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ABSTRACT. We study the asymptotic limit, as € N\, 0, of solutions of the Cahn-Hilliard equation
uf = A(—eAu® + 71 f(uf))

under the assumption that the initial energy
€ \Vus(-, 0)2 + L F(u(-
[ (19w o0 + 2Pt

is bounded independent of €. Here f = F’' and F is a smooth function taking its global minimum 0
only at u = 1. We show that there is a subsequence of {u®}o<c<i converging to a weak solution of
an appropriately defined limit Cahn-Hilliard problem. We also show that, in case of radial symmetry,
all the interfaces of the limit has multiplicity one for almost all time ¢t > 0, regardless of initial energy
distributions.
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1 Introduction.

In this paper, we shall study the asymptotic limit, as € Y\, 0, of the solutions of the Cahn-Hilliard equation

uf(z,t) = Avé(z,t), (z,t) € Q x (0,00),
v® = —eAu€ + e f(uf), (z,t) € Q x [0,00),

1.1
2ut = Lovf =0, (z,t) € 00 x [0,00), (L.1)
u¢(z,0) = u§(z), z e

Here § is a bounded smooth domain in R (N > 2) and f(u) is the derivative of a potential F satisfying
(a) F € C}(R), F(£1) =0, and F(u) > 0 for all u # %1;
(b) F’ = f and for some p > 2 and ¢g > 0, f'(u) > colulP~% if |u| > 1 — .

(1.2)

For the initial data u§, we assume

1
sup / (gIVuﬁ(acH2 + —F(ug(m))dz < & < o0,
0<e<1JQ )

: (13)
ﬁ/ng(gc)=moe(—1,1) Vee (0,1]

1Partially supported by the Alfred P. Sloan Research Fellowship and the National Science Foundation Grant DMS-
9404773. The author thanks Professor H. Mete Soner for many helpful discussions.



Note that (1.1) differs from the usual Cahn-Hilliard equation (see [20]) only in the scaling of time so
that t here represents t/¢ in the usual formulation. Equation (1.1) is widely accepted as a good model
to describe the complicated phase separation (in the original time scale) and coarsening (in our current
time scale) phenomena in a melted alloy that is quenched to a temperature at which only two different
concentration phases can exist stably. Here v® is the chemical potential and u® is a scaled concentration
where u® = %1 represents the two stable concentrations. The parameter ¢ is the “interaction length”
which is very small. The Neumann boundary conditions reflect the conservation of mass and insulation
from the outside. For more physical background, derivation, and discussion of the Cahn-Hilliard equation
and related equations, see 7, 8, 9, 18, 19, 20, 34, 39, 51] and the references therein.

The Cahn—Hilliard equation (1.1) is a mass preserved and a gradient flow with the energy functional

E4(t) := /Qe‘(ue)dm, ef(uf) = %IVu’l2 + éF(u‘). (1.4)

In fact, one can direct verify the following identities: for all ¢ > 0,

% [0 =0, %gf(t)=-/Q|W(-,t)|2. (1.5)

The evolution of the concentration undergoes two stages called phase separation and phase coarsening,
respectively. During the first stage, the alloy becomes a fine-grained mixture of two different phases, each
of which corresponds to a stable concentration configuration. This stage usually takes a relative short
time during which the nucleation, spinodal decomposition, and formation of the phases can be observed.
In terms of equation (1.1), the solution u® quickly approximates the value 1 in one region Q?’ and the
value —1 in another region ), whereas the remaining region T'y = Q\ (Q} UQ;) is a thin region, usually
considered as a hypersurface called interface. At the end of the first stage, one can formally show that
the energy £¢(t) defined in (1.4) is proportional to the total area of the interface.

When the phase regions are formed, the evolution of the concentration enters into the second stage
during which the phase regions are coarsened, the originally fine-grained structure becomes less fine, and
the geometric shapes of the phase regions become simpler and simpler, eventually tending to regions of
minimum surface area. In terms of the Cahn-Hilliard equation (1.1), this phenomenon corresponds to
the behavior of the solution that the interface moves and eventually tends to a surface having minimum
surface area (whereas its enclosed region has a fixed volume).

It was formally derived by Pego [52] that, as € \ 0, the function v® tends to a limit v, which, together
with a free boundary ' = Ug<i<7(T'¢ x {t}), solves the following free boundary problem:

Av =0 in Q\Ty, t €[0,T),

2Zv =0 on 9Q, t € (0,7 (1.6)
v =0K on I'y, t€[0,T], :
vV =1L, on I'y, tel0,T]

Here

o= /_11 @ds, (1.7)

x and V are, respectively, the mean curvature and the normal velocity of the interface I'y, n is the unit
F) )

outward normal either to 9Q or to I'y, [Zv]r, = £Zv* — v~ and v* and v~ are respectively the
restriction of v on Q7 and Q;, the exterior and interior of I'; in Q. Also u® — %1 in Q3 for all ¢ € [0, T).
Under the assumption that (1.6) has a smooth classical solution, rigorous justification of this Pego’s
result was recently carried out by Alikakos, Bates and the author in [1], using asymptotic expansions
and spectral analysis. Using energy methods, Stoth [60] recently obtained a global (in time) convergence
result for the case of three dimensional radial symmetry and Dirichelet boundary conditions.

The main purpose of this paper is to formulate a weak solution to the free boundary problem (1.6)
and to show that the solutions of (1.1) approach, as € \, 0, to weak solutions of (1.6).

For completeness, we continue to discuss the dynamics of (1.1) after the second stage, though it is

not the concern of this paper. Notice that equilibria of (1.6) are either a single sphere or spheres of same



radii lying in © or intersecting Q orthogonally. In case when the equilibrium is a sphere or spheres of
same radii lying in (2, there may not be a corresponding equilibrium of the Cahn-Hilliard equation (1.1).
In fact, Alikakos and Fusco [2, and the reference therein] showed that if the “interface” of the solution
of (1.1) is close to a single sphere lying in (2, then the interface will move superslowly (with speed of
order O(e™¢)) toward the closest point on Q. (Bronsard and Hilhorst[11] proved a similar result in the
one—dimensional case). They referred such kind of solutions as “bubbles”. After a super long time, the
bubble will touch the boundary d2. At this moment, the bubble will quickly collapse to a “half” bubble
orthogonally attached to 9Q2. We believe that this collapse process will take O(¢) time (in the time scale
as (1.1)), though its detailed dynamics is totally unclear. Once the half bubble is formed, it will move
along the boundary finding a final destination which minimizes its surface area (in ). Here we say a final
destination since it corresponds to a local minimizer of the energy functional £¢(-). For related results,
see Kohn and Sternberg [47]. Here we would like to point out that the motion of a half bubble is again
described by the free boundary problem (1.6) with the extra constraint that the interface I'y intersects
00 orthogonally, though rigorous verification is still under way.

Problem (1.6) is often referred as the Mullins-Sekerka problem. In studying solidification/liquidation
of materials of zero specific heat, Mullins and Sekerka [49] first studied the linear stability of a special
radially symmetric solution of (1.6) in IR? and showed that the spherical shape (of the interface) is stable
when the radius of the interface is small, and otherwise unstable.

Problem (1.6) is also called (two phase) Hele-Shaw problem since if one replaces v by a constant in
one of the region enclosed by I'y, it becomes the (one phase) Hele-Shaw problem (with surface tension)
arising from the study of the pressure of immiscible fluid in the air [35].

Concerning the existence of smooth solutions of the free boundary problem (1.6), recently the author
[23] established the local (in time) existence of a solution in the two dimensional case and, when the
initial curve is nearly circular, the global existence and long time behavior of the solution. Very recently,
Hong, Yi and the author [26] established the local existence of a unique smooth solution to (1.6) in any
space dimension. We would like to mention that it was Duchon and Robert [33] who first established
the local existence of the one phase Hele-Shaw problem in the setting that the initial curves are given
by a graph y = f(z) € H¥2(IR"). In case f is sufficiently flat, they also established the global existence
and long time behavior. An extension of their result to the case when initial curves are small analytic
perturbations of a circle was recently carried out by Constantine and Pugh [30].

Another gradient flow for the same energy functional £¢(-) in (1.4) is the Allen-Cahn equation

u§ = Au® — e 2f(uf),

which originally was introduced by Allen and Cahn [4] to describe the motion of antiphase boundaries.
It was formally derived that, as € N\, 0, the zero level set of u® approaches a surface which moves with
a normal velocity V equal to the mean curvature & of the surface; see, Allen and Cahn [4], Fife[39],
Rubinstein, Sternberg, and Keller[53]. Rigorous justification of this limit has been successfully carried
out in recent years. The one dimensional case was extensively examined by Fife & Hsiao [41], Carr &
Pego [21, 22], Fusco & Hale [41], Fusco [43], Bronsard & Kohn [12], etc. The radial symmetric case was
shown by Bronsard & Kohn [13] whereas the general case was proven by de Mottoni& Schatzman [31, 32],
Chen [25], Chen & Elliott [27], Nochetto, Paolini, & Verdi [50] and others, under the assumption that
classical solutions of V = & exist. Finally, it was Evans, Soner & Souganidis [36] who first established
a global result: for all time ¢t > 0, the limit of the zero level set of the solution of the Allen-Cahn
equation is contained in the generalized solution of the motion by mean curvature flow established in
(29, 37, 56]. More recently, Ilmanen [46] showed that this limit is actually one of the Brakke’s motion by
mean curvature solution [10], which is a subset of the unique generalized solution of the mean curvature
flow established in [29, 37]. More recently, Soner established more delicate result [57] with more general
initial data [58]. Related results for area preserved Allen-Cahn equation can be found in [14, 28, and the
reference therein).

