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Abstract 

Porcine reproductive and respiratory syndrome (PRRS) has inflicted 

substantial economic losses on the US swine industry over the past three 

decades, driven by the main etiological agent, PRRSV-2, which continuously 

evolves and spreads despite control efforts. Enhancing disease control measures 

necessitates an understanding of evolutionary dynamics of PRRSV. By 

leveraging virus genetic data and bioinformatics tools, this dissertation aims to 

unravel how PRRSV-2 has adapted, persisted, and disseminated within the U.S. 

Chapter 1 provides a background of the disease, the virus itself, and the existing 

knowledge gaps. Chapter 2 employs nationwide PRRSV-2 genetic and 

geographic data to uncover the patterns of disease spread and the dynamics of 

the virus population within the U.S. In Chapter 3, we conduct an in-depth 

investigation into between-farm transmission of an emerging PRRSV-2 sub-

lineage within a specific, swine-dense region, using genetic and animal 

movement data. Chapter 4 utilizes data from the largest active PRRS monitoring 

program in the U.S. to forecast the potential emerging variants. Finally, in 

Chapter 5, we pinpoint the origin of a novel PRRSV-2 variant through an 

advanced analysis of whole-genome sequences. 

Chapter 2 revealed a cyclical pattern of sub-lineages contributing to the 

overall PRRSV-2 population and a shift across time in major hotspots for inter-

regional spread. In Chapter 3, we narrow our focus to intra-regional spread by 

applying molecular epidemiological tools to construct farm-to-farm transmission 

networks for an emerging PRRSV-2 sub-lineage. These networks allowed us to 

examine factors contributing to between-farm spread and highlighted the 

significance of live animal movement, while recognizing that most transmission 

events remained unexplained. Both Chapters 2 and 3 characterize the periodic  

emergence of novel genetic variants of PRRSV-2, and anticipating such 

emergence events could aid in more strategic disease control. Chapter 4 

demonstrated the utility of phylogenetic branching patterns and putative antigenic 
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differences as early indicators of variant emergence. Finally, in Chapter 5, we 

expand the discussion of variant emergence from the ORF5 gene to the whole 

genome perspective. Analysis of whole-genome sequences unveiled a 

recombinant ancestor for an emerging variant of concern and emphasized the 

role of genomic recombination in PRRSV-2 evolution. Ultimately, our findings 

address novel insights into PRRSV-2 evolution and epidemiology at various 

geographic scales, providing beneficial guidance for targeted and early-response 

PRRS mitigation strategies in the U.S.  
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“Prelude” 

Chapter 1: Introduction 

Porcine reproductive and respiratory syndrome (PRRS) stands as a 

significant threat to the swine industry, both in the United States and on a global 

scale (Lunney et al., 2010; VanderWaal & Deen, 2018). This formidable 

challenge is attributed to the porcine reproductive and respiratory syndrome virus 

(PRRSV), the causative pathogen, which interrupts the innate immune system 

(Calzada-Nova et al., 2011), weakens adaptive immunity (Rahe & Murtaugh, 

2017), induces cell death (Costers et al., 2008; Malgarin et al., 2021), and 

triggers inflammatory responses (Alex Pasternak et al., 2020; J. Li et al., 2017; 

Thanawongnuwech et al., 2004) in infected pigs. These multifaceted effects lead 

to a range of clinical manifestations, including late term abortion and pre-mature 

farrowing in sows, high mortality in piglets, and failure to thrive in growing pigs 

(The OIE AD HOC group on porcine reproductive respiratory syndrome, 2008). 

These clinical impacts during PRRS outbreaks have a direct and adverse effect 

on pig production and income, impacting not only individual farm-level economics 

(Valdes-Donoso et al., 2018) but also national-scale production, with losses 

exceeding US $600 million per year in the U.S. alone (Holtkamp et al., 2013; 

Neumann et al., 2005). Although many control efforts such as herd immunization, 

pig flow management, and farm biosecurity have been attempted to eliminate the 

disease over the past three decades (Arruda et al., 2016; Corzo et al., 2010), 

PRRS remains the most problematic infectious disease in the North American 

swine industry. PRRS can be found endemically or epidemically in almost any 

part of the world where pigs are raised (Porcine Reproductive and Respiratory 

Syndrome: OIE - World Organisation for Animal Health, n.d.), which makes it 

amongst the most prevalent swine diseases in the modern era (Lunney et al., 

2010). Here, we provide a brief overview of PRRSV covering its fundamental 

genomic structure, evolutionary mechanisms, diversity, and potential immune 

escape strategies. Finally, this chapter concludes by highlighting various 
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unresolved areas of knowledge and sets the stage for subsequent chapters in 

this dissertation, which seek to address and fill these gaps in understanding. 

PRRSV genome and functions 

Undoubtedly, one of key success factors of PRRS persistence in swine 

populations is the nature of the virus itself. This enveloped virus, classified within 

the Arteriviridae family, harbors a single-stranded positive-sense RNA genome. 

Its structural and functional organization closely resembles that of other viruses 

belonging to the Nidovirales order, a group which encompasses well-known 

pathogens, including Coronaviruses (Adams et al., 2016; Saberi et al., 2018). 

Three-quarters of the 15 kb PRRSV genome is comprised of open reading 

frames (ORFs) 1a and 1b genes, which code for non-structural proteins (NSPs), 

while the remaining portion of the genome is the nested set of sub-genomic 

mRNAs consisting of ORFs 2 – 7 genes, which synthesize virion structural 

proteins (Meulenberg et al., 1993; Pasternak et al., 2006). NSPs are necessary 

for viral replication since they form a replication and transcription complex that 

modulates both genomic and sub-genomic replicative cycles (Snijder et al., 

2013). Notably, studies suggest some NSPs are relevant to viral pathogenicity. 

For example, discontinuous deletions of 30 amino acids in NSP2 is a unique 

marker for the identification of highly pathogenic PRRSV (HP-PRRSV, lineage 8) 

(Guo et al., 2018; Tian et al., 2007), NSPs 3 – 8 possibly contain major virulence 

factors (Y. Fang & Snijder, 2010; Kwon et al., 2008), and changes in NSPs 9 and 

10 are associated with an increase in fatality in piglets infected by HP-PRRSV (Y. 

Li et al., 2014). Structural proteins consist of the nucleocapsid (N) protein that 

encloses the virus genetic material and the envelope transmembrane proteins. 

The major components of PRRSV envelope are the glycoprotein 5 (GP5) and the 

non-glycosylated M protein encoded by ORFs 5 and 6 genes, respectively, that 

form a disulfide-bonded heterodimer, whereas GP2, GP3, and GP4 from ORFs 2 

– 4 genes form the minor glycoprotein complex (Wissink et al., 2005). These 

virion surface proteins directly interact with host receptors on macrophages and 
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PRRSV’s target cells, and thus are involved in priming an infection and virus 

neutralization by the host (Popescu et al., 2017). Thus, genetic variation across 

the genome can affect virulence and anamnestic immune responses. 

PRRSV evolutionary mechanisms 

Several evolutionary mechanisms drive PRRSV genetic diversity. Like 

other RNA viruses, its RNA polymerase lacks proofreading ability. This creates 

mutated offspring that are 1 – 2 nucleotides different from their parent in every 

generation (Duffy, 2018; Schneider & Roossinck, 2001; Vignuzzi & Andino, 

2012). PRRSV is estimated to have amongst the highest nucleotide substitution 

rates (6.6 × 10−3 – 1.3 × 10−2 substitutions/site/year) compared with other RNA 

viruses (10−3 – 10−5 /site/year) (Hanada et al., 2005; Paploski et al., 2021). At a 

larger scale, PRRSV genetic diversity is also created through recombination, a 

mechanism by which portion of the genome is exchanged between viruses. RNA 

viruses’ sub-genomic negative-sense RNA synthesis normally adopts copy 

choice recombination, which is guided by similar nucleotide sites between RNA 

templates (Simon-Loriere & Holmes, 2011; Snijder et al., 2013). Those template 

switching sites likely facilitate genomic recombination within a viral population but 

less frequently produces non-homologous recombinants unless two distinct viral 

variants infect the same cell (Murtaugh et al., 2010). Non-homologous PRRSV 

recombination does seem to contribute to the genetic diversification as 

recombination events have been repeatedly detected between distinct wild-type 

or even vaccine strains (Anping Wang, Qi Chen & Darin Madson, Karen Harmon, 

Phillip Gauger, Jianqiang Zhang, 2019; Eclercy et al., 2019; Murtaugh et al., 

2010; Shi, Holmes, et al., 2013; H. Zhao et al., 2017). Viral genetic diversity is 

also determined by the balance between viral fitness and selection (Lauring & 

Andino, 2010), which is complicated for PRRSV given that fitness depends on 

how quickly the virus population responds to selection pressures such as host 

immunity. 
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PRRSV genetic diversity and classifications 

PRRSV is classified into two species based on their origin and nucleotide 

identity: Betarterivirus suid 1 (type 1) and Betarterivirus suid 2 (type 2) from 

European and North American origins, respectively (Walker et al., 2021). In the 

U.S., the type 2 virus, also known as PRRSV-2, is the predominant viral species 

responsible for most PRRS outbreaks (Paploski et al., 2019; Shi, Lam, Hon, Hui, 

et al., 2010). PRRSV-2 diversity has been conventionally quantified through 

variation in ORF5 gene, a 603-nucleotide gene encodes the viral GP5 (Paploski 

et al., 2019; Shi, Lam, Hon, Hui, et al., 2010; Wesley et al., 1998). GP5 is one of 

the major envelope proteins (Gorbalenya et al., 2006) involved in in-vivo 

neutralization (Wissink et al., 2003), infectious virion assembly (Wissink et al., 

2005), and host cell entry (Delputte & Nauwynck, 2004). Many studies have 

found that ORF5 gene evolves under diversifying selection (Chen et al., 2016; 

Costers et al., 2010; Hanada et al., 2005; Paploski et al., 2019; Storgaard et al., 

1999), leading to high genetic variation. Such immunogenic importance coupled 

with its high genetic variability between viruses (Kim et al., 2013; Paploski et al., 

2019; Shi, Lam, Hon, Murtaugh, et al., 2010) make ORF5 gene a good marker 

for PRRSV-2 genetic diversity. Therefore, ORF5 is the most common gene that 

is sequenced and deposited to either public or private nucleotide sequence 

databases. 

Based on ORF5 gene, genetic variation of PRRSV-2 was originally 

characterized by restriction fragment length polymorphisms (RFLP). Briefly, 

RFLP typing provides a three-digit code according to the cutting pattern of three 

restriction enzymes applied to ORF5 gene PCR products (Cha et al., 2004). 

While RFLP patterns have been conventionally used for reporting PRRSV 

epidemic strains due to its rapidity and inexpensiveness, grouping viruses by 

RFLP type may contradict the actual genetic distance between viruses and 

obscure ancestral relationships amongst variants (Larochelle et al., 2003). In 

2010, PRRSV-2 was systematically classified into nine lineages (lineages 1 to 9) 
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based on phylogenetic analysis of ORF5 gene sequences in publicly available 

databases (Shi, Lam, Hon, Murtaugh, et al., 2010). Pairwise genetic distances 

are typically <11% for sequences within the same lineage, with typically >10% 

divergence between lineages (Paploski et al., 2021; Yim-im et al., 2023). This 

laid the foundation for robust classification and opened the door to various 

integrative methods centered on virus evolution and so-called phylodynamic 

analyses. Major branches of phylodynamics include phylogeography to 

reconstruct patterns of geographical spread of the pathogen, coalescent theory 

to describe changes in ancestral population sizes through time, and selective 

pressure analysis to identify amino acid sites that mutate under selection (Lemey 

et al., 2009; Volz et al., 2013; Z. Yang et al., 2000). Bayesian phylogeographic 

analysis, for example, revealed an introduction of Canadian PRRSV-2 into the 

Midwest USA in the late 1990s, which caused a major genetic shift in the 

dominant circulating strains in the U.S. (Shi, Lemey, et al., 2013). Incorporation 

of spatial information into phylodynamic models demonstrated differences in 

population growth, evolutionary, and geographic dispersal rates between 

endemic and emerging strains in the U.S. Such data critically can inform disease 

intervention using risk-based approaches (Alkhamis et al., 2017). Recently, 

diversification of PRRSV-2 lineages was thoroughly explored, and the most 

prevalent lineage, lineage 1 (L1), was further divided into sub-lineages (L1A to 

L1H). Multiple L1 sub-lineages have been shown to co-circulate in the U.S., 

following a general pattern of sequential turnover of the dominant sub-lineage 

through time (Paploski et al., 2019, 2021). 

Although most studies of PRRSV-2 diversity have focused on ORF5 gene 

given its significance and availability, genetic distances solely using this gene do 

not always consistently translate to cross-protection or neutralization phenotypes 

(J. Li & Murtaugh, 2012; Martínez-Lobo et al., 2011). Furthermore, NSP2 has the 

highest genetic diversity and contains insertions-deletions that may be markers 

for highly pathogenic strains (Yoshii et al., 2008; F. Yu et al., 2020). ORF7 gene 
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encodes the most immunodominant antigen, the N protein, which is a suitable 

candidate for serological tests (Hao et al., 2011). Thus, as with any organism, a 

whole genome perspective is needed to fully understand the evolutionary history 

of PRRSV-2. For many prokaryotes and viruses, phylogenetic incongruence is 

often observed between their genomic and sub-genomic trees mostly caused by 

horizontal gene transfer (HGT) (Chan et al., 2013; Q. Zhang et al., 2017), 

mediated in this case by recombination. There is disagreement of strain grouping 

based on ORF5 and ORF7 gene tree topologies, and mosaic genome structure 

(Martin-Valls et al., 2014) indicates that frequent recombination in PRRSV 

through HGT can confound phylogenetic interpretation. Unfortunately, the 

number of WGS submitted to public databases is very limited in comparison with 

ORF5 gene. For these reasons, it is challenging to apply phylodynamic analysis 

to PRRSV WGS data. 

PRRSV evolution and immune evasion 

Genetic variation reveals not only evolutionary dynamics of PRRSV but 

also viral adaptation to host immune response. Without immunization, an infected 

pig may suffer from respiratory disease complex because of immunosuppression 

since the viral infection occurring in macrophage impairs both innate and 

adaptive immune induction (Basta et al., 2000; Meier et al., 2003; 

Thanawongnuwech et al., 2000). Even with immunization, a pig may not be 

cross-protected against heterologous strains (Montaner-Tarbes et al., 2019; 

Murtaugh & Genzow, 2011). Thus, disease control efforts using herd 

immunization can be hindered by diversification of PRRSV, which continually 

creates novel strains. One way PRRSV can escape antibody neutralization is by 

modifying its envelope proteins by glycosylating an asparagine (N) amino acid, 

which alters protein conformation (Ansari et al., 2006; Marshall, 1974). When this 

phenomenon occurs in glycoprotein-rich regions adjacent to neutralizing 

epitopes, N-linked glycosylation sites may mask an epitope and alter antibody 

accessibility (Ye et al., 2000). Other viruses such as human and simian 
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immunodeficiency viruses, influenza virus, and hepatitis C virus also possess this 

glycan shielding property in their heavily glycosylated surface proteins (M. Zhang 

et al., 2004). For PRRSV-2, reintroduction of N-linked glycosylation sites into 

either GP3 or GP5 of a strain that was naturally susceptible to neutralization 

protected the virus from antibody neutralization (Vu et al., 2011). From an 

epidemiological perspective, a new set of N-linked glycosylation sites on GP5 

was also found to coincide with the emergence of novel sub-lineages or epidemic 

variants in the U.S., emphasizing the role of this mechanism in PRRSV-2 macro-

evolutionary dynamics (Paploski et al., 2022). 

As of now, conferring a neutralizing antibody against PRRSV remains the 

ultimate goal in vaccination due to the limited understanding of cell-mediated 

immunity (Loving et al., 2015). Amongst the various PRRSV antibody epitopes, 

the GP5 epitope B has been widely suggested as a target for broad 

neutralization (Pirzadeh & Dea, 1997; Popescu et al., 2017; L. Yang et al., 2000). 

Apart from that, an alternate signal peptide cleavage site in some PRRSV GP5 

creates the non-neutralizing or decoy epitope, epitope A, that attracts most of the 

antibodies interacting with GP5 in the early stage, thereby weakening and 

delaying the actual virus neutralization (L. Fang et al., 2006; Ostrowski et al., 

2002). Hypervariable region 2 (HVR-2) of GP5 has been proposed to be a third 

epitope, epitope C, in which antibody binds and probably blocks epitope B 

accessibility. Unlike epitope B which is thought to be broadly neutralizing, epitope 

C is a target for homologous neutralization, and mutations in this epitope may 

help the virus evade neutralization by homologous antibodies (Popescu et al., 

2017). These mechanisms are presumably associated with the variable efficacy 

of vaccines against PRRS. 

Knowledge gaps 

In summary, PRRSV genetic data, encompassing whole genomes or 

specific genes like ORF5 gene, provide a valuable resource for generating 
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insights that can improve PRRS mitigation strategies. Past research has 

demonstrated the utility of such genetic information in various ways, such as 

quantifying virus variation (Paploski et al., 2019, 2021; Shi, Lam, Hon, Murtaugh, 

et al., 2010), investigating the geographical spread and associated risk factors 

(Alkhamis et al., 2017; Makau, Alkhamis, et al., 2021; Shi, Lemey, et al., 2013), 

and estimating the dynamics of positively selected sites within the virus genome, 

which may evolve under immune pressure (Costers et al., 2010; Delisle et al., 

2012; Do et al., 2016; Hanada et al., 2005; Hao et al., 2011; Hu et al., 2009; 

Paploski et al., 2019, 2021). Nonetheless, fundamental questions remain 

unanswered. For example, we have yet to explore and update the historical and 

current patterns of contemporary PRRSV spread at a national level. In detail, 

what are the major factors driving the spread, especially between farms? Can we 

predict the emergence of PRRSV? Furthermore, what benefits can we derive 

from implementing PRRSV whole genome sequencing in outbreak 

investigations? These unaddressed queries offer an opportunity to leverage 

existing PRRSV genetic data to enhance our understanding of this critical issue. 

Here, this dissertation endeavors to bridge such knowledge gaps within 

the field by employing a comprehensive analysis of PRRSV genetic data and 

associated metadata. Our overarching aim is to illuminate the patterns of PRRSV 

adaptation, persistence, and spread within the U.S. swine industry, spanning 

from a national to local scale. We performed a diverse array of approaches 

tailored to the distinct data characteristics and the specific research objectives of 

each chapter (Figure 1.1). Throughout the following chapters, we concentrate 

primarily on PRRSV-2 lineage 1 (L1), as it has been the predominant circulating 

lineage within the U.S. during the study period (Trevisan et al., 2022; Paploski et 

al., 2019). Chapter 2 applies phylodynamic analyses based on the most 

extensive ORF5 gene sequencing data within the U.S. to date to illustrate a 

nationwide geographical spread and demographic dynamics of PRRSV-2 L1. 

Chapter 3 delves into potential drivers of the spread documented in Chapter 2 by 
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unraveling the intricate web of novel PRRSV-2 L1 variant transmission between 

farms situated in a swine-dense region and the key determinants associated with 

these connections, utilizing an integrative approach that combines ORF5 gene 

data with animal movement data. In Chapter 4, we showcase our ability to predict 

potential emerging PRRSV-2 L1 variants, similar to those emergence events 

described in Chapter 2 and 3, by harnessing massive ORF5 gene data sourced 

from an active national PRRS monitoring database. Finally, Chapter 5 

underscores the utility of whole genome sequencing as a critical piece of 

evidence, shedding light on the evolutionary mechanisms behind the emergence 

of PRRSV-2 L1 variant in the Midwestern U.S. The methodologies and findings 

presented in these studies are poised to serve as alternative tools and offer 

invaluable insights, ultimately contributing to the advancement of PRRS 

prevention and control strategies at various levels within the United States. 

 

  

Figure 1.1: Theoretical framework of the dissertation showing how the chapters 
address each knowledge gap at different geographical scales and data 
availability under the overarching theme. 
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“The Phantom of PRRS Divulged” 

Chapter 2: Mapping Contemporary PRRSV-2 Evolution, Emergence and 

Spread in the United States through Phylogeography. 

Material adapted from a published article in Pathogen 12(5) (2023), doi: 

10.3390/pathogens12050740 

Mapping the Dynamics of Contemporary PRRSV-2 Evolution and Its Emergence 

and Spreading Hotspots in the U.S. Using Phylogeography. 

Nakarin Pamornchainavakul, Igor A. D. Paploski, Dennis N. Makau, Mariana 

Kikuti, Albert Rovira, Samantha Lycett, Cesar A. Corzo, and Kimberly 

VanderWaal 

2.1: Introduction 

PRRS first appeared in the United States in the states of North Carolina, 

Minnesota, and Iowa in 1987 – 1988 (Keffaber, 1989). After more than three 

decades, 20 – 30% of sow farms throughout the U.S. pig industry still experience 

PRRSV-2 outbreaks each year (The Morrison Swine Health Monitoring Project, 

2022). The persistence of PRRSV-2 is characterized by the cyclical emergence 

of new genetic variants of the virus (Paploski et al., 2021), whose spread is then 

facilitated by continuous movement of pigs between herds as part of multi-site, 

vertically integrating production systems. New variants typically emerge in a 

particular geographic area and then disseminate widely in the industry through 

routine animal movements (Lee et al., 2017; Makau et al., 2022; Pileri & Mateu, 

2016; VanderWaal et al., 2020). The location of emergence and subsequent 

patterns of spread are crucial information guiding where prevention measures 

should be strengthened to limit pathogen dispersal. Phylogeography, which 

utilizes evolutionary relationships amongst viral genetic sequences to reconstruct 

ancestral locations and migrations, can be a useful tool to address these 

questions. 
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Since 2010 when PRRSV-2 lineages were firstly defined (Shi, Lam, Hon, 

Murtaugh, et al., 2010), lineage 1 (L1) appearance has increased from <40% 

to >60% of sequenced viruses, while other lineages have been decreasing over 

time (Paploski et al., 2019). It is worth noting that the majority of non-L1 viruses 

detected through sequencing in the past decade (20 – 30% of sequenced 

viruses) are L5 and L8 (Trevisan et al., 2022), which have been widely used as 

commercial live-attenuated vaccines, whereas wild-type non-lineage 1 

sequences account for <1% of sequences. In addition, lineage 1 has diverged 

into several subpopulations, i.e., sub-lineages L1A to L1H (typical pairwise 

genetic distances <8.5% for sequences belonging to the same sub-lineage, 

and >9% divergence between sub-lineages (Paploski et al., 2021). The 

prevalence of different sub-lineages varies geographically and temporally, with 

cyclic population expansions and contractions of particular groups of viruses 

observed continuously (Paploski et al., 2021). 

Although patterns of L1 sub-lineage emergence and turnover are well 

described (Paploski et al., 2019, 2021), the geographic origin and spreading 

hotspots of contemporary L1 viruses have not been determined. Such 

information is crucial for PRRS prevention, management, and containment. The 

most recent analysis of PRRSV-2 phylogeography in the U.S. used sequences 

up to 2011 (Shi, Lemey, et al., 2013), prior to when L1 became the dominant 

lineage in the U.S. Thus, this earlier work might not be a representative of the 

current epidemiologic situation. To fill these gaps, our objective is to provide an 

updated analysis of the spatio-temporal dynamics of PRRSV-2 L1 spread and 

population growth over three decades in the U.S., with particular emphasis on 

understanding the spatiotemporal dynamics underpinning the continued 

diversification of L1 into numerous sub-lineages. We inferred phylodynamics of 

each L1 sub-lineage and identified potential selection pressures associated with 

phylogenetic divergence that may help explain the overall L1 phylogeography. 

