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Abstract. This work continues the series of papers in which new approach of constructing alge-
braic multilevel preconditioners for mixed finite element methods for second order elliptic problems
with tensor coefficients on general grid is proposed. The linear system arising from the mixed meth-
ods is first algebraically condensed to a symmetric, positive definite system for Lagrange multipliers.
which corresponds to a linear system generated by standard nonconforming finite element methods.
Algebraic multilevel preconditioners are then constructed for this system based on a triangulation of
parallelepipeds into tetrahedral substructures. Explicit estimates of condition numbers and simple
computational schemes are established for the constructed preconditioners. Finally, numerical results
for the mixed finite element methods are presented to illustrate the present theory.
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1. Introduction. Let Q be a bounded domain in IR®, with the polygonal
boundary 0€). We consider the elliptic problem

-V - (aVu)=f in Q,
(1.1) u=1_0 on 0§,

where a(z) is a uniformly positive definite, bounded, symmetric tensor and f(z) €
L*(9). Let (-, - )s denote the L?(S) inner product (we omit S if S = ), and let

V = H(iv;Q) = {ve (L2)°: V.-ve L)},
W L¥(9).

Then (1.1) is formulated in the following mixed form for the pair (q,u) € V x W:

(1.2) (V-q,w) = (f,w), Yw € W,
' (a7'q,v) = (u,V-v)=0, VveV.

It can be easily seen that (1.1) is equivalent to (1.2) through the relation
q= —aVu.

In applications of fluid flow in porous media, u(z) is referred to as pressure and
q as to Darcy velocity vector. It is well known that (1.2) has a unique solution
u(z) € H} (Q) N H(Q), and that the following elliptic regularity estimate holds true
(cf. [14]):

[ellz < el fllog,
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2 S. MALIASSOV

where c is a constant dependent only on Q and where ||+|jo.o and || ||2,o are the L(£)
and H2(Q) Sobolev norms, respectively defined by

o= ( [, d) o= [ 3 1oufas

le|<m

To define a finite element method, we need a partition 7, of Q into elements T,
say, simplexes, rectangular parallelepipeds, and/or tetrahedra. In 7,, we also need
that adjacent elements completely share their common edge or face; let 07, denote
the set of all interior faces e of Tp,.

Let Vi, x Wi, € V x W denote some standard mixed finite element space for
second order elliptic problems defined over 7 (see, e.g., [5], [6], [11], [21], and [22]).
This space is finite dimensional and defined locally on each element T' € Tj, so let
Vi(T) = Vi|r and Wi(T) = Wh|7r. Then the mixed finite element method for (1.1)
is to find (qp,un) € Vi x W

(1.3) (V-qp,w) = (f,w), Yw € W,
: (a tqp,v) — (up, V-v) =0, Vv € V.

The requirement Vi, C V implies that the normal component of the vector q
is continuous across the interelement boundaries 7. Following [2], we relax this
constraint on Vy, by defining Vi, = {q € (L}(Q))® : q|r € Vi(T) for each T € T3}
In order to enforce the interelement continuity of the normal component of q we need
to introduce the space of the Lagrange multipliers

Lh:{)\ELz(

where v is the unit normal to e. Also, to establish a relationship between the mixed
method and the nonconforming Galerkin method and to construct efficient precon-
ditioners, following [9] and [10] we introduce the projection of the coefficient, i.e.,
ap = Ppa™!, where Py is the L2-projection onto Wj,. Then the hybrid form of the
mixed method for (1.1) is to find (qp,un, An) € Vi x Wy x Ly such that

U e) DA €V,-v, foreacheec 57},},
c€8Ty,

z (v ’ q}lau})T = (fﬂ 1“)7 Yw € Wh,
TeT,

(1.4) (erqn,v)— > (@ V-v)r — (A, v- VT)aT\aQ =0, Vv € Vy,
TeT),

2. (an-vr, w)amen =0, Yu € L.
TET,

Note that the last equation in (1.4) enforces the continuity requirement mentioned
above, so in fact q;, € Vj. In [2] and [20], it was shown that the solution to (1.4)
can be obtained from a certain modified nonconforming Galerkin method by means
of augmenting the latter with bubble functions. Such a relationship has been studied
recently for a large variety of mixed finite element spaces [1, 8, 9].

In this paper, following [10] it is shown that the linear system generated by
(1.4) can be algebraically condensed to a symmetric, positive definite system for the
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Lagrange multiplier Ap. It is then shown that this linear system can be obtained from
the standard nonconforming Calerkin method without using any bubbles.

The main objective of this paper is to construct algebraic multilevel precondi-
tioners for the mixed finite element method. We first use the above equivalence to
construct multilevel preconditioners for the linear system for the Lagrange multipliers.
Then the mixed method solutions qx and uj, are recovered via these multipliers.

The construction of multilevel preconditioners for the mixed methods is inspired
by the fundamental work [4], [16], where new systematic representations for precon-
ditioners in the Neumann-Dirichlet domain decomposition methods for conforming fi-
nite elements were suggested. The multilevel domain decomposition versions of these
methods were outlined in detail in [17, 18]. In addition, the superelement approach
used here to estimate condition numbers for two level methods is based on that used
in [3, 12, 17, 19].

A detailed description of procedures to construct such preconditioners can be
found in [10, 12, 13]. In all these works authors defined partitioning 7 of the whole do-
main subdividing it into topological parallelepipeds and splitting each parallelepiped
in turn into siz tetrahedra. The present paper prolongates these results to the case
of splitting each topological parallelepiped into five tetrahedra. Briefly, the approach
used here to construct preconditioners includes two main stages. First, using the idea
of partitioning (decomposing) a parallelepiped grid into tetrahedral substructures a
three-level preconditioner is constructed with a “7-point” algebraic system on the
coarse level, and the condition number of the preconditioned matrix is estimated.
The explicit bounds of spectrum of the preconditioned matrix are obtained with help
of the superelement approach [12, 17].

