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Abstract. Recent developments in optical imaging inspired the model of photon transport dis-
cussed below. (Infrared radiation is used to image relatively soft and homogeneous tissue.) The
difficulty of solving Maxwell’s equations, or even linear transport equations, led to this “diffuse tomo-

graphic” model. A recursive scheme for solving the two dimensional problem is sketched and the first
recursive step is detailed.

1. Introduction
(a) Description of model
(b) Forward problem
(c) Inverse problem
(d) Useful facts
2. Recursive inversion algorithm
(a) Writing the equations for general n
(b) 4 x 4 problem
(c) n x n problem
3. Conclusion

1. Introduction. Nearly one century has passed since Réntgen took the first ra-
diograph of his wife’s hand. A concise history of the development of medical imaging
can be found in [21]; more mathematical detail can be found in [1]. The word “tomog-
raphy” refers to imaging an object by slices. X rays, for example, have high energy
and travel straight through the body. Data analysis is linear and yields a scalar valued
function. The oxymoron “diffuse tomography” refers to low energy imaging in which
the paths of the radiant energy are not necessarily straight and are unknown. Data
analysis in diffuse tomography is highly nonlinear and yields many parameters per
pixel. Problems in diffuse tomography are highly nonlinear because the radiant energy
is relatively low. Clinical applications such as neonatal imaging and annual mammo-
grams are not amenable to high energy techniques which might overexpose the patient
to harmful radiation. Experimentalists in the medical arena work with near infrared
radiation. See [22, 23, 24, 25, 26] for cursory descriptions; [27, 28] contain more details.
Because Maxwell’s equations are difficult to solve for this problem many scientists and
mathematicians turn to other models of photon transport.

The integral-differential equation governing linear transport theory appears more
tractable than Maxwell’s equations. Even so, the difficulty of handling the scattering
term and the high number of scattering events led to wide adoption of a diffusion model.
Although they do not account for the anisotropic scattering of photons in biological tis-
sue, such models permit quick and accurate solution to the forward problem. See [6]
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for an overview and [7] for a finite element solution to the forward problem. Redheffer’s
work on network and transport theory, especially [4], was an early precursor of recent
discrete models of photon transport. Inverse solutions for several isotropic lattice mod-
els were found during the late 80’s [2, 3, 9, 10]. Work on the general lattice model
commenced in the early 90’s. The inverse solution for small systems in the plane was
derived in [11]; range conditions upon the data were studied in [12, 17] for two and
three dimensional systems respectively. This paper presents a solution to the inverse
problem for the most general lattice model on square systems in the plane.

1.1. Description of the model. Consider an n x n array of pixels in R? enclosing
the object to be reconstructed. On each of the 4n outer edges there are two devices.
One device shoots photons across the outside edge into the neighboring pixel; the other
device detects photons as they leave the system. For each of the 4n outside edges we
collect 4n pieces of data. Within the array, photons travel in four directions: north,
south, east, and west. They may change direction as long as they travel in one of the
preferred directions. They do not interact and may be absorbed within a pixel. Photons
move according to a Markov process. The probabilities with which a photon moves to
a neighboring pixel depend upon its previous, as well as present, location. In this two
step formulation the state space consists of locations. We may redefine the state space
so that photons move according to a one step Markov process. In the new state space
a single state consists of the photon’s location and direction of travel.

There are three different types of these Markov states: incoming, outgoing, and
hidden. The probabilities with which photons move {from one state to another are
referred to as transition probabilities. For example a photon which travels east into
pixel 1,1 continues to travel east into pixel 1,2 with some probability, which we denote
elle. See figure 1. The same photon travels south into pixel 2,1 with probability ells.
These probabilities are the nonzero entries of the transition matrix, M. M is sparse
and may be written as a block matrix with nontrivial subblocks which we refer to as
Pi,, Py, Ph,, and Pyy. P, for example, contains the probabilities with which photons
in incoming states move directly to outgoing states. P;, contains the probabilities with
which photons in incoming states move to hidden states. Py, and Py, are the transition
matrices for photons starting in hidden states traveling to outgoing and hidden states,
respectively. P;, and Py, are always square matrices. If we order the Markov states
carefully, all four of these submatrices have a block structure.

1.2. Forward Problem. For a nxn system the forward map takes 16n? transition
probabilities to a 4n x 4n data matrix (). The domain of the forward map lies in the
unit cube in R and is defined by

etje +erjw+ egn +erys < 1
(1.1) wije + wijw + wijn + wigs < 1
nije + nijw + negn +neys < 1
sije + sijw + stgn + s13s < 1
for7,7 =1,2,...,n. Furthermore, we assume that none of these transition probabilities
2
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Fic. 1. 2 x 2 base case. Incoming, hidden, and outgoing states are labeled with i’s, h’s, and o’s
respectively.

is zero. (); ; represents the probability that a photon which enters the system at source
¢ exits the system at detector j. @ provides no time-of-flight information. Because Q
is a transition matrix acceptable solutions also lie in the unit cube in R" and satisfy

4an
(1.2) 0<> QLN <1, i=1,2,...,4n
A=1

The forward map is given by the following matrix equation:

(1.3) Q= Po+ Py > Pl Py

n=0

Given a physical set of Markov transition probabilities, (equivalently the matrix
M), the solution to the forward problem is

(1.4) Q = Pio + Pip (I — Pup)™' Py,

1.3. Inverse Problem. Our primary interest, however, is the inverse problem.
Given (), we wish to recover the transition probabilities. For a given object the tran-
sition probabilities give a discretized “image” of the object. In traditional imaging, we
recover a single parameter per pixel. From this information a visual picture of the ob-
ject is made. In diffuse tomography, however, we want to recover many parameters per
pixel. From this information we could make several “pictures” of the object. In both
classical and diffuse tomography, fine discretizations of the covering array are required
to obtain detailed information about the object being imaged.
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1.4. Useful facts. Less general diffuse tomographic models have been studied for
relatively large systems; general models have been studied only for specific geometries.
This section contains a brief summary of work pertinent to the rest of the paper.

1.4.1. Consistency Conditions. An understanding of range conditions on the
forward map have typically preceded its inversion. Consistency conditions have been
studied for the smallest nontrivial three dimensional system [17] and for the general
problem in the plane [12].

A nxn system generates a 4n X 4n data matrix which is subject to at least 8n(n—1)
independent consistency conditions, where n = 2* and k € N. These conditions appear
as rank deficient submatrices of (). A full set of conditions can be found by considering
only submatrices representing travel from one “side” of the system to the other “side”.
Such matrices are generically of rank n. These conditions can be derived using the
Markovian nature of the system and the fact that a barrier of n hidden states separates
the sides of the system.

Notation: Let Q.. denote the submatrix of Q taken from rows r and columns c. Let
dQ, . denote the determinant of this submatrix.

For example, the 8 x 8 data matrix for the 2 x 2 base case has four rank deficient
submatrices. The submatrix representing travel from left to right, Qp 23.4) 56,78, 18
generically of rank two. Similarly, the submatrices Q34,561,278 @[5,6,7.8),1,23,4, and
@[,2.7.8],[3.4,5,6 are generically of rank two.

Consistency conditions have the unfortunate effect of reducing the amount of in-
dependent data. When working on an inverse problem we would like to have as much
information as possible. At best, we may recover only as much information as we have
independent data. In two dimensions, there are precisely as many data as unknowns.
Consistency conditions amongst the data prevent inversion of the forward map.

1.4.2. Base Case. A recovery algorithm has been developed for the general model
on a 2 x 2 array. In this base case the transition submatrices P;,, Phro, Pin, and Py
are sparse 8 X 8 matrices. Each has 16 nonzero entries. P;, and Py, have 4 x 4 blocks
along their diagonals; P;, and Py, have identical off-diagonal block structures. See
figure 2. Assuming that Py, is invertible we write A = P;'. Several nonlinear changes
of variables transform the governing equations from a highly nonlinear system to several
smaller, decoupled, and linear systems. The transition probabilities can be recovered in
terms of the data and the parameters in the matrix A. A set of ad hoc assumptions
were applied to the 2 x 2 problem in order to close the underdetermined system of
equations [11].

1.4.3. Graflmann - Pliicker Embedding. Since the inverse problem involves
linear systems, it is not surprising that Grafmannians and the Gramann-Pliicker em-
bedding come into play. GraBmannians and the identities which embed them in projec-
tive space will be used in the following sections. The algebraic identities which embed
G(k,n) in PG~ are derived below. A cursory explanation of the embedding can be
found in [11, 20]. For a more thorough exposition see [15, 16].
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F1a. 2. Block structures for a n x n system. The block structure of P;,, Phro, and A are shown on the
left. P;p and Prp have the structures of the arrays on the right. Fach of the blocks in the rightmost

array is n x n/2.

Let A be any rectangular matrix with k& rows and n columns where £ < n — 1
and A = (a);;. Let I = (41,%2,23,...,2(k-1)) index (k — 1) distinct columns of A. Let
J = (j1,J2,J3s - - J(k+1)) index (k + 1) distinct columns of A. Consider the sum,

k+1 R A1y A1ip -0 Qg Q15
1 .
> (=1t
A=1
Ak 3, . coe Al _y Qkgy
A15; -0 Q1gay @igayy -+ Qg
(1.5) : :
Okgy oo+ Ckjgxor Ckgagr -+ @kgeg

To simplify 1.5, expand the first determinant along the last column as shown below

A1, A1y -+ Qi A1, k

(1'6) : : = Z aui CFy,
ki, ki Gk jy w=l

where C'F, is the cofactor of the matrix on the left-hand side of 1.6 about the (u, k)4

entry. Then 1.5 becomes

k+1 k U150« Qigay gy -o0 gy
; /\+1 . . . .
Z(_l) Z iy C Fy
A=1 n=1 . . ) .
Qkjy -+ OQkgasy Ckjgagr oo Ckygeg
0o ... 0 Ay sy 0 o 0
k k+1 . . . . .
+ A1,5; -+ Q15 @15y Q14340 -+ @154
= Y CF.Y | | : - :
p=1 A=1 : : : :
Ak,jy o+ o Qkgy_g  Qk,jgy s cee Gk
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Qujy Quz - Qpugpy,

u=1 : : :
kg1 Qkjy, -+ Okgpyy
k
— Y CF,-0
p=1
=0

Denote by 77 the determinant of the minor of A whose columns are indexed by the
multi-index /. Then

k41
(18) Z (81,82 etk —1200) T (F1052 00 rfAm 1 oI Ab 1 seerdbg1) — 0
A=1
Equation 1.8 defines the Grafimann relations.

2. Recursive Inversion Algorithm. The recusive algorithm developed in this
section is the inverse counterpart of the ideas of invariant imbedding developed in [18,
19]. Rather than doubling the fundamental cell, the macroscopic system is split apart
into subsystems, which are consequently split into more sub-subsystems. The process
ends when the subsystems are sufficiently small that the microscopic level has been
reached.

