
Hyperdimensional Computing based Classification and
Clustering: Applications to Neuropsychiatric Disorders

A DISSERTATION

SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL

OF THE UNIVERSITY OF MINNESOTA

BY

Lulu Ge

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Prof. Keshab K. Parhi, Advisor

December, 2023

© Lulu Ge 2023

ALL RIGHTS RESERVED

Acknowledgements

I would like to thank my advisor Prof. Keshab K. Parhi for his consistent guidance

and continued support throughout my whole Ph.D. journey. My gratitude goes out to

Prof. Alik Widge, my mentor, for his guidance and assistance during the Institute for

Engineering in Medicine’s (IEM) research project.

I would like to express my gratitude towards the members of my committee, namely

Prof. Chris Kim, Prof. Marc Riedel, and Prof. Ru-yu Lai (for my preliminary oral

exam).

I would like to thank all my lab colleagues at Parhi’s lab for both research discussion

and mental support. My gratitude goes out to Sandeep Avvaru and Nanda Kumar

Unikrishnan for patiently answering my questions, encouraging me to overcome my

fears, and validating that I have made progress. My sincere thanks go to Xingyi Liu for

his discussions to improve my research thoughts and for his conversation in Chinese to

ease my homesickness. I would like to extend a special thank you to Sai Sanjay Balaji

for his patience in improving my English comprehension and encouraging me to take

action rather than overthinking. I would like to express my gratitude to Sai Sanjeet

Yerraguntala and Joe Gould to discuss my research. My Ph.D. journey would not have

been possible without their help and support.

I am grateful to Aaron McInnes for assisting me with my IEM project. His support

in data collection, result analysis, and guidance on classical algorithms in R language

was truly valuable.

I owe a debt of gratitude to many other friends, both within and outside the US, who

have supported me over the years. I am grateful for the unwavering support provided

by Anlan Yu and Shusen Jing throughout my Ph.D. journey. I would like to extend

a special thank you to Wenqing Song for her encouragement. My gratitude goes to

i

Zhizhen Wu for his mental support. I would like to thank Yangyang Chang, Vasanth

Ravikumar, Ziyuan Shen, Yuxiang Lu, Weihong Xu, Chouzhou Fang, Zhongqi Zhao,

Ziqing Zeng, Huan Liu, Yifei Shen, Xufeng Bao, Si Shen, Baozhen Wang, Yuhan Guo,

Pengguang Li, Xiaopeng Li and Jie Deng for their continued support and belief in me.

I would like to express my heartfelt gratitude to my friends at Wayzata Church for

welcoming me into their community and making me feel cared for. My sincere thanks

go out to Sai Wang for her care and support. I am especially grateful to my host

family, Bob and Bonnie, who provided me with beautiful memories during my time in

Minnesota. I will always cherish our time together and look forward to keeping in touch.

Most importantly, I would like to thank my family, especially my parents, for their

love, understanding, and patience. Without their steadfast support, I would not have

been able to achieve this milestone in my life.

ii

Dedication

This dissertation is dedicated to my grandparents, Baogong Ge, and Jinhua Dai, who

supported my decision to study abroad instead of marrying early. Although they passed

away shortly after I arrived in the US to pursue my Ph.D. degree, their unconditional

love has continued to support me throughout my academic journey. Their unwavering

belief in my abilities and their encouragement to pursue my dreams have been a tremen-

dous source of strength. I am grateful for the time we had together, and I will always

cherish the memories of their kindness, wisdom, and generosity. This work is a tribute

to their memory, and I hope it would have made them proud.

iii

Abstract

Since its introduction in 1988, hyperdimensional computing (HDC), also referred to as

vector symbolic architecture (VSA), has attracted significant attention. Using hyper-

vectors as unique data points, this brain-inspired computational paradigm represents,

transforms, and interprets data effectively. So far, the potential of HDC has been demon-

strated: comparable performance to traditional machine learning techniques, high noise

immunity, massive parallelism, high energy efficiency, fast learning/inference speed, one-

/few-shot learning ability, etc. In spite of HDC’s wide range of potential applications,

relatively few studies have been conducted to demonstrate its applicability. To this

end, this dissertation focuses on the application of HDC to neuropsychiatric disorders:

(a) seizure detection and prediction, (b) brain graph classification, and (c) transcra-

nial magnetic stimulation (TMS) treatment analysis. We also develop novel clustering

algorithms using HDC that are more robust than the existing HDCluster algorithm.

In order to detect and predict seizures, intracranial electroencephalography (iEEG)

data are analyzed through the use of HDC-based local binary pattern (LBP) and power

spectral density (PSD) encoding. Our study examines the effectiveness of utilizing all

features as well as a small number of selected features. Our results indicate that HDC

can be used for seizure detection, where PSD encoding is superior to LBP encoding. We

observe that even three features are efficient in detecting seizures with PSD encoding.

However, in order to pave the way for seizure prediction using HDC, more efficient

features must be explored.

For the classification of brain graphs, data from functional magnetic resonance imag-

ing (fMRI) are analyzed. Brain graphs describe the functional brain connectome under

varying brain states, and are generated from the fMRI data collected at rest and during

tasks. The brain graph structure is assumed to vary from task to task and from task

to no task. Participants are asked to execute emotional and gambling tasks, but no

tasks are assigned during resting periods. GrapHD, an HDC-based graph representa-

tion, initially developed for object detection, is herein expanded for the application to

brain graph classification. Experimental results demonstrate that GrapHD encoding has

the capability of classifying the brain graphs for three binary classification problems:

iv

emotion vs. gambling, emotion vs. no-task, and gambling vs. no-task. Furthermore,

GrapHD requires fewer memory resources as compared to the extant HDC-based en-

coding approaches.

In terms of clustering, HDCluster, an HDC-based clustering algorithm, has been

proposed in 2019. Originally designed to mimic the traditional k-means, HDCluster

exhibits higher clustering performance across versatile datasets. However, we have

identified that the performance of the HDCluster may be significantly influenced by

the random seed used to generate the seed hypervectors. To mitigate the impact of

this random seed, we propose more robust HDC-based clustering algorithms, designed

to outperform HDCluster. Experimental results substantiate that our HDC-based al-

gorithms are more robust and capable of achieving higher clustering performance than

the HDCluster.

In the analysis of TMS treatment, we conduct two specific tasks. One is to identify

the clinical trajectory patterns for patients who suffer from major depressive disorder

(MDD) (Clustering). Another is to predict MDD severity using 34 measured cognitive

variables (Classification). For clustering, we propose a novel HDC-based algorithm that

manipulates HDCluster to determine the number of clusters for a system of clinical

trajectories. For classification, we utilize two HDC-based encoding algorithms and ex-

amine the impact of using either all features or selected features. Experimental results

indicate that our HDC algorithm mirrors the clustering pattern of the classical algo-

rithm. Additionally, the HDC-based classifier effectively predicts the concept of clinical

response.

v

Contents

Acknowledgements i

Dedication iii

Abstract iv

Contents vi

List of Tables x

List of Figures xii

1 Introduction 1

1.1 Research Overview . 1

1.2 Dissertation Outline . 4

1.3 Summary of Contributions . 6

2 Classification using HDC: a review 8

2.1 Introduction . 8

2.2 Background on HDC . 9

2.2.1 Classical Computing vs HDC . 9

2.2.2 Data Representation . 10

2.2.3 Similarity Measurement . 11

2.2.4 Data Transformation . 13

2.3 Learning and Classification By HDC . 17

2.3.1 The HD Classification Methodology 18

vi

2.3.2 Encoding Methods for HDC . 18

2.3.3 Benchmarking Metrics in HDC 21

2.4 Applications in HD Classification . 23

2.4.1 Letters . 23

2.4.2 Signals . 25

2.4.3 Images . 32

2.4.4 Summary . 33

2.5 Conclusion . 36

3 Applicability of seizure detection using HDC 37

3.1 Introduction . 37

3.2 Methodology . 39

3.2.1 LBP Method . 39

3.2.2 PSD Method . 41

3.2.3 Hypervector Distance Plot . 45

3.3 Materials . 46

3.3.1 iEEG Dataset from Kaggle Contest 46

3.3.2 Training, Validation and Test Data 47

3.3.3 Performance Evaluation . 47

3.4 Experimental Results . 48

3.4.1 LBP Method . 48

3.4.2 PSD Method . 50

3.4.3 Discussion on LBP and PSD Methods 53

3.5 Conclusion . 57

4 Applicability of seizure prediction using HDC 60

4.1 Introduction . 60

4.2 Preliminaries . 61

4.2.1 Basics of HDC . 61

4.2.2 Seizure Prediction Dataset . 61

4.2.3 Flow Chart of the Employed Approaches 62

4.2.4 Training and Test Workflow . 62

4.3 Methodology . 63

vii

4.3.1 LBP Method . 63

4.3.2 PSD Method . 65

4.4 Experimental Results . 67

4.5 Conclusions . 68

5 Classifying functional brain graphs using graph hypervector represen-

tation 69

5.1 Introduction . 69

5.2 Methodology . 71

5.2.1 Record-based Encoding . 71

5.2.2 GrapHD Encoding . 72

5.3 Materials . 73

5.3.1 HCP Dataset and Preprocessing 73

5.3.2 Flowchart of The Approaches . 74

5.4 Experimental Results . 74

5.4.1 Training and Test Workflow . 74

5.4.2 Evaluation Metrics . 75

5.4.3 Performance Comparison . 75

5.4.4 Performance Improvement By Sub-Graphs 76

5.5 Conclusion . 77

6 Clustering using HDC 78

6.1 Introduction . 78

6.1.1 Traditional Clustering Algorithms 80

6.1.2 HDCluster . 81

6.2 Methodology . 82

6.2.1 Similarity-Based K-means . 83

6.2.2 Equal Bin-Width Histogram . 83

6.2.3 Equal Bin-Height Histogram . 84

6.2.4 Similarity-Based Affinity Propagation 85

6.3 Materials . 85

6.3.1 Dataset Description . 85

6.4 Experimental Results . 86

viii

6.4.1 Experimental Setup . 86

6.4.2 Comparison with HDCluster . 86

6.4.3 Original Data Space vs Hyperdimensional Space 92

6.4.4 Further Discussion . 93

6.5 Conclusion . 96

7 Clustering and classification for brain stimulation with HDC 97

7.1 Introduction . 97

7.2 Preliminaries . 100

7.2.1 Basics of HDC . 100

7.2.2 Classification using HDC . 102

7.3 Methodology . 103

7.3.1 Clustering using HDC . 103

7.3.2 Category Prediction using HDC 104

7.4 Experimental Results . 106

7.4.1 Materials . 106

7.4.2 Clustering . 106

7.4.3 Category Prediction . 112

7.4.4 Further Discussion . 113

7.5 Conclusion . 114

8 Conclusion and Future Directions 116

8.1 Key Findings . 116

8.2 Future Outlook . 117

References 119

Appendix A. Supplementary Results 137

A.1 Clustering Results using HDC. 137

A.1.1 Small Dataset . 137

A.1.2 Large Dataset . 137

A.2 Clustering Results using LCMM. 140

A.2.1 Large Dataset . 140

ix

List of Tables

2.1 Comparisons between classical computing and HDC for classification. . 10

2.2 Similarity measurements in HDC. 11

2.3 Summary of the strategies used in HDC for accuracy and efficiency im-

provement. 33

2.4 Partial list of applications based on HDC in [1]. 34

3.1 Three selected features based on Fisher score. 44

3.2 Dataset information. 47

3.3 Performance metrics. 48

3.4 Average LBP validation AUC performances. 49

3.5 Performance for selected PSD features using fisher score with quantiza-

tion level q = 21.1 . 50

3.6 Performance for all PSD features with quantization level q = 21.1,2 . . . 51

3.7 Summary for LBP and PSD methods. 51

3.8 Impact of hypervector sizes for the test AUC using LBP and PSF methods. 52

3.9 Memory and computational requirements for LBP and PSD methods. . 52

3.10 Specific memory requirements for LBP and PSD methods. 53

4.1 Dataset information. 62

4.2 Experimental results for LBP method with the code length l = 6. 67

4.3 Experimental results for PSD method with the quantization level q = 21. 68

5.1 Classification performance for three classification tasks. 75

5.2 Memory storage1 comparison for two HD encoding approaches. 76

6.1 Datasets for clustering using HDC. 85

6.2 Performance for three traditional clustering algorithms1. 93

x

6.3 Performance comparison of our proposed algorithms and the baseline

HDCluster1. 95

7.1 LCMM results for original data (n = 27). 109

7.2 LCMM results for corrected data (n = 27). 110

7.3 Experimental results for category prediction using HDC. 111

7.4 Comparison with SVM. 113

A.1 LCMM results for original data (n = 176). 140

A.2 LCMM results for corrected data (n = 176). 141

xi

List of Figures

1.1 Research tasks outlined in this dissertation. 3

1.2 Dissertation outline. 5

2.1 Orthogonality in high dimensions [2–4]. 12

2.2 Hamming distance distribution of addition for 10,000-bit hypervectors

over 3000 cases. (a) Addition over an odd number of hypervectors; (b)

and (c) shows the addition over even number favoring 0 and 1, respectively. 13

2.3 Hamming distance distribution of multiplication X = A⊕B for 10,000-

bit hypervectors over 3000 cases. 15

2.4 Hamming distance distribution of permutation for 10,000-bit hypervec-

tors over 3000 cases. 16

2.5 Classification overview with HDC [5]. 18

2.6 Record-based encoding [6]. Note iM refers to item memory, which stores

the position hypervectors, and CiM refers to continuous item memory [3],

which stores level hypervectors. 19

2.7 N -gram-based encoding [7]. CiM stores level hypervectors that are mu-

tually orthogonal. 20

2.8 Two benchmarking metrics in HDC and some possible ways to improve

these metrics. 21

2.9 The architecture for language recognition with HDC [1, 5]. 23

2.10 VoiceHD+NN flow for training and testing [8]. 25

2.11 The architecture for Laelaps with HDC to detect and alarm seizure [9]. 25

2.12 CompHD for (a) an HD model and (b) a query data [10]. 28

2.13 Overview of SemiHD framework supporting self-training in HD space [11]. 29

2.14 Block diagram of the HD Character Recognition System [12]. 31

xii

3.1 HD classification using LBP method. 40

3.2 HD classification using PSD method. 42

3.3 A general hypervector distance plot for an ideal binary classification. . . 46

3.4 AUC for validation data. 49

3.5 Hypervector distance plots for Patient 2 and Dog 4 among different HD

classifiers. 57

4.1 Flow chart of the employed approaches. 63

4.2 HDC classification using LBP method. 64

4.3 HDC-based PSD method for seizure prediction. 65

5.1 Graph encoding for weighted undirected graphs in GrapHD [13]. 72

5.2 Flowchart of the two HDC approaches for the brain state classification. 74

5.3 Performance improvement for GrapHD encoding by two strategies. . . . 76

6.1 HDCluster overview [14]. In [14], the encoder of the original HDCluster

refers to record-based encoding, and the initial cluster centers are random

hypervectors. 82

6.2 Proposed HDC-based clustering algorithms. 83

6.3 Examples for the equal bin-width histogram. 84

6.4 Examples for the equal bin-height histogram. 85

6.5 Comparison of proposed algorithms with HDCluster. For boxplots, the

median values over 500 runs/trials are annotated on the top. The red

values indicate the results for the baseline HDCluster. Our algorithms’

results are in black. The symbol × implies the results are not available. 88

6.6 Comparison of one-pass clustering with both the updated clusters and

HDCluster. For boxplots, the median values over 500 runs/trials are

annotated on the top. The red values indicate the results for the baseline

HDCluster. Our algorithms’ results are in black. The symbol × implies

the results are not available. 90

6.7 Comparison of clustering using original data and encoded data. For box-

plots, the median values over 500 runs/trials are annotated on the top.

Results for encoded data are in red, while those for the original data are

in black. 91

7.1 Goal overview. 98

xiii

7.2 Overview of the basics of HDC. 100

7.3 Clinical-trajectory-pattern clustering using HDC. 103

7.4 Category prediction overview. 105

7.5 Clinical-trajectory-pattern clustering using HDC for a small dataset (n =

27). 107

7.6 Clinical-trajectory-pattern clustering using HDC for a large dataset (n =

176). 108

7.7 Trajectory clustering for LCMM when n = 27. 111

A.1 Clinical-trajectory-pattern clustering using HDC for a small dataset (n =

27). 138

A.2 Clinical-trajectory-pattern clustering using HDC for a large dataset (n =

176). 139

A.3 Trajectory clustering for LCMM when n = 176. 141

xiv

Chapter 1

Introduction

1.1 Research Overview

Hyperdimensional computing (HDC), a.k.a vector symbolic architecture (VSA), is a

novel computing paradigm that draws inspiration from the structure and functionality

of the human brain. Unlike traditional computing, which operates on binary bits,

HDC operates on hypervectors (ultra-long vectors), enabling it to perform complex

computations with remarkable efficiency and accuracy. While HDC is a relatively new

field, researchers have reported promising results in a wide range of applications, from

machine learning and artificial intelligence to robotics and neuroscience.

HDC has a rich history in the field of cognitive computing and artificial intelligence.

HDC was introduced by Pentti Kanerva in the 1980s [2]. Kanerva’s work was influenced

by earlier ideas in distributed representation and high-dimensional (HD) spaces. HDC

has evolved over the years, with researchers expanding on the original concepts and

applying them to various domains, including natural language processing, cognitive

modeling, and machine learning. HDC has found applications in cognitive science,

robotics, machine learning, and neural network research. It is known for its ability to

represent and manipulate complex data in high-dimensional spaces.

HDC is known for the following main strengths:

• Robustness to noise. The distributed representation of HDC enables it to

encode information across all dimensions of hypervectors. This means that even

1

2

if there are errors or noise in a few positions, the overall quality of the encoding

is not significantly affected [15].

• Efficiency. Unlike convolutional neural networks (CNNs) and deep learning (DL)

models that rely on backpropagation, HDC involves only bitwise addition, multi-

plication, and permutation operations, making it suitable for hardware implemen-

tation, and in-memory computing.

• Model interpretation. By representing data as hypervectors, HDC can iden-

tify patterns and relationships that may not be immediately apparent in lower-

dimensional representations.

• Scalability. In the context of HDC, scalability refers to how well HDC can adapt

to larger datasets, higher-dimensional spaces, and more complex tasks. Since HDC

is inherently designed to work in HD space, this feature makes it highly scalable

when dealing with data that has a large number of features or dimensions. As the

volume of data grows, HDC can handle the increased data without a significant

increase in computational complexity. Its memory-efficient representations and

ability to operate on subsets of data make it suitable for big data applications.

• Few-shot learning. HDC can learn from a few samples but achieve great per-

formance for certain applications [16]. This few-shot learning capability of HDC

offers a promising solution when training data is limited.

• Interoperability. HDC can integrate with existing machine learning and deep

learning frameworks, allowing researchers and practitioners to incorporate its ad-

vantages into their existing workflows [8].

• Parallelism. Modern parallel computing architectures, such as multi-core pro-

cessors and GPUs, enable HDC operations to be parallelized effectively. As a

result of this parallelism feature, HDC is capable of processing large datasets at

faster speeds.

While HDC has the aforementioned advantages, it also comes with some limitations

and potential drawbacks: (a) Lack of mainstream adoption. The HDC approach is

not widely used or accepted in the mainstream machine learning community or industry

3

despite its potential and advantages. This highlights the need for continued efforts

to identify and develop the “killer application” of HDC that can demonstrate its full

potential. (b) Application specificity. HDC may be better suited for certain types

of tasks, such as language recognition [17] and DNA sequencing [18], and may not

be the best choice for all machine learning and data analysis problems. Pilot studies

are necessary to evaluate the suitability of HDC for a particular task. (c) Encoding

complexity. While HDC can capture complex relationships, encoding specific patterns

or structured information may require careful design of the encoding scheme.

In light of the limitations stated above, this dissertation investigates the feasibility

of HDC for specific tasks. The focus of this research is on the application of HDC to

neuropsychiatric disorders, including seizure detection and prediction using intracranial

electroencephalogram (iEEG) data, brain graph classification using functional mag-

netic resonance imaging (fMRI) data, and transcranial magnetic stimulation (TMS)

treatment analysis using brain stimulation measurement data. These tasks involve clas-

sification and clustering, which are critical to the diagnosis and treatment of neurological

disorders. The research examines HDC’s applicability and evaluates its effectiveness and

efficiency in solving real-world biosignal analysis problems.

Brain Graph
Classification

preictal

•••

•••

•••

•••

interictal

iEEG signals
(multi-channel) LBP Encoding

PSD Encoding

1

2
GrapHD

Brain

Different
Regions

•••

•••

task1

task2

State 1

State 2

no task

Seizure Detection
And Prediction

ictal

Clinical
Trajectories

3
Clustering &

Classification

TMS
treatment

TMS coil PHQ9PHQ9

Week
1 2 3 4 5 6 7 8 measured

variable

Figure 1.1: Research tasks outlined in this dissertation.

4

Figure 1.1 vividly shows three research tasks that are covered in the dissertation: (a)

(Seizure detection and prediction) A binary classification problem based on multi-

channel iEEG data aimed at identifying brain activity. There is an imbalance in the data

when it comes to seizure detection (interictal vs. ictal) and seizure prediction (interictal

vs. preictal). (b) (Brain graph classification) Brain connectivity varies depending

on the task being performed, both between different tasks (e.g., Task A vs. Task B),

as well as between task and no-task conditions. The brain graphs, consisting of nodes

and edges, are generated by looking at correlation coefficients between functional brain

regions/nodes captured by fMRI. Three binary classification problems are studied—

emotion vs. gambling, emotion vs. no-task, and gambling vs. no-task. (c) (TMS

treatment analysis) Individuals diagnosed with major depressive disorder (MDD)

may benefit from repetitive transcranial magnetic stimulation (rTMS) treatment, which

typically lasts for several weeks. Two specific aims are for the TMS treatment analysis

in this dissertation. Identifying the clinical trajectory patterns for TMS treatment (Aim

1). Category prediction using measured cognitive variables (Aim 2). Note that all of the

aforementioned data are collected from brains using different measurements or devices.

One thing that should be emphasized is that the research presented in this disser-

tation is algorithmic-oriented and focuses primarily on investigating the applicability of

HDC to specific biosignal diagnosis tasks and how to encode/tailor HDC to these tasks.

Hardware implementation is out of this research scope. Overall, this dissertation aims

to contribute to the growing body of research on HDC and its potential applications in

neuroscience and medicine.

1.2 Dissertation Outline

As illustrated in Figure 1.2, the dissertation is organized as follows:

• Chapter 2 provides the basics of HDC, including the data representation, trans-

formation, and interpretation. This chapter also presents a comprehensive review

of classification using HDC.

• In Chapter 3, two encoding algorithms are introduced for seizure detection. This

chapter investigates the applicability of seizure detection using HDC.

5

Dissertation

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Introduction

Classification
review

Seizure detection

Seizure prediction

Brain graph
classification

Robust cluster-
ing algorithms

TMS treatment

[19]

[20, 21]

[22]

[23]

[24]

[25, 26]

Figure 1.2: Dissertation outline.

• Chapter 4 tailors the two encoding algorithms presented in Chapter 3 for seizure

prediction. The applicability of seizure prediction using HDC is investigated in

this chapter.

• Chapter 5 describes the specific research task for brain graph classification. A

novel graph representation, GrapHD encoding [13], is applied to brain graph clas-

sification.

• Chapter 6 reviews the existing HDC-based clustering algorithm, HDCluster [14].

This chapter also illustrates our proposed HDC-based clustering algorithms, which

are more robust than HDCluster.

• In Chapter 7, two specific research tasks for TMS treatment analysis are described.

The first task involves utilizing the existing HDCluster to determine the optimal

number of clusters for a given system. The second task offers a new perspective on

prediction accuracy, suggesting that predicting categories rather than numerical

6

values may be more effective.

• A complete summary of key results and a brief description of future work are

included in the conclusive Chapter 8.

Overall, this dissertation aims to evaluate the effectiveness and efficiency of HDC

for specific biosignal-centric tasks. By addressing these research questions, this study

provides insights into the potential applications and limitations of HDC for real-world

biosignal analysis problems.

1.3 Summary of Contributions

The contributions of this research can be outlined as follows.

• We recognized the potential of HDC early on, at a time when it had not yet

gained widespread attention from researchers. We have since conducted extensive

research on HDC and have summarized the most recent advancements in this area,

particularly in the context of classification using HDC. Our work provides a valu-

able resource for new researchers who are interested in exploring the potential of

HDC and need to quickly understand its basics. By highlighting the fundamental

concepts and latest research progress in HDC, this dissertation helps to bridge the

gap between theory and practice and to promote further research in this area.

• Previous research has shown that HDC can effectively solve short-term [16] and

long-term [9] seizure detection using the SWEC-ETHZ iEEG database [27]. To

further validate this finding and test the generalizability of HDC, we investigate

its applicability for seizure detection using the Kaggle dataset [28]. Unlike prior

work [9, 16] where time-domain features (e.g., local binary patterns (LBP)) are

employed, we adopt frequency-domain features—power spectral density (PSD)

features. Additionally, both all features and a number of selected features are

studied for seizure detection using HDC classifiers.

• Seizure prediction is a complex task that requires distinguishing between interictal

and preictal states, which can be challenging due to the absence of clear differences

between them. In this dissertation, we aim to address this difficulty by exploring

7

new approaches to seizure prediction. Our research focuses on the use of HDC for

seizure prediction, and while we are unable to demonstrate its applicability using

the Kaggle prediction dataset, we can determine that both LBP and PSD features

are not effective for seizure prediction. These findings represent an important

contribution to the field of seizure prediction and highlight the need for continued

research into more effective methods for predicting seizures.

• We explore the potential of the GrapHD encoding algorithm [13], which is a novel

data representation to encode graph information that consists of nodes and edges.

While GrapHD was not developed by us, we applied this innovative technique to

the task of brain graph classification. We found it to be highly effective in memory

resources as compared to the existing encoding approaches in HDC.

• Although HDCluster [14] has shown higher clustering performance than traditional

k-means across diverse datasets, we found that the clustering results are heavily

influenced by the random seeds used to generate the seed hypervectors. This

finding highlights the importance of considering the random seed in parameter

tuning for performance analysis. To address this issue, we propose more robust

HDC-based clustering algorithms that are less sensitive to the choice of random

seed. Our results demonstrate that these new algorithms outperform HDCluster,

providing a more reliable and effective approach to clustering with HDC.

• We explore the application of HDC to TMS treatment analysis, making two signif-

icant contributions. Firstly, we propose a novel algorithm that utilizes HDCluster

to determine the optimal number of clusters for a given TMS treatment system,

allowing for the identification of clustering patterns in clinical responses. Sec-

ondly, we address the challenge of predicting actual numerical values for clinical

purposes and instead propose a pipeline that focuses on category prediction, show-

ing high performance in accurately classifying different categories related to TMS

treatment outcomes.

Chapter 2

Classification using HDC: a

review

Research for the following chapter has been published in [19]. In this chapter, a detailed

overview of HDC is provided, including its theoretical background. Specifically, this

chapter presents a summary of classification using HDC.

2.1 Introduction

The emergence of HDC is based on the cognitive model developed by Kanerva [2]. HDC

grew out of cognitive science in answer to the binding problem of connectionist (neural-

net) models. When variables and their values are superposed over the same vector,

representing which value is associated with which variable requires a formal model.

This was initially solved using tensor product variable binding by Smolensky [29] and

later by Plate[30] using holographic reduced representation (HRR). The advantage of

HRR over tensor product is that it keeps vector dimensionality constant. Systems based

on these representations go by many names: HRR, HD, binary spatter code (BSD) [31],

binary sparse distributed code (BSDC) [32], multiply-add-permute (MAP) [33], vector

symbolic architecture (VSA) [34], and semantic pointer architecture. All rely on high

dimensionality, randomness, abundance of nearly orthogonal vectors, and computing in

superposition.

8

9

Instead of computing traditional numerical values, HDC performs cognition tasks—

such as face detection, language classification, speech recognition, image classification,

etc—by representing different types of data using hypervectors, whose dimensionality is

in the thousands, e.g., 10,000-d, where d refers to dimensionality. The human brain con-

tains about 100 billion neurons and 1000 trillion synapses; therefore all possible states

of a human brain can be described by a high-dimensional vector. In that sense, HDC

is a form of brain-inspired computing. Randomly or pseudo-randomly defined, these

hypervectors are composed of independent and identically distributed (i.i.d.) compo-

nents, which can be binary, integer, real or complex [35]. As a brain-inspired computing

model, HDC is robust, scalable, energy efficient and requires less time for training and

inference [36]. These features are a result of its ultra-wide data representation and un-

derlying mathematical operations. One thing that should be emphasized is the concept

of orthogonality of the hypervectors.

2.2 Background on HDC

In this section, we review HDC and present a comparison between HDC and classi-

cal computing. We also describe the similarity metrics for hypervectors and typical

mathematical operations used in HDC.

2.2.1 Classical Computing vs HDC

Data representation, data transformation, and data retrieval play an important role in

any computing system. To be more specific, classical computing deals with bits. Each

bit is 0 or 1. This can be realized by the absence or presence of an electric charge.

In terms of computation, data transformation is inevitable. The arithmetic/logic unit

(ALU) computes new data using logical operation and four arithmetic operations, in-

cluding addition, subtraction, multiplication, and division [37]. The main memory al-

lows the data to be written and read. Compared to classical computing, HDC employs

hypervectors as its data type, whose dimensionality is typically in the thousands. These

ultra-wide words introduce redundancy against noise, and are, therefore, inherently ro-

bust.

To transform data, HDC performs three operations: multiplication, addition, and

10

Table 2.1: Comparisons between classical computing and HDC for classification.

Computing Paradigm Classical Computing HDC

Data Type Bit Hypervector
Data Transformation Addition, Multiplication, Logic Add-Multiply-Permute
Storage Memory Item Memory, Associative Memory
Training Weights Class Hypervectors
Testing Run Pre-trained Classifier Associate Query Hypervectors

with Class Hypervectors
Model Complexity High Low
Accuracy Very High Acceptable
Feature Encoding Easy Difficult
Number of Features Many One

permutation. HDC transforms the input hypervectors, which are pre-stored in the item

memory to form associations or connections. In a classification problem, the hyper-

vectors associated with classes are trained during the training process. During the

testing process, the test hypervectors are compared with the class hypervectors. The

hypervectors generated from training data are referred to as class hypervectors and are

stored in the associative memory, while those generated from the test data are referred

to as query hypervectors. An associative search is performed to make a prediction as

to which class a given query hypervector most likely belongs. A comparison between

the classical and HDC paradigms is summarized in Table 2.1. Traditional classification

methods achieve high accuracy using complex models. Training these models typically

takes longer time and requires more energy consumption. The models in HDC-based

classification are simpler and can be trained in less time with high energy efficiency.

However, their accuracy is acceptable, though not as high as traditional models. This is

because the accuracy is dependent on feature encoding which is not as well understood

as traditional classification.

2.2.2 Data Representation

Data points of HDC correspond to hypervectors—vectors of bits, integers, real or com-

plex numbers. These are roughly divided into two categories: binary and non-binary.

For non-binary hypervectors, bipolar and integer hypervectors are more commonly em-

ployed. Generally speaking, non-binary HDC algorithms achieve higher accuracy, while

the binary counterpart is more hardware-friendly and has higher efficiency (see also

11

[38]).

2.2.3 Similarity Measurement

As shown in Table 2.2, two common similarity measurements are adopted in the existing

HDC algorithms, namely, cosine similarity and Hamming distance. Other similarity

measures include dot product (e.g., in MAP) and overlap (e.g., in BSDC).

Table 2.2: Similarity measurements in HDC.

Measurement Similar Orthogonal

Hamming distance 0 0.5
Cosine similarity 1 0

For non-binary hypervectors, cosine similarity, defined by Eq. (2.1), is used to

measure their similarity, focusing on the angle and ignoring the impact of the magnitude

of hypervectors, where | · | denotes the magnitude. Unlike the inner product operation

[39] of two vectors that affects magnitude and orientation, the cosine similarity only

depends on the orientation. In most HDC algorithms with non-binary hypervectors,

cosine similarity is more often used than inner product. Moreover, when cos(A,B) is

close to 1, this implies an extremely high level of similarity. For example, cos(A,B) = 1

indicates two hypervectors A and B are identical. When they are at the right angle,

then cos(A,B) = 0, and the two orthogonal vectors are considered dissimilar.

cos(A,B) =
A ·B
|A||B| (2.1)

For binary hypervectors with dimensionality d, whose components are either 0 or 1,

normalized Hamming distance calculated in Eq. (2.2) is used to measure their similarity

[35]. When the Hamming distance of two hypervectors is close to 0, then they are defined

as similar. For example, Ham(A,B) = 0 indicates every single bit is the same at each

position, and A and B are identical. When Ham(A,B) = 0.5, A and B are orthogonal

or dissimilar. Ham(A,B) = 1 when A and B are diametrically opposed.

Ham(A,B) =
1

d

d∑
i=1

1A(i)̸=B(i) (2.2)

12

In short, similarity measurement (δ) between hypervectors, can be summarized by

Eq. (2.3), binary HDC uses the Hamming distance whereas non-binary HDC employs

cosine similarity. Here A, B are two hypervectors and d represents their corresponding

dimensionality.

δ(A,B) =

{
1
d

∑d
i=1 1A(i)̸=B(i), binary HDC,

A·B
|A||B| , non-binary HDC.

(2.3)

Figure 2.1: Orthogonality in high dimensions [2–4].

One thing that should be emphasized is orthogonality in high dimensions. To put

it simply, the randomly generated hypervectors are nearly orthogonal to each other

when the dimensionality is in the thousands. Take binary hypervectors as an example.

Assume X and Y are chosen independently and uniformly from {0, 1}d and the prob-

ability p of any bit being 1 is 0.5. Then Ham(X,Y) is binomially distributed. Figure

2.1 shows the probability density function (PDF) of Ham(X,Y) for 15,000 pairs of ran-

domly selected binary vectors with different dimensions d. As d increases, more vectors

become orthogonal. Such orthogonality property is of great interest because orthogo-

nal hypervectors are dissimilar. Moreover, operations performed on these orthogonal

hypervectors can form associations or relations.

13

2.2.4 Data Transformation

Three types of operations, add-multiply-permute, are employed in HDC. The inverse

operation for multiplication is also referred to as release [4]. The release operation is also

used to denote inverse addition. Each operation processes and generates d-dimensional

hypervectors. In the following, we illustrate examples of data transformations using

binary hypervectors. Without doubt, data transformation can also be employed to

non-binary hypervectors, which is in essence similar to the manipulations over binary

hypervectors. The only difference is from the point of hardware; for binary hypervectors,

the pointwise multiplication can be realized by an exclusive or (xor) gate.

(a) A+B+C=X. (b) A+B=X in favor of 0. (c) A+B=X in favor of 1.

Figure 2.2: Hamming distance distribution of addition for 10,000-bit hypervectors over
3000 cases. (a) Addition over an odd number of hypervectors; (b) and (c) shows the
addition over even number favoring 0 and 1, respectively.

Addition

Pointwise addition, also referred to as bundling, computes a hypervector Z using Eq.

(2.4) from the input hypervectors {X1,X2, · · · ,Xn}. Compared to random hypervec-

tors, the generated Z is maximally similar to the n inputs X1,X2, · · · ,Xn, i.e., Hamming

distance between Z and any of the n inputs is at a minimum.

Z = [X1 + X2 + · · · + Xn], (2.4)

where [·] indicates the sum hypervector Z is thresholded and binarized to {0, 1}d based

on the majority rule. For convenience, Eq. (2.5) shows an example for the pointwise

14

addition of three 10-bit binary vectors.

A = 0 0 0 0 1 1 0 0 1 1,

B = 1 0 1 1 0 0 0 1 0 1,

C = 0 0 1 0 1 0 1 1 0 1,

[A + B + C] = 0 0 1 0 1 0 0 1 0 1.

(2.5)

Generally speaking, the addition over odd number of hypervectors has no ambiguity,

whereas the addition over an even number can favor either 0 or 1 using the majority

function defined in Eq. (2.6). However, this approach may lead to a biased result for

adding two hypervectors. Therefore, the bias in adding even number of hypervectors is

usually reduced by adding an extra random vector [40]. Figure 2.2 illustrates addition

of 10,000-dimensional random hypervectors repeated for 3,000 times. Comparing Figure

2.2(b) to Figure 2.2(c), we see that specifying in favor of 0 or 1 has little impact over

addition. It can be observed from Figure 2.2 that the sum is nearly equally similar to

the input operands.

Majority(p1, · · · , pn) =

 ⌊12 +
(
∑n

i=1 pi)−
1
2

n ⌋, favor 0,

⌊12 +
∑n

i=1 pi
n ⌋, favor 1.

(2.6)

Multiplication

Pointwise multiplication, also called binding, aims to form associations between two

related hypervectors. A and B are bound together to form X = A ⊕ B, which is

approximately orthogonal to both A and B, where ⊕ represents the xor operation.

Eq. (2.7) shows the pointwise multiplication of two 10-bit binary vectors. In a more

general case, as shown in Figure 2.3, for two randomly generated 10,000-bit binary

hypervectors, their pointwise multiplication result is dissimilar to both of them.

A = 0 0 0 0 1 1 0 0 1 1,

B = 1 0 1 1 0 0 0 1 0 1,

A⊕B = 1 0 1 1 1 1 0 1 1 0.

(2.7)

15

Figure 2.3: Hamming distance distribution of multiplication X = A⊕B for 10,000-bit
hypervectors over 3000 cases.

Permutation

Permutation ρ is a unique unary operation for HDC, which shuffles the hypervector, let

us say A. The resulting permuted hypervector ρ(A) is quasi-orthogonal to the initial

A, i.e, the normalized Hamming distance is close to 0.5. Mathematically, permutation

can be realized by multiplying a permutation matrix. As a specific permutation, a

circular shift is widely employed for its friendly hardware implementation. Eq. (2.8)

shows a circular shift of a 10-bit binary vector with Ham(A, ρ(A)) = 0.4. The expected

Hamming distance is supposed to be 0.5 for ultra-wide hypervectors. Figure 2.4 indicates

the permutation result shows dissimilarity with the original 10,000-bit hypervector.

A = 0 0 0 0 1 1 0 0 1 1,

ρ(A) = 1 0 0 0 0 1 1 0 0 1.
(2.8)

Examples. We illustrate applications of the above operations. For more details, please
refer to [15]. Assume that A,B,C,P,S,X,Y,Z represent 10,000-d random hypervec-

tors:

16

Figure 2.4: Hamming distance distribution of permutation for 10,000-bit hypervectors
over 3000 cases.

• Encode a pair: To encode “x = a”, where x is a variable with numerical value

same as a, use multiplication to bind their corresponding hypervectors X and A.

The encoding is represented by the generated hypervector P = X⊕A.

• Release the value from the pair:

X⊕P = X⊕ (X⊕A)︸ ︷︷ ︸
X⊕X cancels out

= A
(2.9)

• Represent a set: Given the set s = {a, b, c}, we have

S = [A + B + C] (2.10)

• Encode a data record: Given a record with a set of bound pairs d =‘(x = a)&(y =

b)&(z = c)’, the record is encoded as:

D = [X⊕A + Y ⊕B + Z⊕C] (2.11)

17

• Extract the value from a record: To retrieve the value of x:

A′ = X⊕D

= X⊕ [X⊕A + Y ⊕B + Z⊕C]︸ ︷︷ ︸
distributed

= X⊕X⊕A + X⊕Y ⊕B + X⊕ Z⊕C

= X⊕X⊕A︸ ︷︷ ︸
=A

+
(
X⊕Y ⊕B + X⊕ Z⊕C

)︸ ︷︷ ︸
noise

≈ A

(2.12)

• Encode a sequence: Given (a, b), then

AB = ρ(A) ⊕B (2.13)

• Extend the sequence: Extend (a, b) to (a, b, c) using:

ABC = ρ(AB) ⊕C

= ρ
(
ρ(A)

)
⊕ ρ(B) ⊕C

(2.14)

• Extract the first element of the sequence:

ρ−1ρ−1(ABC⊕BC)

= ρ−1ρ−1(ρ
(
ρ(A)

)
⊕ ρ(B) ⊕C⊕ ρ(B) ⊕C)

= ρ−1ρ−1(ρ
(
ρ(A)

)
= A

(2.15)

where ρ−1 is the inverse operation of permutation ρ.

2.3 Learning and Classification By HDC

The first wave of using HDC for classification started in the 1990s [41–44]. The current

applications of HDC for classification can be interpreted as the second wave.

18

2.3.1 The HD Classification Methodology

A system diagram for the classification tasks using HDC is shown in Figure 2.5. In

general, (a) during the learning phase, the encoder employs randomly generated hy-

pervectors (pre-stored in the item memory) to map the training data into HD space.

A total of k class hypervectors are trained and stored in the associative memory. (b)

During the inference phase, the encoder generates the query hypervector for each test

data. Then the similarity check is conducted in the associative memory between the

query hypervector and every pre-trained class hypervector. Finally, the label with the

highest similarity is returned.

Training
Data

Test Data

Class ! hypervector
Class " hypervector

Class # hypervector

•••

Seed Hypervectors ! Different Labels

Similarity Check

H
ig

he
st

Si
m

ila
ri

ty

label
Query hypervectorEncoder

Encoder •••

Original Space Hyperdimensional (HD) Space

Map

Initial Data

Figure 2.5: Classification overview with HDC [5].

2.3.2 Encoding Methods for HDC

HDC can address various types of input data, including letters, signals, and images.

However, we need to map those input data into hypervectors, and this process corre-

sponds to encoding. The encoding process is somewhat similar to the extraction of

features. Among the existing HD algorithms, the two encoding methods commonly

used include record-based encoding and N -gram-based encoding. A toy example related

to speech signals is used for illustration.

Using Mel-frequency cepstral coefficients (MFCCs) [45], the voice information stored

in continuous signals can be mapped into the frequency domain. A feature vector with N

elements can be obtained. Each element has its feature value, which is evenly discretized

19

or quantized from {Fmin, Fmax} to m different levels.

Figure 2.6: Record-based encoding [6]. Note iM refers to item memory, which stores
the position hypervectors, and CiM refers to continuous item memory [3], which stores
level hypervectors.

Record-based Encoding

This encoding method employs two types of hypervectors, representing the feature po-

sition and feature value, respectively. It may be noted that a variation of record-based

encoding based on permutations and a chain of binding operations was proposed in

[46]. In this encoding, position hypervectors IDi are randomly generated to encode

the feature position information in a feature vector, where 1 ≤ i ≤ N . The feature

value information is quantized to m level hypervectors {L1,L2, · · · ,Lm}. For an N -

dimensional feature, a total of N level hypervectors L̄i should be generated, which are

chosen from m level hypervectors {L1,L2, · · · ,Lm} based on the feature value. Note

that, position hypervectors IDi are orthogonal to each other, while level hypervectors

{L1,L2, · · · ,Lm} are supposed to have correlations between the neighbours. To realize

this, in [47] the first level hypervector L1 represents the feature value Fmin. Then each

time, d/m randomly selected bits are flipped to generate the next level hypervector,

where d is the dimensionality of the hypervectors. The continuous bit-flipping was first

20

introduced in [6] and later followed by other use cases [8, 48, 49]. This bit-flipping

approach ensures the correlations between neighbor levels, while the last level hyper-

vector Lm is nearly orthogonal to L1. The encoding occurs by binding each position

hypervector with its level hypervector. As described in Eq. (2.16), the final encoding

hypervector H can be obtained by adding these results together. The entire encoding

process is illustrated in Figure 2.6.

H = L̄1 ⊕ ID1 + L̄2 ⊕ ID2 + · · · + L̄N ⊕ IDN ,

L̄i ∈ {L1,L2, · · · ,Lm}, where 1 ≤ i ≤ N.
(2.16)

Figure 2.7: N -gram-based encoding [7]. CiM stores level hypervectors that are mutually
orthogonal.

N-gram-based Encoding

The method of mapping N -gram statistics into hypervectors was proposed in [17]. First

random level hypervectors are generated. Then the feature values are obtained by

permuting these level hypervectors in this encoding method. For example, the level

hypervector L̄i corresponding to the i-th feature position is rotationally permuted by

(i− 1) positions, where 1 ≤ i ≤ N . We can get the final encoded hypervector H by Eq.

21

Two Metrics

Accuracy

Encoding
[40, 50, 51]

Retraining
[10, 47, 52]

Non-binary
[10, 47, 52]

Efficiency

Algorithm

Binarization
[50]

Quantization Sparsity
[53]

Hardware

In-memory Nano Tech

CNFET
[1]

RRAM
[36]

3D Intergration
[54]

FPGA

Figure 2.8: Two benchmarking metrics in HDC and some possible ways to improve
these metrics.

(2.17). Such an encoding process is illustrated in Figure 2.7.

H = L̄1 ⊕ ρL̄2 ⊕ · · · ⊕ ρN−1L̄N ,

L̄i ∈ {L1,L2, · · · ,Lm}, where 1 ≤ i ≤ N.
(2.17)

As stated in [7], for speech recognition, the N -gram-based encoding method achieves

lower accuracy than record-based counterpart. This encoding method is also used to

address data types of letters, such as language recognition [5] and DNA sequencing [18].

2.3.3 Benchmarking Metrics in HDC

In HDC, there is always a tradeoff between accuracy and efficiency, e.g., see [50]. As

shown in Figure 2.8, a large amount of work has been carried out to improve the

classification accuracy, energy efficiency, or both at the same time.

Accuracy

In terms of accuracy, the encoding method plays a significant role since each encoding

may not be efficient for different types of data. Good encoding for HD to achieve high

accuracy is hard [55]. In this sense, an appropriate choice of encoding method can

improve the accuracy. Efficient encoding approaches have been presented in [56]. The

approach in [7] integrates different encoding methods together to achieve higher accuracy

22

at the expense of hardware area. Compared to single-pass training, retraining iteratively

improves the training accuracy [8]. Thus the classification accuracy is improved by using

a more accurately trained model. Moreover, using binary hypervectors may degrade the

accuracy. Hence with enough resources, non-binary models can be used to achieve high

accuracy.

Efficiency

For efficiency, improvements mainly focus on algorithm and hardware characteristics.

From the algorithm perspective, dimension reduction is the most natural way to realize

efficiency. Simulations show that by slightly reducing the dimensionality of hypervec-

tors, the classification accuracy still remains in an acceptable range but saves hardware

resources [47]. Binarization, which refers to employing binary hypervectors instead of

non-binary model, accelerates computation and reduces hardware resources [51]. The

precision is degraded by quantizing the non-binary HD model. QuantHD has been pro-

posed in [47] to achieve higher efficiency with minimal impact on accuracy. Sparsity

was introduced in HDC in the framework of BSDC [57]. Tradeoff between dense and

sparse binary vectors has been presented in [50]. By introducing the concept of sparsity

to hypervector representation, [53] proposes a novel platform, SparseHD, which reduces

inference computations and leads to high efficiency. From the hardware perspective,

HDC involves a large number of bit-wise operations, as well as the same computa-

tion flow for different HD applications, making FPGA a nice platform for hardware

acceleration [58]. Moreover, as proposed in [59], combining HDC with the concept of

in-memory computing, which is featured as RAM storage and parallel distribution, may

create opportunities for HD acceleration. Additionally, several emerging nanotechnolo-

gies, including carbon nanotube field-effect transistors (CNFETs) [1], resistive RAM

(RRAM) [36], and monolithic 3D integration [54], have demonstrated implementations

of HDC at high speed [1]. Dimensionality reduction has been evaluated in an actual

prototyped system using vertical RRAM (VRRAM) in-memory kernels in [60].

23

0

Trigram hypervector S
el

ec
te

d
 l

a
n

g
u

a
g
e

d-3d-1 d-2 1 0

d-3d-1 d-2 Letter1 hypervector 1 0

Letter3 hypervectord-3d-1 d-2 1 0

Letter2 hypervectord-3d-1 d-2 1 0

ACCACCACC

THRTHRTHR

Text hypervectord-3d-1 d-2 1 0

Input letter

ACCACC

THRTHR

Item memory

Letter hypervector (with d dimensions)

d-1 Query hypervector 0

Similarity measurement

Language hypervector0d-1 0

d-1 Query hypervector 0

Similarity measurement

d-1 Query hypervector 0

Similarity measurement

Language hypervector1d-1 0

Language hypervectorL

C
lo

se
st

 s
im

il
a
ri

ty

Encoding module Search module

Q
u

er
y
 h

y
p

er
v
ec

to
r

d-1 0

di ACC

0 +0

+11

ACC

<k/2

else

di

0

1

Figure 2.9: The architecture for language recognition with HDC [1, 5].

2.4 Applications in HD Classification

In what follows, some classical HDC applications in classification tasks as well as sev-

eral novel design approaches that can balance tradeoff of accuracy and efficiency are

described. They are categorized based on their input data types, namely letters, signals

and images.

2.4.1 Letters

European Language Recognition Using HDC

HDC for European language recognition was first explored by [17]. Literature [1]

presents an HDC nanosystem, which implements HD operations based on emerging

nanotechnologies—CNFETs, RRAM and 3D integration—offering large arrays of mem-

ory and resulting in reduction of energy consumption. From its three-letter sequence

called trigrams, such a nanosystem can identify the language of a given sentence [1].

Define a profile by a histogram of trigram frequencies in the unclassified text. The basic

idea is to compare the trigram profile of a test sentence with the trigram profiles of 21

languages, and then find the target language which has the most similar trigram profile

[17].

• Baseline. Scan through the text and count the trigram to compute a profile.

24

A total of 273 = 19, 683 trigrams are possible for the 26 letters and the space.

Thus the trigram counts can be encoded into a 19,683-dimensional vector and

such vectors can be compared to find the language with the most similar profile.

However, this straightforward and simple approach generalizes poorly. Specifically,

compared to trigrams, higher-order N -grams will have higher complexity. For

example, the number of possible pentagrams is 275 = 14, 348, 907.