On the second stage, we define the preconditioner for the above 7-point algebraic
system with one unknown per parallelepiped and show that this preconditioner is
equivalent to the standard finite element approximation of the equation (1.1) with
modified coefficient tensor d(z). To solve this problem we can use any well known
technique. Namely, in this paper we use multilevel domain decomposition method
[16, 17] to solve this auxiliary coarse level problem. The constructed preconditioners
are spectrally equivalent to the original stiffness matrix and their arithmetic cost does
not depend on the mesh size  and jump of the coefficient a(z).

Explicit estimates of condition numbers are obtained for these multilevel precon-
ditioners. A computational scheme for implementing these preconditioners is also
considered, and a three-step preconditioned conjugate gradient method using the
present technique is described as well.

In this paper the case where a(z) is a scalar tensor and  is a regular parallelepiped
is analyzed in detail for the three-level and multilevel preconditioners.

The rest of the paper is organized as follows. In the next section we consider
an elimination procedure for (1.4). Then, in section 3 we develop three-level precon-
ditioner for the resulting linear system. Development of three-level preconditioner
to multilevel one and the multilevel domain decomposition method for solving coarse
level problem is described in section 4. Finally, in section 5 extensive numerical results

are presented for both nonconforming and mixed methods on logical parallelepipeds
to illustrate the present theory.

2. The mixed finite element method. We now consider the most useful
partition 7, of Q into tetrahedra. The lowest-order Raviart-Thomas-Nedelec space
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[22, 21] defined over T' € T}, is given by

Vu(T) = (P(T)’ @ ((z,9,2)Po(T)),
‘/I/h(T) P() (T),
Ly(e) = Pyle),

where P;(T) is the restriction of the set of all polynomials of total degree not bigger
than i > 0 to the set T € 7;,. For each T in Ty, let fpr = ﬁ(f, 1)7, where |T'| denotes
the volume of T. Also, set ay, = (a;;) and qx|r = (q71,9712,9713) = (rk + trz, 73 +
try,r> + trz). Then. by the first equation of (1.4) it follows that
(2.1) tr = fr/3.

Now, take v = (1,0,0) in 7' and v = 0 elsewhere, v = (0,1,0) in T and v = 0
elsewhere, and v = (0,0,1) in T and v = 0 elsewhere, respectively, in the second
equation of (1.4) to obtain

3 4 e
(22) (Z ajiq’ria ]-)T + Z Ieil'l U’IISJ) )‘hlcir = 09 J = 1’ 2,3’

where |el| is the area of the face e}, and 1/7} = (1/35”,1/%52),1/;53)) Let 67 = (6F) =
((asj, 1)7)~ 1. Then (2.2) can be solved for 77.:

j i(1) 1(2 3)
rp= - Z |eT| <BJT1 ;“ ]2 1 '+ /13 ;"( ) )‘hle;.—
(2.3)
- 3 .
- .%I (Z ﬁ};(a"ilm + 50y + 04,'32), 1) y J= 1’273'
i=1

T

Let the basis in Lj, be chosen as usual. Namely, take ;£ = 1 on one face and p = 0
elsewhere in the last equation of (1.4). Then, apply (2.1) and (2.3) to see that the
contributions of the tetrahedron T' to the stiffness matrix and the right-hand side are

—i —3 Jfavi T :
A;l;:”TﬁTV’]Z‘v FiT:_( TlTlT) +(J’{“’V%’)c§.» TG?;—;,
where 7k = |el|vh and JS = fr(z,y.2)/3. Hence we obtain the system for A,:

(2.4) AX =F.

After the computation of Aj, we can recover q; via (2.1) and (2.3). Also, if up is
required, it follows from the second equation of (1.4) that

1 .
ur = g <(aC1h (x,y,2 +Z)\h[c: 1,1,z),z/’T)c,-T> , TET,.

The above result is summarized in the following lemma.

LEMMA 2.1. Let

Mu(xsp) = 3 (6 vr)orBT (1, vr)or, X, it € Ly,
TET),

Fo(w) == % w01 (mvr)or + 5 (nJf,vr)er,  n€ Ly,
TET, TEeT,
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where Jf is such that Jf|p = J{M Then A\, € Ly, satisfies
(2.5) Mp(Ap,yp) = Fr(p), Yu € Ly,
where

Ln={p€ Lp: ple =0 for each e C 00}.

Note that there are at most seven nonzero entries per row in the stiffness matrix
A. Also, it is easy to see that the matrix A is a symmetric and positive definite
matrix; moreover, if the angles of every T in 7}, are not bigger than 7 /2, then it is an
M-matrix. Finally, (2.4) corresponds to the I’} nonconforming finite element method
system, as described below. This equivalence is used to construct our multilevel
preconditioners later.

Let

Np={ve L*Q): v|r € P(T), VT € T),; v is continuous
(2.6) at the barycenters of interior faces and
vanishes at the barycenters of faces on 9Q}.

ProPOSITION 2.2. Let fr, = Pnf. Then (2.4) corresponds to the linear system
produced by the problem: find vy € Ny such that

(2.7) an(Pn, ) = (fn @) Vo € Ny,

where an(Yn, ¥) = Yrer, (@ ' Von, Vo)r.

Proof. From the definition of the basis {1/} of N}, for each T € T;, we have

1 .
i — .
¥i'lr = mV’T A@y.2)=p), P #L
for some barycenter p;. Then, we see that

(Oz;lvw?, V'([);'I)T = véﬁﬁTﬂ';.,,

which is a:frj. Also, note that for any linear functions v and ¢ on a tetrahedron T' € 7},

I} 1 . ;
(2:8) (W, 8)7 = ZIT| > d(p)é(ps),
i=1
where the p;’s are the barycenters of the faces of T, so that
T ("f r;i ) ]
Fl = —S5lE 4 (T, vh).s

= —L2(L,phr+ Tl (gl D,

3ler|
= fT (LTP?)T,

which is (fr,¥?)r. O
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3. Three level preconditioner over a cube. In this section we consider
multilevel preconditioners for (2.4) based on partitioning regular parallelepipeds into
tetrahedral substructures, following the ideas in [12] and [13]. Here we treat the case
where § is a unit cube and a(z) is a scalar tensor.