Though both the Allen-Cahn equation and the Cahn-Hilliard equation are gradient flows of the same
energy functional, their dynamics are pretty different since the former does not preserve the mass. Many
celebrated PDE tools such as the maximum and comparison principles can be used for the former but not
for the latter, thereby causing intrinsic difficulties in studying the Cahn-Hilliard equation. Nevertheless,



some of the tools such as the energy method [12, 13, 46, 56] and the varifold approach [46] are shared by
both equations (up to certain degree).
Another dynamics related to the energy functional £¢(-) in (1.4) is the phase field system:

elafuf — Auf) + e~ f(u) = o°¢°T*, Ty — AT® = —£°uj,

which models the solidification process. Here af, o€, ¢, and c® are non-negative parameters, T¢ is
the temperature and u® is a phase order parameter with u®* ~ —1 and u® ~ 1 corresponding to solid
and liquid phases respectively. Notice that if a® = ¢® = 0 and ¢° = ¢¢ = 1, the phase field system
becomes the Cahn-Hilliard equation, and if a® = 1 and ¢° = 0, it becomes the Allen-Cahn equation.
Convergence results for various situations of the non-negative parameters a®, o€, £¢, and ¢ were formally
derived by Caginalp and others [15, 17, and the references therein]. All Caginalp’s formal asymptotic
limits (which include the Allen-Cahn and the Cahn-Hilliard limits) were recently rigorously verified,
under the assumption that the corresponding limit problems have unique local smooth solutions, by
Caginalp and the author [16], by using a method similar to that used in [1] and a spectral estimate in
[24]. More recently, Soner[59] studied the global (in time) behavior of the phase field system for the case
a® =0°=c® =1and £ = \/F(u). He showed that a subsequence of {(u®,T¢)}.¢(o,1) converges to an
appropriately defined weak solution of the Mullins-Sekerka problem with kinetic undercooling. Here we
shall use some of his varifold approaches.

This paper is organized as follows: In Section 2, we shall recall several definitions from geometric
measure theory. Then we define a weak solution of the limit Cahn-Hilliard equation which can be
regarded as a generalized solution to (1.6). Also, we state our main result. In Section 3 we establish
certain e-independent estimates for the solution of (1.1). These estimates allow us to draw convergent
subsequences of {(u®,v*)}. With the help of a key result, Theorem 3.6, we show that the limit is a weak
solution to the limit Cahn-Hilliard problem. Section 4 is devoted to the proof of Theorem 3.6 which
concerns with the upper bound of the discrepancy measure £°(u¢)dzdt where

g () = [SIvucp - %F(u‘)]. (1.8)

It is displayed in a general context so that it may be used for other similar problems such as the Allen—
Cahn equation, phase-field systems. etc. Finally in Section 5, we study the radially symmetric case,
which provides more complete result than that in [60] and explains certain important features of the
Cahn-Hilliard dynamics.

In the rest of this paper, £°(-), e*(u®), o, and £°(u®) are defined as in (1.4), (1.7), and (1.8).

2 Preliminary

2.1 Basic Notations.

In the sequel, B(z, R) denotes a ball centered at z with radius R in RY, Br = B(0, R), and Bl is a ball
in IRV ~! centered at the origin 0’. Also, S¥~! is the unit sphere in IR" and 7 a generic element in SV 1.
If n = (n!,---,n"), we denote by n ® n the matrix (n'n?)yxn. We use I to denote the identity matrix
(6:j)nxn- For any N x N matrices A = (a;;) and B = (b;;), A: B := trace(ATB) = Eﬁr]ﬁl aijbij.

By C{*(D) we denote the space of m-th differentiable functions with compact support in D where
D can be open or closed. Note that if D is compact, then CJ*(D) = C™(D). We use ¢ to denote a
generic test function in CJ*(D) and Y a generic vector valued test function in Cj*(D;IR™). The action
of a functional on a test function will be denoted by (-, -).

We assume that § is a smooth bounded open domain in RY (N > 2). The inner product in L?(Q)
will be denoted by (-,-) and the usual LI(2) norm by ||-||¢,o. We denote by x g the characteristic function
of a set E.

For reader’s convenience, we recall several definitions from geometric measure theory [38, 54].

Radon measure. Let D be either an open or a closed domain. If L is a bounded linear functional
on Co(D) satisfying (L, %) > 0 whenever ¢ > 0, the measure p generated by

u(A) = sup (L,y) for all Aopenin D
YECo(A),|¥|<1



is called a Radon measure on D. We use (u,1) (¢ € Co(D)) to denote the value [, 9du (= (L,%)) and
use spt (i) to denote the support of p. .
If {u'} is a sequence of (Radon) measures on D, we say p’ — p as (Rodan) measure on D if as

§ = oo, {pd, ) = (u, ) for every ¢ € Co(D).
If 44 is a Radon measure on Q2 x [0, T for every T > 0, we also call 4 a Radon measure on {2 x [0, c0)

BV functions. Let u € L'(Q2). If the distributional gradient Du defined by
(Du,Y) := (u,—divY) VY e Ci(RY)

can be extended as a bounded linear functional over Co(Q;IR"), then we say that u is a function of
bounded variation, denoted by u € BV (Q). If u € BV(2), we use D;u to denote the measure generated
by the functional (u, —1,,;) on Co(£2). We denote by |Du| the Radon measure generated by

|Du|(A) = sup / udivy, V A open C .
YeCo(ARN),|V|<1/4

One can show [38] that D;u is absolutely continuous with respect to |Du| and there exists a |Dul|-
measurable unit vector valued function 7 such that Du = 7|Du|, |Dul|-a.e. .
BV set. Let E beasetin . If xg € BV(), then we say FE is a BV set, or a set of finite perimeter.
We denote Dxg = Jg|DxEg|- Clearly, in case OF is smooth, #g is the unit inward normal of E on OF.
Varifold. Let P = S¥~1/{J, -} be the set of unit normals of unoriented N — 1 planes in RY. A
varifold (or, more precisely, an (N — 1)-varifold) V is a Radon measure on Q x P. If V is a varifold, the
mass measure ||V|| is a Radon measure on Q defined by

Wi = [ avn)

First Variation of a varifold. Let V be a varifold. Its first variation §V is a linear functional on
CH (4 RYN) defined by

5VY>_// Vi(a): (1-p®p)dV(z.p) VY € CUURY).

Mean curvature vector. Let V be a varifold. If there is a ||V'||-measurable vector valued function
H such that

-

—6V. D) = (VI A= [ () B@)dIViE) YT e GH@amY),
then we say that H is the mean curvature vector of V.

2.2 Definition of a weak solution

Definition 2.1 A triple (E,v,V) is called a weak solution to the limit of the Cahn-Hilliard equation if
the following holds:

1. E = U;>o(E: x {t}) is a subset of Q x [0,00) and xg € C([0,00); L' (22)) N L>([0, 00); BV (Q));
2. veL? ([0,00); H'(R)) (i.e., v e LE((0,T); H(Q)) for every T > 0);

loc
3. V. =V(z,p,t) is a Radon measure on Q2 x P x (0,00) and for almost every t € (0,00), V! := V(-,-,t)
s a varzfold on Q, and there exist a Radon measure pt on Q, pt-measurable functions ci,---,cl,
and pt-measurable P valued functions pi,---,pY such that
0<ct<1(i=1,---,N), Noet>1, sNptepi=1 u-ae., (2.1)

o< (oe ‘/T) (22)

N
// $(@ )V (z,p) = Y / )z, pl(2))dul(z) Vo e Co(@x P);  (2.3)



4. For every T > 0, almost every t € (0,00), and almost every T € (0,1),

/OT/Q [— 2xE, Yt + Vsz/)] = /92)(&,1/)(-,0) vy € Cy (2 x [0,T)), (2.4)
~(Dxs,, v¥) := (X, div(s¥)) = %(JV‘,?) V¥ e CHOQRY), (2.5)
w@+ [ 19 <wr @) (26)
Before explaining our definition, first we introduce our main result.

2.3 Main result.

Theorem 2.1 Assume that (1.2) and (1.8) hold. Let (u®,v%), € € (0,1], be the solution of (1.1). Then
there exists a sequence {€,}72, such that as k = oo, €x \; 0 and the following holds:

1. There ezists E C Q2 x [0,00) such that

u* — —142xg a.e. in Qx (0,00) and in C/°([0,T]; L*(R)) for any T > 0;

2. There ezists v € L _([0,00); H'()) such that

loc

v* — v weakly in L*((0,T); H(Q)) for all T > 0;

3. There exist a Radon measure p and measures pi;j, i,j = 1,---, N, on Q x [0,00) such that for every
T>0,

e (u®*)dzdt — du(z,t) as a Radon measure on Q) x [0,T) , (2.7)

eputuztdedt —  dpij(z,t) as measure on Q x [0,T] ,i,j = 1,--- N.

4. There exists a Radon measure V on Q x P x (0,00) such that (E,v,V) is a weak solution of
Definition 2.1, dpt(z)dt = dp(z,t) (u* as in (2.8) and p as in (2.7)), and

/OT(W‘,Y) dt:/OT/QV?: [d,u(a:,t)l-— (d,u,'j(:v,t))NXN] VY e Cl@x [0,T);RY). (2.8)

Observe from (2.8) that for V' to be a varifold, one needs to show that (d—“‘—ll) ~NxN < I This will be
our main task of Section 4.
In case of radially symmetry, we can identify the varifold V and the value of v on OFE;.

Theorem 2.2 Assume that the assumptions in Theorem 2.1 hold, that Q = By, and that uf is radially
symmetric. Then with the same notation as in Theorem 2.1,

du = 20|Dxg,|dzdt as Radon measure on Q x [0,00),
(du,-j)NxN = &,Q é&.du, as Radon measure on 2 x [0,00),
dV(z,t,p) = 20|Dxg,|dzdtés dp as Radon measure on Q x [0,00) x P,
v(z,t) = —%é‘,‘ -Ug, on spt(|Dxg,|) for ae. t>0

where & = 171 and dz, is the Dirac measure concentrated at {€,,—€.} € P.



2.4 Remarks on the definition of weak solutions.

Assume that (E,v,V) is a weak solution of Definition 2.1.

1. Observe that (2.4) implies

(ZXE = Av in @ x (0,00) (in distribution sense), (2.9)

t
=v=0 on 9 x [0,00) (in distribution sense),

limp\o E; = Ep.
Hence, (2.4) is a weak formulation of all the equations in (1.6) except the third one.

2. Since xg € C([0,00); L'(R?)), every E; is uniquely defined. Also, by (2.9), we have (xg): €
L%((0,00); H~1(€)), which, by the assumption xg € L>([0,00); BV(£)) and the Sobolev imbed-
ding (cf. [48]), implies x g € C/3([0, 00); L*(Q2)).