Given the large size of the aggregated U.S. PRRSV ORF5 gene sequence 



12 
 

dataset, we also evaluated the robustness of our results across various sub-

sampling strategies that aimed to generate spatial-temporal representative 

subsets for analysis. This study advances our understanding on large-scale 

geographic expansions and evolutionary dynamics of the virus which may help 

answer why PRRSV-2 persistently circulates within the U.S 

2.2: Materials and Methods 

Data sources 

Three data sources, the National Center for Biotechnology Information 

GenBank (NCBI, 1991 – 2021), the University of Minnesota Veterinary 

Diagnostic Laboratory (UMN VDL, 2004 – 2021) and the Morrison Swine Health 

Monitoring Project (MSHMP, 2010 – 2021), were accessed in October 2021 to 

gather PRRSV-2 ORF5 gene sequences collected in the U.S. Briefly, the UMN 

VDL has generated virus sequences from throughout the U.S. as part of services 

rendered to primarily US-based industry clients. MSHMP is a voluntary program 

established in 2011 that archives a variety of swine disease data from over 35 

participating production systems, capturing data from more than 50% of the U.S. 

breeding population (MSHMP History | College of Veterinary Medicine - 

University of Minnesota, n.d.). Outbreaks identified and reported to MSHMP may 

have an accompanying ORF5 gene sequence. Sequences reported to MSHMP 

are typically produced by University of Minnesota, Iowa State University, South 

Dakota State University, or Kansas State University VDLs. All available 

sequences from Canada (only found in the NCBI GenBank) were also included 

given that routine transport of hogs between the U.S. and Canada (Economic 

Research Service & USDA, 2022) might lead to transboundary PRRSV 

transmission. 

Inclusion criteria for sequences were completeness of sequence (> 580 

nucleotides) and availability of sample collection date and location (i.e., state in 

the U.S. where a sample was collected or, in the case of the UMN VDL, state 
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where the client submitting the sample was located). Primary deduplication by 

sequence identification number was done between the MSHMP and the UMN 

VDL datasets. Subsequently, the aggregated dataset of 40,365 ORF5 gene 

sequences were aligned using pairwise local alignment applied in MAFFT 

v.7.310 (Katoh, 2002), and the alignment was used to build an approximately-

maximum-likelihood tree using FastTree v.2.1.10 (Price et al., 2010). PRRSV-1 

sequences detected in the tree were excluded before realigning only PRRSV-2 

ORF5 gene sequences onto a PRRSV-2 reference (GenBank accession no. 

NC_038291.1) using pairwise codon alignment via VIRULIGN (Libin et al., 2019). 

Repeated sequences from localized outbreaks caused by highly related viruses 

(defined by same exact collection date, collected within the same state, and 

100% nucleotide similarity) were deduplicated. After filtering out sequences 

containing ambiguous nucleotides (n = 4,644), gaps (n = 530), or with signals of 

potential recombination (n = 4) consistently detected by all seven methods 

implemented in in RDP5 (D. P. Martin et al., 2021), wherein a fully exploratory 

(all sequences compared to all others) recombination analysis was performed 

using the methods RDP (D. Martin & Rybicki, 2000), GENECONV (Padidam et 

al., 1999), MaxChi (J. M. Smith, 1992), BootScan (D. P. Martin et al., 2005), 

SiScan (Gibbs et al., 2000), Chimaera (Posada & Crandall, 2001), and 3Seq 

(Lam et al., 2018), the curated 29,554 PRRSV-2 ORF5 gene sequences were 

classified into (sub-)lineage by measuring pairwise distance between a sequence 

to each (sub-)lineage’s anchors, as described elsewhere (Paploski et al., 2019, 

2021). Non-L1 sequences were excluded from further analysis. Ultimately, only 

the alignment of 19,395 PRRSV-2 L1 ORF5 gene sequences was used for 

further analyses (Figure 2.1). 
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Figure 2.1: PRRSV ORF5 gene sequences gathering and filtering process. 

 

Subsampling 

Geographic regions utilized for discrete-space phylogeography were 

adapted from the Swine Health Information Center’s (SHIC) regions, with 

boundaries creating divisions between major pork producing areas in the U.S. 

Due to a high number of available sequences, SHIC’s region 3 (Midwest) was 
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subdivided into two regions according to the spatial distribution of the pig 

population (National Agricultural Statistics Service, 2019; The Swine Health 

Information Center, 2022). Regions included the Southwest (SW, n = 1,057 

sequences), Upper Midwest (UMW, n = 10,384 sequences), Central Midwest 

(CMW, n = 827 sequences), Northeast (NE, n = 473 sequences), East (E, n = 

6,554 sequences), and Canada (CAD, n = 80 sequences). The Western (W, n = 

12 sequences) and Southeastern (SE, n = 8 sequences) U.S. were not included 

in the analysis since less than 20 sequences were available from those regions, 

likely reflecting low pig populations (National Agricultural Statistics Service, 

2019). Given that one data source is a Minnesota-based diagnostic lab, data 

availability was highly biased towards the Upper Midwest. Imbalances in the 

number of sequences per region can create analytical biases that influence 

ancestral state reconstructions produced by phylogeographic models, wherein 

the model is falsely confident that the overrepresented region is the ancestral 

region. To diminish this bias and for computational feasibility, the L1 alignment (n 

= 19,395) was sampled 5 times (500 sequences per subset) using a spatio-

temporal stratified uniform sampling method with year and region strata. This 

approach strives to equalize the number of samples included from each 

region/year, hence an equal number of sequences were drawn from the available 

sequences per region for each calendar year ranging between 1991 to 2021, 

except for some years that a few (<5) sequences or no sequence was available 

from particular regions (Figure 2.2). Through this approach, the median 

sequences/region/year was three (IQR = 0 – 4) and the total unique sequences 

utilized across the five random data sets was 1,765, or 9.1% of all L1 sequences. 
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Figure 2.2: Temporal distribution of the full PRRSV-2 L1 dataset (Left) and an 
example of spatio-temporal stratified subsampled dataset (Right) colored by (A) 
source, (B) sampling location (region), and (C) pre-determined sub-lineage. 

 

As there is some uncertainty about the most appropriate sub-sampling 

strategy for addressing sampling bias (De Maio et al., 2015; Kalkauskas et al., 

2021), two other subsampling approaches were also conducted five times each. 

For uniform spatial stratified sampling, sub-sampling was performed as described 

above but ignoring year. For proportionate stratified sampling, the number of 

sequences included per region was set to be proportionate to the relative pig 

population in each region and state, as reported in the 2017 agricultural census 

(National Agricultural Statistics Service, 2019). A comparison of the spatio-

temporal representation of all three subsampling approaches is shown in 

supplementary materials. (Supplementary Figures S2.1, 2.2) 

Phylogeographic analyses 

Origin and frequency of inter-regional spread of PRRSV-2 Lineage 1 and 

its sub-lineages were estimated from the subsampled sequences via Bayesian 
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discrete phylogeography, also called discrete trait analysis (DTA). This analysis 

treats the sampling location as a discrete trait, then estimates ancestral locations 

and geographic migrations of the virus from the trait transitions across the viral 

evolutionary tree through continuous-time Markov chain (CTMC) modeling 

(Lemey et al., 2009). To do that, time-scaled phylogenetic trees with 

phylogeographic inference were reconstructed from each subsampled set using 

BEAST v.1.10.4 (Suchard et al., 2018). The models used for the analysis were 

the general time reversible with gamma plus invariant site heterogeneity (GTR + I 

+ G) as the nucleotide substitution model, the uncorrelated relaxed clock 

(Drummond et al., 2006) with log-normal distribution as the molecular clock 

model, and the non-reversible CTMC for the asymmetric discrete trait substitution 

model (Lemey et al., 2009). We additionally inferred viral population dynamics by 

specifying the Bayesian Skygrid’s Gaussian Markov random field (GMRF) model 

(Gill et al., 2013) as a coalescent prior. Prior to Bayesian analysis, the temporal 

signals of each subsampled set were checked with TempEst v.1.5.3 (Rambaut et 

al., 2016) by analyzing the root-to-tip distances in maximum likelihood trees built 

by IQ-TREE (Trifinopoulos et al., 2016). Bayesian analyses were run with 300 

million Markov chain Monte Carlo (MCMC)’s chain length. The first 10% of 

samples from the MCMC chain were discarded as burn-in, and the remaining 

trees were summarized as a maximum clade credibility (MCC) tree via 

TreeAnnotator v.1.10.4 (Drummond & Rambaut, 2007) and visualized in the 

Nextstrain (Hadfield et al., 2018) platform. Phylogeographic and population 

dynamics outputs were visualized using the ggplot2 (Ginestet, 2011) package in 

R (R Core Team, 2019). All these approaches were repeated for each set of 

sequences belonging to each of seven sub-lineages identified on the MCC trees, 

including L1A, L1A(2) (secondary re-emergence of L1A viruses (Paploski et al., 

2021)), L1BG (monophyletic clade comprising L1B and L1G), L1C, L1E, L1F, 

and L1H. In total, 50 DTA runs (15 runs from three subsampling strategies 

performed on L1 overall, plus 35 runs from the sub-lineage analyses for which 
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we only used spatio-temporal subsampling) were performed to infer spatial-

temporal dynamics of the virus. The key phylogeographic results were combined 

from five runs, e.g., range of median times to the most recent common ancestor 

(tMRCA), range of 95% highest posterior densities (HPDs), and range of 

probabilities in the ancestral region.  

Maximum likelihood discrete-space phylogeography (Sagulenko et al., 

2018) and Bayesian structured coalescent approximation (Müller et al., 2017) 

were explored as alternative analytical approaches and to evaluate the sensitivity 

of our results to the modeling platform utilized. The first method, maximum-

likelihood phylogeography, basically infers ancestral traits across an evolutionary 

tree’s internal nodes by treating migration between discrete locations in the same 

way as genetic mutation given a time-reversible model (Sagulenko et al., 2018), 

and is a non-Bayesian version of the DTA described above. Bayesian structured 

coalescent approximation extends the Bayesian coalescent model to allow 

migration between subpopulations within a structured population and 

approximates the internal nodes’ trait probability (Müller et al., 2017, 2018). The 

same five spatio-temporal stratified sampled sets used for DTA were reanalyzed 

by these methods via TreeTime v.0.8.5 (Sagulenko et al., 2018) in the 

Nextstrain’s augur v.10.1.1 pipeline (Hadfield et al., 2018) (maximum-likelihood 

approach), and the marginal approximation of the structured coalescent 

(MASCOT) v.2.1.2 (Müller et al., 2018) package in BEAST v.2.5.1 (Bouckaert et 

al., 2019), respectively. Since TreeTime does not require massive computational 

power to run a large dataset, the full set of PRRSV-2 L1 ORF5 gene sequences 

(n = 19,395) was also analyzed by TreeTime. Detailed parameter settings are 

displayed in supplementary data (Supplementary Table S2.1). Ancestral 

locations and their transitions through time from all phylogeographic analysis 

were summarized by the Babel v.0.4.0 package in BEAST v.2.5.1 (Bouckaert et 

al., 2019). 
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Selective pressure analysis 

Possible selective pressures along PRRSV-2 L1 evolutionary history were 

identified using the branch-site test of positive selection (Z. Yang & Nielsent, 

2002). We used a branch-site test because branches can be tied to an inferred 

geographic region, and we wanted to test the hypothesis that selection pressures 

vary between different regions. The analysis was performed on each of five 

spatio-temporal subsampled MCC trees from DTA and their original sequence 

alignment. Implemented in aBSREL (adaptive branch-site random effects 

likelihood) v.2.3 software, all tree branches were tested through the exploratory 

analysis in which optimal ω (non-synonymous to synonymous substitutions ratio 

or dN/dS) of each branch was inferred by the small-sample Akaike Information 

Criterion (AICc), then compared to the null model (ω ≤ 1) by the likelihood ratio 

test (LRT) (M. D. Smith et al., 2015). If a branch has the inferred ω > 1 and LRT 

p-value < 0.05, the virus is estimated to evolve under episodic positive 

(diversifying) selection at that branch. 

2.3: Results 

Origin of PRRSV-2 L1 and its sub-lineages 

Results from five DTAs on different spatio-temporal stratified subsampled 

sets (n = 500 each) suggest that PRRSV-2 L1 in the U.S. originated in Canada 

(100% posterior probability) during the late 1980s (median time to the most 

recent common ancestor (tMRCA) = 1986 ;[range of 95% highest posterior 

densities (HPDs) = 1981 – 1989]). Although sub-lineages L1A and L1F 

concurrently diverged from the primitive L1 in the late 1990s (range of median 

L1A tMRCA = 1995 – 2000 ;[range of 95% HPDs = 1992 – 2002] and range of 

median L1F tMRCA = 1995 – 1998 ;[range of 95% HPDs = 1993 – 2000]), L1F 

was likely imported from Canada (93 – 100% probability), while L1A emerged 

within the Upper Midwestern U.S. (97 – 100% probability). Within a few years, 

two additional sub-lineages, L1C and L1BG, diverged (range of median L1C 
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tMRCA = 1998 – 1999 ;[range of 95% HPDs = 1995 – 2002] and range of 

median L1BG tMRCA = 2000 – 2002 ;[range of 95% HPDs = 1997 – 2003]). L1C 

was a sister clade of L1F, and L1BG was a sister of L1A on every MCC tree. Like 

their sisters, the origins of L1C and L1BG were potentially in Canada (97 – 100% 

probability) and the Upper Midwest (93 – 100% probability), respectively. L1 

further diverged into another two sub-lineages, L1E and L1H, in the 2000s. L1E 

was a relatively small clade directly rising from the basal L1 around mid- to late 

2000s (range of median L1E tMRCA = 2003 – 2007 ;[range of 95% HPDs = 2000 

– 2009]) and was estimated to have emerged in the Upper Midwest (80 – 98% 

probability). On the contrary, L1H was a recent sister of L1C and L1F, and its 

approximated time and place of origin were late 2000s (range of median L1H 

tMRCA = 2008 ;[range of 95% HPDs = 2006 – 2010]) in Canada (100% 

probability). The second and larger wave of L1A (L1A(2)) branched out from the 

original L1A in early 2010s (range medians L1A(2) tMRCA = 2009 – 2012 ;[range 

of 95% HPDs = 2007 – 2013]). Although the most likely origin of this emergence 

appears to be the Upper Midwest (52 – 99% probability across analyses based 

on five subsets of data), the probability that the source was the Eastern U.S. (4 – 

47% probability) could not be ruled out (Figure 2.3). 
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Figure 2.3: Key results from the discrete trait analysis (DTA) on spatio-temporal 
stratified sampled sets. (A) The time-scaled phylogenetic tree of one subsampled 
set with tip colored by sampling region and internal branch colored by inferred 
ancestral region. (B) Probability (0 – 1) on region of origin for each L1 sub-
lineage and overall L1 from all runs. (C) The same timed-scaled tree with tip 
colored by classified sub-lineage. (D) Median tMRCA with 95% HPD interval of 
L1 and its sub-lineages from the same runs. 

 

When comparing the results generated by different subsampling 

techniques, estimations of both time and location of origin from the spatial 

stratified subsampled sets were markedly similar to that from the spatio-temporal 

stratified subsampling. Unlike the first two techniques, estimations based on the 

proportionate stratified samples indicate that the L1 virus and all sub-lineages 

were likely originated in the Upper Midwestern U.S., the region with the 

proportionately largest pig population and thus the most sequences included in 

the analysis (48% of sequences were from the Upper Midwest). Inferred tMRCAs 
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from population-based subsampling were less consistent compared to the 

spatial-based subsamples (Supplementary Figure S2.3).  

The virus phylogeography inferred by DTA differed when using other 

modeling approaches despite the same inputs (i.e., all models utilized the same 

subsets produced from spatio-temporal stratified sub-sampling). For instance, the 

origin of L1BG, L1E, and L1A(2) was more uncertain in maximum-likelihood-

based TreeTime analysis than DTA; in some cases, three regions were 

considered almost equally likely as the putative origin (sub-lineages L1A(2) and 

L1BG), or different runs produced different results (sub-lineage L1E). With that 

being said, estimations from TreeTime were far more similar to the DTA than the 

results from MASCOT. In the latter, there were high levels of uncertainty on the 

region of origin for most sub-lineages, and the Eastern U.S. was frequently 

inferred to be a potential origin of L1 overall and most sub-lineages. DTA, 

TreeTime, and MASCOT, however, similarly estimated that the origin of L1H was 

in Canada (100% probability). Focusing on the time of emergence, estimates of 

tMRCAs and inferred nucleotide substitution rates were similar across all 

methods (Supplementary Figure S2.4). 

Both geographic region and time of origin estimated from the non-

subsampled set (n = 19,395) of the L1 virus using TreeTime corresponded well to 

the inference from the spatio-temporal stratified samples by DTA. The only 

disagreement was the origin of the sub-lineage L1F, where the ancestral location 

of the full dataset was inferred to be the Upper Midwest instead of Canada, 

possibly as a result of overrepresentation of the Upper Midwest in this dataset 

(Figure 2.4 and Supplementary Figure S2.5). 
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Figure 2.4: Maximum likelihood time-scaled phylogenetic tree of the full L1 
dataset (n = 19,395) estimated by TreeTime. Tips and branches are colored by 
sampling region and inferred ancestral region, respectively. Exterior ring is 
colored according to L1 sub-lineages based on phylogenetic grouping. 

 

Inter-regional spread and spreading hotspots 

The source regions contributing to frequent inter-regional spread (based 

on the median number of transitions between regions across five runs) inferred 

by the phylogeographic analysis were considered hotspots for inter-regional 

spread. DTA analysis on spatio-temporal stratified samples suggests that the 

Upper Midwestern U.S. was the main hotspot for inter-regional spread and was 

the origin of frequent dissemination events to every region except Canada. The 
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common destinations of such events were the Central Midwest (~126 transitions 

since L1 emergence until 2021) and the Northeast (~111 transitions). Canada 

and the Eastern U.S. can also be considered as hotspots though they mainly 

spread the virus to only a single adjacent region such as the Upper Midwest (~75 

transitions) and the Northeast (~71 transitions), respectively (Figure 2.5A). 

Summarizing the proportion of branches inferred to exist in each region across 

time, L1 was primarily circulating in Canada in the 1990s and was likely 

introduced to the U.S. through the Upper Midwest during the early 2000s. After 

around 2005, Canada faded out as a major player in U.S. inter-regional spread 

(though we have relatively few Canadian sequences in later years to fully 

understand its role in later periods). These phylogeographic patterns were 

relatively stable across different phylogeographic approaches and subsampling 

techniques, albeit with some variation. For instance, MASCOT approximated that 

the virus spread from the East to both the Northeast and the Upper Midwest, and 

that there was no apparent flow from Canada to the U.S., which was inconsistent 

with the patterns inferred by the other approaches (Supplementary Figure S2.6). 
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Figure 2.5: Inter-regional spread of PRRSV-2 L1 in the U.S. estimated by DTA on 
spatio-temporal stratified sampled sets. (A) Median between-region transitions of 
the L1 lineage overall. Color shade and thickness of arrow represent estimated 
number of transitions. (B) Median between-region transitions of each L1 sub-
lineage. Color of arrow represents sub-lineage, whereas the thickness represents 
the number of transitions. 
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At the sub-lineage level, the direction and extent of inter-regional spread 

were unique for each viral subpopulation. L1C and L1A(2) were the predominant 

sub-lineages with the highest number of samples across all subsampled datasets 

(Figure 2.2 – 2.4). Notwithstanding, inferred patterns of inter-regional spread 

were in opposite directions. The DTA phylogeography estimated that the Upper 

Midwest was a spreading hotspot for L1C, which disseminated the virus mainly to 

the Northeast, Central Midwest and East. L1C spread was also found in the 

opposite direction from the East to Northeast to Central Midwest. In contrast, 

L1A(2) displayed a more unidirectional northwesterly flow from the East to 

Northeast to Central Midwest to Upper Midwest. With a smaller number of 

inferred transitions events due to its smaller population size, L1BG mostly 

circulated back and forth between two Midwestern regions with some spillover to 

the Northeast, whereas L1F largely spread from the Upper Midwest to the 

Southwest, with some introductions to the Central Midwest (Figure 2.5B). Even 

though the extent of L1H spread was not comparable to other sub-lineages’ 

spread, all phylogenetic trees show that L1H viruses circulated primarily within 

the Southwestern U.S., which was also its spreading hotspot according to the 

DTA inference. The smallest sub-lineages were L1A and L1E, for which no 

distinct pattern of inter-regional spread was discerned. 

Population dynamics, mutation, and selection pressure 

PRRSV-2 L1 population dynamics in the U.S. were summarized from 

median effective population sizes inferred by the Bayesian Skygrid analysis on 

different spatio-temporal stratified sets. The virus population rapidly grew within 

the first decade (1990 – 1998), after which population dynamics were 

characterized by a wave-like pattern wherein the effective population size slightly 

decreased and then increased to a new peak approximately every ~6 years until 

the present (Figure 2.6). Over 30 years, there were four peaks in the effective 
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population size of L1, each of which was driven by different sub-lineages. The 

first L1 peak (1998) occurred prior to the peaks of any of the analyzed sub-

lineages, and may have resulted from older sub-lineages, such as L1D, that were 

classified as primitive L1 in this study (Paploski et al., 2021). Subsequent peaks 

coincided with the epidemic-like wave of L1F which appears to have pushed the 

overall L1 population to the second peak in 2005. The third wave peaking in 2012 

involved L1F, L1BG and L1C, but increases associated with this peak appear to 

be most driven by a rapid increase in L1C. The most recent peak (2017) was 

mainly driven by sub-lineages L1A(2) and L1H that emerged in the late 2000s but 

did not experience rapid growth until the mid 2010s (Figure 2.6). The Skygrid 

analyses of inferred population sizes were remarkedly consistent across different 

subsampling techniques, nearly completely overlaying on top of each other 

except during the early time period (<2000), where the size of the first peak in 

population size varied by subsampling strategy (Supplementary Figure S2.7). 

  

 

Figure 2.6: PRRSV-2 L1 population dynamics in the U.S. estimated by Bayesian 
Skygrid analyses on spatiotemporal stratified sampled sets. Lines with shaded 
bands are LOESS smoothing curve with 95% confidence interval of the median 
log effective population sizes from five runs of each sub-lineage and overall L1. 
Lines are colored according to L1 sub-lineage. 
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The median nucleotide substitution rate for L1 overall, which were 

computed from the spatio-temporal MCC trees, was 8.6 × 10-3 (IQR = 7.7 × 10-3  

– 1.0 × 10-2) substitutions per nucleotide site per year (s/n/y). There was no 

significant difference between sub-lineages or geographic regions, nor was there 

a clear temporal pattern in branch-specific substitution rates. 

The selective pressure analysis on the spatio-temporal stratified 

sequences and trees estimated that ORF5 gene evolved mostly under near-

neutrality regardless of lineage or region (median and mode ω = 1, IQR = 0.38 – 

2.11). Although the adaptive branch-site model’s ω showed that the ancestral 

viruses at several trees’ branches also evolved under both extremely high 

purifying and positive selection, only three branches from three different 

subsampled trees can be considered as positively selected (p-value < 0.05) 

according to the likelihood ratio test (LRT). These rare episodic positive selection 

events displayed no clear spatial or temporal pattern. One was identified at an 

internal branch of primitive L1 in 1992 prior to the virus being introduced from 

Canada, another was a terminal branch of primitive L1 in 2000 in the East that 

originated from Canada, and third was a terminal branch of sub-lineage L1C in 

2014 in the East without any associated inter-regional transition. The positive 

selected branches did not have higher evolutionary rates compared to others. 

2.4: Discussion 

In this work, we aggregated several large-scale PRRSV-2 L1 ORF5 gene 

sequence datasets from the U.S. and Canada to reconstruct historical patterns of 

lineage emergence, inter-regional spread and population dynamics using 

phylogeography. Such a large dataset allowed us to perform different 

subsampling techniques and phylogeographic approaches, and test the 

sensitivity of our inferences to the sub-sampling technique and modeling 

approach utilized (De Maio et al., 2015; Liu Pengyu AND Song, 2022). We found 

evidence that L1 viruses overall, as well as sub-lineages L1C, L1F, and L1H, 
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potentially originated in Canada, while sub-lineages L1A, L1A(2), L1BG, and L1E 

emerged within the Upper Midwestern U.S.                                                                                                                                                    

However, the initial region of origin might not always be the hotspot most 

responsible for frequent inter-regional spread. Moreover, the hotspot and 

spreading pattern of each viral subpopulation varied. For example, the opposing 

directionality of dissemination of two current predominant sub-lineages, L1C and 

L1A(2), demonstrated the varied phylogeographic history of different 

subpopulations. This complexity was also found in the temporal demographic 

inference in which the contribution of each co-existing sub-lineage to the overall 

L1 population dynamics has fluctuated through time. 