Our goal is to introduce an algebraic formulation of the approximate problem
using a type of static condensation that eliminates some of the unknowns. In this
way we can reduce substantially the size of the problem. For this approach we need
a special partitioning of the domain into tetrahedra that have some regularity and
preserve the simplicity of the algebraic problem.

Let C, = {C(17%)} be a partition of Q into uniform cubes with the length h = 1/n,
where (z;,y;, 2zk) is the right back upper corner of the cube C(3k) | Next, each cube
C(h3k) s divided into 5 tetrahedra as shown in Figure 1 and denote this partitioning
of Q into tetrahedra by 7r.

Let W, be the space of piecewise constants associated with C, and P, , be the
L%-projection onto W, . To define our preconditioner, we introduce ap = Pc,ha‘1 in
the hybrid form (1.4) instead of a, = Pra™!. Obviously, Lemma 2.1 and Proposition
2.2 are still valid for this modification since 7;, is a refinement of C,. With this
modification, oz,:l is a constant on each cube. For notational convenience, we drop
the subscript h and simply write a,:l = a. diag{1,1,1}.

Let NVj, be the nonconforming finite element space associated with 73 as defined in
(2.6), and let its dimension be N. All the unknowns on the faces of 9 are excluded.
For this reason N = 10n® — 6n2. For any function v, € A}, we denote by v € RV
the corresponding vector of its degrees of freedom. Introduce the inner product

(3.1) (W, v)n =8> > un(p)va(pi),  Yun, v € N,
pi€OT,

where the p;’s are the barycenters of the interior faces. By (2.8) the norm induced by
(3.1) is equivalent to the L2-norm on .

For each cube C' = C%) ¢ ¢y, denote by JVhC the subspace of the restriction of
the functions in AV, onto C. For each v € j\v"hcj we indicate by v, its corresponding
vector..The. dimension of N is denoted by N¢. Obviously, for a cube without faces
on 0f) its dimension is 16, i.e., N = 16.

The local stiffness matrix A€ on cube C' € Cj, is given by

(3.2) (ACuc,ve)ye = Z(ahvuh,vvh)T, Yup, vy € NF.
TCcC

Then the global stiffness matrix is determined by assembling the local stiffness ma-
trices:

(3.3) (Au,v)y = Z (Au,,v,) we, Yu,v € RV,
CECy,

Now we consider a cube C that has no face on the boundary 9§ and enumerate
the faces s;, j = 1,...,16 of the tetrahedra in this cube as shown in Figure 2. Then
the local stiffness matrix of this prism has the following form:
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- o2 -1/2 —-1/2 —y2|-1 -1 -1 0 o o o0 0 0 0 0 0
~1/2 9/2 -12 -1y2f0 0 0 -1 1 -1 0 0 0 0 0 O
_12 -1/2 9/2 -y2| 0 0 0 0 o 0 -1 -1 -1 0 0 O
12 —1/2 -1/2 9/2 0 0 0 0 0 O 90 0o o0 -1 -1 -1
-1 0 0 0 1
-1 0 0 0 1
-1 0 0 0 1

a 0 -1 0 0 1
¢ 0 -1 0 0 1
0 -1 0 0 1
0 0 -1 0 1
0 0 -1 0 1
0 0 -1 0 1
0 0 0 -1 1
0 0 0 -1 1
\_ 0 0 0 -1 1
which we write as
3h A A
3.4 AC = 22 11, Al12,c
( ) 2 C[Aﬂ,c A22,c ’
where
3 -1 -1 -1
1l -1 3 -1 -1
(35) All,c =3 Ill,c + 5 -1 -1 3 1 s Azz_c = I22,c.
-1 -1 -1 3

FigURE 1. Partition of cube into tetrahedra.

Along with matrix A€ we also introduce the matrix B as

(3.6)

where

Biy,c=3h1c+2

3h
c _ 7’%

|

B].l,c
«421,0

-1

A12)c
A22,c

K

-1 -1
1 0 0
0 1 0 |’
0o 0 1

-1

.................
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PROPOSITION 3.1. It holds that kerA® = kerBC.

Proof. It is easy to see from the definitions of AC and B that kerA® = kerB¢ =
{v = (v1,v,-+,v16)T € RY:v;=v,i=2,---,16}. 0

Remark. If the cube C € Cj has a face on 912, then the matrix A€ does not
have the rows and columns which correspond to the nodes on that face; the blocks
Aj1,c and Byj . are the same as in the previous case and the modification of Asg . is
obvious.

We now define the N x N matrix B by the following equality:

(3.7) (Bu.v)y = Z (Bcuc,vc)Nc, vu,v € RV,

CEeCy,

Since the matrix B is used for preconditioning the original problem (2.4), it is
important to estimate the condition number of B~1A.
LEMMA 3.2. Let jui. satisfy the equality

(3.8) Au, = B,  C €Cp.
Then we have

Au
(Au, u)y > min p..

u,u)n .
(3.9) max s———— < max i, and min  ———=
CECy (Bu,u)n#0 (Bu,u)y ~ Cecy

(Bu,u)y#0 (Bu,u)y ~

Proof. For each C € Cp, it follows from (3.8) that
(A%, ue)ne = e (Bcuc,uc)Nc.

It then follows from the fact that all local stiffness matrices are nonnegative that
c :
Z (A%uc,ue)ye = Z fte (B€uc,uc) e
Cely CeCy

max jie Y (B ue,uc)ye.
. h CGCJ.

IN

Hence from the definitions of A and B, we see that

(Au,u)y < max g (Bu,u)n.