3. The definition of V in (2.3) can be written as

dV'(z,p) = EIL,¢i(2)bp: () du' (z)dp.
From (2.1), we know that
dIVIl(2) = B k() (2) > dy ().
Therefore, from (2.2), the function

d||[V*||(=)

= W (2.10)

is ||V'!|| measurable and m € [1,00) for |Dxg,|-a.e and m € [1,00) U {00} for ||V!||-a.e.
Now suppose that we have

|Dxe.|(B(z,r) N Q)
PN-1

sup < 00

z€QN,r>0
Then by Theorem 7.1 of [59], we know that (Dxpg,,vY) is a bounded linear functional over

Co(RY). Namely, v is |DxE,| measurable. Since m = oo for “||V!|\ |Dxg,|” a.e., 2 is |V
measurable. Hence we can write (2.5) as, for a.e. t > 0,

—(V4 ) = IVl — 7, - ) VT € CHARY).
Hence, by the definition of the mean curvature vector,

Pp, = oHy: p®—a.e.

3e

where Hy: is the mean curvature vector of V*. (Note that this implies Hy+ = 0, “|V?||\ |DxEg,|”
a.e.)

If we further assume that

W |(B(z, 1))

lim sup v >0 pt—ae.

r\0

then, by the Allard theorem [3] or a less general theorem of Almgren [5], V! is rectifiable (cf.
[3, 5, 38] for definition). It then follows from the expression of V! in (2.3) that ¢l =1,cp = -+ =
en =0, ||V = g, and p! is the unit normal of the unoriented tangent plane of p!. In addition,



Hy: = ﬁlDXE¢| for |DxE,| a.e. where H|p, | is the mean curvature vector of |Dxg,|. (In case OE,
is smooth, it is the mean curvature vector of the hypersurface F,. ) Hence, from (2.11) we have

v
— =0k |Dx g, |-a-e. (2.11)

where k = g, - ff' Dxg,| is the “generalized” mean curvature of “spt (|Dxg,|)”. Thus, if we have
m = 1 for p-a.e., i.e,
u=20|Dxg,|, p-ae. inQ x (0,00) (2.12)

then (2.11) is a weak formulation of the third equation in (1.6).

In conclusion, if we have (2.12), then Definition 2.1 is an acceptable weak formulation of (1.6).

. Generally, we cannot show (2.12) for the limit of the solutions of the Cahn-Hilliard equation, except
for the case of radially symmetry as shown in Theorem 2.2. In fact, equation y = 2¢|Dxg,| may
not hold for every (z,t). For example, by adding phantom interfaces in the initial data (namely,
oscillations on u§ such that 2|Dxg,|(2) = |Dlimeo u§|(2) < limeno |Duf|(2)), we can easily
construct examples such that p°(Q) > 20|Dxg,|(2). Also, it maybe possible that at some later
time, m > 1 at certain lower dimensional set contained in spt(x). Hence, we can regard allowing
m > 1 as a special property which helps us to extend the classical solutions of (1.6) beyond the
time where topological changes occur.

. On the other hand, m defined in (2.10) has to satisfy certain constraint, since otherwise, there
would be too many weak solutions. For example, given smooth I'y and any constant m > 1, if
we let (v™,T'™) be the unique (local) solution of (1.6) with o replaced by ¢™ := om, then one
can easily check that if we define E* to be the set enclosed by I'[* and define V™ by (V™)! :=
20mHN-L T Jpr;n where H¥~1|I"/" is the N — 1 dimensional Hausdorff measure restricted to I'}*,

then (E™,v™, V™) will satisfy all the conditions to be a (local) weak solution, except the inequality
(2.6).

Hence we impose (2.6) an an “entropy” condition to confine m. Here we provide the following
example as our reasoning: Suppose that m > 1 is space independent, that U;ejo 77(spt (|DxE,|) X
{t}) and U,po 17(spt (') x {t}) are smooth space-time hypersurfaces, and that m = 1 when t = 0
(i-e., u°()) = 20|Dx g, |(R2) ). Then one can easily calculate

d
GPel@ = - [ K
t Spt(IDx, |)

_ 1 / v 0v]
20m Jspt(|pxg,) LON

1
S / V.
20m Jq

Hence, comparing it with (2.6), we deduce that 20|Dxg,|(Q) > u'(Q) where equality is possible
only if m = 1, p-a.e.. Since we know that u*(Q) > 20|DxE, |() for a.e. t > 0, we must have m = 1
and 20|DxE;|(Q) = p'(Q) = p*(Q) for a.e. t > 0. One notices that this argument works also for
arbitrary function m > 1 if we know that KV > 0 on OE;. One can check that the condition KV > 0
on OF,; always holds for radial symmetric smooth weak solutions. Therefore, we know that in case
of radial symmetry, a smooth weak solution of Definition 2.1 is a solution of (1.6).

However, we don’t know in general if the condition (2.6) is sufficient to guarantee that a smooth
weak solution of Definition 2.1 is actually a classical solution of (1.6). If (2.6) is not sufficient, then
we need additional “entropy” conditions to confine m.

. Clearly, a local (in time) classical solution of ('1.6) is a local (in time) weak solution of Definition
2.1, if we define E? to be the region enclosed by T'; and define V* by V! = 26 HN 1 |T4dg, -



3 Convergence.

In this section we shall show that the family {(u¢,v%)}o<c<1 is weakly compact in some functional spaces
so that we can draw convergent subsequences.
In the sequel, all positive constants independent of £ will be denoted by the same letter C.

3.1 Basic estimates.

The following estimates follows directly from (1.5) and the properties of F in (1.2):

Lemma 3.1 For every € € (0,1] and every t,7 >0,

gsg) * / /n Vo2 = £(r),

/ /]Vv€|2 <6,
0 Q

-I%I-/Que(-,t) = my,

/ [uf|P < C(1+ &) (p as in (1.2)(1))),
Q

/(|u€| ~1)? < Ceko.
Q

3.2 Compactness of {u}oce<-

To show the compactness of {u€}, it is convenient to introduce a function w® defined by
w(z,t) = W(us(z,t)), (z,t) € Q x [0,00)
where

W(u) = /_“1 \/2F (s)ds, F(u) := min{F(u),1+ |u|?}, u € R.

Observe that

/QIVwE(-,t)|=/Q\/2F‘(u€)|Vu‘|g/ﬂee(u‘)zﬁs(t), Vit € [0, 00).

Also by the properties of F, there are positive constants ¢; and ¢, such that
c1lur — uz|? < [W(uy) — W(uz)| < ealur — ua|(1 + |us| + |uz|), Vui,uz € R. (3.1)

Lemma 3.2 There exists a positive constant C which is independent of € such that

[l | oo (0,000w 12 (@) F [l c178 ([0 00); L1 (0)) + 1€l 78 (70,00);22(0)) < C-

Proof. The idea to show the continuity of u® or w® in t is to use the equation u{ = Av®. For this
purpose, let p be any fixed mollifier; namely,

peC®(RY), 0<p<1inR", p=0inRY\B,, / -1
RN
For any small 5 > 0, we define

up(z,t) = / p(y)u(z —ny,t)dy, z€Q,t>0.
By



Here we have assumed that u® has been extended to {z ¢ Q| dist(z,Q) < no} by
u(s +nn(s),t) = u*(s —nn(s),t),  s€nel0,n],t >0,

where 1 is a small positive number and n(s) is the unit outward normal to 69 at s € Of2.
By the properties of mollifiers, we have for any 7 € (0,7) and every t > 0,

"V’u;('at)lllﬂ S Cn_lllus(') t)”2,ﬂ S Cn_19 (32)
/ fu —ul* < / / p()lu(z — ny, t) — u®(z,t)|* dydz
Q QJB;

cl/n/Bl p(y)ws(z — ny, t) — w(x, t)| dydz (by (3,1))
< Cn|Vus(,t)|lha < Ch. (3.3)

IA

For any 0 < 7 < t < 00, we can calculate, by using u®(z,t)—u®(z,7) = f: u®(z,s)ds = f: Avé(z, s)ds,
/ (uf,(z,t) - uf,(:t,r))(ue(:v,t) —u®(z,7))dx
Q
¢
= —/ / Voe(z, s)(Vus(z,t) = Vug(z,7))dzds
T JQ

IA

t €2 1/2 1/2 €
2(J! JI Vo) " (8 = )M supepo ) V05 8)l 2
Cn~\(t —1)/?

IA

by the estimates on Vv* in Lemma 3.1 and Vuj, in (3.2). This estimate, together with the estimate for
|luf, — uf||2,q in (3.3) then yields

[ @ = P < Ol =) < Ce- )4

if we take n = min{no, (t — 7)/4}.
Finally, using the second inequality in (3.1) we obtain

IA

/Q i (2,8) = wi(a, )| < eallut(ot) = ut (o )z (1 ()0 + 0 (7))
< C(t—7)'8
This completes the proof of the lemma. O

Lemma 3.3 Let {6j}19‘;1 be any sequence satisfying €; \y 0 as j — co. Then there ezist a subsequence
{ej.} of {€;}, a non—increasing function £(t), and a set E C Q x [0,00) such that as k = oo,

ESk(t) > E(t)  forallt >0,
wik (z,t) = 20xg  a.e. in Qx (0,00) and in C/°((0,T]; LY (Q)) for all T >0,
uSik (z,t) & —142xp  a.e in Qx (0,00) and in C*/°((0,T); L*()) for all T > 0.
In addition, there ezists C > 0 such that E, := {z ; (x,t) € E} satisfies the following:
1. Forany0 <7<t < oo, [g|xe, — xE|<Clt - T|1/4;
2. For any t € [0,00), |Ey| = |Eo| = H522(Q;

3. xp € L°([0,00); BV(Q)) and for every t >0, |Dxg,|(2) < £=E(t) < 5=&.

10



Proof. The convergence of £%k (t) follows from the monotonicity of the function £¢(t).

Since bounded set in W'!(f) is precompact in LY(Q) for any g € [1, %), from the estimate on
w® in Lemma 3.2 we immediately conclude that there exist a subsequence {¢;, } of {¢;} and a function
w(z,t) such that as k = oo,

weix (z,t) = w(z,t) ae. in Qx (0,00) and in C*/°([0,T); L' (Q)) for all T > 0.