• HD classification algorithm. (a) Choose a set of 27 letter hypervectors ran-

domly, serving as the seed hypervector. Note that all training and test data employ

the same seeds. In this design, the dimensionality is selected to be 10,000. (b) Gen-

erate trigram hypervectors with permutation and multiplication. For example, let

(a, b, c) represent a trigram. Then rotate the hypervector A twice, hypervector B

once, and use hypervector C with no change, and then multiply them component

by component as described in Eq. (2.14). (c) The target profile hypervector is

then the sum of all the trigram hypervectors in the text. (d) Compare the profile

of a test sentence to the language profiles, and return the most similar one as the

classification result.

Compared to the baseline algorithm, the HD algorithm generalizes better to any

N -gram size when 10,000-dimensional hypervectors are used.

The HD classification hardware architecture for language recognition using trigrams

proposed in [5] is shown in Figure 2.9. Two main modules are implemented. They

include the encoding module and the search module. (a) The encoding module takes a

stream of letters as the input. Each letter is mapped to the HD space and its correspond-

ing randomly generated hypervector is stored in the item memory. Here it addresses

the trigrams where each group of three hypervectors produces a trigram hypervector.

Accumulate those trigram hypervectors and perform the majority operation using the

threshold to generate a text hypervector. (b) During the training phase, a total of 21

text hypervectors are trained as the learned class hypervectors and are stored in the

associative memory in the search module. During the testing phase, the encoding mod-

ule generates the text hypervector as a query hypervector. This query hypervector is

then broadcast to the search module and compared to the stored class hypervectors to

predict the language label, which has the closest similarity. As listed in Table 2.4, the

25

HD classifier achieves 96.70% accuracy.

Using the same architecture shown in Figure 2.9, and combining with the emerging

nanotechnologies—CNFETs, RRAM and their monolithic 3D integration—the HDC

hardware implementation achieves classification accuracy up to 98% for over > 20, 000

sentences [1].

HD

Encoder

Training

Dataset

C1

C2

C26 D
is

ta
n

ce
 S

im
il

a
ri

ty

C3

Associative Memory
26

Training

Dataset

HD

Encoder

Testing

Dataset

C1

C2

C26 D
is

ta
n

ce
 S

im
il

a
ri

ty

C3

Associative Memory
26

Testing

Testing

Dataset

Training
NN model

HD model

Retraining

Figure 2.10: VoiceHD+NN flow for training and testing [8].

Figure 2.11: The architecture for Laelaps with HDC to detect and alarm seizure [9].

2.4.2 Signals

HDC Classification for Speech Recognition

The development of the Internet of Things (IoT) has motivated the market need for

speech recognition. Though deep neural networks (DNNs) have been widely used for

speech recognition, it requires expensive hardware and high energy consumption. This

has inspired research for speech recognition based on HDC which can achieve fast com-

putation and energy efficiency.

In [8], VoiceHD, a new speech recognition technique, is proposed for classifying 26

26

letters from the spoken dataset. At the beginning, the voice signal is transformed to

the frequency domain, which contains N frequency ID channels and M levels. Then

VoiceHD maps these ID and level information into random hypervectors stored in the

item memory. Combining these hypervectors, in the training phase, VoiceHD encoding

module generates the learned patterns corresponding to 26 hypervectors that are stored

in the associative memory. In the testing phase, VoiceHD uses the same encoding

module to generate the query hypervector, which is broadcast to the associative memory.

Comparing the query hypervector with the stored 26 class hypervectors, the hypervector

with maximum similarity is retrieved to predict the letter. Here, dimensionality d of

the hypervectors is 10, 000.

Researchers tested their VoiceHD design over Isolet dataset [61], where a total of

150 subjects spoke the name of each letter of the alphabet twice. The key findings are

as follows: (a) Varying the value of M , the number of levels of the amplitude between

−1 and 1, with N , the number of frequency bins, fixed at 617, the recognition accuracy

increases with increase in M . Note the encoding efficiency degrades with large M > 10.

The maximum accuracy reaches 88.4% using M = 10. (b) To improve the classification

accuracy, researchers retrain the associative memory by modifying the trained class

hypervectors. The accuracy can be improved to 93.8%. (c) Combining VoiceHD with a

small neural network, the corresponding VoiceHD + NN flow is shown in Figure 2.10.

Such a small NN has three layers. There are 26 neurons in the first layer, 50 neurons in

the hidden layer and another 26 neurons in the last layer. The classification accuracy

can be improved to be 95.3%. (d) Compared to the pure NN with 93.6% classification

accuracy, VoiceHD, and VoiceHD+NN show 4.6× and 2.9× faster training speed, 5.3×
and 4.0× faster testing speed, and 11.9× and 8.6× higher energy efficiency, respectively.

Seizure Detection Using HDC

The Laelap algorithm, which utilizes local binary pattern (LBP) codes to conduct the

feature extraction from iEEG signals, has been proposed in [9] for seizure prediction.

Here HDC is applied to capture the statistics of the time-varying LBP codes for all the

electrodes. Figure 2.11 illustrates the complete processing chain. (a) Since the down-

sampling frequency is 512 Hz, thus every one second (1s) data contains 512 samples.

Among these samples, the sampled iEEG signals are encoded to 6-bit LBP codes. This

27

completes the feature extraction part. (b) It utilizes record-based encoding, where two

types of hypervectors are randomly generated. Specifically, each LBP code is trans-

formed to a d-dimensional hypervector Ci, while the hypervectors Ei are used to repre-

sent the corresponding electrode name. For every new sample, the hypervectors Ei and

Ci are bound together to form a composite hypervector S = [C1 ⊕ E1 + · · ·Cn ⊕ En],

where n is the number of electrodes for a specific patient. Then the histogram of LBP

codes H is computed for a moving window of 1s with 0.5s overlap. Therefore the com-

posite hypervector H = [S1 + S2 + · · · + S512] is updated every 0.5s. (c) For learning,

two prototype hypervectors P1 and P2 should be trained. For the interictal prototype

vector P1, all H computed over the 30s should be accumulated and normalized to be

stored in the associative memory. Depending on the seizure’s duration, the ictal proto-

type vector P2 is generated using all H over an ictal state, which may last 10s to 30s.

(d) For classification, comparing Pk with a query H, the label is updated every 0.5s

with the shortest Hamming distance Ham(H,Pk), where k = 1, 2. (e) The algorithm

also generates the seizure alarm. In postprocessing, if the last 10 labels all indicate P2

(tc = 10) and the distance score ∆ > tr, then the seizure alarm is generated.

The evaluation shows the Laelaps algorithm outperforms other machine learning

methods, such as SVM, in terms of energy efficiency. It is worth noting that many sim-

pler seizure detection and prediction algorithms have been proposed in the literature

[62–66]. A fair comparison of classifier accuracy between HD and traditional classifica-

tion needs to be explored in the future.

Quantization in HDC

In dealing with signals, HDC usually makes use of floating point models to improve

the classification accuracy at the cost of high computation cost. In [47], QuantHD is

proposed as a quantization of HD model, which projects the trained non-binary hyper-

vectors to a binary or ternary model, with elements in {0, 1} or {−1, 0,+1}, to represent

class hypervectors. To compensate the accuracy degradation caused by quantization, a

retraining approach is used where an iteration number of 30 is pre-defined. The similar-

ity check is no longer cosine metric (non-binary model), but Hamming distance (binary

model) or dot product (ternary model). Compared to the existing binarized HDC, such

QuantHD improves on average 17.2% accuracy with a similar computation cost.

28

HDC Using Model Compression

As a mathematical framework, HDC can be an alternative for machine learning prob-

lems. This was envisioned in [67]. Due to the high dimensionality, the inference of

HDC is quite expensive, especially when it is applied to embedded devices with limited

resources. For example, the memory is limited. Therefore, reducing the high dimen-

sionality of hypervectors without sacrificing the accuracy has been investigated in [10].

Thus, CompHD is a general method that compresses the model size with minimal loss

of accuracy. The addressed hypervectors are in {−1, 1}d. Instead of Hamming distance,

the similarity metric in CompHD is cosine similarity.

1
st
 Segment S

th
 Segment

Cjd CjD Cj1Cjd-D

-1 +1 +1 -1

P1 PS

Compressed

Model C'
C'jD C'j1

1
st
 Segment S

th
 Segment

hd hD h1hd-D

-1 +1 +1 -1

P1 PS

Compressed

Query Q'
h'D h'1

Cjd CjD Cj1Cjd-D hd hD h1hd-D

(a) Offline (After training) (b) Online (During inference)

Figure 2.12: CompHD for (a) an HD model and (b) a query data [10].

To reduce the HD model size, it is natural to use low-dimensional hypervectors.

However, experimental results of three practical applications using different dimension-

alities in HD classification show that the efficiency is improved by reducing model size

at the cost of accuracy.

To maintain high accuracy when reducing the dimensionality, the proposed CompHD

employs the architecture shown in Figure 2.12. With no reduction in model size, Ci

represents the class hypervector, Q represents the query hypervector, where 1 ≤ i ≤ k.

In CompHD, class hypervectors, and query hypervectors are compressed, which means

the original hypervectors are divided into s segments. To store most of the information

29

in original hypervectors with the full size, using Hadamard method [68], CompHD

generates P1,P2, · · · ,Ps, which are in {−1, 1}D and are orthogonal to each other, where

D = d/s. Specifically, the compressed class hypervector C′ and query hypervector Q′

are calculated using multiplication and addition in HD as described by Eq. (2.18).

By doing so, only little information is lost when we compress the model size and high

accuracy can be maintained.

C′ =

s∑
i=1

PiC
i, Q′ =

s∑
i=1

PiQ
i (2.18)

Their evaluation shows that, compared to the original HD classification that purely re-

duces the dimensionality with the compression factor s = 20, the classification accuracy

for the three applications is still in an acceptable range. In particular, maintaining

the same accuracy as the original, CompHD can on average reduce the model size by

69.7% while still achieving 74% energy improvement and 4.1× execution time speedup

in the context of activity recognition, gesture recognition, and valve monitoring applica-

tions [10]. Therefore, CompHD is suitable for low-power IoT devices to achieve higher

efficiency with comparable accuracy.

Figure 2.13: Overview of SemiHD framework supporting self-training in HD space [11].

Adaptive Efficient Training for HDC

Single-pass training leads to low accuracy. To improve this, iterative training might

be one efficient solution. However, a lack of controllability of training iterations in HD

classification may result in slow training or divergence. To solve this training issue, [52]

proposes a retraining approach, AdaptHD.

30

The basic idea is illustrated as follows: (a) Conduct the initial training by using

binary hypervectors to generate the non-binary class hypervectors. (b) Retrain the

class hypervectors by looking at the similarity of each trained class hypervector (C)

with the training hypervector (H). Update the model using Eq. (2.19) if the current

training hypervector leads to a misclassification error. Otherwise, there is no change.

For example, there is a mismatch if Hi is supposed to belong to Ccorrect but is classified as

Cwrong, where Ccorrect and Cwrong denote different class hypervectors and Hi represents

the ith training hypervector. (c) After convergence, which means the last three iterations

of retraining show less than 0.1% accuracy change, then binarize the final trained model

for inference.  Cwrong = Cwrong − αHi,

Ccorrect = Ccorrect + αHi.
(2.19)

Insights are gained by their results: (a) Small α needs more iterations to get the

near-best accuracy. The smooth curve indicates small α is better for fine-tuning. (b)

Large α gets to the near-best accuracy much faster, but its high fluctuation may lead

to divergence. Based on these two findings, AdaptHD uses large α first to get the near

best accuracy faster, then changes to smaller α for fine-tuning until convergence. This is

similar to adjusting the step size in the normalized least mean square (LMS) algorithm

[69]. AdaptHD offers three types of adaptive methods:

• Iteration-dependent AdaptHD. The change of value α depends on iterations. In

the beginning, α starts with a large αmax. The learning rate α changes based on

the average error rate in the previous β iterations. If the error rate decreases,

indicating convergence, then use smaller α; otherwise, increase α.

• Data-dependent AdaptHD. The value α differs in a certain iteration for all data

points, and it changes depending on the similarity of the data point with the class

hypervectors. Large distance uses large α to reduce the difference.

• Hybrid AdaptHD. Combining the two models, hybrid AdaptHD can achieve high

accuracy as iteration-dependent AdaptHD and fast speedup as the data-dependent

AdaptHD.

The evaluation shows that, compared to the existing HD algorithm, the hybrid

31

AdaptHD can achieve 6.9× speedup and 6.3× energy-efficiency improvement.

A Binary Framework for HDC

Generally speaking, HD classification using binary hypervectors shows lower accuracy

but higher energy efficiency than non-binary ones. This is because the non-binary

framework makes use of the costly cosine similarity rather than the hardware-friendly

Hamming distance metric. In [51], BinHD uses three main blocks, encoding, associative

search, and counter modules, dealing with binary hypervectors. Their evaluation shows

that, over four practical applications, the proposed BinHD can reach 12.4× and 6.3×
energy efficiency and speedup in the training process, while 13.8× and 9.9× during the

inference, compared to the state-of-art HDC algorithm with comparable classification

accuracy.

Figure 2.14: Block diagram of the HD Character Recognition System [12].

HDC for Semi-Supervised Learning

In [11], SemiHD has been proposed as a self-training or self-learning approach for semi-

supervised learning, where the training data is composed of a small portion of labeled

data and a large portion of unlabeled data.

The SemiHD framework is depicted in Figure 2.13 and the flow is illustrated as

follows. (a) Encode all the data points, labeled and unlabeled, into HD space with

d = 10, 000 dimensions. (b) Start training from the labeled data to generate k hyper-

vectors, each representing one class. (c) Predict the label for unlabeled data points.

Labeling is performed by checking the similarity of unlabeled data with all the class

hypervectors, and return the label which shows the highest similarity. (d) Select and

32

add S% of unlabeled data with highest confidence to labeled data, where S is defined

as the expansion rate. In [11], typically S = 5. (e) Redo the training task based on the

expanded labeled data. Such iterative process stops when the accuracy does not change

more than 0.1%. (f) Once the model has already been trained, perform the inference

task by comparing the similarity of each test data with the trained model, to return the

label with maximum similarity.

Their evaluation shows that the SemiHD can on average improve the classification

of supervised HD by 10.2%. Additionally, compared to the best CPU implementation,

the FPGA counterpart of SemiHD offers 7.11× faster speed and 12.6× energy efficiency.

HDC for Unsupervised Learning

HDC has also been used in several unsupervised applications. See [70–74].

2.4.3 Images

HD Classification for Character Recognition

HD classification has been used for character recognition in [75] and later in [12]. As

shown in Figure 2.14, the input image is composed of 7 × 5 = 35 pixels. Each pixel

has two possible values, that is 0 or 1, representing black or white. (a) Encode each

pixel to a binary hypervector (indexHV). Totally 35 orthogonal indexHVs are stored in

the item memory. (b) Based on HoloGN encoding—an encoding method proposed in

[75] to address image data using HDC—the indexHV is shifted depending on the pixel

value. Accumulate all 35 indexHVs and perform a majority rule by a thresholding block

to generate a holoHV for one input image. (c) The supervised controller will only be

activated when this HD system conducts supervised learning. Otherwise, the system

conducts the one-shot learning. The supervised controller accumulates the holoHVs for

the same class and employs the thresholding block and generates the letterHV to be

stored in the associative memory. The total number of letterHVs is 26. (d) During the

test phase, the query hypervector is generated following the same module with test data.

Then the similarity of each query hypervector is computed for all trained letterHVs to

find the most similar class.

Results in [12] show that HDC performs well for character recognition. Further

33

Table 2.3: Summary of the strategies used in HDC for accuracy and efficiency improve-
ment.

Applications Encode1
Model Type2

Platform3 Accuracy4Acceleration5Motivation Application
base/
level

train test

QuantHD [47] 1 B/B B/T B/T F, C, G Re, shuffle Q, DR, F speedup+
accuracy

speech, activity,
face, phone posi-
tion

VoiceHD [8] 1 B/B B B C NN, Re DR, B Replace deep
learning

speech

CompHD [10] 3 P N N F N DR, Comp DR without
accuracy loss

activity, gesture,
valve monitoring

AdaptHD [52] 1 B/B N B C Re, N B, Adapt accuracy+
short time
Re

speech, face,
activity,
Cardiotocograms

BinHD [51] 1 B/B B B C Re B speedup speech, face,
activity,
Cardiotocograms

SemiHD [11] 1 B/B B B F, C Re, N DR, B Replace deep
learning

17 popular
datasets [76]

Language [5] 2 B B B F B energy
saving +
robustness

language recog-
nition

Character [12] 3 B B B Binary DR data
classification
in IoT

character
recognition

Laelap [9] 1 B B B C, G energy
efficiency

seizure detection

1 three encoding methods. 1: record-based encoding, 2: N -gram-based encoding, 3: a novel method.
2 symbol “/” is used in record-based encoding. B: binary, P: bipolar, T: Ternary, N: non-binary.
3 implementation platforms. F: FPGA, C: CPU, G: GPU.
4 strategies for accuracy improvement. Re: retraining, N: non-binary model, NN: neural network.
5 strategies for efficiency improvement. DR: dimension reduction, Q: quantization, B: binarization, F:
FPGA, Comp: compression, Adapt: adaptive.

optimization for HDC may be conducted by reducing the dimensionality and increasing

the input image size. The results also show that HDC offers great robustness against

noise. The system of 4,000-bit hypervectors achieves comparable average accuracy to

its 12,000-bit counterpart at 0% distortion, and achieves an average accuracy of 89.94%

with 14.29% distortion.

2.4.4 Summary

As mentioned above, HDC shows great potential in dealing with data in the form of

signals [8, 9, 16, 78, 87], letters [17, 77], and images [12, 36, 75], as long as these can be

transformed into the HD space. Such pre-processing may include feature extraction and

encoding. The evaluation shows that HDC achieves good results for seizure detection [9,

34

Table 2.4: Partial list of applications based on HDC1 in [1].

Applications Inputs(#)2Classes(#)3 HDC Baseline

Language recognition [5, 17] 1 21 96.70% 97.90%
Text categorization [77] 1 8 94.20% 86.40%
Speech recognition [8] 1 26 95.30% 93.60%

EMG gesture recognition [6] 4 5 97.80% 89.70%
Flexible EMG gesture recognition [49] 64 5 96.60% 88.90%

EEG brain-machine interface [78] 64 2 74.50% 69.50%
ECoG seizure detection [16] 100 2 95.40% 94.30%

DNA sequencing [18] 1 99.74% 94.53%
Character recognition [12] 1 10 89.94%

1 Other works, like [79–86], are not listed in this table.
2 represents the number of input data.
3 represents the number of class hypervectors to be trained and stored in the associative memory.

16]. In addition, HDC can also be combined with quantization technique to binarize HD

model with minimal accuracy loss [88]. Table 2.3 offers more details about improvement

strategies adopted in HDC for accuracy and efficiency. As can be seen from Table 2.4,

HDC offers an acceptable accuracy, but with quite high efficiency. In some applications

like DNA sequencing [18], HDC outperforms other machine learning methods.

There still exist some interesting papers not discussed in detail in this review work.

Interested readers can refer to the following references, which include but are not limited

to: (a) Considering the security issue when IoT devices release the offload computation

to the cloud, [89] illustrates how the proposed SecureHD accelerates efficiency with

high security. (b) To balance the tradeoff between efficiency and accuracy, QubitHD

[88] is proposed as a stochastic binarization algorithm to achieve comparable accuracy

to the non-binarized counterparts. SparseHD [53] takes advantage of the sparsity of the

trained HD model for acceleration.

HDC is still in its infancy. Future directions may include but is not limited to:

• More cognitive tasks: Inspired by [50], apart from the engineering aspect of HDC,

which is to solve classification tasks, more “cognition” aspects of HDC should be

explored. Such tasks include but are not limited to analogical reasoning, semantic

generalization and relational representation.

• Feature exaction and encoding method: Since HDC cannot directly address data

35

like signals and images, feature exaction is vital to representation of information.

For example, [87] partially deals with this by addressing the problem of mapping

data to a high-dimensional space.

• Similarity measurement: Though cosine similarity and Hamming distance are

currently widely used, new metrics should be developed that are hardware-friendly

and can lead to high accuracy.

• Multiple class hypervectors: Traditional classifiers use multi-dimensional features

to train a classifier. Often ranking can be used to select a small number of features

out of many features [90]. It is possible that multiple class hypervectors, similar

to multiple features in traditional classification, can be generated to represent a

class in HD classification. Subsequently, multiple query hypervectors will need to

be compared with their corresponding class hypervectors for each class. This is a

topic for further research.

• Accuracy improvement: Strategies like retraining should be explored to further

improve the accuracy of HDC.

• Hardware acceleration: Rebuilding the specific implementation for HDC to store

and manipulate a large number of hypervectors may result in high speed and

energy efficiency. Moreover, inspired by [50], which discusses tradeoffs related to

the density of hypervectors, a choice between dense and sparse approaches should

be accordingly made based on the application scenarios. For example, adopting

sparse representation requires lower memory footprints.

• General HDC processor: Inspired by [3], addressing different types of data with

only one general processor containing a large word-length ALU is of great interest.

• Hybrid systems: Hybrid systems are partially based on HDC and partially on

conventional machine learning. Only a few examples exist so far [91–94]. Further

research on this topic can be explored in the future.

36

2.5 Conclusion

This chapter has summarized the fundamental arithmetic operations for the emerg-

ing computing model of HDC that might achieve high robustness, fast learning ability,

hardware-friendly implementation, and energy efficiency. Mathematically, HDC can be

viewed as an alternative in dealing with machine learning problems. Though in its

infancy, HDC shows its potential to be used as a lightweight classifier for applications

with limited resources. This model can achieve outstanding classification performance

for certain problems like DNA sequencing. Balancing the tradeoff between accuracy and

efficiency is an important area of research. Improvements include but are not limited

to encoding, retraining, non-binary model, and hardware acceleration. HDC sometimes

leads to outstanding classification accuracy, while sometimes achieves acceptable accu-

racy but high efficiency. Thus, users need to evaluate whether HDC is suitable for their

application. Additionally, HDC can be used in applications such as seizure detection,

speech recognition, character recognition and language detection. More “cognition” as-

pects of HDC, including analogical reasoning, relationship representation and analysis,

will need to be further developed in the future.

Chapter 3

Applicability of seizure detection

using HDC

The work for this chapter has been published in [20, 21]. This chapter investigates

the applicability of seizure detection using HDC. Two encoding approaches are studied:

LBP and PSD encoding.

3.1 Introduction

Seizure detection [9, 16, 62, 95, 96] and prediction [65, 97–101] from either scalp or

intra-cranial electroencephalogram (iEEG) are two separate but related classification

problems [102]. The baseline EEG is referred as interictal whereas the EEG during

seizure occurrence is referred as ictal. The EEG 30-60 minutes before seizure is referred

as preictal. Seizure detection is a binary classification problem that classifies ictal vs.

interictal whereas seizure prediction classifies preictal vs. interictal. An implanted

seizure prediction device can trigger deep brain stimulation that can avert the seizure.

Seizures can be detected or predicted using features such as wavelet coefficients of the

signal or the error signal [62, 103], line length [104], power spectral density (PSD)

[66, 100], and ratio of band power [63, 66, 105], and classifiers such as SVM [64]. Recently

it has been shown that seizures can also be detected or predicted by convolutional

neural networks (CNN) [98, 106, 107]. The reader is referred to [108] for a review of

approaches for seizure detection. This work addresses the seizure detection problem.

37

38

Seizure detection is of interest in two different contexts. First, this can be used to

automatically annotate the EEG so that the neurologist’s time to annotate the data

can be reduced significantly. Second, a subject can be treated using a fast-acting drug

when a seizure detection warning is generated by a wearable device.

Seizure detection using HDC and local binary pattern (LBP) encoding has been

addressed in prior work [9, 95, 96, 109]. In [56], it was pointed out that power spectral

density (PSD) values can be used in the context of HD; however, this should be avoided.

A scalar multiplication (weighting) method is used in [56] to map real-valued features

(e.g., PSD features) without any quantization. This method directly multiplies the

bipolar feature hypervectors by these real-valued features leading to real-valued hyper-

vectors. Since it requires floating-point operations and storage, [56] suggests avoiding

using PSD as much as possible. No experimental results were also presented in [56] for

seizure detection using PSD.

This research explores the applicability of binary HDC to patient-specific seizure

detection using the iEEG data from the Kaggle seizure detection contest [110] using

two classes of features: LBP and PSD. This research makes five novel contributions. (a)

This work investigates the LBP feature, which has been studied before in the context

of HDC in [9, 16], for another seizure dataset to test its generalizability as an efficient

feature for seizure detection. (b) The band power and ratio of band power computed

from PSD have been investigated in the context of traditional machine learning, but

not in the context of HDC until our prior conference paper [20]. In contrast to [56], we

quantize the PSD features to q levels and use hypervectors to encode these quantized

PSD values. In the context of selected PSD features, unlike [20] where the features

selected by classification and regression tree (CART) from a prior work are used, in

this chapter, features are selected by Fisher score. In the context of HD using PSD

features, three approaches are introduced in [20]; these are referred as: single classifier

long hypervector, multiple classifiers, and single classifier short hypervector. (c) Only

test accuracy is considered as the performance measurement metric in [20], which is

insufficient for seizure detection. In this work, four main metrics are used to measure

the performance, namely the test accuracy, sensitivity, specificity and the area under

this curve (AUC). (d) In this work, to the best of our knowledge, a hypervector distance

plot is introduced for the first time to visualize the quality of classification results. This

39

plot illustrates the distance of the query hypervector from one class hypervectors vs.

that from the other. (e) We show that the length of the hypervectors can be reduced

from 10,000 bits to 1,000 bits for both LBP and PSD methods. Furthermore, for two

approaches of the PSD method, the length of the hypervectors can be as short as 100

bits. A short hypervector can reduce energy consumption significantly. No prior work

has shown that hypervectors as short as 100 bits can be used for classification using

HDC.

Using iEEG data from the Kaggle contest, it is shown that HDC classifiers using

PSD features can achieve better performance than LBP nearly for all subjects. This

observation is new. Thus, identifying discriminating features for HDC is equally im-

portant. Unlike in CNNs where the network learns the features implicitly, the HDC

classifier performance varies with different features. This work is an extended version

of [20]. While LBP was not used in [20], this work describes results using LBP.

3.2 Methodology

This section illustrates two different HDC-based learning strategies: LBP and PSD

encoding. In general, the LBP method utilizes the time-domain information, whereas

the PSD method employs the features extracted from the frequency domain.

3.2.1 LBP Method

This work employs the LBP method proposed by [109] for a different iEEG dataset to

test its generalizability for seizure detection. Based on [109], iEEG signals are encoded

as LBP codes, which reflect the time-domain information and are able to distinguish

ictal and interictal states. LBP codes can be computed as follows: (a) Consecutive iEEG

signal samples are converted into a bit stream depending on the sign of the temporal

difference of adjacent samples. If the difference is positive, then the corresponding LBP

code is assigned as 1; otherwise it is 0. (b) A length-l (l-bit) LBP code is generated

from (l + 1) consecutive iEEG signal samples. As an example, we encode 7 points of a

40

hvspatiali =
[N∑
j=1

h̄vLBPj
⊕Chj

]
, where 1 ≤ j ≤ N. (3.1a)

hvwink
=

[W−l∑
i=1

hvspatiali

]
, where 1 ≤ i ≤ W − l. (3.1b)

hvclass =
[
hvwin1 + · · · + hvwink

+ · · · + hvwinK

]
, where 1 ≤ k ≤ K. (3.1c)

4
<latexit sha1_base64="HmZyoqflorVKAwDa3xX2DdjuOSo=">AAAB/XicbVDLSsNAFL2pr1pf8bFzM1gEVyWRoi6LblxWsLXQhjCZTtqhkwczk0INwV9x40IRt/6HO//GSZqFth4YOJxz78yZ48WcSWVZ30ZlZXVtfaO6Wdva3tndM/cPujJKBKEdEvFI9DwsKWch7SimOO3FguLA4/TBm9zk/sOUCsmi8F7NYuoEeBQynxGstOSaR4MAq7Hnp+OpmxKOpcwy5Jp1q2EVQMvELkkdSrRd82swjEgS0FAVd/RtK1ZOioVihNOsNkgkjTGZ4BHtaxrigEonLdJn6FQrQ+RHQp9QoUL9vZHiQMpZ4OnJPKtc9HLxP6+fKP/KSVkYJ4qGZP6Qn3CkIpRXgYZMUKL4TBNMBNNZERljgYnShdV0Cfbil5dJ97xhXzSad81667qsowrHcAJnYMMltOAW2tABAo/wDK/wZjwZL8a78TEfrRjlziH8gfH5AyOjla0=</latexit>

hvclass

<latexit sha1_base64="0RqKQ+VOxSVYrZ33hB2Z3JvrhJw=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBIvgqsyUoi4L3bisYB/QjiWTZtrQJDMkGaUM/Q83LhRx67+482/MtLPQ1gOBwzn3ck9OEHOmjet+O4WNza3tneJuaW//4PCofHzS0VGiCG2TiEeqF2BNOZO0bZjhtBcrikXAaTeYNjO/+0iVZpG8N7OY+gKPJQsZwcZKDwOBzSQI0+Zk6M1Lw3LFrboLoHXi5aQCOVrD8tdgFJFEUGkIx1r3PTc2foqVYYTTeWmQaBpjMsVj2rdUYkG1ny5Sz9GFVUYojJR90qCF+nsjxULrmQjsZJZSr3qZ+J/XT0x446dMxomhkiwPhQlHJkJZBWjEFCWGzyzBRDGbFZEJVpgYW1RWgrf65XXSqVW9q2r9rl5p1PI6inAG53AJHlxDA26hBW0goOAZXuHNeXJenHfnYzlacPKdU/gD5/MH16SSCg==</latexit>

Ch1

<latexit sha1_base64="E88LqABdfRi9LuXZGMCpm/ViYUg=">AAAB9XicbVDLSgMxFL3js9ZX1aWbYBFcSJkpRV0WunFZwT6gHUsmzbShSWZIMkoZ+h9uXCji1n9x59+YaWehrQcCh3Pu5Z6cIOZMG9f9dtbWNza3tgs7xd29/YPD0tFxW0eJIrRFIh6pboA15UzSlmGG026sKBYBp51g0sj8ziNVmkXy3kxj6gs8kixkBBsrPfQFNuMgTBvjQXVWHJTKbsWdA60SLydlyNEclL76w4gkgkpDONa657mx8VOsDCOczor9RNMYkwke0Z6lEguq/XSeeobOrTJEYaTskwbN1d8bKRZaT0VgJ7OUetnLxP+8XmLCGz9lMk4MlWRxKEw4MhHKKkBDpigxfGoJJorZrIiMscLE2KKyErzlL6+SdrXiXVVqd7Vy/TKvowCncAYX4ME11OEWmtACAgqe4RXenCfnxXl3Phaja06+cwJ/4Hz+ANdckgU=</latexit>

Ch2

•••

•••

•••

•••

•••

•••
•••

•••

iEEG signals
(multi-channel)

length-𝒍
LBP code

1

IM1

<latexit sha1_base64="psvxQplGMK0UAEl18PVdVY8g2iU=">AAACAHicbVC7TsMwFHXKq5RXgIGBxaJCYqFKUAWMFSyMRaIPqYkqx7lprTpOajtIVdWFX2FhACFWPoONv8FtM0DLka7u0Tn3yr4nSDlT2nG+rcLK6tr6RnGztLW9s7tn7x80VZJJCg2a8ES2A6KAMwENzTSHdiqBxAGHVjC4nfqtR5CKJeJBj1LwY9ITLGKUaCN17SNvmJEQu9jjMMRs3lrnvGuXnYozA14mbk7KKEe9a395YUKzGISmnCjVcZ1U+2MiNaMcJiUvU5ASOiA96BgqSAzKH88OmOBTo4Q4SqQpofFM/b0xJrFSozgwkzHRfbXoTcX/vE6mo2t/zESaaRB0/lCUcawTPE0Dh0wC1XxkCKGSmb9i2ieSUG0yK5kQ3MWTl0nzouJeVqr31XLtJo+jiI7RCTpDLrpCNXSH6qiBKJqgZ/SK3qwn68V6tz7mowUr3zlEf2B9/gBvG5UH</latexit>

1  i  W � l

<latexit sha1_base64="ejhE7P2DlWHbg6e8Qn5E17677hI=">AAACC3icbVC7TsMwFHXKq5RXgJHFaoXEVCWoAsaqLAwMRaIPqYkix3Vaq44T2U5FFWVn4VdYGECIlR9g429w2gzQciRLR+fce33v8WNGpbKsb6O0tr6xuVXeruzs7u0fmIdHXRklApMOjlgk+j6ShFFOOooqRvqxICj0Gen5k+vc702JkDTi92oWEzdEI04DipHSkmdWnRCpsR+kjo9EOp5mXnrbanuOIg96WkqzLPPMmlW35oCrxC5IDRRoe+aXM4xwEhKuMENSDmwrVm6KhKKYkaziJJLECE/QiAw05Sgk0k3nt2TwVCtDGERCP67gXP3dkaJQylno68p8c7ns5eJ/3iBRwZWbUh4ninC8+ChIGFQRzIOBQyoIVmymCcKC6l0hHiOBsNLxVXQI9vLJq6R7Xrcv6o27Rq3ZKuIogxNQBWfABpegCW5AG3QABo/gGbyCN+PJeDHejY9Fackoeo7BHxifP8DHnCg=</latexit>

h̄vLBPB

IM2

2

<latexit sha1_base64="4v7j719awO0S+1h99fkYPzky7Zk=">AAAB/nicbVDLSsNAFJ3UV62vqLhyM1gEVyWRoi6LblxJBfuAJpTJ5KYdO5mkMxOhhIK/4saFIm79Dnf+jdPHQqsHLvdwzr3MnROknCntOF9WYWl5ZXWtuF7a2Nza3rF395oqySSFBk14ItsBUcCZgIZmmkM7lUDigEMrGFxN/NYDSMUScadHKfgx6QkWMUq0kbr2gTfMSIhd7HEY4vtZu+naZafiTIH/EndOymiOetf+9MKEZjEITTlRquM6qfZzIjWjHMYlL1OQEjogPegYKkgMys+n54/xsVFCHCXSlNB4qv7cyEms1CgOzGRMdF8tehPxP6+T6ejCz5lIMw2Czh6KMo51gidZ4JBJoJqPDCFUMnMrpn0iCdUmsZIJwV388l/SPK24Z5XqbbVcu5zHUUSH6AidIBedoxq6RnXUQBTl6Am9oFfr0Xq23qz32WjBmu/so1+wPr4BIuKUUg==</latexit>

1  j  N

•••

•••
•••

•••

3
<latexit sha1_base64="s2S1t2IERnDVs7oJVCAAquR8EIQ=">AAACBXicbVC7TsMwFHV4lvIKMMIQUSExVQmqgLGChbFI9CG1UeS4N61Vx4lsp1BFWVj4FRYGEGLlH9j4G5w2A7QcydLROfde33v8mFGpbPvbWFpeWV1bL22UN7e2d3bNvf2WjBJBoEkiFomOjyUwyqGpqGLQiQXg0GfQ9kfXud8eg5A04ndqEoMb4gGnASVYackzj3ohVkM/SIdjL72n3OspeNBz0lGWZZ5Zsav2FNYicQpSQQUanvnV60ckCYErwrCUXceOlZtioShhkJV7iYQYkxEeQFdTjkOQbjq9IrNOtNK3gkjox5U1VX93pDiUchL6ujLfWc57ufif101UcOmmlMeJAk5mHwUJs1Rk5ZFYfSqAKDbRBBNB9a4WGWKBidLBlXUIzvzJi6R1VnXOq7XbWqV+VcRRQofoGJ0iB12gOrpBDdREBD2iZ/SK3own48V4Nz5mpUtG0XOA/sD4/AFwSpnV</latexit>

hvwinF

<latexit sha1_base64="T1JnOUFPkSd/tFVSTXJUStpdhis=">AAACAHicbVDLSsNAFJ3UV62vqAsXbgaL4KokpajLQjcuK9gHNKFMpjft2MmDmYlYQjb+ihsXirj1M9z5N07aLLT1wMDhnHvv3Hu8mDOpLOvbKK2tb2xulbcrO7t7+wfm4VFXRomg0KERj0TfIxI4C6GjmOLQjwWQwOPQ86at3O89gJAsCu/ULAY3IOOQ+YwSpaWheeIERE08P21Nho6CRz0ivc+yytCsWjVrDrxK7IJUUYH20PxyRhFNAggV5UTKgW3Fyk2JUIxyyCpOIiEmdErGMNA0JAFIN50fkOFzrYywHwn9QoXn6u+OlARSzgJPV+brymUvF//zBonyr92UhXGiIKSLj/yEYxXhPA08YgKo4jNNCBVM74rphAhClc4sD8FePnmVdOs1+7LWuG1Um/UijjI6RWfoAtnoCjXRDWqjDqIoQ8/oFb0ZT8aL8W58LEpLRtFzjP7A+PwBN6aWxA==</latexit>

ChD

window

<latexit sha1_base64="psvxQplGMK0UAEl18PVdVY8g2iU=">AAACAHicbVC7TsMwFHXKq5RXgIGBxaJCYqFKUAWMFSyMRaIPqYkqx7lprTpOajtIVdWFX2FhACFWPoONv8FtM0DLka7u0Tn3yr4nSDlT2nG+rcLK6tr6RnGztLW9s7tn7x80VZJJCg2a8ES2A6KAMwENzTSHdiqBxAGHVjC4nfqtR5CKJeJBj1LwY9ITLGKUaCN17SNvmJEQu9jjMMRs3lrnvGuXnYozA14mbk7KKEe9a395YUKzGISmnCjVcZ1U+2MiNaMcJiUvU5ASOiA96BgqSAzKH88OmOBTo4Q4SqQpofFM/b0xJrFSozgwkzHRfbXoTcX/vE6mo2t/zESaaRB0/lCUcawTPE0Dh0wC1XxkCKGSmb9i2ieSUG0yK5kQ3MWTl0nzouJeVqr31XLtJo+jiI7RCTpDLrpCNXSH6qiBKJqgZ/SK3qwn68V6tz7mowUr3zlEf2B9/gBvG5UH</latexit>

1  i  W � l
<latexit sha1_base64="YW/fazxct5BH+atYIWE/prL341c=">AAACb3icbVFdS8MwFE3r9/yq+uCDIsEhKMJoRdRH0RcfRCY4N1hLSbN0C0ubktyKo/TVH+ib/8EX/4HpnODHLgQO59x7c3ISZYJrcN03y56ZnZtfWFyqLa+srq07G5uPWuaKshaVQqpORDQTPGUt4CBYJ1OMJJFg7Wh4XentJ6Y0l+kDjDIWJKSf8phTAoYKnRc/4v2unxAYRHHhR0QVg6cyLG6vmqFXltiXmcg1/m64HhgWH2Of9iToCkyd9IE9GzPFXWlWTNnxQ8eVgSB06m7DHRf+D7wJqKNJNUPn1e9JmicsBSqI1l3PzSAoiAJOBStrfq5ZRuiQ9FnXwJQkTAfFOK8SHximh2OpzEkBj9mfEwVJtB4lkemsPOu/WkVO07o5xBdBwdMsB5bSr4viXGCQuAof97hiFMTIAEIVN14xHRBFKJgvqpkQvL9P/g8eTxreWeP0/rR+eTWJYxHtoH10iDx0ji7RDWqiFqLo3dq0dqxd68Petvds/NVqW5OZLfSr7KNP0zO+BA==</latexit>⇥
h̄vLBP1 �Ch1 + · · ·+ h̄vLBPL �ChL

⇤

𝑵 channels
𝒍 length LBP code

Ø
Ø

𝑲 windows for a certain class
each window contains 𝑾 samples

Ø
Ø

<latexit sha1_base64="TuFwL3zlOBO6AvvTY55p56Fyj/g=">AAACCXicbVDLSsNAFJ3UV62vqEs3g0VwVRIRdVl047KCfUATwmR60w6dPJiZFEvI1o2/4saFIm79A3f+jZM2C209MHA459479x4/4Uwqy/o2Kiura+sb1c3a1vbO7p65f9CRcSootGnMY9HziQTOImgrpjj0EgEk9Dl0/fFN4XcnICSLo3s1TcANyTBiAaNEackzsRMSNfKDbDTxMplolXDPUfCgZ2Usz3PPrFsNawa8TOyS1FGJlmd+OYOYpiFEinIiZd+2EuVmRChGOeQ1J5WQEDomQ+hrGpEQpJvNLsnxiVYGOIiFfpHCM/V3R0ZCKaehryuLveWiV4j/ef1UBVduxqIkVRDR+UdByrGKcRELHjABVPGpJoQKpnfFdEQEoUqHV9Mh2IsnL5POWcO+aJzfndeb12UcVXSEjtEpstElaqJb1EJtRNEjekav6M14Ml6Md+NjXloxyp5D9AfG5w+pm5ub</latexit>

hvspatialB

<latexit sha1_base64="FFQ2U4WuSSx3Bm0PkQlYtv3TwOM=">AAACRHicbVDLSsNAFJ34tr6iLt0MFkEQSyJFXYpuXFawVkhCmEwm7eDkwcxNsYR8nBs/wJ1f4MaFIm7FSRvB14GBwzn3MfcEmeAKLOvRmJqemZ2bX1hsLC2vrK6Z6xtXKs0lZV2ailReB0QxwRPWBQ6CXWeSkTgQrBfcnFV+b8ik4mlyCaOMeTHpJzzilICWfNNxA9533JjAIIiKwdAvVKYtIny7LPEedmmYgqrIPyWFC+xWLy165f4XFaUGrqZ6vtm0WtYY+C+xa9JENTq++eCGKc1jlgAVRCnHtjLwCiKBU8HKhpsrlhF6Q/rM0TQhMVNeMQ6hxDtaCXGUSv0SwGP1e0dBYqVGcaArq1PUb68S//OcHKJjr+BJlgNL6GRRlAsMKa4SxSGXjIIYaUKo5PqvmA6IJBR07g0dgv375L/k6qBlH7baF+3myWkdxwLaQttoF9noCJ2gc9RBXUTRHXpCL+jVuDeejTfjfVI6ZdQ9m+gHjI9PV3i0Gg==</latexit>⇥
hvspatial1 + · · ·+ hvspatialq�H

⇤

<latexit sha1_base64="T1JnOUFPkSd/tFVSTXJUStpdhis=">AAACAHicbVDLSsNAFJ3UV62vqAsXbgaL4KokpajLQjcuK9gHNKFMpjft2MmDmYlYQjb+ihsXirj1M9z5N07aLLT1wMDhnHvv3Hu8mDOpLOvbKK2tb2xulbcrO7t7+wfm4VFXRomg0KERj0TfIxI4C6GjmOLQjwWQwOPQ86at3O89gJAsCu/ULAY3IOOQ+YwSpaWheeIERE08P21Nho6CRz0ivc+yytCsWjVrDrxK7IJUUYH20PxyRhFNAggV5UTKgW3Fyk2JUIxyyCpOIiEmdErGMNA0JAFIN50fkOFzrYywHwn9QoXn6u+OlARSzgJPV+brymUvF//zBonyr92UhXGiIKSLj/yEYxXhPA08YgKo4jNNCBVM74rphAhClc4sD8FePnmVdOs1+7LWuG1Um/UijjI6RWfoAtnoCjXRDWqjDqIoQ8/oFb0ZT8aL8W58LEpLRtFzjP7A+PwBN6aWxA==</latexit>

ChD

<latexit sha1_base64="0RqKQ+VOxSVYrZ33hB2Z3JvrhJw=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBIvgqsyUoi4L3bisYB/QjiWTZtrQJDMkGaUM/Q83LhRx67+482/MtLPQ1gOBwzn3ck9OEHOmjet+O4WNza3tneJuaW//4PCofHzS0VGiCG2TiEeqF2BNOZO0bZjhtBcrikXAaTeYNjO/+0iVZpG8N7OY+gKPJQsZwcZKDwOBzSQI0+Zk6M1Lw3LFrboLoHXi5aQCOVrD8tdgFJFEUGkIx1r3PTc2foqVYYTTeWmQaBpjMsVj2rdUYkG1ny5Sz9GFVUYojJR90qCF+nsjxULrmQjsZJZSr3qZ+J/XT0x446dMxomhkiwPhQlHJkJZBWjEFCWGzyzBRDGbFZEJVpgYW1RWgrf65XXSqVW9q2r9rl5p1PI6inAG53AJHlxDA26hBW0goOAZXuHNeXJenHfnYzlacPKdU/gD5/MH16SSCg==</latexit>

Ch1

<latexit sha1_base64="E88LqABdfRi9LuXZGMCpm/ViYUg=">AAAB9XicbVDLSgMxFL3js9ZX1aWbYBFcSJkpRV0WunFZwT6gHUsmzbShSWZIMkoZ+h9uXCji1n9x59+YaWehrQcCh3Pu5Z6cIOZMG9f9dtbWNza3tgs7xd29/YPD0tFxW0eJIrRFIh6pboA15UzSlmGG026sKBYBp51g0sj8ziNVmkXy3kxj6gs8kixkBBsrPfQFNuMgTBvjQXVWHJTKbsWdA60SLydlyNEclL76w4gkgkpDONa657mx8VOsDCOczor9RNMYkwke0Z6lEguq/XSeeobOrTJEYaTskwbN1d8bKRZaT0VgJ7OUetnLxP+8XmLCGz9lMk4MlWRxKEw4MhHKKkBDpigxfGoJJorZrIiMscLE2KKyErzlL6+SdrXiXVVqd7Vy/TKvowCncAYX4ME11OEWmtACAgqe4RXenCfnxXl3Phaja06+cwJ/4Hz+ANdckgU=</latexit>

Ch2

<latexit sha1_base64="MEhmnCL9DaR5+qr2gMMUUJCcS/Q=">AAACAHicbVDLSsNAFJ3UV62vqAsXboJFcFWSUtRloRtXUsE+oAllMr1ph04mYWYilpCNv+LGhSJu/Qx3/o2TNgttPTBwOOfeO/ceP2ZUKtv+Nkpr6xubW+Xtys7u3v6BeXjUlVEiCHRIxCLR97EERjl0FFUM+rEAHPoMev60lfu9BxCSRvxezWLwQjzmNKAEKy0NzRM3xGriB2lrMnQVPOoR6W2WVYZm1a7Zc1irxClIFRVoD80vdxSRJASuCMNSDhw7Vl6KhaKEQVZxEwkxJlM8hoGmHIcgvXR+QGada2VkBZHQjytrrv7uSHEo5Sz0dWW+rlz2cvE/b5Co4NpLKY8TBZwsPgoSZqnIytOwRlQAUWymCSaC6l0tMsECE6Uzy0Nwlk9eJd16zbmsNe4a1Wa9iKOMTtEZukAOukJNdIPaqIMIytAzekVvxpPxYrwbH4vSklH0HKM/MD5/AAzilqg=</latexit>

ChL

<latexit sha1_base64="MEhmnCL9DaR5+qr2gMMUUJCcS/Q=">AAACAHicbVDLSsNAFJ3UV62vqAsXboJFcFWSUtRloRtXUsE+oAllMr1ph04mYWYilpCNv+LGhSJu/Qx3/o2TNgttPTBwOOfeO/ceP2ZUKtv+Nkpr6xubW+Xtys7u3v6BeXjUlVEiCHRIxCLR97EERjl0FFUM+rEAHPoMev60lfu9BxCSRvxezWLwQjzmNKAEKy0NzRM3xGriB2lrMnQVPOoR6W2WVYZm1a7Zc1irxClIFRVoD80vdxSRJASuCMNSDhw7Vl6KhaKEQVZxEwkxJlM8hoGmHIcgvXR+QGada2VkBZHQjytrrv7uSHEo5Sz0dWW+rlz2cvE/b5Co4NpLKY8TBZwsPgoSZqnIytOwRlQAUWymCSaC6l0tMsECE6Uzy0Nwlk9eJd16zbmsNe4a1Wa9iKOMTtEZukAOukJNdIPaqIMIytAzekVvxpPxYrwbH4vSklH0HKM/MD5/AAzilqg=</latexit>

ChL

<latexit sha1_base64="+J/cfd+OhysVgPSjlklr8Cr1j0Q=">AAAB/nicbVDLSsNAFJ3UV62vqLhyM1gEVyWRoi6LbgQ3FewDmlAm05t26GSSzkyEEgr+ihsXirj1O9z5N07bLLT1wOUezrmXuXOChDOlHefbKqysrq1vFDdLW9s7u3v2/kFTxamk0KAxj2U7IAo4E9DQTHNoJxJIFHBoBcObqd96BKlYLB70OAE/In3BQkaJNlLXPvJGKelhF3scRng4b3ddu+xUnBnwMnFzUkY56l37y+vFNI1AaMqJUh3XSbSfEakZ5TApeamChNAh6UPHUEEiUH42O3+CT43Sw2EsTQmNZ+rvjYxESo2jwExGRA/UojcV//M6qQ6v/IyJJNUg6PyhMOVYx3iaBe4xCVTzsSGESmZuxXRAJKHaJFYyIbiLX14mzfOKe1Gp3lfLtes8jiI6RifoDLnoEtXQLaqjBqIoQ8/oFb1ZT9aL9W59zEcLVr5ziP7A+vwBH+GUUA==</latexit>

1  k  K

<latexit sha1_base64="+DBoDklOZfGQLDDK5c0NOaYc70s=">AAACMnicbVBNS8NAEN34WetX1aOXxSIIQkmkqMeiF8VLBatCE8Jmu2mXbjZhd1ItIb/Ji79E8KAHRbz6I9zUHrT1wcLjvZmdmRckgmuw7RdrZnZufmGxtFReXlldW69sbF7rOFWUtWgsYnUbEM0El6wFHAS7TRQjUSDYTdA/LfybAVOax/IKhgnzItKVPOSUgJH8yrkb8G4buxGBXhBmvYGf3XHpO3mO97FLOzHogkzYmQvs3kzLLnIDXPzh+ZWqXbNHwNPEGZMqGqPpV57cTkzTiEmggmjdduwEvIwo4FSwvOymmiWE9kmXtQ2VJGLay0Yn53jXKB0cxso8CXik/u7ISKT1MApMZbG7nvQK8T+vnUJ47GVcJikwSX8GhanAEOMiP9zhilEQQ0MIVdzsimmPKELBpFw2ITiTJ0+T64Oac1irX9arjZNxHCW0jXbQHnLQEWqgM9RELUTRA3pGb+jderRerQ/r86d0xhr3bKE/sL6+AaOfq6s=</latexit>⇥
hvwin1 + · · ·+ hvwinE

⇤

Figure 3.1: HD classification using LBP method.

time-series raw data as four 3-bit LBP codes as shown in Eq. (3.2).

raw data: 2.0, 1.5, 1.2, 2.3, 2.2, 3.2, 3.5

bit stream: 0, 0, 1, 0, 1, 1

LBP code: (001), (010), (101), (011)

(3.2)

Figure 3.1 shows the HD classification using the LBP method. For a certain class, its

N -channel iEEG signals have in total K windows. Each window contains W samples.