Consequently, the first inequality in (3.9) is true. The same argument can be used to
show the second inequality. O

From Lemma 3.2, we see that, to estimate the condition number of B~1A4, it
suffices to consider the local problems (3.8). Using a superelement analysis [16, 19],

to estimate max . and énin Jie, it suffices to treat the worst case where the cube
€Cp €Cy

C € Cp, has no face on the boundary 9Q. From (3.4) and (3.6), a direct calculation
shows that the eigenvalues ji, are within the interval [1/4, 1].

Then the inequalities (3.9) yield:

ProprosITION 3.3. The eigenvalues of problem

(3.10) Au = Bu
belong to the interval [1/4,1] and the condition number is thus estimated by

cond(B71A4) < 4.
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14

16 10

(a) Cube of type I

11

(b) Cube of type II

FI1GURE 2. Local enumeration of faces in cubes.

We stress that the condition number of the matrix B~ A is bounded by a constant
independent of the step size of the mesh h and the jump of the coefficient a(z). Since
we introduced a two level subdivision, the matrix B can be referred to as a two level
preconditioner.

Then, in this section we propose a modification of the matrix B and consider its
properties. Toward that end, we divide all unknowns in the system into three groups:

1. The first group consists of the one unknown per cube corresponding to the
1st faces of the tetrahedra that are internal for each cube C € Cp, (see Figure
2, faces 1).

2. The second group consists of all unknowns corresponding to faces of the cubes
in the partition Cp, excluding the faces on 9Q (Figure 2, faces 5,6,...,16).
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3. The third group consists of the unknowns corresponding to the faces of the
tetrahedra that are internal for each cube and which are not in the 1st group
(these are unknowns on faces 2, 3 and 4 on Figure 2).

This splitting of the space IR" induces the presentation of the vectors: v
(vf,vg), where v; € RV and vy € IR™2, where v, corresponds to the unknowns of
the 3-rd group. Obviously, No = 3n® and Ny = N — 3n%. Then the matrix B can be
presented in the following block form:

T:

By B2 ] .
11 B = dimBj; = N;.
(3 1 ) [ B21 B22 ) 11 1
Denote now by Bi1 = By; — Bys B2_21 By, the Schur complement of B obtained by
elimination of the vector vo. Then By, = B + 312B2_21321, so the matrix B has the
form

By + B13By,' By Bia ]
3.12 B= 1 22 .
(3.12) [ By, By,

Note that for each cube C' € C;, the unknowns of the 3rd group (unknowns on
the faces 2, 3 and 4 in local enumeration, see Figure 2) are connected only with the
unknowns of the 1st and 2nd groups and therefore the matrix Bgs is diagonal and
can be inverted locally (cube by cube). Thus, matrix B is easily computable. The
proposed modification of the matrix B from (3.12) is of the form

B = [ Bo + B12B3;' By1 B ]
By By |’

where By is to be defined later.
Consider now the restriction of the matrix B on a single cube

and define the Schur complement on a cube by Bll,c = Bi1,c — B12,cBy,' . Ba1 .. In

the local enumeration introduced on Figure 2 the matrix By . has the form

F33/5 | =1 =1 —1 -2/5 —2/5 -2/5 —2/5 —2/5 —2/5 —2/5 —2/5 —2/5 1
—1 1
-1 1
-1 1
—2/5 4/5  —1/5 —1/5
X —2/5 —1/5 4/5 —1/5
Biic=3a, | 25 —1/5 —1/5 4/
—2/5 /5 —-1/5 —1/5
—2/5 —-1/5 4/5 —1/5
—2/5 ~1/5 —1/5 4/5 ‘
—2/5 4/5 -1/5 -1/5
—2/5 —-1/5 4/5 -—1/5
[ —2/5 ~1/5 —1/5 4/5

Remark. If the cube C' € Cj has a face on 0f), then the matrix Bll,c does not have
the rows and columns which correspond to the nodes on that face.
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Following [12], we introduce on each cube a modification of the matrices Bll‘c in
the form:

ri12|-1r -1t -1t -1 -1 -1t -1 -1 -1 -1 -1 =17
-1 1

-1 1

-1 1

-1 1

. -1 1

o5 Qe -1 1

-1 1

-1 1

-1 1

-1 1

-1 1

L -1 1

PRrROPOSITION 3.4. The matrices By, and Bii . have the same kernel, i.e.,
kEI‘Bll’c = kerBu,c.

Proof. It can be easily checked that kerBU_,; = kerBch ={v=(v1,v9,--,v13)T €
RY®:v;=v,i=2,---,13}. 0
We now consider the eigenvalue problem

(313) Bll’cll = /LBll'cll, uc m13.

It is easy to check the proposition

ProposITION 3.5. The eigenvalues of problem (3.13) belong to the interval
[2/5,1].

Now defining a new matrix on each cube:

- Bi1 ¢+ Bz By, B B
3.14 BC = |: 11, 12,cP22 ¢P21,c 12,
(19 Bo.e B .

we define the symmetric positive-definite N; x N; matrix By by

(Boul,v1) = Z (B11,c111,c,V1,c),
CECy

N . . . . .
where vi,u; € IR™, and u; . and vy . are their respective restrictions on the cube
C. As in (3.12), we introduce the matrix

~ By + B12B,'By; By ]
3.15 B = 22 )
(3.15) [ Boy Bosy

Using Propositions 3.3 and 3.5, and the same proof as in Proposition 3.2 we have
the following theorem.