Let u(z,t) be the function defined by the relation w(z,t) = W(u(z,t)). Then in view of (3.1), we see
that u®x — u ae. in Q x (0,00). Consequently, by the estimate for u®, we know that u®* — u in
C'/?([0,T); L*(2)). Furthermore, by the estimate for (Ju®| — 1)? in Lemma 3.1 we have |u| = 1. That is,
there is a set E C Q x [0,00) such that u = —1 + 2xg. This also implies that w = 20xg.

Using the time estimate for u®, we have, for all 0 < 7 < t < o0,

. 1
/ [ / e, — X" = lim / (-, ) — us (-, 7|2 < Cle — 7]/4.
Q Q k—»oo4 Q

Also, since the average of u®(-,t) is mg for every ¢ and every t, we have |E;| = 1£™2|Q)|. Finally since
|Dwe(+,t)|(22) < £5(t), by the lower semicontinuity of the BV norm, |Dx g, |(Q) = 55|Dw|(Q) < =£(2).
This completes the proof of the lemma. O

3.3 Weak compactness of {v*}o<c<1-

The following estimate depends only on the elliptic equation
v¢ = —eAuf + &7 f(uf), (3.4)
and the assumptions [, e*(u®) < & and [, u = mo|Q| with mg € (—-1,1).

Lemma 3.4 There ezist a large positive constant C and a small positive constant g9 such that for every
e € (0,¢0]
(o D)l @) < CE°(H) +[[VV (Ht)llz0)  VEE([D,00).

Proof. By the Sobolev imbedding, it suffices to estimate the average °(t) of v®(:,t) over Q. For
simplicity, in the sequel, we shall suppress the ¢ variable.

Let Y(z) € C*(€;IRN) be any function. Multiplying the equation (3.4) by ¥ - Vu¢ and integrating
over ) we obtain

/ Y - Vusv®
Q

/ V- Vut(—eAu® + F(u))
Q

= —/ DY : (e’(us)l -eVutQ® Vue> + / e*(u)Y - figq. (3.5)
Q a0

Integration by parts for the left-hand side yields

/ Y. Vu® = / uSv°Y - itaq — / Y. Votus — /(vc — %) ufdivy — 17‘/ usdivY.
Q el Q Q Q

Hence, for any smooth ¢ with %1/’ = 0 on 012, substituting Y = V1 yields the formula

_ JolD?*9 : (e(u®)l — eVu® @ Vu®) — u®Vip - Vo — ufA(v — 5°)]
Jo Avpus .

Now we choose 1. Let 1) be a small positive constant to be determined and let u;, be defined as in the

previous subsection. Denote by #;, the average of uj, over 2. We define ¢ to be the unique solution to

,DE

(3.6)

—-AY = uy — U in Q,

1
%w:o on 0N, /tp:O.
Q

11



Observe from the definition of up that we have

1+ sup / p(y)
z€QN JB(0,1)

1+ Cn V2| (|uf] = Dll2o < 1+ Ce'/2n~ N2,

IA

lluglloo0 |u®(z —ny)| - 1

IA

Similarly, we can show that
[Vusllory < Cn~ (1 +&'/2n~N/2).
Hence, by an elliptic estimate, we have that
[¥llcaiy < Cllugllcr@ < Cn~ ' (L +¢€' /2~ N72).

Therefore, the numerator in (3.6) can be estimated from above by

/ [D2¢ s (e(uf) — eVu® @ Vu®) — uVip - Vo —uAy(v® — U_E)]
Q

IA

Cllvlor@ (E5) + Il Vel + u%llzallo® = 5lz.0]
< O (L Py MY E () + V0 2 0).

Using the definition of ¢, we can calculate the denominator in (3.6) by

AYu® = (up — ay)u®
Q Q

/(u; w4 / (W — 1)+ Q|(1 — a%%) + |Qfac (@ — at).
Q Q

Recall that @€ = mg € (—1,1), [, [ue® — 1| < CV, lag — @] < C|lu§ — u¢||z,0 < C/7. We then have

[ v 2 0y - m?) - C(VE+ v,
Q
Therefore, from (3.6) we deduce that

Cn~' (1 + 2~ V2)(Ee(t) +[[Veilla )
211 = m?) - C(Ve+ ) '

Taking n small but independent of ¢, we then obtain the assertion of the lemma. O

lv¥] <

Corollary 3.5 There exzist positive constants C and &g such that for all € € (0,&0] and all T > 0,

T+1
/ ”“E“%F(Q) <C.
T

Consequently, for every subsequence {aj};?';l satisfying €5\, 0 as j — 00, there exist a subsequence {¢;,}
and a function v € L% ([0,00), H'()) such that as k — oo,

VEIE 3 v weakly in L*((0,T),H'(Q)) VT > 0.

o0
/ / IVol2 < &.
0 Q

In addition



3.4 An upper bound for the discrepancy measure £*(uf)dz.

To obtain a weak solution, here we state a theorem concerning the upper bound of the discrepancy
measure £¢(u®)dz defined in (1.8). Its proof will be given in the next section.
To state our theorem, we define, for every ¢ € (0, 1],

K. := {(u,v) € HX(Q) x L2(Q)| —eAu+e ' f(u)=v in @, Zu=0on an}. (3.7)
Also, we denote by w™ the positive part of w, namely, max{w,0}.

Theorem 3.6 There ezist a positive constant ng € (0,1] and continuous, non-increasing, and positive
functions M;(n) and Ma(n) defined on (0,m0] such that for every n € (0,10], every € € (0, M_ll(ﬁT]’ and
every (uf,v¢) € K¢, we have

/Q(Es(ue))+dx < U/Qes(ue)dx+eM2(77)/nv’2. (3.8)

3.5 Convergence: Proof of Theorem 2.1.

With all the previous preparation, we can now prove Theorem 2.1.

Let {u§(-)}ee(o,1) be a family of initial data satisfying (1.3). Let (u®,v®) be the solution of (1.1) with
initial data u§. By the previous estimates, we can draw a subsequence {€x}32,, such that as k — oo,
€r \y 0 and the first three assertions of Theorem 2.1 hold.

Since W (u®*) — 20xg and |DW (u®)| < e*(u®) for evert € and every (z,t), by the lower semicontinuity
of the BV norms, we have |Dxg, |dzdt < dp.

Sending k to co in the differential equation Av®* = (u*), = (1 + u®*),; and using the convergence of
u* and v°¢, we obtain the identity (2.4). In addition, for any ¥ € C([0,T); CL(%; IRY), integrating (3.5)
(with € = ;) from t = 0 to t = T and sending k = oo, we obtain

/OT/QQXE div (v¥) dedt = /OT/QDY': (Idu—- (d,u,-j)NxN). (3.9)

To finish the proof of Theorem 2.1, it remains to construct V. To do this, we first study the measure
u(+,t). Notice that for any 0 < 7 < T < o0,

/,-T /Q Ay, ) = Jlim, /,T /Q et (u)dsdt = /T "e(s)ds. (3.10)

One then can show that, for a.e. t € (0,00), there exists a Radon measure p*(z) on Q2 such that for any
g € C(Q), as function of t, [, g(z)du'(z) is measurable in t € (0,00) and for any 0 < 7 < t < 0o

// 2)du(z, ) = // (2)du*ds.

Therefore, in the sense of Radon measure,
du(z,t) = du'(z)dt

By (3.10), we have p!(Q2) = £(t) for a.e. t € (0,00). Consequently, for a.e. ¢t € (0,00) and a.e. T € (0,¢),

Q) =E@1) = lun SE"(t)— hm {E u* (-, 7) //|Vv5"|}

= &(r)~ Jim / / |Vues 2
/ J 1ol = @) - / IR

13
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Next, we study the relation between y;; and p. Observe that for any ¥, Z € C(Q x [0,T); RY),

T T T o o
/ / 7T (Vus o ut) - Z < / / V] |2 (u) + / ]|Y||Z|£f~(uf~>.
0 Q 0 Q 0 Q

Using Theorem 3.6, we know that the limit as k — oo of the second term on the right-hand side is
non—positive. Hence, by sending k — oo we obtain

T . T Y
YT . (dui; -25/ /Y Zdp. 3.11
| fom () 2 [ ] 7021 (3.11)

Therefore, in the sense of measure |du;j(z,t)| < du. Consequently, there exist y-measurable functions
vij(z,t) such that

dpij(z,t) = vij(z, t)dp(z,t) u—ae. (z,t) € Q x[0,00).
Clearly, by the definition of y;; and (3.11), we have
.. - .. < —a.e. O .
0< (V”)NxN (u],(z,t))NXN <I, p—ae (z,t) € Qx[0,00)
Therefore, we can write
N —vN \.7 & i _
(VU)NXN YL AT QU ©—ae.

where \;, : = 1,---, N, are y—measurable functions, and #;, i = 1,---, N, are u measurable unit vectors,
and they satisfy

0<\<1@G=1,---,N), TN N<1, N oem=1 p-ae (3.12)

It then follows from equation (3.9) that for a.e. ¢t € (0,00) and every Y (z) € CL(Q;IRY),

2/QXE,diV (U(-,t)?) QDY ( iv:/\ i(z,t)0;(z,t) ®V,)du (z)

- /QD)7 Y cl(@)[[- (e, t) @ (e, 0)] ' (v)
where
ci(z) = Mila, 1) + N;_l(l - SX (@)

Clearly, for a.e. t > 0,0 <ct <1and 21 ¢t > 1 for pt-a.e. Now define pt = {7;(z,t),—7;(2,t)} € P
and V! as in (2.3), then V defined by dV(z,t,p) = dV!(z,p)dt satisfies the fourth assertion of Theorem
2.1. This completes the proof of Theorem 2.1. O

Remark 3.1 If one can show that V' is rectifiable, then for ||VY||-a.e., V=!(:) := V(z,t,-) is the Dirac
measure supported on the normal of the unoriented tangent plane of ||V*!||. It then follows that ¢} =
lL,cb=---=cy =0, [|[VY|-a.e.. Consequently, \; =1 and Ay =--- = Ay =0, p-a.e.. The definition of
A; then implies that |€¢(u®)|dzdt — 0 as Radon measure on Q x (0,00).