2.1. Writing the equations for general n. Only when n = 2 is the number
of hidden states equal to the number of incoming and outgoing states. For a n x n
system P;, is a 4n X 4n matrix and Py, is a (4n? — 4n) x (4n? — 4n) matrix. Py, is a
4n x (4n? — 4n) matrix and Py, is a (4n? — 4n) X 4n matrix. See figure 3. For n > 4
the governing equations are so horribly large and nonlinear that MAPLE cannot even
solve the forward problem analytically. (Inverting (I — Pyy) is too much for MAPLE.)
In order to begin work on the inverse problem one must somehow cut this monstrosity
down to size.

Even if MAPLE were able to handle the equations for any large n x n system the al-
gorithm described in [11] is doomed to failure. It assumes that the transition submatrix
Py, i1s invertible. Unfortunately, P, is not square for large systems. We would like to
preserve the “squareness” of the transition submatrices as well as reduce the complexity
of the problem. A recursive approach allowing only one layer of hidden states at any
recursive level achieves both goals. The algorithm described below decomposes the sys-
tem into subsystems which are subsequently decomposed into subsystems of their own.
A system is broken into subsystems by ignoring most of its hidden states. No matter
how the original system is decomposed the new system may not violate the original
system’s range conditions.

2.2. 4 x 4 problem. In this section the recursive algorithm is developed in detail
for a 4 x 4 system. Only one recursion is required and no assumptions are made to close
6
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Fic. 3. A 4 x 4 system. The incoming and outgoing stales are labeled; all unlabeled states are hidden
states. There are 16 incoming states. 16 outgoing states, and 48 hidden states.
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F1G. 4. Decomposition of a 4x4 system into four 2x 2 subsystems. Thick lines separate the subsystems.
The “modified” 4 x 4 system disregards individual pizels. Only the subsystems are relevant al the first
level of this recursive procedure.




the resulting underdetermined systems of equations. The 16 x 16 data matrix is subject
to 8 x 4(4 — 1) = 96 independent consistency conditions, leaving only 256 — 96 = 160
independent data. Since there are 16 * 16 = 256 unknown transition probabilities a 96
parameter family of solutions to the 4 x 4 problem is found in sections 2.2.2 and 2.2.3.

2.2.1. Decomposing into subsystems. Consider a n x n system. Let b, be a
straight horizontal barrier separating the bottom of the system from the top. Let b, be
a vertical barrier. There are exactly 4n hidden states associated with b, and b,. (Each
of the barriers is associated with two rank deficient submatrices of rank n. The vertical
barrier is associated with a right-left as well as a left-right submatrix; the horizontal
barrier is associated with a top-bottom as well as a bottom-top submatrix.) Recall that
there are exactly 4n incoming and 4n outgoing states.

Consider the example in figure 4. The 4 x 4 array of pixels is decomposed into four
subarrays labeled 11, 12, 21, and 22. There are 16 incoming states and 16 outgoing
states. There are 16 relevant hidden states, those associated with the barriers. The
incoming states which send photons into a subarray are adjacent only to hidden and
outgoing states which send photons out of that subarray. Similarly, hidden states
sending photons into one subarray are adjacent to hidden and outgoing states which
send photons out of that subarray. Finally, hidden states are adjacent to outgoing
states which send photons out of that subarray. As in the base case, it is assumed that
photons can only travel from one state to adjacent states.

The shortest possible path between states in this modified system may require that
the photon travel several steps in the original system. The most important thing to
notice is that these modified transition probabilities are the data for the subarrays.
These transitions matrices have the same block structure as their counterparts for the
base case. See figure 2.

2.2.2. Solving for P, Pun, P, and Py, in terms of A. We start by labeling
the states for the 4 x 4 system as in figure 4, and each of the 2 x 2 subsystems as
in figure 1. The transition matrices for the modified system are sparse block matrices.
These matrices are all 16 x 16 and have the “same” block structures as their counterparts
for the 2 x 2 base case. See figure 2. Examples of paths taken into account by the
modified transition probabilities are shown in figure 5.

The governing matrix equation, 1.4, may be rewritten as the following:

(2.1) (Q — Po)A(I — Pyy) — P = 0

where ) is the data matrix, P;,, P, Phro, and Py are probability transition matrices
for this modified system and A = P;'. The following changes of variables allow us to
“remove” the nonlinearity from 2.1.

W = AP,
(22) X = IDioA
Y = P,W-—PFy
8



Fic. 5. Ezamples of paths which are taken into account by transition probabilities for this modified
system.

Notice that X has the same zero structure as Py and P, and that Y and W have
identical zero structures as Py, and Pyy,. Equation 2.1 becomes linear in the unknowns

AW, X,and Y.

(2.3) QA-W)—(X-Y)=0

As in the base case the columns in 2.3 come in groups; four of the columns corre-
spond to the same matrix equation. The eleventh through fourteenth columns of 2.3
are written below.



Q2,9
Q3,9
Q4,9
Qs,9
Qs,9
Q1,9
Qs,9
Q9,9
Q10,9
Q11,9
Q12,9
Q13,9
Q14,9
Q15,9

L Qis,9

Since this is a homogenous linear system the solution is interesting only if the
leftmost matrix is rank deficient. Fortunately, Q1. s]90,..16] represents travel from the
left half of the system to the right half; Q[i,..g)[9,..16] is generically of rank four. We
can solve for the W;;’s, X;,’s, and Y;;’s in terms of the A;;’s. Solving the first two

Q1,10
Q2,10
Q3,10
Q4,10
Qs,10
Qs,10
Q7,10
Qs,10
Q9,10
Q10,10
Q11,10
Q12,10
Q13,10
Q14,10
Q15,10

Q1s,10

Q1,11
Q2,11
Q3,11
Q4,11
Qs,11
Qe,11
Q7,11
Q8,11
Qo,11
Q10,11
Q11,11
Q12,11
Q13,11
Q14,11
Q15,11

Q16,11

Q1,12 Q1,13 Q1,14
Q2,12 Q2,13 Q2,14
Q3,12 Q3,13 Q3,14
Q4,12 Q4,13 Q4,14
Qs,12 Qs,13 Qs,14
Q6,12 Q6,13 Q6,14
Q7,12 Q7,13 Q7,14
Qs,12 Qs,13 Q8,14
Qo,12 Q9,13 Q9,14
Q10,12 Q10,13 Q10,14
Q11,12 Q11,13 Q11,14
Q12,12 Q12,13 Q12,14
Q13,12 @13,13 Q13,14
Q14,12 Q14,13 Q14,14
Q15,12 Q15,13 Q15,14
Q16,12 Q16,13 Q16,14
- Ag,11 Ag,12
Alo,11 Alo,12
A, Al1,12
Air2,11 A12,12
~Wiz,i1 —Wis,i2
—Wia, 11 —Wigi2
—-Wis,11 —Wis 12
—Wig, 11 —Wie,i12
Xo9,11 Xo,12
X10,11 X10,12
X11,11 X11,12
X12,11 X12,12
Yi3,11 Y13,12
Yia,11 Y14,12
Y1s5,11 Y1s,12
L Yie,11 Yi6,12

columns of 2.4 is equivalent to solving

Q1,15
Q2,15
Q3,15
Q4,15
Qs,15
Q6,15
Q7,15
Qs,15
Q9,15
Q10,15
Q11,15
Q12,15
Q13,15
Q14,15
Q15,15

Q16,15

—Wo,13
—Wio,13
-Wi1,13
—Wi2,13

Ai13,13

A14,13

Ays,13

Ate,13

Yo,13
Yi0,13
Yi1,13
Yi2,13

X13,13

X14,13

X15,13

X16,13
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Q1,16
Q2,16
Q3,16
Q4,16
Qs,16
Q6,16
Q7,16
Qs,16
Q9,16
Q10,16
Q11,16
Q12,16
Q13,16
Q14,16
Q1s,16

Q1s,16

—Ws, 14
—Wio,14
=Wi1,14
—Wi2,14
Al3,14
A14,14
Ails,14
Als,14
Yo,14
Yio0,14
Yi1,14
Yi2,14
X13,14
X14,14
X1s,14

X16,14

-




Qs,13 Q5,14 Qs,15 Qs,16 0 0 0 0 0 0 0 07 F Wiz, i1 Wiz 12 ]
Qse,13 Qs,14 Q6,15 Qs,16 0 0 0 0 0 0 o0 o “Wis 11 —Wig 2
Q7,13 Q7,14 Q7,15 Q7,16 0 0 0 0 0 0 0 o0 ~Wis, 11 —Wis 12
Qs,13 Qs,14 Qs,15 Qs,16 0 0 0 0 0 0 0 o0 ~Wie, 11 —Wis,12
Q9,13 Q9,14 Qo,15 Q9,16 -1 0 0 0 0 0 o0 o Xo,11 Xg,12
Q10,13 Q10,14 Q10,15 Q10,16 0 -1 0 0 0 0 o0 o0 X10,11 X10,12
Q11,13 Q11,14 Q11,18 Q11,16 0 0 -1 0 0 o0 o0 o X11,11 Xi11,12
Q12,13 Q12,14 Q12,15 Qi2,16 0 0 0 -1 0 0 0 o0 X12,11 X12,12
Q13,13 Q13,14 Q13,15 Q13,16 0 0 0 0 1.0 0 o Y13,11 Yi3,12
Q14,13 Q14,14 Qu4,15  Qu4,16 0 0 0 6 0 1 0 o0 Yi4,11 Yi4,12
Q15,13 Q15,14 Qis,15 Q15,16 0 0 0 0 0 o 1 o0 Y1s,11 Y1s,12

L Q16,13 Q16,14 RQie,15 Qis,16 0 0 0 0 0 0 0 1 ] | Yien Yie,12 |

QS,Q QS,lO QS,ll Q5,12
Q6,9 QGJO QG,]I Q6,12
Q7,9 Q?,lo Q7,11 Q7,12
QS,Q Q8,10 QS,II Q8,12

Qoo Qoo Qo Qo2 [ Ag11 Ago ]
(2.5) _ Q109 ®i010 Qo1 Qo2 Aro1r Aioz

Qi Qo Quaur Qe Ann A

Qi29 Q1200 Q211 Q212 | A1 Are ]

Qi3 Q0 Quznn Qizne
Qiso Qusio Quann Quanz
QRiso Qisp0 Qisar Qisoz
| Qie9 Qis10 Qis11 Qic,12

Doing the same for other pairs of columns yields solutions for W, X, and Y in terms
of A and exhausts the supply of equations given by equation 2.3. Since A is invertible

we can return to our original variables, computing the entries of P, Pu, P, and P,
in terms of the data and A;;’s. The forms of the solutions are similar among variables
from the same transition matrix. Samples of solutions in terms of A; ;’s for one variable
from each matrix are listed below. The simplest solutions are for the entries of Pj,:

11



(2.6) Ph04’3 - _ dA[1Y2y4]1[1’273]
dA[ 23,411,234

The next simplest solutions are those for entries of Pj,.
Phhs s =
- (CZA[1,2,3],[1,2,4] (dQ[5,6,7,8],[1,2,3,13]1413,15 + C1Q[5,6,7,8],[1,2,3,14]A14,15
+dQ[576»7,8]v[1:2,3»15]A15v15 + dQ[5,6,7,s],[1.2,3,16]/416,15)
+ dA[1,2,4],[1,2,4] (dQ[5,6,7,8],[12,4,13]1413,15 + dQ[5,6,7,8],[1,2,4,14]/414,15
(2-7) +dQ[5,6,7,8],[1,2,4,15]A15,15 + dQ[5,6,7,8],[1,2,4,16]A16,15)
+ dA[1,3,4].[1,2,4] (dQ[5,6,7,8],[1,3,4,13]A13,15 + dQ[5,6,7,8],[1,3,4,14]/414,15
+dQ[5»6»7»8]»[11314»15]A15=15 + dQ[5,6,7,s],[1,3,4,16]A16,15)
+ dA[2,3.4],[1,2.,4] (dQ[5,6,7,8],[2,3,4,13]/413,15 + dQ[5,6,7,8],[2,3,4,14]1414,15
+dQps 6,7.8),12,3.4,15 415,15 + ClQ[5,6,7,8],[2,3,4,16]/416,15)) /
dQps,6,7,8,1,2,3,419A11,2,3.4,[1,2,3,4]
The solutions for the entries of P;, are a little bit longer:

1

dA[5.6,7,8),[5,6,7,8]

(dA[s,7.s],[6.7,s] (dQ[5,13,14,1s,16],[1,2,3,4,5]As,s+

dQ[5,13,14,15.16],[1,2,3,4‘6]A6»5 + dQ[5,13,14,15,16],[1,2,3,4,7]‘475 +

P’L'05’6 = —

dQ[5,13,14,15,16],[1,2,3,4,8]148,5) /dQps 14.15.16),01,2,34] —
dArs,7,8,[5.7,8) (dQ[5,13,14,15,16],[1,2,3,4,5]A5,6+
dQ(s.13,14,15,16),11,2,3,4.6/46,6 T Q5,13 14,15,16],[1,2,3.4,7147,6 +
dQ[s,13,14,15,1e],[1,2,3,4,8]148,6) /dQp3,1415,16),[1,2,3,4] —
(2~8) dA[5,7,8],[5,6,7] <dQ[s,13,14,15,16].[5,9,10,11,121145,8“‘
dQ(s.13,14,15,16],(6.9,10,11,12)46.8 T dQ[s5.13,14,15,16)7,9,10,11,191 47,8 +
dQ[s.13,14,15,16],[8,9,10,11.12]A8,8> /dQp3,14,15,16)19,10.11,12]

dA[5,7,8],[5,6,8] (dQ[s,13,14,15,16],[5,9,10,11,12]A5,7+

dQ[5,13,l4,15,16],[6,9,10,11,12]A6,7 + dQ[5,13,14,15,16],[7,9,10,11,12]A7,7 +
dQ[5,13,14,15,16],[8,9,10,11,12]A8,7> /dQ[13,14,15,16],[9,10,11,12])

Solutions for the entries of P;, are of the form:

12



1

dQ[5,6,7,8],[9,10,11,12]

Pith,M =

(dQ[5,6,7,8,10],[9,10,11,12,13]1413,14 + CIQ[5,6.7,8,10],[9,10,11,12,14]A14,14 +

dQ[5,6,7,s,1o],[9,10,11,12,15]1415,14 + dQ[5,6,7,8,10],[9,10,I1.12,16]A16,14> +

1
((dQ[5,6,7,8],[9,11,12,13]A13,14+

dQ[s,e,zS],[9,10,11,12]dA[9,10,11,12],[9,10,11,12]

dQ[5,6,7,8],[9,11,12,14]A14,14 + dQ[5,6,7,8],[9,11,12,15]A15,14 +
(2-9) dQ[s.6,7,8],[9,11,12,16]A16,14>

(dA[9711y12],[9,10»11] <dQ[5,6,7,8,10],[9,13,14,15,16]/19,12

+ dQ[s,6,7,8,10],[10,13,14,15,16]1410,12 + dQ[5,6,7,8,10],[11,13,14,15,16]A11,12
+dQ[5,6.7,8,10],[12,13,14,15‘16]*’412,12) /dQ[5,6,7,8],[13,14,15,16]

- dA[9»11,12],[9,10712] (dQ[5,6,7,8,10],[9,13,14,15,16]A9,11

+ dQ[s,6,7,8,10],[10.13.14,15,16]AlO,ll + dQ[5,6,7,8)10],[11,13,14,15,16]A11,11
‘|‘dQ[5,6,7,8,10],[12,13,14,15,16]A12J1> /dQ[S,GJ,S],[13,14,15,16]

+ dApa112),0,11,12] (dQ[10.13,14,15,16],[5,6,7,8,9]149,10

+ dQ[10,13.14,15,16],[5,6,7,8,10]A10,10 + dQ[lo,]3,14,15,16],[5,6,7,8,11]1411,10
+dQ[10,13,14,15,16],[5,6,7,8.12]/412,10) /dQ[13,14,15,16],[5,6.7,8]

— dAjg,11,12)[10,11,12) <dQ[10,13,14,15,16],[5,6,7.8,10]A10.,9

+ dQ[10,13,14,15,16].[5.6,7,8,9]/49‘9 + dC2[10,1C’>.1=1,15J6]..[5,6‘,7,8,11]‘41119

+dQ[10,13,14,15,16],[5,6,7,8,12]A12,9> /dQ[13,14,15,16],[5,6,7,8])
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+ (dQ[5,6,7,8],[9,10,12,13]A13,14 + dQ[s,6,778]7[9710,12,14]1414114
+dQ[5»6y7~8]y[9,10712y15]A15114 + dQ[S,G,’?,S],[9,10,12,16]A16,14)
(dA[9510112]y[9~10,11] (dQ[5,6,7,8,10],[9,13,14,15,16]149,12
+dQ[5v61778~10]y[10713714,15v16]A10,12 + dQ[5,6,7,8,10],[11,13,14,15,16]1411,12
+dQ[5,6,7,8,10],[12,13,14,15,16]A12,12) /dQ[5,6,7,8],[13,14,15,16]

- dA[9710,12],[9,10,12] (dQ[5,6,7,8,10],[9,13,14,15,16]/49&1

+dQ[5,6,7,8,10],[10,13,14,15,16]A10,11 + dQ[s,e,T,s,lo],[u,13,14,15,16]1411,11
+dQ[5,6,7,8,10],[12,13,14,15,16]A12J1) /dQ[5,6,7,8],[13,14,15,16]

+ dA[9,10,12],[9,11,12] (CIQ[10,13,14,15,16],[5,6,7,8,9]A9,10

+dQ(10,13,14,15.16)5.67.8,101410.10 + dQ[10,13,1415,16 [5.6,7.8,1114 11,10
+dQ[10,13,14,15,16],[5,6,7,8,12]1412,10) /dQ[13,14.15,16],[5,6,7,8]

— dAp,10,12],110,11,12) (dQ[10,13,14,15,16],[5,6,7,8,10]A10,9

+ dQ[10:13y14y15,16],[5,6,7,8,9]/49,9 + dQ[10,13,14,15,16],[5,6,7,8,11]1411,9
+dQ[1o,13,14,15,16],[5,6,7,8,12]/412,9) /dQ[13,14,15,16],[5,6,7,3])
+ (dQ[s,e,v,S],[10,11,12,13]A13,14 + dQps 6,7,81,[10,11,12,14)A14,14
+dQ[5,6,7‘8],[10,11,12,15]A15,14 + (IQ[5,6,7,8],[10,11,12,16]A16,14)
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(dA[10111112]»[9v10,11] (dQ[5,6,7,8,10],[9,13,14,15,16]A9,12

+ dQ[5,6,7,8,10],[10,13,14,15,16]A10,12 + dQ[5,6,7,8,10],[11,13,14,15,16]/‘111,12
+dQ[5,6,7,8,10],[12,13,14,15,16]1412,12) /dQ[5,6,7,8],[13,14,15,16]
— dApo,11,12)9,10,12) (dQ[s,6,7,8,10],[9,13,14,15,16]A9,11
+ dQ[5,6,7,8,10],[10,13,14,15,16]A10,11 + dQ[5,6,7,8,10],[11,13,14,15,16]A11,11
+dQ[5,6,7,8,10],[12,13,14,15,16]1412,11) /dQ[5,6,7,8],[13,14,15,16]
+ dAf0,11,12),0,11,12) (ClQ[10,13,14,15,16],[5,6,7,8,9]A9,10
+ dQ[10’13»14’15v16l1[5»67778710]’410110 + dQ[10,13,14,15,16],[5,6,7,8,11]1411,10
+dQ[10,13,14,15,16],[5,6,7,8,12]’412,10) /dQ[13,14,15,16],[5,6,7,8]
- dA[10,11,12],[10,11,12] ( dQ[lo,13,14,15,16],[5,6,7,8,10]1410,9
+ dQ[10,13,14,15,16],[5,6,7,8,9]"49»9 + dQ[10,13,14,15,16],[5,6,7,8,11]1411,9
+dQ[10,13,14,15,16],[5,6,7,8,12]A12,9) /dQ[13,14,15,16],[5,6,7,8])
+ (dQ[5,6.7,8],[9,10,11,13]1413,14 + dQps.6,7.8),[0,10,11,140414,14
+dQs,6,7,8],9,10,11,154 15,14 + dQ[5,6,7,8],[9,10,11,16]A16,14>
<dA[9.,10,11],[9,10,11] (dQ[5,6,7,8,10].[9,13,14,15,16]149,12
+dQps 6,7,8,101,110,13,14,15,16/ 410,12 + AQ[5 6 7.8 101 111,13,14,15, 1641112
+dQ[5,6,7,8,10],[12,13,14,15,16]1412,12) /dQ[5,6,7,8],[13,14,15,16]
- dA[9,10,11],[9,10,12] (CIQ[5,6,7,8,10],[9,13,14,15,16]‘49,11
+dQ(s.6,7,8,10],10,13,14,15,16/ 410,11 + AQ[5 67,8100, [11,13.14,15,16)A 11,11
+dQ[5,6,7,8,1o],[12,13,14,15,16]1412,11) /dQ[5,6,7,8],[13,14,15,16]
+ dA[9,10,11],[9,11,12] (dQ[10,13,14,15,16],[5,6,7,8,9]A9=10
+dQ[10,13,14,15,16],[5,6,7,8,10]A10,10 + dQ10,13,14,15,16](5.6,7,811]411,10
+dQ[lo,13,14,15,16],[5,6,7,8,1:z]AlZ,lO> /dQpz,14,15,16),[5,6,7.8]
— dAp10,11),1011,12) <dQ[10,13,14,15,16],[5,6,7,8,10]1410,9
+ dQp0,13,14,15,16),(5,6.7,8,91 400 T dQ10,13,14,15,16)[5,6,7,8,11]A11,9
‘|‘dQ[10,13,14,15.16],[5,6,7,8,12]1412,9) /dQ[13,14,15,16],[5,6,7,8]))
2.2.3. Eliminating A;;’s. Each of the four subsystems has an 8 x 8 data matrix

which is subject to consistency conditions. The data matrix for the 1,1 subsystem can
be written in terms of the entries in P,,, Py, Py, and Py,.