THEOREM 3.6. The matriz B defined in (3.15) is spectrally equivalent to the
matrix A, i.e.,

B < A< B,
where p. = 1/10 and p* = 1. Moreover,

(3.16) cond(B™'A) <71 = p” /i < 10.
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Instead of the matrix B in the form (3.12) we take the matrix B from (3.15) as a
preconditioner for the matrix A. As we noted earlier, the matrix Bss is block-diagonal
and can be inverted locally on cubes. So we concentrate on the linear system

(3.17) Bou = G.
In terms of the group partitioning in section 3, the matrix By has the block form
: Cn Ciz }
3.18 By = N
(3.18) 0 [ Co1 Ca

where the block Cyy corresponds to the nodes from the second group, which are on
the faces of tetrahedra perpendicular to the coordinate axes. From the definition of
By, it can be seen that the matrix Cyg is diagonal. In the above partitioning, we
present u and G in (3.17) in the form

(3.19) u:[ﬁl] G:[g;]

Then, after elimination of the second group of unknowns u; = C2_21(G2 - Co1uy), we
get the system of linear equations

(320) (Cll — 0126'2721021)111 = G1 — 01202_21(;2 = él,

where the vector u; and the block Ci; correspond to the unknowns from the first
group, which have only one unknown per each cube. The dimension of vectors u; and
G is obviously equal to

M = dim(u;) = »°.

Thus, defining as above Schur complement of matrix By by Cyy = 011—01202_21021
matrix B can be presented in the form

Ci1+ C12Cp'Cy C _
(3.21) B= o 61'221 22 = C;i + B12By,' By By

B21 B22

where matrices By and Coy are diagonal and can be inverted locally cube-by-cube.
Again, we have to stress that the condition number of the matrix B~ A is bounded by
the constant independent of the step size of the mesh h and the jump of the coefficient
a(z). The matrix B can be referred to as a three-level preconditioner.

By making straightforward calculations it can be shown that the Schur comple-
ment Cy; is “7-point-scheme” matrix. Introducing for each cube C(59:%) the coeffi-

clents
I((i»jyk) 3h] a(ilj»k) . a(i+1vjlk)
1 T\ 2 )% LR § gGHLR)
i (3R, a(bik) . g(.i+1,k)
(3.22) K = ( > ) S G CrEEROR
I/(i,jyk) 3h a(ivjyk) . a(i:j»k+1)
'3 = 2 )7 WGiR f qGaktD)

matrix Cy; can be schematically represented in the following form for C(:3¥)NgQ = ()
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[- I(§i"’k)] [- K{i_l’j’k)]

s

~(i—1,j A(1,j—1.k ~(4,7,k— ..
[- Jreseiit) K{7HI0) + I\él i kA) + K . _1)+ [- ng.k)]
2 +K§l']’k) +K§"”k) +I(§””k)

]

(5550) N
[ - lel J ] [ _ I(:(;l,],kfl)]

If C(63K) N 9O # (B then the previous scheme is modified in a natural way, for
example for i = 1, j, A # 1,n, for unknown in cube C(1.3k) we have the scheme

[~ K9]

[ K10 (3) 2 ok 4 JEHITHR) 4 (bR [ K9]
2 +I(§1»]vk) _'_I(éld,k) +I&’§1'1’k) 2

s

[- K{l’j’k)] [- I(§1,j,k—1)]

In the next section we consider the solution techniques for problem (3.20) with
the matrix C1y:

(3.23) Cuv=g.

4. Multilevel preconditioner over a cube. While the preconditioner B has
good properties, it is still not economical to invert it because the entries of the matrix
Ci1 depend on jump of the coefficients. In this section we propose a modification of
the matrix Cy; provided additional assumptions on the behaviour of the function a(z)
and show that for that modification we can use any well known multilevel procedure.

Assumption (A1): Suppose that unit cube  can be represented as a union of a
certain number m of pairwise disjoint cubes G;, i = 1,...,m with the size of edge H

(H > 2h) in such a way that in each cube G; the function a(z) is a positive constant.
m

In other words, we set Q = |J G; and a(z) = const; >0,z € Gy, i =1,...,m.
i=1
For each cube C45F) € T consider the following submatrices

(41) SO i) [ _1 —} ] L 1=1,23, i k=2....n—1,

with obvious modifications for boundary cubes,

Ljk (1) 1 -1 v [ 20050
S = MJ)[—I 1]“%)[ 0o 0]

5Lk=1,...,n,

(n=1,4k)  _  gAn—1jk) 1 -1 3h 0 0
Sl J — Ix] J [_1 1 ] +(7) [0 9g(mik) |



14 S. MALIASSOV

; ) [ o, (i,1,k)
i,1,k) A(1,1,k) 1 -1 3h 2a 0
Sél = I“Z |: -1 1 ] + ( 2 ) ] 0 ol
l,k =1, ,M,
i\n— in—1,k 1 -1 [0 0
Sél’n W= Iggl’n o [ -1 1 +(37h) 0 2alimk) |2
£l gy |1 -1 o [ 203D o
Siglj ) = I‘I(}lj [ _1 1 + (—2—) 0 ol
hi=1,...,n.
ijn-1 (i,j,n—1) 1 —1] W [0 0
sGinD s [ ) | e |

The following statement plays very important role in all further arguments. It
can be established by straightforward computations.

PROPOSITION 4.1. The matriz C11 of the system (3.23) can be defined by the
relation

i n n—1
(C’1lu,v) = zn: z:l <5§i,j,k)u§i,j,k),Vgi,j,k))_I_ Z Z (Séi,j,k)ugi,j,k)’vgi,j,k))+
j k=1 i=1 Brwiil
n n—1 . o .
(42) + Z (S:(}l».?’k)ugl,],k)’VI(]z,],k))
i,j=1 k=1

which s assumed to hold for any u,v € IRM, and w;, vy are the restrictions of vectors
u,v into R?%:

iy (i,4,%) iy (i,,k) y (i,4:k)
(4,d,k) _ u (i,5,k) _ u (i,5,k) _ u
= [ wGHLIK) ] I R [ B34,k ] I R [ w41 ] :

Now define on Q auxiliary cubic mesh 7¢ with vertices in the middle points of
cubes C(43F) ¢ T, Enumerate the nodes of this mesh accordingly enumeration of
the cubes of 7¢ and introduce for each node (7,7, %) of 7¢ the matrices