4 The elliptic equation —eAu® + 7! f(uf) = v°.

This whole section is devoted to prove Theorem 3.6. We first study the blow—up problem.

14



4.1 The equation AU = f(U).
Lemma 4.1 Assume that U € HL (R") satisfies the equation
AU = f(U) in RM. (4.1)
Then U € C3(RV), -1 <U <1 in R", and
|[VU(2)|? <2F(U(z)) VzeRM. (4.2)

In addition, if the equality in (4.2) holds at some point in RY, then the equality holds in all RN and
either U is trivial or U is a planer wave; namely, either U is a constant function being 1 or —1, or there
exist xg € RY and a unit vector € € SV such that

U(z) = ¢((z — z0) - &), reRN
where q(+) is the unique solution to the ODE
i=f(@, q(0)=0,  q(&o0)==*l (4.3)
Lemma 4.2 The assertion of Lemma 4.1 remains true if U € HL (RY ™! x [0,00)) satisfies
AU = f(U) in RN™! x (0,00),
2U=0 on RV x{0}.

Proof of Lemma 4.2. The assertion follows immediately from Lemma 4.1 if we extend U into RN
evenly. O

Proof of Lemma 4.1. We shall prove the lemma in three steps.
Step 1. First we show that U is bounded. Let ¢(-) € C®°(IR") be a cut-off function; namely,

0<(¢<1lin R", ¢(=11in By, (=0 in RY\B;.
For k = p—%% and any fixed z9 € R", multiplying (4.1) by ¢*(z — 20)U () yields
0 = /("U(—AU+ FU)) = / [(k|VU|2 +CUF(U) +k('°‘1UVU-V(]
. 1 .
> [ [IVUPR + ¢S - 5¢IUP - 5¢HUP - (6, w1

where § can be any small positive constant. Since Uf(U) > ¢;|U[P —c; for all U € IR, by taking § = ¢;/2
it follows from the last inequality that

/ CG(VUP + [UP) < Clew,easp, IVl

Hence, for any z, € R", WUl 1 (B(z0,1/2)) < C where C depends only on ¢j,c; and p. Consequently,

by elliptic regularity theory (cf. [40]), U € C*(RY) N L®(R™). Since f(U) > 0 whenever |U| > 1, by
maximum principle, |U| < 1.
Step 2. Next, we prove (4.2). To do this, we define, for every small positive constant 4,

Ws := %|VU|2 —F({U)-Gs(U)
where

Gs(u) := (5[1 +/ exp ( -2, %%fgi—%dé) ds] .

-1
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One can directly calculate

AWs; = DU :DU+VU-V(AU) - (f +Gs')AU — (f' + Gs")|VU|?
DU : D*U — f(f + G5') — 2G5 (Ws + F + Gs) (4.4)

by substituting the relation AU = f(U) and [VU|* = 2(Ws + F + Gs). From the definition of Ws,
VW;s = D2U - VU — (f + Gs')VU which implies that

\VUPD?U : D*U > |D*U-VU[* =|VW;+ (f + Gs')VU|?
> 2(f+Gs)VU-VWs + (f + Gs')*|VU|%.

It then follows from (4.4) that, when |VU| > 0,

2(f + G5 )VU
|VU?

> (f+Gs) = (f+Gs')f —2Gs"(F + Gs)

= (G5 +(Gs'f—2Gs"(F + Gs'))

> (Gs')? (4.5)

AWs — -VWs + 2G5”W5

where in the last equality, we have used the fact that

UL

Gs'f = 2G5 (F +Gs) = G'[ £ + 1=

LE S (F+Gs)| >0
since G5 > 6 and G5’ > 0 whenever U € [—1,1].

We are now ready to show that suppny Ws < 0. In fact if n := supgny Ws > 0, then there exists zg
such that w(z) > %77. Consequently, for any positive integer k, there exists yx € B(zo,k) which attains
the maximum of the function wy, := W5+ %77((%‘1) in RY. Hence, at yi, wp > 1, Vwg = 0, D2wy, < 0.
This translates, via the definition of wyg, that at y:

[VU|? > 2W5s = 2wy, — n¢ > 1,
|VWs| = gnlV¢| < Cn/k,
AW; < $1A¢ < C/k?.

But this contradicts (4.5) since as k — oo, the left-hand side is < O(1/k) (noting that G5” < 0) whereas
the right-hand side is > (Gs')? > §% exp(—2 f_ll 5%%4_6)) > 0.
Therefore, we must have supp~ W5 < 0, which, by the definition of Wj, implies that

JIVUP<F+Gs<F+3 in R".

Sending § — 0 we then obtain (4.2).
Step 3. Now we show the second assertion of the lemma. Assume that equality in (4.2) holds at some

point in RY and that U # #1. Then the function W, := JV_;/K — F(u) attains its maximum. However,
same calculation as before but with § = 0 show’s that W, cannot attain a local maximum unless W is a
constant. Hence, we must have Wy = 0 in IR". Consequently, |[VU|2 =2F(U) in R

Since we assumed that U # +1, by maximum principle, U(z) € (—1,1) for all z € RRY. Noting that
g(+) is monotonic, there exists a unique function z such that U(z) = g(z(z)). It them follows from the
identity |[VU|? = 2F(U) that |Vz| = 1 in IRY; namely z is a distance function. Furthermore, substituting
U = ¢(z) into the equation AU = f(U) yields Az = 0 in R". Since z grows at most linearly, properties
of harmonic function then imply that z is a linear function. This completes the proof. 0O

Remark 4.1 A parabolic version of Lemma 4.1 was first obtained by Ilmanen [46] in studying the
Allen-Cahn equation U; = AU — f(U) in RY x (0,00). Assuming that U(-,0) € (—1,1) and writing
U(z,t) = q(2(z,t)), lmanen [46] showed that |Vz| < 1 provided that [Vz(-,0)| < 1. Later on, Soner [57]
extended Ilmanen’s result by dropping the crucial condition |Vz(:,0)| < 1. Since in both their papers
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they studied the function z, they need the technical assumption (¢"/q’) < 0, which is equivalent to the
condition
fE>2Ff Yue(-1,1). (4.6)

Now suppose we are studying equation (4.1) in a bounded domain. From our proof one can see that
Wo = |Vu|? — 2F (u) satisfies the maximum principle (but not minimum principle); namely, if W, obtains
an interior maximum, then Wj is a constant function. This conclusion is regardless of the condition (4.6)
and does not need the assumption |U| < 1. On the other hand, with the assumption (4.6) and |U| < 1,

- 2 -
one can show that the function Wy := %—T — 1 satisfies the maximum principle; namely, Wj cannot

attain an interior non-negative maximum unless it is a constant function. Clearly when F(U) is small
inside the domain but large on the boundary, controlling Wy maybe more useful than controlling Wj.

4.2 The equation —AU + f(U) = V.

Lemma 4.3 For any sufficiently small n > 0, there exists a large positive integer R = R(n) such that if
(U,V,Q) satisfies:

—AU+ f(U)=V  in BrRNQ, (4.7)
2ZU=0 on BrNoQ, (4.8)
“V“2,Bnnfz <R, (4.9)
QNBr={(z',zn) € Br; zn > Y(2')}, (4.10)

Y(0)<0, V.Y(0)=0, |DY|p, <R3, '

then
+
/ (|VU|2 - 2F(U)) <n / [|VU|2 + FA(U)+ F(U) + v?] + / VU2 (4.11)
B, NQ BynQ {z€BiNSY; |U|>1-n}
Proof. Set

Q={zeBnQ; U <1-n}
Denote by 2* the number NLI-_V-Z— if N > 2 and any number, say 7, if N = 2. Set m = -22-. We consider

R . 202"
two separated cases: (i) 21| < n™ and (ii) Q] > n™.
(i) First we consider the case when || < n™. Note that

VUl 5, < 1] VU

2+, < CT'HVU”H‘(B,D()) (4.12)

by Sobolev’s imbedding and the assumption on the measure of ;. On the other hand, a basic elliptic
estimate (cf. [40]) shows that

IA

”VU“Hl(Bln{)) C [”AU“2,Bgn{7 + ”VU”z,anﬁ]

C[IVll, 3,2 + 1512, i + 19Ul 0]

IA

It then follows from (4.12) that

VUl 0, < Cn{IVllz, 3,00 + 12,300 + 191l 0]

Consequently,

[ wor <cp [ [vie e ivup] +f VU,
BN B,NQ {z€BNQ; |U|>1—-n}

and the assertion of the lemma follows. (Notice that in this case, we need only R = R(n) > 2.)
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(if) Now we consider the case || > n™. We show the assertion of the lemma by a contradiction
argument. It the assertion were not true, then there exists a sequence {(U’,VJ QJ) 2, such that for
each j > 2, (U4, V7,Q) satisfies (4.7)-(4.10) with R = j, but (4.11) is not true for (UJ V7). Of course,
we have, for each j > 2, {z e BN ; U <1—n}| >nm

Use the same technique as in Step 1 in the proof of Lemma 4.1, we can show that for any fixed r > 0,
if j >+ 2, |U%||n2(B,nai) + || fll2,B.nqs is bounded with a bound depending only on r.

Let Y7 be the function in (4.10) for /. We consider two separate cases: (a) liminf;_o Y7 (0) = —o0;
(b) d := liminf ;e Y7(0) > —o0.

In case (a) , we can select a subsequence {j*} from {j} and a function U € HZ, (IRY) such that as
k — oo,

yi* (z') — —oo uniformly in any compact subset of RN
vi'* 0  in L}¥B,), Vr>0,
vt U in H*(B,) and a.e. in B,, vr > 0,
f(Ujk) — f(U) in LYB,) and a.e. in By, Vr > 0,q € [1,2),
F(U") — F(U) in LY(B,), Vr>0.
In addition, U satisfies
—AU+ f(U)=0 in R".