The majority of our inferences as well as previous phylogeographic 

analysis published in 2013 (Shi, Lemey, et al., 2013) indicate that L1 viruses in 

the U.S. originated in Canada. This does not seem to be due to lack of sequence 

data in the U.S. before 1998 (the earliest detected L1 sequence in the U.S.) (Han 

et al., 2006), given that there is abundant sequence data available (>230 

sequences, all non-L1) from throughout the U.S. since 1989 (Andreyev et al., 

1997; Kapur et al., 1996; Meng et al., 1995; Meulenberg et al., 1993; Wesley et 

al., 1998). The detection of L1 sequences in the 1990s in Canada as early as 

1991, but not in the U.S., (Gagnon & Dea, 1998; Mardassi et al., 1995; Pirzadeh 

et al., 1998; Rodriguez et al., 1997) further supports the conclusions from our the 

phylogeographic analysis. Many of the early Canadian sequences were not 

included in the analysis where sub-sampling was proportional to pig population 

size; the preponderance of Upper Midwestern sequences and exclusion of early 

Canadian sequences in those sub-samples resulted in the Upper Midwestern 

U.S. being the inferred origin of L1 and all its sub-lineages, though we believe 

this to be an analytical artefact of the overrepresentation of this region. Thus, we 

believe that spatial-temporal stratified sub-sampling was the best approach to 

overcome the sampling biases in our dataset. 
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Performing the analysis with the spatial-temporal sub-sampled sequences 

in MASCOT, which uses a forwards/backwards algorithm (Pearl, 1982) with a 

structured coalescent model (Müller et al., 2017), resulted in drastically different 

results in which all L1 viruses except L1H were inferred to originate in the East. 

Such a pattern would be possible only if L1 virus did truly exist in the East 

undetected during or before the 1990s but had never been sampled or 

sequenced. In fact, according to our data, at least 40 samples from the Eastern 

region were sequenced between 1992 – 1999, but none of them was classified 

as L1. This further supports our conclusion that the inference from spatio-

temporal stratified samples by DTA was the most reliable and robust approach 

for our data. 

While the Canadian origin of lineage L1 is well-supported, the potential 

role of Canada in subsequent inter-regional spread was inconclusive given the 

available dataset. Introductions of the primitive L1, L1F (circa 1998 – 2001), L1C 

(circa 2000 – 2005), and L1H (circa 2009 – 2011) from Canada to the U.S. were 

highlighted, while reverse dissemination from the U.S. back to Canada was rare. 

This unidirectional pattern is not surprising given the U.S. has imported millions 

of feeder and finishing pigs per year from Canada, but exported only a few 

thousand pigs back to Canada annually (Economic Research Service & USDA, 

2022). Changes in the U.S. and Canadian pig industry structure that led to this 

phenomenon have been described elsewhere (Brisson, 2014; Haley, 2004), but it 

is worth noting that 90% of imported pigs are moved into the Upper Midwest 

(Whiting, 2008). L1H, the most recent sub-lineage originating from Canada, 

appears to have been introduced to the U.S. in the late 2000s when the Canada-

to-U.S. pig imports were at peak (8 to 10 million heads/year) (Economic 

Research Service & USDA, 2022). Once introduced to the U.S., the Upper 

Midwest appears to be the epicenter of inter-regional spread, likely because it is 

a hub for interstate pig shipments given the number of harvest plants and 

proximity to corn and soybean crops used in feed (Cabezas et al., 2021; Shields 
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& Mathews, 2003). Notably, this general pattern of virus movement from Canada 

to the Upper Midwest, following by inter-regional spread within the U.S. mirrors 

what has been observed for swine influenza (Nelson et al., 2017; Scotch & Mei, 

2013).  

The question of whether Canada continues to disseminate viruses into the U.S. 

cannot be fully answered due a reduced number of Canadian L1 ORF5 gene 

sequences available in the NCBI GenBank database in recent decades. 

Reductions in the number of PRRSV-2 sequences available in GenBank also 

occurred in the U.S. After 2010, when sequencing technology became more 

accessible and affordable, more ORF5 gene sequencing was likely requested by 

field veterinarians for diagnostic purposes, which could explain the reduced 

number of publicly available sequences. Thus, data sharing via the GenBank, 

especially with sensitive metadata we needed, i.e., sampling date and location 

(state), has been decreasing due to confidentiality concerns. 

Phylogeographic and phylodynamic analyses on each particular L1 sub-

lineages not only revealed varying patterns of inter-regional spread and 

population dynamics, but also connected the dots between the virus’s 

evolutionary history, historical PRRS outbreaks, and potential factors facilitating 

disease spread. Apart from the first emergence caused by the primitive L1 

viruses (L1D), L1F was the earliest well-described sub-lineage and contributed to 

the second wave of the effective population size of L1, which peaked in the mid-

2000s. A virus belonging to this sub-lineage was first isolated from a sample 

collected in 2001 from a severe PRRS case in southern Minnesota, and this 

isolate is widely referred to as MN184 (Johnson et al., 2004) according to the 1-

8-4 ORF5 gene restriction fragment length polymorphism (RFLP) pattern (Kapur 

et al., 1996). L1F viruses were mainly detected in the Midwestern regions with 

multiple introductions to the Southwest (Han et al., 2006). Interstate swine 

movement records in 2001 further supported this, showing that the Southwest 

was the second-most frequent destination for pig movements from the Upper 
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Midwest (Shields & Mathews, 2003). Currently, L1F appears almost extinct in the 

U.S., with less than two sequences detected each year since 2019 (Figure 2.4). 

Between 2007 and 2008, two virulent PRRSV-2 strains responsible for 

regional outbreaks in Iowa and Minnesota were isolated. They were initially 

designated as 1-18-2 (P. Yeske & Murtaugh, 2008) and NADC-30 (Brockmeier et 

al., 2012) strains, which were eventually classified as part of sub-lineages L1BG 

and L1C, respectively. These coincided with the third wave of L1 population 

expansion in the early 2010s that was influenced by the rise of those sub-

lineages along with the sub-lineage L1F. Unlike the previous wave, the estimated 

inter-regional spread of L1C and L1BG more heavily involved the eastern part of 

the country in addition to the Upper Midwest. Patterns of spread completely 

shifted during the most recent wave in the late 2010s, in which L1A(2) and L1H 

were the primary contributors. L1A(2) was the infamous and virulent 1-7-4 strain 

first detected during 2014 – 2015 (Alkhamis et al., 2016; van Geelen et al., 

2018). Our analysis confirmed unpublished reports that its spreading hotspot was 

the Eastern U.S., where the virus spread widely before spilling to the Midwest 

(Morrison, 2015).  

In contrast, L1H (80% of the clade members were RFLP 1-8-4 (Paploski et 

al., 2021)) appears to be an endemic virus mostly confined in the Southwest; we 

found little published epidemiological and virological characterizations of this 

particular group of viruses. The impact of recent and widespread outbreaks in the 

Upper Midwest in 2020 – 2021, caused by the novel L1C-1-4-4 (Kikuti, Paploski, 

et al., 2021) variant, was not captured by our analysis despite a number of 

available ORF5 gene sequences. This may be because the novel L1C variant, as 

of 2021, was not yet widely spread at national-scales to the point that 

significantly contributed to the overall population and spatio-temporal dynamics. 

Inter-regional, long-distance spread of PRRSV-2 has been an unavoidable 

consequence of vertical integration of U.S. swine production systems, and L1 
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viruses have evolved in parallel with an expansion of U.S. swine production. After 

entering the country in perhaps the late 1990s, circulation of L1 viruses would be 

almost impossible to contain to the Midwestern U.S. since hog and pig 

inventories were rising strikingly in new areas of the country, including the 

Eastern state of North Carolina and several Southwestern states (Oklahoma, 

Colorado, Texas, and Utah) during the same period (Key & McBride, 2011). In 

2013, Shi, et al. estimated that L1 viruses largely circulated only between 

Canada and the Midwestern regions (Lake States, Corn Belt, and Northern 

Plains), meanwhile the East (Appalachia) was one of the spreading hotspots for 

non-L1 lineages (Lineages 5 – 9) (Shi, Lemey, et al., 2013). Over the course of 

time with increasing L1 prevalence, we captured the geographical shift in the L1 

spread. The Eastern region became another spreading hotspot for particular sub-

lineages (L1C and L1A(2)) during the third and the fourth waves of L1, likely 

because it is now the second largest swine producer after the Midwest (National 

Agricultural Statistics Service, 2019) and the number of outgoing animal 

shipments are comparable or sometimes higher than the Midwest (Sellman et al., 

2022). These spatial dynamics of spread may not be exclusive to PRRSV-2 but 

may be applicable for other swine diseases. Swine influenza, for example, 

appears to have been introduced from Canada into the Midwest, and new 

spreading hotspots in the East or other regions are also apparent in 

phylogeographic analyses of swine influenza in the U.S. (Nelson et al., 2017; 

Scotch & Mei, 2013). Such a correspondence indicates that dissemination 

patterns of multiple pathogens in the U.S. swine industry have common 

determinants, likely related to structural and demographic organization of the 

industry.  

The U.S. swine industry has been characterized by multi-site pig 

production for several decades (Harris, 1992; Tokach et al., 2016) and animal 

movement is a key component that keeps the production flow uninterrupted 

(Ramirez et al., 2011). Long-distance transport of live animals, cull hogs (Blair & 
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Lowe, 2019), feed, personnel, and equipment are driven by uneven distribution of 

feed resources, production phases, and slaughtering facilities amongst 

geographic regions, and/or by contractual relationships between sites (Ramirez 

et al., 2011). All of these logistics are potential risk factors that help transmit 

PRRSV-2 via either direct or indirect contacts (Pileri & Mateu, 2016). In addition, 

variation in protective measures such as biosecurity practices and vaccination 

may unpredictably change the patterns of viral spread, though we were not able 

to assess these here. Further information surrounding field samples, such as 

production type of an infected farm, immunization status, and farm-related 

transportations before an outbreak, could be useful factors to include in 

phylogeographic regressions that can be employed within the DTA framework 

(Faria et al., 2013; Lemey et al., 2014) to estimate factors associated with inter-

regional transmission. The fraction of sequenced samples relative to the number 

of actual cases could improve sub-sampling techniques and avoid biases related 

to unequal sampling/sequencing efforts between regions (P. Liu et al., 2022). 

We found no support for the hypothesis that selection pressures varied 

spatially. Episodic diversifying selection along the L1 virus phylogenetic tree was 

rarely detected. The few branches with evidence of episodic selection were 

neither related to the (re-)emergence of L1 sub-lineages nor to the expansion of 

any virus variant. This is not surprising, as such analyses are typically used to 

assess virus adaptation to a different host species (Benfield et al., 2021; Berry et 

al., 2019; Caraballo et al., 2021; Cariou et al., 2022; MacLean et al., 2021; 

Spielman et al., 2019). We, accordingly, concluded that there is little evidence for 

episodic selection in PRRSV-2 L1 evolutionary population dynamics. The 

estimation of episodic selection takes into account changes in overall genetic 

changes within ORF5 gene across each branch of the tree. Since many parts of 

ORF5 gene are strongly conserved, using this branch-site model potentially 

obscures positive selection occurring at specific amino acid residues, e.g., 
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antigenically important amino acid sites which have been detected using site-

specific models (Delisle et al., 2012; Paploski et al., 2019). 

Ultimately, this chapter overviews PRRSV-2 L1 dynamics at the national 

level, particularly focusing on changes in inter-regional spread patterns over 

three decades. Understanding these dynamics is essential for the 

implementation of large-scale PRRS control strategies. However, due to 

constraints in data availability, the potential drivers of this spread were not fully 

ascertained in this analysis. The subsequent chapter delves deeper into the intra-

regional dynamics of PRRSV-2 L1, enabling the estimation of spread pathways 

down to the farm level. This higher resolution data provides an opportunity to 

uncover transmission determinants within the region. 
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2.5: Supplementary Materials 

 

Supplementary Figure S2.1: Geographical distribution of ORF5 gene sequences 
from different subsampling approaches. 

 

 

Supplementary Figure S2.2: Temporal distribution of ORF5 gene sequences 
from different subsampling approaches colored by source, sampling region, and 
pre-identified sub-lineage. 
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Supplementary Figure S2.3: Probability of region of origin (top) and Median 
tMRCA with 95% HPD interval (bottom) of each L1 sub-lineage and overall L1 
from all runs compared between different subsampling techniques. 

 

 

Supplementary Figure S2.4: Probability of region of origin (top) and Median 
tMRCA with 95% HPD interval (bottom) of each L1 sub-lineage and overall L1 
from all runs compared between different phylogeographic approaches. 
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Supplementary Figure S2.5: Key results from TreeTime analysis on the full L1 
dataset. (A) The time-scaled phylogenetic tree with tip colored by sampling region 
and internal branch colored by inferred ancestral region. (B) Probability (of region 
of origin of each L1 sub-lineage and overall L1. (C) The similar timed tree with tip 
colored by classified sub-lineage. (D) Median tMRCA with 95% HPD interval of L1 
and its sub-lineages. 
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Supplementary Figure S2.6: Comparison of inter-regional spread of PRRSV-2 L1 
in the U.S. between different phylogeographic analyses and subsampling 
techniques in map and arrows format. 
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Supplementary Figure S2.7: Comparison of L1 population dynamics estimated by 
Bayesian Skygrid analysis on datasets from different subsampling techniques. 
Thin lines in the background are median effective population size of each run. 
Thick lines with bands are LOESS smoothing curve with 95% probability interval 
of the median population sizes from five runs of each subsampling technique. 
Color of line and band on the plot represents subsampling technique. 
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Supplementary Table S2.1: Parameter settings in different phylogeographic 
approaches. 

Software BEAST v1.10.4 TreeTime v0.8.5 BEAST v2.5.1 

Datasets used 
All subsampled datasets 

(n = 15, 500 seqs each) 

Spatio-temporal subsampled 

datasets (n = 5, 500 seqs each)  

and non-subsampled dataset 

(19,395 seqs) 

Spatio-temporal 

subsampled datasets 

(n = 5*, 500 seqs each) 

Nucleotide 

substitution model 
GTR + I + G GTR GTR + G 

Molecular clock 

model 

Uncorrelated relaxed clock, 

Log-normal distribution 
Strict clock 

Uncorrelated relaxed 

clock, Log-normal 

distribution 

Model for 

phylogeography 

Non-reversible CTMC 

(DTA) 
GTR (mugration model) 

Marginal approximation 

of the structured 

coalescent (MASCOT) 

Coalescent model 

(population 

dynamics) 

Bayesian GMRF Skygrid Constant coalescent rate 

Structured coalescent 

with constant effective 

population size and 

migration rate 

MCMC chain length 300 million No MCMC running 300 million 

 

*Only 4 out of 5 datasets could be accomplished in BEAST 2 without error. (Potential 
errors: https://taming-the-beast.org/tutorials/Mascot-Tutorial/) 
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“A Tangled Web Unleashed” 

Chapter 3: Unveiling Between-Farm PRRSV-2 Transmission Links and 

Routes through Transmission Tree and Network Analysis. 

Material adapted from a published article in Evolutionary Applications (2023), doi: 

10.1111/eva.13596 

Unveiling invisible farm-to-farm PRRSV-2 transmission links and routes through 

transmission tree and network analysis. 

Nakarin Pamornchainavakul, Dennis N. Makau, Igor A. D. Paploski, Cesar A. 

Corzo, and Kimberly VanderWaal 

3.1: Introduction 

In Chapters 2, we captured long-term evolutionary dynamics and inter-

regional spread of contemporary PRRSV in the U.S. that are highly informative 

for PRRS prevention and control on a national level. Nevertheless, with limited 

metadata of such country-wide collected genetic sequences, characteristic of 

disease transmission as a major force behind the virus dynamics was not fully 

investigated. PRRSV is not only transmitted by direct contact between pigs but 

also indirectly through contact with contaminated fomites, iatrogenic farm 

practices, or aerosols (Pileri & Mateu, 2016), all of which may contribute to the 

spread of the virus between farms. Transport of PRRSV-positive semen or 

animals are also mechanisms for introducing the virus to other herds over long 

distances (C. Nathues et al., 2016; Thakur et al., 2015). In addition, 

contaminated trucks, equipment, or personnel sharing can transmit the disease 

via indirect contact (S. Dee et al., 2002; S. A. Dee et al., 2004). At short 

distances, PRRSV is possibly transmitted through aerosols based on 

experimental/semi-experimental studies and air sampling near infected farms, 

though field evidence remains unclear (Arruda et al., 2019). Attempts to estimate 

the relative contributions of these routes to the overall PRRSV-2 transmission 
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have been made using a simulation model that utilized disease incidence and 

between-farm contacts as an input (Galvis et al., 2021). However, exploitation of 

the genetic relatedness amongst viruses found on different farms may provide a 

clearer, empirical-based picture of disease transmission (Firestone et al., 2019).  

Based on experimental studies (Charpin et al., 2012; Rose et al., 2015) 

and mathematical modeling (Nodelijk et al., 2000), the European PRRSV 

genotype (PRRSV-1) has an estimated R0 of 2-5, meaning that an average 

infected pig transmits the virus to 2-5 other pigs (assuming an immunologically 

naïve population). In contrast to R0, the effective reproduction number (Re, Rt or 

R) relaxes the assumption of the population being fully susceptible, and is 

defined as the average number of secondary cases that are infected by a single 

infectious individual regardless of immune status of the population (Nishiura & 

Chowell, 2009). R is often used to measure disease transmissibility for endemic 

diseases or unfolding epidemics, and importantly, can be used to help quantify 

the impact of control measures. However, neither R0 nor R measured at animal-

level can explain between-farm transmissibility, which drives PRRSV persistence 

at a regional scale and is the level at which control measures are implemented. 

Using regional-scale PRRSV-2 genetic data coupled with available 

information related to farm characteristics and contact between farms, our 

objective was to infer farm-to-farm transmission links, estimate farm-level 

transmissibility as defined by reproduction numbers (R), and identify associated 

risk factors for transmission. We analyzed a set of PRRSV-2 ORF5 gene 

sequences collected from swine farms along with animal movement data in a 

swine-dense region of the United States to fill knowledge gaps on the between-

farm transmissibility and pathways of spread. Farm-level R and potential 

pathways were estimated by integrating transmission tree inference of PRRSV-2 

sequences with network-based statistical inference. Our results not only 

illuminate a clearer picture of PRRSV-2 dynamics in a major swine producing 

region of the U.S., but also demonstrate a novel approach to quantify the 
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between-farm transmissibility of PRRSV-2 that can be expanded to evaluate the 

effectiveness of control measures across space and time. 

3.2: Materials and Methods 

Data selection 

Most data used in this study were obtained from the Morrison Swine 

Health Monitoring Project (MSHMP) database, which was established to track 

progress on PRRS control in the U.S. and aimed to be the national hub for 

voluntary data sharing between swine veterinarians from different production 

systems (MSHMP History | College of Veterinary Medicine - University of 

Minnesota, n.d.). The project has archived farm-level data such as farm location, 

herd size, disease incidence, and pathogen genetic sequences from more than 

half of the US breeding population (Paploski et al., 2019). For this particular 

study, we focused on a major swine-dense farming region (confidential data) in 

the US in which 70% of farms (n = 2,724) belong to two multi-site swine 

production systems that participate in MSHMP. A swine production system is a 

commercial entity consisting of multiple swine production sites connected by 

either ownership, management, or contractual agreements (Kinsley et al., 2019; 

Makau, Paploski, et al., 2021). Production systems are very insular, with nearly 

100% of animal movements occurring between farms within the same system 

(Kinsley et al., 2019). 

Phylogenetic analysis of PRRSV-2 ORF5 gene sequences has been used 

for virus lineage and sub-lineage classification (Paploski et al., 2019; Shi, Lam, 

Hon, Murtaugh, et al., 2010). Based on the frequency of samples submitted to 

MSHMP, lineage 1A (L1A) was found to be a predominant PRRSV-2 sub-lineage 

in the US since 2014 (Paploski et al., 2019). Moreover, a previous study also 

suggested that the L1A virus was either introduced to or emerged in our study 

area in early 2013 and started expanding within the region in 2014 (Makau, 

Alkhamis, et al., 2021). Focusing our analysis on the emergence and spread of 
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L1A viruses from 2014-2017, we queried 1,515 voluntarily submitted ORF5 gene 

sequences from the study area that were identified as L1A in the MSHMP 

database. Field veterinarians typically requested ORF5 gene sequencing for 

routine diagnosis during a PRRS outbreak (particularly at the beginning) after 

case confirmation by RT-PCR. The sequences were aligned using MAFFT 

(Katoh, 2002) and screened for potential recombination using RDP4 (D. P. Martin 

et al., 2015). Subsequently, a maximum likelihood phylogeny was reconstructed 

from the alignment using RAxML (Stamatakis, 2014) with the GTRCAT 

nucleotide substitution model and transfer bootstrap clade support computation 

(Lemoine et al., 2018) from 1,000 bootstrapped trees. To prevent potential bias 

caused from multiple sequences available from the same farm, sequences from 

a single farm that formed monophyletic clades on the tree were subsampled, 

retaining the median dated sequence. The filtered dataset contained 943 

sequences derived from 651 farms between 2014-2017. 

In order to focus the analysis on groups of sequences that were more 

likely to be epidemiologically linked, we identified the largest three clusters of 

closely related sequences from the phylogenetic tree, then conducted further 

analyses for each cluster separately (Figure 3.1A). Groups of monophyletic 

sequences were systematically defined as a cluster with Cluster Picker 

(Ragonnet-Cronin et al., 2013) when their bootstrapped clade support was >70% 

and the maximum genetic distances within-group was <4.5%.  

The animal movement data used in this study was directly obtained from 

the two participating production systems, which electronically recorded all farm-

to-farm movements of pigs, totaling 283,959 movement events amongst 2,724 

farms during 2014-2017. Premise ID, geographic coordinates, farm production 

types of the origin and destination farms, and shipment date of each event were 

prepared for the network analysis. Production types included sow farm (14.7%), 

nursery (17.5%), finisher (67.1%), and boar stud (0.7%). A sow farm is a premise 

that comprises at least breeding and farrowing sows or gilts population. A 
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nursery farm is a premise that only raises pigs from newly weaned to grower 

stage. A finisher farm is a premise that feeds grower pigs until they reach the 

market weight. A boar stud is a premise where boars are raised for semen 

collection. 

Transmission network inference 

Phylogenetic temporal signals of the three clusters were checked from 

maximum likelihood sub-trees using TempEst (Rambaut et al., 2016);  R2 and 

correlation coefficient above 0.5 and 0.4 respectively were considered to be 

evidence of sufficient temporal signal in the data for construction of time-scaled 

phylogenies. We constructed time-scaled phylogenies for the clusters in BEAST 

1.10.4 (Drummond & Rambaut, 2007) using a Monte-Carlo Markov Chain 

(MCMC) length of 10 million. The cluster’s ORF5 gene alignment and sampling 

date were inputted and run with the GTR+I+G substitution model selected based 

on Bayesian information criterion computed by ModelFinder (Kalyaanamoorthy et 

al., 2017), the uncorrelated relaxed clock model (Drummond et al., 2006), and 

the time-aware Bayesian skyride model (Minin et al., 2008). Time-scaled 

phylogenetic trees were constructed by the maximum clade credibility (MCC) 

method, excluding the first million burn-in MCMC states using TreeAnnotator 

1.10.4 (Drummond & Rambaut, 2007). To infer transmission networks from the 

MCC trees, we conducted transmission tree analysis in TransPhylo 1.4.5 in R (R 

Core Team, 2019). Amongst several available packages for transmission tree 

inference, TransPhylo had the most appropriate assumptions and options that 

best aligned with our data, notably in that it allows for incomplete sampling of 

cases and ongoing (endemic) outbreak scenarios (Didelot et al., 2017; Duault et 

al., 2022). Given a time-scaled phylogeny, molecular clock, and assuming a 

stochastic branching epidemiological process, TransPhylo uses a Bayesian 

approach to create a network indicating who infected whom and inferring the 

number of unsampled individuals in the transmission chain connecting a pair of 

sampled cases (Didelot et al., 2017). To parameterize the model priors, we 
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assumed that the observed transmission processes were part of an ongoing 

outbreak (i.e., the outbreak was not resolved by the last sampling point), and that 

the PRRS mean generation time was 14.5 days (Charpin et al., 2012). The 

analyses were executed with 50,000 MCMC iterations (Figure 3.1B). 