(4.3) SR = [ {Ha0) [ _} _1 ] 1=1,2,3.
Here coefficients f(l(i’j’k), 1 =1,2,3 are given by
RO = () 3 [0+ a0 s i a0,
(44) KD = (%) o [0 g alin1aR) g gl plictakon)]
I )
where agfl’i];’lk) = min {alitestBken 1

a,B8,v=0,1
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Define the matrix C' by the relation

n n—1 n n—1 . . o
(Cu,v) = Z Z (SY’”“u&””“.vg”“"))+ (Séz,J,k)u(zz,],k),vgz,],k))+
j k=1 i=1 k=1 j=1
-1
(4.5) + Z (Sglﬂrk)ugz')vk)’v:(}l»]vk)>
,] 1 k=1

and consider the eigenvalue problem
(4.6) Ciiu = nCu, ueRM,
PROPOSITION 4.2. The eigenvalues of the problem (4.6) belong to the interval
[1/2,1].
Proof. Consider first eigenvalue problems
(4.7 Sl(i‘j’k)u = £ §,(i’j’k)u, (Sl(i’j’k)u, u) # 0, u € R?,
1=1,2,3, i,jk=1...,n—1.

Direct calculations show that eigenvalues of the problems (4.7) are £ = K ("J’k)/I’(”J’k)
For I = 1 using (3.22) and (4.4) we can write

cean _ (3R, alinik) L q(+15.4)

1 - 2 “ ali k) + qli+1,j,k)”’
~’(iv.7.)k) — 3h ]' ( ” )}‘) ) l k ) yk 1 B2 1 k-1
I‘l - (_2_) 5 [ rrlnjn + amzjn ) + a( 1] ) + E'rln]n )

Suppose that albik) = q(i+1.5k) = ¢ Then K(i’j’k) (22) a and taking into account

the Assumption Al in the expression (4.4) of I’(l"’k) at least two terms aingn are
equal to a. Thus, possible cases are

cither KM = (3h) 144
or K’§i’j’k) = (%) 3(3a +1b), where b < a.
or I;'fi’j‘k) = (37”) %('20, + 2b),

then we get, respectively,

either € = %, or £ = 5{%, or £= 2

with b < a. So, we obtain £ € [1/2,1].

If a9 = g and alF19%) = p £ o (suppose @ > b) then K{i’j’k) = (3) 22

o (s atb?
K;l’]’k) = (37") 20 (by Assumption A1) and we obtain

"(irjyk)
K, a 1
{ - [;,l(l',,)'\k) - a + b - 1 + b/(l. € [1/2, 1]

For I = 2,3 we have the same arguments.
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Since all matrices S( W) and S(w ®) in the relations (4.2) and (4.5) are nonneg-
ative then repeating rhe proof of Lemma, 3.2 we obtain the conclusion of proposition.
0

Now instead of the matrix (3.21) we define new matrix B by
[ C+ C’1202‘21021 Cr2

21 22
B21 B22

+ By2B;3;' Ba1  Big

(4.8) B=

Then we can formulate the following theorem
THEOREM 4.3. The matriz B defined in (4.8) with the block C defined in (4.5)
is spectrally equivalent to the matriz A and

cond(B~1A4) < 20.
Proof. Proof is based on Proposition 4.2 and Theorem 3.6. O

We remind here that matrices Bos and (Y9 are diagonal and taking B as a precon-
ditioner for the matrix A we have to develop procedure of solution the linear system
of equations

(4.9) Cu=G, ueRY.

Define on cubic mesh 7¢ standard partitioning into tetrahedra Ty. Direct calcu-
lations show that the matrix C defined by (4.5) is finite element approximation of the
boundary value problem

-V-(@aVu)=g in Q,

(4.10) u=0 on 912,

on the partitioning Th where function a is defined to be constant on each cube C(5:3:%) ¢
Tct

(4.11) a(xz) = min {a(i+“'j+"3'k+7)} , z e CUIR),
o,8,v=0,1

We have to stress that the function a(a) is piecewise constant. Thus, any multilevel

procedure which works well for such kind of problems (4.10) can be used. Below we

outline the multilevel domain decomposition method (MGDD) [16, 17, 18, 19] which

we used to solve the problem (4.9).

4.1. Multilevel domain decomposition method. Here we assume that
provided the Assumption Al we can choose a positive ¢ > 1 and for values | =
0,1,...,t find grid domains SZ( ) as unions of pairwise disjoint cubes G(l) 1=1,...,my,
w1th the edge length hy = 7 'H, where m; = 8m and h, = h = l/n Then we
partition each cube Ggl), 1 =1,...,m into tetrahedra in such a way that the resultant
tetrahedral partitioning of the domain € permits the application of the finite element
method with piecewise-linear basis functions. Denote such tetrahedral partitions of
the domain Q by lel), l=0,1,...,t

Let us consider variational problem: for given g € Ly(Q2) find v € U = {v €
HY(Q):v =0 on 90N} such that

(4.12) / aVu-VudQ= / gv d, Vv eT,

Q
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where @ is defined by (4.11).

Determine a sequence of spaces U](ll) as a set of functions continuous in  linear
in eash tetrahedron from lel), 1 =0,1,...,t, and vanishing on 92 and denote the
dimensions of such spaces by M; = dim U,(II). To approximate the problem (4.12) we

consider the finite element problem: find up € Uy = U,(lt) such that

(4.13) / a Vuy - Vo d§) = / gu dS), Yv € Uy,

Q Q

which leads to the system (V4.9) with the symmetric positive definite M x M matrix
C and the vector G € RY. Here M is equal to the dimension of the space Up:
M = M, = n®. Then we assume that the utilized tetrahedral partitioning of the
domain § is such that the system (4.9) is a classical 7-point difference scheme.
Following [16], define now the sequence of grids ig) as unions of faces 8GE-I_1),

i=1,...,my_1 with the edge length h;_;

mip—

a (1—-1
s0= U aat ™,
=1

and the sequence of grids Egll) as restrictions of grids lel) into ﬁg), fori=1,...,t

Also define the sequence of grids ng.[) as unions of edges of cubes GE-I), T =

1,...,my, and the sequence of grids I“El[_lﬁ)? which differ from the grids I‘gﬁl) by
additional nodes in the middle of the edges of G’El_l), t=1,...,my_1,forl =1,...,t,
as it is shown on Figure 3.