It then follows from Lemma 4.1 that

; * M\ _ _
im [ (1vui*p —2r@?))" = /B | (V0 2P ))* =o. (4.13)

k—o0

On the other hand, since U#* — U a.e., {x € By N/ ; |U-"k| <1-n}>n™, and Y7(0) = —oo, we must
also have |{z € By ; |U| <1—n}| > n™. Consequently,

1 i* 2 3* — 2 m+1 .
klg{.lon/B1 (|VU |+ F(U )) /B, 17[]VU| +F(U)] >n ae[—llTr?,l—n] F(s). (4.14)

But the last inequality and (4.13) imply that (4.11) must hold for U i* with large enough k. Hence, we
obtain a contradiction. This contradiction shows that that the assertion of the lemma holds.

The case (b) is similar. We can obtain a subsequence (Uj'e ij) which converges to (U d). The
function U satisfies —AU + f(U) =01in {o; zn > d} and —U(z d) = 0 for all z’ € R¥~!. Following
the same argument as in case (a) and use Lemma 4.2 instead of Lemma 4.1 we derive the same conclusmn
This completes the proof of the lemma. 0O

4.3 Control of the bulk energy.

If we call the region where |[u®| > 1 — o(1) as the bulk region, and call the region where |u¢| < 1 —o(1)
as the interfacial region, the following lemma shows that the bulk energy is small, comparing to the
interfacial energy.

Lemma 4.4 There exist positive constants Cy and no such that for every n € [0,1], every € € (0,1], and
every (uf,v¢) € K,

/ [e‘(us) + e_lfz(u‘)] < Con/ g|Vu|? + Coe/ ve2. (4.15)
{z€Q; |u¢|>1-n} {z€Q;|ut|<1-n} Q

Proof.  Let ¢ be as in (1.2)(b). For any 5 € [0,co/2], we define g(u) such that g(u) = f(u) if
|u| > 1—n, g(u) =0if |u| < 1—cy, and g(u) is linear in the remaining part. Clearly, 0 < g*> < fg for all
u. From the identity

[ vta)= [ [=eau +e7 o) = [ e @l +7 su)gtu)],
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we have, since | [, v¥g(u®)| < Jol50°% + £g?] < [ol5v¢ + L fq,

1
/ [ervat + 5w < 5 [ o= [ e (W)Vu (416)
an{jul>1-n} € 2 Ja an{lul<1-n}

Since |f(£(1 —n))| = O(n), ¢'(v) = O(n) when |u| < 1 —1n. Also since f' > co|u|P~2 when |u| > 1 — ¢y,
F(u) < Cf*(u) whenever |u| > 1 — ¢o. The assertion of the lemma thus follows from (4.16). O

4.4 Proof of Theorem 3.6

Let n > 0 be any fixed small positive constant and R = R(7n) be as in Lemma 4.3. Assume that
e € (0, R™?] is arbitrarily fixed. )
Let {z;};es be a maximal collection of points in Q such that

inf i — x| > €.
i iedisi s = @5 > €

Set BY = B(zj,e) N Q. Clearly, UjesB? = §, and there exists a constant C(N) depending only on the
space dimension N such that

Z X B(z;,2¢€) < C(N), E XB(z;,Re) < C(N)RN (417)
JjeJ jeTJ
For each j € J, we define
Ully) =u(zj+ey), Vi) =e'(zj+ey), @ ={y|zj+eyeq}.

It is easy to check that
— AU+ f(U)=VI  in Bpn @Y. (4.18)
Notice that for each j € J, OV is isomorphic to the surface obtained by magnifying 6Q2 by a factor
of €, so that either 00’ N Bp is empty or 9§ N Br can be represented, after a rotation, as a graph
ynv = Yi(y1,---,yn—1) with Y(0') < 0, D, Y(0') = 0, and DY |lco(sr,) < C([|09|c2)e?. Hence, by
further assuming e!/2C(||0€|c2) < 1, one sees that Q7 satisfies (after a rotation) (4.10).
We decompose J into two disjoint sets A and B defined by

: N_ g
A:={j €T [[v°|l2,B(z; Re)na < €2 'R71},
; N_ -
B:=J\A={jeJT; ”vE“Z,B(zj,Re)nQ >ez 'R 1}.
First we consider the case when j € A. In this case, we have
“Vj”%BRnQ" = E_N/2”EUE||2,B(::J',R€)DQ < R7L.

It then follows from Lemma 4.3 that
. .\t . . . .
[ (voip-2r@h)” < oa [ (VU4 R+ @)+ () +
B, NQJ ByNQi

+/ |VU7 2.
BiN{y€Qs;|Ui |>1-n}

Hence, transferring back to u® and v® we obtain

£(, € + E£(, € —1 52/, € €2 2
(e@)) < (e5(u) + €71 £2(ue) + ev°%) + e|vul?.
BJ B(z;,2e)NQ2 B(zj,2e)N{z€Q;|u¢|>1—n}

Therefore, summing up j € A and using (4.17), we obtain

> [ (ew)”

JEA

IN

C'(N)n/ (ee(u€)+€_1f2(u5)+€v€2) + C(N) g|Vus|?
Q {ze:|u¢|21-n}
C’n/ eE(u€)+C'6/v":2

Q Q
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where in the second inequality, we have used Lemma 4.4 and the fact that f?(u) < CF(u) when |u| < 1.
Next we consider the case when j € B:= J \ A. By a local elliptic estimate,

[ wuie < cf (pwh+ i)
B, NQJ

B nQJ

IA

c+C ) (IVj|2+f2(Uj)X{|Ui|z1})-
BN

Transferring this estimate into (u,v¢) and adding up j € B, we then obtain

)y / Vi < Ce'S]|By|+ CO(N)e / v 4 CC(N)e~ / £
Q

jeB jeB {z€Q;|uc|>1}

Ce™' > |B; |+C€/ (4.19)

JEB

IA

where in the second inequality, we have used Lemma 4.4 with = 0 to control the integral involving f2.
Finally, since for every j € B, fB(xj,Rs)nQ v°? > R™2eN-% > ¢72R~?|B;|/|B:| where |B,| is the volume
of the unit ball. It then follows that

> IBjl < 52|B1|R2Z/

v*? < €?|B,|R*C(N)RY / ve?
jeB jeB B(z;,Re) Q

by (4.17). Substituting the last estimate into (4.19) we then obtain
> / elVu'|* < CC(N)[1+ RV *?)e /
j€B

Now combing the estimate for the case j € A and the case j € B, we then conclude

/Q(&(ue))+ SCU/Qee(“E)+€1\7I(n)/Qv€2

Renaming Cn as n we then completes the proof of Theorem 3.6. O

5 Case of radial symmetry.

In this section we shall restrict our attention to the case of radial symmetry. Hence, we assume that
Q! = B;. We denote by S, the sphere of radius # in IR™ and by wy the area of unit sphere S;. For
convenience, we shall not distinguish functions of z € B; from functions of r € [0,1). We do distinguish,
however, the integrals of dz from that of dr, due to consideration of singularities at the origin.

5.1 Equal partition of energy.

In the previous section, we have shown that the discrepancy measure £°(u®)dzdt is non-positive in the
limit. In this section we shall show that, in the case of radial symmetry, the limit is actually zero, as the
following theorem proclaims.

Theorem 5.1 Assume that {(u®,v%)}.c0,1) i @ family of radially symmetric solutions of (1.1) with
initial data satisfying (1.8). Then
hm / /

ES

20



Proof. Since (uf,v¢) is radially symmetric, £°(u®) = %uiz — %F(ue) and

N-1 1
- 6"5‘1‘ - yui + Ef(ue) = Uea re (09 1)’ te (0,00) (5-1)
Multiplying this equation by r¥ ~!u¢ and integrating over (0,7), we obtain
r N-1 r -
/0 N2 () 1 (€5 (u) + a7 - /0 2 (et 4 vt =0, (5.2)

Integrating this identity from r = 1/2 to r = 1 then yields

1/2 1 1
/ N2ee(ue)ai < C [ rNUe)ldr + C / (P2 {ofus| + N utus |)dr
0 1/2 0

IA

C/e‘(ﬂ‘)+C(Ilr””uellm|Ir_‘/2v€||2,n+||u€||2,n||villz,n)- (5.3)
Q

Since ||r=1/2v%||5,0 < [[vf|l 1 q) and [|[r~/2us||z,0 < C + C|lr~ F(u)|lg < C + CVE||r—tes (us)||}/3, it
then follows from (5.3) that

[ e o, MW = 1 o + el
As a consequence, this estimate implies that
/B e*(uf)de < CSME(t), V6 € (0,1), (5.4)
s
and that, via (5.2),

sup |1‘N—1(£€(u€)+v5u5)
0<r<1

< CME(t). (5.5)

Hence, for any small é§ and 7,

/ )| < / e (uf)dz +/ [|ve|(1 -+ rl_NC'ME(t)].
Q BsU{|u¢|>1-n} QN{r>6,|u¢|<1-n}

The last integral can be controlled by C§(~N)/2Mf¢(t)(measure{|u¢| < 1 — n})1/2 < C(8,n)VEM(t).
Hence, using (5.4) to control the energy in Bs and use Lemma 4.4 to control the energy in {|u¢| > 1—n}
we then obtain

J

where C| is independent of €,7,d and t. The assertion of the theorem thus follows by integrating the last
estimate in (0,T) and sending first € to 0 and then § and n to 0. O

EE(UE

€ (uf)

< 01{5+n+€+0(5,n)\/5}M‘(t)

Corollary 5.2 Let {g;}52; be any sequence of positive numbers converging to 0. Also let (ui,v%)
be the radially symmetric solution of (1.1) with initial data satisfying (1.3). Assume that as j — oo,
i (ufi)dzdt converges, as Radon measure, to du(z,t). Then, for any ¢(z,t) € Co([0,00); C(Q)),

/ /1/)dp = _lim/ /6]~|Vu‘f|2¢d:1:dt
0 JQ I Jo  Ja

*° 2
= lim/ —F(uf)ypdzdt
o Jaé&j

= lim /0 - /Q VW () [ipddt (W(u)= /_ ul \/ﬁ@ds).
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5.2 No interfaces piling up.

The lower semicontinuity of BV norm says that if w — w in L!(f2), then |Dw|(Q) < liminf;_,, |Dw/|(Q).
We only have inequality because certain oscillations of w’ may not be carried out to the limit function
w.