The outputs of the transmission tree analysis include inferred pig-to-pig 

transmission chains, with information on the origin, recipient, and infection 

window coinciding with the sampling date on the first and second sequence. 

These outputs can be conceptualized as a dynamic directed network. Since the 

direction of transmission at the animal-level may or may not reflect directionality 

at the farm-level, we transformed the trees into undirected networks, then used 

the igraph package (Csardi & Nepusz, 2006) to compute the shortest pathlength 

(SPL) between all the sampled pairs, disregarding directionality, to capture the 

most feasible pig-to-pig infection chain between each pair of samples. Although 

TransPhylo can take into account within-host evolutionary dynamics, this was not 

implemented in our model given that the scale of variation occurring at the 

between-farm level likely is far greater than variation arising from within-host 

evolution. Also, our infection chains (at the pig level) were not sufficiently well 

sampled to be able to discern within-host evolutionary processes. 

Data integration 

In order to translate the transmission network from the animal-level to the 

farm-level, we used the farm ID associated with each sequence to create a farm-

level transmission network, assuming that the virus must have moved between 

farms somewhere along the pig-to-pig infection chain inferred in the transmission 

network analysis. However, direct farm-to-farm transmission cannot be assumed 

between farms connected in the transmission network, as it is possible that the 

infection chain has passed through an unsampled intermediate farm. Therefore, 

we used animal movement data to identify “known” direct transmission events, 

wherein direct farm-to-farm transmission can be reasonably assumed if an 
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animal movement occurred between the farms during the infection window. While 

there are multiple modes of between-farm contact that could lead to transmission 

between farms, pairs of farms connected via animal movement are a form of 

contact for which we have quantifiable data on direct contact between farms. We 

used the infection chain lengths of inferred transmission events that were 

concurrent with documented between-farm animal movement to define a 

maximum threshold in the length of pig-to-pig infection chains, below which direct 

transmission between farms (regardless of the presence of a movement) is 

feasible. To do this, we created a time-stamped dynamic movement network and 

extracted the shortest path between the samples existing during the infection 

window (sample dates of the earlier and later sequences collected from two 

different farms) of every sampled pair. Between each pair of samples, the 

infection chain length (ICL) was designated as the inferred number of unsampled 

pigs in the shortest path connecting each pair in the transmission network, and 

the movement pathlength (MPL) was designated as the number of steps (i.e., 

farms) that must be passed through to connect two farms in the movement 

network (Figure 3.1C). Two farms were considered “unreachable” if no path 

existed that connected the two farms during the infection window. Viable paths in 

the movement network must follow the directionality and the temporal sequence 

in which movements occurred. The Pearson’s correlation coefficient between ICL 

and MPL of each cluster was calculated. Since the farm-level R can be 

calculated only from direct farm-to-farm transmission, we assumed that direct 

farm-to-farm transmission had occurred in any case where the infection chain 

was shorter than the median of ICL at MPL of 1 (regardless of the presence of 

documented animal movement) and used the resulting farm-to-farm transmission 

events to create a farm-level transmission network. 

Considering uncertainties in the PRRSV generation time used to infer 

animal-level transmission and the length of time prior to sample collection that 

PRRSV-2 could be circulating in a farm, we performed two sensitivity analyses. 
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First, we re-specified the generation time to 11.6 and 17.4 days (plus and minus 

20% from the originally estimated 14.5 days). Second, we extended the infection 

window start-date to 3 and 6 months before the original window. This allows the 

farm to be infected earlier than the sample was collected. We then repeated all 

procedures for each setting. 

Farm-level R estimation 

All the farm-representative sample pairs that had infection chain lengths 

less than the threshold (median of ICL at MPL of 1) and sampling date interval 

less than 1 year were considered candidate transmission pairs for R estimation. 

In some cases, one recipient farm may have multiple potential sources of 

transmission present in the candidate list. Thus, for each recipient, we selected 

the single source with the shortest ICL as the most probable. Farm-level R 

values for different phylogenetic clusters and sensitivity analytic settings were 

then computed by counting the number of recipients per each source and 

summarized into descriptive statistics (Figure 3.1D). Details and code for our 

approaches are available at https://github.com/author’s identifier/FarmR. 
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Figure 3.1: Workflow of farm-to-farm network reconstruction and R estimation. 
The three biggest phylogenetic clusters of the lineage 1A PRRSV-2 were 
selected for the analysis (A). Each cluster’s ORF5 gene sequences were used to 
reconstruct the time resolved phylogenetic tree and transmission tree (B). Pig-to-
pig infection chains were extracted from the transmission tree then matched with 
animal movement data (C). Infection chain length was used to estimate direct 
farm-to-farm transmission links that were combined into a farm-level transmission 
network. Farm-level effective reproduction number (R) was calculated from the 
network (D). 
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Analysis of potential factors associated with farm-to-farm PRRSV-2 transmission. 

Farm-level metadata, including location and production type, were utilized 

to investigate potential modes of transmission between farms beyond animal 

movement. The distance between a pair of farms was calculated from their 

geographical coordinates. The approximate longest distance that viable PRRSV-

2 can be found in aerosols, 10 km (Arruda et al., 2019; Otake et al., 2010), was 

set as a threshold for classifying farms in close enough proximity for potential 

local-area spread. PRRSV-2 transmission through contaminated semen was 

presumed when a transmission pair contained boar-sow farms as the source-

recipient. Altogether, the mode of transmission for pairs that were not connected 

via animal movement was designated into the following non-mutually exclusive 

categories: farm proximity related factor, transmission by contaminated semen, 

and undetermined. Undetermined may include a wide variety of transmission 

modes for which we do not have data, such as movement of equipment, feed, 

and personnel. 

Farm-to-farm transmission pairs used for the R value calculation were 

transformed into directed transmission networks for each cluster. We applied 

multivariable exponential random graph models (ERGMs) to the networks to 

identify factors significantly associated with the occurrence of an inferred 

transmission link using the ergm 4.3.2 package in R (Hunter et al., 2008). 

ERGMs are a type of statistical regression that treat network topology as a 

response and edge/node attributes as predictors. The output of ERGMs includes 

the odds that a particular attribute influences the network structure. In our case, 

the analysis indicates which factor is significantly associated with the existence of 

a transmission link between two farms. The model was initially constructed with 

the best fit structural covariate (in-stars; frequency of star-like network structures 

in which several nodes connect to the same central node without connection with 

each other) that accounted for the underlying architecture of the directed 

network. Put simply, this was a baseline model that captures basic 
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characteristics of network structure but did not account for how node- or dyad-

level attributes influenced which nodes were connected. 

Additional node- or edge-level covariates were then added to the baseline 

model. Node-level covariates included a farm’s production type, herd size, 

season in which the sequence was sampled, farm density, and in- and out-

degree in the movement network. Sampling time was classified into season by 

month, i.e., winter (December to February), spring (March to May), summer 

(June to August), and fall (September to November). Farm density was 

summarized for a 10 km radius around each farm, and was computed from 

regional pig farms’ coordinates using the PointdensityP package (Evangelista & 

Beskow, 2019). In-degree and out-degree (number of farms that the focal farm 

received or sent animals to in a six month period) were computed using the 

igraph package (Csardi & Nepusz, 2006) from a 6-month period that was 

temporally matched with the sample. Six months was selected based on previous 

work demonstrating that degree metrics calculated in swine movement networks 

reach stability when six months of data are aggregated (Makau, Paploski, et al., 

2021). These node/edge attributes were incorporated into the model using 

several different ERGM terms. Categorical node-level covariates, such as 

production type and sampling season were incorporated with the terms 

nodefactor (e.g., some production types are generally more likely to form 

transmission links), nodematch (e.g., transmission links are more likely to be 

found between nodes with the same production type), and nodemix (e.g., 

accounting for differential frequencies with which transmission links form 

between farms of different production types). The absdiff (e.g., two farms with 

similar herd size are more likely to have transmission link) and nodecov (e.g., 

farms in higher density areas are more likely to form transmission links) terms 

were used for continuous node-level covariates. 

Three edge-level covariates were also included in the model: geodesic 

distance (km), MPL (steps in the movement network) between the sampled pair, 
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and sampling date interval (days). We calculated geodesic distance (km) using 

the geosphere package in R (Hijmans et al., 2019), then dichotomized using 10 

km as a cut-off value (0 = more than 10 km, 1= less than 10 km). Based on the 

distribution of MPL, we assigned MPLs of <=3 steps as possible movement 

connections (1), while >3 as not (0). Sampling date interval was included to 

control for temporality in the model (i.e., samples collected close in time were 

more likely to have short infection chain lengths and be linked in the transmission 

networks). The edgecov term (e.g., transmission links are more likely found 

between farms that have animal movement connections) was used for both 

categorical or continuous edge-level covariates. 

We performed an AIC-based stepwise approach to build multivariable 

ERGM models from all predictors. Coefficients (log-odds), probabilities (inverse 

logit), and p-values of predictors were reported from the most parsimonious 

model that was <2 delta-AIC from the model with the lowest AIC.  

3.3: Results 

Descriptive analysis and phylodynamics 

The three largest phylogenetic clusters of PRRSV-2 lineage 1A, denoted 

as cluster A (n = 96 sequences), B (n = 58 sequences), and C (n = 52 

sequences) were included in the analyses (Table 3.1 and Supplementary Figure 

S3.1). All three clusters contained sequences identified from farms that all 

belonged to a single production system. Pairwise genetic distance within each 

cluster was 1.6-1.8%, and the distance between clusters was >2.6%. An average 

of ~1.4 (SD: 0.85) ORF5 gene sequences were available from each farm that 

were part of clusters A-C. More than half of the samples were collected from sow 

herds, followed by nursery, finisher, and boar farms (Table 3.1). In three cases, 

serially collected samples from three farms were classified into different clusters. 

Maximum likelihood trees constructed for each cluster exhibited a strong 

temporal signal indicated by high correlation coefficients between root-to-tip 
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divergence and tip date, ranging from 0.73 to 0.79 with acceptable R-squared 

values (0.53-0.63). Based on inference from Bayesian time-scaled phylogenies, 

mean viral evolutionary rates were relatively consistent across three clusters 

(7.2-9.8 × 10−3 substitutions/site/year) and the time to the most recent common 

ancestors (tMRCA) for each cluster were in early 2014 (Table 3.1). The Bayesian 

Skyride analysis suggests that the effective viral population of clusters A and C 

sharply increased from mid-2014 until early 2015, then cluster C’s population 

decreased after summer 2015, whereas cluster A plateaued and decreased in 

late 2016. The effective population of Cluster B originally the smallest, but 

gradually rose starting early 2016 and was comparable to cluster A in late 2017 

(Figure 3.2B). 
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Table 3.1: Data structure, genetic relationship, temporal signal of the selected 
clusters’ ORF5 gene sequence samples, and key statistics from their time 
resolved phylogenetic trees. 

  
Cluster A Cluster B Cluster C 

Data description Number of samples 96 58 52 

Average pairwise identity (%) 98.2 98.4 98.5 

Bootstrap support at ancestral 

node (%) 

86.3 93.9 71.1 

Sampling date range 

(dd/MM/yyyy) 

18/6/2014 - 

28/11/2017 

3/12/2014 - 

29/12/2017 

18/6/2014 - 

27/9/2017 

Number of farms 72 42 36 

Number of sow farms (%) 41 (56.9%) * 22 (52.4%) * 18 (50%) 

Number of nursery farms (%) 16 (22.2%) ** 15 (35.7%) ** 9 (25%) 

Number of finishing farms (%) 13 (18.1%) 5 (11.9%) 7 (19.4%) 

Number of boar studs (%) 2 (2.8%) 0 (0%) 0 (0%) 

Number of unidentified farms 

(%) 

0 (0%) 0 (0%) 2 (5.6%) 

Temporal signal 

(Root-to-tip 

divergence ~ 

time) 

Correlation coefficient 0.78 0.73 0.79 

R2 0.61 0.53 0.63 

Bayesian timed 

phylogeny 

estimation 

Mean Rate 

(substitutions/site/year) 

7.20 × 10−3 7.25 × 10−3 9.82 × 10−3 

Mean tMRCA  2014.3 2014.5 2014.2 

95% HPD interval [2014.0, 2014.5] [2014.1, 2014.8] [2013.9, 2014.5] 

 

*Two sow farms submitted samples belonging to different clusters (A in 2015-2016 and B in 2017). 

**A nursery farm submitted samples belonging to different clusters (A in 2016-2017 and B in 2017). 

 

Inferred infection chains and animal movements 

Transmission tree analysis estimates the number of unsampled cases 

between a pair of samples, referred to as the infection chain length (ICL). 

Movement pathlength (MPL) is the shortest number of animal movement steps 

that corresponds to the sampled farms in the infection chain during the infection 

window (dates of sample A and B). Linear regression shows that ICL and MPL, 

combined across all clusters, were significantly correlated (R2=0.29, Pearson’s r 

= 0.53, p < 0.001), indicating that pairs of farms that were more distant to each 
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other in the movement network also had longer inferred infection chains. 

According to the sensitivity analysis that varied the assumed mean generation 

time and infection window length, this correlation was robust to uncertainties in 

the generation time and to extending the infection window used for calculating 

movement pathlengths (Supplementary Figure S3.2). Given that movement 

pathlengths of 1 represents “known” direct contact between farms, we assumed 

that direct farm-to-farm transmission was reasonably likely for any pair of farms 

where the number of pigs in an infection chain was less than median of ICL at 

MPL of 1. This threshold was applied to identify candidate transmission pairs 

across all pairs (regardless of presence of movement). Accordingly, the threshold 

ICL for farm-to-farm transmission for clusters A, B, and C were 35, 28, and 46 

pigs, respectively. 

Farm-level R and transmission events 

We were able to infer 80, 45, and 49 farm-to-farm transmission events in 

cluster A, B, and C, respectively. Farm-level effective reproduction numbers (R) 

were computed for each source farm that appeared in the list of candidate 

transmission pairs (events). Across all clusters, R had a median of 1, with 

interquartile ranges (IQR) of 1-2 for cluster A and B, and 1-2.5 for cluster C. This 

indicates that an infected farm typically infects 1 to 2 additional farms. The 

number of farms having R > 1 in cluster A, B, and C were 20, 10, and 12, 

respectively. The highest observed Rs for cluster A and C (R = 5) were all 

observed between February to March 2015, whereas the cluster B’s highest 

farm-level R (R = 4) was observed in March 2017 (Figure 3.2C). The median R 

did not change when the generation time and infection window for capturing time-

matched movements were varied, with the exception of one scenario for cluster 

C (generation time of 17.4 days and 3-6 months relaxed timeframes) for which 

the median R was 2 (Supplementary Figure S3.4). 
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Figure 3.2: PRRSV-2 dynamics of the three genetic clusters during 2014-2017. 
Number of ORF5 gene sequences submitted per month (A). Median effective 
viral population size with the 95% highest posterior density (HPD) estimated by 
Bayesian skyride analysis (B). Scatterplot of the effective reproductive number of 
individual farms, dated according to source farm’s sampling date, with LOESS 
curves overlayed to visualize temporal trends (C). 

 

Overall, over 80% of the farm-to-farm transmission events had no 

corresponding animal movement linking the two farms. For the events that were 

not linked by animal movements, 8.3 to 23.7% of the transmission events across 

clusters involved farms located less than 10 km apart, whereas the longest 

inferred transmission range was over 100 km for every cluster (Figure 3.3). Most 
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transmission events occurred between sow herds (32.7%) followed by sow-to-

nursery (13.8%) and nursery-to-sow (12.6%). Relative to the directionality of pig 

production flows (pigs move from sow farms to nurseries to finishing farms), the 

direction of transmission could be downstream (71.3%) or upstream (28.7%). 

Interestingly, two boar studs in cluster A had relatively high R (2 and 3), and the 

recipients were four different sow farms. The source of infection to these boar 

studs appeared to be sow and finishing farms. 

 

 

Figure 3.3: Spatial representation of the estimated transmission network of farm-
to-farm PRRSV-2 transmission from 2014-2017. Node color represents 
designated phylogenetic clusters (A to C). Node diameter size corresponds to an 
individual farm’s effective reproduction number (R). Edge color represents 
movement pathlengths (NM; No movement). Samples with unknown farm 
location (n = 6) were dropped from the network. 
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Factors associated with transmission.  

We created directed networks from inferred farm-to-farm transmission 

events, then fit exponential random graph models (ERGMs) (Hunter et al., 2008) 

to identify and measure factors associated with transmission links. Clusters A 

and B’s networks were explained by the same best-fit model, and Cluster C’s 

model differed by a single variable (Table 3.2). Our best-fit models suggest that 

farms within a 10 km radius of one another were >10 times less likely to have a 

transmission link (odds = 0.03-0.1) than farms located more than 10 km apart. 

The odds of having a transmission link increased by 22 (cluster A) to 37 times 

(cluster B) if there were animal movements (MPL 1 to 3 steps) between two 

farms. The log-odds of a transmission link decreased by 0 to 0.01 for each 

additional day of sampling date interval, meaning that the odds of two farms 

forming a transmission link was halved after ~70 days. Pairs of farms in areas 

with similar farm density had an increased log-odds of 0.02 for cluster A and 0.04 

for cluster B. Particularly for cluster A, transmission links were more likely (odds 

= 1.9) between farms whose samples were collected in different seasons (Table 

3.2). Multicollinearity among the predictors was not detected in any model 

according to the ERGMs’ variance inflation factor. 
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Table 3.2: ERGMs’ predictors of each cluster’s network with coefficients reported 
on the log-odds (odds) scale. 

 
Cluster A Cluster B Cluster C 

 
Coefficient SD P-value Coefficient SD P-value Coefficient SD P-value 

Structural term: In-stars -2.59 (0.08) 0.29 <0.001*** -2.10 (0.12) 0.45 <0.001*** -2.12 (0.12) 0.40 <0.001*** 

Animal movement (y/n) 3.10 (22.20) 0.41 <0.001*** 3.62 (37.34) 0.71 <0.001*** 1.42 (4.14) 0.79 0.074 

Farm proximity < 10 km (y/n) -2.42 (0.09) 0.34 <0.001*** -2.27 (0.10) 0.45 <0.001*** -3.41 (0.03) 0.56 <0.001*** 

Difference in farm densities 

surrounding the source / 

recipient farms (continuous) 

-0.02 (0.98) 0.01 0.029* -0.04 (0.96) 0.01 0.004** -0.02 (0.98) 0.01 0.055 

Sampling date interval (days) -0.01 (0.99) 0.00 <0.001*** -0.01 (0.99) 0.00 <0.001*** 0.00 (1.00) 0.00 <0.001*** 

Same sampling season (y/n) -0.66 (0.52) 0.33 0.049* 0.60 (1.82) 0.40 0.131 
   

Same Farm type (y/n)  
      

0.55 (1.73) 0.34 0.104 

 

3.4: Discussion 

In this study, we implemented novel integrative approaches that utilized 

routinely collected PRRSV-2 genetic sequences, animal movement records, and 

farm metadata to strengthen our ability to trace the spread of PRRSV-2 between 

farms. We used this approach to infer farm-to-farm transmission links, quantify 

the farm-to-farm transmissibility of the virus by estimating farm-level effective 

reproduction numbers, and identify factors associated with disease transmission. 

In summary, the analysis suggests that most infected farms transmitted the virus 

to one additional farm, though several potential super-spreader events (R 

substantially above 1) were observed. Our R value estimation, however, likely 

underestimated the true spread due to potential shortcomings associated with 

sequencing data generation. Although most transmission events could not be 

attributed directly to animal movement, movement was a crucial risk factor 

associated with between-farm transmission links. In addition, the odds of an 

inferred transmission link between two farms reduced by 50% by ~70 days after 

the sampling date (likely when the outbreak was recognized) at the source farm. 
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This suggests that most onward transmission from farms occurs within the first 

two months or so. 

Historically, restriction fragment length polymorphism (RFLP) typing, 

percent genetic distance comparisons, and phylogeographic reconstruction have 

been used to assess or track PRRSV spread in different situations (Alkhamis et 

al., 2017; J. Liu et al., 2021; Rosendal et al., 2014). The core principle of these 

analyses is an association between shared genotype or phylogenetic relatedness 

with other attributes of the farms that could help disentangle the likely route of 

transmission, such as measurable host contacts, spatial adjacencies, temporal 

continuity. Here, we further expand the concept by converting time-scaled 

phylogenies into high resolution transmission networks that infer who infected 

whom and how many animals were potentially involved in the infection chain 

between a pair of samples (based on the generation time and molecular clock of 

the virus). The estimated evolutionary rates and trends in viral population growth 

of the observed clusters are consistent with analysis of PRRSV-2 sub-lineage 

L1A drawn from nationwide ORF5 gene databases (7.62-7.72 × 10−3 

substitutions/site/year with the peak of population size in 2016) (Paploski et al., 

2021). In addition, the detection of multiple clusters through time on individual 

farms emphasizes the possible role of re-infection by closely related viral 

variants, which could potentially contribute to disease persistence at the local or 

regional scales. 

Pig-to-pig transmission networks, however, cannot be interpreted in the 

same manner as person-to-person transmission for a human disease (Hatherell 

et al., 2016) since pig populations are highly discretized into relatively 

homogenous sub-populations (i.e., farms). Indeed, between-farm rather than 

between-animal transmission is more important for understanding regional 

spread and pathogen persistence. To make sense of that, the animal-level 

network was transformed into the farm-level network, and time-matched animal 

movement data was used to inform the maximum length of animal-level infection 
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chains that would be consistent with direct farm-to-farm transmission (as 

opposed to longer infection chains that may be more likely to have passed 

through an unsampled intermediate farm). Many of the inferred transmission 

pairs had no recorded connections via animal movement, highlighting the fact 

that other transmission modes play a role in between-farm spread. We were 

limited by data availability on other transmission routes, and therefore we 

assumed that the infection chain lengths for other modes of transmission would 

be similar to that of animal movement mediated transmission, which is a 

limitation to our approach.  

Even though live animal movement within the study production systems 

was well-documented, most between-farm transmission events could not be 

explained by movement. This phenomenon possibly emerges for three reasons. 

First, live animal movement prior to an outbreak (particularly movements from a 

PRRS-positive farm) may be viewed as a “smoking gun” or a primary suspect for 

the route of disease introduction. In such cases, field veterinarians may not 

submit a sample for sequencing given that the source of outbreak appears 

obvious. Second, other undocumented transmission routes may be playing a 

substantial role in between-farm transmission. For example, while boar studs are 

seldom infected with PRRS, sequences associated with two outbreaks at boar 

studs had higher than average farm-level Rs. Sow farms were the recipients in all 

cases, likely suggesting transmission via contaminated semen. Other kinds of 

transport may also disseminate the virus, such as fomites transported by 

contaminated vehicles or equipment, between farms can contribute to long-

distance transmission (S. Dee et al., 2002; S. A. Dee et al., 2004). For example, 

our analysis suggests that the virus was transmitted from a positive nursery farm 

to a finishing farm (103 km apart) and then the recipient transmitted the virus 

back to the origin within a few months, but the matched movement event was 

only detected in the first event (nursery to finisher). The latter event is one of 

several inferred transmission links where the directionality is opposite to the 
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unidirectional flow of animals through farms typical of a vertically integrated pig 

production system (Lee et al., 2017; Passafaro et al., 2020) (Supplementary 

Figure 3.5). That being said, we cannot precisely conclude the contribution of 

each mode of transmission without a complete sequence database for all farms 

and concrete data associated with other transmission modes, such as semen 

samples and delivery history, all between-farm traffic records, or contemporary 

environmental samples.  