Let us denote the set of the faces of the cubes GE-I), 1t =1,...,m; by Pz-(l), 1=
1,...,s;, where s; is the number of these faces c")GE-l), 1=0,1,...,t. Then

amn St a1

251) = ‘L—Jl Pz( )’
ETE

- on
i=1

Thus, grid domains lel) consist of cubes, grid domains Qg) consist of tetrahedra,
grids Eg) consist of squares, and grids I‘gll) and I‘gl[_l/"z) consist of edges of length hy,
1=0,1,...,t.
Let us partition the nodes of the grid domain lel) into four groups (see Figure 3):
1. to the first group we refer the vertices of the cubes Ggl_l) (the nodes of
1-\51—1)),
]
2. to the second group we refer the centers of the edges of these cubes (the nodes
of 1‘511_1/2) which are not in I‘El[—l)),
3. to the third group we refer the centers of the sides of the cubes (the nodes of
Egll) which are not in Fgfhl/m),
4. and to the forth group we refer all the remaining nodes which are at the same
time the centers of the cubes Ggl). t=1,...,mj_1.
According to such partitioning of the nodes any vector v € IRM: (M is the

! .
number of nodes of Q;)) can be represented in the form v = (vI,vI vI vI)T,



18 S. MALIASSOV

8 .
(a) Union of 8 cubes |J GEI) (b) Fragment of the grid Zg)
i=1

A

el S

0]

-

(c) Fragment of the grid r§2.1—1/2) (d) Fragment of the grid Fg_l)
° — nodes of 1-st group u — nodes of 3-rd group
o - nodes of 2-nd group O — nodes of 4-th group

FiGURE 3. Fragments of the grids QEII), Egll)ﬁ I‘Ell_l/m, I‘g_l) and partitioning of the
nodes into groups

where v; € RM-1, v, € R™-1, and vy € IR®7. Considering the equation (4.13)
in the spaces U,(ll) we define the sequence of matrices C) which according to the
partitioning of nodes introduced above can be presented in the following block form

T
l = (1 (1

Gl Gy Gy 0
0 C'32 CE'Z}S (E’B;l
o o c¢¥ ¢

(4.14) cW =

Note that C’]fll) 1 =1,2,3,4 arc diagonal matrices and the matrix C™® coincides with
the matrix C' from (4.9).
Define V}EI) and VV,EZ_I/z) as the spaces of restrictions of functions from U,EI) into
E;l) and Fg—l/Q), respectively, I = 1,...,t.
Then, following [17, 19] using relations
mip—

<~ - h
(4.15) (D(l)uAv) = i / a Vi, Vip ds, Viin, o, € VO,
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define symmetric positive definite (N; —my_1) x (N; — my_1)-matrices

A (D

o |2 Da O

(4.16) DO =1 pb Dl DOy |,

0 DUy DWyy
and using the relations

~ gy du/Z dzh (- 1/2)

(4.17) (D(”u, v) Z il ds,  Yunvn € W

“Is ds
rg 1/2)

define symmetric positive definite n; x nj—matrices

~ P )

Dy D
4.18 DO = [ 11 12 ] ,
(4.18) DUy DNy,

where n; = M; —my_1 — 11, for I =1,...,t.
Now define symmetric positive definite M; x M; matrices

D11 + D12D55 Doy Dy, 0 0
D — Dy, Dys + Da3 D3y D3y Dy3 0 _
0 D3, D33 + D3y Dy} Dys  Day
0 0 Dy3 Dyy
(4.19) = F" [Dy; ® Day ® D33 ® Day] F,

where

Dyy = Dy — D12 D5, Doy, Dy = Ciy, Dy = Cyay

I 0 0 0

F = D;;' Dy, Iy, 0 0
0 D33 Dy, I33 0o |’
0 0 D;'Dys Iy

and index [ of matrices D;j, C’ij, and I;;, i,j = 1,2,3,4 was skipped for simplicity.
By making straightforward calculations [16] it can be shown that the following
statement is true.

LemMa 4.4. DY = 10-1, l=1,...,t

Define now multilevel preconditioner for the matrix C' from (4.9). Using (4.14)-
(4.19) define the sequence of the preconditioners DO for matrices CY. Fix some
integer 7 > 1 and define H? = [DM]~1 = [DW]~1, Then following [16] for | =
2,...,t define the sequence of M;_; x M;_;—matrices

Il

@) A = |10 -TT (0 -naber)| [eon] 7

j=1

~(1 1 / -1
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where the parameters 7;, j = 1,...,r, are chosen such that the polynomial

r

T.(z) = H (1-7jz)

j=1

is least deviating from zero ou the interval [d;. da], where the constants dy, dy are the

boundaries of the spectrum of the matrix H{II)D(I)H.
Then, define M; x M;—matrices

(4.21) DO = FT [13511) ® DUy, @ DV @ D(l)44] F,
H{Y = [DO] U P
Finally, set the matrix
(4.22) D =DW

as an multilevel preconditioner for the matrix C of the problem (4.9).
The following statements can be proved [16, 17].