Before training, hypervectors {hvLBP1 , hvLBP2 , · · · , hvLBP
2l
} in the IM1 are generated

to represent all the possible 2l LBP codes. Also, generate N hypervectors Chj in the

IM2 corresponding to the jth channel, where 1≤j≤N . (a) Within a window, every

(l + 1) samples colored cyan in a certain channel can be extracted as an l-bit LBP

41

code and encoded as a hypervector h̄vLBPi , which is taken from {hvLBP1 , hvLBP2 ,

· · · , hvLBP
2l
} in the IM1 based on its specific LBP code value. (b) Then the spatial

LBP information for all N channels in the red box is represented by hvspatiali in Eq.

(3.1a), where 1≤ i≤W − l. (c) Therefore, the kth window colored blue is encoded

by a hypervector hvwin k as it adds all W − l spatial information in Eq.(3.1b). (d)

Finally, a class hypervector hvclass can be formed by adding all K windows’ information

with majority rule as shown in Eq. (3.1c). (e) During the training phase, two class

hypervectors for ictal and interictal states are trained by using Eq. (3.1a)-(3.1c). During

the inference phase, a query hypervector hvquery is generated by using Eq. (3.1a)-(3.1b).

Similarity measurement is performed between the query hypervector and the trained

class hypervectors to assign the predicted label.

3.2.2 PSD Method

Motivated by [64], where PSD achieves high classification performance on the Kaggle

contest dataset using classification and regression tree (CART) based feature selection

for polynomial SVM classifier. In this chapter, we use HDC with a selected small number

of PSD features as well as using all PSD features.

All the iEEG data are preprocessed to extract band powers and remove power line

noise [64]. (a) For dog subjects, the frequency band is split into 10 frequency sub-bands

(Hz): 3-8, 8-13, 13-30, 30-55, 55-80, 80-105, 105-130, 130-150, 150-170, 170-200. (b)

For human subjects, the frequency band is split into 13 frequency sub-bands (Hz): 3-8,

8-13, 13-30, 30-50, 50-80, 80-100, 100-130, 130-160, 160-200, 200-250, 250-300, 300-350,

350-400. To eliminate power line hums at 60 Hz and its harmonics, spectral powers in

the band of [60i−3, 60i+3] Hz are excluded in the PSD computation, where i∈[0, 6]. Note

that Patient 1 is addressed as dogs with 10 frequency subbands since fs = 500 Hz does

not support the frequency subbands higher than 250 Hz.

Three spectral power metrics are computed as shown in Eq. (3.3), where ASPf1,f2

refers to the absolute spectral power of a signal in the frequency band [f1, f2] Hz,

RSPf1,f2 refers to the relative spectral power in band [f1, f2] Hz and Ratiof1,f2,f3,f4

represents the spectral power ratio of the absolute spectral power in band [f1, f2] Hz

42

over that in band [f3, f4] Hz.

ASPf1,f2 = log
∑

f∈[f1,f2] PSD(f) (3.3a)

RSPf1,f2 = log

∑
f∈[f1,f2] PSD(f)∑

all f PSD(f)
(3.3b)

Ratiof1,f2,f3,f4 = ASPf1,f2 − ASPf3,f4 (3.3c)

<latexit sha1_base64="0RqKQ+VOxSVYrZ33hB2Z3JvrhJw=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBIvgqsyUoi4L3bisYB/QjiWTZtrQJDMkGaUM/Q83LhRx67+482/MtLPQ1gOBwzn3ck9OEHOmjet+O4WNza3tneJuaW//4PCofHzS0VGiCG2TiEeqF2BNOZO0bZjhtBcrikXAaTeYNjO/+0iVZpG8N7OY+gKPJQsZwcZKDwOBzSQI0+Zk6M1Lw3LFrboLoHXi5aQCOVrD8tdgFJFEUGkIx1r3PTc2foqVYYTTeWmQaBpjMsVj2rdUYkG1ny5Sz9GFVUYojJR90qCF+nsjxULrmQjsZJZSr3qZ+J/XT0x446dMxomhkiwPhQlHJkJZBWjEFCWGzyzBRDGbFZEJVpgYW1RWgrf65XXSqVW9q2r9rl5p1PI6inAG53AJHlxDA26hBW0goOAZXuHNeXJenHfnYzlacPKdU/gD5/MH16SSCg==</latexit>

Ch1

<latexit sha1_base64="E88LqABdfRi9LuXZGMCpm/ViYUg=">AAAB9XicbVDLSgMxFL3js9ZX1aWbYBFcSJkpRV0WunFZwT6gHUsmzbShSWZIMkoZ+h9uXCji1n9x59+YaWehrQcCh3Pu5Z6cIOZMG9f9dtbWNza3tgs7xd29/YPD0tFxW0eJIrRFIh6pboA15UzSlmGG026sKBYBp51g0sj8ziNVmkXy3kxj6gs8kixkBBsrPfQFNuMgTBvjQXVWHJTKbsWdA60SLydlyNEclL76w4gkgkpDONa657mx8VOsDCOczor9RNMYkwke0Z6lEguq/XSeeobOrTJEYaTskwbN1d8bKRZaT0VgJ7OUetnLxP+8XmLCGz9lMk4MlWRxKEw4MhHKKkBDpigxfGoJJorZrIiMscLE2KKyErzlL6+SdrXiXVVqd7Vy/TKvowCncAYX4ME11OEWmtACAgqe4RXenCfnxXl3Phaja06+cwJ/4Hz+ANdckgU=</latexit>

Ch2

•••

•••

•••

•••

•••

•••
•••

•••

iEEG signals
(multi-channel)

•••

•••
•••

•••

PSD features

Ø
Ø
𝑵 channels
𝑴 PSD features

<latexit sha1_base64="T1JnOUFPkSd/tFVSTXJUStpdhis=">AAACAHicbVDLSsNAFJ3UV62vqAsXbgaL4KokpajLQjcuK9gHNKFMpjft2MmDmYlYQjb+ihsXirj1M9z5N07aLLT1wMDhnHvv3Hu8mDOpLOvbKK2tb2xulbcrO7t7+wfm4VFXRomg0KERj0TfIxI4C6GjmOLQjwWQwOPQ86at3O89gJAsCu/ULAY3IOOQ+YwSpaWheeIERE08P21Nho6CRz0ivc+yytCsWjVrDrxK7IJUUYH20PxyRhFNAggV5UTKgW3Fyk2JUIxyyCpOIiEmdErGMNA0JAFIN50fkOFzrYywHwn9QoXn6u+OlARSzgJPV+brymUvF//zBonyr92UhXGiIKSLj/yEYxXhPA08YgKo4jNNCBVM74rphAhClc4sD8FePnmVdOs1+7LWuG1Um/UijjI6RWfoAtnoCjXRDWqjDqIoQ8/oFb0ZT8aL8W58LEpLRtFzjP7A+PwBN6aWxA==</latexit>

ChD
<latexit sha1_base64="MEhmnCL9DaR5+qr2gMMUUJCcS/Q=">AAACAHicbVDLSsNAFJ3UV62vqAsXboJFcFWSUtRloRtXUsE+oAllMr1ph04mYWYilpCNv+LGhSJu/Qx3/o2TNgttPTBwOOfeO/ceP2ZUKtv+Nkpr6xubW+Xtys7u3v6BeXjUlVEiCHRIxCLR97EERjl0FFUM+rEAHPoMev60lfu9BxCSRvxezWLwQjzmNKAEKy0NzRM3xGriB2lrMnQVPOoR6W2WVYZm1a7Zc1irxClIFRVoD80vdxSRJASuCMNSDhw7Vl6KhaKEQVZxEwkxJlM8hoGmHIcgvXR+QGada2VkBZHQjytrrv7uSHEo5Sz0dWW+rlz2cvE/b5Co4NpLKY8TBZwsPgoSZqnIytOwRlQAUWymCSaC6l0tMsECE6Uzy0Nwlk9eJd16zbmsNe4a1Wa9iKOMTtEZukAOukJNdIPaqIMIytAzekVvxpPxYrwbH4vSklH0HKM/MD5/AAzilqg=</latexit>

ChL

<latexit sha1_base64="kynfwMpwMEGYJ4JcruKfMGzIHc0=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY8FQTxWsB/QhrLZTtqlu5uwuxFK6V/w4kERr/4hb/4bkzYHbX0w8Hhvhpl5QSy4sa777RQ2Nre2d4q7pb39g8Oj8vFJ20SJZthikYh0N6AGBVfYstwK7MYaqQwEdoLJbeZ3nlAbHqlHO43Rl3SkeMgZtZl0N/BKg3LFrboLkHXi5aQCOZqD8ld/GLFEorJMUGN6nhtbf0a15UzgvNRPDMaUTegIeylVVKLxZ4tb5+QiVYYkjHRaypKF+ntiRqUxUxmknZLasVn1MvE/r5fY8MafcRUnFhVbLgoTQWxEssfJkGtkVkxTQpnm6a2EjammzKbxZCF4qy+vk3at6l1V6w/1SqOWx1GEMziHS/DgGhpwD01oAYMxPMMrvDnSeXHenY9la8HJZ07hD5zPH/J5jXs=</latexit>

F1

<latexit sha1_base64="j1kzzWTpSST530t9YXSHl1dT4LE=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY8FQTxWsB/QhrLZbtqlu5uwOxFK6V/w4kERr/4hb/4bkzYHbX0w8Hhvhpl5QSyFRdf9dgobm1vbO8Xd0t7+weFR+fikbaPEMN5ikYxMN6CWS6F5CwVK3o0NpyqQvBNMbjO/88SNFZF+xGnMfUVHWoSCUcyku0GtNChX3Kq7AFknXk4qkKM5KH/1hxFLFNfIJLW257kx+jNqUDDJ56V+YnlM2YSOeC+lmipu/dni1jm5SJUhCSOTlkayUH9PzKiydqqCtFNRHNtVLxP/83oJhjf+TOg4Qa7ZclGYSIIRyR4nQ2E4QzlNCWVGpLcSNqaGMkzjyULwVl9eJ+1a1buq1h/qlUYtj6MIZ3AOl+DBNTTgHprQAgZjeIZXeHOU8+K8Ox/L1oKTz5zCHzifP/P+jXw=</latexit>

F2

<latexit sha1_base64="mXk08hlwmJ/Qgv7gMasfd5oX5QA=">AAAB63icbVBNS8NAEJ34WetX1aOXxSJ4Kkkp6rEgiMcK9gPaUDbbSbt2dxN2N0Ip/QtePCji1T/kzX9j0uagrQ8GHu/NMDMviAU31nW/nbX1jc2t7cJOcXdv/+CwdHTcMlGiGTZZJCLdCahBwRU2LbcCO7FGKgOB7WB8k/ntJ9SGR+rBTmL0JR0qHnJGbSbd9h+L/VLZrbhzkFXi5aQMORr90ldvELFEorJMUGO6nhtbf0q15UzgrNhLDMaUjekQuylVVKLxp/NbZ+Q8VQYkjHRaypK5+ntiSqUxExmknZLakVn2MvE/r5vY8NqfchUnFhVbLAoTQWxEssfJgGtkVkxSQpnm6a2EjaimzKbxZCF4yy+vkla14l1Wave1cr2ax1GAUziDC/DgCupwBw1oAoMRPMMrvDnSeXHenY9F65qTz5zAHzifP0kljbQ=</latexit>

Fj
•••

2
<latexit sha1_base64="SUDAfNbzcF04zSZdFwdepwzzNSs=">AAACCXicbVC7SgNBFJ2NrxhfUUubwSBYhd0Q1DJgYxnBPCAJy+zkbjJm9sHM3WBYtrXxV2wsFLH1D+z8GyePQhMPDBzOuffOvceLpdBo299Wbm19Y3Mrv13Y2d3bPygeHjV1lCgODR7JSLU9pkGKEBooUEI7VsACT0LLG11P/dYYlBZReIeTGHoBG4TCF5yhkdwi7QYMh56fDsdu6gPDRIHbRXgws9L7LMvcYsku2zPQVeIsSIksUHeLX91+xJMAQuSSad1x7Bh7KVMouISs0E00xIyP2AA6hoYsAN1LZ5dk9MwofepHyrwQ6Uz93ZGyQOtJ4JnK6d562ZuK/3mdBP2rXirCOEEI+fwjP5EUIzqNhfaFAo5yYgjjSphdKR8yxTia8AomBGf55FXSrJSdi3L1tlqqVRZx5MkJOSXnxCGXpEZuSJ00CCeP5Jm8kjfryXqx3q2PeWnOWvQckz+wPn8AotSbig==</latexit>

hvfeatureD

Approach 3

<latexit sha1_base64="J34vQVd0i0MHoteH9MBjrJ0FtxQ=">AAACCXicbVC7SgNBFJ2NrxhfUUubwSBYhV0RtQzY2AgRzAOSsMxO7iZDZh/M3A2GZVsbf8XGQhFb/8DOv3E2SaGJBwYO59x7597jxVJotO1vq7Cyura+UdwsbW3v7O6V9w+aOkoUhwaPZKTaHtMgRQgNFCihHStggSeh5Y2uc781BqVFFN7jJIZewAah8AVnaCS3TLsBw6Hnp8Oxm/rAMFHgdhEezKz0Nssyt1yxq/YUdJk4c1Ihc9Td8le3H/EkgBC5ZFp3HDvGXsoUCi4hK3UTDTHjIzaAjqEhC0D30uklGT0xSp/6kTIvRDpVf3ekLNB6EnimMt9bL3q5+J/XSdC/6qUijBOEkM8+8hNJMaJ5LLQvFHCUE0MYV8LsSvmQKcbRhFcyITiLJy+T5lnVuaie351Xas48jiI5IsfklDjkktTIDamTBuHkkTyTV/JmPVkv1rv1MSstWPOeQ/IH1ucPdjybbA==</latexit>

hvfeatureJ

<latexit sha1_base64="2pgqph4msOr64PZ5XzNSfNRR4kA=">AAACAHicbVBNS8NAEN3Ur1q/oh48eFksgqeSSFGPBS8eK9haaEPYbCft0s0m7G4KJeTiX/HiQRGv/gxv/hs3bQ7a+mDg8d4MM/OChDOlHefbqqytb2xuVbdrO7t7+wf24VFXxamk0KExj2UvIAo4E9DRTHPoJRJIFHB4DCa3hf84BalYLB70LAEvIiPBQkaJNpJvnwwiosdBmI2nfhYC0akE381z3647DWcOvErcktRRibZvfw2GMU0jEJpyolTfdRLtZURqRjnktUGqICF0QkbQN1SQCJSXzR/I8blRhjiMpSmh8Vz9PZGRSKlZFJjO4ly17BXif14/1eGNlzGRpBoEXSwKU451jIs08JBJoJrPDCFUMnMrpmMiCdUms5oJwV1+eZV0LxvuVaN536y33DKOKjpFZ+gCuegatdAdaqMOoihHz+gVvVlP1ov1bn0sWitWOXOM/sD6/AGVx5cA</latexit>

hvfeature1

<latexit sha1_base64="zX2qk2RcZgPHVWSPOjEK2PajudQ=">AAACAHicbVBNS8NAEN3Ur1q/oh48eFksgqeSlKIeC148VrAf0Jaw2U7apZtN2N0USsjFv+LFgyJe/Rne/Ddu2hy09cHA470ZZub5MWdKO863VdrY3NreKe9W9vYPDo/s45OOihJJoU0jHsmeTxRwJqCtmebQiyWQ0OfQ9ad3ud+dgVQsEo96HsMwJGPBAkaJNpJnnw1Coid+kE5mXhoA0YkEr55lnl11as4CeJ24BamiAi3P/hqMIpqEIDTlRKm+68R6mBKpGeWQVQaJgpjQKRlD31BBQlDDdPFAhi+NMsJBJE0JjRfq74mUhErNQ9905ueqVS8X//P6iQ5uhykTcaJB0OWiIOFYRzhPA4+YBKr53BBCJTO3YjohklBtMquYENzVl9dJp15zr2uNh0a16RZxlNE5ukBXyEU3qInuUQu1EUUZekav6M16sl6sd+tj2VqyiplT9AfW5w+XTZcB</latexit>

hvfeature2

<latexit sha1_base64="HmZyoqflorVKAwDa3xX2DdjuOSo=">AAAB/XicbVDLSsNAFL2pr1pf8bFzM1gEVyWRoi6LblxWsLXQhjCZTtqhkwczk0INwV9x40IRt/6HO//GSZqFth4YOJxz78yZ48WcSWVZ30ZlZXVtfaO6Wdva3tndM/cPujJKBKEdEvFI9DwsKWch7SimOO3FguLA4/TBm9zk/sOUCsmi8F7NYuoEeBQynxGstOSaR4MAq7Hnp+OpmxKOpcwy5Jp1q2EVQMvELkkdSrRd82swjEgS0FAVd/RtK1ZOioVihNOsNkgkjTGZ4BHtaxrigEonLdJn6FQrQ+RHQp9QoUL9vZHiQMpZ4OnJPKtc9HLxP6+fKP/KSVkYJ4qGZP6Qn3CkIpRXgYZMUKL4TBNMBNNZERljgYnShdV0Cfbil5dJ97xhXzSad81667qsowrHcAJnYMMltOAW2tABAo/wDK/wZjwZL8a78TEfrRjlziH8gfH5AyOjla0=</latexit>

hvclass

<latexit sha1_base64="kIT/frAmF4PKuGkHMdeoirLyYD4=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbBU9ktRT0WvHisYD+gXUo2zbax2SQkWaEs/Q9ePCji1f/jzX9j2u5BWx8MPN6bYWZepDgz1ve/vcLG5tb2TnG3tLd/cHhUPj5pG5lqQltEcqm7ETaUM0FblllOu0pTnEScdqLJ7dzvPFFtmBQPdqpomOCRYDEj2Dqp3ZeKp2ZQrvhVfwG0ToKcVCBHc1D+6g8lSRMqLOHYmF7gKxtmWFtGOJ2V+qmhCpMJHtGeowIn1ITZ4toZunDKEMVSuxIWLdTfExlOjJkmketMsB2bVW8u/uf1UhvfhBkTKrVUkOWiOOXISjR/HQ2ZpsTyqSOYaOZuRWSMNSbWBVRyIQSrL6+Tdq0aXFXr9/VKo5bHUYQzOIdLCOAaGnAHTWgBgUd4hld486T34r17H8vWgpfPnMIfeJ8/zhyPPg==</latexit>�
<latexit sha1_base64="kIT/frAmF4PKuGkHMdeoirLyYD4=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbBU9ktRT0WvHisYD+gXUo2zbax2SQkWaEs/Q9ePCji1f/jzX9j2u5BWx8MPN6bYWZepDgz1ve/vcLG5tb2TnG3tLd/cHhUPj5pG5lqQltEcqm7ETaUM0FblllOu0pTnEScdqLJ7dzvPFFtmBQPdqpomOCRYDEj2Dqp3ZeKp2ZQrvhVfwG0ToKcVCBHc1D+6g8lSRMqLOHYmF7gKxtmWFtGOJ2V+qmhCpMJHtGeowIn1ITZ4toZunDKEMVSuxIWLdTfExlOjJkmketMsB2bVW8u/uf1UhvfhBkTKrVUkOWiOOXISjR/HQ2ZpsTyqSOYaOZuRWSMNSbWBVRyIQSrL6+Tdq0aXFXr9/VKo5bHUYQzOIdLCOAaGnAHTWgBgUd4hld486T34r17H8vWgpfPnMIfeJ8/zhyPPg==</latexit>�
<latexit sha1_base64="kIT/frAmF4PKuGkHMdeoirLyYD4=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbBU9ktRT0WvHisYD+gXUo2zbax2SQkWaEs/Q9ePCji1f/jzX9j2u5BWx8MPN6bYWZepDgz1ve/vcLG5tb2TnG3tLd/cHhUPj5pG5lqQltEcqm7ETaUM0FblllOu0pTnEScdqLJ7dzvPFFtmBQPdqpomOCRYDEj2Dqp3ZeKp2ZQrvhVfwG0ToKcVCBHc1D+6g8lSRMqLOHYmF7gKxtmWFtGOJ2V+qmhCpMJHtGeowIn1ITZ4toZunDKEMVSuxIWLdTfExlOjJkmketMsB2bVW8u/uf1UhvfhBkTKrVUkOWiOOXISjR/HQ2ZpsTyqSOYaOZuRWSMNSbWBVRyIQSrL6+Tdq0aXFXr9/VKo5bHUYQzOIdLCOAaGnAHTWgBgUd4hld486T34r17H8vWgpfPnMIfeJ8/zhyPPg==</latexit>�

[+]

•••

<latexit sha1_base64="uWgzRawuhDLUUqRwl1b6GySkeAQ=">AAACAXicbVDLSsNAFJ3UV62vqBvBzWARXJWkFHVZ0IUuhAr2AU0Ik+mkHTqZhJmJWELc+CtuXCji1r9w5984abPQ1gMDh3PuvXPv8WNGpbKsb6O0tLyyulZer2xsbm3vmLt7HRklApM2jlgkej6ShFFO2ooqRnqxICj0Gen644vc794TIWnE79QkJm6IhpwGFCOlJc88cEKkRn6QXl96qaPIg56R3mRZ5plVq2ZNAReJXZAqKNDyzC9nEOEkJFxhhqTs21as3BQJRTEjWcVJJIkRHqMh6WvKUUikm04vyOCxVgYwiIR+XMGp+rsjRaGUk9DXlfm+ct7Lxf+8fqKCczelPE4U4Xj2UZAwqCKYxwEHVBCs2EQThAXVu0I8QgJhpUOr6BDs+ZMXSades09rjdtGtVkv4iiDQ3AEToANzkATXIEWaAMMHsEzeAVvxpPxYrwbH7PSklH07IM/MD5/AHRSl4E=</latexit>

IDJ

<latexit sha1_base64="VuJvrQpqluDss3kHesjm1mytDxM=">AAAB+HicbVBNS8NAFHypX7V+NOrRy2IRPJWkFPVY0IPeKthaaEPYbDft0s0m7G6EGvpLvHhQxKs/xZv/xk2bg7YOLAwz7/FmJ0g4U9pxvq3S2vrG5lZ5u7Kzu7dftQ8OuypOJaEdEvNY9gKsKGeCdjTTnPYSSXEUcPoQTK5y/+GRSsVica+nCfUiPBIsZARrI/l2dRBhPQ7C7Pbaz9zZzLdrTt2ZA60StyA1KND27a/BMCZpRIUmHCvVd51EexmWmhFOZ5VBqmiCyQSPaN9QgSOqvGwefIZOjTJEYSzNExrN1d8bGY6UmkaBmcxjqmUvF//z+qkOL72MiSTVVJDFoTDlSMcobwENmaRE86khmEhmsiIyxhITbbqqmBLc5S+vkm6j7p7Xm3fNWqtR1FGGYziBM3DhAlpwA23oAIEUnuEV3qwn68V6tz4WoyWr2DmCP7A+fwC06ZMV</latexit>

ID1
<latexit sha1_base64="bCLhd/ONeS0FMahq5zA/k/xOgFU=">AAAB+HicbVBNS8NAFHypX7V+NOrRy2IRPJWkFPVY0IPeKthaaEPYbDft0s0m7G6EGvpLvHhQxKs/xZv/xk2bg7YOLAwz7/FmJ0g4U9pxvq3S2vrG5lZ5u7Kzu7dftQ8OuypOJaEdEvNY9gKsKGeCdjTTnPYSSXEUcPoQTK5y/+GRSsVica+nCfUiPBIsZARrI/l2dRBhPQ7C7PbazxqzmW/XnLozB1olbkFqUKDt21+DYUzSiApNOFaq7zqJ9jIsNSOcziqDVNEEkwke0b6hAkdUedk8+AydGmWIwliaJzSaq783MhwpNY0CM5nHVMteLv7n9VMdXnoZE0mqqSCLQ2HKkY5R3gIaMkmJ5lNDMJHMZEVkjCUm2nRVMSW4y19eJd1G3T2vN++atVajqKMMx3ACZ+DCBbTgBtrQAQIpPMMrvFlP1ov1bn0sRktWsXMEf2B9/gC2b5MW</latexit>

ID2

•••

<latexit sha1_base64="J34vQVd0i0MHoteH9MBjrJ0FtxQ=">AAACCXicbVC7SgNBFJ2NrxhfUUubwSBYhV0RtQzY2AgRzAOSsMxO7iZDZh/M3A2GZVsbf8XGQhFb/8DOv3E2SaGJBwYO59x7597jxVJotO1vq7Cyura+UdwsbW3v7O6V9w+aOkoUhwaPZKTaHtMgRQgNFCihHStggSeh5Y2uc781BqVFFN7jJIZewAah8AVnaCS3TLsBw6Hnp8Oxm/rAMFHgdhEezKz0Nssyt1yxq/YUdJk4c1Ihc9Td8le3H/EkgBC5ZFp3HDvGXsoUCi4hK3UTDTHjIzaAjqEhC0D30uklGT0xSp/6kTIvRDpVf3ekLNB6EnimMt9bL3q5+J/XSdC/6qUijBOEkM8+8hNJMaJ5LLQvFHCUE0MYV8LsSvmQKcbRhFcyITiLJy+T5lnVuaie351Xas48jiI5IsfklDjkktTIDamTBuHkkTyTV/JmPVkv1rv1MSstWPOeQ/IH1ucPdjybbA==</latexit>

hvfeatureJ

<latexit sha1_base64="2pgqph4msOr64PZ5XzNSfNRR4kA=">AAACAHicbVBNS8NAEN3Ur1q/oh48eFksgqeSSFGPBS8eK9haaEPYbCft0s0m7G4KJeTiX/HiQRGv/gxv/hs3bQ7a+mDg8d4MM/OChDOlHefbqqytb2xuVbdrO7t7+wf24VFXxamk0KExj2UvIAo4E9DRTHPoJRJIFHB4DCa3hf84BalYLB70LAEvIiPBQkaJNpJvnwwiosdBmI2nfhYC0akE381z3647DWcOvErcktRRibZvfw2GMU0jEJpyolTfdRLtZURqRjnktUGqICF0QkbQN1SQCJSXzR/I8blRhjiMpSmh8Vz9PZGRSKlZFJjO4ly17BXif14/1eGNlzGRpBoEXSwKU451jIs08JBJoJrPDCFUMnMrpmMiCdUms5oJwV1+eZV0LxvuVaN536y33DKOKjpFZ+gCuegatdAdaqMOoihHz+gVvVlP1ov1bn0sWitWOXOM/sD6/AGVx5cA</latexit>

hvfeature1

<latexit sha1_base64="zX2qk2RcZgPHVWSPOjEK2PajudQ=">AAACAHicbVBNS8NAEN3Ur1q/oh48eFksgqeSlKIeC148VrAf0Jaw2U7apZtN2N0USsjFv+LFgyJe/Rne/Ddu2hy09cHA470ZZub5MWdKO863VdrY3NreKe9W9vYPDo/s45OOihJJoU0jHsmeTxRwJqCtmebQiyWQ0OfQ9ad3ud+dgVQsEo96HsMwJGPBAkaJNpJnnw1Coid+kE5mXhoA0YkEr55lnl11as4CeJ24BamiAi3P/hqMIpqEIDTlRKm+68R6mBKpGeWQVQaJgpjQKRlD31BBQlDDdPFAhi+NMsJBJE0JjRfq74mUhErNQ9905ueqVS8X//P6iQ5uhykTcaJB0OWiIOFYRzhPA4+YBKr53BBCJTO3YjohklBtMquYENzVl9dJp15zr2uNh0a16RZxlNE5ukBXyEU3qInuUQu1EUUZekav6M16sl6sd+tj2VqyiplT9AfW5w+XTZcB</latexit>

hvfeature2

<latexit sha1_base64="UoM7RA8kFH1NLQh/lrLIE/KoQHQ=">AAACA3icbVDLSsNAFJ3UV62vqDvdDBbBVUmkqMuCG5ct2Ae0IUymN+3QyYOZiRBCwI2/4saFIm79CXf+jZM2C209cOFwzr3ce48XcyaVZX0blbX1jc2t6nZtZ3dv/8A8POrJKBEUujTikRh4RAJnIXQVUxwGsQASeBz63uy28PsPICSLwnuVxuAEZBIyn1GitOSaJ6OAqKnnZ50EROpmPhCVCHDtPHfNutWw5sCrxC5JHZVou+bXaBzRJIBQUU6kHNpWrJyMCMUoh7w2SiTEhM7IBIaahiQA6WTzH3J8rpUx9iOhK1R4rv6eyEggZRp4urO4WC57hfifN0yUf+NkLIwTBSFdLPITjlWEi0DwmAmgiqeaECqYvhXTKRGEKh1bTYdgL7+8SnqXDfuq0ew06y27jKOKTtEZukA2ukYtdIfaqIsoekTP6BW9GU/Gi/FufCxaK0Y5c4z+wPj8AfuCmFY=</latexit>

Queryfeature1
<latexit sha1_base64="Gpl9GXp36wRjDGZ2ynR83/O1WYY=">AAACA3icbVDLSsNAFJ34rPUVdaebYBFclaQUdVlw47IF+4A2hMn0ph06eTAPIYSAG3/FjQtF3PoT7vwbJ20W2nrgwuGce7n3Hj9hVEjb/jbW1jc2t7YrO9Xdvf2DQ/PouCdixQl0ScxiPvCxAEYj6EoqGQwSDjj0GfT92W3h9x+ACxpH9zJNwA3xJKIBJVhqyTNPRyGWUz/IOgp46mUBYKk4eI0898yaXbfnsFaJU5IaKtH2zK/ROCYqhEgShoUYOnYi3QxzSQmDvDpSAhJMZngCQ00jHIJws/kPuXWhlbEVxFxXJK25+nsiw6EQaejrzuJisewV4n/eUMngxs1olCgJEVksChSzZGwVgVhjyoFIlmqCCaf6VotMMcdE6tiqOgRn+eVV0mvUnat6s9OstZwyjgo6Q+foEjnoGrXQHWqjLiLoET2jV/RmPBkvxrvxsWhdM8qZE/QHxucP/QiYVw==</latexit>

Queryfeature2

<latexit sha1_base64="JssqbQYd6eq0xr2MTQRT/HOL4eo=">AAACDHicbVDLSgNBEJyNrxhfUY9eFoPgKeyKqMeAFy9CAuYBSQizk95kyOyDmR4xLPsBXvwVLx4U8eoHePNvnE32oIkFA0V1dU93ebHgCh3n2yqsrK6tbxQ3S1vbO7t75f2Dloq0ZNBkkYhkx6MKBA+hiRwFdGIJNPAEtL3JdVZv34NUPArvcBpDP6CjkPucUTTSoFzpBRTHnp80NMjpIPGBopYw6CE8mHHJbZqmxuVUnRnsZeLmpEJy1Aflr94wYjqAEJmgSnVdJ8Z+QiVyJiAt9bSCmLIJHUHX0JAGoPrJ7JjUPjHK0PYjaV6I9kz93ZHQQKlp4BlntrparGXif7WuRv+qn/Aw1gghm3/ka2FjZGfJ2EMugaGYGkKZ5GZXm42ppAxNfiUTgrt48jJpnVXdi+p547xSc/M4iuSIHJNT4pJLUiM3pE6ahJFH8kxeyZv1ZL1Y79bH3Fqw8p5D8gfW5w/nJZzC</latexit>

QueryfeatureJ

label 1

label 0

label 1

<latexit sha1_base64="HmZyoqflorVKAwDa3xX2DdjuOSo=">AAAB/XicbVDLSsNAFL2pr1pf8bFzM1gEVyWRoi6LblxWsLXQhjCZTtqhkwczk0INwV9x40IRt/6HO//GSZqFth4YOJxz78yZ48WcSWVZ30ZlZXVtfaO6Wdva3tndM/cPujJKBKEdEvFI9DwsKWch7SimOO3FguLA4/TBm9zk/sOUCsmi8F7NYuoEeBQynxGstOSaR4MAq7Hnp+OpmxKOpcwy5Jp1q2EVQMvELkkdSrRd82swjEgS0FAVd/RtK1ZOioVihNOsNkgkjTGZ4BHtaxrigEonLdJn6FQrQ+RHQp9QoUL9vZHiQMpZ4OnJPKtc9HLxP6+fKP/KSVkYJ4qGZP6Qn3CkIpRXgYZMUKL4TBNMBNNZERljgYnShdV0Cfbil5dJ97xhXzSad81667qsowrHcAJnYMMltOAW2tABAo/wDK/wZjwZL8a78TEfrRjlziH8gfH5AyOjla0=</latexit>

hvclass•••

•••

Approach 2

<latexit sha1_base64="eI+D0fPaa7DpUbJl1cVcGOT8KqM=">AAACBnicbVDLSsNAFJ3UV62vqEsRgkVwVZJS1GXBjcsK9gFNCZPppB06mYSZm2IJWbnxV9y4UMSt3+DOv3HSZqGtBwYO59x7597jx5wpsO1vo7S2vrG5Vd6u7Ozu7R+Yh0cdFSWS0DaJeCR7PlaUM0HbwIDTXiwpDn1Ou/7kJve7UyoVi8Q9zGI6CPFIsIARDFryzFM3xDD2g3Q89VLCWey5QB/0oJRlWeaZVbtmz2GtEqcgVVSg5Zlf7jAiSUgFEI6V6jt2DIMUS2CE06ziJorGmEzwiPY1FTikapDOz8isc60MrSCS+gmw5urvjhSHSs1CX1fmS6tlLxf/8/oJBNeDlIk4ASrI4qMg4RZEVp6JNWSSEuAzTTCRTO9qkTGWmIBOrqJDcJZPXiWdes25rDXuGtVmvYijjE7QGbpADrpCTXSLWqiNCHpEz+gVvRlPxovxbnwsSktG0XOM/sD4/AEgwpon</latexit>

hvclipB

clip
concatenate them

<latexit sha1_base64="J34vQVd0i0MHoteH9MBjrJ0FtxQ=">AAACCXicbVC7SgNBFJ2NrxhfUUubwSBYhV0RtQzY2AgRzAOSsMxO7iZDZh/M3A2GZVsbf8XGQhFb/8DOv3E2SaGJBwYO59x7597jxVJotO1vq7Cyura+UdwsbW3v7O6V9w+aOkoUhwaPZKTaHtMgRQgNFCihHStggSeh5Y2uc781BqVFFN7jJIZewAah8AVnaCS3TLsBw6Hnp8Oxm/rAMFHgdhEezKz0Nssyt1yxq/YUdJk4c1Ihc9Td8le3H/EkgBC5ZFp3HDvGXsoUCi4hK3UTDTHjIzaAjqEhC0D30uklGT0xSp/6kTIvRDpVf3ekLNB6EnimMt9bL3q5+J/XSdC/6qUijBOEkM8+8hNJMaJ5LLQvFHCUE0MYV8LsSvmQKcbRhFcyITiLJy+T5lnVuaie351Xas48jiI5IsfklDjkktTIDamTBuHkkTyTV/JmPVkv1rv1MSstWPOeQ/IH1ucPdjybbA==</latexit>

hvfeatureJ

<latexit sha1_base64="2pgqph4msOr64PZ5XzNSfNRR4kA=">AAACAHicbVBNS8NAEN3Ur1q/oh48eFksgqeSSFGPBS8eK9haaEPYbCft0s0m7G4KJeTiX/HiQRGv/gxv/hs3bQ7a+mDg8d4MM/OChDOlHefbqqytb2xuVbdrO7t7+wf24VFXxamk0KExj2UvIAo4E9DRTHPoJRJIFHB4DCa3hf84BalYLB70LAEvIiPBQkaJNpJvnwwiosdBmI2nfhYC0akE381z3647DWcOvErcktRRibZvfw2GMU0jEJpyolTfdRLtZURqRjnktUGqICF0QkbQN1SQCJSXzR/I8blRhjiMpSmh8Vz9PZGRSKlZFJjO4ly17BXif14/1eGNlzGRpBoEXSwKU451jIs08JBJoJrPDCFUMnMrpmMiCdUms5oJwV1+eZV0LxvuVaN536y33DKOKjpFZ+gCuegatdAdaqMOoihHz+gVvVlP1ov1bn0sWitWOXOM/sD6/AGVx5cA</latexit>

hvfeature1

<latexit sha1_base64="zX2qk2RcZgPHVWSPOjEK2PajudQ=">AAACAHicbVBNS8NAEN3Ur1q/oh48eFksgqeSlKIeC148VrAf0Jaw2U7apZtN2N0USsjFv+LFgyJe/Rne/Ddu2hy09cHA470ZZub5MWdKO863VdrY3NreKe9W9vYPDo/s45OOihJJoU0jHsmeTxRwJqCtmebQiyWQ0OfQ9ad3ud+dgVQsEo96HsMwJGPBAkaJNpJnnw1Coid+kE5mXhoA0YkEr55lnl11as4CeJ24BamiAi3P/hqMIpqEIDTlRKm+68R6mBKpGeWQVQaJgpjQKRlD31BBQlDDdPFAhi+NMsJBJE0JjRfq74mUhErNQ9905ueqVS8X//P6iQ5uhykTcaJB0OWiIOFYRzhPA4+YBKr53BBCJTO3YjohklBtMquYENzVl9dJp15zr2uNh0a16RZxlNE5ukBXyEU3qInuUQu1EUUZekav6M16sl6sd+tj2VqyiplT9AfW5w+XTZcB</latexit>

hvfeature2
•••

<latexit sha1_base64="HmZyoqflorVKAwDa3xX2DdjuOSo=">AAAB/XicbVDLSsNAFL2pr1pf8bFzM1gEVyWRoi6LblxWsLXQhjCZTtqhkwczk0INwV9x40IRt/6HO//GSZqFth4YOJxz78yZ48WcSWVZ30ZlZXVtfaO6Wdva3tndM/cPujJKBKEdEvFI9DwsKWch7SimOO3FguLA4/TBm9zk/sOUCsmi8F7NYuoEeBQynxGstOSaR4MAq7Hnp+OpmxKOpcwy5Jp1q2EVQMvELkkdSrRd82swjEgS0FAVd/RtK1ZOioVihNOsNkgkjTGZ4BHtaxrigEonLdJn6FQrQ+RHQp9QoUL9vZHiQMpZ4OnJPKtc9HLxP6+fKP/KSVkYJ4qGZP6Qn3CkIpRXgYZMUKL4TBNMBNNZERljgYnShdV0Cfbil5dJ97xhXzSad81667qsowrHcAJnYMMltOAW2tABAo/wDK/wZjwZL8a78TEfrRjlziH8gfH5AyOjla0=</latexit>

hvclass

Approach 1

1

<latexit sha1_base64="Ihdr6t06bhmcDcnxy5znMqZ7wnE=">AAAB/nicbVDLSsNAFJ3UV62vqLhyM1gEVyWRoi6LbtwIFewDmlAmk5t27GSSzkyEEgr+ihsXirj1O9z5N04fC60euNzDOfcyd06Qcqa043xZhaXlldW14nppY3Nre8fe3WuqJJMUGjThiWwHRAFnAhqaaQ7tVAKJAw6tYHA18VsPIBVLxJ0epeDHpCdYxCjRRuraB94wIyF2scdhiO9n7aZrl52KMwX+S9w5KaM56l370wsTmsUgNOVEqY7rpNrPidSMchiXvExBSuiA9KBjqCAxKD+fnj/Gx0YJcZRIU0LjqfpzIyexUqM4MJMx0X216E3E/7xOpqMLP2cizTQIOnsoyjjWCZ5kgUMmgWo+MoRQycytmPaJJFSbxEomBHfxy39J87TinlWqt9Vy7XIeRxEdoiN0glx0jmroGtVRA1GUoyf0gl6tR+vZerPeZ6MFa76zj37B+vgGIV6UUQ==</latexit>

1  j  M

<latexit sha1_base64="JTzX3c1CBTSmeNmcia3hutu2SrM=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY8FQbwIFWwttKFstpN26e4m7G6EUvoXvHhQxKt/yJv/xqTNQVsfDDzem2FmXhALbqzrfjuFtfWNza3idmlnd2//oHx41DZRohm2WCQi3QmoQcEVtiy3AjuxRioDgY/B+DrzH59QGx6pBzuJ0Zd0qHjIGbWZdNO/K/XLFbfqzkFWiZeTCuRo9stfvUHEEonKMkGN6XpubP0p1ZYzgbNSLzEYUzamQ+ymVFGJxp/Ob52Rs1QZkDDSaSlL5urviSmVxkxkkHZKakdm2cvE/7xuYsMrf8pVnFhUbLEoTASxEckeJwOukVkxSQllmqe3EjaimjKbxpOF4C2/vEratap3Ua3f1yuNWh5HEU7gFM7Bg0towC00oQUMRvAMr/DmSOfFeXc+Fq0FJ585hj9wPn8AHRSNlw==</latexit>

FM

<latexit sha1_base64="HCMv1XiUXgv/hJijrbbjyAUCOEU=">AAACM3icbVDLSsNAFJ34rPUVdelmsAiCUBIp6rLgRnRTwT6gCWEynbRDJw9mbool5J/c+CMuBHGhiFv/wUnbhbYeGDice+7ce4+fCK7Asl6NpeWV1bX10kZ5c2t7Z9fc22+pOJWUNWksYtnxiWKCR6wJHATrJJKR0Bes7Q+vinp7xKTicXQP44S5IelHPOCUgJY888bxeb+LnZDAwA+ywcjLqOCJZ+c5xqfYob0YVEHmDQ6wBz0vu821s/jE9cyKVbUmwIvEnpEKmqHhmc9OL6ZpyCKggijVta0E3IxI4FSwvOykiiWEDkmfdTWNSMiUm01uzvGxVno4iKV+EeCJ+rsjI6FS49DXzmJ1NV8rxP9q3RSCSzfjUZICi+h0UJAKDDEuAsQ9LhkFMdaEUMn1rpgOiCQUdMxlHYI9f/IiaZ1V7fNq7a5WqduzOEroEB2hE2SjC1RH16iBmoiiR/SC3tGH8WS8GZ/G19S6ZMx6DtAfGN8/mJergA==</latexit>⇥
hvclip1 + · · ·+ hvclipE

⇤

<latexit sha1_base64="yxJCBSd7zrEmuEgYyVoOPInR9og=">AAAB/nicbVDLSsNAFL2pr1pfUXHlZrAIrkoiRV0W3QhuKtgHNKFMJtN26GSSzkyEEgr+ihsXirj1O9z5N07bLLT1wOUezrmXuXOChDOlHefbKqysrq1vFDdLW9s7u3v2/kFTxakktEFiHst2gBXlTNCGZprTdiIpjgJOW8HwZuq3HqlULBYPepxQP8J9wXqMYG2krn3kjVIcIhd5nI4Qm7e7rl12Ks4MaJm4OSlDjnrX/vLCmKQRFZpwrFTHdRLtZ1hqRjidlLxU0QSTIe7TjqECR1T52ez8CTo1Soh6sTQlNJqpvzcyHCk1jgIzGWE9UIveVPzP66S6d+VnTCSppoLMH+qlHOkYTbNAIZOUaD42BBPJzK2IDLDERJvESiYEd/HLy6R5XnEvKtX7arl2ncdRhGM4gTNw4RJqcAt1aACBDJ7hFd6sJ+vFerc+5qMFK985hD+wPn8AHMuUTg==</latexit>

1  i  K

<latexit sha1_base64="xIuivNl+LfuNFi8QP5Cv+pb93ms=">AAACSnicbVA9T8MwEHXKVylfAUYWiwqJAVUJqoCxgoWBoUiUVmqqyHEdauE4wb5UVFF+HwsTGz+ChQGEWHBKKz5PsvTu3d278wsSwTU4zqNVmpmdm18oL1aWlldW1+z1jUsdp4qyFo1FrDoB0UxwyVrAQbBOohiJAsHawfVJUW8PmdI8lhcwSlgvIleSh5wSMJRvEy8iMAjCbDD0Myp44nvAbo1QxvM8x9jjEnvZtOnMd/M9/JXtFxntx6C/s1OFGyPg5b5ddWrOOPBf4E5AFU2i6dsPXj+macQkUEG07rpOAr2MKOBUsLzipZolhF6TK9Y1UJKI6V42tiLHO4bp4zBW5knAY/b7REYirUdRYDqLe/XvWkH+V+umEB71Mi6TFJikn4vCVGCIceEr7nPFKIiRAYQqbm7FdEAUoWDcrxgT3N9f/gsu92vuQa1+Xq82jid2lNEW2ka7yEWHqIFOURO1EEV36Am9oFfr3nq23qz3z9aSNZnZRD+iNPsBMxe0vQ==</latexit>

hvclipB 2 {L1,L2, · · · ,L[}
CiM

Ø
Ø
𝑲 clips
𝒒 quantization levels

3

3

3

Figure 3.2: HD classification using PSD method.

Three Approaches for PSD Method

As shown in Figure 3.2, a certain class has N -channel iEEG signals with K clips. From

each clip, M PSD feature values are extracted. These features are scaled into the range

[0, 1]. This scaling step facilitates the encoding process for HDC. How to generate a class

hypervector hvclass based on K clips with M PSD features needs to be addressed. Three

novel approaches to solve this problem are described below and their HD classification

approaches are shown in Figure 3.2.

Approach 1: Single Classifier, Long Hypervectors Before training, quantize the

range [0, 1] into q levels, a total q level hypervectors {L1,L2, · · · ,Lq} are generated in

the CiM. As shown in Figure 3.2, for the jth feature, clip i corresponds to a red data

43

point and then should be represented by a clip hypervector hvclipi based on its quan-

tized level, where hvclipi ∈ {L1,L2, · · · ,Lq} and i ∈ [1, N]. As shown in Eq. (3.4), in

total M feature hypervectors hvfeaturej should be trained by adding all corresponding

clip hypervectors, where j ∈ [1,M] and i ∈ [1,K]. The final class hypervector is gen-

erated by concatenating all feature hypervectors. For example, if Dog 1 has 3 features,

and each feature hypervector hvfeaturej has its dimensionality d = 10, 000, then the

dimensionality for hvclass becomes 30, 000.

hvfeaturej =
[
hvclip1 + · · · + hvclipi + · · · + hvclipK

]
, (3.4a)

hvclass = (hvfeature1 , · · · ,hvfeatureM). (3.4b)

Approach 2: Multiple Classifiers Approach 2 uses M feature hypervectors hvfeaturej

that are input to M classifiers, where j ∈ [1,M]. This is different from Approach 1 which

employs a single long class hypervector hvclass. Therefore, a given test segment will

produce M query hypervectors. Similarity measurement should be performed for each

query hypervector. We obtain the label results from M classifiers. The final label is

determined by a majority vote of all label results. For example, Patient 3 needs 4 fea-

tures to determine the label. In this case, 4 feature hypervectors are trained. If the

label 0 for interictal class is assigned 3 times, and 1 for ictal class is assigned once, then

the final label should be classified as 0, namely the interictal segment. If the number of

labels is even and half the labels correspond to each class, the tie is broken in favor of

detection.

Approach 3: Single Classifier, Short Hypervectors Instead of concatenating

the feature hypervectors, the hypervector hvclass in Approach 3 is generated by Eq.

(3.5), where the hypervectors’ index (ID) values are pre-generated in IM, whose total

number is the same as selected features.

hvclipi ∈ {L1,L2, · · · ,Lq}, where i ∈ [1,K], (3.5a)

hvfeaturej =
[
hvclip1 + · · · + hvclipK

]
, (3.5b)

hvclass =
[
hvfeature1 ⊕ ID1 + · · · + hvfeatureM ⊕ IDM

]

44

Selected and All PSD Features

Selected PSD Features Inspired by [56], we use the Fisher score to select efficient

features for discrimination [111]. These features are linearly separable. The higher the

Fisher score, the more linearly separable the feature is. Top three PSD features selected

using Fisher score are shown in Table 3.1.

Table 3.1: Three selected features based on Fisher score.

