t) o0
TEyiae(t,0; ") < Touellvol| Az / { / lve| dz + [[v]| + / lvzldz}dt
0 ) z(t)
< Toust™ vl L 07 rv Ry 1ol AT
< Tauthl Yo |TV(R)"V0“ Az,
where
N-1
Touz = sup" {Z E l¢z(ta z, tn+laz.7')| AjAt}
‘Gigvn‘l )\ n=o jez
1 N-1
<{[ Zinwia} s { T wae-rad).
R €z te(o,tV) \ ;=5
Taking Lemma 3.7 into account achieves the proof. 0
Third step: Estimating T Eons(u, v;tV).
LEMMA 3.8. We have
At Az)l/?
TECO'"('”" v; tN) < 2Cl (1 + Z ) ( 1+ '(—e)_) ” n ”L°°(IR) (I ] Iuar,1/2 + I a |var,1/2)7
T

where C1 = tV|vo|rv g |N'(v) || W (V).

Note that if the scheme is consistent, the upper bound for T E ons(u,v;t") is
equal to zero, as expected.

We will need the follow simple auxiliary result.

LEMMA 3.9. We have

1 Az)l/2
- z '6.1""1/2_ 5—1/2| S(1""(—)-)Iéluar,lﬂ-

€
T |z-zj|<ea z

Note that if the scheme is consistent, the upper bound for T E,ons(u,v;tV) is
equal to zero, as expected.

Proof of Lemma 3.8. The consistency error T Econs(u,v;t") is the sum of two
terms of the form

N-1 tN
0=- E Z/ / (G('u?,v(t,x))) o(t, z, tn+laxj)z (Cj+1/2 - C,-_l/z)dz dt At,
n=0 jez’0 YR

one of which has ( = § and G = F, and the other ( = @ and G = N. Thus, it is
enough to get an estimate for ©.
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To do that, we assume that the entropy solution v is smooth; see the proof [4,
Proposition 5.5). First, we integrate by parts in the z variable to obtain

tN
0= Z Z/ /R (G(u;-‘,v(t, x)))z ¢(t, x, tnt! , :Dj) (Cj+1/2 - Cj—1/2) dz dt At

n=0 jeZ
< Taue | N'(v) || lvolTv (), by (2.3f) and (3.1),

where

N-1
Touz = sup { Z Z ¢(t7 z, tn+1: zJ') | CJ'+1/2 - Cj—l/? | AjAt}
t€£061ltl") n=0 JGZ

Z we, (¢ — t"11) At} {Z|=—==jlse= | G412 = Gi-1/2 | }

€z

< Inllgmm sup {
G(O.t

n=0
Taking Lemmas 3.7 and 3.9 into account achieves the proof. a

Fourth step: Estimating TEp ..¢.(u,v;tV).
LEMMA 3.10. Suppose that the conditions (2.3) are satisfied. Then,

At)? Az)? |7 At
TEh,o_t.(u,v;tN)SCl{uzlm"fl I +2(_£)|+|T‘LR)(1+_) },

1 €z €z €t
where Cy = t"|volrvw) || f' ()| W(t").

time
To prove the above result, we rewrite TE} o.1.(u, v;tV) as the sum TEp o.:. (u,v;tV)+
cent

TEh.o.1.(u,v;tN) +TE;, o.t. (u v, t"V), with the obvious notation, and estimate each of

the above three terms. with TE h.ot.(%,v;tV). The following estimate can be easily
obtained by following the techniques used in the proofs of [4, Lemma 7.12] and [4,
Lemma 7.13] and by using (2.3f).

LEMMA 3.11. We have

time At
B on it < QL@ ) poy

To estimate the two remaining terms, we need a couple of simple auxiliary results.
LEMMA 3.12. We have

1
+ — +
p] = ” IDJ ”L°°(z,'+1/2,z,'+3/2) S -3- Aj"l'l’

“ Q ||L°°(:,+1/2,z,+3/2) 6 ma‘x{AJ’ A.’H'l}’
- 1
- ” Q I|L°°(11+1/2,2,+3/2) 6 ma‘x{Aj_l‘ Aj}’

1
S A

L>°(Z;41/2,%j+3/2) < 3

py =15

This result follows easily from the definition of the polynomials Pji and Q;-h in
Lemma 3.4.
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LEMMA 3.13. Suppose the conditions (2.3) are satisfied. Then we have

_ _ 1
K =|aj_1/21Pf_y + 1 ajra21af +1bj-172195 +1bj4a/21Pi < 3 Az?,
- _ 1,
k=i, iy laf +lajzlay a2 pin <34zt