In our case, there are possibilities leading to the discrepancy between the limit of the measure
lim |[DW (u€)|(R2) and the measure of the limit |[DW(limu®)|() = 20|Dxg,|(2). One possibility is
caused by the presence of phantom interfaces. That is, even if u = limu® = —1 a.e. near S, so that
|DW (u)|(Sr) = 0, for a sequence of &, u® may go up and down (several times) near an o(1) neighborhood
of S,. This instance up and down (known as phantom interfaces) produces energy which is carried to the
limit of the measure, but not to the measure of the limit. Even if u does have a jump across S, so that
|DW (u)|(Sr) = 20|Sy|, still u® can have arbitrary odd number of jumps (visually, interfaces piling up) so
that (lim |DW (u®)|)(S») = (2m + 1)|S,|, where m is a non-negative integer. Another possibility is that
u® is uniformly away from +1 by a distance of order O(+/€) so that 1 F(u€)dzdt could carry non-trivial
measure to the limit in the set where [DW| = 0. The second possibility, of course, has been ruled out
by Lemma 4.4 for almost all time. Now in this subsection, under the assumption of radial symmetry, we
shall rule out the first possibility; namely, there are no phantom or piling up of interfaces for almost all
time.

Theorem 5.3 Assume that {(u®,v%)}32, are radially symmetric solutions of (1.1) with initial data

satisfying (1.8) and that as j — oo, €; N\, 0, €% (u%)dzdt — du(z,t) as Radon measure on Q x [0,T),
and us = —142xg in (3'1/9([0,T];L1 (€)) for any T > 0. Then for any ¢ € Co(Q X [0,00)),

/00/ Ydu(z,t) = 20/00/ Y|Dxg,|dzdt.
0o Ja o Ja

Clearly, Theorem 2.2 follows from Theorem 5.3 and the third remark in Subsection 2.4. To prove
Theorem 5.3, we need the following lemma.

Lemma 5.4 For every small positive constant &, there exist a small positive constant £0(8) and a large
positive constant C(8) such that for every € € (0,e0(8)], of (u®,v®) satisfies (5.1), and

lvé 2By < 67, /B e (uf))dz < & (5.6)
1

then the following holds:

1. If (a,b) C (8,1] is an open interval where |u¢| < 1— C(8)/, then u® is strictly monotonic in (a,b)
and |b—a| < C(6)e|lne|.

2. Define A®* = {r € [26,1 — 26]| ; u®(r) = 0}. Then
1-264+C(6)e|lne|

1-26
/ 2 N 1 €(u€)dr_C(5)\/_<20'E N- 1</ TN_leE(ue)dr—{-C(&)\/g.

§ rEAS 6—-C(8)e|In¢g|

3. For any r € A®,
ve(r) + sgn( o(r )) (N | < C()e8,

4. If 11 and ry are two different elements in AS, then

1

—rg > ——.
ol o)

Proof of Lemma 5.4. The first assertion follows from the estimate (5.5). The second assertion follows
from the first assertion, the estimate (5.5), and Lemma 4.4 with n = C'\/e.
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Now we prove the third assertion. Let r € A® be arbitrary. Define
U(p) = u(r+ep), a=ev(r), B=e(N-1)r

Then U and P = U, satisfies the ODE system

U =P, -
{ P/=f(U)—a_ﬁP+he(p), /)E(—{;‘ 1/4,6 1/4)

where 1 )
sp }

r+¢ep)

Since v, € L?([6/2,1]) and P = eus is bounded in [-g~1/4, 6_1/4] with a bound depending only on § and
&o (by elliptic estimates and the energy bound for u¢),

= s{[vf(r) —v%(r +ep)] +

1 o175 01707 < GBI,
Now consider the ODE system
U=P, P =fU)-a-pP (5.7)
for small parameters a and 3. One can use the phase plane technique to conclude the following;:

1. There exist positive constants ap and S and a C? function c(3) defined on [—fy, 5] such that
for every B € [0,0], the ODE system (5.7) has a heteroclinic orbit connecting (U*(a),0) and
(U~ (e),0) if and only if @ = ¢(8) or a = ¢(—8); here U*(a) is the unique zero of f(U) = «a near
+1. In addition, ¢(8) = —o B + O(B?) for small 3.

2. If @ € [~ao, 0] and B € (0, Bo] satisfy the relation |a — c(£8)| > 8%/%, then any trajectory of (5.7)
with U(0) = 0 and £U’(0) > 0 satisfies at lest one of the following:
(a) |U| = oo as t 2 t* for some t* € (0,C|Ing|] ;
(b) |U| = oo as t \ t. for some t, € [-C|Ing|,0);
(c) U e (U (a)+ £B°8,U*(a) — £B°/8) either in [0,00) or in (—00,0]. In the former case we
have f]Cl" 141 F(u)dp > j and in the later case ffjc| In 8] F(u)dp > j, for every positive integer
J-

Here C is a large positive constant depending only on ay, By, and f.

The proof is omitted. We refer interested readers to Smoller [55, Chapter §C §D], or Aronson & Wein-
berger [6], or Fife & Hsiao [41].

From the properties of the solution of (5.7), a perturbation argument then yields the third assertion
of the lemma. Again, here we omit the details.

The last assertion follows from the third one since if r; and rp are neighboring elements of A%, then
ug(r1) and u&(ry) have different sign so that

1 1
Ol @ Vs = mil 2 o5 (r) = (r2)] = (N = D) (= + ) = 0.

This completes the proof of the lemma. O.
Proof of Theorem 5.83. We prove the theorem by a contradiction argument. Assume the assertion is
not true. Then, since 20|Dxg, |dzdt < du, there exists T > 0 such that

T T
/ /du(m,t) > 20/ /|DxEt|d$dt.
0o Ja o Ja
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Also since limg\o fOT [5, du = 0 (by the estimate (5.4)) and lims\0 fOT fBl\B(l—J) dp = 0 (by the prop-
erties of measures), there exists § > 0 such that

T T
/ / dp > 20/ / |Dx g, (z)|dzdt + 6(T + 2 + 1).
0 JBi_35\Bas 0o Ja

Consequently, by the definition of du, there exists a large positive integer J such that for all j > J,

T , T
/ / duf (2)dt > 2 / / |DxE,ldzdt + 6(T +260)  (dpsf = e (u*)da).
0 JBi-26\Bas 0 Ja
Recalling that u$(Q) = £4(t) < & for any € and every t, we then have that
measure(t € [0,T] ; p;” (Bi-2s \ B2s) > 20|Dxg,|(Q) +6} > 26,  Vj>J.

Also note that the set {t € [0,T] ; ||v||g1(q) = 6~} has measure < 62 fOT ”UEH%{I(Q) < §2C(T) < 6.
Hence, for each j > J, there must exist t; € [0, T] such that

V6 ()l <87, 4 (Bi-as\ Bas) > 20|Dx, (9) +6. (5.8)

‘We now show that this is impossible for sufficiently large j.
For each j > J, we define

Al
ASi

{rel6,1-46]; r e spt(|Dxe, (r)]},
{r € [26,1—26]; u®(r,t;) = 0}.

Clearly, |Dxg,, () 2 X, eas wnr¥ =1, Also, by the first inequality in (5.8) and Lemma 5.4(2), there
exists a large integer J; > J such that

e; A 1,0 .
He) (Bi-2s \ Bas) < 20 Z wyrN T 4 3 Vi > Ji.
reA®i
Hence, by the second inequality in (5.8),
- _ 4 .
2' wyrV 1> Z wnrVN 4 o Vi > Ji. (5.9)
reA®; reAl

Since uf = —1+ 2xg in C'/?([0,T); L' (),

1
hj:= /€5 + sup / |u®i(r,t)+1—2xg,(r)|dr - 0 as j— co.
te(0,1)Jé

We claim that (5.9) and the definition of h; imply the existence of J, > J; such that

min |11 — 2] < 4hj, Vj>Js. (5.10)

L
r1,r2 €A% ;r1#ry

In fact if A9 C Upeas(r — 2hj,7 + 2hj), then since the total number of elements in A7 is bounded
independent of j, inequality (5.9) and the assumption A% C Ui (r — 2h;,r +2h;) implies that A%/ has
more elements than A7 if j is sufficiently large (so that h; is sufficiently small). Hence, for some r € A7,
there are at least two elements of A% in (r — 2hj,r + 2h;), which concludes (5.10). (This corresponds to
piling up of interfaces.)

If the condition A% C Upeai(r — 2hj,r + 2h;) does not hold, then there exists r; € A7 such that
1 & Upeai(r — 2hj,r 4+ 2h;). Therefore, Xg, =lor=-1 in the interval (r; — 2hj,r; + 2h;), so that by
Lemma 5.4 (1) and the definition of hj, there must exist r € A7 such that ry € (m —2hj,r)U(r1,r142h;),
and (5.10) follows. (This corresponds to phantom interfaces.)
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However, (5.10) cannot hold for sufficiently large j since Lemma 5.4 (4) claims that (recalling the first
inequality in (5.8)) .
min ry —re| > ==
rl.’zGAej,rlva?l ' 2l 2 C(9)
for all j > J whereas h; = 0 as j — oo. This contradiction shows that the assertion of the theorem must
be true. O

Remark 5.1 Though pt(Q) is non-increasing in t, our Theorem 5.3 does not imply that |Dxg,|(Q) is
non-increasing in t since ut(Q) = pt(Q) + p'(0N) where p'(0N) may not be identically zero for a.e.
t > 0. In fact, besides shrinking the radius of the interface to decrease the energy, moving an interface
toward the boundary of Q and then making it disappear also do the job. If the distance of the interface
from the boundary is neither too large (so that it does not move away from the boundary quickly) nor to
small (so that it does not disappear very fast), then it will stay there for a time interval. For ezample,
let u®(+,0) be defined by u*(r,0) =1 in [0,1 —d.] and u = —1 in [l — d. + ¢,1] and u®(r,0) be linear in
[1—de, 1 —de+¢]. If de is not too small, due to the mass conservation, we believe that this interface will
stay for a time interval [0,T), and hence, although in the limit, u* — 1 in Q x [0,00) so that p*(2) =0,
pt(09) = lim&%(t) > 0 for a.e. t € [0,T]. Of course, if d. is small, the interface moves toward the
boundary OQ and then disappears very fast so that in the limit, p*(0Y) = 0 for all t > 0. Our analysis in
this section maybe extended to show that

p(00) = m(t)wny  for a.e. t>0
where m(t) is a non-negative integer valued non-increasing function.