Our results indicate that PRRS outbreaks have a farm-level R of ~1. This 

finding is consistent with  previous estimations of R using PRRS incidence data 

throughout the U.S. from 2009 to 2016 (Arruda, Alkhamis, et al., 2017), though a 

seasonal pattern of super-spreader events (R > 1) was not clearly detected in our 

network. The timing of super-spreader events, however, was concurrent with the 

increases in the effective population size shown by the phylodynamic analysis 

and in disease incidence depicted by frequency of sample submission (Figure 

3.2A). Taken together, this suggest that expansions in regional transmission 

were at least partly coincident with super-spreader events as opposed to multiple 

one-to-one transmission events. More generally, applying our integrative 

approach can enhance disease monitoring efforts by providing fine-scale 

epidemiologic assessment such as estimating patterns of spread of PRRSV-2 

variants in a particular region or production system, or comparing between-farm 

transmissibility before and after control interventions. 

The sensitivity analysis showed that altering either the mean generation 

time and the timeframe for identifying time-matched movements only slightly 

affected the infection chain length used as a threshold for direct transmission 

(Supplementary Figure S3.3) and estimated farm-level R values (Supplementary 

Figure S3.4). This means, first, biological variation in animal-level factors that 

may influence generation time, such as host contact rates and host-pathogen 

interactions (Q. H. Liu et al., 2018), may not substantially contribute to variation 

in farm-level transmissibility. Second, while there was a concern that animal 



64 
 

movements that occurred prior to sample collection on the farm may allow for 

transmission beyond the infection window, our results from sensitivity analysis 

were not substantially altered by extending this timeframe to include movements 

that had occurred three to six months earlier than the original infection window. 

This is potentially because animal movements between specific pairs of farms 

often recur at regular intervals through time (Makau, Paploski, et al., 2021), such 

that few new and unique connections were identified by extending the infection 

window.  

Possible between-farm PRRSV transmission routes are well documented 

(Arruda et al., 2019; S. Dee et al., 2002; S. A. Dee et al., 2004; C. Nathues et al., 

2016; Thakur et al., 2015), but their contribution to the regional disease 

endemicity is somewhat vague. Our results further point towards animal 

movement as an important but not sole mode of transmission. The ERGM 

analysis highlights the role of animal movement as a primary risk factor for 

transmission (although the coefficient for animal movement in Cluster C was only 

trending towards significance). Once animals were shipped from an infected 

farm, the shipping destination’s risk of becoming infected is many folds higher 

than farms that do not receive animals from an infected source. We also 

hypothesized that local area spread of PRRSV-2 (less than 10 km) might explain 

some transmission events which animal movement cannot. Surprisingly, the 

network analysis revealed that a short distance between the pair of farms was a 

protective factor for the occurrence of a transmission event between farms. Apart 

from mechanical transmission routes such as infectious fomites or personnel 

sharing amongst neighbors, this result suggests that between farm PRRSV-2 

transmission rarely occurs via the airborne route, which agrees with the 

conclusions of the previous reviews and phylogeographic analysis (Arruda et al., 

2019; Makau, Alkhamis, et al., 2021).  

Albeit other predictors in the best fit ERGMs had statistically significant 

effects on the transmission networks, interpreting those in terms of mode of 
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transmission is challenging. High pig farm density has been underlined as a risk 

factor for PRRSV spread and persistence in several studies (Arruda, Vilalta, et 

al., 2017; Jara et al., 2021; Makau, Alkhamis, et al., 2021). Our model suggests 

that a pair of farms located in areas with similar density are more likely to 

transmit the virus to one another. Though it is unclear, one plausible explanation 

is if farm density represents an aspect of biosecurity investment. Locations in low 

density areas are often chosen for farms where biosecurity may be of particular 

importance, such as nucleus, multipliers, breeding herds, and boar studs, 

whereas there is often less investment in biosecurity at farms in higher density 

areas. Exclusively for cluster A, farm pairs sampling the virus in different seasons 

were significantly associated with the transmission link. This could be perhaps a 

function of the time of year (fall to winter) when disease incidence was primarily 

increasing (Trevisan et al., 2020). That being said, we do not have a good 

explanation for all the associations documented by our model, and it perhaps 

may be an artifact of an undocumented confounding factor.  

We also found that transmission links were more likely if the time interval 

between samples was shorter. We included this factor to account for the 

temporality in epidemiological process. However, the results also provide insights 

into the farm-level generation time (i.e., the lapse of time between the primary 

and a secondary farm involved in a transmission pair), assuming that sample 

collection dates are at least somewhat aligned to disease detection dates. The 

results of the ERGM suggest that the likelihood of such onward transmission is 

drastically reduced after approximately two months, even though the average 

sow farm takes 6-10 months to bring an outbreak under control (Linhares et al., 

2014; Sanhueza et al., 2019). This would make intuitive sense if between-farm 

transmission is correlated with prevalence or shedding on a farm, both of which 

would likely decrease after the initial acute phase of an outbreak. Such 

information may be useful in managing and mitigating the risk posed to other 

farms by farms experiencing PRRSV-2 outbreaks. 
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While these findings provide a unique window into the dynamics of 

between-farm PRRSV-2 transmission, one limitation of the analysis is that it 

focused on the voluntarily submitted ORF5 gene of a specific sub-lineage within 

a single, albeit large, swine producing region in the U.S., and we do not know the 

extent to which results can be generalized to other circulating PRRSV-2 variants 

or to other regions or countries that may have distinct farming practices. In 

addition, although we cannot fully elucidate PRRSV-2 evolutionary dynamics 

without full length genomes, genetic variation and phylogenies estimated from 

the ORF5 gene can yield comparable results when compared to genomic-level 

analysis (Frias-De-Diego et al., 2021) and constraining the analysis to highly 

related genetic variants (>98% pairwise identity) decreases the likelihood that 

evolutionary analyses would be confounded by recombination. 

Although this study fully focused on PRRS epidemiology, the approach we 

designed can be applied to assess other infectious disease transmissions 

comparable to our context. Swine pathogens with genetic marker that represents 

their evolution, such as HA and NA genes of swine influenza virus, spike (S) 

gene of porcine epidemic diarrhea virus, or whole genome sequence of African 

swine fever virus, likely fit with our analysis since they are or will be circulating in 

the same farming system as PRRSV-2. Our principle that estimates the 

transmission between units (farms) comprising a group individuals (animals) can 

also be extended to analyze the potential transmission risks of other livestock or 

even human diseases if the unit, between-unit connection (animal movement in 

our case), and transmission routes are clearly defined. 

Although the primary focus of this study was on PRRS epidemiology, the 

approach we devised has broader applicability and can be effectively employed 

to assess comparable infectious disease transmissions in similar contexts. Swine 

pathogens harboring genetic markers indicative of their evolution, such as the HA 

and NA genes of the swine influenza virus, the spike (S) gene of the porcine 

epidemic diarrhea virus, or the whole genome of the African swine fever virus, 
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are likely compatible with our analytical framework, as they either circulate or are 

anticipated to emerge within the same farming system as PRRSV-2. Moreover, 

our fundamental principle, which estimates transmission between units (farms) 

comprising groups of individuals (animals), can be readily extended to evaluate 

the potential transmission risks of other livestock diseases or even human 

diseases, provided that the units, between-unit connections (as exemplified by 

animal movement in our case), and transmission routes are clearly defined. 

The phylogenetic clusters outlined in this chapter exemplify a PRRSV-2 

variant that successfully emerged and spread within a specific region over a 

defined period. Moving forward to the next chapter, the study identifies hundreds 

of similar emerging variants across the U.S. by systematically analyzing a 

decade's worth of PRRS monitoring data. Moreover, the study suggests that the 

phylogenetic attributes of PRRSV-2 ORF5 gene could serve as an early indicator 

for the potential emergence of new variants through predictive modeling. 
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3.5: Supplementary Materials 

 

Supplementary Figure S3.1: Maximum likelihood tree of 943 ORF5 gene 
sequences collected from 651 farms between 2014 – 2017. Tips were colored 
based on phylogenetic clusters defined by clade support > 70% and maximum 
within group genetic distance < 4.5%. The largest three clusters (A to C) used in 
this study were framed in bold black rectangle. 
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Supplementary Figure S3.2: Sensitivity analysis of the correlation between 
infection chain length (ICL) and movement pathlength (MPL) of all clusters varied 
by PRRS mean generation time (Tgen); 11.6, 14.5, and 17.4 days, and the time 
frame for capturing matched animal movement events; strict (onset to terminus of 
an inferred infection chain), relax3m (3 months prior to the onset to terminus), 
relax6m (6 months prior to the onset to terminus). 
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Supplementary Figure S3.3: Infection chain length (ICL) at movement pathlength 
(MPL) of 1 of each cluster (A to C) varied by PRRS mean generation time (Tgen); 
11.6, 14.5, and 17.4 days, and the time frame for capturing matched animal 
movement events; strict (onset to terminus of an inferred infection chain), 
relax3m (3 months prior to the onset to terminus), relax6m (6 months prior to the 
onset to terminus). 

 

 

Supplementary Figure S3.4: Farm-level effective reproduction number (R) of 
each cluster (A to C) varied by PRRS mean generation time (Tgen); 11.6, 14.5, 
and 17.4 days, and the time frame for capturing matched animal movement 
events; strict (onset to terminus of an inferred infection chain), relax3m (3 months 
prior to the onset to terminus), relax6m (6 months prior to the onset to terminus). 
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Supplement Figure S3.5: Monthly animal movement among pig sites in the study 
production system from January 2014 to December 2017. (Box) The number in 
parentheses beneath production type represents the mean proportion of active 
sites. (Arrow) The arrow thickness and the number within the arrow demonstrate 
the mean number of monthly shipments with the mean number of pigs in 
parentheses. The directions of movement in comparison to the production flow 
are represented by arrow’s color (Blue; toward the flow, Black; against the flow or 
movement to the same production type) 
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“The Prophecy of Variant Awakening” 

Chapter 4: Predicting PRRSV-2 Emergence Potential through Phylogenetic 

Inference. 

Material adapted from a manuscript prepared for Transboundary and Emerging 

Diseases 

Predicting Potential PRRSV-2 Variant Emergence Through Phylogenetic 

Inference. 

Nakarin Pamornchainavakul, Mariana Kikuti, Igor A. D. Paploski, Cesar A. Corzo, 

and Kimberly VanderWaal 

4.1: Introduction 

Infectious disease emergence and re-emergence has posed significant 

challenges to human well-being over the centuries. Despite advancements in 

technology, the ability to preemptively prepare for such unexpected events 

remains limited unless there is a high degree of emergence predictability. These 

threats extend beyond human and zoonotic diseases that directly impact human 

health; they also include livestock diseases that undermine food security. Today, 

PRRSV is endemic in swine herds worldwide (Valdes-Donoso & Jarvis, 2022) 

and remains a significant concern due to its enormous economic consequences 

(Holtkamp et al., 2013; Lunney et al., 2010; H. Nathues et al., 2017; Neumann et 

al., 2005). PRRSV genetic variants involved in contemporary outbreaks are 

distinct from the early virus (Paploski et al., 2021), reflecting the rapid mutation 

rate of the virus (Hanada et al., 2005). Some of these variants have been 

associated with distinct virulence or epidemic characteristics, presenting atypical 

clinical manifestations (Ruedas-Torres et al., 2021) or increased disease 

spreadability (Kikuti, Paploski, et al., 2021). 

As shown in Chapters 2 and 3, the PRRSV-2 viral population is 

characterized by co-circulation and turnover of distinct genetic variants, and the 
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routine emergence and epidemic-like spread of novel variants across space and 

time (Pamornchainavakul, Makau, et al., 2023; Pamornchainavakul, Paploski, et 

al., 2023; Paploski et al., 2021). The genetic relationship between viral clades, as 

demonstrated through ORF5 gene phylogenies, generally reflects overall 

genome-level relationships, particularly in cases where recombination is absent 

within a given set of samples (Frias-De-Diego et al., 2021; Pamornchainavakul et 

al., 2022). Over time, the operational taxonomic unit (OTU) of ORF5 gene has 

undergone revisions in its classification methodology, transitioning from 

restriction fragment length polymorphism (RFLP) patterns (Wesley et al., 1998) 

to lineage and sub-lineage classification based on phylogenetic analysis 

(Paploski et al., 2019, 2021; Shi, Lam, Hon, Murtaugh, et al., 2010). Sub-

lineages constitute the smallest phylogeny-based OTU, with typically less than 

8.5% nucleotide dissimilarity within the group (Paploski et al., 2019, 2021), and 

are made up of finer-scale genetic clades, here referred to as “variants,” that 

potentially exhibit heterogeneous virulence or epidemiological impacts (Kikuti, 

Paploski, et al., 2021; Pamornchainavakul et al., 2022). 

In addition to implementing biosecurity measures, vaccination plays a 

crucial role in mitigating clinical PRRS outbreaks on farms that have tested 

positive for the virus (Holtkamp et al., 2011; The OIE AD HOC group on porcine 

reproductive respiratory syndrome, 2008). While the precise mechanisms of 

immunity against PRRSV, particularly regarding neutralizing antibodies, have yet 

to be fully understood (Murtaugh & Genzow, 2011; Nan et al., 2017), the genetic 

diversity within epitopes found on GP5 is recognized as a factor influencing 

immunological cross-protection. Consequently, in the past decade, there has 

been a growing trend for selecting virus strains for immunization that are either 

homologous or genetically more similar to field strains. Examples include the use 

of field viruses as autogenous inoculums to homogenize immunity within a herd 

(so-called live virus inoculation), the development of new commercial vaccines 

that are based on the currently most prevalent phylogenetic lineages (Chamba et 
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al., 2019; P. E. Yeske et al., 2021), and the use of killed vaccines matched to the 

amino acid sequence of particular epitopes (DeBuse, 2010). However, the 

effectiveness of using a “homologous” vaccine to confer optimal protection 

remains a topic of debate (Charerntantanakul, 2012; X. Li et al., 2014; Murtaugh 

& Genzow, 2011; Nan et al., 2017; Proctor et al., 2022; Roca et al., 2012), but 

one key challenge for such approaches is the continual emergence of new 

genetic variants (Paules et al., 2019; Wei et al., 2020). 

Efforts to predict viral strain emergence have been successfully developed 

for certain human contagious diseases, with the aim of minimizing future 

outbreaks through informed vaccine strain selection. One pioneering example is 

the prediction of human seasonal influenza, where the fitness of different genetic 

variants is inferred from the branching patterns of each node on a phylogenetic 

tree—a metric known as the local branching index (LBI) (Neher et al., 2014a). 

Subsequent advancements have enhanced short-term prediction accuracy by 

incorporating LBI with tree shape and epitope features (Hayati et al., 2020). More 

recently, it has become possible to predict emergence of SARS-CoV-2 lineages 

by evaluating key amino acid substitutions and spatio-temporal prevalence data 

from millions of genomes, without the need for complete phylogenetic tree 

reconstruction (Obermeyer et al., 2022). Surprisingly, such informative prediction 

techniques have not been explored for PRRSV-2, despite the continuous 

generation of large amounts of genetic data and corresponding metadata through 

ongoing monitoring and surveillance. In this study, we leveraged a decade's 

worth of PRRSV-2 ORF5 gene sequences from one of the largest swine disease 

monitoring databases in the United States. Our objective was to systematically 

classify PRRSV-2 variants, assess their epidemiologic success over time in 

respect to population growth, geographic expansion, and genetic diversification, 

and develop predictive models that can be used to estimate a variant’s future 

emergence potential. By identifying variants of interest at a particular point of 
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time, our proposed model offers a proactive approach and provides an additional 

tool for achieving more precise PRRS control. 

4.2: Materials and Methods 

Data 

PRRSV-2 ORF5 gene sequences collected from January 1, 2010, to June 

30, 2021, were obtained from the Morrison Swine Health Monitoring Project 

(MSHMP), which is an ongoing monitoring program that archives, analyzes, and 

reports data related to major swine diseases. MSHMP monitors over 50% of the 

U.S sow population, and curates all PRRSV ORF5 gene sequences generated 

by MSHMP participants. Sequences are obtained directly from participants or 

from the main veterinary diagnostic laboratories where participants typically 

submit their diagnostic samples (University of Minnesota, Iowa State University, 

South Dakota State University, and Kansas State University). In U.S. swine 

production systems participating in MSHMP, ORF5 gene sequence data is 

typically generated when field veterinarians request ORF5 gene sequencing after 

confirmation of a PRRS outbreak by RT-PCR; often, sequences are generated 

for nearly every outbreak occurring on breeding farms within a production 

system. The phylogenetic lineage or sub-lineage of each sequence was 

subsequently determined based on its pairwise nucleotide distance to the 

reference sequences for each lineage (Paploski et al., 2019, 2021). Lineage 1 

(L1) has been a predominant group of PRRSV-2 circulating in the U.S. during the 

recent decade (Pamornchainavakul, Paploski, et al., 2023; Paploski et al., 2019, 

2021). The second and the third most common groups, namely L5 and L8, were 

largely associated with commonly used live attenuated vaccine strains (Cheng et 

al., 2022; Trevisan et al., 2022; Kikuti, Sanhueza, et al., 2021; Paploski et al., 

2019). Hence, we used only L1 ORF5 gene sequences for the analysis of 

PRRSV-2 genetic variants. For this study, 20,700 complete length (603 

nucleotides) L1 ORF5 gene sequences were compiled and then aligned using 
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the local alignment method in MAFFT v.7.310 (Katoh, 2002). All sequences had 

sampling date information and most sequences had corresponding spatial 

metadata including the US state (74.8% of all sequences) and county (66.2% of 

all sequences) (Supplementary Figure S4.1). 

Phylogenetic reconstruction and variant assignment 

Our goal was to identify early phylogenetic indicators that were predictive 

of a genetic variant’s future epidemiological success (see below for metrics of 

success). Therefore, we approached this analysis by defining a series of sliding 

windows (Figure 4.1A) over which to quantify early indicators, and then correlate 

these indicators to the variant’s future success in a follow-up period of time. The 

ORF5 gene alignment was used to reconstruct retrospective phylogenies across 

different windows of time. For each observation time (t), set as every six months 

starting from 1st January 2011 to 1st July 2020, we built two sets of “pre-trees” 

(time-scaled phylogenetic trees of sequences collected within the previous 12 or 

24 months before time t) and four sets of “post-trees” (time-scaled trees created 

from the same sets of sequences in the pre-trees plus sequences collected 

within the following 12 or 24 months after time t) (Figure 4.1A – B). Some trees at 

the beginning and the end of the study period could not be built due to truncation 

of sequences 24 months before or after time t. From resampled alignments 

generated by PHYLIP’s Seqboot v.3.69 (Felsenstein, 2009), each tree was 

initially built by FastTree v.2.1.10 (Price et al., 2010) using the maximum 

likelihood (ML) method, the GTR + CAT substitution model (generalized time-

reversible with each site’s rate approximation), and 100 bootstrap replicates. The 

ML tree bootstrap clade supports were then converted into the transfer bootstrap 

expectation (TBE) using BOOSTER v.0.1.1 (Lemoine et al., 2018), as transfer 

bootstraps typically yield better results for phylogenetic analyses with large 

datasets and rapidly evolving viruses (Lemoine et al., 2018). We defined 

PRRSV-2 variants based on the patristic distance, i.e., the sum of the shortest 

branch length connecting two taxa on the tree. The “Avg Clade” method of 
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TreeCluster v.1.0.3 (Balaban et al., 2019) was applied to each ML tree, which 

classified sequences into variants where a variant was defined as a monophyletic 

clade with an average pairwise patristic distance of <2% regardless of the clade 

support (Figure 4.1C). Using TreeTime v.0.9.2 (Sagulenko et al., 2018), branch 

lengths in each ML tree were re-estimated to generate two time-scaled 

phylogenetic trees, one tree using the default strict molecular clock model with 

highly diverging tips pruned and the other tree using the uncorrelated relaxed 

clock model without tree pruning. The highly diverging tips are tips for which 

residuals exceed four interquartile distances of the residual distribution in the 

least-square root-to-tip distance versus sampling date regression (Sagulenko et 

al., 2018).  

Early indicators 

The early indicators, which were considered as potential parameters in the 

predictive model, were either retrieved or calculated from the set of pre-trees 

(Figure 4.1C). First, we located the most recent common ancestor (MRCA) of 

each variant on the tree (i.e., variant’s ancestral node and branch) using 

Biopython v.1.81’s Bio.Phylo toolkit (Talevich et al., 2012) in Python (Van 

Rossum et al., 2009). Thereafter, we calculated four key categories of 

parameters related to the variant’s ancestor, including ancestral branch length, 

local branching index (LBI), nucleotide substitution rate, and putative antigenic 

distinctiveness from contemporary most-prevalent variants. The ancestral branch 

length is a length of branch from the ancestral node to the closest deeper node in 

the original ML tree, and thus provides a metric of genetic divergence from other 

sequences in the tree. LBI is the sum of the tree length in each node’s 

neighborhood, exponentially weighted by distance from the focal node (Neher et 

al., 2014b). Using Nextstrain’s “augur lbi” command (Hadfield et al., 2018; Neher 

et al., 2014b), the LBI of each variants’ ancestral node (ancestral LBI) was 

computed from the strict clock time-scaled tree with the tau (τ) parameter, which 

controls the size of neighborhood measured in units of the average pairwise 
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distance in the samples (Neher et al., 2014b), equal to 0.0625 times the average 

pairwise patristic distance of each particular tree, as recommended by Neher et 

al., 2014 (Neher et al., 2014b). Average pairwise patristic distance was 

calculated by “cophenetic.phylo” function in R’s ape v.5.6.2 (Paradis & Schliep, 

2019; R Core Team, 2019). Nucleotide substitution rates for each variants’ 

ancestral branch (ancestral rate) were extracted from the relaxed clock time-

scaled trees. We also averaged the substitution rates across all branches within 

a variant’s clade (average clade rate). Lastly, putative antigenic distinctiveness of 

each variant was measured in two ways based on the variant’s ancestral GP5 

sequence (translated ORF5 amino acid sequence), with the hypothesis that 

variant’s whose sequences differ in antigenically relevant ways from the most 

prevalent variants at the time may be better able to escape population immunity 

present against those more prevalent variants. A variant’s ancestral sequence 

was inferred as part of the relaxed clock time-scaled tree building using the 

“ancestral” function in TreeTime v.0.9.2 (Sagulenko et al., 2018). Putative 

antigenic distinctiveness was measured as (1) ancestral amino acid distance—a 

pairwise amino acid distance (“dist.aa” function in R’s ape v.5.6.2) (Paradis & 

Schliep, 2019; R Core Team, 2019) between the ancestral GP5 to the consensus 

GP5 from all samples collected in the same calendar year, and (2) ancestral N-

glycosylation pattern similarity—Jaccard similarity between potential N-

glycosylation sites (positions having N-X-S/T sequons) (Gavel & Heijne, 1990) on 

the ancestral GP5 and the most frequent N-glycosylation pattern found in all 

samples of the recent calendar year. The Jaccard index ranges between 0 and 1, 

with lower values indicating fewer N-glycosylation sites in common and putatively 

greater antigenic dissimilarity. In total, these six parameters were considered as 

candidate early indicators. 

Measures of success 

For any given timepoint, the pre- and post-trees constituted separate 

phylogenetic reconstructions, so the first step of measuring success in the post-
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tree was to identify the clade that corresponded to variants identified on the pre-

tree. Because phylogenetic construction is an imperfect best-estimate of true 

underlying evolutionary relationships, topological differences between the pre- 

and post-tree meant that not all variant’s present in the pre-tree were readily 

identifiable as monophyletic clades in the post-tree. We considered a pre- and 

post-tree variant to be matched if their members (i.e., the sequences present in 

both the pre- and post-tree analyses) were highly overlapping (>75% Jaccard 

similarity, indicating that 75% of sequence pairs belonged to the same variant in 

both the pre- and post-tree analyses). 