Pioys  Pioyz  Piogy Pihys Pihge Pihy1s  Pihyye  Piogg
Prozs  Piogz  Piogq Pihys Pihsg Pihg1s Pihaye  Piosy
Piosy Piosz Piogy Pihys Pihse Pihais Pihsie  Piogq
Phosy Phoys Phosy Phhys Phhsyg Phhys Phhyrs Phoy,
Phogy Phoss Phozy Phhzs Phhsg Phhsis Phhsye Phos,
Phoyy Phoys Phoyy Phhys Phhys Phhyys Phhae Phos
Phoyy Phoyz Phoyy Phhys Phhyg Phhyys Phhyye Phoys
Piory  Pioiz Pioyg Pihis Pihig Pihiys  Pihiye  Pioyy |

(2.10)Q11 =

(11 has four rank deficient submatrices. They are 4 x4 submatrices of rank two (or
less). Two constraints are required to force a generic vector in R? to lie in a given two
dimensional subspace. Four conditions are required, therefore, to force a generic 4 x 4
matrix to be of rank two. These consistency conditions upon @11 may be expressed
as the vanishing of 3 x 3 minors. Substituting the solutions for the modified transition
probabilities into these minors forces highly nonlinear polynomials of the A; ;s to be
identically zero. These conditions will be studied in order of increasing complexity.
(Clearly, the conditions which involve variables from P, are bound to be horrendous,
so they are not considered until much later.) Eight of the conditions are identities of
the form A; ; = 0. The rest reduce (at a generic point) to four term linear equations.

Notation: Right-left, left-right, top-bottom, and bottom-top rank deficient submatrices
are labeled as Q17,1, Qijir, Q1Ju, and Qijy; where 1,7 = 1,2. Consider the submatrix
representing travel from right to left across subsystem 1, 1:

Q115,1 Q115,2 Q115,3 Q115,4
Qllg, Qllg, Qllgs Qllg,
Q117,1 Q117,2 Q117,3 Q117,4

L Qll&l Q118,2 Q118,3 Q118,4
[ PhO3,2 PhO373 Ph03’4 Phll375

PhOQ’Q Ph02,3 PhOzA Phh2,5
PhOLQ PhOlyg Ph01’4 Phhl,5

PZ.OLQ PiOlyg PZ'OlA PZ.]7,115

Qll,, =

(2.11) =

Identities. Since @Q11,; is rank two, any of its 3 x 3 minors has a zero determinant.

Hence,
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Q115,1 Q11512 Q115’3 PhOg’Q Ph03’3 Ph03,4
(2.12) 0= Qllg; Qllg, Qllgs |=| Phoys Phoysz Phoyy
Q117,1 Q117,2 Q117,3 Phol’Q PhOlyg Ph0114

Recall that A is a 16 x 16 block matrix with 4 x 4 blocks on the diagonal and that
A = P;'. Therefore,

PhOl’g Ph0113 P]ZOlA
(2.13) — A14=| Phosy Phoyz Phoyy | [dPhop 231,234 =0
P]?,Og_rg PhOg’g PhO3,4
The same reasoning applies to ()11, and shows that Ay, = 0. This argument also

applies to the rank-deficient submatrices Q21,;, Q214, Q12;, Q124, Q224, and Q22
and yields the following identities:

Ir

(2.14) AIA _— 0, A411 - O’ A5,8 = 0’ A8,5 = 0
A9,12 - 07 A12,9 = 0) A13,16 - 07 A16,13 =0

So really the upper left subblock of A looks like

[ A1 A Aig 0]

Azn Azp Agz Agy

Az1 Aza Azz Azy
0 Asp Agz Ay |

For larger systems there are even more zero valued A; ;s. In the first recursive step
for the 8 x 8 problem A is a 32 x 32 block diagonal matrix with four 8 x 8 blocks along
the diagonal. For exactly the same reason that the blocks of A in the 4 x 4 problem
have zero valued corners the blocks of A for the 8 x 8 problem have three zero valued
entries in each of their off diagonal corners. The upper left block has the zero structure:

17



Ag Arp Aig Aty Ay Aig 0 0
Agn Agy Asz Agy Ay Ase Ayr 0
Asn Asz Asz Azg Ass Ase Asr Ass
Agn Asg Asa Agy Ags Asps Asr Agg
Asy Asp Asz Asga Ass Ase Asr Asg
Asi Asz Ass Asa Ass Ass Asr Ass
0 Aro Ars A7y Ars Arg Argr Azg
0 0 Ags Asa Ass Ase As7 Asgs

In general, for a n x n where n = 2¥ k € N, the matrix A at the first level
in this recursive algorithm has four n x n blocks and each of these blocks contains

k-1) - k(k—1 . . .
Zgzl ) j = JQ—Z zeros in each of its off diagonal corners.

Easy Conditions. Notice that there are sixteen 3 x 3 minors of the matrix Q11,,.
FEach rank deficient submatrix like )11,; yields at most four independent consistency
conditions. Since we already know that As; = 0, we can hope to get at most three
more independent conditions by setting the 3 x 3 minors of Q11,; to zero. When the
other fifteen 3 x 3 minors are first written down, they seem highly nonlinear, but upon
closer inspection they proved to be quite simple. Grafimann relations may be used to
simplify the equations. Although we need not consider all fifteen remaining minors, we
do so for the @11,; submatrix. (In later sections minors of other matrices will turn out
to be so cumbersome that we only consider an independent set of minors.)

“Easy” Conditions before Graimann
Eight of the minors factor very easily. The minor d@Q) 11,33 4),[1,2,3) factors to become

dQ[5,6,7,8]‘[13,14,15,16]

<—d14[1,2,4],[1,2,3] dAp 3.4)[1,34] dA[ 2,3)[2.34F
dA[1,2,4],[2,3,4] dA[1,3,4],[1,3,4] dA[l,2,3],[1,2,3] -

dAp 234 dAnsaesda dAp23n23 +
(ZA[1,2,4],[1,3,4] flA[1,2,3],[2,3,4] dA[1,3,4],[1,2,3] -

dAp 24234 dAp230134 dApsa 23+
dA[1,2,4],[1,2,3] dA[1,2,3],[1,3,4] dA[1,3,4],[2,3,4])

(2.15) (dQ[l,13,14,15,16],[3,5,6,7,8]143,4 + dQpu13,14,15,16] [4.5,6,7.81 444 T

dQp1 13,14,15,16),[1,5,6,7.8/ 41,4 T A2,4dQ[1,13,14,15,16],[2,5,6,7,8])
The minors dQ11,p1 3.4),1,2,3 and dQ11,1,2,4[1,2,3 take the same form, sharing
d@Q11,12,3,4),[1,2,3's linear term. By permuting the rows and columns of A their cubic

terms could be made identical to dQ11,;23.4),1,2:3's- See [20] for more details.
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“Easy” Conditions after GraBmann

Grafimann relations can be used to simplify the minors dQ)1 Lripz,3,40,0,2,3) AQ 11301 3,41, 01,2,3),
and dQ11,12,4)1,2,3. The computation is carried out explicitly here only for 2.15. The
cubic term in equation 2.15 may be rewritten as

(2.16)dAp 2,4),11,3,4) (d/l[l,2,3].[2,3,4]dA[1,3,4],[1,2,3] - dA[1,3,4],[2,3,4](514[1,2,3],[1,2,3]) -
dA[ 2,4)[2,3,4] <_dA[1,2,3],[1,2,3]dA[1,3,4],[1,3,4] + dA[l,2,3],[1,3,4]dA[1,3,4],[1,2,3]) +
dAp 2,4,1,2,3 (dA[l,Z,B],[l,3,4]dA[1,3,4],[2,3,4] - dA[1,2,3],[2,3,4]dA[1,3,4],[1,3,4])

Using the matrix

Al,l A1,2 A1,3 A1,4 1 000
(217) Agyl Ag’g A2’3 A274 0100
AB,I A3,2 A3,3 A3,4 0010

| A471 A4'2 A4yg A‘IA 0 0 01 ]

we may rewrite 2.16 in Gramann notation as

(2-18) T1,3,4,7 (7T2,3,4,8 71,236 — T2,3486 7T1,2,3,8) +
T2,3,4,7 (—7T1,3,4,6 T1238 T T1348 7T1,2,3,6) +
T1,2,3.7 (—7T1,3,4,8 72346 1+ 71346 772,3,4,8)
We may next make use of the Gralmann relations
0 = T2348 71,236 — T234,1 78,236 + 72342 T8136 —
(2.19) T2343 78126 T 72346 781,23
T2348 71,236 — T2346 71,238 — 72368 71,234
0 T1348 71236 — T134,1 78236 + T1342 78136 —
(2.20) T1,343 781,26 T T1346 781,23
T 348 71236 — T1,346 71,238 — 71368 71,234 and
0 T1,348 72346 — T134,2 78346 + T1343 78246 —
(2.21) T1344 78236 T 71346 78234
T1348 72346 — T1346 72348 + 73468 T1,234

Using these relations, the expression

in 2.18 may be simplified as
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(2-22) 71,347 72368 71,234 —

72,347 71368 71234 + 71,237 7T34,6,8 71,234

Finally, we can make use of the Gramann relation

T1,347 72368 — 72347 71368 T+

(2.23) 71,237 73468 — 73678 T1234 = 0

to simplify 2.22. When equation 2.23 is used to simplify equation 2.22, the result is a
product

(2.24) T3,6,7,8 7ri2,3’4

which equals A1‘3dA[21721314]{17273’4] in the original notation. d@11,334) 1,2 can be ex-
pressed in terms of the A, ;s as

—dQs 6.7,81.113,14,15,16/413 dA[21,2,3,4],[1,2,3,4]
(2.25) (dQ[l,13,14,15,16],[3,5,6,7,8]143,4 + dQ[l,13,14,15,16],[4,5,6,7,8]A4,4+
dQp 13,14,15,16)[1,5.6,7,8 41,4 T A2,4(1Q[1,13,14,15,16],[2,5,6,7,8])
The same manipulations show that
(2.26)  0=dQ1lpz4. 123 = —%dQllrz[l,aA],[m,s] = %