Patient Selected Features

Dog 1
ele12 : ASP170,200, ASP150,170

ele16 : ASP170,200

Dog 2
ele16 : Ratio3,8,80,105
ele14 : Ratio3,8,80,105
ele11 : Ratio3,8,80,105

Dog 3
ele70 : ASP13,30

ele14 : ASP13,30

ele13 : ASP13,30

Dog 4
ele60 : ASP3,8

ele12 : Ratio80,105,150,170, Ratio55,80,150,170

Patient 1
ele19 : ASP80,105, ASP55,80

ele10 : Ratio8,13,80,105

Patient 2
ele10 : ASP13,30

ele30 : ASP13,30

ele20 : ASP13,30

Patient 3
ele60 : ASP13,30

ele50 : ASP13,30, ASP8,13

Patient 4
ele44 : Ratio80,100,130,160
ele70 : Ratio300,350,350,400, Ratio250,300,350,400

Patient 5
ele10 : ASP160,200

ele25 : ASP30,50

ele20 : ASP50,80

Patient 6
ele24 : Ratio13,30,250,300, Ratio13,30,200,250
ele24 : Ratio13,30,300,350

Patient 7 ele28 : ASP3,8, Ratio13,30,350,400, ASP13,30

Patient 8
ele10 : ASP13,30, ASP8,13

ele11 : ASP13,30

45

All PSD Features We also take all features into consideration, which means all

three spectral power metrics over all sub-bands are computed. Therefore, (a) for dog

subjects who have 10 sub-bands, a total of 65(= 10 + 10 +
(
10
2

)
) features need to be

computed. They are 10 ASP, 10 RSP and
(
10
2

)
Ratio. (b) Similarly, for human subjects

with 13 sub-bands, 104(= 13 + 13 +
(
13
2

)
) features are computed. Similar to a small

number of PSD features method, three approaches are performed for all features with

HDC. The only difference is the generation of hvclass hypervector in Approach 3, which

is shown in Eq. (3.6). The algorithm is straightforward: (a) Before training, pre-

generate N channel hypervectors Chk in IM1, M ID hypervectors IDj in IM2, and q

level hypervectors {L1,L2, · · · ,Lq} in CiM, where k ∈ [1, N] and j ∈ [1,M]. (b) For

each clip, generate the clip hypervector as described in Eq. (3.6a), where [·] represents

the majority rule and L̄j ∈ {L1, · · · ,Lq}. The final class hypervector is generated by

adding all clip hypervectors for the same class as shown in Eq. (3.6b). (c) Once the

two class hypervectors are trained, during the testing phase, the query hypervector is

generated by each clip in the same way as shown in Eq. (3.6a). Finally, the label is

assigned according to the similarity measurement between the query hypervectors and

the trained two class hypervectors.

hvclipi =
[[
ID1 ⊕ L̄1 + · · · + IDM ⊕ L̄M

]
⊕Ch1 + · · ·

dkddddddd +
[
ID1 ⊕ L̄1 + · · · + IDM ⊕ L̄M

]
⊕ChN

]
(3.6a)

hvclass =
[
hvclip1 + hvclip2 + · · · + hvclipK

]
(3.6b)

3.2.3 Hypervector Distance Plot

In this chapter, a hypervector distance plot is introduced to visualize the scatter plot of

classification results. As an example, Figure 3.3, a hypervector distance plot illustrates

the Hamming distance between the ictal class hypervector hvictal and the query hy-

pervector hvquery as its x-axis, and the Hamming distance between the interictal class

hypervector hvinterictal and the query hypervector hvquery on the y-axis. A blue line,

which represents a set of query hypervectors that have the same distance with ictal and

interictal hypervectors, is introduced in this plot. Additionally, ictal hypervectors are

shown as the red points, while the black points represent the interictal hypervectors.

46

For high classification accuracy, both red and blue points should be located farther from

the blue line. Generally, for a binary classifier with 100% test accuracy, all red points

are above the blue line, and all black points are below the blue line.

0.0 0.1 0.2 0.3 0.4 0.5
Ham(hv_ictal, hv_query)

0.0

0.1

0.2

0.3

0.4

0.5

H
am

(h
v_

in
te

ri
ct

al
, h

v_
qu

er
y) line

interical
ictal

Figure 3.3: A general hypervector distance plot for an ideal binary classification.

To the best of our knowledge, we are the first to introduce the hypervector distance

plot for HD classifiers to visualize the accuracy of binary classification. Based on the

corresponding plots in Sec. 3.4.3, we find these plots can also display the classification

performance for different classifiers. More details are discussed in Sec. 3.4.3.

3.3 Materials

3.3.1 iEEG Dataset from Kaggle Contest

The dataset for testing the proposed algorithm is from the UPenn and Mayo Clinic’s

Seizure Detection Challenge [28] organized by Kaggle [110]. The experimental proce-

dures involving human subjects described in this chapter were approved by the Institu-

tional Review Board. The experimental procedures involving animal models described

in this chapter were approved by the Institutional Animal Care and Ethics Committee.

Table 3.2 lists the number of ictal and interictal clips in the training set, the number

of test clips, the number of channels and the sampling frequency of the iEEG dataset

from the Kaggle seizure detection contest [28], where each clip represents a one second

47

Table 3.2: Dataset information.

Patient #ictal #interictal #test #channel fs (Hz)

Dog 1 178 418 3181 16 400
Dog 2 172 1148 2997 16 400
Dog 3 480 4760 4450 16 400
Dog 4 257 2790 3013 16 400

Patient 1 70 104 2050 68 500
Patient 2 151 2990 3894 16 5000
Patient 3 327 714 1281 55 5000
Patient 4 20 190 543 72 5000
Patient 5 135 2610 2986 64 5000
Patient 6 225 2772 2997 30 5000
Patient 7 282 3239 3601 36 5000
Patient 8 180 1710 1922 16 5000

iEEG data. This contest analyzes iEEG data from 4 dogs and 8 human subjects. The

sampling frequency fs of these recordings is 400 Hz for dogs, and is 500 Hz or 5000 Hz

for human subjects. Interested readers are referred to [110] for more details.

3.3.2 Training, Validation and Test Data

The data in the Kaggle contest has already been segmented into training and test clips.

Training clips are arranged sequentially, whereas test data are labelled randomly. This

indicates that the test clips labelled consecutively are not taken from the continuous

time series.

To avoid model overfitting, validation data is split from the training data. Since

the dynamics of seizures are different even for a single subject, similar to [112], we

conduct the leave-one-seizure-out cross-validation (LOOCV) per subject. Specifically,

based on the number of seizures #Sz, the original training data is divided into #Sz

folds with the interictal clips divided equally. Each fold contains one seizure. Then the

HD models are trained over all but one (or #Sz − 1) folds, validate over the held-out

one fold and test over the given test data. The final evaluation results are the average

of all cross-validation rounds.

3.3.3 Performance Evaluation

As a binary classification problem, seizure detection results in four possible outcomes:

true positive (TP), true negative (TN), false positive (FP) and false negative (FN).

48Table 3.3: Performance metrics.

Metric Formula Expected

Accuracy TP+TN
TP+TN+FP+FN high

Sensitivity TP
TP+FN high

Specificity TN
TN+FP = 1 − FPR1 high

AUC area under the ROC curve (∈ [0, 1]) high
latency ∆ = tseizure is detected − tactual seizure onset low

1 FPR represents the false positive rate.

These quantities are used to evaluate the metrics—accuracy, sensitivity and specificity—

to measure the performance of the detection algorithms. Accuracy reveals an overall

classification performance in seizure detection. Sensitivity, also referred as true posi-

tive rate (TPR), reflects how well the seizure (ictal/positive) data is correctly detected,

which is the ratio of correctly classified ictal labels to the total ictal data. Specificity,

also named true negative rate (TNR), indicates how well the normal baseline (interic-

tal/false) data is correctly classified. Due to the nature of epilepsy, where the seizure

duration typically lasts from ten seconds to two minutes, seizure detection is essentially

an imbalanced data classification problem. Accordingly, accuracy cannot sufficiently

measure the detection performance for highly imbalanced datasets. The receiver oper-

ating characteristic (ROC) curve is a plot of “sensitivity” versus “1-specificity”, and the

area under this curve (AUC) can be used to measure the overall classification perfor-

mance. In this chapter, we use test accuracy, sensitivity, specificity, and AUC to measure

the classification performance, where AUC is the main metric to select the best seizure

detection algorithm. Other than the classification performance, seizure detection also

considers how fast the proposed algorithm can detect the seizure. To indicate this, the

metric latency is denoted as the time difference between the actual seizure onset and

the detection time determined by the algorithm. More details for the

3.4 Experimental Results

3.4.1 LBP Method

Using one-second window length, experiments are conducted for different LBP code

lengths.

49

Dog_1 72.86 70.71 70.96 71.19 72.69 72.09 71.42 72.59 70.65
88.99

Dog_2 65.42 67.81 70.61 72.62 76.63 79.82 80.76 85.40 84.5786.57

Dog_3 91.52 92.19 89.16 89.77 89.30 88.86 87.53 86.80 82.43
93.75

Dog_4 75.26 78.16 79.58 80.32 80.84 81.47 80.68 78.95 78.7181.85

Patient_1 54.92 55.73 64.40 70.18 71.45 70.48 69.51 66.13 65.8171.78

Patient_2 97.37 97.37 97.22 97.04 97.47 97.30 96.74 96.57 96.4597.64

Patient_3 77.20 75.59 72.56 74.16 73.78 75.11 75.47 74.46 76.9578.18

Patient_4 99.47 99.74 99.47 99.47 98.95 98.95 98.68 99.21 99.2199.74

Patient_5 65.99
75.26 68.22 70.63 70.36 71.76 74.34 76.92 78.00 79.76

Patient_6 83.31 76.18 84.95 89.42 94.69 96.15 96.83 97.01 96.9897.57

Patient_7 68.60 73.92 75.39 76.81 77.11 78.34 78.95 79.23 78.9579.66

3 4 5 6 7 8 9 10 11 12

Patient_8 85.96 89.62 90.51 91.70 92.75 92.98 93.46 93.67 94.1294.15

AUC_valid Best AUC_valid

Figure 3.4: AUC for validation data.

Table 3.4: Average LBP validation AUC performances.

l 3 4 5 6 7 8 9 10 11 12

Ave 11 75.22 73.66 75.50 76.65 78.25 78.82 78.73 78.91 78.21 76.44
Ave 22 82.74 84.15 84.52 85.37 86.60 87.06 87.95 88.28 88.38 88.92
Ave 33 79.61 79.78 80.76 81.74 83.12 83.63 84.11 84.38 84.14 83.72

1 Ave 1: average AUC performance for four dogs and Patient 1.
2 Ave 2: average AUC performance for Patient 2 to Patient 8.
3 Ave 3: average AUC performance for twelve subjects.

50

Simulation results for AUC over validation data are shown in Figure 3.4, where the x-

axis for each figure denotes different LBP code lengths, with the corresponding summary

listed in Table 3.4. From this table, Ave 1 denotes the average AUC performance for

the subjects with fs≤ 500Hz, Ave 2 is the average AUC performance for patients with

fs=5kHz and Ave 3 is the average AUC performance for all twelve subjects. In terms of

the validation data, patients with fs=5kHz on average achieve the best AUC of 88.92%

when l=12, whereas subjects with fs≤500Hz have the best AUC of 78.91% when l=10.

Note that, indicated by Ave 2, the average AUC performance when l=10 is about the

same as that of the best performance with l=12. Using l = 6 reduces AUC about 2%

compared to l = 10. The performance results over test data using the LBP method are

shown in Tables 3.7 and 3.8 with a detailed discussion later in Sec. 3.4.3.

Table 3.5: Performance for selected PSD features using fisher score with quantization
level q = 21.1

Patient
Approach 1 Approach 2 Approach 3 Best

ApproachAtestSen.Spec.AUC
test

AUC
valid

AUC
train

Lat.AtestSen.Spec.AUC
test

AUC
valid

AUC
train

Lat.AtestSen.Spec.AUC
test

AUC
valid

AUC
train

Lat.

Dog 1 95.6 91.8 95.8 93.8 97.9 98.0 0.8 95.6 92.3 95.8 94.0 98.0 98.0 0.8 95.6 91.4 95.8 93.6 97.8 98.0 0.8 SF v2
Dog 2 86.9 94.5 86.4 90.5 94.2 94.7 0.7 86.0 93.0 85.7 89.3 94.2 94.1 0.7 87.8 86.6 87.9 87.2 93.9 94.8 0.3 SF v1
Dog 3 95.3 72.5 97.5 85.0 92.0 92.5 3.2 95.0 73.7 97.1 85.4 91.8 92.4 3.2 95.3 72.1 97.6 84.8 91.7 92.1 3.1 SF v2
Dog 4 64.9 83.2 64.1 73.7 81.8 82.2 0.0 63.4 83.2 62.5 72.9 80.8 82.1 0.0 64.6 80.4 63.9 72.1 82.0 82.6 0.0 SF v1
Patient 1 95.5 94.2 95.7 94.9 91.7 92.8 2.0 93.9 96.6 93.6 95.1 88.9 94.9 2.0 94.6 92.6 94.7 93.7 91.3 93.9 1.8 SF v2
Patient 2 98.1 95.3 98.2 96.8 96.1 95.9 0.0 97.7 93.9 98.0 95.9 95.2 95.2 0.0 98.1 95.3 98.3 96.8 95.6 96.0 0.0 SF v3
Patient 3 95.0 78.5 96.9 87.7 82.7 79.6 6.9 94.7 79.0 96.4 87.7 82.2 79.4 6.9 94.7 75.9 96.8 86.4 82.6 79.4 6.9 SF v2
Patient 4 87.6 21.0 94.3 57.7 97.4 97.4 0.0 87.0 25.0 93.3 59.2 97.4 97.4 0.0 88.2 35.0 93.6 64.3 97.4 97.4 0.0 SF v3
Patient 5 85.2 91.3 84.9 88.1 79.3 81.9 6.7 84.3 90.9 83.9 87.4 80.2 81.6 6.7 82.9 90.7 82.4 86.5 79.0 81.8 6.8 SF v1
Patient 6 96.8 60.9 99.6 80.3 95.4 95.4 1.5 97.1 66.4 99.6 83.0 96.7 96.7 1.5 96.8 60.9 99.6 80.3 95.4 95.4 1.5 SF v2
Patient 7 98.1 83.1 99.8 91.4 76.9 81.5 28.7 97.6 82.3 99.4 90.8 76.2 81.5 28.7 98.1 82.5 99.8 91.2 76.7 81.4 29.4 SF v1
Patient 8 94.1 91.7 94.3 93.0 95.7 95.7 3.5 93.6 91.7 93.8 92.7 95.5 95.4 3.5 94.4 91.7 94.7 93.2 95.8 95.8 3.5 SF v3

mean 91.1 79.8 92.3 86.1 90.1 90.6 4.5 90.5 80.7 91.6 86.1 89.8 90.7 4.5 90.9 79.6 92.1 85.8 89.9 90.7 4.5 /

1 Atest: test accuracy (%), Sen.: sensitivity (%), Spec.: Specificity (%), Lat.: latency (s), SF vi: Approach i for selected features, where
i ∈ [1, 2, 3].

3.4.2 PSD Method

PSD Method using Selected Features

Simulation results are shown in Table 3.5 using three approaches. In Table 3.5, Atest

represents the accuracy on the testing data. The best AUC performance over test data

for each subject is highlighted in bold. Simulations show that: Indicated by the test

AUC, all these three approaches achieve a similar overall detection performance with

91% test accuracy, 80% sensitivity, 92% specificity, 86% test AUC and 4.5s latency.

51

Table 3.6: Performance for all PSD features with quantization level q = 21.1,2

Patient
Approach 1 Approach 2 Approach 3 Best

ApproachAtestSen.Spec.AUC
test

AUC
valid

AUC
train

Lat.AtestSen.Spec.AUC
test

AUC
valid

AUC
train

Lat.AtestSen.Spec.AUC
test

AUC
valid

AUC
train

Lat.

Dog 1 99.5 91.9 99.9 95.9 95.2 97.4 1.0 75.8 98.0 74.6 86.3 80.4 83.5 0.4 99.0 87.7 99.5 93.6 94.8 94.2 1.6 AF v1
Dog 2 91.1 85.7 91.4 88.6 90.8 91.5 0.8 87.9 88.2 87.9 88.0 90.9 91.1 0.2 84.9 89.5 84.6 87.1 90.5 92.6 0.4 AF v1
Dog 3 95.8 88.1 96.5 92.3 86.1 87.7 3.8 64.2 96.4 61.0 78.7 78.4 79.1 0.0 92.6 90.7 92.8 91.8 88.7 89.1 2.7 AF v1
Dog 4 64.7 74.0 64.3 69.1 75.7 76.5 4.3 49.5 91.2 47.7 69.4 78.6 77.6 0.3 67.7 57.6 68.1 62.9 76.8 78.2 1.3 AF v2
Patient 1 83.8 20.2 89.3 54.8 74.8 91.8 8.5 74.7 42.9 77.5 60.2 64.6 87.9 7.0 88.2 46.0 91.8 68.9 72.7 91.9 7.3 AF v3
Patient 2 71.4 63.8 71.9 67.8 56.6 68.8 2.4 26.0 95.3 21.6 58.5 55.7 58.5 0.3 89.9 77.3 90.7 84.0 80.0 83.3 0.7 AF v3
Patient 3 36.4 57.7 34.0 45.9 57.3 62.8 0.2 11.1 97.2 1.5 49.4 48.6 51.1 0.0 41.5 52.5 40.3 46.4 57.9 68.4 1.3 AF v2
Patient 4 52.1 15.0 55.9 35.4 73.2 85.9 0.0 44.2 19.0 46.8 32.9 71.8 83.6 0.0 68.6 14.0 74.1 44.1 84.3 98.7 0.3 AF v3
Patient 5 79.0 84.5 78.7 81.6 79.1 78.8 13.8 65.2 85.9 64.0 74.9 77.3 76.2 13.7 84.5 84.9 84.5 84.7 79.9 80.6 13.8 AF v3
Patient 6 90.0 45.0 93.6 69.3 86.7 89.8 2.5 46.8 84.3 43.9 64.1 69.3 71.0 0.6 93.6 66.4 95.7 81.0 94.2 93.7 1.3 AF v3
Patient 7 88.1 76.1 89.4 82.7 69.1 77.6 5.1 57.6 89.5 54.1 71.8 58.6 66.9 4.9 90.5 83.2 91.3 87.3 71.3 82.4 4.6 AF v3
Patient 8 78.1 81.7 77.7 79.7 70.1 89.0 4.3 31.3 95.8 24.6 60.2 53.4 64.6 0.0 78.5 76.9 78.7 77.8 70.9 88.4 3.3 AF v1

mean 77.5 65.3 78.5 71.9 76.2 83.1 3.9 52.9 82.0 50.4 66.2 69.0 74.3 2.3 81.6 68.9 82.7 75.8 80.2 86.8 3.2 /

1 Atest: test accuracy (%), Sen.: sensitivity (%), Spec.: Specificity (%), Lat.: latency (s), AF vi: Approach i for all features, where
i ∈ [1, 2, 3].

2 The results are different from [20] where the normalization should have been done by merging ictal and interictal data.

Table 3.7: Summary for LBP and PSD methods.

Patient
LBP Method PSD Method (Selected Features) PSD Method (All Features)

Atest Sen. Spec.AUC
test

Lat. l Atest Sen. Spec.AUC
test

Lat. Best AtestSen. Spec.AUC
test

Lat. Best

Dog 1 94.2 71.9 95.3 83.6 1.7 3 95.6 92.3 95.8 94.0 0.8 SF v2 99.5 91.9 99.9 95.9 1.0 AF v1
Dog 2 77.9 57.7 79.0 68.3 0.0 11 86.9 94.5 86.4 90.5 0.7 SF v1 91.1 85.7 91.4 88.6 0.8 AF v1
Dog 3 92.3 82.9 93.2 88.1 1.8 4 95.0 73.7 97.1 85.4 3.2 SF v2 95.8 88.1 96.5 92.3 3.8 AF v1
Dog 4 61.6 54.0 61.9 58.0 6.8 7 64.9 83.2 64.1 73.7 0.0 SF v1 49.5 91.2 47.7 69.4 0.3 AF v2
Patient 1 88.2 20.2 94.0 57.1 6.0 7 93.9 96.6 93.6 95.1 2.0 SF v2 88.2 46.0 91.8 68.9 7.3 AF v3
Patient 2 98.0 95.6 98.1 96.9 0.0 7 98.1 95.3 98.3 96.8 0.0 SF v3 89.9 77.3 90.7 84.0 0.7 AF v3
Patient 3 11.2 100.0 1.3 50.7 2.0 3 94.7 79.0 96.4 87.7 6.9 SF v2 11.1 97.2 1.5 49.4 0.0 AF v2
Patient 4 80.8 51.0 83.9 67.4 0.0 3 88.2 35.0 93.6 64.3 0.0 SF v3 68.6 14.0 74.1 44.1 0.3 AF v3
Patient 5 93.2 88.1 93.5 90.8 6.3 12 85.2 91.3 84.9 88.1 6.7 SF v1 84.5 84.9 84.5 84.7 13.8 AF v3
Patient 6 97.8 73.3 99.8 86.5 1.6 10 97.1 66.4 99.6 83.0 1.5 SF v2 93.6 66.4 95.7 81.0 1.3 AF v3
Patient 7 77.4 75.6 77.6 76.6 0.2 9 98.1 83.1 99.8 91.4 28.7 SF v1 90.5 83.2 91.3 87.3 4.6 AF v3
Patient 8 98.3 92.2 98.9 95.6 3.8 11 94.4 91.7 94.7 93.2 3.5 SF v3 78.1 81.7 77.7 79.7 4.3 AF v1

mean 12 80.9 71.9 81.4 76.6 2.5 / 91.0 81.8 92.0 86.9 4.5 / 78.4 75.6 78.6 77.1 3.1 /

mean 23 79.3 71.8 79.6 75.7 3.1 10 90.9 79.6 92.1 85.8 4.5 SF v3 81.6 68.9 82.7 75.8 3.2 AF v3

[109] LBP method using HD 95.4 96.0 94.8 / 15.9 / SWEC-ETHZ iEEG dataset4

[64] PSD Method using SVM classifiers5 / 100.0 99.9 / 5.8 / Kaggle dataset

1 Atest: test accuracy (%), Sen.: sensitivity (%), Spec.: Specificity (%), SF: selected features, AF: all features, vi:
Approach i, where i ∈ [1, 2, 3], Lat.: latency with the unit of seconds.

2 mean 1: average performance for each subject with the highest test AUC.
3 mean 2: average performance for all subjects using one method.
4 SWEC-ETHZ iEEG dataset with only training data available.
5 PSD features are selected using CART. No HDC is used.

52

Table 3.8: Impact of hypervector sizes for the test AUC using LBP and PSF methods.

Patient
LBP PSD Method (Selected Features) PSD Method (All Features)
l = 10 Approach 1 Approach 2 Approach 3 Approach 1 Approach 2 Approach 3
10k 1k 10k 1k 100 10k 1k 100 10k 1k 100 10k 1k 100 10k 1k 100 10k 1k 100

Dog 1 77.0 79.1 93.8 93.8 93.8 94.0 94.0 94.0 93.6 94.0 94.9 95.9 95.9 95.9 86.3 86.3 81.3 93.6 78.9 54.7
Dog 2 66.8 66.3 90.5 90.5 90.5 89.3 89.3 89.3 87.2 87.2 90.3 88.6 88.5 88.5 88.0 87.7 87.3 87.1 86.1 69.7
Dog 3 81.0 76.1 85.0 85.0 85.0 85.4 85.4 85.4 84.8 84.4 85.7 92.3 92.3 92.3 78.7 78.5 75.8 91.8 85.1 66.3
Dog 4 58.3 62.0 73.7 73.7 73.7 72.9 72.9 72.9 72.1 74.8 69.7 69.1 69.1 68.7 69.4 69.4 68.6 62.9 70.2 46.8
Patient 1 59.7 59.7 94.9 94.9 94.9 95.1 95.1 95.1 93.7 92.2 80.8 54.8 54.5 54.4 60.2 60.4 62.8 68.9 60.2 56.0
Patient 2 96.5 96.6 96.8 96.8 96.8 95.9 95.9 95.9 96.8 96.8 96.7 67.8 68.0 67.7 58.5 58.4 52.7 84.0 64.6 59.1
Patient 3 55.9 54.2 87.7 87.7 87.7 87.7 87.7 87.7 86.4 87.1 86.6 45.9 45.9 45.9 49.4 49.4 49.4 46.4 49.5 52.7
Patient 4 63.4 64.9 57.7 57.7 57.7 59.2 58.7 58.7 64.3 65.9 60.0 35.4 35.3 36.1 32.9 32.5 31.3 44.1 45.3 51.8
Patient 5 90.1 89.6 88.1 87.8 87.8 87.4 87.4 86.9 86.5 86.8 83.1 81.6 81.6 81.7 74.9 74.8 74.2 84.7 74.7 60.8
Patient 6 86.5 87.0 80.3 80.3 80.3 83.0 83.0 83.0 80.3 80.3 81.0 69.3 69.5 69.4 64.1 63.9 59.7 81.0 65.6 55.4
Patient 7 78.3 78.2 91.4 91.4 91.4 90.8 90.8 90.8 91.2 91.6 91.0 82.7 82.7 82.9 71.8 71.7 70.1 87.3 68.0 57.1
Patient 8 95.0 94.2 93.0 93.0 93.0 92.7 92.7 92.7 93.2 93.2 92.1 79.7 79.4 80.4 60.2 60.4 59.3 77.8 70.1 53.8

mean 75.7 75.7 86.1 86.0 86.0 86.1 86.1 86.0 85.8 86.2 84.3 71.9 71.9 72.0 66.2 66.1 64.4 75.8 68.2 57.0

Table 3.9: Memory and computational requirements for LBP and PSD methods.1

Type2 SF v1/v2 SF v3 AF v1/v2 AF v3 LBP

IM and CiM q q + 3 q q +M +N 2l + N
AM 6(= 2 ∗ 3) 2 2M 2 2

total q + 6 q + 5 q + 2M q +M +N + 2 2l + N + 2

addition 3(K − 1) 3(K − 1) + 2 M(K − 1) MNK − 1 NK(fs − l)− 1
multiplication / 3 / (M + 1)NK NK(fs − l)

total 3(K − 1) 3K + 2 M(K − 1) (2M + 1)NK − 1 2NK(fs − l)− 1

1 q: the quantization level, M : number of all PSD features, where M = 65 for dogs and M = 104
for human subjects, N : number of channels, l: LBP-code length, K: number of segments or clips
for a certain class, fs: sampling frequency.

2 SF: selected features, AF: all features, vi: Approach i, where i ∈ [1, 2, 3].

53

Table 3.10: Specific memory requirements for LBP and PSD methods.

Patient N
PSD (selected) PSD (all) LBP method
SF v1,2 SF v3 AF v1,2 AF v3 3 4 5 6 7 8 9 10 11 12

Dog1 16 27 26 151 104 26 34 50 82 146 274 530 1042 2066 4114
Dog2 16 27 26 151 104 26 34 50 82 146 274 530 1042 2066 4114
Dog3 16 27 26 151 104 26 34 50 82 146 274 530 1042 2066 4114
Dog4 16 27 26 151 104 26 34 50 82 146 274 530 1042 2066 4114
Patient1 68 27 26 229 195 78 86 102 134 198 326 582 1094 2118 4166
Patient2 16 27 26 229 143 26 34 50 82 146 274 530 1042 2066 4114
Patient3 55 27 26 229 182 65 73 89 121 185 313 569 1081 2105 4153
Patient4 72 27 26 229 199 82 90 106 138 202 330 586 1098 2122 4170
Patient5 64 27 26 229 191 74 82 98 130 194 322 578 1090 2114 4162
Patient6 30 27 26 229 157 40 48 64 96 160 288 544 1056 2080 4128
Patient7 36 27 26 229 163 46 54 70 102 166 294 550 1062 2086 4134
Patient8 16 27 26 229 143 26 34 50 82 146 274 530 1042 2066 4114

1 N : number of channels, SF: selected features, AF: all features, vi: Approach i, where i ∈ [1, 2, 3].

PSD Method using All Features

Simulation results for three approaches using all features are shown in Table 3.6: (a)

Indicated by the average test AUC, Approach 3 achieves an overall best detection perfor-

mance among all three approaches: 82% test accuracy, 70% sensitivity, 83% specificity,

76% test AUC and 3.2s latency. (b) For every subject, the best AUC performance over

test data is highlighted in bold. Based on this table, Approach 1 is more suitable for

dogs with three out of four cases achieving the best overall AUC performance, whereas

Approach 3 is better suited for human subjects since six out of eight cases achieve the

best performance over test data.

Comparison between Selected and All PSD Features

Comparing Tables 3.5 and 3.6, we can observe that, for all subjects except Dog 1 and

Dog 3, using selected features can achieve higher performance than that using all fea-

tures, which indicates that feature selection plays an important role in the field of HDC

for classification. Additionally, though using all frequency-domain information does not

improve the classification performance, it reduces the latency from 4.5s to 2.3s.

3.4.3 Discussion on LBP and PSD Methods

Table 3.7 summarizes the best LBP and PSD methods using HDC for seizure detection

using the Kaggle dataset, and compares them with the previous work. It can be observed

54

that: indicated by the average AUC performance over test data, PSD method using

selected features achieves the best seizure detection performance, which can lead to an

average performance of: 91% test accuracy, 82% sensitivity, 92% specificity, 87% test

AUC and 4.5s latency. Additionally, though LBP method outperforms the PSD method

for five human subjects, the test AUC performance difference is small. Compared to

two previous work, we find: (a) The LBP method using HDC works nearly perfectly for

the SWEC-ETHZ iEEG dataset [27] as claimed in [109], but not for the Kaggle dataset.

The reason for this lower performance is twofold: (i) Post-processing techniques, such

as k-out-of-n majority voting (= over k consecutive predictions for n-second window are

classified correctly) [107, 113], are typically employed after the classifier to enhance the

detection performance. For example, [114] reveals that the average accuracy for seizure

prediction can be improved from 73.6% to 93.3% by applying post-processing. Note that

each segment in SWEC-ETHZ iEEG dataset is an at least 6-min iEEG recordings that

contain the whole seizure onset, whereas each segment (or clip) is a one-second iEEG

recordings and arranged randomly for test in the Kaggle dataset. Therefore the post-

processing employed in [109], which is essentially k-out-of-ten majority rule (k ≥ 7),

cannot be applied to the Kaggle dataset. (ii) SWEC-ETHZ iEEG dataset only offers

the training data, while the Kaggle dataset offers both the training and the already

held-out test data. Since the dynamics of different seizures for a certain subject vary

widely, there may exist a big difference in the patterns between the held-out test data

and the given training data. (b) Although the Kaggle dataset was used in [64], that

paper uses the traditional SVM classifiers with feature selection; this requires more

execution time in training and may consume more energy in real-time implementation.

Table 3.8 lists the AUC performance over test data with the dimensionality d of hy-

pervectors reduced from the default 10, 000 to 1, 000 or 100 for LBP and PSD methods.

Compared to the baseline performance with d= 10, 000, the detection performances,

with an exception of the Approach 3 using all PSD features, are comparable for both

LBP and PSD methods when d=1, 000. For PSD methods, all but Approach 3 using all

PSD features can achieve comparable performances even when d=100. This is because

the capacity of the hypervectors with d = 100 is not sufficient to guarantee the required

number of orthogonal hypervectors in IM for Approach 3 using all PSD features.

The memory and complexity requirements results are shown in Table 3.9, where

55

the memory requirements for storing hypervectors are expressed as a factor of the di-

mensionality d of the hypervectors and complexity requirements are expressed as the

number of arithmetic operations. Note that the cost of extracting LBP codes and PSD

values is not considered. Both the memory and complexity requirements are different

among approaches. They depend on the number of channels (N), features (M), quanti-

zation levels (q) for feature values, the LBP code length (l) and the sampling frequency

(fs). The specific memory requirements are shown in Table 3.10. (a) For the memory

requirements, based on Tables 3.9 and 3.10, Approach 3 of the PSD method using se-

lected features requires the minimal memory size. Both Approaches 1 and 2 of the PSD

method using selected features consume the second minimal memory storage. The LBP

method with the code length higher than 8 requires more memory storage than the PSD

methods. (b) For the complexity requirements, the total number of the operations is

listed in the last row of Table 3.9. Coincidentally, the order from the left to right reflects

the number of operations from minimal to maximal. Therefore, Approaches 1 and 2 of

the PSD method with selected features require the minimal number of operations. In

summary, in terms of memory and complexity, the PSD method using selected features

outperforms the LBP method.

Figure 3.5 shows the hypervector distance plots for Patient 2 (left panels) and Dog 4

(right panels) among the proposed different HD classifiers using the model that achieves

the highest validation AUC. Note that, no hypervector distance plot for selected or all

features in the PSD method for Approach 2 is shown in the figure. By observation, for

Patient 2, all HD classifiers except PSD method using all features can discriminate the

two classes well, as data from two classes are located far from the blue line. For Dog 4,

the two classes of data are not discriminable by any HD method; this can be observed

from the plots in the right panel of Figure 3.5. This visualization indicates that feature

selection plays an important role in the data separability for HDC.

56

0.0 0.1 0.2 0.3 0.4 0.5
Ham(hv_ictal, hv_query)

0.0

0.1

0.2

0.3

0.4

0.5

H
am

(h
v_

in
te

ri
ct

al
, h

v_
qu

er
y)

line
interictal
ictal

0.0 0.1 0.2 0.3 0.4 0.5
Ham(hv_ictal, hv_query)

0.0

0.1

0.2

0.3

0.4

0.5

H
am

(h
v_

in
te

ri
ct

al
, h

v_
qu

er
y)

line
interictal
ictal

(a) LBP method for Patient 2. (b) LBP method for Dog 4.

0.0 0.1 0.2 0.3 0.4 0.5
Ham(hv_ictal, hv_query)

0.0

0.1

0.2

0.3

0.4

0.5

H
am

(h
v_

in
te

ri
ct

al
, h

v_
qu

er
y)

line
interictal
ictal

0.0 0.1 0.2 0.3 0.4 0.5
Ham(hv_ictal, hv_query)

0.0

0.1

0.2

0.3

0.4

0.5

H
am

(h
v_

in
te

ri
ct

al
, h

v_
qu

er
y)

line
interictal
ictal

(c) Approach 1 of PSD method

using selected features for Patient 2.

(d) Approach 1 of PSD method

using selected features for Dog 4.

0.0 0.1 0.2 0.3 0.4 0.5
Ham(hv_ictal, hv_query)

0.0

0.1

0.2

0.3

0.4

0.5

H
am

(h
v_

in
te

ri
ct

al
, h

v_
qu

er
y)

line
interictal
ictal

0.0 0.1 0.2 0.3 0.4 0.5
Ham(hv_ictal, hv_query)

0.0

0.1

0.2

0.3

0.4

0.5

H
am

(h
v_

in
te

ri
ct

al
, h

v_
qu

er
y)

line
interictal
ictal

(e) Approach 3 of PSD method

using selected features for Patient 2.

(f) Approach 3 of PSD method

using selected features for Dog 4.

57

0.0 0.1 0.2 0.3 0.4 0.5
Ham(hv_ictal, hv_query)

0.0

0.1

0.2

0.3

0.4

0.5

H
am

(h
v_

in
te

ri
ct

al
, h

v_
qu

er
y)

line
interictal
ictal

0.0 0.1 0.2 0.3 0.4 0.5
Ham(hv_ictal, hv_query)

0.0

0.1

0.2

0.3

0.4

0.5

H
am

(h
v_

in
te

ri
ct

al
, h

v_
qu

er
y)

line
interictal
ictal

(g) Approach 3 of PSD method

using all features for Patient 2.

(h) Approach 3 of PSD method

using all features for Dog 4.

0.0 0.1 0.2 0.3 0.4 0.5
Ham(hv_ictal, hv_query)

0.0

0.1

0.2

0.3

0.4

0.5

H
am

(h
v_

in
te

ri
ct

al
, h

v_
qu

er
y)

line
interictal
ictal

0.0 0.1 0.2 0.3 0.4 0.5
Ham(hv_ictal, hv_query)

0.0

0.1

0.2

0.3

0.4

0.5

H
am

(h
v_

in
te

ri
ct

al
, h

v_
qu

er
y)

line
interictal
ictal

(i) Approach 3 of PSD method

using all features for Patient 2.

(j) Approach 3 of PSD method

using all features for Dog 4.

Figure 3.5: Hypervector distance plots for Patient 2 and

Dog 4 among different HD classifiers.

3.5 Conclusion

This research study explores LBP and PSD methods with binary HDC for seizure de-

tection. Note that non-binary HD classification is not presented in this chapter as these

do not necessarily outperform binary HD classifiers. We observe that Approach 3 for

the PSD method using selected features with Fisher score can achieve the best detection

performance on average. By and large, The PSD method outperforms the LBP method

in test accuracy, sensitivity, specificity and AUC. Other observations are listed below.

58

• LBP method utilizes the time-domain information. Ideally, it is suitable for real-

time detection. However, the overall performance cannot outperform the PSD

methods using the frequency-domain information. From this, we can say that these

PSD features are efficient for seizure detection in classifying ictal and interictal

data.

• The hypervector distance plot, a powerful visualization tool, should be extended

to other binary classification problems in the field of HDC.

• In terms of the memory and complexity requirements, PSD method using selected

features outperforms both the LBP method and the PSD method using all fea-

tures.

Several topics for seizure detection with HDC can be explored further. Future

directions may include but are not limited to:

• Binary HDC with more efficient features: Based on this work, PSD features are

more efficient than the LBP features. Future work may be directed towards in-

vestigating different classes of features that may lead to better performance for

this Kaggle dataset with binary HDC. Examples include Mel-frequency cepstral

coefficients (MFCCs) [45], wavelets [62, 103], and correlation matrix.

• Feature selection: Inspired from the observation that PSD method using selected

features outperforms that using all features, there is a need to develop feature

selection or feature ranking approaches for HDC [111]; examples include minimal-

redundancy-maximal-relevance (mRMR) [115], MUSE [90], and HD score [56].

• Encoding algorithm: This work mainly uses the record-based encoding [6]. The

permutation operation in N -gram-based encoding [7] needs to be investigated in

future work.

• Comparison with traditional methods: Although HDC is a viable approach for

seizure detection, traditional machine learning approaches can provide better ac-

curacy, sensitivity, and specificity. Whether performance using HD can be further

improved to match traditional approaches remains a topic for further investiga-

tion. Although the work has described memory and complexity comparisons for

59

different HD approaches, whether the total area and energy consumption of the

HD approach can be less than that of traditional approaches needs to be in-

vestigated further. A thorough implementation comparison would be useful for

understanding area-energy tradeoffs for wearable and implantable devices.

• Group-based seizure detection: The design of group-based (as opposed to patient-

specific) seizure detection using HD is also of interest. Then new models do not

need to be designed for a new subject.

• Seizure prediction: Finally, the feasibility of HDC using LBP and PSD methods

for seizure prediction is a topic of further research. Seizure prediction is a harder

problem compared to seizure detection.

Chapter 4

Applicability of seizure prediction

using HDC

This chapter’s content has already been published in [22]. The research aims to answer

the question of whether HDC can be applied to seizure prediction. Similar to seizure

detection, two encoding approaches are employed: LBP and PSD encoding.

4.1 Introduction

Numerous prior studies have addressed seizure detection (interictal vs. ictal) [9, 16, 20,

21, 62, 95, 112] and seizure prediction (interictal vs. preictal) [63, 65, 100]. Among these

prior studies, the HDC-based local binary pattern (LBP) method, proposed in [16], can

achieve 99.36% sensitivity and 95.67% specificity for seizure detection over the SWEC-

ETHZ iEEG database [27]. In [112], the applicability of seizure detection using the

HDC approach with frequency spectrum features is proven for the CHB-MIT dataset

[116]. Additionally, the power spectral density (PSD) method using traditional support

vector machines (SVMs) can achieve high performance for both seizure detection and

prediction.

Though [21] has studied the applicability of HDC using both LBP and PSD methods

for seizure detection, whether these two HDC-based strategies are suitable for seizure

prediction has not been investigated. This work applies these two HDC-based encoding

approaches for subject-specific seizure prediction using the publicly available Kaggle

60

61

dataset. The LBP strategy extracts the features from the time domain, whereas the

PSD method uses the frequency-domain information. Experimental results indicate

that the features generated by the aforementioned two methods are not suitable for an

HDC classifier for seizure prediction for this dataset. It has been believed that HDC

is applicable to most time-series classification problems. In this chapter, we show that

HDC classifiers using the PSD method with a small number of features achieve better

performance on the training and validation data as compared to the LBP method.

4.2 Preliminaries

4.2.1 Basics of HDC

In this chapter, the seed hypervectors are either random or level hypervectors. To put

it simply, (a) random hypervectors are quasi-orthogonal to each other and are mainly

employed to represent the independently categorical data, e.g., 256 pixel values; (b) level

hypervectors are usually linearly correlated and are used to represent the sub-intervals

of a given range, e.g., the quantized magnitude of a given time series. The reader is

referred to [19, 117] for more details.

4.2.2 Seizure Prediction Dataset

The term “ictal” refers to the period when the subject has a seizure. “Interictal” and

“preictal”, respectively, represent the time period at baseline and just before the onset

of the seizure. Preictal often refers to the period an hour before the seizure with a

5-minute offset, i.e., the 5-minute period just before the seizure onset is not considered

preictal.

The dataset considered in this work is publicly available as part of the Kaggle seizure

prediction contest [118]. Such data are provided as 10-min interictal and preictal clips.

In total seven subjects are involved: five dogs and two humans. Table 4.1 lists the basic

dataset information, including the number of interictal-, preictal-, and test-clips, the

number of channels for the iEEG recordings, and the sampling frequency fs. Each clip

is a 10-min iEEG recording. For more detailed data description, interested readers are

referred to [99].

62

Table 4.1: Dataset information.

Subject #interictal #preictal #test #ch fs (Hz)

Dog 1 480 24 502 16 400
Dog 2 500 42 1000 16 400
Dog 3 1440 72 907 16 400
Dog 4 804 97 990 16 400
Dog 5 450 30 191 15 400

Patient 1 50 18 195 15 5000
Patient 2 42 18 150 24 5000

One thing that should be emphasized is that the seizure prediction in this work is a

binary classification problem, which identifies the preictal clips among a large number

of interictal clips. Ictal clips, which represent the iEEG during the seizure period, are

not analyzed. The goal of predicting the preictal clips is to provide sufficient time for

warning or prevention before the actual seizure occurs.

4.2.3 Flow Chart of the Employed Approaches

Figure 4.1 shows the flow chart of the employed HDC-based approaches for seizure

prediction. For the given multi-channel iEEG recordings, two different types of features

are investigated as the input for the HDC classifier: LBP and PSD. To be more specific,

the LBP method essentially extracts the time-domain information, whereas the PSD

features reflect the frequency-domain information. Note that, there are three types of

PSD features: absolute power spectral density (ASP), relative power spectral density

(RSP), and the ratio of two ASPs [63]. Finally, after encoding the input features (LBP

codes or PSD values), an HDC-based classification is performed for this dataset.

4.2.4 Training and Test Workflow

We conduct the leave-one-seizure-out cross-validation over this seizure prediction dataset.

This Kaggle dataset mentioned earlier comes with pre-specified training and test data.

Thus the original given training data are separated into the training and validation

sets. Note the validation sets are not used for updating the learned HDC model but

for evaluating the generalizability of the trained model. To elaborate further, based on

63

iEEG
Dataset

1. LBP Code

Label

HD Encoding

HD
Classification2. PSD Features

(ASP, RSP, Ratio)

Feature Extraction

•••

100101

•••••••••

Figure 4.1: Flow chart of the employed approaches.

the number of seizures (S), the original training data are divided into S folds. Within

each fold, both the interictal and preictal clips are split into S groups. To be more

specific, the preictal clips belonging to the same single seizure form one group, whereas

the interictal clips are nearly equally distributed among all S groups. After the data

are split, we learn from (S−1) groups, validate the trained model on the remaining one

group, and test the model over the given test data. The final performance is the average

of the results for all S folds.

4.3 Methodology

4.3.1 LBP Method

This work employs the HDC-based LBP method, which is originally proposed in [16] for

seizure detection using the SWEC-ETHZ iEEG database [27]. Given the raw iEEG data,

LBP codes are extracted as the features, which reflect the time-domain information and

are then fed to the HDC classifier.

To extract the LBP codes, consecutive iEEG samples are converted into a bit stream

whose components are determined by the sign of the temporal difference of the two

adjacent samples. If the difference is positive, then the LBP code is set to be “1”;

otherwise it is assigned as “0”. Generally, the length of LBP code l should be specified.

To obtain a length-l (l-bit) LBP code, (l + 1) consecutive time-series data are required.