Success of a variant was estimated from the new descendants of a variant 

in the post-tree and was characterized across three aspects—population 

expansion, spatial distribution, and genetic diversity (Figure 4.1D). We quantified 

population expansion of each variant by computing the absolute and relative 

increases in number of taxa from the pre- to post-tree. Spatial distribution of the 

variant was also estimated as the absolute and relative increases in number of 

states, and number of counties, in which the variant was detected. Additionally, 

pairwise geographical distance between county centroids were calculated 

between sequences belonging to the same variant. The maximum pairwise 

distance (as well as the 95th percentile to mitigate the effect of outliers) was 

extracted to approximate the geographic range of a variant in each pre- and post-

tree. To measure changes in geographic extent, the absolute and relative 

increases of pairwise county distance (based on either the maximum or 95th 

percentile) was calculated for each post-tree variant compared to its geographic 

extent based on the original members from the pre-tree. Genetic diversity was 

measured as pairwise nucleotide distance (“dist.dna” function with K80 

evolutionary model in R’s ape v.5.6.2) (Paradis & Schliep, 2019; R Core Team, 

2019) amongst all members of a variant, and the 95th percentile was used as the 

representative nucleotide distance of the variant (e.g., 95% of sequences 

belonging to a variant have a nucleotide distance of less that x distance). Then, 
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the absolute and relative increases in nucleotide distance were calculated 

between the pre- and post-tree. In total, 12 features were considered as potential 

measures of variant success. 

 

 

Figure 4.1: Conceptual framework of data generation for systematic predictive 
modeling. (A) Temporal distribution of PRRSV-2 L1 ORF5 gene sequences. As 
an example, observation time (t) is shown in July 2011 (vertical arrow) with its 
corresponding pre-tree (purple bars) and post-tree (purple and grey bars) 
periods. (B) Example pre- and post- timed phylogenetic trees inferred from 
sequencing data presented in plot A. Tips in purple show sequences from the 
pre-tree that are present in both post-trees. (C) Information computed in an 
example pre-tree, including designated variants (colored rectangle frames) and 
early indicators (red circle shows the ancestral node of the blue variant). (D) 
Success measures (colored oblong shape) calculated from variants’ new 
descendants in the post-tree. 
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Predictive modeling 

For each of four scenarios (12 or 24 months before and after t), a matrix of 

Spearman’s correlation coefficients (ρ) was computed and visualized between all 

six early indicator candidates, using “ggpairs” function from the R’s GGally 

v.2.2.0 and ggplot2 v.3.4.3 packages (Ginestet, 2011; Schloerke et al., 2022), to 

assess collinearity given that multivariable models can be severely impacted at 

collinearity of |ρ| > 0.7 (Dormann et al., 2013). All possible sets of non-collinear 

candidates were used as predictor variables. Given that successful variants 

appeared to be rare (early data exploration showed that the distribution of 

success metrics was highly right skewed), and because the numerical range of 

success metrics likely varied depending on the size of phylogenetic tree at 

different periods of time, a matched case-control study was applied using the 

observation time (t) of each scenario as a matched set (stratum). For each of 12 

measures of success, variants whose success measure fell in the top 95th 

percentile were classified as a successful variants or “cases”, whereas variants in 

the lower 75th percentile were classified as non-successful variants or “controls”. 

Three controls were randomly selected from the same pre-tree for every case. 

Using “clogit” function in the survival package v.3.5.0 in R (Gail et al., 1981; R 

Core Team, 2019; Therneau, 2021), we fitted conditional logistic regression 

models on the training dataset using the first eight years (2011 – 2018) or 

approximately 80% of the data. Cases and controls selected from the last two 

years (2019 – 2020) of the data were used as a test set to validate the predictive 

model performance. To perform prediction on the test set, as described 

elsewhere, we first derived the average threshold value for each predictor that 

minimized misclassification rate in the training dataset, and these values were 

used to generate predictions for the test dataset (Reid & Tibshirani, 2014). 

Amongst choices of models that differ by set of predictors (early 

indicators), response variables (measure of success), and scenario (length of 

time periods considered), only the models from the training set that had p-values 
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<0.05 for likelihood ratio tests were kept for further assessment, indicating that 

these models performed significantly better than a null model. For each aspect 

(population growth, geographic extent, and genetic diversification) and each 

follow-up period (short- versus long-term success [12 vs 24 months]), we 

selected the measure of success for each aspect that has the highest 

performance, as measured by mean concordance, (i.e., analogous to area under 

the ROC curve (AUC) for binary responses(Carrington et al., 2020)), based on 

the model fitted on the training set and the highest mean balanced accuracy 

based on the prediction on the test set. Then, we selected the n-month pre-tree 

model that maximized concordance and balanced accuracy for each n-month 

post-tree and selected measure of success. Coefficients, odds ratio, and p-

values of each predictor in the final models, and model performance including 

sensitivity (SE), specificity (SP), positive predictive value (PPV), negative 

predictive value (NPV), F1-score and balanced accuracy (BA) on the test sets 

were reported. Furthermore, we applied these final models to predict the success 

of all observed variants (the full dataset) at each time point, aiming to evaluate 

the predictive performance on the data beyond the scope of the matched case-

control design. 

4.3: Results 

A total of 74 unique sets of time-scaled phylogenetic trees with a median 

size of 4,247.5 (IQR = 2,688 – 6,712.75) taxa were reconstructed to obtain the 

pre-trees and the post-trees at each 6-month window observation time (t) 

throughout 2011 – 2020 for all four scenarios (12 or 24 months before and after 

t). Classified by 2% average pairwise patristic distance, the median number of 

variants per tree was 151 (IQR = 96 – 204), the median size of a variant was 12 

(IQR = 5 – 30) taxa per variant, and the median bootstrap clade support of 

variant in all trees was 84% (IQR = 63 – 97). Only 58% of all the pre-tree variants 

could be matched (>75% Jaccard similarity between variants’ members) with a 

post-tree variant. The number of matched variants varied from 53% to 63% of the 
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total pre-tree variants for each scenario. According to Welch two sample t-test, 

the bootstrap clade support of pre-tree variants with post-tree matches [mean = 

85 (IQR = 80 – 100) %] was significantly higher (p <0.001) than that of the 

unmatched variants [mean = 68 (IQR = 51 – 89)%]. An average of 11.7, 24.8, 

5.3, and 13.9% of the total post-tree variants were new variants (no tips derived 

from the pre-tree period) for the 12-t-12, 12-t-24, 24-t-12, and 24-t-24 scenarios, 

respectively. 

The candidate early indicators of variant success were obtained from the 

pre-tree variants’ ancestral nodes (branch length, LBI, substitution rate, amino 

acid distance, and N-glycosylation similarity) and the whole variant clade 

(average clade rate). LBI was the only parameter that could not be computed for 

all ancestral nodes due to excessive branch length (higher than four interquartile 

distances from the clock model regression) in several time-scaled trees. We thus 

computed LBI only from the time-scaled trees for which the problematic branches 

were pruned. This resulted in a small proportion of variants (1.1% of all 4,323 

matched variants) sharing the same ancestral LBI because their ancestral nodes 

were collapsed together during the tree pruning step. Amongst all six candidate 

indicators, severe collinearity (|ρ| > 0.7) was only detected between ancestral 

rate and average clade rate in the overall data and in every scenario (Figure 4.2). 

Therefore, two models were separately fitted for each measure of success 

(response) from the remaining four candidate predictors plus either ancestral rate 

or average clade rate. 
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Figure 4.2: Matrix of Spearman’s correlation coefficients (ρ) between all 
candidate early indicators for the overall data and each prediction scenario data 
with background color corresponding to the strength of correlation from 1 (red) to 
-1 (blue) (upper panel), their data density plots (diagonal), and bivariate 
scatterplots colored by the scenario with LOESS curves fitted (red line) and 
associated 95% confidence intervals (grey polygon) (lower panel). 

 

Three aspects of variant success, comprising population expansion, 

spatial distribution, and genetic diversification, were calculated as absolute or 

relative increases of the measures when comparing between the matched post- 
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and pre-tree variants. Although we did control for impact of tree size or time on 

measures of success (e.g., time periods with greater sequencing effort could 

influence how many additional taxa a variant could increase by in the post-tree) 

by using a matched case-control design combined with a conditional logistic 

regression, the numerical distribution of success metrics were relatively 

consistent through time and even across different scenarios for most measures 

of success. For population expansion, the successful post-tree variants were 

typically at least twice the size of the original pre-tree variant [median relative 

increase in number of taxa = 400% (IQR = 283.3 – 804.7)] or had at least 20 

more taxa than the pre-tree variant [median absolute increase in number of taxa 

= 70 (IQR = 44.5 – 112.5)] (Figure 4.3A). For genetic diversification, successful 

variants increased in their genetic diversity from the pre- to -post tree by the 

median distance of 0.01 (IQR = 0.008 – 0.018) or one site per 100 nucleotides, 

while the diversity of non-successful variants decreased by the median of 0.004 

(IQR = 0.002 – 0.009) or 0.4 site per 100 nucleotides (Figure 4.3A). Geographic 

expansion metrics (except for number of states) were also well stratified between 

successful and non-successful variants, particularly when considering measures 

based on estimated geographical distance; successful variants often doubled 

their geographic extent, with distances increasing by up to 1000 km or more, 

whereas non-successful variants frequently displayed no increase whatsoever 

(Figure 4.3B). Such a high increase in geographic extent likely implies that 

successful variants are ones that have jumped between major swine producing 

regions (Pamornchainavakul, Paploski, et al., 2023). 

A Venn diagram visualized by the R’s Vennerable v.3.0 package (Swinton, 

2023) was used to tabulate the number of variants that achieved success in one 

or more of the population, geographic, or genetic diversification aspects (Figure 

4.3C). Interestingly, across scenarios, more than half (53 – 67%) of the 

successful variants in the population aspect (based on any of the population 

measures) were also successful based on their geographic dispersion. In 
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contrast, 48 – 60% of the successful variants based on genetic diversification did 

not successfully expand geographically or population-wise. Only 3 – 5% of 

successful variants achieved “success” across all three aspects. With that being 

said, most variants were not successful in any aspects (68 – 74%) or in only one 

aspect (17 – 23%) (Figure 4.3C). 

 

 

Figure 4.3: Aspects of success, success measures, and distribution of values for 
success vs. unsuccess of each measure. (A) Distribution of success metrics for 
population expansion (orange) and genetic diversity (green). (B) Distribution of 
success metrics for spatial distribution (blue). (C) Venn diagrams tabulating the 
number of variants that achieved success in one or more of the population, 
geographic, or genetic diversification aspects (not including success in relative 
increase in number of states). 
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Across the different combinations of candidate early indicators, measures 

of success, and temporal scenarios, 96 conditional logistic regression models 

were fitted on the training datasets. Only 41 models were considered significantly 

better than a null model (p < 0.05) based on the likelihood ratio test. From these 

models, we chose to perform subsequent predictive modeling on the success 

measures of that yielded the highest mean concordance (model fitting on the 

training set) and balanced accuracy (prediction on the test set, i.e., 2019 – 2020 

data) for population expansion, spatial distribution, and genetic diversification. 

For population expansion, spatial distribution, and genetic diversification, the 

selected success measures were absolute increase in number of taxa 

(AbIn.Taxa), relative increase in maximum between-county geodesic distance 

(ReIn.MaxCounty.Dist), and absolute increase in 95th percentile pairwise 

nucleotide distance (AbIn.95Nt.Dist), respectively. According to the concordance 

and balanced accuracy metrics, utilizing data from the previous 12 months 

provided the overall most accurate predictions for all the selected successes in 

the subsequent 12 months. Similarly, using the data from the previous 24 months 

generally yielded the highest predictive performance for most successes in the 

following 24 months, except for the model predicting the ReIn.MaxCounty.Dist 

which had better performance when trained and tested on the previous 12 

months of data to predict outcomes in the subsequent 24 months (Table 4.1). 

Thus, of all model’s fitted as part of this analysis, six models are presented in 

Table 4.1, focusing on the three selected success metrics and primarily the 12-t-

12 short-term and 24-t-24 long-term scenarios. Across these models, 

concordance for the training data was > 0.7 in all cases and balanced accuracy 

for predictions on new data ranged from 0.58 to 0.79. Predictive performance of 

other models was not as high. 

The multivariate conditional logistic regression analysis showed that only 

one or two predictors out of the five examined were significantly associated (p < 

0.05) with success in each model. Raw odds ratios are based on a 1 unit change 
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in the predictor variable, whereas the entire range of many of our variables was 

far less than one. To make odds ratios more interpretable based on the observed 

range of each predictor, we calculated an adjusted odds ratio based on upper 

and lower quartiles of each predictor in the training data, while keeping other 

predictors constant. This can be interpreted as how many more times a variant is 

to be successful when moving from the first to the third quartile values of an early 

indicator variable. For population expansion, variants in the upper quartile for 

ancestral LBI had approximately 12 – 13 times higher odds of being successful 

(AbIn.Taxa > 20 or having at least 20 more taxa in the follow-up period) in the 

next 12 or 24 months compared to variants in the lower quartile. 

Regarding spatial distribution, variants with slower ancestral substitution 

rate (first quartile: 1 × 10−3 substitutions/nucleotide site/year (s/n/y)) had far 

greater chance of successfully extending their geographic distribution 

(ReIn.MaxCounty.Dist) in the next 12 months compared to variants with higher 

estimated substitution rates (third quartile: 7 × 10−3 s/n/y). When focusing on a 24 

month rather than 12-month follow-up period, there was a significant association 

a variant’s branch length and amino acid distance and the odds of increasing its 

geographic extent. Moving from the lower quartile (ancestral branch length of 

0.003 – or ~1.8 nucleotides diverged from its next phylogenetic common 

ancestor) to the upper quartile (0.017 – or ~10.3 nucleotides diverged) quartiles 

of observed ancestral branch length, the odds of being the successful variant 

decreased by a factor of 10. Conversely, transitioning from the lower (0.025 – or 

~5 amino acids different from the most prevalent PRRSV-2 GP5 sequence) to 

the upper (0.075 – or ~15 amino acids different) quartiles of observed ancestral 

amino acid distance resulted in 14.5 times greater odds of being a successful 

variant. 

For genetic diversification, absolute increase in 95th percentile pairwise 

nucleotide distance (AbIn.95Nt.Dist) showed a significant association with branch 

length in the short-term period, while being associated with amino acid distance 
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in the long-term period. Specifically, variants with an ancestral branch length of 

0.018 (upper quartile – or ~10.9 nucleotides diverged from its inferred 

phylogenetic ancestor) had 4.9 times higher odds of experiencing high levels of 

genetic diversification in the next 12 months compared to variants with a length 

of 0.003 (lower quartile – or ~1.8 nucleotides diverged). Moreover, variants with 

an ancestral amino acid distance of 0.075 (upper quartile – or ~15 amino acids 

different from the most prevalent PRRSV-2 GP5 sequences) were 6.8 times 

more likely to undergo diversify in the following 24 months than variants with a 

distance of 0.03 (lower quartile – or ~6 amino acids different). (Table 4.1) 

The best fit models displayed fair to good predictive performance on the 

test set, depending on the success aspect and scenario. Notably, the prediction 

of genetic diversity variant success in the next 12 months achieved the highest 

rankings in both balanced accuracy and F1 score (BA = 0.79, F1 = 0.62). 

Following closely was the prediction of success in population expansion over the 

next 24 months (BA = 0.75, F1 = 0.57). Moreover, the prediction of variant 

success in population expansion within the next 12 months, as well as success in 

spatial dispersion and genetic diversity within the next 24 months, exhibited 

similar performance (BA = 0.67, F1 = 0.5). However, the prediction of spatial 

success over a 12-month timeframe was notably poorer in comparison (BA = 

0.58, F1 = 0.43) (Table 4.1). When comparing model performance on predictions 

made on all the matched variants observed throughout the study period to model 

performance on the test set, it was found that the balanced accuracy of all the 

models was slightly lower (BA = 0.56 – 0.74). However, the F1 score showed a 

significant decrease of more than half (F1 = 0.15 – 0.27) due to a high proportion 

of false positives (Supplementary Figure S4.2 and Supplementary Table S4.1). 

For unmatched variants for which the future success could not be measured, the 

models predicted that 21% to 28% of these would be successful in terms of 

genetic diversity, while 59% to 68% of the variants were predicted to be 

successful in population or geographic expansion (Supplementary Figure S4.3). 
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Table 4.1: The best fit model for each success aspect and predicted period 

Success aspect 

(Measure of success) 

Scenario Model 

p-value 

(LRT) 

Predictor P-value Adjusted 

OR 

Predictor’s 

lower – upper 

quartiles 

Training set Test set 

Concordance SE SP PPV NPV F1 BA 

Population 

expansion (Absolute 

increase in number 

of taxa: AbIn.Taxa) 

12-t-12 0.002 Branch length 0.098 0.12 0.00 – 0.02 0.875 0.75 0.58 0.38 0.88 0.500 0.667 

Average clade rate 0.808 0.4 0.00 – 0.01 

LBI 0.015* 12.12 0.03 – 0.333 

Amino acid distance 0.159 3.15 0.020 – 0.075 

N-gly Similarity 0.410 1.79 0.333 – 0.750 

24-t-24 0.001 Branch length 0.120 0.08 0.002 – 0.013 0.810 1.00 0.50 0.40 1.00 0.571 0.750 

Ancestral rate 0.446 3.65 0.002 – 0.007 

LBI 0.030* 12.67 0.000 – 0.286 

Amino acid distance 0.652 1.42 0.030 – 0.075 

N-gly Similarity 0.939 1.09 0.333 – 0.750 

Spatial distribution 

(Relative increase in 

maximum between-

county geodetic 

distance: 

ReIn.MaxCounty.Dist) 

12-t-12 0.006 Branch length 0.587 1.34 0.003 – 0.018 0.729 0.75 0.42 0.30 0.83 0.429 0.583 

Ancestral rate 0.035* 0 0.001 – 0.007 

LBI 0.116 6.04 0.026 – 0.333 

Amino acid distance 0.725 1.38 0.020 – 0.075 

N-gly Similarity 0.081 3.24 0.333 – 0.750 

12-t-24 0.029 Branch length 0.044* 0.1 0.003 – 0.017 0.792 0.50 0.83 0.50 0.83 0.500 0.667 

Ancestral rate 0.136 0.17 0.002 – 0.008 

LBI 0.293 5.13 0.026 – 0.322 

Amino acid distance 0.022* 14.47 0.025 – 0.075 

N-gly Similarity 0.620 1.39 0.333 – 0.750 

Genetic diversity 

(Absolute increase in 

95th percentile 

pairwise nucleotide 

distance: 

AbIn.95Nt.Dist) 

12-t-12 < 0.001 Branch length 0.004* 4.92 0.003 – 0.018 0.917 1.00 0.58 0.44 1.00 0.615 0.792 

Ancestral rate 0.603 0.42 0.001 – 0.007 

LBI 0.758 0.69 0.026 – 0.333 

Amino acid distance 0.909 1.12 0.020 – 0.075 

N-gly Similarity 0.779 1.27 0.333 – 0.750 

24-t-24 0.006 Branch length 0.119 2.07 0.002 – 0.013 0.857 1.00 0.33 0.33 1.00 0.500 0.667 

Ancestral rate 0.880 0.8 0.002 – 0.007 

LBI 0.958 0.95 0.000 – 0.286 

Amino acid distance 0.045* 6.78 0.030 – 0.075 

N-gly Similarity 0.535 2.09 0.333 – 0.750 
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4.4: Discussion 

In this study, we utilized over 10 years (2010 – 2021) of PRRSV-2 ORF5 

gene sequencing data representing PRRS circulation across the U.S. to 

retrospectively evaluate the predictability of potential emerging variants across 

time. Each phylogenetic-based viral variant was systematically traced through 

time over both short-term (12 months) and long-term (24 months) periods in 

order to first calculate putative early indicators from retrospective phylogenetic 

inference and then quantify various aspects of epidemiologic success during the 

follow-up period. Primarily, we found that variants that were classified as 

successful through population growth likely were also classified as successful 

through geographic expansion, but typically did not show notable genetic 

diversification. Across all models presented in Table 4.1, the early indicators 

which were significantly associated with variant success at least once included 

local branching index (LBI), branch length, mutation rate of the ancestral branch, 

and amino acid distance from the most prevalent contemporary GP5 sequences. 

The best predictive performance was achieved in the models that predicted long-

term population growth using local branching index (LBI) and short-term genetic 

diversification using ancestral branch length. When applied to new data, these 

models successfully captured a significant number of successful variants with 

good sensitivity though relatively low specificity. The positive predictive value of 

the predictions was poor, as many predicted successful variants turned out to be 

false positives. 

More generally, virus emergences can be assessed using diverse criteria, 

including abundance, adaptability, host range, and diversity (Wasik & Turner, 

2013). For example, reproductive success, gauged by an effective reproduction 

number (Re) above 1, indicates a virus's ability to emerge and spread in a 

population (DeFilippis & Villarreal, 2000; Geoghegan et al., 2016). Thus, 
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measures of emergence success commonly employ prevalence and growth rate 

for predictions (Hayati et al., 2020; Neher et al., 2014c; Obermeyer et al., 2022). 

For PRRSV-2, measuring the impact of the emergence of novel variants goes 

beyond case numbers, and should encompass spatial spread and variant genetic 

diversity, which play a crucial role in determining disease control efficacy. Our 

study showed emerging variants, as indicated by higher detection rates 

(population increases), also displayed extensive geographic expansion but 

lacked substantial genetic diversification within the given timeframe. These 

findings align with the idea that highly abundant variants have a greater likelihood 

of geographic dissemination compared to others, especially through routes such 

as infected animal transport (C. Nathues et al., 2016; Thakur et al., 2015). 

Additionally, these results suggest the presence of genetic bottlenecks and 

founder effects (H. Li & Roossinck, 2004; McCrone & Lauring, 2018) in PRRSV-

2, wherein the widespread transmission of genetically similar viruses likely stems 

from the initial emergence of a highly fit variant or a founding population. 

Therefore, when defining the concept of emergence, it is essential not to restrict 

it solely to genetic diversity, particularly when using our criteria of diversity over 

the following 12 or 24 months. 

Various parameters such as LBI (Neher et al., 2014a), epitope features 

(Hayati et al., 2020), phenotypic data (Huddleston et al., 2020), and consensus 

sequence of the current viral population (Barrat-Charlaix et al., 2021) have been 

shown to have implications in forecasting seasonal influenza A virus (IAV). 

However, it remains unclear whether these early indicators are useful when 

applied to PRRSV-2 data, as these two viral species differ significantly in their 

evolutionary dynamics. For instance, IAV branching patterns, which affect LBI 

values, are shaped by short-lived viral variants that quickly go extinct, and 

selective sweeps caused by frequent antigenic drift in IAV, resulting in a comb-

like or ladder-like genealogy tree (Grenfell et al., 2004; Poon et al., 2013). In 

contrast, the persistent co-circulation and sequential dominance of various 
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PRRSV-2 sub-populations (Pamornchainavakul, Paploski, et al., 2023; Paploski 

et al., 2021) give rise to phylogenetic clades with a bush- or star-like structure 

(short internal branches and long external branches). Nevertheless, our analysis 

demonstrates that LBI was the only indicator that showed significant predictive 

power in forecasting both short-term and long-term population expansion of 

PRRSV-2 in the best fit models, and LBI was significant in 83.3% of all the 

models with significant predictor(s). This suggests that the underlying assumption 

of LBI, which is that rapid branching patterns is associated with high fitness of the 

inferred ancestor (Neher et al., 2014c), may also apply to PRRSV-2 

phylodynamics.  