) )

dQ11,p 2,4),[1,2,3

Generically dAp 234111234 A11, A12, dQ[5,67,8)13,14,15,16), and A; 3 are generically
nonzero. Requiring dQ11,y2,3.4,1,2,3 dQ11[1,3,41,1,2,3, and d@Q11y[1 2.411,2,3 to be zero
is equivalent to requiring that their common linear term is zero.

dQp 1314,15,16),3,5.6,7.843.4 T dQp11314,15,16).(4,5.6.7,81A4.4

(2~27) +dQ[1,13,14,15,16],[1,5.6,7,8]A1,4 + A2,4dQ[1,13,14,15,16],[2,5,6,7,8] =0

Three more minors of Q11,; factor easily. dQ11, 23),1,2,4) €quals
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(“A5,5dQ[13,14,15,16],[2,3,4,5] - AG,SdQ[13,14,15,16],[2,3,4,6]—
(228) A8,5dQ[13,14,15,16],[2,3,4,8] - A7v5dQ[13,14,15,16],[2,3,4,7])

(dA[l 3,4],1 ,3,4](114[1 ,2,4] ,[2,3,4]CZA[2,3,4] (1,241
dAN 3,41 23,499,341 (13,99 AN 2,4, [1,2,4) —
dAn 3,411,309 A0,3.4),12,8490 A0 2,4)[1.2,4) —
dA[1,3,4],[2,3,4]dA[1,2,4],[1,3,4]dA[2,3,4],[1,2,4] +
dA[1,3,4],[1,2,4]6114[1,2,4],[1,3,4]6114[2,3,4],[2,3,4] -
dA[1,3,4],[1,2,4]dA[2,3,4],[1,3,4]dA[1,2,4],[2,3,4])

Just as before, the minors for d@Q11,;,3,3),(2,3,4) and dQ11,01,2.31,3,4) have the same
form as 2.29 and GraBmann relations may be used to simplify them. Provided that
As4, Asa, and Ay 4 are nonzero they yield only one relevant term:

(As,sdQ[13,14,15,16],[2,3,4,5] + A6,5dQp13,14,15,16) 2,346
(2.29) A8,5dQ[13,14,15,16],[2,3,4,8] + A7,5dQ[13,14,15,16],[2,3,4,7]) =0

The same hold true for the other rank deficient submatrices, @115, @21,;, @214,
Q12),, Q12y, Q224, and Q22;.. Each submatrix has several 3 x 3 minors which factor
easily but these easily factorizable minors yield only two relevant equations per subma-
trix. Fortunately, these equations are linear in the unknowns! Recall that each of these
submatrices has one 3 x 3 minor which yields one of the identities in 2.15. So we expect
to find only one more independent relation per rank deficient submatrix. Fortunately,
the remaining minors are easily cleaned up. They are sums of many terms, some of
which are egivalent to the identities just found (like 2.29) multiplied by some other
term. When these identities are subtracted from one of the remaining minors, another
relation amongst the A; ;s appears. One example is given below:

dQ[5,6,7,8],[13,14,15,16]dQ[13,14,15,16],[5,6,7,8](114[1,4],[2,4]
(2-30) <A7,5dQ[1,13,14,15.16],[1,2,3,4,7] + A6,5dQ[1,13,14,15,16],[1,2,3,4,6]"’

AS,SdQ[l,]3,14,15,16],[1,2,3,4,5] + dQ[1,13,14,15,16],[1,2,3,4,8]A8,5> =0

Since dQs6.7,8),113,14,15,16) 1Q[13,14,15,16),55,6,7,8)» 1A dA[1,4][2,4) are generically nonzero
the relevant term is that last one. In fact, all of the remaining 3 x 3 minors of @11,
yield the same relevant term, as we might expect. Each of the other seven rank defi-
cient submatrices that have been studied thus far yields exactly one more independent
relation amongst the A; ;s.
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If the rank deficient submatrices Q11,;, Q11y, Q21,,, Q214y, Q12;, Q124, Q224,
and ()22, were all independent of each other then they would correspond to 8 x4 = 32
independent 3 x 3 minors. Unfortunately, this is not the case. The 24 nontrivial minors
may be grouped in eight sets of three according to their unknowns. GraBmann relations
may be used to show that all three equations per group are equivalent. One of the sets
1s shown below:

dQ[1,13.14,15,16].[1,2,3,4.7]A7,5 + dQ[1,13,I.4,15,16],[1,2.3,4,6]A6,5+

(2.31) dQp 13141516),11.2345455 + AQq1,13,14,1516,1,234.9485 = 0

dQ[13,14,15,16],[2,3,4,5]145,5 + dQ[13,14‘15,16],['2,3,4,6]A6,5+

(2-32) dQ[l3,14,15,16],[2,3,4,8]/‘18,5 + C1Q[13,14,15,16],[2,3,4,7]A7,5 =0
dQ[s,w,14,15,16].,[1,2,3,4,7]147,5 + dQ[s,13,14,15,16],[1,2,3,4,8]/48,5‘1'
(2-33) dQ[8,13,14,15,16],[1,2,3,4,6]14-6,5 + dQ[s,13,14,15,16],[1,2,3,4,5]145,5 =0

Notice that this equation does not take the identities 2.15 into account. When the
identities are considered the Jacobian of the above system becomes:

dQ[13,14,15,16],[2,3,4,5] dQ[]3,14,15,16],[2,3,4,6] dQ[13.14,15,16],[2,3,4,7]
(2.34) dQ[1,13,14,15,16],[1,2,3,4,5] dQ[].,13,14,15,16],[1 2,3,4,6] dQ[l,13,14,15,16],[1,2,3,4,7]
dQ[8.13,14,15,16].[1,2'3.4‘5] dQ[8,13,14,15,16],[1,2.3,4,6] dQ[8,13,14,15,16].[1,2,3,4,7]

This Jacobian portends trouble: either the solution to the system 2.31, 2.32, and 2.33
is trivial or else these equations are not all independent. Gramann relations may be
used to show the latter. For the equations to be equivalent the rank of this matrix must
be one. The rank is one if and only if every 2 x 2 minor is identically zero. Start with
the upper left 2 x 2 minor
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dQ[13,14,15,16],[2,3,4,5] dQ[1,13,14,15,16],[1,2,3,4,6] -
(2.35) dQ[13.14,15,16],[2,3,4,6] dQ[1,13,14,15,16],[1,2,3,4,5]
In order to use GraBmann identities to show that 2.35 is identically zero, consider
the matrix

Qi1 Qi Qiz Q4 Qis Qig Q17 1 0
Ps1 @s2 @ss @sa Qss Qse Rs7 0 1
(2.36) Q31 Quzz Quzz Qizy Qizs Quze Qizr 0 0
Qa1 Qua2 Qa3 Quaa Quas Quas Gaz 0 0
Qisn1 Q52 Q153 Qse Qiss Qise Qis7 0 0
i Qe Qie2 Qs Qiea Qies Qies Qier 0 0 |
In the Gramann notation with respect to this matrix,
(2.37) 72,3,4,58,9 71,2,3,4,6,9 — 7234,689 71,23.4,59
The Grafimann relation beginning with these terms is
(2-38) 72,3,4,589 71,2,34,6,9 — 7234689 71,2,34,59 — 72,34,56,9 71,2,34,89 = 0

Hence, the upper left 2 x 2 minor in equation 2.35 equals

(2.39) dQ[1,13,14,15,16],2,3,4,56] AQ[13,14,15,16].[1.2,3.4]

But the submatrix of @ from rows [1,8,9,10,11,12,13,14,15,16] and columns
12,3,4,5,6,7] is of rank four so dQi,13,14,15,16),2,3,4,56] = 0. Then the expression in 2.39
is identically zero, forcing the minor in 2.35 to be identically zero. Grafimann iden-
tities plus consistency conditions can be used to show that each 2 x 2 minor of the
Jacobian in 2.34 is identically zero. The same holds for each of the eight sets of three
equations. Amongst the two dozen conditions found, only eight are independent. The
author prefers to work with the relations whose coefficients are of lowest degree in the
data and uses the following solutions to eliminate eight of the A; ;s.
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A5 L= - A6,5dQ[13,14,15,16],[2,3,4,6] + A7.5dQ[13,14‘15,16],[2,3,4,7]
’ dQ[13,14,15,16],[2,3,4.5]

_ AlO,l2dQ[5,6,7,8],[10,13,14,15] + Al1,12dQ[5,6,7,8],[11,13,14,15]

A =
iz dQ[s,e,zs],[12,13,14,15]
Ay = dQps 6,7.8),110,11,12,149 414,13 + A15,13dQ5 6.7 81, (10,11,12.15]
' dQ[5,6,7,8],[10,11,12,13]
(2.40) Ass = _A7,8dQ[13,14,15,16],[7,9,10,11] + AG,SdQ[13,14,15,16],[6,9,10,11]
dQ[13,14,15,16],[8,9,10,11]
Ayg = - A11,9dQp3 14,15,16) 6,7,8,11] T A10,9dQ[13,14,15,16],[6,7,8,10]
' dQ[13,14,15,16],[6,7,8,9]
Ay = - A24dQp3 1415 1602567 T A3,4d Q3141516 [3.,5.6.7]
’ dQ[13,14,15,16],[4,5,6,7]
4 o AusedQs g 78,205 T A14,16d Q5 6.7,8),11,2.3.14)
1616 = — 4Q
5,6,7,8],[1,2,3,16]
A = — dQ[5,6,7,8],[2,14,15,16]142,1 + dQ[5,6,7,8],[3,14,15,16]A3,1

dQ[S,G,?,S],[1,14‘15,16]

Hard Conditions. We may now substitute the solutions in 2.41 and 2.15 back into
the modified probabilities, (the data for the 2 x 2 subsystems which are the nonzero
entries of the modified transition matrices Py, Py, Phn, and Pp,). The eight 4 x 4 rank
deficient submatrices which were not used to find the solutions in 2.41 and 2.15 may
now be used to eliminate more of the A; js. As before eight 4 x 4 submatrices of rank
two yield at most 32 independent conditions amongst the remaining 48 A; ;s.