Equations (4.1a)-(4.1e) describe how the class hypervector is generated for either the

preictal or interictal class. The parameters, l, N , W , P , K, respectively, represent the

64

length of LBP code, the number of channels, the number of samples within a window,

the number of windows, and the number of clips for a single class.

h̄vLBPChj,i
∈ {hvLBP1, · · · ,hvLBP2l} (4.1a)

hvspatiali =
[∑N

j=1
h̄vLBPChj,i

⊕Chj

]
, (4.1b)

hvwinp =
[∑W−l

i=1
hvspatiali

]
, (4.1c)

hvclipk
=

[∑P

p=1
hvwinp

]
, (4.1d)

hvclass =
[∑K

k=1
hvclipk

]
. (4.1e)

iEEG
Dataset

<latexit sha1_base64="0RqKQ+VOxSVYrZ33hB2Z3JvrhJw=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBIvgqsyUoi4L3bisYB/QjiWTZtrQJDMkGaUM/Q83LhRx67+482/MtLPQ1gOBwzn3ck9OEHOmjet+O4WNza3tneJuaW//4PCofHzS0VGiCG2TiEeqF2BNOZO0bZjhtBcrikXAaTeYNjO/+0iVZpG8N7OY+gKPJQsZwcZKDwOBzSQI0+Zk6M1Lw3LFrboLoHXi5aQCOVrD8tdgFJFEUGkIx1r3PTc2foqVYYTTeWmQaBpjMsVj2rdUYkG1ny5Sz9GFVUYojJR90qCF+nsjxULrmQjsZJZSr3qZ+J/XT0x446dMxomhkiwPhQlHJkJZBWjEFCWGzyzBRDGbFZEJVpgYW1RWgrf65XXSqVW9q2r9rl5p1PI6inAG53AJHlxDA26hBW0goOAZXuHNeXJenHfnYzlacPKdU/gD5/MH16SSCg==</latexit>

Ch1

<latexit sha1_base64="E88LqABdfRi9LuXZGMCpm/ViYUg=">AAAB9XicbVDLSgMxFL3js9ZX1aWbYBFcSJkpRV0WunFZwT6gHUsmzbShSWZIMkoZ+h9uXCji1n9x59+YaWehrQcCh3Pu5Z6cIOZMG9f9dtbWNza3tgs7xd29/YPD0tFxW0eJIrRFIh6pboA15UzSlmGG026sKBYBp51g0sj8ziNVmkXy3kxj6gs8kixkBBsrPfQFNuMgTBvjQXVWHJTKbsWdA60SLydlyNEclL76w4gkgkpDONa657mx8VOsDCOczor9RNMYkwke0Z6lEguq/XSeeobOrTJEYaTskwbN1d8bKRZaT0VgJ7OUetnLxP+8XmLCGz9lMk4MlWRxKEw4MhHKKkBDpigxfGoJJorZrIiMscLE2KKyErzlL6+SdrXiXVVqd7Vy/TKvowCncAYX4ME11OEWmtACAgqe4RXenCfnxXl3Phaja06+cwJ/4Hz+ANdckgU=</latexit>

Ch2

•••
•••

•••

•••

•••
•••

•••
•••

<latexit sha1_base64="T1JnOUFPkSd/tFVSTXJUStpdhis=">AAACAHicbVDLSsNAFJ3UV62vqAsXbgaL4KokpajLQjcuK9gHNKFMpjft2MmDmYlYQjb+ihsXirj1M9z5N07aLLT1wMDhnHvv3Hu8mDOpLOvbKK2tb2xulbcrO7t7+wfm4VFXRomg0KERj0TfIxI4C6GjmOLQjwWQwOPQ86at3O89gJAsCu/ULAY3IOOQ+YwSpaWheeIERE08P21Nho6CRz0ivc+yytCsWjVrDrxK7IJUUYH20PxyRhFNAggV5UTKgW3Fyk2JUIxyyCpOIiEmdErGMNA0JAFIN50fkOFzrYywHwn9QoXn6u+OlARSzgJPV+brymUvF//zBonyr92UhXGiIKSLj/yEYxXhPA08YgKo4jNNCBVM74rphAhClc4sD8FePnmVdOs1+7LWuG1Um/UijjI6RWfoAtnoCjXRDWqjDqIoQ8/oFb0ZT8aL8W58LEpLRtFzjP7A+PwBN6aWxA==</latexit>

ChD
<latexit sha1_base64="MEhmnCL9DaR5+qr2gMMUUJCcS/Q=">AAACAHicbVDLSsNAFJ3UV62vqAsXboJFcFWSUtRloRtXUsE+oAllMr1ph04mYWYilpCNv+LGhSJu/Qx3/o2TNgttPTBwOOfeO/ceP2ZUKtv+Nkpr6xubW+Xtys7u3v6BeXjUlVEiCHRIxCLR97EERjl0FFUM+rEAHPoMev60lfu9BxCSRvxezWLwQjzmNKAEKy0NzRM3xGriB2lrMnQVPOoR6W2WVYZm1a7Zc1irxClIFRVoD80vdxSRJASuCMNSDhw7Vl6KhaKEQVZxEwkxJlM8hoGmHIcgvXR+QGada2VkBZHQjytrrv7uSHEo5Sz0dWW+rlz2cvE/b5Co4NpLKY8TBZwsPgoSZqnIytOwRlQAUWymCSaC6l0tMsECE6Uzy0Nwlk9eJd16zbmsNe4a1Wa9iKOMTtEZukAOukJNdIPaqIMIytAzekVvxpPxYrwbH4vSklH0HKM/MD5/AAzilqg=</latexit>

ChL

length-!
LBP code

2
<latexit sha1_base64="TuFwL3zlOBO6AvvTY55p56Fyj/g=">AAACCXicbVDLSsNAFJ3UV62vqEs3g0VwVRIRdVl047KCfUATwmR60w6dPJiZFEvI1o2/4saFIm79A3f+jZM2C209MHA459479x4/4Uwqy/o2Kiura+sb1c3a1vbO7p65f9CRcSootGnMY9HziQTOImgrpjj0EgEk9Dl0/fFN4XcnICSLo3s1TcANyTBiAaNEackzsRMSNfKDbDTxMplolXDPUfCgZ2Usz3PPrFsNawa8TOyS1FGJlmd+OYOYpiFEinIiZd+2EuVmRChGOeQ1J5WQEDomQ+hrGpEQpJvNLsnxiVYGOIiFfpHCM/V3R0ZCKaehryuLveWiV4j/ef1UBVduxqIkVRDR+UdByrGKcRELHjABVPGpJoQKpnfFdEQEoUqHV9Mh2IsnL5POWcO+aJzfndeb12UcVXSEjtEpstElaqJb1EJtRNEjekav6M14Ml6Md+NjXloxyp5D9AfG5w+pm5ub</latexit>

hvspatialB

<latexit sha1_base64="E88LqABdfRi9LuXZGMCpm/ViYUg=">AAAB9XicbVDLSgMxFL3js9ZX1aWbYBFcSJkpRV0WunFZwT6gHUsmzbShSWZIMkoZ+h9uXCji1n9x59+YaWehrQcCh3Pu5Z6cIOZMG9f9dtbWNza3tgs7xd29/YPD0tFxW0eJIrRFIh6pboA15UzSlmGG026sKBYBp51g0sj8ziNVmkXy3kxj6gs8kixkBBsrPfQFNuMgTBvjQXVWHJTKbsWdA60SLydlyNEclL76w4gkgkpDONa657mx8VOsDCOczor9RNMYkwke0Z6lEguq/XSeeobOrTJEYaTskwbN1d8bKRZaT0VgJ7OUetnLxP+8XmLCGz9lMk4MlWRxKEw4MhHKKkBDpigxfGoJJorZrIiMscLE2KKyErzlL6+SdrXiXVVqd7Vy/TKvowCncAYX4ME11OEWmtACAgqe4RXenCfnxXl3Phaja06+cwJ/4Hz+ANdckgU=</latexit>

Ch2

<latexit sha1_base64="HmZyoqflorVKAwDa3xX2DdjuOSo=">AAAB/XicbVDLSsNAFL2pr1pf8bFzM1gEVyWRoi6LblxWsLXQhjCZTtqhkwczk0INwV9x40IRt/6HO//GSZqFth4YOJxz78yZ48WcSWVZ30ZlZXVtfaO6Wdva3tndM/cPujJKBKEdEvFI9DwsKWch7SimOO3FguLA4/TBm9zk/sOUCsmi8F7NYuoEeBQynxGstOSaR4MAq7Hnp+OpmxKOpcwy5Jp1q2EVQMvELkkdSrRd82swjEgS0FAVd/RtK1ZOioVihNOsNkgkjTGZ4BHtaxrigEonLdJn6FQrQ+RHQp9QoUL9vZHiQMpZ4OnJPKtc9HLxP6+fKP/KSVkYJ4qGZP6Qn3CkIpRXgYZMUKL4TBNMBNNZERljgYnShdV0Cfbil5dJ97xhXzSad81667qsowrHcAJnYMMltOAW2tABAo/wDK/wZjwZL8a78TEfrRjlziH8gfH5AyOjla0=</latexit>

hvclass5

3
<latexit sha1_base64="D4diTaYVZUeTo9wzMjWXl8rABCA=">AAACBnicbVC7SgNBFJ31GeNr1VKEwRCwCrsS1DJiYxnBPCBZltnJbDJkdnaZmY2GZSsbez/AxsbGQhFbS8HOzr9xNkmhiQcGDufce+fe40WMSmVZ38bc/MLi0nJuJb+6tr6xaW5t12UYC0xqOGShaHpIEkY5qSmqGGlGgqDAY6Th9c8yvzEgQtKQX6phRJwAdTn1KUZKS6651w6Q6nl+0hu4yRXlbluRaz0nidI0ha5ZsErWCHCW2BNSqBQ/H+4+7k+rrvnV7oQ4DghXmCEpW7YVKSdBQlHMSJpvx5JECPdRl7Q05Sgg0klGZ6SwqJUO9EOhH1dwpP7uSFAg5TDwdGW2tJz2MvE/rxUr/8RJKI9iRTgef+THDKoQZpnADhUEKzbUBGFB9a4Q95BAWOnk8joEe/rkWVI/LNlHpfKFTqMMxsiBXbAPDoANjkEFnIMqqAEMbsAjeAYvxq3xZLwab+PSOWPSswP+wHj/AUmgngE=</latexit>

hvwinp

<latexit sha1_base64="0RqKQ+VOxSVYrZ33hB2Z3JvrhJw=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBIvgqsyUoi4L3bisYB/QjiWTZtrQJDMkGaUM/Q83LhRx67+482/MtLPQ1gOBwzn3ck9OEHOmjet+O4WNza3tneJuaW//4PCofHzS0VGiCG2TiEeqF2BNOZO0bZjhtBcrikXAaTeYNjO/+0iVZpG8N7OY+gKPJQsZwcZKDwOBzSQI0+Zk6M1Lw3LFrboLoHXi5aQCOVrD8tdgFJFEUGkIx1r3PTc2foqVYYTTeWmQaBpjMsVj2rdUYkG1ny5Sz9GFVUYojJR90qCF+nsjxULrmQjsZJZSr3qZ+J/XT0x446dMxomhkiwPhQlHJkJZBWjEFCWGzyzBRDGbFZEJVpgYW1RWgrf65XXSqVW9q2r9rl5p1PI6inAG53AJHlxDA26hBW0goOAZXuHNeXJenHfnYzlacPKdU/gD5/MH16SSCg==</latexit>

Ch1

<latexit sha1_base64="MEhmnCL9DaR5+qr2gMMUUJCcS/Q=">AAACAHicbVDLSsNAFJ3UV62vqAsXboJFcFWSUtRloRtXUsE+oAllMr1ph04mYWYilpCNv+LGhSJu/Qx3/o2TNgttPTBwOOfeO/ceP2ZUKtv+Nkpr6xubW+Xtys7u3v6BeXjUlVEiCHRIxCLR97EERjl0FFUM+rEAHPoMev60lfu9BxCSRvxezWLwQjzmNKAEKy0NzRM3xGriB2lrMnQVPOoR6W2WVYZm1a7Zc1irxClIFRVoD80vdxSRJASuCMNSDhw7Vl6KhaKEQVZxEwkxJlM8hoGmHIcgvXR+QGada2VkBZHQjytrrv7uSHEo5Sz0dWW+rlz2cvE/b5Co4NpLKY8TBZwsPgoSZqnIytOwRlQAUWymCSaC6l0tMsECE6Uzy0Nwlk9eJd16zbmsNe4a1Wa9iKOMTtEZukAOukJNdIPaqIMIytAzekVvxpPxYrwbH4vSklH0HKM/MD5/AAzilqg=</latexit>

ChL

<latexit sha1_base64="T1JnOUFPkSd/tFVSTXJUStpdhis=">AAACAHicbVDLSsNAFJ3UV62vqAsXbgaL4KokpajLQjcuK9gHNKFMpjft2MmDmYlYQjb+ihsXirj1M9z5N07aLLT1wMDhnHvv3Hu8mDOpLOvbKK2tb2xulbcrO7t7+wfm4VFXRomg0KERj0TfIxI4C6GjmOLQjwWQwOPQ86at3O89gJAsCu/ULAY3IOOQ+YwSpaWheeIERE08P21Nho6CRz0ivc+yytCsWjVrDrxK7IJUUYH20PxyRhFNAggV5UTKgW3Fyk2JUIxyyCpOIiEmdErGMNA0JAFIN50fkOFzrYywHwn9QoXn6u+OlARSzgJPV+brymUvF//zBonyr92UhXGiIKSLj/yEYxXhPA08YgKo4jNNCBVM74rphAhClc4sD8FePnmVdOs1+7LWuG1Um/UijjI6RWfoAtnoCjXRDWqjDqIoQ8/oFb0ZT8aL8W58LEpLRtFzjP7A+PwBN6aWxA==</latexit>

ChD

1

" clips

channels

4
<latexit sha1_base64="RpSgr05Mj2gNxfJKzZM6M+PdrYM=">AAACB3icbVDLSsNAFJ20Pmp9RV0KMliErkqiRV0W3LisYB/QlDCZTtqhk0mYmRRLyM6NG3f+hBsXirj1F9z5FeIfOGm70NYDA4dz7r1z7/EiRqWyrE8jl19aXlktrBXXNza3ts2d3aYMY4FJA4csFG0PScIoJw1FFSPtSBAUeIy0vOFF5rdGREga8ms1jkg3QH1OfYqR0pJrHjgBUgPPTwYjN8GMRq6jyI0elAzTNIWuWbIq1gRwkdgzUqqV70++vh/yddf8cHohjgPCFWZIyo5tRaqbIKEoZiQtOrEkEcJD1CcdTTkKiOwmkztSeKSVHvRDoR9XcKL+7khQIOU48HRltrWc9zLxP68TK/+8m1AexYpwPP3IjxlUIcxCgT0qCFZsrAnCgupdIR4ggbDS0RV1CPb8yYukeVyxTyvVK51GFUxRAPvgEJSBDc5ADVyCOmgADG7BI3gGL8ad8WS8Gm/T0pwx69kDf2C8/wBmjp3y</latexit>

hvclipk

$ samples per channel

% windows

•••

<latexit sha1_base64="NzXNdPvJq9Kb219PVN5BNusz45g=">AAACH3icbVBLSwMxGMz6rPVV9eglWAQPUnal1B6LvfTgoYJ9QLcs2TTbxmYfJtliCftPBPGvePGgiHjr0T8iZtsKvgYCw8z3JZlxI0aFNM2JsbC4tLyymlnLrm9sbm3ndnabIow5Jg0cspC3XSQIowFpSCoZaUecIN9lpOUOq6nfGhEuaBhcynFEuj7qB9SjGEktObmS7SM5cD1lu4irwShx1PlZ3VGqOnBsSW70leoqOYZfnCYpoJPLmwVzCviXWHOSr5Q/apX367u6k3uzeyGOfRJIzJAQHcuMZFchLilmJMnasSARwkPUJx1NA+QT0VXTfAk81EoPeiHXJ5Bwqn7fUMgXYuy7ejJNI357qfif14mlV+4qGkSxJAGePeTFDMoQpmXBHuUESzbWBGFO9V8hHiCOsNSVZnUJ1u/If0nzpGCVCsUL3UYRzJAB++AAHAELnIIKqIE6aAAMbsEDeALPxr3xaLwYr7PRBWO+swd+wJh8AhZzqJM=</latexit>

h̄vLBPChj,i

Figure 4.2: HDC classification using LBP method.

Figure 4.2 illustrates the HDC-based LBP method for seizure prediction. At the

very beginning, we generate the seed hypervectors {hvLBP1,hvLBP2, · · · ,hvLBP2l} and

{Ch1,Ch2, · · · ,ChN} to represent all the 2l LBP code patterns and N channel indices,

respectively. Both of these two sets of hypervectors are random hypervectors. (a)

Within each window, the temporal iEEG data are converted into LBP codes h̄vLBPChj,i
,

65

where Chj specifies the channel information and i indicates the temporal index. These

hypervectors are selected from the seed hypervectors according to their code patterns

(see Eq. (4.1a)). (b) Computed by Eq. (4.1b), the spatial information across all N

channels is encoded by hvspatiali , which associates the LBP code patterns with the

specific channel. (c) Since there are W samples within a window, the entire window

information is represented by hvwinp , which is calculated by Eq. (4.1c). (d) Afterwards,

hvclipk
represents a 10-min data as computed in Eq. (4.1d). (e) The final class hvclass

is generated by summing up its constituent clips (as shown in Eq. (4.1e)). For this

seizure dataset, we use a 1s-window for each 10-min clip.

Feature Sample !

!

clips••• •••

ID!

ID"

ID#

ID$

1 # $%

•••

iEEG
Dataset

•••
•••

Feature
Extraction

mRMR
& features

!
"

#

$

all clips for a
certain class

<latexit sha1_base64="DhQ93w7unAtWv3YE5yb86YTEqXw=">AAACCnicbVC7TsMwFHXKq7RAA4wshoJgQFWCKmCsxMJYJPqQ2ihyXKc1dZzIdiqqKDMLK5/BwgBCXfkCNv4Gp+0AlCNZOjrn3ut7jxcxKpVlfRm5peWV1bX8eqG4sblVMrd3mjKMBSYNHLJQtD0kCaOcNBRVjLQjQVDgMdLyhleZ3xoRIWnIb9U4Ik6A+pz6FCOlJdfc7wZIDTw/GYzcBDMaufYp7Cpyr2cld2maQtcsWxVrCrhI7Dkp1w6fiqXjiVV3zc9uL8RxQLjCDEnZsa1IOQkSimJG0kI3liRCeIj6pKMpRwGRTjI9JYVHWulBPxT6cQWn6s+OBAVSjgNPV2aLy79eJv7ndWLlXzoJ5VGsCMezj/yYQRXCLBfYo4JgxcaaICyo3hXiARIIK51eQYdg/z15kTTPKvZ5pXqj06iCGfJgDxyAE2CDC1AD16AOGgCDB/AMXsGb8Wi8GO/GZFaaM+Y9u+AXjI9vr1idEA==</latexit>

hvclip1,j
<latexit sha1_base64="K6Mm5y782MmXpC39YluORV55WuA=">AAACCnicbVC7TsMwFHXKq7RAA4wshoJgQFVSVcBYiYWxSPQhNVHkuE5r6jxkOxVVlJmFlc9gYQChrnwBG3+D03aAliNZOjrn3ut7jxsxKqRhfGu5ldW19Y38ZqG4tb1T0nf3WiKMOSZNHLKQd1wkCKMBaUoqGelEnCDfZaTtDq8zvz0iXNAwuJPjiNg+6gfUoxhJJTn6oeUjOXC9ZDByEsxo5FTPoSXJg5qV3KdpCh29bFSMKeAyMeekXD9+LpZOJ0bD0b+sXohjnwQSMyRE1zQiaSeIS4oZSQtWLEiE8BD1SVfRAPlE2Mn0lBSeKKUHvZCrF0g4VX93JMgXYuy7qjJbXCx6mfif142ld2UnNIhiSQI8+8iLGZQhzHKBPcoJlmysCMKcql0hHiCOsFTpFVQI5uLJy6RVrZgXldqtSqMGZsiDA3AEzoAJLkEd3IAGaAIMHsELeAPv2pP2qn1ok1lpTpv37IM/0D5/ALDrnRE=</latexit>

hvclip2,j

<latexit sha1_base64="+7OqSl0xEdz0kSsinFw60HuZPds=">AAACE3icbVDNSgMxGMzWv1r/Vnv0EiyCFFl2pajHghePFdy20C1LNs22sdkfkmyxLPsOXnwIX8CLB0W8evHmW/gIZtsK2joQGGa+L8mMFzMqpGl+aoWl5ZXVteJ6aWNza3tH391riijhmNg4YhFve0gQRkNiSyoZacecoMBjpOUNL3K/NSJc0Ci8luOYdAPUD6lPMZJKcvWqEyA58Px0MHJTzGjsOpLcqovSYXYMf/hNlmXQ1SumYU4AF4k1I5W68VV+qJp2w9U/nF6Ek4CEEjMkRMcyY9lNEZcUM5KVnESQGOEh6pOOoiEKiOimk0wZPFRKD/oRVyeUcKL+3khRIMQ48NRknkDMe7n4n9dJpH/eTWkYJ5KEePqQnzAoI5gXBHuUEyzZWBGEOVV/hXiAOMJS1VhSJVjzkRdJ88SwTo3alWqjBqYogn1wAI6ABc5AHVyCBrABBnfgETyDF+1ee9JetbfpaEGb7ZTBH2jv38dOoj4=</latexit>

hvclipk,j
<latexit sha1_base64="SoLCSQbGHMnsGG8F/fgXvAB9hpU=">AAACE3icbVDNSgMxGMzWv1q1rnr0YLAIIlJ2pajHghfBSwX7A91lyabZNjb7Q5ItlmXfwYuvogcPFfEqgjcfwbcw21bQ6kBgmPm+JDNuxKiQhvGh5ebmFxaX8suFldW14rq+sdkQYcwxqeOQhbzlIkEYDUhdUslIK+IE+S4jTbd/lvnNAeGChsGVHEbE9lE3oB7FSCrJ0Q8sH8me6yW9gZNgRiPHkuRGXZRcpIfwm1+naQodvWSUjTHgX2JOSalaLr59Pox2ao7+bnVCHPskkJghIdqmEUk7QVxSzEhasGJBIoT7qEvaigbIJ8JOxplSuKeUDvRCrk4g4Vj9uZEgX4ih76rJLIGY9TLxP68dS+/UTmgQxZIEePKQFzMoQ5gVBDuUEyzZUBGEOVV/hbiHOMJS1VhQJZizkf+SxlHZPC5XLlUbFTBBHmyDXbAPTHACquAc1EAdYHAL7sEIPGl32qP2rL1MRnPadGcL/IL2+gXqzKMe</latexit>

hvclipK,j

1

2
<latexit sha1_base64="/Catj2nrAXLZDKQGuQJRx6NJS1Q=">AAACCXicbVC7SgNBFJ2NrxhfUUubwSBYhV0Jahm0sYxgHpCEZXZyNxkz+2DmbjAs29r4KzYWitj6B3b+jZNHoYkHBg7n3Hvn3uPFUmi07W8rt7K6tr6R3yxsbe/s7hX3Dxo6ShSHOo9kpFoe0yBFCHUUKKEVK2CBJ6HpDa8nfnMESosovMNxDN2A9UPhC87QSG6RdgKGA89PByM39YFhosDtIDyYWel9lmVusWSX7SnoMnHmpETmqLnFr04v4kkAIXLJtG47dozdlCkUXEJW6CQaYsaHrA9tQ0MWgO6m00syemKUHvUjZV6IdKr+7khZoPU48EzlZG+96E3E/7x2gv5lNxVhnCCEfPaRn0iKEZ3EQntCAUc5NoRxJcyulA+YYhxNeAUTgrN48jJpnJWd83LltlKqXs3jyJMjckxOiUMuSJXckBqpE04eyTN5JW/Wk/VivVsfs9KcNe85JH9gff4Ap6Sbmg==</latexit>

hvfeaturej

<latexit sha1_base64="HmZyoqflorVKAwDa3xX2DdjuOSo=">AAAB/XicbVDLSsNAFL2pr1pf8bFzM1gEVyWRoi6LblxWsLXQhjCZTtqhkwczk0INwV9x40IRt/6HO//GSZqFth4YOJxz78yZ48WcSWVZ30ZlZXVtfaO6Wdva3tndM/cPujJKBKEdEvFI9DwsKWch7SimOO3FguLA4/TBm9zk/sOUCsmi8F7NYuoEeBQynxGstOSaR4MAq7Hnp+OpmxKOpcwy5Jp1q2EVQMvELkkdSrRd82swjEgS0FAVd/RtK1ZOioVihNOsNkgkjTGZ4BHtaxrigEonLdJn6FQrQ+RHQp9QoUL9vZHiQMpZ4OnJPKtc9HLxP6+fKP/KSVkYJ4qGZP6Qn3CkIpRXgYZMUKL4TBNMBNNZERljgYnShdV0Cfbil5dJ97xhXzSad81667qsowrHcAJnYMMltOAW2tABAo/wDK/wZjwZL8a78TEfrRjlziH8gfH5AyOjla0=</latexit>

hvclass3

Figure 4.3: HDC-based PSD method for seizure prediction.

4.3.2 PSD Method

PSD features manifest the frequency-domain information. Unlike [65], where only RSP

and ratio of spectral powers are considered, this research employs one more type of PSD

feature—ASP. How these three PSD features are computed is described in [64] (see page

2).

66

We follow the same sub-band split for the PSD feature extraction as described in

[65], whose classifier is polynomial SVM. (a) For dogs, the frequency band is divided

into 10 sub-bands (Hz): 3-8, 8-13, 13-30, 30-55, 55-80, 80-105, 105-130, 130-150, 150-

170, 170-200. (b) For human patients, two more sub-bands are included: 200-225

and 225-250. Note that the power line noise at 60 Hz and its harmonics should be

eliminated. The reader is referred to Sec.II.C of [65] for more details. In this work, we

have 65(= 10 + 10 +
(
10
2

)
) PSD features for dogs and 90(= 12 + 12 +

(
12
2

)
) for human

patients. Equations (4.2a)-(4.2c) describe how the class hypervector is generated for

the PSD method. The parameters, q, K, M , respectively, represent the quantization

level, the number of clips for a single class, and the number of selected features.

hvclipk,j ∈ {L1,L2, · · · ,Lq}, where k ∈ [1,K], (4.2a)

hvfeaturej =
[∑K

k=1
hvclipk,j

]
, (4.2b)

hvclass =
[∑M

j=1
hvfeaturej ⊕ IDj

]
. (4.2c)

We employ the record-based encoding (summarized in [19] and is the “Approach

3” in [21]) using a small number of features that are selected by minimum redun-

dancy maximum relevance (mRMR). After calculating PSD values for each feature, we

concatenate the corresponding interictal and preictal categories of the training data to-

gether and normalize them into the range of [0,1]. Then use the training information

to scale both the validation and test data. Figure 4.3 shows the HDC-based classifica-

tion for seizure prediction using PSD features. First, seed hypervectors are generated

{ID1, ID2, · · · , IDM} and {L1,L2, · · · ,Lq} to represent the feature identifiers and the

quantized PSD values, respectively. Note that the feature identifier hypervectors are

random hypervectors, whereas the quantization hypervectors are level hypervectors.

The class hypervectors are generated following these steps: (a) According to the quan-

tized PSD values, hypervectors hvclipk,j are selected from the seed hypervectors, where

“clipk, j” specifies that this PSD value is calculated from the clipk to form the feature

j (as shown in Eq. (4.2a)). (b) As described in Eq. (4.2b), for the feature j, the

corresponding hvfeaturej hypervector is obtained by adding all its constituent K clip

hypervectors. (c) The class hypervector hvclass is generated as shown in Eq. (4.2c).

(d) Similar to [65], we use a 2s-window with 50% overlap to generate the PSD feature

67

Table 4.2: Experimental results for LBP method with the code length l = 6.

Patient
Training Data Validation Data Test Data

ACC Sen. Spec. AUC ACC Sen. Spec. AUC ACC Sen. Spec. AUC

Dog 1 67.33 59.72 67.71 0.64 64.29 8.33 67.08 0.38 58.72 39.58 59.68 0.50
Dog 2 70.13 67.46 70.36 0.69 69.02 66.67 69.22 0.68 58.41 40.63 60.17 0.50
Dog 3 66.41 69.19 66.27 0.68 63.43 54.17 63.89 0.59 63.51 23.41 65.45 0.44
Dog 4 69.84 74.04 69.33 0.72 68.76 73.53 68.34 0.71 68.50 67.39 68.56 0.68
Dog 5 68.07 69.17 68.00 0.69 67.08 66.67 67.11 0.67 37.70 8.33 39.66 0.24

Patient 1 63.64 77.78 58.33 0.68 27.27 11.11 33.33 0.22 44.27 80.56 41.89 0.61
Patient 2 77.50 66.67 82.14 0.74 56.67 38.89 64.29 0.52 47.78 38.10 48.77 0.43

mean 68.99 69.15 68.88 0.69 59.50 45.62 61.89 0.54 54.13 42.57 54.89 0.49

values for each 10-min clip.

4.4 Experimental Results

Using the aforementioned LBP and PSD methods, the corresponding experimental re-

sults are reported in Tables 4.2 and 4.3, respectively. We can observe from these two

tables that: (a) the LBP method achieves the on average 0.69 training AUC, 0.54 val-

idation AUC, and 0.49 test AUC (Table 4.2), whereas the PSD method leads to 0.75

training AUC, 0.62 validation AUC, and 0.51 test AUC (Table 4.3). Therefore, the PSD

method performs better than the LBP method for seizure prediction on the training and

validation data. However, both methods perform no better than a random guess for

the test data. (b) The HDC-based LBP method achieves 99.36% sensitivity and 95.67%

specificity for seizure detection in [16]. However, this method does not perform well in

seizure prediction. The LBP method could be suitable for Dog 4 since it achieves 0.72,

0.71, and 0.68 AUC for training, validation, and test data. The best result using the

LBP method is achieved for Dog 4. (c) The PSD method can achieve 0.98 validation

AUC in [65] using polynomial SVM. However, only 0.64 validation AUC is achieved by

the HDC-based PSD method in this work. Note that, the HDC-based PSD method

has been investigated in [21] to demonstrate that HDC is suitable for seizure detection.

However, the PSD features cannot always predict seizures using HDC for the test data

in this dataset.

The results of the top ten competitors from the Kaggle seizure prediction contest

have been summarized in [99], where the test AUC scores range from 0.82 to 0.86 (see

68

Table 4.3: Experimental results for PSD method with the quantization level q = 21.

Patient
Training Data Validation Data Test Data

ACC Sen. Spec. AUC ACC Sen. Spec. AUC ACC Sen. Spec. AUC

Dog 1 91.53 33.33 94.44 0.64 90.48 0.00 95.00 0.48 87.00 11.46 90.79 0.51
Dog 2 89.39 64.68 91.48 0.78 88.13 47.62 91.55 0.70 65.83 33.02 69.07 0.51
Dog 3 95.01 34.85 98.02 0.66 94.51 30.56 97.71 0.64 81.25 16.67 84.38 0.51
Dog 4 86.83 34.84 93.14 0.64 85.96 26.08 93.24 0.60 93.04 8.77 98.18 0.53
Dog 5 95.94 65.83 97.94 0.82 95.83 66.67 97.78 0.82 93.72 0.00 100.00 0.50

Patient 1 92.42 72.22 100.00 0.86 83.33 44.44 97.92 0.71 63.59 44.44 64.85 0.55
Patient 2 90.00 66.67 100.00 0.83 51.67 16.67 66.67 0.42 62.22 19.05 66.67 0.43

mean 91.59 53.20 96.43 0.75 84.27 33.15 91.41 0.62 78.09 19.06 81.99 0.51

Table 2 in [99]). None of them is based on HDC, which can be beneficial for lightweight

classifiers and wearable devices.

4.5 Conclusions

The HDC PSD method works well for the two human subjects and two dogs for the

training data. Generally, the PSD method achieves better performance than LBP using

HDC; however, neither of them is practically applicable for seizure prediction by testing

over the Kaggle dataset. Significant portions of the test samples in the Kaggle dataset

are from out-of-distribution data as reported in [99]. Predicting seizures is a hard

problem due to the highly non-stationary nature of brain signals. Thus, further research

needs to be directed towards the development of HDC approaches that are robust to

classifying out-of-distribution data. Although the LBP approach exploits some aspects

of temporal properties, the PSD method does not. Future work should, therefore, be

directed towards exploiting temporal properties in the context of PSD features. In

addition, new encoding approaches that can take advantage of temporal properties in

the context of HDC classifiers could be explored. Features could also be generated by

neural networks such as autoencoders.

Chapter 5

Classifying functional brain

graphs using graph hypervector

representation

The work for this chapter was published in [23]. Theoretically, the brain network can be

denoted by a functional brain graph, which consists of brain regions/nodes and edges.

Previous studies have shown that brain graph classification can be effectively tackled by

utilizing features extracted from the graph structure [119]. These features specifically

refer to subgraph entropies. This chapter explores the potential benefits of utilizing a

graph representation called GrapHD, which is based on HDC, for the classification of

brain graphs, instead of relying on those more complex features.

5.1 Introduction

The state of the human brain network dynamically changes from task to task or from

resting state (no-task) to the task. Here the state refers to a specific pattern in brain

connectivity [119]. Researchers have a great interest in understanding brain connectiv-

ity patterns through the lens of network theory. The corresponding hidden assumptions

are (a) The whole brain network can be denoted as a functional brain graph G(V,E),

where V and E, respectively, represent the vertices/nodes and the edges. (b) Although

69

70

the brain states change dynamically when tasks or no-tasks are conducted, each state

has its specific pattern, namely the brain graph. (c) Network metric is group differ-

entiating and biologically meaningful. Built on these three assumptions, [119] employs

novel features—sub-graph entropies—to classify three brain graph classification prob-

lems (emotion vs. gambling, emotion vs. no-task, and gambling vs. no-task) using

the fMRI data, which are publicly available in the Human Connectome Project (HCP)

study [120].

Most HDC applications deploy two encoding approaches: record-based encoding and

N -gram-based encoding [19]. Both of these have been applied to efficiently represent the

data structure like “sequence” [16, 19, 56]. A novel encoding approach, called GrapHD,

has been recently proposed to encode the graph structure [13] as a graph hypervector.

In [13], storage and retrieval of graphs using HDC and graph matching are considered.

Whether two classes of graphs can be discriminated based on their GrapHD repre-

sentation has not been investigated. This work addresses the group-based classification

of graphs using GrapHD. In particular, we classify functional brain graphs associated

with different tasks. We compare the performance of the GrapHD encoding-based clas-

sification with the classical record-based encoding using HDC and traditional support

vector machine (SVM). Based on the experimental results, these two HDC encoding

approaches require further/additional steps to improve the classification performance

since their corresponding performance is lower than traditional linear SVM. Using sub-

graphs can improve the performance of HDC. Moreover, GrapHD is preferred because

record-based encoding requires ∼ 41× larger memory storage.

The main contributions of this work are three-fold. First, using correlation coef-

ficients as edge weights, we show that graph hypervectors lead to the same accuracy

as with record-based encoding. Second, GrapHD was used for storage and retrieval in

prior work [13]. In this chapter, we extend the applicability of GrapHD for classifica-

tion. Third, as compared to fully connected brain graphs, sub-graphs can improve the

performance of HDC classifiers.

71

5.2 Methodology

In this section, we illustrate two HDC approaches to encode brain graphs: record-based

and GrapHD.

5.2.1 Record-based Encoding

Record-based encoding is typically used to represent the information whose data struc-

ture is in a “one-to-one mapping” form, e.g., a key-value pair [121]. For this specific

problem, the correlation coefficient matrix is the input feature. Since this matrix is

symmetric along the diagonal, i.e., coefficient value cij = cji, only the upper-/lower-

triangular information (excluding the diagonal) is required. Then, the effective fea-

ture becomes a one-dimensional vector after the triangular data are flattened. At the

very beginning, seed hypervectors, {L1, · · · ,Lq} and {ID1, · · · , ID(m2)}, should be pre-

generated to represent both the coefficient values and position indices, respectively.

Here q represents the quantization level and m is the number of nodes. The former

hypervectors can be either generated by level-hypervectors (see [21]) or the edge weight

hypervectors Ew (Sec. 5.2.2), whereas the latter ones are random-hypervectors. Then

record-based encoding is applied to this data structure as follows: (a) Each position

value is encoded by V̄k, which corresponds to the coefficient values cij with the re-

lationship described by ϕ(cij) = V̄k. As shown in Eq. (5.1a), the value hypervector

V̄k can be picked from the seed hypervectors {L1, · · · ,Lq} (or {Ew}) based on its co-

efficitent value. (b) The compound hypervector Si for this vector can be calculated

by Eq. (5.1b). (c) The class hypervector hvclass is formed by adding its constituent

hypervectors Si as described in Eq. (5.1c).

V̄k ∈ {L1, · · · ,Lq}, (or V̄k = Ew), (5.1a)

Si = V̄1 ∗ ID1 + · · · + V̄k ∗ IDk + · · · + V̄(m2) ∗ ID(m2), (5.1b)

where 1 ≤k ≤
(
m

2

)
if the given matrix is m×m,

hvclass =
∑N

i=1 Si, where N is the number of subjects. (5.1c)

72

!!" !!#

!!$

••
•

1

3
2

"

4
#

<latexit sha1_base64="PxFYUK4kFNXmrR4Dj2GCkJ2Ju2M=">AAAB83icbVDLSgMxFL1TX7W+qi7dBIvgqsyUoi4LblxJBfuAzlAyaaYNTTJDkhHK0N9w40IRt/6MO//GTDsLbT0QOJxzL/fkhAln2rjut1Pa2Nza3invVvb2Dw6PqscnXR2nitAOiXms+iHWlDNJO4YZTvuJoliEnPbC6W3u956o0iyWj2aW0EDgsWQRI9hYyfcFNpMwyu7nw8awWnPr7gJonXgFqUGB9rD65Y9ikgoqDeFY64HnJibIsDKMcDqv+KmmCSZTPKYDSyUWVAfZIvMcXVhlhKJY2ScNWqi/NzIstJ6J0E7mGfWql4v/eYPURDdBxmSSGirJ8lCUcmRilBeARkxRYvjMEkwUs1kRmWCFibE1VWwJ3uqX10m3Ufeu6s2HZq3VKOoowxmcwyV4cA0tuIM2dIBAAs/wCm9O6rw4787HcrTkFDun8AfO5w/pzZGQ</latexit>

N2

<latexit sha1_base64="jH0+v0TYN+BxejI6RAJx1leFE50=">AAAB83icbVDLSgMxFL1TX7W+qi7dBIvgqsyUoi4LblxJBfuAzlAyaaYNzSRDkhHK0N9w40IRt/6MO//GTDsLbT0QOJxzL/fkhAln2rjut1Pa2Nza3invVvb2Dw6PqscnXS1TRWiHSC5VP8SaciZoxzDDaT9RFMchp71wepv7vSeqNJPi0cwSGsR4LFjECDZW8v0Ym0kYZffzoTes1ty6uwBaJ15BalCgPax++SNJ0pgKQzjWeuC5iQkyrAwjnM4rfqppgskUj+nAUoFjqoNskXmOLqwyQpFU9gmDFurvjQzHWs/i0E7mGfWql4v/eYPURDdBxkSSGirI8lCUcmQkygtAI6YoMXxmCSaK2ayITLDCxNiaKrYEb/XL66TbqHtX9eZDs9ZqFHWU4QzO4RI8uIYW3EEbOkAggWd4hTcndV6cd+djOVpyip1T+APn8wfoSZGP</latexit>

N1
<latexit sha1_base64="CyJ7KMDNr27YUoEheKkkLA1JpJU=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbBU9mUoh4LXjxWsB/QLiWbZtvYbLIkWaEs/Q9ePCji1f/jzX9j2u5BWx8MPN6bYWZemAhurO9/e4WNza3tneJuaW//4PCofHzSNirVlLWoEkp3Q2KY4JK1LLeCdRPNSBwK1gknt3O/88S04Uo+2GnCgpiMJI84JdZJbTnIMJ4NyhW/6i+A1gnOSQVyNAflr/5Q0TRm0lJBjOlhP7FBRrTlVLBZqZ8alhA6ISPWc1SSmJkgW1w7QxdOGaJIaVfSooX6eyIjsTHTOHSdMbFjs+rNxf+8XmqjmyDjMkktk3S5KEoFsgrNX0dDrhm1YuoIoZq7WxEdE02odQGVXAh49eV10q5V8VW1fl+vNGp5HEU4g3O4BAzX0IA7aEILKDzCM7zCm6e8F+/d+1i2Frx85hT+wPv8AS/9jtY=</latexit>n11

<latexit sha1_base64="xUQCic8BIv/JuK8mA6OIOwGqRp4=">AAAB7XicbVBNSwMxEJ3Ur1q/qh69BIvgqeyWoh4LXjxWsB/QLiWbZtvYbLIkWaEs/Q9ePCji1f/jzX9j2u5BWx8MPN6bYWZemAhurOd9o8LG5tb2TnG3tLd/cHhUPj5pG5VqylpUCaW7ITFMcMlallvBuolmJA4F64ST27nfeWLacCUf7DRhQUxGkkecEuukthxkfm02KFe8qrcAXid+TiqQozkof/WHiqYxk5YKYkzP9xIbZERbTgWblfqpYQmhEzJiPUcliZkJssW1M3zhlCGOlHYlLV6ovycyEhszjUPXGRM7NqveXPzP66U2ugkyLpPUMkmXi6JUYKvw/HU85JpRK6aOEKq5uxXTMdGEWhdQyYXgr768Ttq1qn9Vrd/XK41aHkcRzuAcLsGHa2jAHTShBRQe4Rle4Q0p9ILe0ceytYDymVP4A/T5AzGCjtc=</latexit>n12
<latexit sha1_base64="5SXqLLJ+aoPKKpTdeunld/k7AoE=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY8FLx4r2A9oQ9lsNu3azW7Y3Qgl9D948aCIV/+PN/+N2zQHbX0w8Hhvhpl5QcKZNq777ZQ2Nre2d8q7lb39g8Oj6vFJV8tUEdohkkvVD7CmnAnaMcxw2k8UxXHAaS+Y3i783hNVmknxYGYJ9WM8FixiBBsrdcUo88L5qFpz624OtE68gtSgQHtU/RqGkqQxFYZwrPXAcxPjZ1gZRjidV4appgkmUzymA0sFjqn2s/zaObqwSogiqWwJg3L190SGY61ncWA7Y2wmetVbiP95g9REN37GRJIaKshyUZRyZCRavI5CpigxfGYJJorZWxGZYIWJsQFVbAje6svrpNuoe1f15n2z1moUcZThDM7hEjy4hhbcQRs6QOARnuEV3hzpvDjvzseyteQUM6fwB87nD318jwk=</latexit>n1d•••

•••

•••

!!"
!!#!!$

1

3"
4

<latexit sha1_base64="N9LHLPj+E9OUGGaJ78v041yEfmM=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69BIvgqSSlqMeCF48V7Ae0oWw203btZjfsboQS+h+8eFDEq//Hm//GbZuDtj4YeLw3w8y8MOFMG8/7dgobm1vbO8Xd0t7+weFR+fikrWWqKLao5FJ1Q6KRM4EtwwzHbqKQxCHHTji5nfudJ1SaSfFgpgkGMRkJNmSUGCu1cZD50WxQrnhVbwF3nfg5qUCO5qD81Y8kTWMUhnKidc/3EhNkRBlGOc5K/VRjQuiEjLBnqSAx6iBbXDtzL6wSuUOpbAnjLtTfExmJtZ7Goe2MiRnrVW8u/uf1UjO8CTImktSgoMtFw5S7Rrrz192IKaSGTy0hVDF7q0vHRBFqbEAlG4K/+vI6adeq/lW1fl+vNGp5HEU4g3O4BB+uoQF30IQWUHiEZ3iFN0c6L86787FsLTj5zCn8gfP5A2+rjwA=</latexit>e1d•••
<latexit sha1_base64="qEjf3X3y6Zm8em3ZbyyLKSo4+IY=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69BIvgqSSlqMeCF48V7Ae0oWy2k3btZjfsboQS+h+8eFDEq//Hm//GbZuDtj4YeLw3w8y8MOFMG8/7dgobm1vbO8Xd0t7+weFR+fikrWWqKLao5FJ1Q6KRM4EtwwzHbqKQxCHHTji5nfudJ1SaSfFgpgkGMRkJFjFKjJXaOMh8fzYoV7yqt4C7TvycVCBHc1D+6g8lTWMUhnKidc/3EhNkRBlGOc5K/VRjQuiEjLBnqSAx6iBbXDtzL6wydCOpbAnjLtTfExmJtZ7Goe2MiRnrVW8u/uf1UhPdBBkTSWpQ0OWiKOWuke78dXfIFFLDp5YQqpi91aVjogg1NqCSDcFffXmdtGtV/6pav69XGrU8jiKcwTlcgg/X0IA7aEILKDzCM7zCmyOdF+fd+Vi2Fpx85hT+wPn8ASIsjs0=</latexit>e11

<latexit sha1_base64="2S8vLqH9kStiyQMEH6HMcN+g9WU=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY8FLx4r2A9oQ9lsJ+3azSbsboQS+h+8eFDEq//Hm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJYPZpqgH9GR5CFn1FipjYPMq80G5YpbdRcg68TLSQVyNAflr/4wZmmE0jBBte55bmL8jCrDmcBZqZ9qTCib0BH2LJU0Qu1ni2tn5MIqQxLGypY0ZKH+nshopPU0CmxnRM1Yr3pz8T+vl5rwxs+4TFKDki0XhakgJibz18mQK2RGTC2hTHF7K2FjqigzNqCSDcFbfXmdtGtV76pav69XGrU8jiKcwTlcggfX0IA7aEILGDzCM7zCmxM7L86787FsLTj5zCn8gfP5AyOxjs4=</latexit>e12

<latexit sha1_base64="JWRjpnAYqHMaBzf2g9g0VT6whe8=">AAAB/HicbVDLSsNAFL2pr1pf0S7dDBbBVUlKUZcFEVxWsK3QhjCZTtqhkwczEyWE+CtuXCji1g9x5984abPQ1gMDh3Pu5Z45XsyZVJb1bVTW1jc2t6rbtZ3dvf0D8/CoL6NEENojEY/EvYcl5SykPcUUp/exoDjwOB14s6vCHzxQIVkU3qk0pk6AJyHzGcFKS65ZHwVYTT0/u87d7NHNZnaeu2bDalpzoFVil6QBJbqu+TUaRyQJaKgIx1IObStWToaFYoTTvDZKJI0xmeEJHWoa4oBKJ5uHz9GpVsbIj4R+oUJz9fdGhgMp08DTk0VUuewV4n/eMFH+pZOxME4UDcnikJ9wpCJUNIHGTFCieKoJJoLprIhMscBE6b5qugR7+curpN9q2ufN9m270WmVdVThGE7gDGy4gA7cQBd6QCCFZ3iFN+PJeDHejY/FaMUod+rwB8bnD1dclS4=</latexit>

Ewk1

<latexit sha1_base64="PRsaU+Ls6IxmRyxxxOA+F0tFKzc=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lqUY8FLx4r2FpoQ9lspu3azSbsboQS+h+8eFDEq//Hm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTjm5n/8IRK81jem0mCfkSHkg84o8ZKbexnF+G0X664VXcOskq8nFQgR7Nf/uqFMUsjlIYJqnXXcxPjZ1QZzgROS71UY0LZmA6xa6mkEWo/m187JWdWCckgVrakIXP190RGI60nUWA7I2pGetmbif953dQMrv2MyyQ1KNli0SAVxMRk9joJuUJmxMQSyhS3txI2oooyYwMq2RC85ZdXSbtW9S6r9bt6pVHL4yjCCZzCOXhwBQ24hSa0gMEjPMMrvDmx8+K8Ox+L1oKTzxzDHzifP3K3jwI=</latexit>e3d•••
<latexit sha1_base64="LSA/+Rn1ncBIe+W5GfgJ3+U1Eag=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lqUY8FLx4r2FpoQ9lsJ+3azSbsboQS+h+8eFDEq//Hm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTjm5n/8IRK81jem0mCfkSHkoecUWOlNvazC2/aL1fcqjsHWSVeTiqQo9kvf/UGMUsjlIYJqnXXcxPjZ1QZzgROS71UY0LZmA6xa6mkEWo/m187JWdWGZAwVrakIXP190RGI60nUWA7I2pGetmbif953dSE137GZZIalGyxKEwFMTGZvU4GXCEzYmIJZYrbWwkbUUWZsQGVbAje8surpF2repfV+l290qjlcRThBE7hHDy4ggbcQhNawOARnuEV3pzYeXHenY9Fa8HJZ47hD5zPHyU4js8=</latexit>e31

<latexit sha1_base64="7E1Qi6ojIiY6KV9A2oTlKIMiZdQ=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69BIvgqSS1qMeCF48VbC20oWy2k3btZjfsboQS+h+8eFDEq//Hm//GbZuDtj4YeLw3w8y8MOFMG8/7dgpr6xubW8Xt0s7u3v5B+fCorWWqKLao5FJ1QqKRM4EtwwzHTqKQxCHHh3B8M/MfnlBpJsW9mSQYxGQoWMQoMVZqYz+7qE375YpX9eZwV4mfkwrkaPbLX72BpGmMwlBOtO76XmKCjCjDKMdpqZdqTAgdkyF2LRUkRh1k82un7plVBm4klS1h3Ln6eyIjsdaTOLSdMTEjvezNxP+8bmqi6yBjIkkNCrpYFKXcNdKdve4OmEJq+MQSQhWzt7p0RBShxgZUsiH4yy+vknat6l9W63f1SqOWx1GEEziFc/DhChpwC01oAYVHeIZXeHOk8+K8Ox+L1oKTzxzDHzifPya9jtA=</latexit>e32
<latexit sha1_base64="Qfz7QIhKZbIkSKIzkjgI90xwol4=">AAAB/HicbVDLSsNAFL2pr1pf0S7dDBbBVUlqUZcFEVxWsA9oS5hMJ+3QyYOZiRJC/BU3LhRx64e482+ctFlo64GBwzn3cs8cN+JMKsv6Nkpr6xubW+Xtys7u3v6BeXjUlWEsCO2QkIei72JJOQtoRzHFaT8SFPsupz13dp37vQcqJAuDe5VEdOTjScA8RrDSkmNWhz5WU9dLbzInfXTS2XmWOWbNqltzoFViF6QGBdqO+TUchyT2aaAIx1IObCtSoxQLxQinWWUYSxphMsMTOtA0wD6Vo3QePkOnWhkjLxT6BQrN1d8bKfalTHxXT+ZR5bKXi/95g1h5V6OUBVGsaEAWh7yYIxWivAk0ZoISxRNNMBFMZ0VkigUmSvdV0SXYy19eJd1G3b6oN++atVajqKMMx3ACZ2DDJbTgFtrQAQIJPMMrvBlPxovxbnwsRktGsVOFPzA+fwBaaJUw</latexit>

Ewk3

<latexit sha1_base64="lBmrjqMoUZMSPJlKTKpunFZ9VLk=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY8FLx4r2A9oQ9lspu3azSbsboQS+h+8eFDEq//Hm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJYPZpqgH9GR5EPOqLFSGwdZPZwNyhW36i5A1omXkwrkaA7KX/0wZmmE0jBBte55bmL8jCrDmcBZqZ9qTCib0BH2LJU0Qu1ni2tn5MIqIRnGypY0ZKH+nshopPU0CmxnRM1Yr3pz8T+vl5rhjZ9xmaQGJVsuGqaCmJjMXychV8iMmFpCmeL2VsLGVFFmbEAlG4K3+vI6adeq3lW1fl+vNGp5HEU4g3O4BA+uoQF30IQWMHiEZ3iFNyd2Xpx352PZWnDymVP4A+fzB3Q9jwM=</latexit>e4d•••
<latexit sha1_base64="U5TgmN1gZBIjrgo/cM+JnXO9Ku4=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY8FLx4r2A9oQ9lsJ+3azSbsboQS+h+8eFDEq//Hm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJYPZpqgH9GR5CFn1FipjYOs7s0G5YpbdRcg68TLSQVyNAflr/4wZmmE0jBBte55bmL8jCrDmcBZqZ9qTCib0BH2LJU0Qu1ni2tn5MIqQxLGypY0ZKH+nshopPU0CmxnRM1Yr3pz8T+vl5rwxs+4TFKDki0XhakgJibz18mQK2RGTC2hTHF7K2FjqigzNqCSDcFbfXmdtGtV76pav69XGrU8jiKcwTlcggfX0IA7aEILGDzCM7zCmxM7L86787FsLTj5zCn8gfP5Aya+jtA=</latexit>e41

<latexit sha1_base64="rKS3ov75Wo67DmZUNQUZlH19uyw=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY8FLx4r2A9oQ9lsJ+3aTTbsboQS+h+8eFDEq//Hm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikrWWqGLaYFFJ1A6pR8BhbhhuB3UQhjQKBnWByO/c7T6g0l/GDmSboR3QU85AzaqzUxkFWr80G5YpbdRcg68TLSQVyNAflr/5QsjTC2DBBte55bmL8jCrDmcBZqZ9qTCib0BH2LI1phNrPFtfOyIVVhiSUylZsyEL9PZHRSOtpFNjOiJqxXvXm4n9eLzXhjZ/xOEkNxmy5KEwFMZLMXydDrpAZMbWEMsXtrYSNqaLM2IBKNgRv9eV10q5Vvatq/b5eadTyOIpwBudwCR5cQwPuoAktYPAIz/AKb450Xpx352PZWnDymVP4A+fzByhDjtE=</latexit>e42
<latexit sha1_base64="FPZJFPx83cAYlwqgW2U8hvq5j5Y=">AAAB/HicbVBNS8NAFHypX7V+RXv0EiyCp5KUoh4LInisYFuhDWGz3bRLN5uwu1FCiH/FiwdFvPpDvPlv3LQ5aOvAwjDzHm92/JhRqWz726isrW9sblW3azu7e/sH5uFRX0aJwKSHIxaJex9JwignPUUVI/exICj0GRn4s6vCHzwQIWnE71QaEzdEE04DipHSkmfWRyFSUz/IrnMve/SyWTvPPbNhN+05rFXilKQBJbqe+TUaRzgJCVeYISmHjh0rN0NCUcxIXhslksQIz9CEDDXlKCTSzebhc+tUK2MriIR+XFlz9fdGhkIp09DXk0VUuewV4n/eMFHBpZtRHieKcLw4FCTMUpFVNGGNqSBYsVQThAXVWS08RQJhpfuq6RKc5S+vkn6r6Zw327ftRqdV1lGFYziBM3DgAjpwA13oAYYUnuEV3own48V4Nz4WoxWj3KnDHxifP1vulTE=</latexit>

Ewk4
<latexit sha1_base64="2dvYtO9h3dpEzSRVmGXRqA39UDs=">AAAB+nicbVDLSsNAFL2pr1pfqS7dhBbBVUlKUZcFEVxWsA9oQzqZTtqhk0mYmSgl9lPcuFDErV/izr9x0mahrQcGDufcyz1z/JhRqWz72yhsbG5t7xR3S3v7B4dHZvm4I6NEYNLGEYtEz0eSMMpJW1HFSC8WBIU+I11/ep353QciJI34vZrFxA3RmNOAYqS05JnlQYjUxA/Sm7mXDodOZe6ZVbtmL2CtEycnVcjR8syvwSjCSUi4wgxJ2XfsWLkpEopiRualQSJJjPAUjUlfU45CIt10EX1unWllZAWR0I8ra6H+3khRKOUs9PVkFlSuepn4n9dPVHDlppTHiSIcLw8FCbNUZGU9WCMqCFZspgnCguqsFp4ggbDSbZV0Cc7ql9dJp15zLmqNu0a1Wc/rKMIpVOAcHLiEJtxCC9qA4RGe4RXejCfjxXg3PpajBSPfOYE/MD5/APW0k8M=</latexit>