The proof follows easily from the preceding Lemma 3.13 and conditions (2.3e)
and (2.3f). We can now estimate the two remaining terms.
LEMMA 3.14. Suppose that the conditions (2.3) are satisfied. Then,
Az)?|q' At
( ) IZ ‘TV(R) (1+ _)’
€z €t
is A 2 !
F B o (st w(e) < 6 E T vy (| ¢

z €t

cent
TEn.o..(u,0;t")/W(t") <Oy

Proof. We only have to prove the first estimate since the second is similar and
the upper bounds for x; and &; given in Lemma 3.13 are identical. To do that, let us

cent
rewrite T E}.o.¢.(u,v;t") as the sum ©; + O3 + O3 + ©4 with obvious notation. Next,
let us estimate the first term

N-1 t Zj+3/2
6, = Z Z/ F(uj,c)ajt1/2 / P;-(xl) Crwz(t, z,t", 2') dz’ dzdt At.
n=0 jez /0 YR Tj+1/2

We can assume that the entropy solution v is smooth since the general case can be
obtained by a standard density argument; see the proof[4, Proposition 5.5]. Integrat-
ing by parts in the variable z, taking absolute values, and changing the index j, we
get

o, < /ot [ 1760 1062) T2 doa

where
N-1 + Tjt1/2
Ti(t,z) = z 2 l@j—1/2 | P]_, / | @i (t, 2, t"1 2') | dz’ At.
n=0 jEZ Ti-1/2

Proceeding in a similar way with @2, ©3, and @4, we get

cent

tN
FEn s, (u,0;8V) < /0 [ 170t o) 0ett,2) | T(6 2)

where

Ti+1/2

N-1
T(t,z)= Z Z K;j /

n=0 j€Z Ti-1/2

| P2tz (t, z, tn+l,z') |dz' At.

Thus, by (2.3f),

cent

TEh.ot.(u,v;t") < Tauz tY | N' || |vo |7v m)-
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where,

Tove = sup T(t,z)
z€R,te(0,tN)

S [ rwian} suw {Ewc.(t—t"“)m}

te(0,tN)

Az
_( )? |Z lTv®r) (1+_) W),
€z €t
by the definition of ¢ (3.3), by Lemma 3.13, and by Lemma 3.7. This completes the
proof. a

Lemma 3.10 follows easily from Lemmas 3.11 and 3.14.

d. Proof of the error estimate. To obtain the error estimate, we proceed
exactly as in [4]. If we insert the estimates obtained in §3.b and §3.c into the ap-
proximation inequality of §3.a, and we take the auxiliary function 7 as in 3.4, we
obtain

e(t™) < 2€(0) + 8 (ez + el f'W)II) | vo ITvw) + 21 F'(¥) || v0 l7v (r) At
+2co{2'”'T—V‘“" (1+ At)}llwll,

+4C1 (1+ = )(1+(A”’)

) Im "L°°(R) (I o |var 12 + |a |var,1/2)
At Azx)? At
+2C1{ ( ) [nlTv(R) T3 +2( ) |€Z lTv(R) (1+ e_,)}’

€t € z

where Co = t¥|vg|7v(r) and Cy = Co || N'(v) ||. The estimate of Theorem 2.1 is then
obtained by eliminating the parameter At by taking into account the CFL condition
(2.4) and then taking the very same optimal values taken for the case treated in [4],

namely,
&=\t ||| Az/2, & =A(A2)*4, €= A(Az)4,

This concludes the proof of Theorem 2.1.

4. Concluding remarks. In [4], we proposed a general theory of a priori error
estimates for scalar conservation laws, based on the original Kuznetsov approximation
theory [12]. In the present paper, this approach is applied to flux-splitting monotone
schemes on (Cartesian products of) nonuniform grids. The nonuniformity of the grids
brings up a problem of consistency and supraconvergence that has no counterpart
in the case of uniform grids. Indeed, the global error of these schemes seems to be
insensitive to the deterioration of the part of the (formal) truncation error due to the
lack of consistency of the schemes.

This supraconvergence phenomenon has remained unexplained until now. In this
paper, we identify the proper truncation error and show that optimal error estimates
can be proven without using any regularity property of the approximate solution pro-
vided the schemes are “consistent enough.” On the other hand, we show that the
regularity properties of the numerical approximation can compensate the lack of con-
sistency of the scheme because of the special structure of the part of the truncation
error generated by the lack of consistency of the scheme. This special structure does
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not have anything to do with the nonlinear nature of the problem. Instead, it is a re-
flection of the consistency of the numerical flux and the fact that the scheme is written
in conservation form. It is thanks to this that the supraconvergence phenomenon takes
place. Let us point out that our analysis does not rule out the possibility of supra-
convergence for schemes written in non-conservative form. To settle this question, the
tools provided in this paper can be easily used.

The application of our approach to problems defined on general multidimensional
grids, to non-splitting numerical fluxes, and to high-order accurate methods are the
subject of forthcoming publications.

Acknowledgements. The authors want to thank John Lowengrub for his com-
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