The submatrices which have not yet been used to eliminate A; ;s are Q11;,, Q114,
Q12,, Q124, Q21;,, Q214;, @224, and Q22,;. Since the 3 x 3 minors of these equations
cannot all be independent we need not bother simplifying all of them. These 3 x 3
minors are extremely cumbersome so the author generated a phantom data set and
substituted its data into the minors in order to look for the simplest maximal spanning
set of these minors. Some of these minors were much simpler than others. Although
each rank deficient submatrix corresponds to four independent 3 x 3 minors, there
may be dependencies between minors generated by different submatrices. As with the
submatrices Q11,;, @11y, @121, @124, Q21,1, @214, Q224, and 22;,, which had only
sixteen independent minors amongst them, the remaining eight submatrices correspond
to only sixteen independent minors.
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The author prefers the path of least resistance, choosing to simplify as few of the
general minors as possible. Consider first the minors corresponding to rows [1,2,3] and
[1,2,4] and columns [1,2,3] for the submatrices Q12,;, @21, Q22y, and Q11,. This
choice of equations is not unique and is made simply because these equations look
simplest. After writing down the minors (with help from MAPLE) their denominators
are eliminated. Appropriate terms in these equations must be collected. When a data
set is substituted into the general equations the resulting equations have numerical
coefficients and are referred to as numerical equations. The numerical equations have
nearly as many terms as the general equations and many of their terms share the same
coeflicient. Once terms in the numerical equations with like coefficients are collected,
the resulting equations have 1000 terms each. The arguments of like coefficients factor
into a neat form (sometimes zero!). Collecting the general equations with respect to the
minors of the data matrix, (), yields 1000 term general equations. Each of these terms
may be simplified individually. These terms are products of polynomials of minors of
@ times expressions that are either of the same form as 2.16 or of the form

(2.41) —dApsansa dAngaesg T dApzanze dAps4pesa

Referring to the matrix 2.17, we can write 2.41 in Graffimann notation

(2.42) T1,34,5 72348 — T1348 72345

which is the beginning of the Gramann relation

(2.43) T1345 72348 — T1,348 72345 —T3458 7T1,2,3,4:O

From 2.43 we can make the substitution

dA[Z,B],[BA]dA[l,2,3,4],[1,2,3,4] =
—flA[2,3,4],[1 ,3,4]6114[1,2‘3],[2,3,4] + dA[1,2,3].[1,3,4]dA[2,3,4],[2,3,4]

Once substitutions like this are made, the equation can be factored. The resulting
equation is a product of several generically nonzero minors of ¢) and the square of one
of the following minors:

dA[1,2,3,4],[1,2,3,4], dA5,6,7,8],[5,6,7,8]a dA[g,lo,n,12],[9,10,11,12], and

dAp3,14,15,16] [13,14,15,16]

This step reduces the degree of the equations in A; ;s from thirteen to five and many
of the terms in the equations are functions of minors of A. As long as the minors are
written in the shorthand using the symbol dA, the identities in 2.15 are not recognized.
So we must (have MAPLE) write out the minors and substitute the identities 2.15
into the equations. In both the numerical and general cases, the resulting equations
have 256 terms, once they are collected with respect to the A;js. In the numerical
case, the equations factor to be the product of a sixteen term quadratic, a four term
quadratic, and a four term linear sum. Generically, the relevant term is the linear one.
Unfortunately, the author’s general equations do not factor. The coefficients of each of
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the terms is a polynomial in minors of ). The minors are expressed in the by-now
familiar shorthand using the symbol d@. As the Grafmann relations show, there may
be many ways of writing a polynomial in minors of a matrix. If MAPLE were able to
handle equations of arbitrary size then the easiest thing to do would be to rewrite the
equations without the d@) notation and ask MAPLE to factor them. At present, that
is not possible. So we must work.

Assuming that the general equations should factor just as their numerical coun-
terparts do, we make good use of that knowledge. Consider the 64 combinations of
variables which occur if the quadratic terms in one of the equations are expanded. The
coeflicient of any one of these combinations is the desired linear term. It is relatively
easy to take the coeflicient of each one of these 64 combinations. Fortunately, they are
all equivalent. Although tedious, it is just as straightforward to show that these linear
equations are equivalent as it is to show that the relations 2.31, 2.32, and 2.33 are equiv-
alent. Once again, we choose to work with the equations which have the coefficients of
lowest degree in the data. Two of the identities are shown below

0 = (le[5,13,14,15,16],[1,2,3,4,s]dQ[6,13,14,15,16],[8,9,10,11,12]_
dQ[e,13,14,15,16],[1,2,3,4,8]dQ[5,13,14,15,16],[8,9,10,11,12]) Age +
(dQ[5,13,14,15,16],[1,2,3,4,7]dQ[6,13,14,15,16],[8,9,10,11,12]_

dQ[6,13,14,15,16],[1,2,3,4,7](1Q[5,13,14,15,16],[8,9,10,11,12] -
(2.44) dQ[13,14,15,16],[1,2,3,4]dQ [5,6,13,14,15,16],[7,8,9,10,11,12]) Are +
(—dQ[13,14,15,16],[1,2,3,4]dQ[5,6,13,14,15,16],[5,8,9,10,11,12]+
dQ[5,13,14,15,16],[1,2,3,4,5]dQ[6,13,14,15,16],[8,9,10,11,12] -
dQ[6,13,14,15,16],[1,2,3,4,5]dQ[5,13,14,15,16],[8,9,10,11,12]) Asg +
(— dQ[lB,M,l5,16],[1,2,3,4]dQ[5<6,13,14,15,16]‘[6,8,9,10,11,12]_
dQ[6,13,14,15,16],[1,2,3,4,6]dQ[5,13,14,15,16],[8,9,10,11,12] +

dQ[6,13,14,15,16],[8,9,10,11,12]dQ[5,13,14,15,16],[1,2,3,4,6]) A6,6

and
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0 = (_dQ[5,13,14,15,16],[1,2,3,4,8]dQ[7,13,14,15,16],[8,9,10,11,12]+
dQ[5,13,14,15,16],[8,9,10,11,12]dQ[7,13,14,15,16],[1,2,3,4,8]) Ase +
(—dQ[5,13,14,15,16],[1,2,3,4,7]dQ[7,13,14,15,16],[8,9,10,11,12]+

dQ[7,13,14,15,16],[1,2,3,4,7]dQ[5,13,14,15,16],[8,9,10,11.12] +
(2-45) dQ[5,7,13,14.15,16],[7,8,9,]0,11,12]dQ[13,14,15,16],[1,2,3,4]) A7+
(—dQ[S,13,14,15,16],[1,2,3,4,5]dQ[7,13,14,15,16],[8,9,10,11,12]+
dQ[5,13,14,15,16],[8,9,10,11,12]dQ[7,13,14,15,16],[1,2,3,4,5] +
dQ[5,7,13,14,15,16],[5,8,9,10,11,12]dQ[13,14,15,16],[1,2,3,4]) Ase+
(" dQ[7,13,14,15,16],[8,9,10,11,12]dQ[5,13,14,15,16],[1.2,3,4,6]+
dQ[5,13,14,15,16],[8,9,10,11,12]dQ[7,13,14,15,16],[1,2,3,4,6] +

dQ[5,7,13,14,15,16],[6,8,9,10,11,12]dQ[13,14,15,16],[1,2,3,4]) A6,6

These equations are independent and yield the following solutions for Age and Asg.
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Ase

,:(— (dQ[6,7,13,14,15,16],[1,2,3,4,5,6] dQ[5,13,14,15,16],[8,9,10,11,12] +
dQ[7,13,14,15,16],[1,2,3,4,6] dQ[5,6,13,14,15,16]‘[5,8,9,10,11,12]
dQ[5,7,13,14,15,16],[5,8,9,10,11,12] dQ[ﬁ,13,14,15,16],[1,2,3,4,6] +
dQ[5,7,13,14,15,16],[6,8,9,10,11,12] CIQ[6,13,14,15,16])[1,2,3,4,5] -
dQ[6‘13,14,15,16],[8,9,10,11,12] dQ[5,7,13,14,15,16],[1,2,3,4,5,6]
dQ[7,13,14,15,16],[1,2.3,4,5] dQ[5,6,13,14,15,16],[6,8,9.10,11,12] -
dQ[e,7,13,14,15,16],[6,8,9,10,11,12] dQ[5,13,14,15,16],[1,2,3,4,5] +
dQ[7,13,14,15,16],[8,9,10,11,12] dQ[s,6,13,14,15,16],[1,2,3,4,5,6] +

_I_

dQ[6,7,13,14,15,16],[5,8,9,10,11,12] dQ[5,13,14,15,16],[1,2,3,4,6]
dQ[5,6,7,13,14,15,16].[5,6,8,9,10,11,12] dQ[13,14,15,16],[1,2,3,4]) Ass —

(dQ[6,7,13,14,15,16],[1,2,3,4,5,7] dQ[5,13,14,15,16],[8,9,10,11,12] -
dQ[5,7,13,14,15,16],[5,8,9,10,11,12] dQ[6,13,14,15,16],[1,2,3,4,7] -
ClQ[7,13,14,15,16],[1,2,3,4,5] dQ[s,6,13,14,15,16],[7,8,9.10,11,12] +
dQ[7,13,14,15,16],[1,2,3,4,7] dQ[5,6,13,14,15,16],[5,8,9,10,11,12] +
dQ[s,7,13,14,15,16],[7,8,9,10,11,12] CIQ[6,13,14,15,16],[1,2,3,4,5] +
dQ['/,ls,14,15,16],[8,9,10,11,12] dQ[5,6,13,14,15,16],[1,2,3,4,5,7]

dQ[G,7,13,14.15,16],[7,8,9,10,11,12] dQ[5,13,14,15,16],[1,2,3,4,5]

dQ[6,13.14,15,16],[8,9,10,11,12] dQ[5,7,13,14,15,16],[1,2,3,4,5,7] +
dQ[6,7,13,14,15,16],[5,8,9,10,11,12] dQ[5,1.3,14,15,16],[1,2,3,4,7] +

dQ[13,14,15,16],[1,2,3,4] dQ[5,6,7,13,l4,15,16],[5,7,8,9,10,11,12]) A7,6) /

(dQ[6,7,13,14’15,16],[1,2,3,4,5,8] ClQ[5,13,14,15,16],[8,9,10,11,12]

dQ[6,13,14,15,16],[1,2,3,4,8] dQ[5,7,13,14,15,16],[5,8,9,10,11,12] +
dQ[7,13,14,15,16],[1,2,3,4,8] dQ[s,6,13,14,15,16],[5,8,9,10,11,12]
dQ[6,13,14,15,16],[8,9,10,11,12] dQ[5,7,13,14,15,16],[1,2,3,4,5,8] +

dQ[7,13,14,15,16],[8,9,10,1 1,12] dQ[5,6,13,14,15,16],[1,2,3,4,5,8] +

dQ[6,7,13,14.15,16],[5,8,9,10,11,12] dQ[t‘),13,14,15,16],[1~27374y8])
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Ase = ((‘dQ[7,13.14,15,16],[1,2,3,4,8] dQ[5,6,13,14,15,16],[6,8,9,10,11,12] +
dQ[6,13,14,15,1(;],[1.2,3,4,8] dQ[s,7,13,14,15,16],[6,8,9,10,11,12]
dQ[6,7,13,14,15,16],[6,8,9,10,11,12] dQ[S,]3,]4’15,16],[1,2,3,4,8] -
dQ[6,7,13,14415,16],[1,2,3,4,6,8] dQ [5,13,14,15.16],(8,9,10,11.12] T+

dQ[5,7,13,14,15,16],[1,2,3,4,6,8] dQ[6,13,14,15,16],[8,9.10,11,12]
dQ[5,6,13,14,15,16],[1,2,3,4,6,8] dQ[7,13,14,15,16],[8,9,10,11,12]> As e+