E“1”

<latexit sha1_base64="jH0+v0TYN+BxejI6RAJx1leFE50=">AAAB83icbVDLSgMxFL1TX7W+qi7dBIvgqsyUoi4LblxJBfuAzlAyaaYNzSRDkhHK0N9w40IRt/6MO//GTDsLbT0QOJxzL/fkhAln2rjut1Pa2Nza3invVvb2Dw6PqscnXS1TRWiHSC5VP8SaciZoxzDDaT9RFMchp71wepv7vSeqNJPi0cwSGsR4LFjECDZW8v0Ym0kYZffzoTes1ty6uwBaJ15BalCgPax++SNJ0pgKQzjWeuC5iQkyrAwjnM4rfqppgskUj+nAUoFjqoNskXmOLqwyQpFU9gmDFurvjQzHWs/i0E7mGfWql4v/eYPURDdBxkSSGirI8lCUcmQkygtAI6YoMXxmCSaK2ayITLDCxNiaKrYEb/XL66TbqHtX9eZDs9ZqFHWU4QzO4RI8uIYW3EEbOkAggWd4hTcndV6cd+djOVpyip1T+APn8wfoSZGP</latexit>

N1
<latexit sha1_base64="CyJ7KMDNr27YUoEheKkkLA1JpJU=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbBU9mUoh4LXjxWsB/QLiWbZtvYbLIkWaEs/Q9ePCji1f/jzX9j2u5BWx8MPN6bYWZemAhurO9/e4WNza3tneJuaW//4PCofHzSNirVlLWoEkp3Q2KY4JK1LLeCdRPNSBwK1gknt3O/88S04Uo+2GnCgpiMJI84JdZJbTnIMJ4NyhW/6i+A1gnOSQVyNAflr/5Q0TRm0lJBjOlhP7FBRrTlVLBZqZ8alhA6ISPWc1SSmJkgW1w7QxdOGaJIaVfSooX6eyIjsTHTOHSdMbFjs+rNxf+8XmqjmyDjMkktk3S5KEoFsgrNX0dDrhm1YuoIoZq7WxEdE02odQGVXAh49eV10q5V8VW1fl+vNGp5HEU4g3O4BAzX0IA7aEILKDzCM7zCm6e8F+/d+1i2Frx85hT+wPv8AS/9jtY=</latexit>n11

<latexit sha1_base64="xUQCic8BIv/JuK8mA6OIOwGqRp4=">AAAB7XicbVBNSwMxEJ3Ur1q/qh69BIvgqeyWoh4LXjxWsB/QLiWbZtvYbLIkWaEs/Q9ePCji1f/jzX9j2u5BWx8MPN6bYWZemAhurOd9o8LG5tb2TnG3tLd/cHhUPj5pG5VqylpUCaW7ITFMcMlallvBuolmJA4F64ST27nfeWLacCUf7DRhQUxGkkecEuukthxkfm02KFe8qrcAXid+TiqQozkof/WHiqYxk5YKYkzP9xIbZERbTgWblfqpYQmhEzJiPUcliZkJssW1M3zhlCGOlHYlLV6ovycyEhszjUPXGRM7NqveXPzP66U2ugkyLpPUMkmXi6JUYKvw/HU85JpRK6aOEKq5uxXTMdGEWhdQyYXgr768Ttq1qn9Vrd/XK41aHkcRzuAcLsGHa2jAHTShBRQe4Rle4Q0p9ILe0ceytYDymVP4A/T5AzGCjtc=</latexit>n12
<latexit sha1_base64="5SXqLLJ+aoPKKpTdeunld/k7AoE=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY8FLx4r2A9oQ9lsNu3azW7Y3Qgl9D948aCIV/+PN/+N2zQHbX0w8Hhvhpl5QcKZNq777ZQ2Nre2d8q7lb39g8Oj6vFJV8tUEdohkkvVD7CmnAnaMcxw2k8UxXHAaS+Y3i783hNVmknxYGYJ9WM8FixiBBsrdcUo88L5qFpz624OtE68gtSgQHtU/RqGkqQxFYZwrPXAcxPjZ1gZRjidV4appgkmUzymA0sFjqn2s/zaObqwSogiqWwJg3L190SGY61ncWA7Y2wmetVbiP95g9REN37GRJIaKshyUZRyZCRavI5CpigxfGYJJorZWxGZYIWJsQFVbAje6svrpNuoe1f15n2z1moUcZThDM7hEjy4hhbcQRs6QOARnuEV3hzpvDjvzseyteQUM6fwB87nD318jwk=</latexit>n1d•••

<latexit sha1_base64="61FeTIujd4/xUvK85bkHpR5Ja6Q=">AAAB9XicbVDLSsNAFL2pr1pfVZduBovgqiS1VJcFN66kgn1AG8tkOmmHTiZhZqKUkP9w40IRt/6LO//GSZuFth4YOJxzL/fM8SLOlLbtb6uwtr6xuVXcLu3s7u0flA+POiqMJaFtEvJQ9jysKGeCtjXTnPYiSXHgcdr1pteZ332kUrFQ3OtZRN0AjwXzGcHaSA+DAOuJ5ye36TC5SIflil2150CrxMlJBXK0huWvwSgkcUCFJhwr1XfsSLsJlpoRTtPSIFY0wmSKx7RvqMABVW4yT52iM6OMkB9K84RGc/X3RoIDpWaBZyazlGrZy8T/vH6s/Ss3YSKKNRVkcciPOdIhyipAIyYp0XxmCCaSmayITLDERJuiSqYEZ/nLq6RTqzqNav2uXmnW8jqKcAKncA4OXEITbqAFbSAg4Rle4c16sl6sd+tjMVqw8p1j+APr8we3VJKd</latexit>

N3 •••<latexit sha1_base64="qRGynSrtRp8KdwxpQdqrXJgDHw4=">AAAB7XicbVBNSwMxEJ3Ur1q/qh69BIvgqezWoh4LXjxWsLXQLiWbZtvYbLIkWaEs/Q9ePCji1f/jzX9j2u5BWx8MPN6bYWZemAhurOd9o8La+sbmVnG7tLO7t39QPjxqG5VqylpUCaU7ITFMcMlallvBOolmJA4FewjHNzP/4Ylpw5W8t5OEBTEZSh5xSqyT2rKfXfjTfrniVb058Crxc1KBHM1++as3UDSNmbRUEGO6vpfYICPacirYtNRLDUsIHZMh6zoqScxMkM2vneIzpwxwpLQrafFc/T2RkdiYSRy6zpjYkVn2ZuJ/Xje10XWQcZmklkm6WBSlAluFZ6/jAdeMWjFxhFDN3a2Yjogm1LqASi4Ef/nlVdKuVf3Lav2uXmnU8jiKcAKncA4+XEEDbqEJLaDwCM/wCm9IoRf0jj4WrQWUzxzDH6DPHzMJjtg=</latexit>n31
<latexit sha1_base64="xNVChq2lynB0aMtirQJG99ir+j8=">AAAB7XicbVBNSwMxEJ3Ur1q/qh69BIvgqezWoh4LXjxWsLXQLiWbZtvYbLIkWaEs/Q9ePCji1f/jzX9j2u5BWx8MPN6bYWZemAhurOd9o8La+sbmVnG7tLO7t39QPjxqG5VqylpUCaU7ITFMcMlallvBOolmJA4FewjHNzP/4Ylpw5W8t5OEBTEZSh5xSqyT2rKfXdSm/XLFq3pz4FXi56QCOZr98ldvoGgaM2mpIMZ0fS+xQUa05VSwaamXGpYQOiZD1nVUkpiZIJtfO8VnThngSGlX0uK5+nsiI7Exkzh0nTGxI7PszcT/vG5qo+sg4zJJLZN0sShKBbYKz17HA64ZtWLiCKGau1sxHRFNqHUBlVwI/vLLq6Rdq/qX1fpdvdKo5XEU4QRO4Rx8uIIG3EITWkDhEZ7hFd6QQi/oHX0sWgsonzmGP0CfPzSOjtk=</latexit>n32

<latexit sha1_base64="lkfdrDJfzxR+tOn7lyeC4ADdLyk=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbBU9mtpXosePFYwX5Au5RsNtvGZpMlyQpl6X/w4kERr/4fb/4b03YP2vpg4PHeDDPzgoQzbVz32ylsbG5t7xR3S3v7B4dH5eOTjpapIrRNJJeqF2BNORO0bZjhtJcoiuOA024wuZ373SeqNJPiwUwT6sd4JFjECDZW6ohhdhXOhuWKW3UXQOvEy0kFcrSG5a9BKEkaU2EIx1r3PTcxfoaVYYTTWWmQappgMsEj2rdU4JhqP1tcO0MXVglRJJUtYdBC/T2R4VjraRzYzhibsV715uJ/Xj810Y2fMZGkhgqyXBSlHBmJ5q+jkClKDJ9agoli9lZExlhhYmxAJRuCt/ryOunUql6jWr+vV5q1PI4inME5XIIH19CEO2hBGwg8wjO8wpsjnRfn3flYthacfOYU/sD5/AGAiI8L</latexit>n3d

<latexit sha1_base64="Ginh1tBtrF4XFGRJI7Fvzp4Cik8=">AAAB9XicbVDLSsNAFL2pr1pfVZduBovgqiSlqMuCG1dSwT6gjWUynbRDJ5MwM1FKyH+4caGIW//FnX/jJM1CWw8MHM65l3vmeBFnStv2t1VaW9/Y3CpvV3Z29/YPqodHXRXGktAOCXko+x5WlDNBO5ppTvuRpDjwOO15s+vM7z1SqVgo7vU8om6AJ4L5jGBtpIdhgPXU85PbdJQ001G1ZtftHGiVOAWpQYH2qPo1HIckDqjQhGOlBo4daTfBUjPCaVoZxopGmMzwhA4MFTigyk3y1Ck6M8oY+aE0T2iUq783EhwoNQ88M5mlVMteJv7nDWLtX7kJE1GsqSCLQ37MkQ5RVgEaM0mJ5nNDMJHMZEVkiiUm2hRVMSU4y19eJd1G3bmoN++atVajqKMMJ3AK5+DAJbTgBtrQAQISnuEV3qwn68V6tz4WoyWr2DmGP7A+fwC42ZKe</latexit>

N4 •••<latexit sha1_base64="KHWKqGSXqlCYlUr2SgKYE/5+SSY=">AAAB7XicbVBNSwMxEJ3Ur1q/qh69BIvgqeyWoh4LXjxWsB/QLiWbZtvYbLIkWaEs/Q9ePCji1f/jzX9j2u5BWx8MPN6bYWZemAhurOd9o8LG5tb2TnG3tLd/cHhUPj5pG5VqylpUCaW7ITFMcMlallvBuolmJA4F64ST27nfeWLacCUf7DRhQUxGkkecEuukthxkdX82KFe8qrcAXid+TiqQozkof/WHiqYxk5YKYkzP9xIbZERbTgWblfqpYQmhEzJiPUcliZkJssW1M3zhlCGOlHYlLV6ovycyEhszjUPXGRM7NqveXPzP66U2ugkyLpPUMkmXi6JUYKvw/HU85JpRK6aOEKq5uxXTMdGEWhdQyYXgr768Ttq1qn9Vrd/XK41aHkcRzuAcLsGHa2jAHTShBRQe4Rle4Q0p9ILe0ceytYDymVP4A/T5AzSPjtk=</latexit>n41
<latexit sha1_base64="sYXUPCgmX4p45X4LL/AL3REvOc8=">AAAB7XicbVBNSwMxEJ3Ur1q/qh69BIvgqeyWoh4LXjxWsB/QLiWbZtvYbLIkWaEs/Q9ePCji1f/jzX9j2u5BWx8MPN6bYWZemAhurOd9o8LG5tb2TnG3tLd/cHhUPj5pG5VqylpUCaW7ITFMcMlallvBuolmJA4F64ST27nfeWLacCUf7DRhQUxGkkecEuukthxk9dpsUK54VW8BvE78nFQgR3NQ/uoPFU1jJi0VxJie7yU2yIi2nAo2K/VTwxJCJ2TEeo5KEjMTZItrZ/jCKUMcKe1KWrxQf09kJDZmGoeuMyZ2bFa9ufif10ttdBNkXCapZZIuF0WpwFbh+et4yDWjVkwdIVRzdyumY6IJtS6gkgvBX315nbRrVf+qWr+vVxq1PI4inME5XIIP19CAO2hCCyg8wjO8whtS6AW9o49lawHlM6fwB+jzBzYUjto=</latexit>n42

<latexit sha1_base64="ZVVlUTzokYW1XO1Bkmh2/iCXBbc=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY8FLx4r2A9oQ9lsNu3azW7Y3Qgl9D948aCIV/+PN/+N2zQHbX0w8Hhvhpl5QcKZNq777ZQ2Nre2d8q7lb39g8Oj6vFJV8tUEdohkkvVD7CmnAnaMcxw2k8UxXHAaS+Y3i783hNVmknxYGYJ9WM8FixiBBsrdcUoa4bzUbXm1t0caJ14BalBgfao+jUMJUljKgzhWOuB5ybGz7AyjHA6rwxTTRNMpnhMB5YKHFPtZ/m1c3RhlRBFUtkSBuXq74kMx1rP4sB2xthM9Kq3EP/zBqmJbvyMiSQ1VJDloijlyEi0eB2FTFFi+MwSTBSztyIywQoTYwOq2BC81ZfXSbdR967qzftmrdUo4ijDGZzDJXhwDS24gzZ0gMAjPMMrvDnSeXHenY9la8kpZk7hD5zPH4IOjww=</latexit>n4d

*

*

*

++•••
<latexit sha1_base64="ZTfEQHJnY+ZR2cMCvHpS7gtB+n0=">AAAB83icbVDLSgMxFL1TX7W+qi7dBIvgqsyUoi4LbtwIFewDOkPJpJk2NMkMSUYoQ3/DjQtF3Poz7vwbM+0stPVA4HDOvdyTEyacaeO6305pY3Nre6e8W9nbPzg8qh6fdHWcKkI7JOax6odYU84k7RhmOO0nimIRctoLp7e533uiSrNYPppZQgOBx5JFjGBjJd8X2EzCKLufD6fDas2tuwugdeIVpAYF2sPqlz+KSSqoNIRjrQeem5ggw8owwum84qeaJphM8ZgOLJVYUB1ki8xzdGGVEYpiZZ80aKH+3siw0HomQjuZZ9SrXi7+5w1SE90EGZNJaqgky0NRypGJUV4AGjFFieEzSzBRzGZFZIIVJsbWVLEleKtfXifdRt27qjcfmrVWo6ijDGdwDpfgwTW04A7a0AECCTzDK7w5qfPivDsfy9GSU+ycwh84nz8+uZHI</latexit>

Mk
<latexit sha1_base64="/Ylp7ehXxs4ywUybq6zu5F6zV4o=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyGoB4DXjxGMA9IljA7mU3GzGOZmRXCkn/w4kERr/6PN//GSbIHTSxoKKq66e6KEs6M9f1vr7CxubW9U9wt7e0fHB6Vj0/aRqWa0BZRXOluhA3lTNKWZZbTbqIpFhGnnWhyO/c7T1QbpuSDnSY0FHgkWcwItk5qi0E2CWaDcsWv+gugdRLkpAI5moPyV3+oSCqotIRjY3qBn9gww9oywums1E8NTTCZ4BHtOSqxoCbMFtfO0IVThihW2pW0aKH+nsiwMGYqItcpsB2bVW8u/uf1UhvfhBmTSWqpJMtFccqRVWj+OhoyTYnlU0cw0czdisgYa0ysC6jkQghWX14n7Vo1uKrW7+uVRi2PowhncA6XEMA1NOAOmtACAo/wDK/w5invxXv3PpatBS+fOYU/8D5/AIbQjw8=</latexit>mk1

<latexit sha1_base64="ulYQNILFiSFzIEd31nT/u5tfVNw=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyGoB4DXjxGMA9IljA7mU3GzGOZmRXCkn/w4kERr/6PN//GSbIHTSxoKKq66e6KEs6M9f1vr7CxubW9U9wt7e0fHB6Vj0/aRqWa0BZRXOluhA3lTNKWZZbTbqIpFhGnnWhyO/c7T1QbpuSDnSY0FHgkWcwItk5qi0E2qc0G5Ypf9RdA6yTISQVyNAflr/5QkVRQaQnHxvQCP7FhhrVlhNNZqZ8ammAywSPac1RiQU2YLa6doQunDFGstCtp0UL9PZFhYcxURK5TYDs2q95c/M/rpTa+CTMmk9RSSZaL4pQjq9D8dTRkmhLLp45gopm7FZEx1phYF1DJhRCsvrxO2rVqcFWt39crjVoeRxHO4BwuIYBraMAdNKEFBB7hGV7hzVPei/fufSxbC14+cwp/4H3+AIhVjxA=</latexit>mk2
<latexit sha1_base64="GBVKzOgNjDb1EGdamLoZIhqATTY=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyGoB4DXjxGMA9IljA7O0nGzGOZmRXCkn/w4kERr/6PN//GSbIHTSxoKKq66e6KEs6M9f1vr7CxubW9U9wt7e0fHB6Vj0/aRqWa0BZRXOluhA3lTNKWZZbTbqIpFhGnnWhyO/c7T1QbpuSDnSY0FHgk2ZARbJ3UFoNsEs8G5Ypf9RdA6yTISQVyNAflr36sSCqotIRjY3qBn9gww9oywums1E8NTTCZ4BHtOSqxoCbMFtfO0IVTYjRU2pW0aKH+nsiwMGYqItcpsB2bVW8u/uf1Uju8CTMmk9RSSZaLhilHVqH56yhmmhLLp45gopm7FZEx1phYF1DJhRCsvrxO2rVqcFWt39crjVoeRxHO4BwuIYBraMAdNKEFBB7hGV7hzVPei/fufSxbC14+cwp/4H3+ANRPj0I=</latexit>mkd

<latexit sha1_base64="V7CkrlkwaDPwWcSGip+xOFQX1Ao=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY8FLx4r2A9oQ9lsNu3azW7Y3Qgl9D948aCIV/+PN/+N2zQHbX0w8Hhvhpl5QcKZNq777ZQ2Nre2d8q7lb39g8Oj6vFJV8tUEdohkkvVD7CmnAnaMcxw2k8UxXHAaS+Y3i783hNVmknxYGYJ9WM8FixiBBsrdcUoa4TzUbXm1t0caJ14BalBgfao+jUMJUljKgzhWOuB5ybGz7AyjHA6rwxTTRNMpnhMB5YKHFPtZ/m1c3RhlRBFUtkSBuXq74kMx1rP4sB2xthM9Kq3EP/zBqmJbvyMiSQ1VJDloijlyEi0eB2FTFFi+MwSTBSztyIywQoTYwOq2BC81ZfXSbdR967qzftmrdUo4ijDGZzDJXhwDS24gzZ0gMAjPMMrvDnSeXHenY9la8kpZk7hD5zPH38Cjwo=</latexit>n2d
<latexit sha1_base64="Mv3GFGg0slOY8rAr9wKHQxyf+VQ=">AAAB7XicbVBNSwMxEJ3Ur1q/qh69BIvgqeyWoh4LXjxWsB/QLiWbZtvYbLIkWaEs/Q9ePCji1f/jzX9j2u5BWx8MPN6bYWZemAhurOd9o8LG5tb2TnG3tLd/cHhUPj5pG5VqylpUCaW7ITFMcMlallvBuolmJA4F64ST27nfeWLacCUf7DRhQUxGkkecEuukthxkNX82KFe8qrcAXid+TiqQozkof/WHiqYxk5YKYkzP9xIbZERbTgWblfqpYQmhEzJiPUcliZkJssW1M3zhlCGOlHYlLV6ovycyEhszjUPXGRM7NqveXPzP66U2ugkyLpPUMkmXi6JUYKvw/HU85JpRK6aOEKq5uxXTMdGEWhdQyYXgr768Ttq1qn9Vrd/XK41aHkcRzuAcLsGHa2jAHTShBRQe4Rle4Q0p9ILe0ceytYDymVP4A/T5AzGDjtc=</latexit>n21

<latexit sha1_base64="8xLf98FGg9wDTOo2aUY+pOMmLew=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lCUY8FLx4r2A9oQ9lsN+3azW7Y3Qgl9D948aCIV/+PN/+N2zQHbX0w8Hhvhpl5YcKZNq777ZQ2Nre2d8q7lb39g8Oj6vFJR8tUEdomkkvVC7GmnAnaNsxw2ksUxXHIaTec3i787hNVmknxYGYJDWI8FixiBBsrdcQw8/35sFpz624OtE68gtSgQGtY/RqMJEljKgzhWOu+5yYmyLAyjHA6rwxSTRNMpnhM+5YKHFMdZPm1c3RhlRGKpLIlDMrV3xMZjrWexaHtjLGZ6FVvIf7n9VMT3QQZE0lqqCDLRVHKkZFo8ToaMUWJ4TNLMFHM3orIBCtMjA2oYkPwVl9eJx2/7l3VG/eNWtMv4ijDGZzDJXhwDU24gxa0gcAjPMMrvDnSeXHenY9la8kpZk7hD5zPHzMIjtg=</latexit>n22 •••

A. Seed Hypervectors B. Node Memory C. Graph Memory

1. Node Hypervectors

2. Edge Weight Hypervector
<latexit sha1_base64="tXeU4fR9VOpBrFfZhNtUT+LjNUw=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSIIQklKUY8FLx6r2A9oQ9lsN+3SzSbsToQS+g+8eFDEq//Im//GbZuDtj4YeLw3w8y8IJHCoOt+O2vrG5tb24Wd4u7e/sFh6ei4ZeJUM95ksYx1J6CGS6F4EwVK3kk0p1EgeTsY38789hPXRsTqEScJ9yM6VCIUjKKVHi69fqnsVtw5yCrxclKGHI1+6as3iFkacYVMUmO6npugn1GNgkk+LfZSwxPKxnTIu5YqGnHjZ/NLp+TcKgMSxtqWQjJXf09kNDJmEgW2M6I4MsveTPzP66YY3viZUEmKXLHFojCVBGMye5sMhOYM5cQSyrSwtxI2opoytOEUbQje8surpFWteFeV2n2tXK/mcRTgFM7gAjy4hjrcQQOawCCEZ3iFN2fsvDjvzseidc3JZ07gD5zPH972jOM=</latexit>

+1
<latexit sha1_base64="tXeU4fR9VOpBrFfZhNtUT+LjNUw=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSIIQklKUY8FLx6r2A9oQ9lsN+3SzSbsToQS+g+8eFDEq//Im//GbZuDtj4YeLw3w8y8IJHCoOt+O2vrG5tb24Wd4u7e/sFh6ei4ZeJUM95ksYx1J6CGS6F4EwVK3kk0p1EgeTsY38789hPXRsTqEScJ9yM6VCIUjKKVHi69fqnsVtw5yCrxclKGHI1+6as3iFkacYVMUmO6npugn1GNgkk+LfZSwxPKxnTIu5YqGnHjZ/NLp+TcKgMSxtqWQjJXf09kNDJmEgW2M6I4MsveTPzP66YY3viZUEmKXLHFojCVBGMye5sMhOYM5cQSyrSwtxI2opoytOEUbQje8surpFWteFeV2n2tXK/mcRTgFM7gAjy4hjrcQQOawCCEZ3iFN2fsvDjvzseidc3JZ07gD5zPH972jOM=</latexit>

+1
<latexit sha1_base64="5/C6QHT68nhi+Ue9OLRggTmuywg=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4sSSlqMeCF48V7Qe0oWy2m3bpZhN2J0Ip/QlePCji1V/kzX/jps1BWx8MPN6bYWZekEhh0HW/nbX1jc2t7cJOcXdv/+CwdHTcMnGqGW+yWMa6E1DDpVC8iQIl7ySa0yiQvB2MbzO//cS1EbF6xEnC/YgOlQgFo2ilh0uv2C+V3Yo7B1klXk7KkKPRL331BjFLI66QSWpM13MT9KdUo2CSz4q91PCEsjEd8q6likbc+NP5qTNybpUBCWNtSyGZq78npjQyZhIFtjOiODLLXib+53VTDG/8qVBJilyxxaIwlQRjkv1NBkJzhnJiCWVa2FsJG1FNGdp0shC85ZdXSata8a4qtftauV7N4yjAKZzBBXhwDXW4gwY0gcEQnuEV3hzpvDjvzseidc3JZ07gD5zPHxZ7jPk=</latexit>�1

<latexit sha1_base64="6O6XwHTqvh8Mavh8jDOjWoRvtdY=">AAAB83icbVDLSgMxFL1TX7W+qi7dBIvgqsyUoi4LblxJBfuAzlAyaaYNTTJDkhHK0N9w40IRt/6MO//GTDsLbT0QOJxzL/fkhAln2rjut1Pa2Nza3invVvb2Dw6PqscnXR2nitAOiXms+iHWlDNJO4YZTvuJoliEnPbC6W3u956o0iyWj2aW0EDgsWQRI9hYyfcFNpMwyu7nQzGs1ty6uwBaJ15BalCgPax++aOYpIJKQzjWeuC5iQkyrAwjnM4rfqppgskUj+nAUokF1UG2yDxHF1YZoShW9kmDFurvjQwLrWcitJN5Rr3q5eJ/3iA10U2QMZmkhkqyPBSlHJkY5QWgEVOUGD6zBBPFbFZEJlhhYmxNFVuCt/rlddJt1L2revOhWWs1ijrKcAbncAkeXEML7qANHSCQwDO8wpuTOi/Ou/OxHC05xc4p/IHz+QNDSJHL</latexit>

Nm
<latexit sha1_base64="dM36hYvurmKNAoEVWchPAEJg9hU=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyGoB4DXjxGMA9IljA7mU3GzGOZmRXCkn/w4kERr/6PN//GSbIHTSxoKKq66e6KEs6M9f1vr7CxubW9U9wt7e0fHB6Vj0/aRqWa0BZRXOluhA3lTNKWZZbTbqIpFhGnnWhyO/c7T1QbpuSDnSY0FHgkWcwItk5qy0EmgtmgXPGr/gJonQQ5qUCO5qD81R8qkgoqLeHYmF7gJzbMsLaMcDor9VNDE0wmeER7jkosqAmzxbUzdOGUIYqVdiUtWqi/JzIsjJmKyHUKbMdm1ZuL/3m91MY3YcZkkloqyXJRnHJkFZq/joZMU2L51BFMNHO3IjLGGhPrAiq5EILVl9dJu1YNrqr1+3qlUcvjKMIZnMMlBHANDbiDJrSAwCM8wyu8ecp78d69j2VrwctnTuEPvM8fi2WPEg==</latexit>nm1

<latexit sha1_base64="gbOQagJ4/k90qEDaULunkykaZRc=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyGoB4DXjxGMA9IljA7mU3GzGOZmRXCkn/w4kERr/6PN//GSbIHTSxoKKq66e6KEs6M9f1vr7CxubW9U9wt7e0fHB6Vj0/aRqWa0BZRXOluhA3lTNKWZZbTbqIpFhGnnWhyO/c7T1QbpuSDnSY0FHgkWcwItk5qy0EmarNBueJX/QXQOglyUoEczUH5qz9UJBVUWsKxMb3AT2yYYW0Z4XRW6qeGJphM8Ij2HJVYUBNmi2tn6MIpQxQr7UpatFB/T2RYGDMVkesU2I7NqjcX//N6qY1vwozJJLVUkuWiOOXIKjR/HQ2ZpsTyqSOYaOZuRWSMNSbWBVRyIQSrL6+Tdq0aXFXr9/VKo5bHUYQzOIdLCOAaGnAHTWgBgUd4hld485T34r17H8vWgpfPnMIfeJ8/jOqPEw==</latexit>nm2
<latexit sha1_base64="THAijA3CljdI1gOgZUHO5RPSbx8=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyGoB4DXjxGMA9IljA7O0nGzGOZmRXCkn/w4kERr/6PN//GSbIHTSxoKKq66e6KEs6M9f1vr7CxubW9U9wt7e0fHB6Vj0/aRqWa0BZRXOluhA3lTNKWZZbTbqIpFhGnnWhyO/c7T1QbpuSDnSY0FHgk2ZARbJ3UloNMxLNBueJX/QXQOglyUoEczUH5qx8rkgoqLeHYmF7gJzbMsLaMcDor9VNDE0wmeER7jkosqAmzxbUzdOGUGA2VdiUtWqi/JzIsjJmKyHUKbMdm1ZuL/3m91A5vwozJJLVUkuWiYcqRVWj+OoqZpsTyqSOYaOZuRWSMNSbWBVRyIQSrL6+Tdq0aXFXr9/VKo5bHUYQzOIdLCOAaGnAHTWgBgUd4hld485T34r17H8vWgpfPnMIfeJ8/2OSPRQ==</latexit>nmd•••

<latexit sha1_base64="6O6XwHTqvh8Mavh8jDOjWoRvtdY=">AAAB83icbVDLSgMxFL1TX7W+qi7dBIvgqsyUoi4LblxJBfuAzlAyaaYNTTJDkhHK0N9w40IRt/6MO//GTDsLbT0QOJxzL/fkhAln2rjut1Pa2Nza3invVvb2Dw6PqscnXR2nitAOiXms+iHWlDNJO4YZTvuJoliEnPbC6W3u956o0iyWj2aW0EDgsWQRI9hYyfcFNpMwyu7nQzGs1ty6uwBaJ15BalCgPax++aOYpIJKQzjWeuC5iQkyrAwjnM4rfqppgskUj+nAUokF1UG2yDxHF1YZoShW9kmDFurvjQwLrWcitJN5Rr3q5eJ/3iA10U2QMZmkhkqyPBSlHJkY5QWgEVOUGD6zBBPFbFZEJlhhYmxNFVuCt/rlddJt1L2revOhWWs1ijrKcAbncAkeXEML7qANHSCQwDO8wpuTOi/Ou/OxHC05xc4p/IHz+QNDSJHL</latexit>

Nm
<latexit sha1_base64="dM36hYvurmKNAoEVWchPAEJg9hU=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyGoB4DXjxGMA9IljA7mU3GzGOZmRXCkn/w4kERr/6PN//GSbIHTSxoKKq66e6KEs6M9f1vr7CxubW9U9wt7e0fHB6Vj0/aRqWa0BZRXOluhA3lTNKWZZbTbqIpFhGnnWhyO/c7T1QbpuSDnSY0FHgkWcwItk5qy0EmgtmgXPGr/gJonQQ5qUCO5qD81R8qkgoqLeHYmF7gJzbMsLaMcDor9VNDE0wmeER7jkosqAmzxbUzdOGUIYqVdiUtWqi/JzIsjJmKyHUKbMdm1ZuL/3m91MY3YcZkkloqyXJRnHJkFZq/joZMU2L51BFMNHO3IjLGGhPrAiq5EILVl9dJu1YNrqr1+3qlUcvjKMIZnMMlBHANDbiDJrSAwCM8wyu8ecp78d69j2VrwctnTuEPvM8fi2WPEg==</latexit>nm1

<latexit sha1_base64="gbOQagJ4/k90qEDaULunkykaZRc=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyGoB4DXjxGMA9IljA7mU3GzGOZmRXCkn/w4kERr/6PN//GSbIHTSxoKKq66e6KEs6M9f1vr7CxubW9U9wt7e0fHB6Vj0/aRqWa0BZRXOluhA3lTNKWZZbTbqIpFhGnnWhyO/c7T1QbpuSDnSY0FHgkWcwItk5qy0EmarNBueJX/QXQOglyUoEczUH5qz9UJBVUWsKxMb3AT2yYYW0Z4XRW6qeGJphM8Ij2HJVYUBNmi2tn6MIpQxQr7UpatFB/T2RYGDMVkesU2I7NqjcX//N6qY1vwozJJLVUkuWiOOXIKjR/HQ2ZpsTyqSOYaOZuRWSMNSbWBVRyIQSrL6+Tdq0aXFXr9/VKo5bHUYQzOIdLCOAaGnAHTWgBgUd4hld485T34r17H8vWgpfPnMIfeJ8/jOqPEw==</latexit>nm2
<latexit sha1_base64="THAijA3CljdI1gOgZUHO5RPSbx8=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyGoB4DXjxGMA9IljA7O0nGzGOZmRXCkn/w4kERr/6PN//GSbIHTSxoKKq66e6KEs6M9f1vr7CxubW9U9wt7e0fHB6Vj0/aRqWa0BZRXOluhA3lTNKWZZbTbqIpFhGnnWhyO/c7T1QbpuSDnSY0FHgk2ZARbJ3UloNMxLNBueJX/QXQOglyUoEczUH5qx8rkgoqLeHYmF7gJzbMsLaMcDor9VNDE0wmeER7jkosqAmzxbUzdOGUGA2VdiUtWqi/JzIsjJmKyHUKbMdm1ZuL/3m91A5vwozJJLVUkuWiYcqRVWj+OoqZpsTyqSOYaOZuRWSMNSbWBVRyIQSrL6+Tdq0aXFXr9/VKo5bHUYQzOIdLCOAaGnAHTWgBgUd4hld485T34r17H8vWgpfPnMIfeJ8/2OSPRQ==</latexit>nmd•••

<latexit sha1_base64="oJrpUevO61jVSG8tjzo01/wNXME=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyGoB4DXjxGMA9IljA7mU3GzGOZmRXCkn/w4kERr/6PN//GSbIHTSxoKKq66e6KEs6M9f1vr7CxubW9U9wt7e0fHB6Vj0/aRqWa0BZRXOluhA3lTNKWZZbTbqIpFhGnnWhyO/c7T1QbpuSDnSY0FHgkWcwItk5qi0EWBLNBueJX/QXQOglyUoEczUH5qz9UJBVUWsKxMb3AT2yYYW0Z4XRW6qeGJphM8Ij2HJVYUBNmi2tn6MIpQxQr7UpatFB/T2RYGDMVkesU2I7NqjcX//N6qY1vwozJJLVUkuWiOOXIKjR/HQ2ZpsTyqSOYaOZuRWSMNSbWBVRyIQSrL6+Tdq0aXFXr9/VKo5bHUYQzOIdLCOAaGnAHTWgBgUd4hld485T34r17H8vWgpfPnMIfeJ8/LnSO1Q==</latexit>m11
<latexit sha1_base64="h+6CUCuMtpkIdu8GOr5yrgcTz2Y=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyGoB4DXjxGMA9IljA7O0nGzGOZmRXCkn/w4kERr/6PN//GSbIHTSxoKKq66e6KEs6M9f1vr7CxubW9U9wt7e0fHB6Vj0/aRqWa0BZRXOluhA3lTNKWZZbTbqIpFhGnnWhyO/c7T1QbpuSDnSY0FHgk2ZARbJ3UFoMsiGeDcsWv+gugdRLkpAI5moPyVz9WJBVUWsKxMb3AT2yYYW0Z4XRW6qeGJphM8Ij2HJVYUBNmi2tn6MIpMRoq7UpatFB/T2RYGDMVkesU2I7NqjcX//N6qR3ehBmTSWqpJMtFw5Qjq9D8dRQzTYnlU0cw0czdisgYa0ysC6jkQghWX14n7Vo1uKrW7+uVRi2PowhncA6XEMA1NOAOmtACAo/wDK/w5invxXv3PpatBS+fOYU/8D5/AHvzjwg=</latexit>m1d

<latexit sha1_base64="0uOyeb4bbk3pVCA5qhYb+0lazAA=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyGoB4DXjxGMA9IljA7mU3GzGOZmRXCkn/w4kERr/6PN//GSbIHTSxoKKq66e6KEs6M9f1vr7CxubW9U9wt7e0fHB6Vj0/aRqWa0BZRXOluhA3lTNKWZZbTbqIpFhGnnWhyO/c7T1QbpuSDnSY0FHgkWcwItk5qi0EW1GaDcsWv+gugdRLkpAI5moPyV3+oSCqotIRjY3qBn9gww9oywums1E8NTTCZ4BHtOSqxoCbMFtfO0IVThihW2pW0aKH+nsiwMGYqItcpsB2bVW8u/uf1UhvfhBmTSWqpJMtFccqRVWj+OhoyTYnlU0cw0czdisgYa0ysC6jkQghWX14n7Vo1uKrW7+uVRi2PowhncA6XEMA1NOAOmtACAo/wDK/w5invxXv3PpatBS+fOYU/8D5/AC/5jtY=</latexit>m12 •••

•••

•••

<latexit sha1_base64="ZVm3LuJioUH3SJWMmzUgBEByZ1Q=">AAAB83icbVDLSgMxFL1TX7W+qi7dBIvgqsyUoi4LbtwIFewDOkPJpJk2NJMMSUYoQ3/DjQtF3Poz7vwbM+0stPVA4HDOvdyTEyacaeO6305pY3Nre6e8W9nbPzg8qh6fdLVMFaEdIrlU/RBrypmgHcMMp/1EURyHnPbC6W3u956o0kyKRzNLaBDjsWARI9hYyfdjbCZhlN3Ph96wWnPr7gJonXgFqUGB9rD65Y8kSWMqDOFY64HnJibIsDKMcDqv+KmmCSZTPKYDSwWOqQ6yReY5urDKCEVS2ScMWqi/NzIcaz2LQzuZZ9SrXi7+5w1SE90EGRNJaqggy0NRypGRKC8AjZiixPCZJZgoZrMiMsEKE2NrqtgSvNUvr5Nuo+5d1ZsPzVqrUdRRhjM4h0vw4BpacAdt6ACBBJ7hFd6c1Hlx3p2P5WjJKXZO4Q+czx/mwpGO</latexit>

M1

<latexit sha1_base64="jPcRdqXp457bx+vOKPK7xygE2+w=">AAAB83icbVDLSgMxFL1TX7W+qi7dBIvgqsyUoi4LbtwIFewDOkPJpJk2NMkMSUYoQ3/DjQtF3Poz7vwbM+0stPVA4HDOvdyTEyacaeO6305pY3Nre6e8W9nbPzg8qh6fdHWcKkI7JOax6odYU84k7RhmOO0nimIRctoLp7e533uiSrNYPppZQgOBx5JFjGBjJd8X2EzCKLufD8WwWnPr7gJonXgFqUGB9rD65Y9ikgoqDeFY64HnJibIsDKMcDqv+KmmCSZTPKYDSyUWVAfZIvMcXVhlhKJY2ScNWqi/NzIstJ6J0E7mGfWql4v/eYPURDdBxmSSGirJ8lCUcmRilBeARkxRYvjMEkwUs1kRmWCFibE1VWwJ3uqX10m3Ufeu6s2HZq3VKOoowxmcwyV4cA0tuIM2dIBAAs/wCm9O6rw4787HcrTkFDun8AfO5w9BwZHK</latexit>

Mm

*

*

<latexit sha1_base64="jH0+v0TYN+BxejI6RAJx1leFE50=">AAAB83icbVDLSgMxFL1TX7W+qi7dBIvgqsyUoi4LblxJBfuAzlAyaaYNzSRDkhHK0N9w40IRt/6MO//GTDsLbT0QOJxzL/fkhAln2rjut1Pa2Nza3invVvb2Dw6PqscnXS1TRWiHSC5VP8SaciZoxzDDaT9RFMchp71wepv7vSeqNJPi0cwSGsR4LFjECDZW8v0Ym0kYZffzoTes1ty6uwBaJ15BalCgPax++SNJ0pgKQzjWeuC5iQkyrAwjnM4rfqppgskUj+nAUoFjqoNskXmOLqwyQpFU9gmDFurvjQzHWs/i0E7mGfWql4v/eYPURDdBxkSSGirI8lCUcmQkygtAI6YoMXxmCSaK2ayITLDCxNiaKrYEb/XL66TbqHtX9eZDs9ZqFHWU4QzO4RI8uIYW3EEbOkAggWd4hTcndV6cd+djOVpyip1T+APn8wfoSZGP</latexit>

N1
<latexit sha1_base64="CyJ7KMDNr27YUoEheKkkLA1JpJU=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbBU9mUoh4LXjxWsB/QLiWbZtvYbLIkWaEs/Q9ePCji1f/jzX9j2u5BWx8MPN6bYWZemAhurO9/e4WNza3tneJuaW//4PCofHzSNirVlLWoEkp3Q2KY4JK1LLeCdRPNSBwK1gknt3O/88S04Uo+2GnCgpiMJI84JdZJbTnIMJ4NyhW/6i+A1gnOSQVyNAflr/5Q0TRm0lJBjOlhP7FBRrTlVLBZqZ8alhA6ISPWc1SSmJkgW1w7QxdOGaJIaVfSooX6eyIjsTHTOHSdMbFjs+rNxf+8XmqjmyDjMkktk3S5KEoFsgrNX0dDrhm1YuoIoZq7WxEdE02odQGVXAh49eV10q5V8VW1fl+vNGp5HEU4g3O4BAzX0IA7aEILKDzCM7zCm6e8F+/d+1i2Frx85hT+wPv8AS/9jtY=</latexit>n11

<latexit sha1_base64="xUQCic8BIv/JuK8mA6OIOwGqRp4=">AAAB7XicbVBNSwMxEJ3Ur1q/qh69BIvgqeyWoh4LXjxWsB/QLiWbZtvYbLIkWaEs/Q9ePCji1f/jzX9j2u5BWx8MPN6bYWZemAhurOd9o8LG5tb2TnG3tLd/cHhUPj5pG5VqylpUCaW7ITFMcMlallvBuolmJA4F64ST27nfeWLacCUf7DRhQUxGkkecEuukthxkfm02KFe8qrcAXid+TiqQozkof/WHiqYxk5YKYkzP9xIbZERbTgWblfqpYQmhEzJiPUcliZkJssW1M3zhlCGOlHYlLV6ovycyEhszjUPXGRM7NqveXPzP66U2ugkyLpPUMkmXi6JUYKvw/HU85JpRK6aOEKq5uxXTMdGEWhdQyYXgr768Ttq1qn9Vrd/XK41aHkcRzuAcLsGHa2jAHTShBRQe4Rle4Q0p9ILe0ceytYDymVP4A/T5AzGCjtc=</latexit>n12
<latexit sha1_base64="5SXqLLJ+aoPKKpTdeunld/k7AoE=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY8FLx4r2A9oQ9lsNu3azW7Y3Qgl9D948aCIV/+PN/+N2zQHbX0w8Hhvhpl5QcKZNq777ZQ2Nre2d8q7lb39g8Oj6vFJV8tUEdohkkvVD7CmnAnaMcxw2k8UxXHAaS+Y3i783hNVmknxYGYJ9WM8FixiBBsrdcUo88L5qFpz624OtE68gtSgQHtU/RqGkqQxFYZwrPXAcxPjZ1gZRjidV4appgkmUzymA0sFjqn2s/zaObqwSogiqWwJg3L190SGY61ncWA7Y2wmetVbiP95g9REN37GRJIaKshyUZRyZCRavI5CpigxfGYJJorZWxGZYIWJsQFVbAje6svrpNuoe1f15n2z1moUcZThDM7hEjy4hhbcQRs6QOARnuEV3hzpvDjvzseyteQUM6fwB87nD318jwk=</latexit>n1d•••

++
<latexit sha1_base64="0t+Kd75vpq9cFwRk4BTDybTvh5M=">AAAB+3icbVBNS8NAEJ3Ur1q/Yj16WSyCp5KUoh4LXjxWsK3QlLLZbtqlmw92J2IJ+StePCji1T/izX/jts1BWx8MPN6bYWaen0ih0XG+rdLG5tb2Tnm3srd/cHhkH1e7Ok4V4x0Wy1g9+FRzKSLeQYGSPySK09CXvOdPb+Z+75ErLeLoHmcJH4R0HIlAMIpGGtpVD0XINfECRVnm5lkjH9o1p+4sQNaJW5AaFGgP7S9vFLM05BEySbXuu06Cg4wqFEzyvOKlmieUTemY9w2NqFk4yBa35+TcKCMSxMpUhGSh/p7IaKj1LPRNZ0hxole9ufif108xuB5kIkpS5BFbLgpSSTAm8yDISCjOUM4MoUwJcythE2pSQBNXxYTgrr68TrqNuntZb941a61GEUcZTuEMLsCFK2jBLbShAwye4Ble4c3KrRfr3fpYtpasYuYE/sD6/AHPg5RB</latexit>

⇥1

2

<latexit sha1_base64="p/+WGY0gdZxEj660sOEGXxwYJj8=">AAAB83icbVDLSgMxFL1TX7W+qi7dBIvgqsyUoi4LLnRZwT6gM5RMmmlDM8mQZIQy9DfcuFDErT/jzr8x085CWw8EDufcyz05YcKZNq777ZQ2Nre2d8q7lb39g8Oj6vFJV8tUEdohkkvVD7GmnAnaMcxw2k8UxXHIaS+c3uZ+74kqzaR4NLOEBjEeCxYxgo2VfD/GZhJG2d18yIbVmlt3F0DrxCtIDQq0h9UvfyRJGlNhCMdaDzw3MUGGlWGE03nFTzVNMJniMR1YKnBMdZAtMs/RhVVGKJLKPmHQQv29keFY61kc2sk8o171cvE/b5Ca6CbImEhSQwVZHopSjoxEeQFoxBQlhs8swUQxmxWRCVaYGFtTxZbgrX55nXQbde+q3nxo1lqNoo4ynME5XIIH19CCe2hDBwgk8Ayv8Oakzovz7nwsR0tOsXMKf+B8/gAyh5HA</latexit>

Gi
<latexit sha1_base64="n2QLEu/7yOAI8uytWUVqz3hS3Yw=">AAAB7XicbVBNSwMxEJ3Ur1q/qh69BIvgqeyWoh4LXjxWsB/QLiWbZtvYbLIkWaEs/Q9ePCji1f/jzX9j2u5BWx8MPN6bYWZemAhurOd9o8LG5tb2TnG3tLd/cHhUPj5pG5VqylpUCaW7ITFMcMlallvBuolmJA4F64ST27nfeWLacCUf7DRhQUxGkkecEuuk9miQcX82KFe8qrcAXid+TiqQozkof/WHiqYxk5YKYkzP9xIbZERbTgWblfqpYQmhEzJiPUcliZkJssW1M3zhlCGOlHYlLV6ovycyEhszjUPXGRM7NqveXPzP66U2ugkyLpPUMkmXi6JUYKvw/HU85JpRK6aOEKq5uxXTMdGEWhdQyYXgr768Ttq1qn9Vrd/XK41aHkcRzuAcLsGHa2jAHTShBRQe4Rle4Q0p9ILe0ceytYDymVP4A/T5A3qOjwc=</latexit>gi1

<latexit sha1_base64="qLot2C0NCT7Sh2zI+h0JEjABMDU=">AAAB7XicbVBNSwMxEJ3Ur1q/qh69BIvgqeyWoh4LXjxWsB/QLiWbZtvYbLIkWaEs/Q9ePCji1f/jzX9j2u5BWx8MPN6bYWZemAhurOd9o8LG5tb2TnG3tLd/cHhUPj5pG5VqylpUCaW7ITFMcMlallvBuolmJA4F64ST27nfeWLacCUf7DRhQUxGkkecEuuk9miQ8dpsUK54VW8BvE78nFQgR3NQ/uoPFU1jJi0VxJie7yU2yIi2nAo2K/VTwxJCJ2TEeo5KEjMTZItrZ/jCKUMcKe1KWrxQf09kJDZmGoeuMyZ2bFa9ufif10ttdBNkXCapZZIuF0WpwFbh+et4yDWjVkwdIVRzdyumY6IJtS6gkgvBX315nbRrVf+qWr+vVxq1PI4inME5XIIP19CAO2hCCyg8wjO8whtS6AW9o49lawHlM6fwB+jzB3wTjwg=</latexit>gi2
<latexit sha1_base64="EUrGpm/AfSz9H6uiIWfUBNGH7Lo=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY8FLx4r2A9oQ9lsNu3azW7Y3Qgl9D948aCIV/+PN/+N2zQHbX0w8Hhvhpl5QcKZNq777ZQ2Nre2d8q7lb39g8Oj6vFJV8tUEdohkkvVD7CmnAnaMcxw2k8UxXHAaS+Y3i783hNVmknxYGYJ9WM8FixiBBsrdcejjIXzUbXm1t0caJ14BalBgfao+jUMJUljKgzhWOuB5ybGz7AyjHA6rwxTTRNMpnhMB5YKHFPtZ/m1c3RhlRBFUtkSBuXq74kMx1rP4sB2xthM9Kq3EP/zBqmJbvyMiSQ1VJDloijlyEi0eB2FTFFi+MwSTBSztyIywQoTYwOq2BC81ZfXSbdR967qzftmrdUo4ijDGZzDJXhwDS24gzZ0gMAjPMMrvDnSeXHenY9la8kpZk7hD5zPH8gNjzo=</latexit>gid

•••
<latexit sha1_base64="ZTfEQHJnY+ZR2cMCvHpS7gtB+n0=">AAAB83icbVDLSgMxFL1TX7W+qi7dBIvgqsyUoi4LbtwIFewDOkPJpJk2NMkMSUYoQ3/DjQtF3Poz7vwbM+0stPVA4HDOvdyTEyacaeO6305pY3Nre6e8W9nbPzg8qh6fdHWcKkI7JOax6odYU84k7RhmOO0nimIRctoLp7e533uiSrNYPppZQgOBx5JFjGBjJd8X2EzCKLufD6fDas2tuwugdeIVpAYF2sPqlz+KSSqoNIRjrQeem5ggw8owwum84qeaJphM8ZgOLJVYUB1ki8xzdGGVEYpiZZ80aKH+3siw0HomQjuZZ9SrXi7+5w1SE90EGZNJaqgky0NRypGJUV4AGjFFieEzSzBRzGZFZIIVJsbWVLEleKtfXifdRt27qjcfmrVWo6ijDGdwDpfgwTW04A7a0AECCTzDK7w5qfPivDsfy9GSU+ycwh84nz8+uZHI</latexit>