Understanding of immune epitopes, antigenic properties, and genotype-

phenotype correlation of PRRSV-2 remains incomplete and cannot be directly 

inferred from sequencing data (J. Li & Murtaugh, 2012; Loving et al., 2015; 

Martínez-Lobo et al., 2011). This lack of knowledge makes it challenging to 

incorporate such features into prediction models. To address this issue, we 

developed two indicators to capture the putative distinctiveness of a variant 

compared to the current most prevalent GP5 protein at a given point in time: GP5 

amino acid distance and N-glycosylation pattern similarity. The GP5 amino acid 

distance parameter is relatively similar to the best predictor used to forecast IAV 

reported by Barrat-Charlaix et al. (Barrat-Charlaix et al., 2021). Variants with 

more divergent GP5 proteins were >6 times more likely to become more 

genetically diverse, and >14 times more likely to undergo spatial expansion than 

less divergent variants. We hypothesize that this metric captures, in part, the 

extent to which epitopes found on GP5 may differ from those recognized by the 

prevailing immunity in the population, hence more divergent variants may be able 

to better evade pre-existing immunity at the population level. That being said, the 

nature of our data did not allow us to know whether the emerging variants 

infected the same animals (or even farms) that were previously exposed to the 

prevailing GP5.  
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N-glycosylation pattern similarity parameter focuses on specific amino 

acid sites involved in potential glycan shielding, which is one immune evasion 

mechanism utilized by PRRSV-2 (Ansari et al., 2006; Faaberg et al., 2006). 

These sites have evolved under positive selection pressure (Delisle et al., 2012; 

Do et al., 2016; Hu et al., 2009; Paploski et al., 2019) and are believed to be 

associated with emergence at the sub-lineage level (Paploski et al., 2021, 2022). 

However, N-glycosylation pattern similarity was not significantly associated with a 

variant’s success in any of our predictive models. Although previous work 

suggested that N-glycosylation pattern changes sometimes coincided with PRRS 

epidemic events, the patterns were not stable within a sub-lineage (only 40 – 

60% of sequences in sub-lineage shared a N-glycolsyltion pattern) (Paploski et 

al., 2022). Thus, N-glycosylation patterns may change too frequently to attribute 

a single pattern to a particular variant, as we did here.  

Branch length of the ancestral node is a more fundamental component of 

phylogenetic trees compared to other parameters. It also was the sole significant 

predictor in the best-fit model predicting success in genetic diversity in the short 

term. Specifically, variants whose inferred ancestors had undergone greater 

evolutionary changes (longer branch lengths) were more likely to genetically 

diversify shortly after. We hypothesize that these rapidly evolving variants had 

not yet reached a state of fitness stability and hence continued diversifying during 

the early stage of emergence. Ultimately, the disparity in significant predictors 

between the short-term and long-term models, along with the notably superior 

performance of the short-term model, led us to conclude that branch length 

stands out as the most robust predictor for success in genetic diversity. Branch 

length was also a significant predictor alongside GP5 amino acid distance in the 

model predicting spatial success in long-term. The association of branch length 

to the spatial success (OR < 1) was opposite to its association to the genetic 

success (OR > 1) which was consistent with the observation that these two 

success measures are indicators of different aspects of the underlying 
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epidemiological dynamics (i.e., variants that expand geographically did not tend 

to undergo substantial diversification, Figure 4.3).  

Ancestral and average substitution rates of variants were included as 

candidate early indicators since substitution rate is a metric estimating how fast 

the virus has evolved and was previously observed to be dependent on 

population size dynamics in particular conditions (Goldstein, 2013). However, 

ancestral substitution rate was a significant predictor only in the short-term model 

for spatial success, which performed poorly and yielded poor predictions. Thus, 

the substitution rate extracted from the time-scaled trees proved to be a relatively 

irrelevant indicator for all definitions of variant success. 

An essential task for this research was defining a PRRSV-2 variant. Given 

the large dataset and the need to build numerous trees with different subsets of 

data, the primary phylogenetic tree building method we utilized (FastTree ML) 

was the most plausible approach, offering an adequately reliable overview of the 

genetic relationships among the viruses, albeit not the most accurate tree-

building approach (Price et al., 2010; Zhou et al., 2018). Accordingly, variant 

classifications based on the tree’s patristic distance (TreeCluster’s Avg Clade 

(Balaban et al., 2019)) may differ if an alternative tree building method had been 

used. In our analysis, we used an average patristic distance cut-off of 2% to 

define variants, which proved suitable because the variant size and clade support 

remained consistent across various trees and scenarios and is in-line with 

thresholds conventionally used to define PRRSV sequences as homologous or 

heterologous (Murtaugh, 2012). However, this approach has limitations as it can 

lead to abrupt appearance of new variants in the follow-up period that appear to 

be >2% from any of the original sequences. New variants accounting for 

approximately 5 to 25% of total variants per observation time based on our 

results and have potentially significant implications. These occurrences could 

potentially signify the introduction of exotic variants, the re-emergence of under-

the-radar variants absent from the current sequencing data, or the cyclic 
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emergence of new sub-lineages that occurs every 1 to 4 years (Paploski et al., 

2021). 

Another limitation of this research relates to the interpretation of a variant’s 

successful geographic expansion. Numerous external factors (i.e., animal 

movement) contribute to the spatial dissemination of a virus that are not 

measurable from viral phylogenies nor related to a virus’s phenotype. In addition, 

sampling locations were not known for all sequences, and not all pig producing 

regions of the U.S. were equally well represented in the dataset (Supplementary 

Figure S4.1). More comprehensive spatial data could improve model predictions, 

as could incorporating regional variability in the prevailing GP5 sequences and 

emergence success.  

We identified certain early indicators that are associated with predicting 

various aspects of success. However, when implementing these models to all 

matched variants beyond the selected variants in the case-control design, one 

key issue undermining model performance was the low positive predictive values 

(PPV). This was unsurprising, given that the training case-control dataset had a 

significantly higher proportion of successes than the overall data. Because of the 

low PPV, predictions of variant success could be better interpreted as identifying 

those variants with high emergence potential (with not all variants realizing their 

potential) as opposed to a projection of what will happen with certainty. In 

addition, population and spatial emergence success was commonly predicted for 

mismatched variants, whose actual success could not be measured. If 

predictions are generated prospectively, we suggested filtering out such variants 

by removing variants with low clade support (< 75%) before making predictions. 

Despite the low positive predictive value, our models successfully 

identified a variant with nine taxa in the initial tree (based on 12 months of data 

from 2019 – 2020), which ultimately led to the impactful emergence of the novel 

L1C-1-4-4 outbreak in the Midwestern U.S. This prediction was made as early as 
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January 2020, more than six months prior to the first official notice of the 

outbreak in fall 2020 (Kikuti, Paploski, et al., 2021). The models correctly 

anticipated that this variant would exhibit both population growth and geographic 

expansion but would not undergo significant genetic diversification, aligning with 

our hypothesis of a high-fitness variant. Nevertheless, we acknowledge that our 

work represents just the initial stage of developing methods for prediction of the 

emergence of PRRSV-2 variants, highlighting informative phylogenetic-based 

early indicators for a variant’s emergence. It is crucial to continue improving our 

approach by incorporating better spatial-related metadata, expanding the training 

and the test sets with more data in the future, and exploring additional potential 

predictors. 

This chapter demonstrates an example of utilizing ORF5 gene 

phylogenetic inference, representing PRRSV-2 genetic diversity, for predicting 

emerging variants. Nevertheless, the genetic characteristics contributing to the 

success of a particular variant are not solely confined to the ORF5 gene. In the 

following chapter, a collection of whole genome sequences from a newly 

emerged PRRSV-2 variant is employed to comprehensively investigate the 

potential evolutionary mechanisms responsible for the variant's success. 
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4.5: Supplementary Materials 

 

Supplementary Figure S4.1: Temporal distribution of PRRSV-2 L1 ORF5 gene 
sequencing data with spatial data (state and county) availability. Color of states 
in the top map correspond to colors in the distribution plot at state level (middle). 
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Supplementary Figure S4.2: Predictive performance of the best fit model of each 
success aspect and predicted period on the full dataset (2011 – 2020) 
demonstrated by confusion matrix components (TP: True positive, FP: False 
positive, TN: True negative, FN: False negative, .75 –.95/1: Intermediate 
between success and unsuccess that was predicted to be positive, .75 –.95/0: 
Intermediate between success and unsuccess that was predicted to be 
negative). 

 

 

Supplementary Figure S4.3: Number of positive (1: yellow) and negative (0: 
turquoise) predicted mismatched pre-tree’s variants that the true success could 
not be measured. 
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Supplementary Table S4.1: Predictive performance of the best fit model of each 
success aspect and predicted period on the full dataset (2011 – 2020). 

Success aspect Scenario PPV NPV SE F1 SP BA 

Population expansion 12-t-12 0.13 0.97 0.78 0.22 0.56 0.67 

24-t-24 0.1 0.97 0.76 0.18 0.52 0.64 

Spatial distribution 12-t-12 0.09 0.95 0.58 0.15 0.54 0.56 

12-t-24 0.1 0.96 0.65 0.18 0.58 0.62 

Genetic Diversity 12-t-12 0.16 0.98 0.81 0.27 0.66 0.74 

24-t-24 0.11 0.97 0.77 0.19 0.52 0.65 
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“The Chosen One” 

Chapter 5: Tracing the Origin of a Novel PRRSV-2 Variant through Genome-

based Phylodynamics 

Material adapted from a published article in Frontiers in Veterinary Science 9 

(2022), doi: 10.3389/fvets.2022.846904 

Measuring How Recombination Re-shapes the Evolutionary History of PRRSV-2: 

A Genome-Based Phylodynamic Analysis of the Emergence of a Novel PRRSV-

2 Variant. 

Nakarin Pamornchainavakul, Mariana Kikuti, Igor A. D. Paploski, Dennis N. 

Makau, Albert Rovira, Cesar A. Corzo, and Kimberly VanderWaal 

5.1: Introduction 

 In the beginning of 2020s, pig producers in the Midwestern U.S. 

experienced atypical production losses caused by a fast-spreading variant of 

PRRSV-2 (Kikuti, Paploski, et al., 2021). From early 2020 to September 2021, 

355 genetically similar viruses were detected (i.e., > 98% nucleotide identity 

based on ORF5 gene). Based on data from the Morrison Swine Health 

Monitoring Project (MSHMP), which tracks the infection status of ~50% of the 

U.S. breeding herd, 294 pig sites belonging to 15 different production systems, 

and ~12% of breeding farms in the region had been impacted (Kikuti, Geary, et 

al., 2021). The virus involved in this outbreak is referred to as a novel L1C-1-4-4 

variant, as it falls within the L1C sub-lineage based on phylogenetic relatedness 

(Paploski et al., 2019) and mostly possesses a 1-4-4 cut-pattern based on 

conventional restricted fragment length polymorphism (RFLP)-based 

classification. Both classifications are based on ORF5 gene sequences (Wesley 

et al., 1998). While the exact case definition used is based on >98% nucleotide 

identity on ORF5 gene (Kikuti, Paploski, et al., 2021), here we refer to this variant 

simply as L1C-1-4-4. Although ORF5 gene has been widely used for virus 
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classification or epidemiological assessment since it is highly variable and 

immunologically relevant (Shi, Lam, Hon, Murtaugh, et al., 2010), it only 

represents ~4% of the genome and may not represent the full evolutionary 

history of the virus, particularly when recombination is involved. For example, 

when phylogenetic trees are constructed using whole genome sequences, the 

L1C-1-4-4 variant nests within a clade of viruses that are classified as sub-

lineage L1A based on the ORF5 gene (Kikuti, Paploski, et al., 2021; Schroeder et 

al., 2021), suggesting that recombination may be confounding the virus’ 

genealogical tree topology. Because there is no WGS-based nomenclature for 

classifying PRRSV-2 genetic sub-types, here we refer to WGSs according to 

their ORF5 gene lineage classification and recognizing the limitation that genetic 

relatedness might not hold true when looking at other regions of the genome. 

 The rapid spread and high production impact of the newly emerged L1C-

1-4-4 variant has drawn concern from the industry as similar events occurred in 

the past and the contributing factors to emergence of these strains are poorly 

understood. Given that PRRSV-2 in the U.S. is characterized by the cyclic 

emergence of new strains, and turnover in the dominant sub-lineage every few 

years (Paploski et al., 2021), this emerging variant may continue increasing in 

prevalence, bringing further issues to the U.S. swine industry. However, different 

aspects of PRRSV evolutionary history documented in previous chapters were 

estimated based on genetic diversity of ORF5 gene sequences generated from 

past outbreaks, which limits our ability to fully discern evolutionary processes 

associated with strain emergence. For example, PRRSV-2 virulence and 

antigenic determinants are multigenic, meaning that clinical presentation 

characteristics are influenced by a variety of genes throughout the viral genome 

(Ruedas-Torres et al., 2021). Thus, understanding the origin of this variant from a 

whole genome perspective is a crucial step in response to this outbreak that had 

been occurred during the study period (2021 – 2022), and may help elucidate 

evolutionary processes associated with strain emergence more broadly and lead 
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to potential preventive interventions at the farm level. Here, we estimate 

divergence times, mutation rates, and parental strains of the novel L1C-1-4-4 

variant using genomics-based approaches. More generally, to better understand 

the role of recombination in shaping PRRSV-2 phylogenies, we also quantify the 

frequency of potential inter- and intra-lineage recombination events. 

5.2: Materials and Methods 

Data 

 A convenience sample of PRRSV-2 L1C-1-4-4 variant whole genome 

sequences (WGS) were obtained from the Veterinary Diagnostic Laboratory at 

the University of Minnesota (see (Kikuti, Paploski, et al., 2021) for details). These 

samples were from multiple production systems in the Midwestern U.S. 

participating in the Morrison Swine Health Monitoring Project. Sample selection 

criteria for WGS included having ORF5 gene sequences within the emerging 

variant’s phylogenetic clade (<2% genetic distance to at least one other 

sequence classified as L1C-1-4-4) and cycle threshold (Ct) value ≤25 for reverse 

transcription polymerase chain reaction (RT-PCR) using VetMAX™ NA and EU 

PRRSV Reagents (Thermo Fisher Scientific, MA, USA). Oral fluids and 

processing fluids samples were excluded due to the low success rate for whole 

genome sequencing (Gagnon et al., 2021; J. Zhang et al., 2017). At least one 

ORF5 gene sequence from each participating system was whole genome 

sequenced. For systems that had two or more ORF5 gene L1C-1-4-4 sequences 

identified during this period, the earliest and the most recent samples were 

selected for WGS sequencing. As described in Kikuti et al. (Kikuti, Paploski, et 

al., 2021), the selected samples were sequenced using Clontech SMARTer RNA 

Pico v2 kit on illumina MiSeq v3 (Illumina, CA, USA). Of the total 19 WGSs 

(GenBank accession numbers OL963961 – OL963979), one isolate classified as 

the novel L1C-1-4-4 variant based on the above criteria was from an outbreak 

limited to a single production system in 2018, while the others were collected 
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from multiple systems during the current epidemic (i.e., 2020 – 2021). We 

aligned the WGSs with all available PRRSV-2 WGSs from the U.S. that were 

publicly available and included date meta-data from NCBI GenBank (n = 232), 

ranging between 1995 and 2018 using MAFFT (Katoh, 2002) and manual 

curation. Genetic distances were calculated between all sequences using 

seqcombo (G. Yu, 2021). 

Recombination detection 

As a first step for screening sequences for recombination, the alignment 

was imported to RDP5 (D. P. Martin et al., 2021) for recombination detection. A 

putative recombination event was flagged when it was detected by at least 4 of 7 

methods: RDP (D. Martin & Rybicki, 2000), GENECONV (Padidam et al., 1999), 

MaxChi (J. M. Smith, 1992), BootScan (D. P. Martin et al., 2005), SiScan (Gibbs 

et al., 2000), Chimaera (Posada & Crandall, 2001), and 3Seq (Lam et al., 2018). 

We performed the analysis as a two-pronged approach. First, we specifically 

explored recombination in the novel L1C-1-4-4 variant group, which was set as a 

query against all GenBank WGS references. Second, the alignment was fully 

scanned (with no reference and query groups defined) to estimate the location of 

recombination hotspots within the genome. A recombination hotspot is defined as 

a genomic position in which the frequency of putative recombination exceeds 

neutral expectations (>99% confidence interval of the local density plot created 

by a permutation test) (D. P. Martin et al., 2015); genomic regions between 

hotspots are inferred to have low rates of recombination. Thus, the locations of 

hotspots can be used to subdivide the genome into fragments, where each 

fragment is relatively free of frequent within-fragment recombination and thus can 

be used for further phylogenetic analysis (Aiewsakun et al., 2020; Brito et al., 

2018).  

 Maximum likelihood phylogenies were built from each WGS fragment 

using W-IQ-TREE (Trifinopoulos et al., 2016) with automated substitution model 
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selection and 1,000 bootstraps. The consensus trees were assessed to: (1) 

check the temporal signal under a molecular clock assumption using TempEst 

(Rambaut et al., 2016), and any fragment whose phylogenetic reconstruction did 

not show a sufficient temporal signal was excluded from further time-scaled 

analyses. (2) Down-sample the dataset based on pairwise distances from the 

novel L1C-1-4-4 variant using ape version 5.5 (Paradis & Schliep, 2019) applied 

in R (R Core Team, 2019). Only the 50 most closely related sequences to each 

distinct fragment of the novel L1C-1-4-4 variant were retained, yielding a total of 

142 sequences for further analysis.   

Time-scaled phylogenetic reconstruction 

 The time to the most recent common ancestor (tMRCA) and substitution 

rate of each fragment were estimated by Bayesian inference with Markov chain 

Monte Carlo (MCMC) applied in BEAST v.1.10.4 (Suchard et al., 2018). 

According to IQ-TREE’s substitution model test, we chose the general time 

reversible (GTR) with empirical base frequencies and gamma plus invariant site 

(G + I) heterogeneity model for all fragments. An uncorrelated relaxed clock 

(Drummond et al., 2006) with log-normal distribution and the Gaussian Markov 

random field (GMRF) skyride (Minin et al., 2008) were specified as molecular 

clock model and coalescent prior, respectively. The alignments with these model 

settings were run with 500 million generations of MCMC. Maximum clade 

credibility (MCC) trees of each fragment were built using TreeAnnotator v.1.10.4 

(Drummond & Rambaut, 2007). 

Discrete trait analysis 

 The frequency of inter- and intra-lineage recombination between ORF5 

gene and other fragments was approximated through WGS-fragment 

phylogenies using discrete trait analysis in BEAST. For each WGS fragment, the 

ORF5-based lineage (Shi, Lam, Hon, Murtaugh, et al., 2010) or sub-lineage 

(Paploski et al., 2019) of each sample was assigned as a discrete trait, and the 
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ancestral trait of each internal node was inferred. Ancestral transitions between 

traits (i.e., the label the sequence received based on its ORF5 gene lineage) in 

the WGS-fragment phylogenies can be interpreted as putative recombination 

between the ORF5 gene and other WGS regions (i.e., instances where 

sequences are no longer clustered with other sequences that share the same 

ORF5-lineage label).  Potential recombination in the WGS-fragment phylogenies 

were estimated from the number of trait (lineage) transitions with Bayes factors 

(BF) support obtained from an asymmetric substitution model with Bayesian 

stochastic search variable selection (BSSVS). Other parameters were set as the 

software default. The analyses were run with MCMC length of 500 million each. 

Ancestral states annotated on MCC trees were visualized using FigTree v.1.4.4 

(Rambaut, 2018). Lineage and sub-lineage transitions were reported with BF 

computed by SpreaD3 (Bielejec et al., 2016). High numbers of transitions 

between inferred ORF5-lineage in the phylogenies of other WGS-fragments 

would provide support that recombination is more common, and that shared 

phylogenetic ancestry based on ORF5 gene lineage identity is scrambled on the 

whole genome due to putative recombination. Low transitions suggest that 

recombination events that leave descendants detected by surveillance activities 

are relatively rare, and that shared ancestry based on ORF5 gene lineages are 

relatively stable across the genome.   

5.3: Results 

 The 18 novel L1C-1-4-4 WGSs associated with the 2020 – 2021 outbreak 

displayed a 98.2 to 99.9% nucleotide identity. The 2018 virus, which was 

included for whole genome sequencing based on its high similarity on ORF5 

gene, showed a 96.5 to 97.4 % pairwise similarity to the 2020 – 2021 L1C-1-4-4 

whole genomes. The greatest difference (<90 % similarity) between the 2020 – 

2021 group and the 2018 virus was in nsp9 to nsp10 in the ORF1b gene 

(Supplementary Figure S5.1). 
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Recombination profile 

All 19 WGSs had a relatively similar recombination profile, with at least 6 

putative recombinant regions in common across the viral genome. The minor 

parents (i.e., the parent contributing the shorter part of the overall sequence) of 

several of these recombinant regions were viruses that clustered with other 

viruses classified as sub-lineage L1C in their ORF5 gene. For all 19 WGSs, a 

large recombinant region was identified in nsp2. The recombination detection 

algorithms implemented using RDP5 were not able to identify a feasible minor 

parent in the alignment of the 232 GenBank sequences for the nsp2 recombinant 

region and for a short recombinant region in ORF2 gene. The detectable minor 

parents of other events were identified as viruses belonging to the L1H (in nsp1) 

and L1C (in nsps2 – 9, and ORFs5 – 6 genes) sub-lineages based on their ORF5 

gene variation (Figure 5.1B). Major differences in the recombination pattern of 

the 2020 – 2021 (n = 18) and the 2018 (n = 1) samples were found in the nsp9 to 

nsp12 of ORF1b gene, where the parents of the 2020 – 2021 sequences were 

other L1C, while the 2018’s parents were mostly unknown (Figure 5.1B).  In 

agreement with the estimated location of recombinant genomic regions, 

recombination breakpoints of this variant are located in the following genomic 

regions: nsp1 flanking regions, insertion and deletion (indel) sites of nsp2 (F. Yu 

et al., 2020), inside nsp9, ORF1ab-ORF2 junction, and ORF2 and ORF5 genes 

flanking regions (Figure 5.1A, C). 
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Figure 5.1: Recombination profile of the novel L1C-1-4-4 viruses in relation to 
PRRSV-2 genomic organization. (A) PRRSV-2 genomic organization. (B) 
Putative recombinant regions and minor parents of the 2020 – 2021 (n = 18) and 
the 2018 (n = 1) L1C-1-4-4 variants. The long bar across the top represents the 
viral genomic backbone. The smaller bars below represent putative minor 
parents labelled according to the ORF5-based sub-lineages. (C) Recombination 
breakpoint distribution of the novel L1C-1-4-4 WGSs as queries against other 
PRRSV-2 WGSs. (D) Overall recombination breakpoint distribution of the 251 
PRRSV-2 WGSs. Recombination hotspots defined by the local density plot are 
highlighted in red. (E) Genomic fragments with low within-fragment 
recombination rates used for phylogenetic analyses. Nucleotide positions in the 
alignment are shown in the parenthesis. 
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Several recombination hotspots were detected when employing an all-to-

all approach for identifying recombination events (Figure 5.1D). We used these 

hotspots to extract four fragments within which there was a low frequency of 

recombination, namely ORF1a-1 (nucleotide position in the alignment (nt) 609 to 

3,455), ORF1a-2 (nt 3,459 to 6,773), ORF1b (nt 6,895 to 10,225), and 3’ ORFs 

(nt 11,916 to 14,657) after their genomic annotation (Figure 5.1E). A significant 

temporal signal was found in the best-fitting rooted maximum likelihood trees for 

all fragments, though unlike the other fragments, the temporal signal of ORF1a-2 

was only significant when using the correlation and R-squared-based rooting 

methods (Supplementary Table S5.1). 