(ClQ[6,13,14,15,16],[1,2,3,4,8] dQ[5,7,13,14,15,16],[7,8,9,10,11,12]

dQ[7',13,14,15,16],[1,2,3,4,8] dQ[5,6,13,14,15,16],[73,9,10,11,12] -
dQ[5,13,14,15,1.6],[1,2,3,4,8] dQ[s,m3,14,15,16],[7,8,9,10,11,12] -
dQ[5,6,13,14,15,16],[1,2,3,4,7,8] dQ[7,13,14,15,16],[8,9,10,11‘12] -

dQ[6,7,13,14,15,16],[1,2,3,4,7,8] dQ[5,13,14,15,16],[8,9,10,11,12] +
(2.46) dQ[s,7,13,14,15,16],[1,2.3,4,7,8] dQ[6,13,14,15,16],[8,9,10,11,12]) A7,6> /

(dQ[6,7,13,14,15,16],[1,2,3,4,5,8] dQ[5.13,14,15,16],[8,9,10,11,12] -
dQ[s,13,14,15,16],[1,2,3,4,8] dQ[5,7,13,14,15,16],[5,8,9,10,11,12] +
dQ[7,13.14,15,16],[1,2,3,4,8] dQ[5,6,13,14,15,16],[5,8,9.10,11,12]
dQ[6,13,14,15,16],[8,9,10,1.1,12]dQ[5,7,13,14,15,16],[1,2,3,4,5,8] +

dQ[7,13,14,15,16],[8.9‘10,11,12] dQ[5,6,13,14,15,16],[1,2,3,4,5,8] +

dQ[G,7,13,14.15,16]‘[5,8,9,10,11,12] dQ[5,13,14,15,16],[1,2,3,4,8])

Very Hard Conditions . The only rank deficient submatrices we have not yet ac-
counted for are Q22,;, Q11;, @21y, and Q12;. The author chose to simplify the
simplest minors generated by the phantom, those from columns [1,2,4] and both sets
of rows [1,2,4] and [1,3,4]. The equations obtained by subtituting 2.47 and its coun-
terparts into these remaining minors are polynomials in the remaining A; ;s and with
coefficients which are large polynomials in the minors of (). In preliminary work with a
phantom each of these equations was a quintic in the A; js and became the product of a
32 term quartic and a linear term after factorization. Upon substituting the phantom’s
values for the A; ;s into the minors, the relevant terms turned out to be the linear terms.
Unfortunately, the general versions of these minors did not factor, presumably because
the coefficients were written in the “dQ)” notation. As with the hard conditions, the
author assumed that the coefficient of any of the 32 terms in the quartic is the desired
linear term.
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Because their coefficients are so cumbersome, only a caricature of one of these
identities is shown below
(Cs (04 ag — by cg + bg Cs) dy — dQ[5.6.7,8],[13,14,15,16]dQ[5,6,7,8],[9,10,11,12]
(dQ[13,14,15,16],[8,9,10,12]“1 — Q4 dQ[13,14,15,16],[8,9,10,11])
(bl dQ[l1,13,14,15,16],[6,7,8,9,11] — b3 dQ[]0,13,14,15,16],[6,7,8,9,11])

_dQ[13,14,15,16],[6,7,8,9]dQ[5,6,7,8],[9,10,11,12]0'6 <a5 dQ[13,14,15,16],[8,9,10,11]
+dQ[5,6,7,8,10],[10,13,14,15,16]a2 dQ[13,14,15,16],[8,9,11,12])

+dQ[13,14,15,16],[6,7,8,9]dQ[5,6,7,8],[9,10,11,12]a1 (a7 dQ[10,13,14,15,16],[8,9,10,11,12]

(2.47) —as dQ[l1,13,14,15,16],[8,9,10,11,12])

+dQ[13,14,15,16],[6,7,8,9]dQ[5,6,7,8],[9,10,11,12] (a7 dQ[13,14,15,16],[8,9,10,11]
+dQ[5,6,7,8,11],[10,13,14,15,16]“2 dQ[13,14,15,16],[8,9,11,12]) a9

_dQ[5,6,7,8],[9,10¢11,12] (b4 dQ[ls,l4,15,16],[8,9,11,12] + bs dQ[13,14,15,16],[8,9,10,11]) Cs Qg

+C1Q[5,6,7,8],[9.10,11,12] (Cl az dQ[13,14,15,16],[6,7,8,9]“3 - dQ[5,6,7,8],[13,14,15,16]C2 (g aq
—dQ[13,14,15,16],[6,7,8,9]dQ[13,14,15,16],[8,9,10,11]alO az + dQ[13,14,15,16],[8,9,10,12]175 a1 Cs
+dQ[13,14,15,16],[8,9,10,12]b4 Cs a3 + dQ[13,14,15,16],[6,7,8,9]a1 dQ[13,14,15,16],[8,9,11,12]a10
+dQ[5,6,7,8],[13,14,15,16]‘33 azde — dQ[5,6,7,8],[13,14,15,16]67 a9 a2>) A[10,11]

+ (—co (csag —bycs + bscg) di — dQps 14.15,16),6,7,8,914Q[s,6,7.,81,(9,10,11,12]
<b5 dQ[1:3,14,15,16],[8,9.10,11] + dQ[13,14,15.16].[8,9,11,12]("2)
(_dQ[5.6,7,8,11],[9,13,14,15,16]a9 + dQ[S,G,T,S,lO],[9,13,14,15,16]a6)

+dQ[5,6,7,8],[9,10,11,12] <b4 dQ[13,14,15,16],[8,9,1],12] + bs dQ[l.3,14,15,16],[8,9,10,11]) Co Ay

—dQ[s,e,7,s],[9,10,11,12] (‘dQ [13,14,15,16],[6,7,8,9]dQ[13,14,15,16],[8,9,10,11]‘111 as
+dQ[13,14,15,16],[6,7,8,9]a1 dQ[13,14,15.16],[8,9,11,12]a11 — C10 a2 dQ[13,14,15,16],[6,7,8,9]a3

+dQ[13,14,15,16],[8,9,10,12]64 co a3 — 10 bs dQ[13,14,15,16],[6,7.8.9]a1

+dQ[13,14,15,16],[8,9,10,12]b5 ay CQ)) A9, 11]
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+ (dQ[13,14,15,16],[6,7,8,9]dQ[5,6,7,8],[9,10,11,12] (—dQ[u,13,14,15,16],[8,9,10,11,12]
<_b1 dQ[5,6,7,8],[13,14,15,16] + dQ[5,6,7,8,10],[12,13,14,15,16]a2)
- (‘bB dQ[5,6,7,8],[13,14,15,16] + dQ[5,6,7,8,11],[12,13,14,15,16]a2> dQ[10,13,14,15,16],[8,9,10,11,12]) as
‘|‘dQ[13,14,15,16],[6,7,8,9]dQ[5,6,7,8],[9,10,11,12] (_dQ[13,14,15,16],[8,9,11,12]b3 dQ[5,6,7,8],[13,14,15,16]
‘|‘dQ[5,6,7,8,11],[12,13,14,15,16]b5 dQ[13,14,15,16],[8,9,10,11]
+dQ[5,6,7,8,11],[12,13,14,15,16]dQ[13,14,15,16],[8,9,11,12]a2) a9
—dQ[13,14,15,16],[6,7,8,9]dQ[5,6,7,8],[9,10,11,12] (_dQ[13,14,15,16],[8,9,11.12]b1 dQ[5,6,7,8],[13,14,15,16]
+dQ[5,6,7,8,10],[12,13,14,15,16]65 dQ[13,14,15,16],[8,9,10,11]
+dQ[5,6,7,8,10],[12,13,14,15,16]dQ[13,14,15‘16].[8,9,11,12]“2) Ug
_dQ[5,6,7,8].[9,10,11,12] (b(i dQ[13,14,15,16],[8,9,11,12] + bs dQ[13,14,15,16],[8,9,10,11]) C11 G4
+dQ[13.14,15,16],[6,7,8,9]dQ[5,6,7,8],[9,10,11,12]
(dQ[5,6,7,8,11],[12,13,14,15,16]dQ[5,6,7,8,10,11],[10,12,13,14,15,1e]dQ[9,10,13,14,15,16],[5,6,7,8,9,12]
‘|‘dQ[s,6,7,8,10],[12,13,14,15,16]dQ[11,13,14,15,16],[5,6,7,8,12]dQ[5,6,7,8,9,10,11],[9,10,12,13,14,15,16]
_dQ[5,6,7,8.11].[12,13,14,15,16]dQ[10,13,14,15‘16],[5,6,7,8,12]dQ[5,6,7,8,9,10,11],[9,10,12,13,14,15,16]
+dQ[5,6,7,8,10],[12,13,14,15,16]dQ[5,6,7,8,10,11],[9,12,13,14,15,16]dQ[9,11,13,14,15,16],[5,6,7,8,10,12]
_dQ[5,6,7,8,10],[12,13,14,15,16]dQ [5,6,7,8,10,11],[10,12,13,14,15,16]dQ[9,11,13,14,15,16],[5,6,7,8,9,12]
—dQ[5,6,7,8,11],[12,13,14,15,16]dQ[5,6,7,s,10,11],[9,12,13,14,15,16]dQ[9,10,13,14,15,16],[5,6,7,8,10,12]
- dQ[l0,11,13,14,15,16],[5,6,7,8,10,12]dQ[5,6,7,8,10,11],[9,12,13,14,15,16]dQ[5,6,7,8,9],[12,13,14,15,16]
+dQ[10,11,13,14,15,]6]‘[5,6,7,8,9,12]dQ[5,6,7,8,10,11],[10.12,13,14,15,16] dQ[5,6,7,8,9],[12,13,14,15,16])
(— dQ[13,14,15,16],[8,9,11,12]a1 + dQ[13,14,15,16],[8,9,10,11]“2’>>
‘|’dQ[5,6,7,8],[13,14,15,16]dQ[5,6,7,8],[9,10,11,12]
(—a4 dQ[13,14,15,16],[8,9,11,12] + dQ[lB,14,15,16],[8,9,10,12]a3)
(bl dQ[u,13.14,15,16],[6,7,8,9,11] —bs dQ[10,13,14,15,16].[6,7,8,9,11])
+egcyr dy bg + cacry agdy — cgci1dy by
+ci1 (bgas + aq bs) dQ[13,14,15,16],[8,9,10,12]dQ[5,6,7,8],[9,10,11,12]
+bs (—a9er — ager + 3 ag) dQ[s,6,7,8],[13,14,15,16] dQ[s,(w,s],[9,10,11,12]

+ dQ[s,G,?.s],[9,10,11,12]012 bs dQ[13,14,15,16],[6,7,8,9]“1) Al12,11]
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+ (_dQ[5,6,7,8],[9.10,11,12] (—c1aa9 + c15 a6)

(b5 dQ[13,14,15,16],[8,9,10,11] + dQ[13,14,15,16],[8,9,11,12]a2)