LEMMA 4.5. The eigenvalues of the matrices [D(l)]_1 CO belong to the interval
[1,b], where b = (74 V/19)/2. and

-1 .
cond [D(”] CW < bh<5.68, l=1,...,t

LEMMA 4.6. The following estimates are valid:

e 1 D-1¢ < 3v/b-1
if 1r=23 then cond D7'C < sy < 9.97,
if r=4 then cond D71C < vz < 6.6,

where

2420 -2V 4+1-3Vb -2

14 p =
max 4_\/1—)-

Let us apply the generalized conjugate gradient method to solve the system (4.9)
with the matrix C:

G e [D—lgk — ep_1(uk - uk—l)]

Gk
1D~ 1% k12 _
(4‘23) Ik = TEx — €k—1, €k = Gk e % o=t
- (G

60:0. k:l,...,ke

with matrix D from (4.22) for the value » = 3 or » = 4, where £¥ = Cu* — G and
l€lle = (C&,)12, £ e RM.

Choose the quantity ke in such a way that a given positive £ (¢ < 1) will surely
satisfy the inequality :

(4.24) uf*t —ulg <eflu’ - ue.



SUBSTRUCTURING PRECONDITIONERS FOR MIXED METHODS 21

where u* = C~1G, for any initial guess u’ e RM.
Taking into account that the method (4.23) obeys the estimate

21'

Fowlle < gt I - w e

(4.25) llu

where ¢ = (7 — 1)/(v/7 + 1) and v is an arbitrary but fixed positive number such
that cond D~'C < v, we can choose for the required value of k. the maximal integer
satisfying the inequality

(4.26) ke <

The following statements can be established ([17]).

THEOREM 4.7. To solve the system (4.9) with the accuracy € in the sense of
inequality (4.24) by the generalized conjugate gradient method (4.23) with the matriz
D from (4.22) it is sufficient to choose ke = [1.53 In 2] in the case of r = 3 and
ke = [1.22 In 2] in the case of r = 4, where [z] denotes the integer part of number z.

The number of arithmetic operations required in this case for the values r = 3
and r = 4 can be estimated from above by the quantities 75 M ln% and 710 M ln-2€—,
respectively.

Note that the condition numbers of the matrices D~1C determined in the Lemma
4.6 do not depend on mesh size h and the jump of the coeficients @(z). So, applying
preconditioned conjugate gradient method to solve the problem (2.4) with the matrix
B from (4.8) as a preconditioner for the matrix A and using multilevel domain de-
composition method (MGDD) to solve the problem (4.9) with matrix C we establish
the following results.

THEOREM 4.8. If we use MGDD method to solve problem (4.9) with matriz C
then condition number cond(B~YA) does not depend on mesh size h and jump of the
coefficients a(z).

THEOREM 4.9. The number of operations for solving system

AX=F

by preconditioned conjugate gradient method with preconditioner B and with accuracy
€ in the sense

AR — X714 < el|A° = A7 4,

is estimated by C - N - In 2 2, where \> = A7'F, X0 € RY and C does not depend on
N and jump of the coefficients a(x).

5. Results of the numerical experiments. In this section the precondi-
tioners (3.21) and (4.8) are tested on the model problem

=V (a(z)Vu) = f, in Q=10,1)3
u = 0, on 0N}

We present three numerical examples. In the first example we use the preconditioner
Bin the form (3.21). The problem with M x M-matrix Cy; is solved by preconditioned
conjugate gradient with diagonal Jacoby preconditioner. In the second eéxample we
use the preconditioner B in the form (4.8). The problem with matrix C is solved by
multilevel domain decomposition method as it is described in the section 4.1.
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The domain is divided into M = n3 cubes (n in each direction) and each cube
is partitioned into 5 tetrahedra. The dimension of the original algebraic system is
N = 10n% — 6n2. The right hand side is generated randomly, and the accuracy
parameter is taken as ¢ = 107%. The condition numbers of the preconditioned matrices
B~1A are calculated by the relation between the conjugate gradient and Lanczos
algorithms [15]. The coefficient a(z) is piecewise constant and is defined to be
(5.1) a(y7) = { a. (2,y,2) €[0.5,1] x [0.5,1] x [0.5,1]

1, elsewhere

The results are summarized in Tables 1 and 2, where nj and cond denote the
iteration number and condition number, respectively. All experiments are carried out
on Sun Workstation.

Finally, the method of preconditioning described in this paper is used to solve
the problem (1.2) with the constant right-hand-side function f(z) by the mixed finite
element method with the function a(2) in the following form (see Figure 4):

( [0.2,0.4] x [0.2,0.4] x [0.2,0.4]U )
[0.6,0.8] x [0.2,0.4] x [0.2,0.4]U
[0.2,0.4] x [0.6,0.8]  [0.2,0.4]U
[0.6,0.8] x [0.6,0.8] x [0.2,0.4]U
[0.2,0.4] x [0.2,0.4] x [0.6,0.8]U [
[0.6,0.8] x [0.2,0.4]  [0.6,0.8]U
[0.2,0.4] x [0.6,0.8] x [0.6,0.8]U
[0.6,0.8] x [0.6,0.8] x [0.6,0.8]

(5-2) a(.7: 1 z) = a= 001’ (:7:3 !/aZ) €

/

L 1, elsewhere
Again, the domain  is the unit cube, the domain is divided into M = 403 = 64000
cubes. The dimension of the original algebraic system for the Lagrange multipliers
(2.4) is N = 630400. Both preconditioners (3.21) and (4.8) are tested on this problem.

With the preconditioner in the form (3.21), i.e. three-level preconditioner, it
takes nj,.; = 18 outer iterations to solve (2.4) with the accuracy € = 107%. On each
iteration the problem (3.20) is solved by preconditioned conjugate gradient method.
It takes less than 40 iterations to solve (3.20) with the accuracy € = 1078,

With the preconditioner in the form (4.8), i.e. multilevel preconditioner when
MGDD method is used to solve the problem (4.9), it takes njir = 22 outer iterations
to solve (2.4). On each outer iteration it takes 18 iterations to solve (4.9) with the
accuracy € = 1078,

In both cases it takes less then 12 minutes to obtain the resulting vectors q and
u. The slices of the solution u by planes parallel to zy—plane are shown in Figure 5.
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