Mk
<latexit sha1_base64="/Ylp7ehXxs4ywUybq6zu5F6zV4o=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyGoB4DXjxGMA9IljA7mU3GzGOZmRXCkn/w4kERr/6PN//GSbIHTSxoKKq66e6KEs6M9f1vr7CxubW9U9wt7e0fHB6Vj0/aRqWa0BZRXOluhA3lTNKWZZbTbqIpFhGnnWhyO/c7T1QbpuSDnSY0FHgkWcwItk5qi0E2CWaDcsWv+gugdRLkpAI5moPyV3+oSCqotIRjY3qBn9gww9oywums1E8NTTCZ4BHtOSqxoCbMFtfO0IVThihW2pW0aKH+nsiwMGYqItcpsB2bVW8u/uf1UhvfhBmTSWqpJMtFccqRVWj+OhoyTYnlU0cw0czdisgYa0ysC6jkQghWX14n7Vo1uKrW7+uVRi2PowhncA6XEMA1NOAOmtACAo/wDK/w5invxXv3PpatBS+fOYU/8D5/AIbQjw8=</latexit>mk1

<latexit sha1_base64="ulYQNILFiSFzIEd31nT/u5tfVNw=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyGoB4DXjxGMA9IljA7mU3GzGOZmRXCkn/w4kERr/6PN//GSbIHTSxoKKq66e6KEs6M9f1vr7CxubW9U9wt7e0fHB6Vj0/aRqWa0BZRXOluhA3lTNKWZZbTbqIpFhGnnWhyO/c7T1QbpuSDnSY0FHgkWcwItk5qi0E2qc0G5Ypf9RdA6yTISQVyNAflr/5QkVRQaQnHxvQCP7FhhrVlhNNZqZ8ammAywSPac1RiQU2YLa6doQunDFGstCtp0UL9PZFhYcxURK5TYDs2q95c/M/rpTa+CTMmk9RSSZaL4pQjq9D8dTRkmhLLp45gopm7FZEx1phYF1DJhRCsvrxO2rVqcFWt39crjVoeRxHO4BwuIYBraMAdNKEFBB7hGV7hzVPei/fufSxbC14+cwp/4H3+AIhVjxA=</latexit>mk2
<latexit sha1_base64="GBVKzOgNjDb1EGdamLoZIhqATTY=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyGoB4DXjxGMA9IljA7O0nGzGOZmRXCkn/w4kERr/6PN//GSbIHTSxoKKq66e6KEs6M9f1vr7CxubW9U9wt7e0fHB6Vj0/aRqWa0BZRXOluhA3lTNKWZZbTbqIpFhGnnWhyO/c7T1QbpuSDnSY0FHgk2ZARbJ3UFoNsEs8G5Ypf9RdA6yTISQVyNAflr36sSCqotIRjY3qBn9gww9oywums1E8NTTCZ4BHtOSqxoCbMFtfO0IVTYjRU2pW0aKH+nsiwMGYqItcpsB2bVW8u/uf1Uju8CTMmk9RSSZaLhilHVqH56yhmmhLLp45gopm7FZEx1phYF1DJhRCsvrxO2rVqcFWt39crjVoeRxHO4BwuIYBraMAdNKEFBB7hGV7hzVPei/fufSxbC14+cwp/4H3+ANRPj0I=</latexit>mkd

•••
<latexit sha1_base64="abSXuUVy2OAheud/KjTfHTfpG5E=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsyUoi4LblxJBfuAdiiZNNOGJpkxyRTK0O9w40IRt36MO//GTDsLbT0QOJxzL/fkBDFn2rjut1PY2Nza3inulvb2Dw6PyscnbR0litAWiXikugHWlDNJW4YZTruxolgEnHaCyW3md6ZUaRbJRzOLqS/wSLKQEWys5PcFNuMgTO/ng0lpUK64VXcBtE68nFQgR3NQ/uoPI5IIKg3hWOue58bGT7EyjHA6L/UTTWNMJnhEe5ZKLKj200XoObqwyhCFkbJPGrRQf2+kWGg9E4GdzELqVS8T//N6iQlv/JTJODFUkuWhMOHIRChrAA2ZosTwmSWYKGazIjLGChNje8pK8Fa/vE7atap3Va0/1CuNWl5HEc7gHC7Bg2towB00oQUEnuAZXuHNmTovzrvzsRwtOPnOKfyB8/kDeUCR3Q==</latexit>

Nk
<latexit sha1_base64="07tJ7Q9WwPkFq5CdBZ5PUm1v0vs=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY8FLx4r2FZoQ9lsN+3SzSbsToQS+iO8eFDEq7/Hm//GTZuDtj4YeLw3w8y8IJHCoOt+O6WNza3tnfJuZW//4PCoenzSNXGqGe+wWMb6MaCGS6F4BwVK/phoTqNA8l4wvc393hPXRsTqAWcJ9yM6ViIUjKKVemqYTb15ZVituXV3AbJOvILUoEB7WP0ajGKWRlwhk9SYvucm6GdUo2CSzyuD1PCEsikd876likbc+Nni3Dm5sMqIhLG2pZAs1N8TGY2MmUWB7YwoTsyql4v/ef0Uwxs/EypJkSu2XBSmkmBM8t/JSGjOUM4soUwLeythE6opQ5tQHoK3+vI66Tbq3lW9ed+stRpFHGU4g3O4BA+uoQV30IYOMJjCM7zCm5M4L86787FsLTnFzCn8gfP5A77QjyQ=</latexit>nk1

<latexit sha1_base64="gwsd5bEDxegim6Mf9RgVefYYQJg=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY8FLx4r2FZoQ9lsJ+3SzSbsboQS+iO8eFDEq7/Hm//GTZuDtj4YeLw3w8y8IBFcG9f9dkobm1vbO+Xdyt7+weFR9fikq+NUMeywWMTqMaAaBZfYMdwIfEwU0igQ2Aumt7nfe0KleSwfzCxBP6JjyUPOqLFSTw6zaWNeGVZrbt1dgKwTryA1KNAeVr8Go5ilEUrDBNW677mJ8TOqDGcC55VBqjGhbErH2LdU0gi1ny3OnZMLq4xIGCtb0pCF+nsio5HWsyiwnRE1E73q5eJ/Xj814Y2fcZmkBiVbLgpTQUxM8t/JiCtkRswsoUxxeythE6ooMzahPARv9eV10m3Uvat6875ZazWKOMpwBudwCR5cQwvuoA0dYDCFZ3iFNydxXpx352PZWnKKmVP4A+fzB8BWjyU=</latexit>nk2
<latexit sha1_base64="mtTsknIoseIUey4+Su//JVQ+C7o=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY8FLx4r2FZoQ9lsNu2S3U3Y3Qgl9Ed48aCIV3+PN/+NmzYHbX0w8Hhvhpl5QcqZNq777VQ2Nre2d6q7tb39g8Oj+vFJXyeZIrRHEp6oxwBrypmkPcMMp4+polgEnA6C+LbwB09UaZbIBzNLqS/wRLKIEWysNJDjPA7ntXG94TbdBdA68UrSgBLdcf1rFCYkE1QawrHWQ89NjZ9jZRjhdF4bZZqmmMR4QoeWSiyo9vPFuXN0YZUQRYmyJQ1aqL8nciy0nonAdgpspnrVK8T/vGFmohs/ZzLNDJVkuSjKODIJKn5HIVOUGD6zBBPF7K2ITLHCxNiEihC81ZfXSb/V9K6a7ft2o9Mq46jCGZzDJXhwDR24gy70gEAMz/AKb07qvDjvzseyteKUM6fwB87nDwyRj1c=</latexit>nkd

*

<latexit sha1_base64="0NuRxIb9cYXST4xGVwuerZCX8vM=">AAAB7nicbVBNSwMxEJ3Ur1q/qh69BIvgqeyWoh4LXjxWsK3QLiWbZtvQJLskWaEs/RFePCji1d/jzX9jtt2Dtj4YeLw3w8y8MBHcWM/7RqWNza3tnfJuZW//4PCoenzSNXGqKevQWMT6MSSGCa5Yx3Ir2GOiGZGhYL1wepv7vSemDY/Vg50lLJBkrHjEKbFO6slhJhvzyrBa8+reAnid+AWpQYH2sPo1GMU0lUxZKogxfd9LbJARbTkVbF4ZpIYlhE7JmPUdVUQyE2SLc+f4wikjHMXalbJ4of6eyIg0ZiZD1ymJnZhVLxf/8/qpjW6CjKsktUzR5aIoFdjGOP8dj7hm1IqZI4Rq7m7FdEI0odYllIfgr768TrqNun9Vb943ay2viKMMZ3AOl+DDNbTgDtrQAQpTeIZXeEMJekHv6GPZWkLFzCn8Afr8AcFAjyQ=</latexit>mm2
<latexit sha1_base64="t8Jyln4gaIswdvLGLiMr9aQ3TR0=">AAAB7nicbVBNSwMxEJ3Ur1q/qh69BIvgqexKUY8FLx4r2A9ol5JNs21okl2SrFCW/ggvHhTx6u/x5r8x2+5BWx8MPN6bYWZemAhurOd9o9LG5tb2Tnm3srd/cHhUPT7pmDjVlLVpLGLdC4lhgivWttwK1ks0IzIUrBtO73K/+8S04bF6tLOEBZKMFY84JdZJXTnMpD+vDKs1r+4tgNeJX5AaFGgNq1+DUUxTyZSlghjT973EBhnRllPB5pVBalhC6JSMWd9RRSQzQbY4d44vnDLCUaxdKYsX6u+JjEhjZjJ0nZLYiVn1cvE/r5/a6DbIuEpSyxRdLopSgW2M89/xiGtGrZg5Qqjm7lZMJ0QTal1CeQj+6svrpHNV96/rjYdGrekVcZThDM7hEny4gSbcQwvaQGEKz/AKbyhBL+gdfSxbS6iYOYU/QJ8/v7qPIw==</latexit>mm1

<latexit sha1_base64="G5z4A3j320wDR3+GH3Dn91cTI/w=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU02kVI8FLx4r2A9oQ9lsNu3S3U3Y3Qgl9Ed48aCIV3+PN/+NmzYHbX0w8Hhvhpl5QcKZNq777ZQ2Nre2d8q7lb39g8Oj6vFJV8epIrRDYh6rfoA15UzSjmGG036iKBYBp71gepf7vSeqNIvlo5kl1Bd4LFnECDZW6olRJsJ5ZVStuXV3AbROvILUoEB7VP0ahjFJBZWGcKz1wHMT42dYGUY4nVeGqaYJJlM8pgNLJRZU+9ni3Dm6sEqIoljZkgYt1N8TGRZaz0RgOwU2E73q5eJ/3iA10a2fMZmkhkqyXBSlHJkY5b+jkClKDJ9Zgoli9lZEJlhhYmxCeQje6svrpHtd95r1xkOj1roq4ijDGZzDJXhwAy24hzZ0gMAUnuEV3pzEeXHenY9la8kpZk7hD5zPHw0uj1U=</latexit>mmd

•••<latexit sha1_base64="ZqHRk34ntPDU98ndB5E/WmEOG0M=">AAAB7nicbVBNSwMxEJ3Ur1q/qh69BIvgqeyWoh4LXjxWsK3QLiWbZtvQJLskWaEs/RFePCji1d/jzX9jtt2Dtj4YeLw3w8y8MBHcWM/7RqWNza3tnfJuZW//4PCoenzSNXGqKevQWMT6MSSGCa5Yx3Ir2GOiGZGhYL1wepv7vSemDY/Vg50lLJBkrHjEKbFO6slh1vDnlWG15tW9BfA68QtSgwLtYfVrMIppKpmyVBBj+r6X2CAj2nIq2LwySA1LCJ2SMes7qohkJsgW587xhVNGOIq1K2XxQv09kRFpzEyGrlMSOzGrXi7+5/VTG90EGVdJapmiy0VRKrCNcf47HnHNqBUzRwjV3N2K6YRoQq1LKA/BX315nXQbdf+q3rxv1lqNIo4ynME5XIIP19CCO2hDByhM4Rle4Q0l6AW9o49lawkVM6fwB+jzB2Y3juo=</latexit>m21
<latexit sha1_base64="gCHmngjebaQkBRizMH8zRv5r+K0=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lCqR4LXjxWsB/QhrLZbtqlu5uwuxFK6I/w4kERr/4eb/4bN20O2vpg4PHeDDPzwoQzbVz32yltbe/s7pX3KweHR8cn1dOzro5TRWiHxDxW/RBrypmkHcMMp/1EUSxCTnvh7C73e09UaRbLRzNPaCDwRLKIEWys1BOjzPcXlVG15tbdJdAm8QpSgwLtUfVrOI5JKqg0hGOtB56bmCDDyjDC6aIyTDVNMJnhCR1YKrGgOsiW5y7QlVXGKIqVLWnQUv09kWGh9VyEtlNgM9XrXi7+5w1SE90GGZNJaqgkq0VRypGJUf47GjNFieFzSzBRzN6KyBQrTIxNKA/BW395k3T9utesNx4atZZfxFGGC7iEa/DgBlpwD23oAIEZPMMrvDmJ8+K8Ox+r1pJTzJzDHzifP2e9jus=</latexit>m22

<latexit sha1_base64="HY6mpBpzCXVJkHv8ho15R/44Ucg=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKqR4LXjxWsB/QhrLZbNqlu5uwuxFK6I/w4kERr/4eb/4bN20O2vpg4PHeDDPzgoQzbVz32yltbe/s7pX3KweHR8cn1dOzno5TRWiXxDxWgwBrypmkXcMMp4NEUSwCTvvB7C73+09UaRbLRzNPqC/wRLKIEWys1BfjrBEuKuNqza27S6BN4hWkBgU64+rXKIxJKqg0hGOth56bGD/DyjDC6aIySjVNMJnhCR1aKrGg2s+W5y7QlVVCFMXKljRoqf6eyLDQei4C2ymwmep1Lxf/84apiW79jMkkNVSS1aIo5cjEKP8dhUxRYvjcEkwUs7ciMsUKE2MTykPw1l/eJL1G3WvVmw/NWrtRxFGGC7iEa/DgBtpwDx3oAoEZPMMrvDmJ8+K8Ox+r1pJTzJzDHzifP7Ppjx0=</latexit>m2d

<latexit sha1_base64="7YpbfKd3lY9ErLqnXLCSRxRrFcQ=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsyUoi4LbtwIFewD2qFk0kwbmmTGJFMoQ7/DjQtF3Pox7vwbM+0stPVA4HDOvdyTE8ScaeO6305hY3Nre6e4W9rbPzg8Kh+ftHWUKEJbJOKR6gZYU84kbRlmOO3GimIRcNoJJreZ35lSpVkkH80spr7AI8lCRrCxkt8X2IyDML2fD2qlQbniVt0F0DrxclKBHM1B+as/jEgiqDSEY617nhsbP8XKMMLpvNRPNI0xmeAR7VkqsaDaTxeh5+jCKkMURso+adBC/b2RYqH1TAR2MgupV71M/M/rJSa88VMm48RQSZaHwoQjE6GsATRkihLDZ5ZgopjNisgYK0yM7SkrwVv98jpp16reVbX+UK80ankdRTiDc7gED66hAXfQhBYQeIJneIU3Z+q8OO/Ox3K04OQ7p/AHzucPIRuRow==</latexit>

M2

<latexit sha1_base64="PxFYUK4kFNXmrR4Dj2GCkJ2Ju2M=">AAAB83icbVDLSgMxFL1TX7W+qi7dBIvgqsyUoi4LblxJBfuAzlAyaaYNTTJDkhHK0N9w40IRt/6MO//GTDsLbT0QOJxzL/fkhAln2rjut1Pa2Nza3invVvb2Dw6PqscnXR2nitAOiXms+iHWlDNJO4YZTvuJoliEnPbC6W3u956o0iyWj2aW0EDgsWQRI9hYyfcFNpMwyu7nw8awWnPr7gJonXgFqUGB9rD65Y9ikgoqDeFY64HnJibIsDKMcDqv+KmmCSZTPKYDSyUWVAfZIvMcXVhlhKJY2ScNWqi/NzIstJ6J0E7mGfWql4v/eYPURDdBxmSSGirJ8lCUcmRilBeARkxRYvjMEkwUs1kRmWCFibE1VWwJ3uqX10m3Ufeu6s2HZq3VKOoowxmcwyV4cA0tuIM2dIBAAs/wCm9O6rw4787HcrTkFDun8AfO5w/pzZGQ</latexit>

N2
<latexit sha1_base64="V7CkrlkwaDPwWcSGip+xOFQX1Ao=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY8FLx4r2A9oQ9lsNu3azW7Y3Qgl9D948aCIV/+PN/+N2zQHbX0w8Hhvhpl5QcKZNq777ZQ2Nre2d8q7lb39g8Oj6vFJV8tUEdohkkvVD7CmnAnaMcxw2k8UxXHAaS+Y3i783hNVmknxYGYJ9WM8FixiBBsrdcUoa4TzUbXm1t0caJ14BalBgfao+jUMJUljKgzhWOuB5ybGz7AyjHA6rwxTTRNMpnhMB5YKHFPtZ/m1c3RhlRBFUtkSBuXq74kMx1rP4sB2xthM9Kq3EP/zBqmJbvyMiSQ1VJDloijlyEi0eB2FTFFi+MwSTBSztyIywQoTYwOq2BC81ZfXSbdR967qzftmrdUo4ijDGZzDJXhwDS24gzZ0gMAjPMMrvDnSeXHenY9la8kpZk7hD5zPH38Cjwo=</latexit>n2d

<latexit sha1_base64="Mv3GFGg0slOY8rAr9wKHQxyf+VQ=">AAAB7XicbVBNSwMxEJ3Ur1q/qh69BIvgqeyWoh4LXjxWsB/QLiWbZtvYbLIkWaEs/Q9ePCji1f/jzX9j2u5BWx8MPN6bYWZemAhurOd9o8LG5tb2TnG3tLd/cHhUPj5pG5VqylpUCaW7ITFMcMlallvBuolmJA4F64ST27nfeWLacCUf7DRhQUxGkkecEuukthxkNX82KFe8qrcAXid+TiqQozkof/WHiqYxk5YKYkzP9xIbZERbTgWblfqpYQmhEzJiPUcliZkJssW1M3zhlCGOlHYlLV6ovycyEhszjUPXGRM7NqveXPzP66U2ugkyLpPUMkmXi6JUYKvw/HU85JpRK6aOEKq5uxXTMdGEWhdQyYXgr768Ttq1qn9Vrd/XK41aHkcRzuAcLsGHa2jAHTShBRQe4Rle4Q0p9ILe0ceytYDymVP4A/T5AzGDjtc=</latexit>n21
<latexit sha1_base64="8xLf98FGg9wDTOo2aUY+pOMmLew=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lCUY8FLx4r2A9oQ9lsN+3azW7Y3Qgl9D948aCIV/+PN/+N2zQHbX0w8Hhvhpl5YcKZNq777ZQ2Nre2d8q7lb39g8Oj6vFJR8tUEdomkkvVC7GmnAnaNsxw2ksUxXHIaTec3i787hNVmknxYGYJDWI8FixiBBsrdcQw8/35sFpz624OtE68gtSgQGtY/RqMJEljKgzhWOu+5yYmyLAyjHA6rwxSTRNMpnhM+5YKHFMdZPm1c3RhlRGKpLIlDMrV3xMZjrWexaHtjLGZ6FVvIf7n9VMT3QQZE0lqqCDLRVHKkZFo8ToaMUWJ4TNLMFHM3orIBCtMjA2oYkPwVl9eJx2/7l3VG/eNWtMv4ijDGZzDJXhwDU24gxa0gcAjPMMrvDnSeXHenY9la8kpZk7hD5zPHzMIjtg=</latexit>n22 •••

*
•••

•••

flip the rightmost bits
<latexit sha1_base64="c3uf0TWPjsoa5cwn22zC9MIt+Uk=">AAAB+HicdVDLSsNAFJ34rPXRqEs3g0VwY0hqaequ4MZlBfuANpTJZNIOnUzCzESpoV/ixoUibv0Ud/6NkzaCih64cDjnXu69x08Ylcq2P4yV1bX1jc3SVnl7Z3evYu4fdGWcCkw6OGax6PtIEkY56SiqGOkngqDIZ6TnTy9zv3dLhKQxv1GzhHgRGnMaUoyUlkZmZRgKhDPn7G6e1eZBeWRWbavRdF33HNqWvUBOHNdtXkCnUKqgQHtkvg+DGKcR4QozJOXAsRPlZUgoihmZl4epJAnCUzQmA005ioj0ssXhc3iilQCGsdDFFVyo3ycyFEk5i3zdGSE1kb+9XPzLG6QqbHoZ5UmqCMfLRWHKoIphngIMqCBYsZkmCAuqb4V4gnQSSmeVh/D1KfyfdGuW07Dq1/Vqq1bEUQJH4BicAge4oAWuQBt0AAYpeABP4Nm4Nx6NF+N12bpiFDOH4AeMt09aKJLd</latexit>

1 � w

2
d

generate
<latexit sha1_base64="/iOQoC6buOpqIwEOxkG8NltVZfc=">AAAB+HicbVBNS8NAFHypX7V+NOrRy2IRPJWkFPVYEMFjBdsKbQib7aZdutmE3Y1SQ3+JFw+KePWnePPfuGlz0NaBhWHmPd7sBAlnSjvOt1VaW9/Y3CpvV3Z29/ar9sFhV8WpJLRDYh7L+wArypmgHc00p/eJpDgKOO0Fk6vc7z1QqVgs7vQ0oV6ER4KFjGBtJN+uDiKsx0GYXc/87HFW8e2aU3fmQKvELUgNCrR9+2swjEkaUaEJx0r1XSfRXoalZoTTWWWQKppgMsEj2jdU4IgqL5sHn6FTowxRGEvzhEZz9fdGhiOlplFgJvOYatnLxf+8fqrDSy9jIkk1FWRxKEw50jHKW0BDJinRfGoIJpKZrIiMscREm67yEtzlL6+SbqPuntebt81aq1HUUYZjOIEzcOECWnADbegAgRSe4RXerCfrxXq3PhajJavYOYI/sD5/AMKakx0=</latexit>

Ew

Figure 5.1: Graph encoding for weighted undirected graphs in GrapHD [13].

5.2.2 GrapHD Encoding

GrapHD is proposed to represent an arbitrary graph which is composed of nodes and

edges [13]. Such an encoding approach can represent: (a) unweighted undirected, (b)

unweighted directed, (c) weighted undirected, and (d) weighted directed graphs. For

this HCP dataset, the functional connectivity for each subject—essentially an 85×85

correlation-coefficient matrix—is extracted from the corresponding fMRI data. Based

on this matrix, a weighted undirected graph can be constructed.

Figure 5.1 illustrates how to encode an arbitrary weighted undirected graph with

m nodes using GrapHD. (a) Generate a total of (m + 1) seed hypervectors, where

node hypervectors ({N1,N2, · · · ,Nm}) correspond to the m nodes and 1 edge weight

hypervector (E“1”) represents the weight value “1”. For the other weight values w, the

corresponding hypervectors Ew are generated by flipping the (1+w
2 d)th ∼ dth rightmost

bits of the hypervector E“1”. This flipping operation ensures that the cosine similarity

between w and the 1 vector, E“1”, is w (see Eq. (5.3)). (b) The node memory Mk

reflects the edge information regarding the node k as shown in Eq. (5.2b). (c) The

whole graph is encoded as described in Eq. (5.2c). Note that the query hypervectors

can be generated from these three steps Eqs. (5.2a-5.2c), whereas class hypervectors

are obtained by Eq. (5.2).

73

Nk ∈ {N1,N2, · · · ,Nm}, weight value “1”: E“1” (5.2a)

Mk =
∑

k Ewkj
∗Nj , where j∈{nodes adjacent to node k}, (5.2b)

Gi =
1

2

∑
k

Mk ∗Nk, where 1 ≤ k ≤ m, (5.2c)

hvclass =
∑N

i=1Gi, where N is the number of subjects. (5.2d)

δ(Ew,E“1”) =
Ew ·E“1”

d
=

1 + w

2
d−

flip these bits︷ ︸︸ ︷
1 − w

2
d

d
= w (5.3)

5.3 Materials

This section presents the basics of HCP dataset. This is followed by an overview of

HDC-based classification. A flowchart of the approaches using HDC for this work is

also included.

5.3.1 HCP Dataset and Preprocessing

In this work, we use the publicly available dataset from the HCP [119], where seven

different task-fMRI data are collected from 475 healthy subjects. Similar to [119], two

chosen tasks are investigated in this work: gambling and emotion. One thing that

should be emphasized is that no-task fMRI data, indicating the resting state, are also

used as a baseline. For each state (both task and no-task), the corresponding fMRI

data are acquired on a scanner for two runs, from right to left (RL) and from left to

right (LR). The reader is referred to [119] for a more detailed description of the data.

Pre-processing should be conducted to model the brain graph from fMRI. Using the

scanner, two fMRI time series are acquired for two runs. Then a matrix of R × T is

obtained after averaging the two runs of the time series from the predefined anatomical

regions from fMRI, where R is the number of regions and T is the number of time

points. In the brain graph, each node corresponds to a region of interest (RoI), whereas

each edge weight is the absolute value of the Pearson correlation coefficient between the

74

time series of the related two nodes. Due to this reason, the edge weight w ∈ [0, 1].

Similar to [119], this work essentially addresses the brain graph classification from

fMRI data at a group level, where only 85 RoIs are considered. However, unlike [119]

where entropy measures are used as features, this research considers a graph where the

edge weight corresponds to the absolute value of the correlation coefficient.

5.3.2 Flowchart of The Approaches

Figure 5.2 illustrates how the two HDC encoding approaches are applied for brain graph

classification using the fMRI data in the HCP study. Following the setup of [119], pre-

processing should be conducted over the time series to generate the functional connec-

tivity, namely the 85× 85 correlation-coefficient matrix, where 85 is the number of RoI

(refer to [119]). Using this matrix as the input features, HD encoding is performed by

constructing the data structure. Record-based encoding is applied when the “sequence”

data structure is extracted. GrapHD is adopted once the graph structure is built. HDC

classification is carried out after the information is efficiently encoded.

HCP
Dataset

Preprocessing

Label

HD Encoding HD
Classification

•••

•••

•••

••
•

••
•

••
••••••
•

••
•

••
•

••
•

•••

•••

•••

•••

Correlation Co-efficient Matrix

•••

••••••
0.18

0.94

0.22

0.55

0.58

0.47•••

Record-based encoding

GrapHD

Figure 5.2: Flowchart of the two HDC approaches for the brain state classification.

5.4 Experimental Results

5.4.1 Training and Test Workflow

We conduct leave-one-subject-out cross-validation for three binary classification prob-

lems, i.e., gambling vs. emotion, gambling vs. no-task, and emotion vs. no-task. For N

subjects, there are N folds. Within each fold, the HD model learns from (N−1) subjects

(training data) and then predicts the remaining 1 subject (test data).

75

Table 5.1: Classification performance for three classification tasks.

Approach Emotion vs. Gambling Emotion vs. No-task Gambling vs. No-task

Metrics1 Acc Sen. Spec. AUC Acc Sen. Spec. AUC Acc Sen. Spec. AUC

GrapHD 75.48% 75.16% 75.80% 0.75 78.87% 78.98% 78.77% 0.79 80.57% 78.77% 82.38% 0.81
Record-based 75.27% 73.25% 77.28% 0.75 79.09% 79.62% 78.56% 0.79 80.04% 78.98% 81.10% 0.80
Linear SVM 94.27% 93.21% 95.33% 0.94 98.09% 97.66% 98.51% 0.98 97.88% 97.88% 97.88% 0.98
1In terms of metrics, “Acc” represents test accuracy, “Sen.” is short for sensitivity,
specificity is denoted by “Spec.”.

5.4.2 Evaluation Metrics

For this classification problem, following a similar evaluation setting in [119], four met-

rics are measured for the performance evaluation: accuracy, sensitivity, specificity, and

area under the ROC curve (AUC), where ROC refers to the receiver operating charac-

teristic.

5.4.3 Performance Comparison

Table 5.1 demonstrates the simulation results for the two employed HDC encoding ap-

proaches given the same features—85 × 85 correlation-coefficient matrix. Additionally,

the results of the traditional linear SVM approach are also considered as a reference.

From this table, we observe that: (a) with the same correlation-coefficient matrices as

the features, the GrapHD achieves similar performance as the record-based encoding.

(b) The performance parameters of HDC encoding approaches are lower than the tra-

ditional linear SVM approach. This indicates the parameter-tuning for the hyperplane

of SVM functions can separate the data quite well; however, HDC encoding approaches

cannot perform as well as SVM in data separability for fully connected brain graphs.

Therefore, sub-graphs are generated to further improve the HDC performance by uti-

lizing sparsity.

In terms of HDC encoding approaches, GrapHD requires less memory storage than

record-based encoding. As shown in Table 5.2, for an arbitrary m × m correlation-

coefficient matrix as the input feature, the memory requirement is (m+ 1) for GrapHD

and
(
m
2

)
+ 1 for record-based encoding. More specifically, for this classification problem

using m = 85, record-based encoding requires ∼ 41× memory storage as compared to

GrapHD. Due to this reason, GrapHD is preferred.

76

Table 5.2: Memory storage1 comparison for two HD encoding approaches.

Approach GrapHD Record-based

Seed Hypervector Storage
m + 1

(
m
2

)
+ 1

86 3571
1Here the memory storage is defined by the number of
hypervectors (d = 10, 000).

(a) Threshold strategy. (b) mRMR algorithm.

Figure 5.3: Performance improvement for GrapHD encoding by two strategies.

5.4.4 Performance Improvement By Sub-Graphs

Instead of fully connected brain graphs, sub-graphs can improve the performance of

binary classification using HDC. To utilize the sparsity of graphs, both the threshold

strategy and mRMR algorithm are employed.

Threshold Strategy

For the given fully connected brain graphs, there will be no edge connection if the edge

weight w is below a pre-defined threshold value Th. Here, this threshold value Th is

tested from 0.3 to 0.8 with a step size of 0.1. As shown in Figure 5.3(a), the Th = 0.5

leads to the optimal/suboptimal performance for all three binary classification problems.

The corresponding AUCs are 0.85 of emotion vs. gambling, 0.84 of emotion vs. no-task,

and 0.87 of gambling vs. no-task, respectively.

77

mRMR Algorithm

To generate sub-graphs, feature selection methods can be applied to select important

edge weights from the fully connected graphs. Here, the mRMR algorithm is em-

ployed to select the top k features, where k ≤ 20. As shown in Figure 5.3(b), the

optimal/suboptimal performance for all three classification problems is achieved when

k = 14. The corresponding AUCs are 0.87 of emotion vs. gambling, 0.88 of emotion

vs. no-task, and 0.88 of gambling vs. no-task, respectively. These AUC results are

significantly better than those with fully-connected brain graphs.

5.5 Conclusion

This chapter investigates the application of HDC to brain graph classification using

three different fMRI data. Both the record-based encoding and GrapHD are explored.

Experimental results show that these two HDC approaches cannot achieve comparable

classification performance with the traditional linear SVM. In terms of HDC encoding

approaches, GrapHD requires significantly less memory storage than record-based en-

coding. Compared to fully connected brain graphs, the utilization of sparsity improves

the classification performance of GrapHD encoding. This chapter has not explored the

use of retraining. Whether retraining can further improve the performance of HDC

needs to be investigated. Recent work has shown that directed graphs based on causal

information such as directed information can lead to higher accuracy in traditional clas-

sification. Future work should also be directed towards HDC classification based on

directed brain graphs.

Chapter 6

Clustering using HDC

The work for this chapter has been submitted to [24]. The existing HDC-based clustering

algorithm, HDCluster [14], can be significantly influenced by the random seed used to

generate seed hypervectors, resulting in high variation in clustering performance. To

address this limitation, we propose more robust HDC-based clustering algorithms in

this chapter.

6.1 Introduction

Clustering is one of the fundamental tasks in machine learning that seeks to create clus-

ters/groups of similar data. Traditional clustering methods, such as k-means [122, 123]

and hierarchical clustering [124–126], can have difficulty when addressing the high-

dimensional data due to the “curse of dimensionality”: distance measures become in-

creasingly meaningless as the number of the dimensions of a dataset increases [127].

Due to the nature of data representation in HDC, the original data point is represented

in hyperdimensional space as a single hypervector, regardless of its original dimension.

Therefore, HDC is a promising alternative for clustering high-dimensional data.

For clustering using HDC, [128] explains both analytically and empirically why the

random mapping in HDC data representation can approximately preserve the mutual

similarity among the original data. As an alternative to dimensionality reduction, ran-

dom projection has been demonstrated to achieve comparable data separability with

78

79

negligible computational complexity with principal component analysis (PCA) for doc-

ument classification. Therefore, as indicated by [128], HDC is promising for faster

clustering, especially in situations when the original data has a very large dimension-

ality. An approach, referred to as HDCluster, was presented in [14] to systematically

cluster data in the HDC domain. This work showed that HDCluster can be more accu-

rate than traditional k-means over diverse datasets. An in-storage computing solution,

called Store-n-Learn, is proposed for HDC-based classification and clustering across the

flash hierarchy in [129]. Experiments show that Store-n-Learn can achieve on average

543× faster than CPU for clustering over ten datasets. In [130], a processing-in-memory

(PIM) architecture that utilizes HDC for a more robust and efficient machine learning

system was proposed. In particular, clustering is supported by HyDREA to achieve 32×
speed up and 289× energy efficiency than the baseline architecture. It may be noted

that the HDC-based clustering in [14, 128] is algorithm-oriented, whereas [129, 130]

emphasize the hardware implementations using the same clustering framework as [14].

One drawback of the HDCluster is that the assignment of initial cluster hypervectors

using random hypervectors can lead to a high variance in clustering performance when

random hypervectors are generated based on different seeds. This necessitates the design

of new clustering algorithms in the HDC domain that are robust. In this work, we

propose four novel HDC-based clustering algorithms that can learn from the encoded

data. These encoded data are referred to as query hypervectors.

Leaked from the encoded query hypervectors, intra-cluster hypervectors are much

closer/similar than inter-cluster hypervectors. Therefore, the categorized information

can be inferred by the similarity results among these query hypervectors. In this chapter,

four HDC-based clustering algorithms are proposed: similarity-based k-means, equal

bin-width histogram, equal bin-height histogram, and similarity-based affinity propaga-

tion. The first three algorithms require only one-dimensional similarity results, while

the fourth algorithm requires a matrix of similarity results. In this work, the emphasis

is more on the algorithms than on the hardware implementation.

The contribution of this work can be summarized as follows: (a) Due to the use

of random projections, HDC is believed to have robust performance. It should be

noted, however, that different initializations of random hypervectors may result in high

80

variance. Using different seeds of the random number generator, we find that HDClus-

ter’s clustering performance is not as robust as expected. Notably, this observation

entails the initialization of random hypervectors, which has been neglected in previous

HDC studies. (b) In contrast to HDCluster’s random assignment for the initial cluster

hypervectors in the data space, we learn from the data by leveraging the fact that intra-

cluster hypervectors have a higher similarity than inter-cluster hypervectors. To achieve

this, the similarity results among query hypervectors are utilized. Our proposed HDC-

based clustering algorithms are more robust in clustering performance. In addition,

our algorithms achieve higher clustering accuracy, fewer iterations for updating cluster

hypervectors, and less program execution time as compared to the existing HDClus-

ter. Particularly, similarity-based affinity propagation always shows higher accuracy

than the traditional k-means, hierarchical clustering, and other HDC-based clustering

algorithms over all tested eight datasets. (c) The effectiveness of the projection onto

hyperdimensional space on clustering performance is examined by applying three tradi-

tional clustering algorithms to both the original data and the encoded data. According

to the experimental results over eight datasets, five out of eight can achieve higher or

comparable clustering accuracy. Additionally, these results imply that maintaining the

original space is preferable if the number of clusters is large, e.g., k = 26.

6.1.1 Traditional Clustering Algorithms

Traditional K-means

To create k clusters from the given N data points, as a simple and efficient algorithm, the

traditional k-means is widely used to find the local optimal solution [122, 123]. Its goal

is to minimize the sum of the squared distances (denoted as ϕ) between every data point

and its associated cluster center. In k-means, the initial k clusters are randomly selected

from the data domain. ➊ Each data point is then assigned to the closest cluster center.

➋ After all data points are assigned, each cluster center is recomputed/updated by the

mean of its constituent data points. Repeat ➊-➋ until ϕ converges or this algorithm

exceeds the pre-defined maximum iteration number.

81

Traditional Hierarchical Clustering

This algorithm aims to build the hierarchy of clusters so that the clusters are organized

in a tree-like structure [124–126]. There are two typical methods to conduct hierarchical

clustering: bottom-up and top-down. In general, the top-down method is more com-

putationally expensive and may not always produce well-defined clusters. Thus in this

paper, we use bottom-up hierarchical clustering. To put it simply, bottom-up hierar-

chical clustering starts with an N ×N matrix of pairwise distances that are computed

from the given N data samples. Initially, each data sample is viewed as a unique cluster.

Therefore, there are N clusters at the very beginning. ➊ Pairs of clusters that have

the closest distance are merged as a new cluster so that this new cluster is computed

as the average of all the data points that belong to the merged clusters. ➋ The size of

the matrix of distances is reduced by 1 and this distance matrix should be recalculated.

Repeat ➊-➋ until all the data points are merged into one cluster.

Traditional Affinity Propagation

This algorithm identifies a subset of representative examples (called “exemplars”) from

the clustered data by passing messages between the data points. It takes the N × N

similarity matrix between all data points as an input. Two kinds of messages are ex-

changed between data points: responsibility and availability. The responsibility (r(i, k))

reflects how well-suited the point k is to serve as the exemplar for point i, whereas the

availability (a(i, k)) represents how appropriate the point i chooses the point k as its

exemplar. Both responsibility and availability are iteratively updated based on the

messages passed between data points until this algorithm converges. Finally, each data

point is assigned to a cluster based on its exemplar. Interested readers are referred to

[131] for more details.

6.1.2 HDCluster

HDCluster [14] is a framework for HDC-based clustering, which is inspired by the tra-

ditional k-means clustering algorithm. Figure 6.1 illustrates an overview of HDCluster.

For a k-cluster problem, the dataset contains N data samples with n features. At the

very beginning, the initial k cluster centers are represented by k random hypervectors.

82

Clusters Update

Encoder

Updated Clusters

Cluster !
Cluster "

Cluster #

•••

Updated Cluster !
Updated Cluster "

Updated Cluster #

•••

Change < %

Assign Tags
Random Hypervectors

Previous Clusters

1

2

3 4

Level hypervectors

ID hypervectors

<latexit sha1_base64="3ne7+0/L7EmI0eJuxqGGNv1L8vo=">AAACJ3icbVBLS8NAEN74rPVV9ehlsQgVpCSlqCcpePHgoYJ9QBPKZrtpl24e7k7EEvJvvPhXvAgqokf/ids2h9r6wcA338wwM58bCa7ANL+NpeWV1bX13EZ+c2t7Z7ewt99UYSwpa9BQhLLtEsUED1gDOAjWjiQjvitYyx1ejeutByYVD4M7GEXM8Uk/4B6nBLTULVyWbJ/AwPWSm25ipekpnskrOrdpLwQ1K9vAHvWm5D5NT7qFolk2J8CLxMpIEWWodwtvdi+ksc8CoIIo1bHMCJyESOBUsDRvx4pFhA5Jn3U0DYjPlJNM/kzxsVZ62AuljgDwRJ2dSIiv1Mh3def4WjVfG4v/1ToxeBdOwoMoBhbQ6SIvFhhCPDYN97hkFMRIE0Il17diOiCSUNDW5rUJ1vzLi6RZKVtn5epttVirZHbk0CE6QiVkoXNUQ9eojhqIoif0gt7Rh/FsvBqfxte0dcnIZg7QHxg/vw2Kpqs=</latexit>

(L1,L2, · · · ,Lq)

Query Hypervectors
Query Hypervector !
Query Hypervector "

Query Hypervector &

•••

T!

T"

Tag
T#

Similarity Check Initial Clusters

<latexit sha1_base64="R9XALOWf9xYnTf7pxarBxW/KSWs=">AAACKnicbZBLS8NAEMc39V1fVY9eFotQQUpSfB0retCbgn1AU8pmu2mXbjZhdyKWkM/jxa/ixYMiXv0gbtsc+nBg4M9vZpiZvxcJrsG2v63c0vLK6tr6Rn5za3tnt7C3X9dhrCir0VCEqukRzQSXrAYcBGtGipHAE6zhDW5G9cYzU5qH8gmGEWsHpCe5zykBgzqF65IbEOh7fnJ/20mcND3F06BigEu7IegZ7gJ7McsSmaYnnULRLtvjwIvCyUQRZfHQKXy43ZDGAZNABdG65dgRtBOigFPB0rwbaxYROiA91jJSkoDpdjJ+NcXHhnSxHyqTEvCYTk8kJNB6GHimc3Sunq+N4H+1Vgz+VTvhMoqBSTpZ5McCQ4hHvuEuV4yCGBpBqOLmVkz7RBEKxt28McGZf3lR1Ctl56J8/nhWrFYyO9bRITpCJeSgS1RFd+gB1RBFr+gdfaIv6836sL6tn0lrzspmDtBMWL9/202nig==</latexit>

(ID1, ID2, · · · , IDn)

Hyperdimensional Space

Store
N

Y

Figure 6.1: HDCluster overview [14]. In [14], the encoder of the original HDCluster
refers to record-based encoding, and the initial cluster centers are random hypervectors.

➊ After the feature values are quantized into q levels, each data sample is encoded by

the record-based encoding, where the feature indices are represented by ID hypervectors

(random hypervectors), and the feature values are encoded by V ∈ {L1, · · · ,Lq} (level

hypervectors). ➋ In each iteration, each data sample is assigned to its cluster center

which reflects the highest similarity and is assigned a tag to represent the corresponding

cluster. ➌ The cluster hypervectors are updated/regenerated by adding their associated

data samples. ➍ The iterations will be terminated if (i) there is a minor change for the

center hypervectors between two consecutive iterations or (ii) it exceeds the pre-defined

number of iterations.

In the traditional k-means, the initial cluster centers are assigned from the data

domain [123]. However, the assignment of cluster centers in HDCluster is from the data

space ({0, 1}d). This assignment of initial cluster hypervectors in the HDCluster leads

to non-robust clustering performance. More details are discussed in Sec. 6.4.

6.2 Methodology

In this section, we propose four novel HDC-based clustering algorithms. Different from

HDCluster, the assignment of all these algorithms for k initial center hypervectors is

from the data domain. To be more specific, the initial center hypervectors in this work

83

are no longer random hypervectors.

In HDC, original data points are encoded as hypervectors; thus, they are projected

onto the hyperdimensional space. The relationships among those hypervectors are de-

termined by their similarity measurement. Therefore, our HDC-based clustering al-

gorithms are proposed based on the following assumptions: (i) the projection onto

hyperdimensional space is helpful for data separability; (ii) the similarity measurement

among hypervectors leaks the information for clustering/grouping the data.

To cluster the given N data samples with our proposed HDC-based clustering algo-

rithms below, the first three algorithms only require computing the similarity measure-

ment (N − 1) times if we randomly pick a data sample as the starting point. However,

the fourth algorithm needs to compute
(
N
2

)
similarity measurements.

Original Space

Clusters Update

Encoder

Updated Clusters

Updated Cluster !
Updated Cluster "

Updated Cluster #

•••

1

3
Level hypervectors

ID hypervectors

<latexit sha1_base64="3ne7+0/L7EmI0eJuxqGGNv1L8vo=">AAACJ3icbVBLS8NAEN74rPVV9ehlsQgVpCSlqCcpePHgoYJ9QBPKZrtpl24e7k7EEvJvvPhXvAgqokf/ids2h9r6wcA338wwM58bCa7ANL+NpeWV1bX13EZ+c2t7Z7ewt99UYSwpa9BQhLLtEsUED1gDOAjWjiQjvitYyx1ejeutByYVD4M7GEXM8Uk/4B6nBLTULVyWbJ/AwPWSm25ipekpnskrOrdpLwQ1K9vAHvWm5D5NT7qFolk2J8CLxMpIEWWodwtvdi+ksc8CoIIo1bHMCJyESOBUsDRvx4pFhA5Jn3U0DYjPlJNM/kzxsVZ62AuljgDwRJ2dSIiv1Mh3def4WjVfG4v/1ToxeBdOwoMoBhbQ6SIvFhhCPDYN97hkFMRIE0Il17diOiCSUNDW5rUJ1vzLi6RZKVtn5epttVirZHbk0CE6QiVkoXNUQ9eojhqIoif0gt7Rh/FsvBqfxte0dcnIZg7QHxg/vw2Kpqs=</latexit>

(L1,L2, · · · ,Lq)
$ features

Data Samples
Sample !
Sample "

Sample %

•••

Assign Tags2

Hyperdimensional Space

Query Hypervector !

Query Hypervector &
Query Hypervector %

•••

Query Hypervectors

T!
Tag
T"
T#

Similarity
Check

S!, "

S#, "

Similarity
Result (1-')

•••

Grouping Tool

Traditional Kmeans

Equal Bin-Width Histogram

Equal Bin-Height Histogram

•••

•••

•••

••
•

••
•

••
••••••
•

••
•

••
•

••
•

•••

•••

•••

•••

Result (%×%) Affinity Propagation

Cluster !
Cluster "

Cluster #

•••

Change < *

Previous Clusters 4

Initial Clusters

<latexit sha1_base64="R9XALOWf9xYnTf7pxarBxW/KSWs=">AAACKnicbZBLS8NAEMc39V1fVY9eFotQQUpSfB0retCbgn1AU8pmu2mXbjZhdyKWkM/jxa/ixYMiXv0gbtsc+nBg4M9vZpiZvxcJrsG2v63c0vLK6tr6Rn5za3tnt7C3X9dhrCir0VCEqukRzQSXrAYcBGtGipHAE6zhDW5G9cYzU5qH8gmGEWsHpCe5zykBgzqF65IbEOh7fnJ/20mcND3F06BigEu7IegZ7gJ7McsSmaYnnULRLtvjwIvCyUQRZfHQKXy43ZDGAZNABdG65dgRtBOigFPB0rwbaxYROiA91jJSkoDpdjJ+NcXHhnSxHyqTEvCYTk8kJNB6GHimc3Sunq+N4H+1Vgz+VTvhMoqBSTpZ5McCQ4hHvuEuV4yCGBpBqOLmVkz7RBEKxt28McGZf3lR1Ctl56J8/nhWrFYyO9bRITpCJeSgS1RFd+gB1RBFr+gdfaIv6836sL6tn0lrzspmDtBMWL9/202nig==</latexit>

(ID1, ID2, · · · , IDn)

Store
N

Y

Figure 6.2: Proposed HDC-based clustering algorithms.

6.2.1 Similarity-Based K-means

As shown in Figure 6.2, after the original data samples are encoded as query hyper-

vectors, a starting point is randomly chosen among all N data samples. Conduct the

similarity measurement over all the other (N −1) data samples with this starting point,

a 1-d similarity result is obtained. A traditional k-means algorithm is then applied to

this 1-d similarity result to obtain the k clusters.

6.2.2 Equal Bin-Width Histogram

As a histogram is used to reflect the distribution of 1-d data, it is natural to use a

histogram to cluster or group data. The histogram is designed to have k bins for any

84

k clustering problem. There are two typical styles of histograms: equal bin width

and equal bin height. In this case, cluster hypervectors are evenly distributed in the

hyperdimensional space between the data samples if a bin-width histogram is applied

to the calculated 1-d similarity result. Figure 6.3 shows two toy examples of six query

hypervectors to be allocated into three clusters using the equal bin-width histogram.

(a) Histogram with no zero-membered bins. (b) Histogram with zero-membered bins.

Figure 6.3: Examples for the equal bin-width histogram.

However, such a uniform distribution of cluster hypervectors cannot be guaranteed

for any clustering problem. The histogram will contain some zero-membered bins in

practice, e.g., Figure 6.3(b). These zero-membered bins can result in non-convergence

for the update of cluster center hypervectors. To solve this issue, this algorithm is

considered unsuitable for clustering the input data.

6.2.3 Equal Bin-Height Histogram

If an equal-height histogram is employed to the 1-d similarity result, the corresponding

assumption is that all these k clusters have similar group sizes, i.e., the data are sam-

pled from a uniform probability distribution. This equal bin-height histogram method

is preferred when prior knowledge that the clusters have similar member sizes is given.

Figure 6.4 gives two toy examples for the equal bin-height histogram. For the num-

ber of compared query hypervectors that can be divisible by the number of k clusters

(Mod(N−1
k) = 0, where Mod represents reminder), each cluster has the exact same

group size, whereas the group sizes of k clusters are roughly similar for the indivisible

case (Mod(N−1
k) ̸= 0).

85

(a) Divisible case. (b) Indivisible case.

Figure 6.4: Examples for the equal bin-height histogram.

6.2.4 Similarity-Based Affinity Propagation

Different from the previous three algorithms, this algorithm requires an N × N simi-

larity result. Then this similarity result is fed into the traditional affinity propagation

algorithm [131] to obtain the clustering results.

Different from traditional affinity propagation whose similarity matrix is typically

measured by the pairwise Euclidean distance of the data points in the original space, our

proposed similarity-based affinity propagation starts with the similarity result measured

by Eq. (2.3) for the encoded data (query hypervectors) in the hyperdimensional space.