‘|‘dQ[5,6,7,8],[13,14,15,16]dQ[5,6,7,8],[9,10,11,12]
(_dQ[13,14,15,16].[8,9,11,12]a1 + dQ[13,14,15,16]{8,9,10,11]“3)

(bl dQ[11.13,14,15,16],[6,7,8,9,11] — by dQ[10,13,14,15,16],[6,7,8,9,11])

—ce c13dy by + dQ[5,6,7,8],[9,10,11,12]dQ[13,14,15,16],[8,9,10,12]65 a1 €13

_dQ[5,6.7,8],[9.10,11.12] (b4 dQ[13,14,15,16],[8,9,11,12] + b5 dQ[13,14,15,16],[8,9,10,11]) C13 a4
+dQ[5.6,7,8],[9,10,11,12]dQ[13,14,15,16],[8,9,10,12]64 313

+eqcrzagdy + cg ez dy b + dQ[13,14,15,16],[6,7,8,9]dQ[5,6,7,8],[9,10,11,12]

(‘dQ[5,6,7,8,10],[11,13,14,15,16]dQ[5,6,7,8,10,11],[10,12,13,14,15,16]dQ[9,11,13,14,15,16],[5‘6,7,8,9,12]
- dQ[lo,l1,13,14,15,16],[5,6,7,8,10,12]dQ[5,6,7,8,9,11],[9.12,13,14,15,16]dQ[5,6,7,8,10],[11,13,14,15,16]
‘|‘dQ[10,11,13,14,15,16],[5,6,7,8,10,12]dQ[5,6,7,8,9,10],[9,12,13,14,15,16] dQ[5,6,7,8,11],[11,13,14,15,16]
—dQ[s,6,7,8,9,10,11],[9,10,12,13,14.15,16]dQ[10,13.14,15,16],[5,6,7,8,12]dQ[5,6,7,8.11],[11,13.14,15,16]
‘|‘dQ[s,6,7,8,1o],[11,13,14,15,16]dQ [11,13,14,15,16],[5,6,7,8,12]dQ[5,6,7,8,9,10,11],[9,10,12,13,14,15,16]
+dQ[10,11,13,14,15,16],[5,6,7,8,9,12]dQ[5,6,7,8,9,11],[10,12,13,14,15,16]dQ[5,6,7.8,10],[11,13,14,15,16]
- dQ[5,6,7,8,9,10],[10,12,13,14,15,16]dQ[5,6,7,8,11],[11,13,14,15,16]dQ[10,11,13,14,15,16],[5,6,7,8,9,12]
_dQ[9‘10,13,14,15,16],[5,6,7,8,10,12]dQ[5,6,7,8,10,11],[9,12,13,14,15,16‘] dQ[5,6,7,8.11],[11,13,14,15,16]
+dQ[9,10,13,14,15,16],[5,6,7,8,9,12]dQ[5,6,7,8,10,11],[10,12,13,14,15,16]dQ[5,6,7,8,11].[11,13,14,15,16]
‘|‘dQ[5,6.7,8,10],[11,13,14,15,16] dQ[5,6,7,8,10,11],[9.12,13,14,15,16]dQ[9,11,13,14.15,16],[5,6,7,8,10,12]
+dQ[9,10,11,13,14.15,16],[5,6,7,8,9,10,1z]dQ[5,6,7,8],[13,14,15,16]dQ[5,6,7,8,10,11],[11,12,13,14,15,16])

(—dQ[13,14,15,16],[8,9,11,12]“1 + dQ[13,14,15,16],[8,9,10,11]a3>

—dQ[5,6,7,8],[9,10,11,12] (dQ [13,14,15,16],[6,7,8,9]016 + e dQ[5,6,7,8],[13,14,15,16])
((LQ as + aq b5)) A[ll, 11]

where each of the a;s represents a six term quadratic polynomial in minors of (). The
b;s represent ten term quadratics in minors of (). The ¢;s represent two term quadratics
in minors of ().
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The author has little doubt that equation 2.47 and its counterparts can be simplified
significantly if enough time, energy, and computing power are devoted to the cause. This
last set of minors can then be solved linearly for eight more of the A, ;s in terms of the
remaining A; ;s, leaving a 32 parameter family of solutions for the modified 4 x4 problem.
Therefore, we have 32 parameter family data sets for each of the four 2 x 2 subsystems.
The last step is to solve each of these subsystems as done in [11]. The solution for each
of the 2 x 2 subsystems is a 16 parameter family of solutions in terms of the data. The
process of solving all four subsystems introduces another 4 * 16 = 64 parameters and
yields the result promised at the beginning of section 2.2, a 96 = 4 * 16 + 32 parameter
family of solutions for the unknown transition probabilities for a 4 x 4 system.

2.3. n X n problem where n = 2%, k£ € N. In the previous section only one
recursion was required to solve the 4 x 4 problem. The author’s vision of the algorithms
for the 8 x 8 and n x n problems are sketched below.

The first step in tackling the 8 x 8 problem is to break up the 8 x 8 system into four
4 x 4 subsystems. See figure 6. Only 32 of the original 82 % 16 — 32 = 992 hidden states
are considered in this modified system. The modified transition probabilities are the
probabilities with which a photon travels from one of the pertinent states to another such
that its travel path lies entirely inside one of the subsystems. These modified transition
probabilities comprise the data for the 4 x 4 subsystems. Furthermore, the same process
for solving the governing equations 1.4 that was used in section 2.2.2 permits expression
of the modified transition probabilities in terms of the entries of A = P};l. Py, is a
32 x 32 block diagonal matrix with four 8 x 8 blocks along its diagonal. Since A has
the same zero structure, we have a 4 * 8% = 256 parameter solutions for the modified
transition probabilities. There are many consistency conditions amongst the data for
each of the 4 x 4 subsystems. These conditions should allow us to solve for all but 64
A; js in terms of the remaining A; ;s.

Notation: Let A, Py, Py, P, and P;; denote the modified transition matrices at
the first level of this recursive algorithm. At the next level of the recursive process each
of the four 4 x 4 subsystems will have its own data matrix, Q)217;, where we refer to the
subsystems as systemiyj;, where i1,71 = 1,2. The transition matrices for the modified
4 x 4 systemsiyj; are referred to as Aiyj1, Pt1jipe, Pl1J1i0s Ptijipn, and Ptyji;,. At the
last recursive level of this recovery algorithm, each of the 4 x 4 modified systems will
be broken into four 2 x 2 subsystems. The (ig,jg)th 2 x 2 subsystem of the (il,jl)th
4 x 4 subsystem will be referred to as systemiljlim. The data matrices for these
sub-subsystems will be referred to as Q1j1;,;,; the transition matrices as Puj1,,j,, ,
Piljlighio’ Piljliﬂzhh’ and Piljlizhih'
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Now that we have 64 parameter solutions for @11, Q12, @21, and Q22 we can
implement the recovery algorithm for the 4 x 4 problem on each of the 4 x 4 subsystems
as done in section 2.2. See figure 7. For subsystemi,j; we recover Qi, J1s,;, for each
combination 5,7, = 1,2 in terms of Q7,7; and half of the nonzero entries of Arq71.
Since each Az;j; is a 16 x 16 block diagonal matrix with four 4 x 4 blocks along the
diagonal, we introduce 1/2#4*4x4* = 128 additional parameters to our solutions for the
data submatrices for the 2 x 2 sub-subsystems. The resulting data matrices, Qi1j1i2j27
should be functions of 64 + 128 = 192 parameters. Now, we must simpy implement
the 2 x 2 recovery algorithm on each of the 42 = 16 sub-subsystems. We may solve
for each set of transition matrices Pi1j14,5,, , Pi1J14,5,,. Puijri,j,,,, and Piijii,,, n
terms of Aiyjy,,;,, introducing another 4% ¥ 16 = 256 parameters. The end result is a
256 + 128 + 64 = 448 = 64(4 + 2+ 1) = 8 * 8(8 — 1) parameter family of solutions
for the transition probabilities in terms of the data matrix (). Recall that the forward
map is subject to at least 8n(n — 1). For the 8 x 8 problem we can at best find a
8n(n — 1)|n=s = 448 parameter family of solutions.

In general, the recovery algorithm for a n x n system where n = 2%, k € N, requires
k — 1 recusive levels before the 2 x 2 “base case” is reached. The author expects that
at level 7 in the recursion, 2¥%2%* parameters will be introduced to the data sets for the
41 9k=t » 9kF=t gubsystems. This would result in a

k k—1
22k+2+i — 2k+3 Z 21 — 23216(2]9 — 1) = 8n(n — 1)
1=1 =0

parameter family of solutions. Pseudocode for this algorithm is shown below:

solveasubsystem := proc(sysin)
m := edgesize/2 of sysin
if m = 1 then solve base case
elif logom € N then
break up sysin into four m x m subsystems
for each subsystem
1. solve for (modified) transition probabilities in terms of data and A
2. eliminate all but 8m parameters using consistency conditions
3. call solveasubsystem with this subsystem as input
fi;
else print(‘error - input system not of proper size’);

fi;
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FiG. 7. Decomposition of a 8 x 8 system into four 4 x 4 which are subsequently decomposed into 2 x 2
subsystems. The thick lines separate the subsystems.



F1G. 8. Decomposition of a 16 x 16 system into four 8 x 8 subsystems. The thick lines separate the
subsystems.

if m = 2 then
solve each subsystem for its transition probabilities in terms
of its data and 16 parameters

3. Conclusion. Diffuse tomography is still in its infancy, and there are many
areas which should be explored. As yet unexplored areas which pique the author’s
interest include completion of a careful study of consistency conditions for the three
dimensional model [17]. Understanding the consistency conditions is crucial because
the amount and type of additional information required to close the resulting system of
equations is directly tied to the number and type of conditions. In order to apply this
recursive algorithm to larger systems a more clever/less computationally intensive way
of using subsystems’ consistency conditions to reduce the number of parameters must
be found. The same sort of physical arguments used to prove the identities

(31) A-[A - O, A4 1= 0, A578 — O, A8,5 = O

)

A9,12 = Oa A12,9 = 03 A13,16 = Oa A16,13 =0

must be found for the other consistency conditions. The very next item on the agenda
is to implement the recursive recovery algorithm in three dimensions. The algorithm
will be analogous to its two dimensional predecessor. Since clinical applications require
that these algorithms must be stable, a careful stability study is crucial.
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An extremely general Markovian model of photon transport was considered above.
Neither time-of-flight information nor any physical information about photon transport
through tissue were taken into account. A priori information about photon transport
can and should be incorporated into this model. (The author doubts that clinicians
would find a set of 36n> Markov transition probabilities helpful diagnostic informa-
tion.) The general model generates far more independent data than simpler models
and the recovery algorithm makes full use of all independent data. This indicates (to
the author, at least) that data generated by multiply scattered photons contains perti-
nent information.
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