Remark 5.2 Theorem 5.8 shows that, regardless of the distribution of the initial energy, for almost
every t, there are mo phantom interfaces (the spheres (N spt(p)) \ spt(|Dxg,)) and all interfaces
have multiplicity one (i.e., 20|Dxg,| = p* on spt(|Dxg,|)). This is a sharp contrast to the motion by
mean curvature equation as the limit of the Allen-Cahn equation, where there are phantom interfaces
and interfaces of any odd finite integer multiplicity. For example, consider u(-,0) defined by u¢(r,0) =1
in [0,1]\[1/2 —d® —¢,1/2+d° +¢€], = —1 in [1/2 — d°,1/2 + d*] and linear in the rest of the interval
[0,1], where d¢ is not too small, say, d* = \/e. Clearly u*(r,0) = 1 as e = 0. If one takes this u®(r,0)
as the initial data for the Cahn-Hilliard equation, we can conclude that £5(t) — 0 for every t > 0. On
the other hand, it one takes this as initial data for the Allen—-Cahn equation, one can show that u® — 1
in C*([0,T); L} (R)) as € = 0, but e(u)dz — 4downrN~18(r — r(t))dr where r(t) is the solution of
the motion by mean curvature equation ry = —(N — 1)/r with r(0) = 1/2. That is, the two (phantom)
interfaces act as if they did not see each other.

5.3 Examples of the solutions of the limit problem.

In this subsection, we shall point out a few features of the solution of the limit problem (1.6) in radially
symmetric case. For this purpose, we shall take for granted that the limits obtained from the solutions of
the Cahn-Hilliard equation are classical solutions of (1.6). (We conjecture that Theorem 5.3 is sufficient
to do this.)

Now assume, as before, that 2 = B;. Also assume that for every ¢t > 0, spt(|Dxg,|) = U;-]itg{rj(t)}
where J(t) > 1is a finite integer and

1>r(t)>->ryy >0  Vt>0.

We assume that J(t) changes its value only at times when r; = 1, or ry) —= 0, or rj(t) — rj41(t) = 0
for some j = 1,.+-,J(t) — 1. (This is equivalent to assume that there is no nucleation of interfaces.)
We assume without loss of generality that o = 1.

A. The ODE systems.
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Since v is harmonic in (r;(t),rj+1(t)), using the interfacial condition in Theorem 2.2, we have (as-
suming WLOG that xg, = 0 near r = 1)

—Nr%l, r € [r1,1],

2-N_ 2-N )
’U(T,t) = (—1)J+1{Nr_:1 - (N_l + N,_l):}_ﬂ—hﬁ}’ re [rj+1’rj]a J= 1’ ,J - 1» (511)

rj Ti+1’/r
(_1)J+1ﬁ$’ r €[0,7y]
where r; = rj(t) and J = J(t). Here we understand that if N = 2, then r>~" should be replaced by Inr.

Hence the weak formulation of (2xg): = Av yields #;(t) := £r;(t) = (=1)+o.(rj(t) + 0,t) —
vp(r;(t) — 0,t)]. It then follows that

i) = =i N Ofgmp O + 00120} G =10, 70) (5.12)
where -
r; r; .
(N—Z)(N—l):fi—)v-_—:{—_ln .7:2""»J(t)a
gj-1/2 = i i-1 (5.13)
0 J=1J()+1.
Here again, when N = 2, the quantity F{v\’f—rz;qv should be understood as — ll_ln —.
J j—1 Jj— J

Lemma 5.5 Let J° > 2 be an integer and {r_?}}’io be real numbers satisfying 1 > r) > --- > 1% > 0.
Let [0,t,) be the mazimal time interval where (5.12) has a smooth solution with J(t) = J° and r;(0) = r},
j=1,---,J% Then the following holds:

1. #;(t) <0 for all j=1,---,J(t) and all t € [0,1,);
2. t) < 005

8. miny<j<go_yinfigpo 4,y () — 7541 > 0;

4. limy gy, 750 () =0.

Proof. The first and second assertions of the lemma follow directly from the ODE equations. In the
sequel, we denote r;(t;) = limy »;, 7;(t) for all j =1,---,J°. Also, we denote ro(t) = 1.

We show the third assertion by a contradiction argument. Assume that the assertion is not true.
Then there exists ¢ € {1,---,J% — 1} such that r;_1(t1) > ri(t1) = riz1(t1) > 0. We show that this is
impossible. In fact, since r;_; — r; is bounded away from zero in [0, ¢;], subtracting the equations for r;
and r;4; we have

d
E(’"fv—rﬁJ = N(Qi+3/2—gi—1/2)

-1 -1 —1 -1

_ Tit1 + Tigo i tTi

- N(N_2)(N_ 1){ 2—-N 2-N 2l—N 2-N
Tive —Tit1 T —Tiq1

> -C, Vte[0,t)

where C is a constant. (Here for 7 = 1 or i = J® — 1, the second equality needs obvious modification.)
Integrating this inequality from ¢ to t; — 6 (6 > 0) and then sending § to 0, we then obtain that

() —rfl, <C(t —t) vt € [0,t1).

t
C

Nt <—/
<= [ =

as t — t;, which is impossible. This contradiction shows third assertion of the lemma.
The last assertion of the lemma follows from the second and third assertions. O

Hence, from the equation for r;,

ds =5 —c0

From the lemma 5.5, we can conclude the following;:
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1. No interfaces will collide;
. The only possibility that an interface disappears is by approaching the origin;

. If J® = 1, then it is an equilibrium;

> W N

. If J° = 2, then there s a finite time ¢; such at t;, the smaller interface disappears, and the dynamics
reaches an equilibrium;

5. If J° > 2, then there exist to := 0 < t; <ty <tjo_; <tjo := 00 such that J(t) = J® —i in [t;, tiy1)
for all i = 0,---,J° — 1; in particular, the dynamics reaches its equilibrium in the finite time ¢ jo_;.

B. Motion of “phantom” interfaces.

Finally, we consider special cases where there are interfaces that are very close initially. By abusing
the language, we also call them “phantom” interfaces.
For simplicity and the purpose of illustration, consider the case when J 0=3, and

0=1/2, r=1/2-6, r3=1/4, (ie Eo(r)=[0,1/4]U[1/2~-4,1/2])

where § is a very small parameter. Clearly, the first and second interfaces are “phantom” interfaces.

From the ODE system (5.12) and the proof of Lemma 5.5, we can easily show that the quantity
r1(t) — r2(t) and r3(t) vary in O(1) magnitude, if ry is away from r3; namely, before r, catches up r3 in
O(4) time, the distance between r; and ry is O(8). Hence, the pair of “phantom” interfaces {r1,r2} move
toward the origin with a speed of order O(6!), whereas the “real” interface ry does not show appreciate
movement in O(4) time.

After O(6) time, the pair of “phantom” interfaces {ry,r2} get very close to the “real” interface r3, so
that all the three interfaces cluster near r = 1/4. Now by the conservation of the mass, one can show that
there is a new grouping: the interfaces r and r3 pair together as “phantom” interfaces moving toward the
origin rapidly, whereas the interface r; is detached from the cluster, leaving behind as a “real” interface.

Finally, after another O(§) time, the new pair of “phantom” interfaces {rs,r3} disappear successively
at the origin, and the system reaches its equilibrium.

Using a similar analysis, one can study cases where there are arbitrarily number of interfaces which
form a number of clusters initially. In this case, one has to use the smallest distance among neighboring
interfaces as a criterion to distinguish “phantom” (cluster) or “real” interfaces.

For any cluster, if the number of interfaces are odd, then the interface with the largest radii will not
show appreciate move in a short time, whereas the remaining even number of interfaces move very fast
toward the origin. In addition, if one groups these remaining even number of interfaces pair by pair, then
the distances between these pairs may change significantly. (Hence, multiple time scales maybe needed).
If a cluster has even number interfaces, then all of them move towards the origin very fast, though the
relative speeds of different pairs maybe very large. (Again, in this case multiple time scales are needed.)

When a cluster of interfaces approach an interface or a cluster of interfaces, then if we consider all of
them as a single cluster, it moves by the way we just described in the preceding paragraph.

Finally, after a very short time, all the “phantom” interfaces are gone by disappearing at the origin,
leaving all “real” interfaces, i.e, interfaces that are well separated.

Remark 5.3 We believe that the above described motion of “phantom” interfaces is actually the short
time dynamics of the phantom interfaces of the radially symmetric solution u® of the Cahn-Hilliard
equation (1.1) where § can be arbitrarily small, say O(e). That is, phantom interfaces are not annihilated,
they move toward the origin with a speed proportional to the inverse of their distance, so that they
disappear after o(1) (with respect to €) time. Clearly this kind of motion of “phantom” interfaces is
totally different from its one dimensional counterpart, where “phantom” interfaces annihilate each other.
Also, it is different from the Allen-Cahn dynamics where phantom interfaces can be either annihilated (if
their distance is o(¢|Ine|) or propagate as a regular interface (if their distance, say, is > €|lngl?).



Remark 5.4 In studying the motion by mean curvature flow and its counterpart the Allen-Cahn equa-
tion, a formula called monotonicity formula (cf. [46]) plays an essential role. In terms of the Allen-Cahn
equation, this monotonicity formula ensures the “finite” propagation of the energy density e(u®); namely,
the total energy in a ball B, at any time in any time interval [to,to + 8] is totally controlled by the energy
in a ball Bs, at time to, where § depends only on r but not on €. Clearly, from the ezamples of radial
symmetry of the Cahn-Hilliard equation, this kind of monotonicity formula may not be true since, for
ezample, if initially (t = 0) there are only a pair of “phantom” interfaces (zero level set of u®) with O(¢)
distance located near r = 3/4, then in O(g) time, it will pass over all the balls of any size; therefore, the
energy in Byj4 at time t € [0,0(¢)] cannot be controlled by the energy in B,y at t = 0. The lack of
monotonicity formula is the main difficulty for us to establish a very close relation between the measure
20|Dxg,| and the measure p in Theorem 2.1.
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