 

Table 5.1: Ancestral date and evolutionary rate estimates of the novel L1C-1-4-4 
variants and other PRRSV-2 

WGS 

fragment 

Overall (n = 161) 2020-2021 novel L1C-1-4-4 (n = 18) 2018-2021 L1C-1-4-4 (n = 19) 

tMRCA*  

(95% HPD) 

mean rate**  

(95% HPD) 

tMRCA*  

(95% HPD) 

ancestral branch 

rate**  

(95% HPD) 

tMRCA* 

(95% HPD) 

ancestral branch rate**  

(95% HPD) 

ORF1a-1 Oct 1988  

(Mar 1983, 

April 1992) 

3.81 𝗑 10-3  

(2.69 𝗑 10-3, 4.98 𝗑 10-3) 

Nov 2018 

(Feb 2018, 

Sep 2019) 

2.15 𝗑 10-2  

(2.00 𝗑 10-3, 6.79 𝗑 10-2) 

Nov 2017 

(Jan 2016, 

Jun 2018) 

1.22 𝗑 10-2  

(7.00 𝗑 10-4, 4.60 𝗑 10-2) 

ORF1a-2# Aug 1546 # 

(Jan 1194, Jan 

1782) 

4.07 𝗑 10-4  

(3.29 𝗑 10-4, 4.86 𝗑 10-4) 

May 2003 # 

(Jun 1993, 

Mar 2014) 

8.96 𝗑 10-4  

(1.22 𝗑 10-4, 2.39 𝗑 10-3) 

Jun 1997 # 

(May 1987, 

Jan 2009) 

2.92 𝗑 10-3  

(4.61 𝗑 10-4, 6.78 𝗑 10-3) 

ORF1b Oct 1985  

(Feb 1979, 

Jun 1991) 

2.40 𝗑 10-3  

(1.67 𝗑 10-3, 3.07 𝗑 10-3) 

Jan 2019 

(Apr 2018, 

Nov 2019) 

8.82 𝗑 10-3  

(3.05 𝗑 10-3, 1.52 𝗑 10-2) 

NA (the 2018 

taxon does 

not group 

with others) 

NA (the 2018 taxon does 

not group with others) 

3'ORFs Jul 1987 

(Apr 1981, 

May 1992) 

2.55 𝗑 10-3  

(1.91 𝗑 10-3, 3.23 𝗑 10-3) 

Dec 2018 

(Feb 2018, 

Sep 2019) 

5.56 𝗑 10-3  

(6.64 𝗑 10-4, 1.17 𝗑 10-2) 

May 2017 

(July 2014, 

May 2018) 

1.60 𝗑 10-3  

(7.94 𝗑 10-4, 2.51 𝗑 10-3) 

ORF5 Nov 1989 

(Oct 1984, 

May 1994) 

3.20 𝗑 10-3  

(2.34 𝗑 10-3, 4.09 𝗑 10-3) 

Dec 2018  

(Mar 2018, 

Nov 2019) 

5.15 𝗑 10-3  

(2.65 𝗑 10-4, 1.27 𝗑 10-2) 

Sep 2017 

(Aug 2015, 

Jun 2018) 

2.04 𝗑 10-3  

(3.42 𝗑 10-4, 3.99 𝗑 10-3) 

 

*Time to the most recent common ancestor 

 **Evolutionary rate (substitutions/nucleotide site/year) 

 #Estimates may be anomalous due to relatively poor temporal signal in this fragment 
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Evolutionary rate and ancestral date 

 Amongst time-scaled phylogenies of PRRSV-2 genomic fragments, mean 

evolutionary rates ranged from 2.40 – 3.81 𝗑 10-3 substitutions/site/year, with the 

exception of ORF1a-2, which had the mean evolutionary rate 10 times lower than 

that of the rest of the genome (Table 5.1). ORF1a-2’s temporal signal, as 

estimated by Tempest, was more uncertain which may be caused by the low 

evolutionary rate, ultimately resulting in an eccentric ancestral date estimation 

that may not be reliable. We thus excluded this fragment from the interpretation 

of time-scaled trees. The 161 viruses included in this analysis (L1C-1-4-4 variant 

and the most closely related GenBank sequences across each fragment) had 

median tMRCAs ranging from 1985 to 1989. The 2020 – 2021 novel L1C-1-4-4 

samples (n = 18) form a monophyletic clade sharing a common ancestor in all 

WGS fragments’ trees. Their tMRCA was dated from late 2018 to early 2019. If 

the 2018 sequence whose ORF5 gene had high nucleotide identity to the 2020 – 

2021 L1C-1-4-4 samples was included, tMRCA of the complete set of novel L1C-

1-4-4 variants (n = 19) was estimated to be in 2017. The 2018 sequence was a 

basal taxon to L1C-1-4-4 clade in most fragments except the ORF1b tree, where 

the 2018 taxon was separated and embedded in a clade consisting of viruses 

labeled as the L1A sub-lineage, suggesting that the 2018 virus experienced a 

separate recombination event that did not occur in the 2020 – 2021 sequences.  

The nucleotide substitution rate at the ancestral branch of the novel L1C 

(inclusive of the 2018 sequence) was lower in some fragments than the overall 

mean rate, whereas the ancestral branch of the more recent 2020 – 2021 

epidemic samples had a higher rate than the mean (Table 5.1). 

Inter- and intra-lineage recombination 

  Phylogenetic clustering of samples on each WGS-fragment tree, labeled 

according to ORF5 gene lineages, are visually well-aligned with ORF5-based 

lineage classification. However, there were instances where clustering of 
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sequences by ORF5 gene lineage did not translate perfectly to other WGS-

fragments, which suggested the possibility of genomic recombination outside 

ORF5 gene. In the ORF5 gene tree, there was no significant mixing between 

lineages/sub-lineages except between sub-lineage L1G ancestors and L1B 

descendants; sub-lineage L1G is thought to have descended from L1B (Paploski 

et al., 2021), so L1B-L1G mixing in the tree might be due to some 

misclassification of closely related sequences. This pattern was also apparent in 

the 3’ ORFs fragment (ORF5 gene is embed in this larger fragment), though the 

clade containing the novel L1C-1-4-4 group became the closest sister to a clade 

containing the majority of L1A in the 3’ ORFs tree. Intermixture of lineage 

groupings was more apparent in the three ORF1 fragments, suggesting some 

level of recombination between these genomic regions and ORF5 gene. 

Although most taxa remained grouped by their ORF5 gene classification, 

numerous ancestral recombination were observed between lineage 1 sub-

lineages. This observation was supported by a high number of transitions 

between traits (i.e., ORF5 gene lineage label), Bayes factors (Figure 5.2A), and 

ORF1ab tree topology (Figure 5.2B). The novel L1C-1-4-4 variant’s evolutionary 

history was part of that phenomenon since it was a descendant of the major L1A 

clade in ORF1a-1 tree. An L1A virus collected in early 2018 (MN073102) was its 

closest related taxon in all ORF1 trees regardless of whether the L1C-1-4-4 clade 

was embedded in a larger L1C or L1A clade (Figure 5.2B), suggesting that this 

virus had a similar evolutionary and recombination history throughout this 

genomic region. 
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Figure 5.2: Discrete trait analysis of PRRSV-2 lineage/sub-lineage 
recombination. (A) Heat map showing number of potential ancestral 
recombination between lineages/sub-lineages of each genomic fragment 
estimated from the trait transitions. Cell border thickness represents Bayes factor 
(BF) support for each recombination. (B) Bayesian MCC trees colored by 
ancestral ORF5-based lineage or sub-lineage. Asterisks locate the phylogenetic 
position of taxa of interest. 

 

5.4: Discussion 

 Exploratory analysis of the genome and evolutionary history of viruses 

causing atypical outbreaks is a key step to understanding their origin. Here, we 

analyze a set of whole genome sequences (WGSs) from an emerging PRRSV-2 

variant and contextualize its evolution using publicly available WGSs from the 

U.S. swine industry. Our results suggest that the 2020 – 2021 epidemic 

associated with the novel L1C-1-4-4 viruses arose from a recombinant ancestor 

of which most genomic parts derived from viruses whose ORF5 genes were 

classified as sub-lineage L1C. An ancestor of those viruses was estimated to 

have emerged around late 2018 to early 2019 with a slightly higher mutation rate 
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than the average rate. Two samples from 2018, classified as the L1C-1-4-4 

variant and L1A (MN073102) based on ORF5 gene, are the closest relatives of 

the 2020 – 2021 epidemic variants, with phylogenetic placement varied 

according to which genomic was examined. The observed shift in phylogenetic 

clustering of the L1C-1-4-4 variant from L1C in the ORF5-based tree to L1A in 

ORF1A-based tree, combined with the inferred frequency of recombination 

estimated from the discrete trait analysis, highlights the role of recombination 

within L1 sub-lineages in shaping PRRSV-2 genetic diversity. 

Interpretations from our analysis should consider some key limitations. 

First, samples from the NCBI database may not represent the diversity of the 

U.S. PRRSV-2 population since whole genome sequencing (WGS) is not a 

routine practice for disease surveillance because of its cost and availability. In 

addition, viruses with atypical clinical presentations in the field are more likely to 

undergo WGS. Thus, our recombination analysis only suggests the most likely 

parents or close relatives of the novel L1C-1-4-4 from amongst published 

sequences, which itself may be biased. In fact, the recombination detection was 

affected by data availability, as evidenced by several unknown parents of the 

novel L1C recombinant. Second, a fully recombination-free fragment, which is an 

ideal input for phylogenetic analysis, does not exist in the alignment because 

breakpoints are distributed across the genome. We alternatively used WGS-

fragments with low frequencies of recombination to avoid recombination that may 

confound the genealogical tree. Genomic positions of such fragments nicely fit 

with three main protein coding regions of PRRSV-2 and other nidoviruses: 

ORF1a, ORF1b, and the nested set of multiple ORFs at the 3’-terminal (3’ ORFs) 

(Saberi et al., 2018). Last, the novel L1C-1-4-4 variant is defined by ORF5 

genetic relatedness rather than clinical manifestation, and comparable data 

quantifying clinical aspects of disease were not available across data sources. 

Thus, an association between L1C-1-4-4’s virulence and its 

evolution/recombination cannot be concluded from our study. 
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 The inferred number of putative recombination events (trait transitions) 

from the discrete trait analysis reflect inter- and intra-lineage recombination 

between ORF5 gene and other genomic regions (i.e., ORF5 gene lineage was 

used as the discrete trait). From this analysis, we observe that recombination 

between lineages was rare, though this may be an artefact of the fact that the 

majority of included sequences belonged to a single lineage. However, 

recombination between sub-lineages within lineage 1 are more frequent, though 

still relatively uncommon. This corresponds to the mechanism of RNA 

recombination whereby the RNA polymerase is prone to switch from one RNA 

template to another that has a similar nucleotide sequence (Simon-Loriere & 

Holmes, 2011).  

Additionally, recombination requires co-infection of the same cell, and viral 

prevalence will influence the likelihood that an animal is co-infected with two 

distinct viruses simultaneously. The prevalence of sub-lineages is temporally 

variable (Paploski et al., 2019), which likely shapes opportunities for co-infection. 

Sub-lineages L1A, 1C, and 1H had the highest effective viral population sizes at 

the approximate tMRCA of the novel variant (Paploski et al., 2019). Thus, the 

ancestor of the novel L1C-1-4-4 variant appears to have acquired each genomic 

portion from divergent viral subpopulations that were prevalent at the time. 

Recombination scanning along with phylogenetic tree analysis suggests that the 

majority of the 2020 – 2021 novel L1C-1-4-4 genomic fragments still derived from 

L1C viruses, while the proximal part of ORF1a gene, mostly nsp2, is genetically 

closer to viruses whose ORF5 gene is classified as L1A rather than L1C. This 

evidence coupled with the fact that nsp2 is the most variable gene in PRRSV-2 

genome (Yoshii et al., 2008) explains why the novel L1C viruses clustered with 

viruses classified as L1A at the ORF5 gene level in the WGS tree in previous 

studies (Kikuti, Paploski, et al., 2021; Schroeder et al., 2021).   

 The 2018 L1C-1-4-4 sample was included in this study because it carries 

an ORF5 gene closely related to the sequences associated with the 2020 – 2021 
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epidemic and was recovered from the same geographic area. However, some 

genomic parts as well as real world outbreak circumstances differ from the 2020 

– 2021 epidemic. To our knowledge, there was no widespread PRRS outbreaks 

or heightened concern across the industry in connection with the 2018 virus, 

though anecdotally, field veterinarians noted that this particular virus transmitted 

readily between farms belonging to the same company and was challenging to 

control. The differential recombination profiles between the 2018 and 2020 – 

2021 L1C-1-4-4 viruses suggested by the RDP5 analysis were consistent with 

more robust phylogenetic analyses, which indicate that recombinant parents and 

phylogenetic position of the 2018 virus’s ORF1b are different from the 2020 – 

2021 sequences. Altogether, we hypothesize that both diverged in 2017 from the 

same recombinant ancestor that had a L1A-like ORF1a-1 fragment. The 2018 

virus appears to be a result of an additional recombination event that appeared to 

leave very few progenies in our dataset. Other descendants kept evolving with or 

without recombination until they reached optimal fitness or a tipping point for 

exponential growth and became the 2020 – 2021 variant that is associated with 

the current outbreak. 

 An assessment of whether the acquisition of different WGS-fragments 

through recombination had a viral fitness benefit that allowed this variant to 

spread widely is beyond our limited understanding of the genetic determinants of 

pathogenicity and antigenicity. Therefore, we do not know the extent to which 

recombination contributed to the emergence or atypical clinical presentation of 

this virus.  A study on SARS-CoV-2, a distant relative to PRRSV-2 in the same 

Nidovirales order, suggests the possibility that multi-strain recombination 

strengthens virulence (Haddad et al., 2021). For PRRSV-2, all four genomic 

fragments we analyzed harbor at least one virulence-related gene. Mutations in 

nsp2, a part of both ORF1a-1 and ORF1a-2 fragments, are associated with 

target cell tropism of PRRSV-2 (Song et al., 2019) and high fever in the host (Du 

et al., 2021). RNA-dependent RNA polymerase (RdRp), a crucial component 
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determining virus replication efficiency and pathogenicity (K. Zhao et al., 2018), is 

encoded by nsp9 in ORF1b gene. Most of the 3’-terminal ORFs are transcribed 

and translated into the virus structural glycoprotein that directly interacts with 

either the target cell or host immune response (Das et al., 2011; Van Breedam et 

al., 2010). Hypothetically, being able to rapidly shift antigenic phenotype through 

recombination may potentially confer a fitness advantage if it allows the virus to 

better evade population immunity. Genetic change in one of these genomic parts 

might be a key success of the novel L1C-1-4-4 variant but would need to be 

investigated by experimental studies such as targeted mutagenesis. However, 

our analysis better quantifies the contribution of recombination to PRRSV-2 

genetic diversity and evolution, and points to the role of co-circulation of multiple 

variants within the same farm that may create conditions for recombination and 

selection for traits beneficial to the virus. 
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5.5: Supplementary Materials 

 

Supplementary Figure S5.1: Similarity plot between the 2018 (reference) and the 
2020-21 (queries) L1C 1-4-4 WGSs 
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Supplementary Table S5.1: Temporal signal of PRRSV-2 WGS fragment trees 

 

*r = Pearson’s correlation coefficient between root-to-tip divergence and time 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

WGS 

fragment 

Best-fitting root method 

Heuristic residual 

mean squared 

Residual mean 

squared 

Correlation R-squared 

r* R2 r R2 r R2 r R2 

ORF1a-1 0.3817 0.1457 0.3817 0.1457 0.3875 0.1502 0.3875 0.1502 

ORF1a-2 -0.0256 6.56 𝗑 10-4  -0.0256 6.56 𝗑 10-4  0.2677 7.17 𝗑 10-2  0.2677 7.17 𝗑 10-2  

ORF1b 0.3438 0.1182 0.3722 0.1385 0.4447 0.1978 0.4447 0.1978 

3'ORFs 0.06546 4.29 𝗑 10-3 0.06546 4.29 𝗑 10-3 0.3411 0.1164 -0.3905 0.1525 
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“Epilogue” 

Chapter 6: Conclusion 

In order to elucidate the patterns of PRRSV adaptation, persistence, and 

spread within the United States, we utilized a diverse range of methods coupled 

with extensive existing data, offering novel and informative insights throughout 

this dissertation. Key findings of all studies are summarized in Figure 6.1. In 

Chapter 2, our phylogeographic analysis of continent-wide ORF5 gene 

sequences revealed that PRRSV-2 L1 likely originated from Canada in the late 

1990s, subsequently diverging into multiple sub-lineages. Over nearly three 

decades, different sets of these sub-lineages made sequential contributions to 

the overall PRRSV-2 population, with periodic peaks approximately every six 

years. Notably, we observed a gradual shift in the hotspot for inter-regional 

spread, transitioning from the Upper Midwest to the Eastern United States. This 

change in spread patterns within each sub-lineage was likely influenced by the 

expansion of hog inventories in the U.S. In Chapter 3, we integrated transmission 

tree inference using regional ORF5 gene sequences with animal movement data 

and network analysis, to unravel farm-to-farm transmission pathways of PRRSV-

2. The results indicated that most infected farms spread the virus to an average 

of one other farm per year (R = 1), with sporadic occurrences of super-spreader 

events (R > 1) within endemic areas. Regarding the network analysis, live animal 

movement was highly associated with transmission link between farms, while 

farm proximity related factors, including airborne spread, did not appear to play a 

major role in shaping transmission networks. However, a significant proportion 

(over 80%) of transmission events remained unexplained, attributable to the 

scarcity of available data concerning alternative routes. In Chapter 4, we utilized 

ORF5 gene data from an active PRRS monitoring database to systematically 

assess various aspects of PRRSV-2 variant success, serving as a proxy for their 

emergence, while identifying informative early indicators of such success. Our 

predictive modeling unveiled that a swift phylogenetic branching pattern, 
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quantified by the local branching index (LBI), and putative antigenic difference to 

the current virus population, were significant indicators of future emergence. 

Additionally, our study demonstrated that variants displaying robust population 

growth also tended to undergo geographic expansions, often without significant 

genetic diversification. In Chapter 5, the availability of current PRRSV-2 whole 

genome sequences allowed us to explore the complete origin of the novel 

epidemic variant, L1C-1-4-4. Recombination detection analysis coupled with 

phylodynamic inference consistently suggested that this novel variant was a 

descendant of a recombinant ancestor characterized by recombination at the 

ORF1a gene between two segments that would have otherwise been classified 

independently under the ORF5 gene as L1C and L1A, two of the recent 

predominant sub-lineages in the U.S. Interestingly, we found that heterologous 

recombination events which leave detectable numbers of descendants are not 

common, underscoring the role of genomic recombination as one of the key 

mechanisms driving the emergence of high fitness variants. 
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Figure 6.1: Key findings of each chapter in relation to the overarching theme of 
the dissertation (Center Venn diagram) 

 

The findings gleaned from this dissertation expand our understanding of 

PRRSV-2, with a particular focus on its evolutionary and epidemiological 

dynamics. This knowledge forms a foundational base necessary for shaping 

future PRRS prevention and control strategies in the U.S. On a national scale, 

the cyclical population dynamics of PRRSV-2, as highlighted in Chapter 2, can 

guide the timing and focus of prevention and control efforts, while recognizing the 

shift in inter-regional spread patterns raises situational awareness of the national 
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disease dynamics. On a regional level, the integrated approaches for tracking 

farm-to-farm transmission links proposed in Chapter 3 can serve as an 

alternative tool in PRRS surveillance and outbreak investigation. Additionally, the 

findings in Chapter 3 augment our understanding of between-farm spread risk 

factors, which are highly informative for future disease mitigation plans. More 

applicable, using phylogenetic-based early indicators discerned in Chapter 4 can 

aid in narrowing down the upcoming variants of concern and better inform 

targeted intervention approaches. Finally, the potential role of genomic 

recombination in the emergence of the concerning variant, exclusively detailed in 

Chapter 5, emphasizes the necessity of continuous whole-genome sequencing 

for future surveillance. This approach is vital to gain a comprehensive 

understanding of PRRSV-2 evolution and to effectively monitor potential 

emerging variants. 

All studies within this dissertation explicitly shared similar major limitations, 

determined by data availability that was contingent on the specific scope of each 

study. From Chapter 2 to Chapter 4, our analytical findings were primarily based 

on the genetic relationships of PRRSV-2 ORF5 gene sequences, which are 

commonly sequenced for routine PRRS diagnosis. While we were able to 

achieve a decent representation of the virus population both nationwide 

(Chapters 2 and 4) and regionally (Chapter 3) over an extended time frame, it is 

important to acknowledge that focusing solely on the ORF5 gene, which 

constitutes only ~ 4% of the genome, though highly significant, may potentially 

overlook other crucial factors associated with other genes across the entire 

genome, as elaborated in Chapter 1. Conversely, while whole genome 

sequences of the novel variant responsible for the recent outbreak in Chapter 5 

could be sourced from multiple swine production systems, the availability of 

historical PRRSV-2 whole genome sequences in the U.S. in existing databases 

was constrained. This limitation implies that the existing whole genome 
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sequences may not provide as extensive a representation of the virus population 

as the ORF5 gene. 

The availability of metadata accompanying PRRSV-2 genetic data 

significantly shaped our approach and outcomes in each study. In instances 

where the sample size, data sources, study area, or timeframe expanded, the 

completeness of available metadata for advanced analysis diminished. To 

illustrate, in Chapter 2, the precision of geographic location and sampling time 

data extracted from three distinct databases varied considerably, reflecting 

differences in data collection, processing, and storage methodologies according 

to the specific goals of each source. This variability limited our ability to conduct 

advanced phylodynamic analyses, which typically rely on additional sample 

attributes to estimate potential risk factors associated with disease spread. Such 

an issue similarly influenced the interpretation of the results in Chapter 3, where 

most inferred transmission events remained unexplained due to the limitations of 

available metadata. This spotlights the critical need to broaden data collection 

efforts to include details of other farm activities that may feasibly contribute to 

disease transmission in addition to animal movement. 

Beyond the data aspect, access to additional pertinent knowledge and 

technologies can enhance our research endeavors. In Chapter 4, for instance, 

the ability to predict the 3D structure (Jumper et al., 2021) or identify immune cell 

epitopes (Gutiérrez et al., 2015) of PRRSV-2 GP5 could substantiate the 

significance of putative antigenic differences based on GP5 amino acid 

sequences in the success of emerging variants. Profiling viral quasispecies – i.e., 

a group of genetically closely related mutants within a single cell or sample 

(Domingo et al., 2012; Gregori et al., 2016) – from whole genome sequence 

samples of an outbreak or an experiment, can enhance our comprehension of 

the intricate mechanisms behind high fitness virus selection and recombination, 

as proposed in Chapters 4 and 5. This becomes particularly valuable under 
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varying circumstances, especially in the presence of uneven immune pressure, a 

factor we consider as a significant driving force in the evolution of PRRSV-2. 

Given the current limiting factors, there exist numerous opportunities for 

future studies to enhance our foundational work through the utilization of superior 

data, analytic tools, or approaches. On a national scale, integrating historical 

records of interstate animal movement and other transportation aspects within 

the swine industry into phylogeographic analysis using a generalized linear 

model (Streicker et al., 2010) may assist in uncovering the risk factors steering 

the inter-regional spread dynamics of PRRSV-2. Refinement of the local disease 

transmission network could be achieved by providing a more comprehensive 

representation of PRRSV-2's evolutionary history through whole-genome 

sequences. Exploring alternative machine learning techniques could also 

improve the accuracy of predictive modeling for emerging PRRSV-2 variants, 

given that the characteristics and quantity of novel early indicators align with the 

requirements of such techniques (Sarker, 2021). 

The recurring emergence of new variants  and the insufficient 

comprehension of immunity against PRRSV-2 (Loving et al., 2015; Lunney et al., 

2016; Murtaugh & Genzow, 2011) have stood as the two foremost challenges in 

the quest to eradicate this devastating disease from the U.S. The perspectives 

on PRRSV-2 evolution and epidemiology presented in this dissertation 

apparently bridge substantial knowledge gaps associated with the first challenge, 

potentially laying the groundwork for a better understanding of the second. 

However, the implementation of targeted PRRS prevention and control 

strategies, informed by most of our findings, may remain unattainable until 

effective pig immunizations against PRRSV-2 are developed. 
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