6.3 Materials

6.3.1 Dataset Description

In this paper, we apply our HDC-based clustering algorithms to eight diverse datasets

that are also tested in [14]. The corresponding ground truth is provided. More details

are described in Table 6.1.

Table 6.1: Datasets for clustering using HDC.

Datasets MNIST ISOLET IRISGlass RNA-seq Cancer Ecoli Parkinson’s

of Data Samples (N) 10,000 7,797 150 214 801 569 336 195
of Features (n) 784 617 4 9 20,531 30 7 22
of Clusters (k) 10 26 3 6 5 2 8 2

86

6.4 Experimental Results

6.4.1 Experimental Setup

We implement both HDCluster and our proposed HDC-based clustering algorithms

using Python implementation. For hypervectors generation, we employ the library

“torchhd” [117]. We evaluate the clustering algorithms by three metrics: accuracy

(ground truth is known), number of iterations for the convergence of cluster hypervec-

tors, and execution time. As mentioned above, the generation of random hypervectors

has an impact on the clustering performance of HDCluster. To capture the non-robust

performance, we test all the HDC-based clustering algorithms over 500 runs with dif-

ferent pseudo seeds. Thus in Python code, the “torch.manual seed” ranges from 0 to

499. This enables us to compute the variance of the performance results. Note that, in

HDCluster, the algorithm was run only once and no variance was reported.

The projection onto hyperdimensional space requires the quantization of the orig-

inal data. As with [14], quantization level q is set to 16 to ensure a fair comparison.

Additionally, the dimensionality of hypervectors is set as d = 10, 000 for all experiments.

To measure the minor change of cluster hypervectors between two consecutive it-

erations, the minimum cosine similarity (over k) between current ({C1
′, · · · ,Ck

′}) and

previous ({C1, · · · ,Ck}) cluster hypervectors should be greater than 0.99 for non-binary

HDC, whereas for the maximum Hamming distance between current and previous clus-

ter hypervectors should be less than 0.01 for binary HDC. The maximum number of

iterations for termination of the iterative update is predefined as 300 in this work.

Note in [14], both the seed hypervectors and the compound hypervectors are binary

hypervectors (∈ {0, 1}d). In this chapter, similar to [14], we test our proposed HDC-

based algorithms using binary hypervectors. We also apply our algorithms using bipolar

seed hypervectors and integer compound hypervectors.

6.4.2 Comparison with HDCluster

Using HDCluster as a baseline framework, we test our proposed HDC-based clustering

algorithms over eight datasets. Two encoding algorithms, record-based and N-gram-

based encoding, are employed. Both binary ({0, 1}d) and bipolar ({−1, 1}d) seed hy-

pervectors are examined. Additionally, we are also interested in one-pass clustering in

87

addition to the iterative update of cluster hypervectors.

Iterative Update of the Center Hypervectors

Figure 6.5 shows the experimental results of our proposed HDC-based clustering algo-

rithms and the baseline HDCluster over 500 runs using boxplots. Median values are an-

notated on the top of the boxplots. As shown in Figure 6.5, our proposed algorithms are

more robust in clustering accuracy, require fewer iterative updates in cluster hypervec-

tors, and consume less execution time over all eight datasets as compared to HDCluster.

Among our proposed HDC-based clustering algorithms, similarity-based affinity propa-

gation always achieves the highest clustering accuracy over all eight datasets. To elabo-

rate a little further, clustering accuracy is significantly improved by this similarity-based

affinity propagation for MNIST (≈38%), ISOLET (≈24%), Glass (≈17%), Ecoli (≈9%),

and Parkinson’s (≈9%), as compared to the other HDC-based clustering algorithms.

88

MNIST
ISOLET RNA

Cancer IRIS Glass Ecoli
Parkinsons

0

20

40

60

80

100
48 58 58

x

90

32
54 56

x

77

55
84

93

x

99

70 92 82 86 93 70 66 91
66

93

44
52 58

52
72

52
71 70

x

81

75 75
75 75

87

Accuracy [%]

MNIST
ISOLET RNA

Cancer IRIS Glass Ecoli
Parkinsons

0

50

100

150

200

250

300 30
0

25 22

x x

30
0

37 38

x x

30
0

11
8

x x

30
0

30
0

30
0

30
0

x

30
0

30
0

30
0

30
0

x

30
0

58 15 30
0

x

30
0

7 6

x x

30
0

30
0

30
0

30
0

x

Number of Iterations

MNIST
ISOLET RNA

Cancer IRIS Glass Ecoli
Parkinsons

0

100

200

300

400

500

600

700

800

64
8

65
55

0
11

9

60
9

85
85

0
58

50 2
2 0 0

26 27 26 26
0 8 8 8 8 0

14 3 0 14
0

22
0 0

0 0 9 9 9 9 0

Execution Time [s]

Cluster Type
[ham][record-based]
HDCluster
Similarity-Based Kmeans
Equal Bin-Height Histogram
Equal Bin-Width Histogram
Similarity-Based Affinity

(a) Performance for clustering algorithms by binary HDC using record-based encoding.

MNIST
ISOLET RNA

Cancer IRIS Glass Ecoli
Parkinsons

0

20

40

60

80

100

50 57 57

x

90

37
54 55

x

76

55 81 89

x

98

78 92 84 92 94

66
86 86 86

94

45 55 62 54
72

54 64 66

x

80

75
75 75

75
87

Accuracy [%]

MNIST
ISOLET RNA

Cancer IRIS Glass Ecoli
Parkinsons

0

50

100

150

200

250

300 30
0

26
22

x x

30
0

57 66

x x

30
0

24 60 x

x
9

4 6
7

x

30
0

4 4 4 x

30
0

40 52 30
0

x

30
0

4 5

x x

57 16 20 16

x

Number of Iterations

MNIST
ISOLET RNA

Cancer IRIS Glass Ecoli
Parkinsons

0

100

200

300

400

500

600

700

800 63
4

65
55

0
13

0

59
8

12
1

13
8

0
64

49
4 11 0 0

1
0 0 1 0 7 0 0 0 0

14 2 2 14
0 22

0 0
0 0 1 0 0 0 0

Execution Time [s]

Cluster Type
[ham][N-gram-based]
HDCluster
Similarity-Based Kmeans
Equal Bin-Height Histogram
Equal Bin-Width Histogram
Similarity-Based Affinity

(b) Performance for clustering algorithms by binary HDC using N-gram-based encoding.

MNIST
ISOLET RNA

Cancer IRIS Glass Ecoli
Parkinsons

0

20

40

60

80

100

51 54 54 55
91

39
53 53

x

77

55
84

93
83

99

89 91 91 92 94

66 86 86 87
93

44
55 55 55

72

59 69 67

x

78

75 75 75
75

86

Accuracy [%]

MNIST
ISOLET RNA

Cancer IRIS Glass Ecoli
Parkinsons

0

50

100

150

200

250

300 30
0

40
5 8

x

30
0

66
8

x x

30
0

16
4 5

x

5
9

2 2 x

30
0

9
3 3 x

30
0

12
4 4 x

30
0

11
4 x x

6
12

3 6 x

Number of Iterations

MNIST
ISOLET RNA

Cancer IRIS Glass Ecoli
Parkinsons

0

200

400

600

800

1000

1200

78
1

24 22
31

96

71
7

28
28

0
51

62
1 1 1 0

1
0 0 0 0 8 0 0 0 0

17
0 0 0 0

23
0 0 0 0 0 0 0 0 0

Execution Time [s]

Cluster Type
[cos][record-based]
HDCluster
Similarity-Based Kmeans
Equal Bin-Height Histogram
Equal Bin-Width Histogram
Similarity-Based Affinity

(c) Performance for clustering algorithms by non-binary HDC using record-based encoding.

MNIST
ISOLET RNA

Cancer IRIS Glass Ecoli
Parkinsons

0

20

40

60

80

100

51 54 54 54
91

39
53 53

x

77

55
84 93

72
99

89 92 91 92 94

66 86 86 87
93

45 55 55
55

72

58 67 68

x

78

75 75 75
75

86

Accuracy [%]

MNIST
ISOLET RNA

Cancer IRIS Glass Ecoli
Parkinsons

0

50

100

150

200

250

300 30
0

38
5 8

x

30
0

70
8

x x

30
0

16
4

4

x

6
9

2 2 x

30
0

9
3 3 x

30
0

10
4 4 x

30
0

8
4 x x

7
12

3 6 x

Number of Iterations

MNIST
ISOLET RNA

Cancer IRIS Glass Ecoli
Parkinsons

0

200

400

600

800

1000

1200

1400

10
75

33 31 42
11

3

90
8

37 36
0

61

84
1 2 2 0

1
1 0 0 0 13 0 0 0 0

22
0 0 0 0

36
0 0 0 0 0 0 0 0 0

Execution Time [s]

Cluster Type
[cos][N-gram-based]
HDCluster
Similarity-Based Kmeans
Equal Bin-Height Histogram
Equal Bin-Width Histogram
Similarity-Based Affinity

(d) Performance for clustering algorithms by non-binary HDC using N-gram-based encoding.

Figure 6.5: Comparison of proposed algorithms with HDCluster. For boxplots, the
median values over 500 runs/trials are annotated on the top. The red values indicate
the results for the baseline HDCluster. Our algorithms’ results are in black. The symbol
× implies the results are not available.

According to Figure 6.5, HDCluster reaches the maximum pre-specified iteration

value (=300) more often than our proposed four algorithms. This observation can be

89

more evident for non-binary HDC. Additionally, HDCluster nearly always requires a

longer execution time—especially for MNIST and ISOLET datasets—in comparison to

our proposed algorithms. This implies that the existing HDCluster may not perform

a fast clustering for a dataset with large data samples (e.g., MNIST: 10,000, ISOLET:

7,797).

For our equal bin-width histogram clustering algorithm, the final cluster hyper-

vectors are not evenly distributed in the measured range for eight datasets. In this

approach, the number of samples for some bins is zero; this condition terminates the

algorithm. Out of the eight datasets, four datasets are terminated for binary HDC;

these include MNIST, ISOLET, RNA, and Ecoli. However, only ISOLET and Ecoli are

terminated for non-binary HDC. This indicates that binary HDC is applicable in fewer

cases than non-binary HDC.

From Figure 6.5, we observe that, for the RNA dataset, the binary HDC using N-

gram-based encoding leads to the most non-robust accuracy with respect to the variance

of the accuracy. A standard deviation for the clustering accuracy over 500 runs is used to

further quantify the variance of the accuracy and the corresponding results are shown in

Table 6.3. Binary HDC using N-gram-based encoding has ≥ 16.18 standard deviation

of the accuracy performance among the baseline HDCluster and our proposed four

HDC-based clustering algorithms for the RNA dataset. This reveals that the N-gram-

based encoding for binary HDC can be significantly affected if the number of features

n (=20,531) exceeds the dimensionality d (=10,000). Note that the variance of the

accuracy using the non-binary HDC for this dataset is less.

One-Pass Clustering

One-pass clustering refers to no iterative update of cluster hypervectors. To be more

specific, here one-pass clustering only involves ➊-➋ of Figure 6.2. Without any doubt,

one-pass clustering requires less execution time and fewer iterations for convergence as

compared to the iterative update of the cluster hypervectors. For comparison purposes,

only accuracy is considered.

The experimental results for one-pass clustering are shown in Figure 6.6. Regarding

the clustering accuracy, one-pass clustering algorithms are lower than the iterative up-

date version of the proposed algorithms for four datasets (MNIST, ISOLET, RNA, and

90

MNIST
ISOLET RNA

Cancer IRIS Glass Ecoli
Parkinsons

0

20

40

60

80

100

48 58 58

x

44
47

x

32
54 56

x

38
39

x

55
84

93

x

81
85

x

70 92 82 86 91
82

73

70 66 91
66

66 91
66

44
52 58

52
53 58

51

52
71

70

x

71
69

x

75 75
75 75

77
75 75

Accuracy

Cluster Type
[ham][record-based]

HDCluster
Similarity-Based Kmeans
Equal Bin-Height Histogram
Equal Bin-Width Histogram

Similarity-Based Kmeans (One-Pass)
Equal Bin-Height Histogram (One-Pass)
Equal Bin-Width Histogram (One-Pass)

(a) Binary HDC using record-based encoding.

MNIST
ISOLET RNA

Cancer IRIS Glass Ecoli
Parkinsons

0

20

40

60

80

100

50 57 57

x

45
47

x

37
54 55

x

38 38

x

55 81 89

x

71
77

x

78 92 84 92 92
83 85 66

86 86 86
86 86

86

45 55 62 54 55 61
54

54 64 66

x

64 65

x

75
75 75

75 75
75

75

Accuracy

Cluster Type
[ham][N-gram-based]

HDCluster
Similarity-Based Kmeans
Equal Bin-Height Histogram
Equal Bin-Width Histogram

Similarity-Based Kmeans (One-Pass)
Equal Bin-Height Histogram (One-Pass)
Equal Bin-Width Histogram (One-Pass)

(b) Binary HDC using N-gram-based encoding.

MNIST
ISOLET RNA

Cancer IRIS Glass Ecoli
Parkinsons

0

20

40

60

80

100

51
54 54 55

46 49
38

39
53 53

x

38
39

x

55
84

93
83 84

90
67

89 91 91 92 91 90 92

66 86 86 87 87 86 88

44
55 55 55 55 57

54

59 69 67

x

67 67

x

75 75 75
75 75

75
76

Accuracy

Cluster Type
[cos][record-based]

HDCluster
Similarity-Based Kmeans
Equal Bin-Height Histogram
Equal Bin-Width Histogram

Similarity-Based Kmeans (One-Pass)
Equal Bin-Height Histogram (One-Pass)
Equal Bin-Width Histogram (One-Pass)

(c) Non-binary HDC using record-based encod-
ing.

MNIST
ISOLET RNA

Cancer IRIS Glass Ecoli
Parkinsons

0

20

40

60

80

100

51
54 54 54

46
48

41

39
53 53

x

39 39

x

55
84 93

72
84

90
69

89 92 91 92 91 90 92

66 86 86 87 88 86 87

45 55 55
55

55
57 54

58 67 68

x

66 67

x

75 75 75
75 75

75
76

Accuracy

Cluster Type
[cos][N-gram-based]

HDCluster
Similarity-Based Kmeans
Equal Bin-Height Histogram
Equal Bin-Width Histogram

Similarity-Based Kmeans (One-Pass)
Equal Bin-Height Histogram (One-Pass)
Equal Bin-Width Histogram (One-Pass)

(d) Non-binary HDC using N-gram-based encod-
ing.

Figure 6.6: Comparison of one-pass clustering with both the updated clusters and
HDCluster. For boxplots, the median values over 500 runs/trials are annotated on the
top. The red values indicate the results for the baseline HDCluster. Our algorithms’
results are in black. The symbol × implies the results are not available.

91

Cancer), while they can achieve comparable performance for the other four datasets.

Additionally, compared to HDCluster, the variance of accuracy for one-pass clustering

is more robust.

MNIST
ISOLET RNA

Cancer IRIS Glass Ecoli
Parkinsons

40

50

60

70

80

90

100

59 58
69

69
92 90

60
50

61 59
81

77

99 88 99 98 99 99

90
91

86
90 93
93

81
89

85
86

90
93

53
49 52

53
70 72

70
72

73 69
78

81

75 75 75
75

86
87

Accuracy

Cluster Type
[ham][record-based]

Traditional Kmeans
Kmeans query
Hierachical raw

Hierachical query
Affinity raw
Affinity query

(a) Binary HDC using record-based encoding.

MNIST
ISOLET RNA

Cancer IRIS Glass Ecoli
Parkinsons

40

50

60

70

80

90

100

59
58

69
68

92 90

60
49

61 56
81

76

99 77 99 93 99 98

90
92

86
91

93
94

81
88

85
87 90

94

53 54
52

52
70 72

70
66

73
68

78
80

75 75 75
75

86
87

Accuracy

Cluster Type
[ham][N-gram-based]

Traditional Kmeans
Kmeans query
Hierachical raw

Hierachical query
Affinity raw
Affinity query

(b) Binary HDC using N-gram-based encoding.

MNIST
ISOLET RNA

Cancer IRIS Glass Ecoli
Parkinsons

40

50

60

70

80

90

100

59
51

69
69

92 91

60
50

61 56
81

77

99 94 99 98 99 99

90
92

86
91 93
94

81
87

85
87 90

93

53
51

52
52

70 72

70
68

73
69

78 78

75 75 75 75
86

86

Accuracy

Cluster Type
[cos][record-based]

Traditional Kmeans
Kmeans query
Hierachical raw

Hierachical query
Affinity raw
Affinity query

(c) Non-binary HDC using record-based encod-

ing.

MNIST
ISOLET RNA

Cancer IRIS Glass Ecoli
Parkinsons

40

50

60

70

80

90

100

59
53

69
69

92 91

60
48

61 56
81

77

99 92 99 99 99 99

90
92

86
92 93
94

81
87

85
87

90
93

53
51

52
52

70 72

70 68
73

69
78 79

75 75 75
75

86
86

Accuracy

Cluster Type
[cos][N-gram-based]

Traditional Kmeans
Kmeans query
Hierachical raw

Hierachical query
Affinity raw
Affinity query

(d) Non-binary HDC using N-gram-based encod-

ing.

Figure 6.7: Comparison of clustering using original data and encoded data. For box-
plots, the median values over 500 runs/trials are annotated on the top. Results for
encoded data are in red, while those for the original data are in black.

92

6.4.3 Original Data Space vs Hyperdimensional Space

We now address the question of whether projection onto hyperdimensional space is

helpful for data separation. We employ traditional k-means, hierarchical clustering,

and affinity propagation toward both the original data and the encoded data (query

hypervectors). Both binary and non-binary HDC, associated with record-based encod-

ing and N-gram-based encoding, are employed. Therefore, all four possible cases are

examined: binary/non-binary HDC with record-based/N-gram-based encoding. The

corresponding experimental results are shown in Figure 6.7.

Based on Figure 6.7, the traditional clustering approach is better for at most three

out of eight datasets, compared to HDC. To be more specific, (a) Traditional K-

means: no projection is preferred for three datasets: ISOLET, RNA, and Glass if

binary/non-binary HDC with record-based encoding, or non-binary HDC with N-gram-

based encoding is employed. For binary HDC with N-gram-based encoding, the perfor-

mance is similar for both cases. For the IRIS dataset, projection onto hyperdimensional

space in all four possible cases achieves 6% improvement in accuracy as compared to the

original space. In terms of the Cancer dataset, projection onto hyperdimensional space

outperforms the original data by 2% accuracy over three cases, whereas it is comparable

between original space and hyperdimensional space for binary HDC with record-based

encoding. For the remaining three datasets, projection onto hyperdimensional space can

achieve comparable performance with the original space. (b) Hierarchical Clustering:

Both ISOLET and Ecoli datasets do not benefit from projection onto hyperdimensional

space, as this may cause 2% ∼ 5% accuracy degradation. Projection can achieve com-

parable performance for the other six datasets. Among them, IRIS and Cancer datasets

benefit from projection as the accuracy is improved by approximately 2% ∼ 5%. (c)

Affinity Propagation: Six out of eight datasets can achieve comparable or better

accuracy if they are projected onto the hyperdimensional space. MNIST and ISOLET

datasets experience an accuracy drop (of approximately 2% and 5%, respectively) for

hyperdimensional projection.

The aforementioned observations are summarized in Table 6.2. To summarize, the

projection of five datasets onto hyperdimensional space can lead to comparable or better

accuracy performance compared to traditional k-means, hierarchical clustering, and

affinity propagation. For all of these three traditional clustering algorithms, ISOLET

93

Table 6.2: Performance for three traditional clustering algorithms1.

Datasets MNIST ISOLET IRIS Glass RNA-seq Cancer Ecoli Parkinson’s

of Data Samples (N) 10,000 7,797 150 214 801 569 336 195
of Features (n) 784 617 4 9 20,531 30 7 22
of Clusters (k) 10 26 3 6 5 2 8 2

Projection for k-means ✔ ✘ ✔ ✘ ✘ ✔ ✔ ✔

Projection for Hierarchical Clustering ✔ ✘ ✔ ✔ ✔ ✔ ✘ ✔

Projection for Affinity Propagation ✘ ✘ ✔ ✔ ✔ ✔ ✔ ✔
1In last three rows, accuracy performance compared to original data: comparable (✔), significantly better (✔), and lower (✘).

performance is better for the original space, while IRIS performance is better for the

hyperdimensional space. This indicates that projection onto hyperdimensional space

might not be helpful for data separability when we have a large number of clusters, e.g.,

k = 26. Additionally, the projection onto hyperdimensional space can lead to higher

performance when the number of clusters k and the number of features n are both small.

6.4.4 Further Discussion

The High/Robust Accuracy and Fast Convergence of Our Proposed HDC-

based Clustering Algorithms

As mentioned in Sec. 6.1.2, the initial cluster hypervectors of HDCluster are random

seed hypervectors, that are either ({0, 1}d) or ({−1, 1}d). It indicates there exist in total(
2d

k

)
ways of initializing the cluster hypervectors, which leads to the non-robust clustering

accuracy performance. Low accuracy is easily obtained if the positions of the initially

assigned cluster hypervectors in the hyperdimensional space are all far away from the

encoded query hypervectors, so that query hypervectors have the same similarity results

as the cluster hypervectors and cannot be correctly separated/clustered. High accuracy

could be achieved when the initially assigned k clusters have different similarity results

with the query hypervectors. Our proposed HDC-based clustering algorithms assign

the initial cluster hypervectors from the data domain. In other words, our algorithms

utilize the information leveraged by the query hypervectors. As a result, the initial k

cluster hypervectors are determined by query hypervectors in our algorithms and the

source of the accuracy variance over 500 runs only comes from the inevitable randomness

of seed hypervectors. Additionally, this data-domain-based assignment speeds up the

convergence for the iterative update of center hypervectors.

94

Similarity-based Hierarchical Clustering is Excluded in Our Proposed HDC-

based Clustering Algorithms

Similar to the similarity-based affinity propagation, we also feed the N ×N similarity

result into the hierarchical clustering. The corresponding performance is significantly

lower than that of both the raw data and encoded data for hierarchical clustering (Sec.

6.4.3). As a result, similarity-based hierarchical clustering is not considered in our

algorithms.

Binary HDC Shows Limitations as Compared to Non-binary HDC

Compared to non-binary HDC, binary HDC with equal bin-width histogram clustering

cannot be applied to two more datasets. In binary HDC, the minimum change of

cluster hypervectors is convergent within 0.02, whereas in non-binary HDC, it is 0.01.

This reveals that non-binary HDC is more accurate than binary HDC, which confirms

the existing knowledge of HDC [19, 38].

Applications of HDC-based Clustering

Several recent works [18, 132] indicate a trend of applying HDC to biological datasets

that can obtain surprisingly great performance. Based on our experimental results

over eight datasets (Figures. 6.5 and 6.7), HDC-based clustering can achieve high

accuracy (> 90%) in RNA and Cancer datasets. Therefore, the combination of HDC

with biological datasets could provide interesting results and new insights.

Statistics of the clustering accuracy for HDCluster and our proposed HDC-

based algorithms

Table 6.3 summarizes the mean and standard deviation results of the clustering accuracy

over 500 runs for both the baseline HDCluster and our algorithms. The standard devi-

ation reflects the variance of the accuracy. For each dataset, the highest performance is

in bold.

95

Table 6.3: Performance comparison of our proposed algorithms and the baseline
HDCluster1.

M
e
th

o
d

M
N
IS

T
IS

O
L
E
T

R
N
A

C
a
n
c
e
r

IR
IS

G
la
ss

E
c
o
li

P
a
rk

in
so

n
’s

B
in
a
ry

H
D
C

u
si
n
g
R
e
c
o
rd

-b
a
se

d
E
n
c
o
d
in
g

H
D
C
lu
st
e
r

4
7
.1
0
(±

8
.7
9
)3
2
.2
6
(±

8
.1
1
)5
9
.0
1
(±

1
6
.0
5
)7
3
.5
0
(±

1
0
.4
4
)7
2
.3
9
(±

1
3
.8
5
)4
3
.1
7
(±

6
.0
7
)5
3
.4
9
(±

1
0
.8
0
)
7
5
.4
5
(±

0
.4
7
)

S
B

K
m
e
a
n
s

5
7
.8
7
(±

3
.3
5
)5
4
.8
0
(±

2
.1
3
)
8
4
.6
7
(±

2
.4
1
)
9
2
.1
7
(±

2
.3
1
)
7
2
.5
2
(±

1
0
.3
9
)5
3
.9
7
(±

2
.7
3
)
7
1
.3
0
(±

2
.0
4
)
7
5
.6
0
(±

0
.7
8
)

B
in

H
e
ig
h
t

5
7
.9
6
(±

3
.3
6
)5
6
.3
3
(±

1
.9
4
)
9
3
.7
0
(±

3
.3
7
)
8
2
.5
2
(±

4
.7
3
)
9
0
.9
6
(±

1
.3
5
)
5
8
.8
1
(±

2
.4
0
)
7
0
.5
0
(±

1
.6
0
)
7
5
.3
8
(±

0
.0
0
)

B
in

W
id
th

/
/

/
8
6
.5
2
(±

2
.5
4
)
6
6
.6
7
(±

0
.0
0
)
5
2
.3
4
(±

0
.9
4
)

/
7
5
.3
8
(±

0
.0
0
)

S
B

K
m
e
a
n
s
(1

-P
a
ss
)
4
4
.7
0
(±

2
.3
4
)3
8
.6
0
(±

2
.1
7
)
7
9
.7
5
(±

4
.8
6
)
9
1
.5
7
(±

1
.5
2
)
7
2
.2
1
(±

1
0
.1
8
)5
4
.2
6
(±

2
.4
2
)
7
1
.4
3
(±

2
.7
4
)
7
7
.5
9
(±

1
.5
5
)

B
in

H
e
ig
h
t
(1

-P
a
ss
)
4
7
.5
8
(±

2
.5
9
)3
9
.9
4
(±

2
.2
0
)
8
5
.2
4
(±

4
.6
8
)
8
2
.3
2
(±

1
.8
7
)
9
1
.0
6
(±

1
.2
8
)
5
8
.9
3
(±

2
.3
9
)
6
9
.5
4
(±

1
.7
2
)
7
5
.3
8
(±

0
.0
0
)

B
in

W
id
th

(1
-P

a
ss
)

/
/

/
7
3
.1
9
(±

1
.0
5
)
6
6
.6
7
(±

0
.0
0
)
5
1
.7
3
(±

0
.7
9
)

/
7
5
.3
8
(±

0
.0
0
)

S
B

A
ffi
n
it
y

9
0
.6
7
(±

0
.2
6
)7
7
.0
7
(±

0
.4
6
)
9
9
.0
3
(±

0
.3
4
)
9
3
.5
5
(±

0
.6
8
)
9
3
.3
7
(±

1
.7
6
)
7
2
.3
4
(±

2
.3
3
)
8
1
.6
5
(±

1
.4
5
)

8
1
.6
5
(±

1
.4
5
)

8
1
.6
5
(±

1
.4
5
)
8
7
.9
2
(±

1
.2
4
)

8
7
.9
2
(±

1
.2
4
)

8
7
.9
2
(±

1
.2
4
)

B
in
a
ry

H
D
C

u
si
n
g
N
-g
ra

m
-b

a
se

d
E
n
c
o
d
in
g

H
D
C
lu
st
e
r

4
9
.7
8
(±

7
.8
6
)3
7
.0
3
(±

7
.9
6
)6
0
.1
0
(±

2
1
.2
6
)8
0
.3
8
(±

1
2
.3
9
)6
8
.3
0
(±

1
7
.7
0
)4
4
.9
2
(±

6
.3
6
)
5
3
.5
6
(±

8
.2
0
)
7
5
.4
3
(±

0
.3
3
)

S
B

K
m
e
a
n
s

5
6
.8
8
(±

3
.7
7
)5
4
.1
6
(±

2
.2
0
)6
8
.7
7
(±

2
0
.3
6
)
9
2
.3
8
(±

2
.6
0
)
8
5
.9
9
(±

0
.1
4
)
5
5
.4
3
(±

2
.1
8
)
6
4
.9
6
(±

2
.3
0
)
7
5
.3
8
(±

0
.0
0
)

B
in

H
e
ig
h
t

5
7
.3
6
(±

3
.8
2
)5
4
.9
4
(±

2
.2
4
)7
5
.1
9
(±

2
3
.9
4
)
8
4
.8
2
(±

6
.2
1
)
8
5
.9
9
(±

0
.1
4
)
6
0
.5
3
(±

3
.1
6
)
6
6
.5
2
(±

2
.2
3
)
7
5
.3
8
(±

0
.0
0
)

B
in

W
id
th

/
/

7
.7
0
(±

1
8
.8
4
)
9
2
.7
1
(±

0
.6
1
)
8
6
.0
0
(±

0
.1
1
)
5
5
.1
2
(±

1
.9
7
)

/
7
5
.4
1
(±

0
.2
6
)

S
B

K
m
e
a
n
s
(1

-P
a
ss
)
4
5
.5
5
(±

2
.9
2
)3
7
.9
4
(±

2
.3
2
)6
4
.1
4
(±

1
7
.5
7
)
9
2
.6
1
(±

0
.6
9
)
8
6
.1
3
(±

0
.5
2
)
5
5
.7
3
(±

2
.3
5
)
6
4
.7
7
(±

2
.1
6
)
7
5
.4
1
(±

0
.1
9
)

B
in

H
e
ig
h
t
(1

-P
a
ss
)
4
7
.2
9
(±

2
.9
4
)3
8
.3
1
(±

2
.6
3
)6
9
.3
2
(±

2
0
.7
9
)
8
3
.7
8
(±

2
.5
8
)
8
6
.5
8
(±

0
.8
5
)
6
0
.0
0
(±

2
.7
1
)
6
5
.9
1
(±

2
.3
5
)
7
5
.3
8
(±

0
.0
0
)

B
in

W
id
th

(1
-P

a
ss
)

/
/

7
.3
3
(±

1
7
.8
4
)
8
5
.0
9
(±

1
.7
8
)
8
6
.0
0
(±

0
.0
9
)
5
4
.9
1
(±

1
.8
1
)

/
7
5
.4
6
(±

0
.3
7
)

S
B

A
ffi
n
it
y

9
0
.6
8
(±

1
.0
1
)7
6
.6
5
(±

0
.5
9
)8
9
.2
2
(±

1
6
.1
8
)
9
4
.6
2
(±

0
.4
1
)

9
4
.6
2
(±

0
.4
1
)

9
4
.6
2
(±

0
.4
1
)
9
3
.7
3
(±

0
.6
8
)

9
3
.7
3
(±

0
.6
8
)

9
3
.7
3
(±

0
.6
8
)
7
2
.7
0
(±

2
.0
1
)

7
2
.7
0
(±

2
.0
1
)

7
2
.7
0
(±

2
.0
1
)
8
0
.1
5
(±

1
.5
3
)
8
7
.5
6
(±

0
.9
4
)

N
o
n
-B

in
a
ry

H
D
C

u
si
n
g
R
e
c
o
rd

-b
a
se

d
E
n
c
o
d
in
g

H
D
C
lu
st
e
r

5
0
.2
6
(±

8
.2
8
)3
8
.9
7
(±

6
.4
1
)5
8
.3
2
(±

1
5
.2
8
)8
0
.1
5
(±

1
3
.8
9
)6
8
.6
8
(±

1
6
.2
7
)4
4
.1
2
(±

6
.4
1
)
5
5
.4
6
(±

9
.6
9
)
7
5
.3
8
(±

0
.0
0
)

S
B

K
m
e
a
n
s

5
4
.9
5
(±

3
.4
5
)5
3
.0
4
(±

2
.6
1
)
8
4
.4
2
(±

1
.5
6
)
9
1
.9
0
(±

0
.8
2
)
8
5
.8
8
(±

0
.9
9
)
5
5
.8
4
(±

2
.1
7
)
6
8
.5
8
(±

1
.6
7
)
7
5
.3
8
(±

0
.0
0
)

B
in

H
e
ig
h
t

5
4
.4
5
(±

3
.2
1
)5
3
.7
6
(±

2
.3
9
)
9
3
.0
5
(±

2
.1
2
)
9
1
.3
2
(±

1
.0
1
)
8
5
.7
7
(±

0
.9
6
)
5
6
.3
5
(±

2
.3
8
)
6
7
.9
3
(±

1
.7
5
)
7
5
.3
8
(±

0
.0
0
)

B
in

W
id
th

5
5
.5
1
(±

2
.7
6
)

/
7
7
.7
7
(±

7
.1
2
)
9
2
.3
2
(±

0
.5
8
)
8
6
.8
3
(±

1
.4
2
)
5
5
.1
5
(±

0
.7
8
)

/
7
5
.4
4
(±

0
.3
1
)

S
B

K
m
e
a
n
s
(1

-P
a
ss
)
4
6
.5
8
(±

2
.2
5
)3
8
.9
8
(±

2
.1
2
)
8
2
.9
8
(±

2
.5
7
)
9
1
.7
0
(±

0
.8
7
)
8
7
.3
1
(±

0
.9
8
)
5
5
.4
3
(±

2
.1
2
)
6
7
.3
4
(±

1
.5
8
)
7
5
.5
8
(±

0
.5
6
)

B
in

H
e
ig
h
t
(1

-P
a
ss
)
4
9
.2
2
(±

2
.0
1
)3
9
.8
2
(±

2
.2
2
)
8
9
.0
4
(±

3
.8
9
)
9
0
.2
8
(±

1
.3
2
)
8
6
.8
5
(±

1
.0
3
)
5
7
.3
6
(±

2
.0
9
)
6
7
.3
8
(±

1
.7
8
)
7
5
.3
8
(±

0
.0
0
)

B
in

W
id
th

(1
-P

a
ss
)

3
9
.1
7
(±

2
.4
4
)

/
6
6
.3
5
(±

6
.5
0
)
9
2
.2
2
(±

0
.5
3
)
8
7
.9
5
(±

1
.0
4
)
5
4
.7
2
(±

1
.4
6
)

/
7
6
.7
0
(±

1
.2
3
)

S
B

A
ffi
n
it
y

9
1
.0
7
(±

0
.1
8
)7
7
.4
8
(±

0
.3
9
)
9
9
.6
7
(±

0
.1
6
)
9
4
.3
0
(±

0
.4
8
)
9
3
.0
0
(±

0
.8
6
)
7
2
.3
7
(±

2
.2
9
)
7
8
.9
2
(±

1
.2
8
)
8
6
.7
8
(±

1
.0
2
)

N
o
n
-B

in
a
ry

H
D
C

u
si
n
g
N
-g
ra

m
-b

a
se

d
E
n
c
o
d
in
g

H
D
C
lu
st
e
r

5
0
.1
6
(±

9
.0
0
)3
8
.9
2
(±

7
.3
5
)5
9
.8
6
(±

1
7
.2
4
)7
9
.9
9
(±

1
3
.9
5
)6
7
.7
4
(±

1
6
.8
3
)4
4
.4
0
(±

6
.4
1
)5
4
.6
6
(±

1
0
.1
4
)
7
5
.3
9
(±

0
.0
2
)

S
B

K
m
e
a
n
s

5
5
.1
8
(±

3
.6
3
)5
3
.4
8
(±

2
.5
0
)
8
4
.3
0
(±

1
.5
8
)
9
2
.0
0
(±

0
.4
5
)
8
6
.1
1
(±

0
.6
5
)
5
5
.7
9
(±

1
.7
2
)
6
7
.8
3
(±

1
.5
6
)
7
5
.3
8
(±

0
.0
0
)

B
in

H
e
ig
h
t

5
4
.9
9
(±

3
.5
7
)5
3
.5
7
(±

2
.5
0
)
9
3
.1
4
(±

2
.4
9
)
9
1
.4
8
(±

0
.6
7
)
8
5
.8
6
(±

0
.6
5
)
5
5
.8
9
(±

1
.8
2
)
6
8
.1
5
(±

1
.7
7
)
7
5
.3
8
(±

0
.0
0
)

B
in

W
id
th

5
5
.4
6
(±

3
.2
7
)

/
7
4
.8
6
(±

6
.5
0
)
9
2
.3
9
(±

0
.2
6
)
8
6
.9
9
(±

1
.1
3
)
5
5
.0
0
(±

0
.4
7
)

/
7
5
.4
6
(±

0
.3
8
)

S
B

K
m
e
a
n
s
(1

-P
a
ss
)
4
6
.6
6
(±

2
.5
0
)3
9
.2
0
(±

2
.2
2
)
8
3
.3
1
(±

2
.5
7
)
9
1
.7
5
(±

0
.5
3
)
8
7
.4
8
(±

0
.7
9
)
5
5
.2
2
(±

1
.7
9
)
6
6
.7
9
(±

1
.4
3
)
7
5
.4
4
(±

0
.2
8
)

B
in

H
e
ig
h
t
(1

-P
a
ss
)
4
8
.8
2
(±

2
.6
4
)3
9
.6
7
(±

2
.5
4
)
8
9
.6
6
(±

3
.5
2
)
9
0
.4
2
(±

1
.0
9
)
8
6
.8
3
(±

0
.7
3
)
5
6
.9
1
(±

1
.7
2
)
6
7
.5
4
(±

1
.8
7
)
7
5
.3
8
(±

0
.0
0
)

B
in

W
id
th

(1
-P

a
ss
)

4
1
.2
7
(±

2
.9
2
)

/
6
7
.9
0
(±

5
.4
6
)
9
2
.3
9
(±

0
.2
3
)
8
7
.8
0
(±

0
.7
7
)
5
4
.7
7
(±

0
.9
8
)

/
7
6
.5
3
(±

1
.1
0
)

S
B

A
ffi
n
it
y

9
1
.0
8
(±

0
.4
1
)

9
1
.0
8
(±

0
.4
1
)

9
1
.0
8
(±

0
.4
1
)7
7
.5
3
(±

0
.4
5
)

7
7
.5
3
(±

0
.4
5
)

7
7
.5
3
(±

0
.4
5
)
9
9
.7
2
(±

0
.1
3
)

9
9
.7
2
(±

0
.1
3
)

9
9
.7
2
(±

0
.1
3
)
9
4
.3
3
(±

0
.3
5
)
9
3
.1
1
(±

0
.7
9
)
7
2
.3
0
(±

2
.5
2
)
7
9
.1
5
(±

1
.2
7
)
8
6
.4
6
(±

0
.4
2
)

1
T
h
is

ta
b
le

d
is
p
la
y
s
th
e
cl
u
st
er
in
g
a
cc
u
ra
cy

ov
er

5
0
0
ru
n
s
in

th
e
fo
rm

a
t
o
f
[m

ea
n
(±

st
a
n
d
a
rd

d
ev
ia
ti
o
n
)]
.

S
y
m
b
o
l
“
/
”
in
d
ic
a
te
s
th
e
re
su
lt

is
n
o
t
av
a
il
a
b
le
.

96

6.5 Conclusion

We propose four HDC-based clustering algorithms based on the categorized informa-

tion that take advantage of the encoded data—intra-cluster hypervectors have a higher

similarity than inter-cluster hypervectors. We measure our algorithms by employing

two standard encoding algorithms (record-based and N-gram-based encoding) for both

binary and non-binary HDC. As compared to the existing HDCluster, our proposed

HDC-based algorithms achieve better and more robust accuracy, fewer iterative up-

dates of cluster hypervectors, and less execution time when tested over eight datasets.

Similarity-based affinity propagation outperformed the other three HDC-based clus-

tering algorithms on eight datasets by 2% ∼ 38% in clustering accuracy. Even for

one-pass clustering, our proposed algorithms can provide more robust clustering accu-

racy than HDCluster. In terms of whether to use the original data or encoded data,

we find that five out of eight datasets that are projected onto hyperdimensional space

can achieve better or comparable clustering accuracy. In particular, ISOLET does not

require projection, whereas IRIS benefits from hyperdimensional projection. This obser-

vation implies that projecting onto hyperdimensional space is attractive when both the

number of clusters k and the number of features n are small. Maintaining the original

data space is recommended when the number of clusters, k, is large. Future work will

be directed towards three avenues. First, all the discussed clustering problems in this

work are provided with ground truth. Additionally, the target number of clusters k is

already known. The capability of HDC to infer the optimal number of clusters k from

a given dataset without ground truth should be investigated. Second, the algorithms

in this research are more suitable for software implementations. Due to HDC’s energy

efficiency, future work should be directed towards hardware implementations. Third, we

find that HDC-based clustering algorithms perform well in RNA and Cancer datasets.

Therefore, future efforts should address clustering different types of biological datasets

in the HDC domain to obtain better performance and gain new insights.

Chapter 7

Clustering and classification for

brain stimulation with HDC

The study that presented in this chapter is currently being written [25, 26]. This chapter

proposes a novel algorithm that utilizes HDCluster to determine the number of clus-

ters for clinical trajectories. These trajectories are generated from individuals receiving

repetitive transcranial magnetic stimulation (rTMS) treatment for major depressive

disorder (MDD). In addition to clustering, this chapter also introduces a category pre-

diction method that utilizes 34 measured cognitive variables to predict clinical response.

The ultimate goal of this research is to investigate the applicability of HDC in analyz-

ing the efficacy of rTMS treatment for MDD. Specifically, this chapter focuses on two

specific aims: clustering and classification.

7.1 Introduction

Patients who suffer from major depressive disorder (MDD) experience persistent sadness

and loss of interest, which severely influences the quality of their daily life. Transcranial

magnetic stimulation (TMS), a noninvasive form of brain stimulation, can interfere with

cognitive functions and has been applied to treat MDD. Despite achieving great success

in treating MDD over the past few decades [133–135], TMS treatment presents several

challenges, including high costs, inconvenience for patients who must visit daily for a

month, slow effects that require repetitive treatments, and variable clinical responses.

97

98

Although TMS treatment can yield a comparable response rate to medication for MDD,

the corresponding mechanism and its effect on cognition are not well understood. Iden-

tifying biomarkers that can predict clinical responses to TMS could lead to more efficient

and personalized TMS treatments.

Clinical
Trajectories

Clustering &
Classification

TMS
Treatment

TMS coil

1. weekly PHQ9 score
2. cognitive variables

severity
cognitive tasks

1. Bandit
2. DPX

3. Two Step
4. Websurf

Concept

measured variables

PHQ9

Week
1 2 3 4 5 6 7 80

0
1

1
⋯
0

Figure 7.1: Goal overview.

To further understand the mechanism of TMS, as illustrated in Figure 7.1, patients

who suffer from MDD need to receive repetitive TMS (rTMS) treatment with the aid of a

TMS coil for several weeks. Four tasks that assess cognitive control—Bandit [136], Two

Step [137–139], Dot-Probe Expectancy (DPX) [140–143] and Websurf [144–147]—should

be conducted by patients. During the execution period, cognitive variables are measured

in the clinic. Treatment information including the patient ID, week number, PHQ9

score1, and cognitive variables are recorded for each treatment. Clinical trajectories

can be obtained on a weekly basis. Two specific tasks are investigated by employing

HDC in this chapter: (a) Explore the clinical response patterns exhibited by patients

undergoing rTMS treatment. (Task 1: clustering). (b) Study the predictive capability

of TMS response through measured cognitive variables (Task 2: classification).

For Task 1, we propose an algorithm based on HDC to estimate the number of

clusters in a given system of clinical trajectories. This can be achieved by utilizing an

existing HDC-based clustering algorithm—HDCluster [14]. Task 2 should ideally be a

regression task that uses measured cognitive variables to predict the actual PHQ9 score.

However, the regression models can only yield an average mean absolute error (MAE) of

1reflects the severity of MDD.

99

approximately 5. Instead of predicting the exact numerical values, the ability to predict

the concept of clinical response of rTMS treatment is also meaningful clinically. This

Task 2 is essentially a binary classification problem.

The contribution of this work can be summarized as follows: (a) The usage of the

existing HDCluster [14] requires the number of target clusters to be already known.

In this work, we develop an algorithm that statistically estimates/approximates the

number of clusters of the given clinical trajectories. Our proposed algorithm repeats

the HDCluster algorithm with different random seeds by giving all possible pre-defined

numbers of clusters. To the best knowledge of the authors, our work is the first to

determine the number of clusters using HDC-based clustering algorithms. (b) Due

to the inherent noise in measuring both the PHQ9 score and cognitive variables, the

achieved performance level of the regression model does not meet the standards of

clinical satisfaction. To this end, we consider a category prediction task to predict

the concept of clinical response for patients undergoing the rTMS treatment. The

experimental results can achieve 0.81 AUC to predict on a weekly-observation basis,

whereas it yields 0.86 AUC on a subject basis. (c) The motivation for investigating

the clustering is enhanced. Clustering results of clinical trajectories vividly deliver

the variability of TMS treatment across patients, especially the change rate of clinical

responses. Our study indicates that the obtained clustering knowledge can be utilized

for category prediction. In [], the concept of the clinical response is defined as logic

“1” if the PHQ9 score is below 50% of the baseline; otherwise, it is defined as logic “0”

to indicate no clinical response. In this chapter, we provide another criterion to define

the concept of the clinical response using the clustering results. Such a criterion has

also been demonstrated to be efficient in category prediction. (d) In order to improve

the classification performance, we find the random seeds that are used to generate seed

hypervectors could be considered as the fine-tuned parameters for HDC. This reveals

that HDC is one of the approximate computing paradigms and its performance is not

deterministic. (e) Our work demonstrates that HDC can be applied to cluster and

classify the weekly track of the trajectories for TMS treatment.

100

Basics of HDC

Type of HDC

Binary
[40, 50, 51]

Non-binary
[10, 47, 52]

Seed HVs

Random
[17, 35, 70]

Level
[7]

Circular
[117]

Encoding

Record-based
[47]

N-gram-based
[17]

GrapHD
[13]

specific for graph structures

Training

Single-pass
[148]

Retraining
[8, 52, 149]

Parameters

d
[11]

Random seed
[24]

Figure 7.2: Overview of the basics of HDC.

7.2 Preliminaries

This section gives an overview of HDC and reviews two research problems using HDC—

clustering and classification.

7.2.1 Basics of HDC

For any HDC system, the initial data samples are represented by ultra-long vectors—

hypervectors. Such a process relies on seed/atomic hypervectors as the building blocks

and then generates compound/composite hypervectors using an encoding algorithm.

Seed hypervectors have three main categories: random (randomly generated so that

they are orthogonal to each other), level (correction reserved), and circular (suitable

for circular data: seasons of the year) hypervectors [117]. Typically, three operations—

addition, multiplication, and permutation—can be involved in encoding algorithms. In

contrast to classical computing, HDC relies on similarities between hypervectors rather

than on actual values being computed. As sketched in Figure 7.2, a number of factors

should be considered, but not limited to:

Types of HDC

The components of hypervectors can be binary (0, 1), bipolar (-1, 1), integers, real val-

ues, and complex values. HDC can be categorized as binary HDC and non-binary HDC.

There are two main differences between them: (a) binary HDC requires the “majority

rule” for bit-wise addition; (b) for the similarity measurement (δ) between hypervectors,

as illustrated in Eq. (2.3), binary HDC uses the Hamming distance whereas non-binary

HDC employs cosine similarity. Here A, B are two hypervectors and d represents their

corresponding dimensionality.

In general, binary HDC is hardware-friendly since only unsigned logic “0” and “1”.

101

For non-binary HDC, the accuracy performance is usually higher than binary HDC

because there is no information loss by applying the majority rule.

In this chapter, non-binary HDC is restrictedly referred to as bipolar seed hyper-

vectors and integer composite hypervectors, whereas binary HDC means both seed and

composite hypervectors are binary hypervectors.

Encoding Algorithms

In HDC, two standard encoding algorithms are record-based encoding and N -gram-

based encoding. They can encode images, signals, sequences, etc. One thing that

should be mentioned is that GrapHD encoding [13] is used explicitly for graph structure

data that contains nodes and edges.

Equation (7.1) summarizes the two standard encoding algorithms. As shown in

Eq. (2a), both of them require the level hypervectors {L1, · · · ,Lq} to represent the

quantized values V̄j for the raw data, where the quantization level is denoted by q. (a)

Record-based encoding (Eq. (7.1b)) employs the random hypervectors {ID1, · · · , IDq}
as the identifiers to encode the position information. (b) N -gram-based encoding (Eq.

(7.1c)) considers the position information by permutation operations (ρ(·)), where ρn−1

means the hypervector is permuted (n− 1) times.

V̄j ∈ {L1, · · · ,Lq}, where 1 ≤ j ≤ q. (2a)

QueryHVi =

{
V̄1 ∗ ID1 + · · · + V̄n ∗ IDn, (2b)

V̄1 + ρV̄2 + · · · + ρn−1V̄n. (2c)

Training Mode

HDC supports two training modes for addressing classification tasks: single-pass and

retraining. The HDC method, which only learns once for class hypervectors, is called

single-pass learning. In retraining, the class hypervectors are iteratively updated from

the training data until they meet the convergence condition [8, 52, 149]. As described in

Eq. (7.3), if the QueryHV is misclassified as a wrong label W and should be correctly

classified into label C, then the class hypervectors should be updated: (a) misclassified

class hypervector(s) ClassHVW subtract(s) the QueryHV; (b) target-correct class

102

hypervector ClassHVC adds the QueryHV.

ClassHVC = ClassHVC + QueryHV,

ClassHVW = ClassHVW −QueryHV.
(7.3)

Fine-tuning Parameters in HDC

Dimensionality d and quantization level q are common fine-tuning parameters for HDC.

The random seed to generate seed hypervectors has not been paid attention to in pre-

vious HDC studies for a long time but its significant impact on the robust clustering

performance is emphasized in [24].

In our work, we consider all the factors/components mentioned above: two encoding

algorithms, two types of hypervectors, and two training modes. Only d = 10, 000 is

studied.

HDCluster [14] is an HDC-based algorithm that mimics the traditional k-means

algorithm [122] and has been shown to be more accurate than k-means across versa-

tile machine-learning datasets. Note that the number of clusters for a given dataset

should already be known before applying HDCluster. As described previously, Figure

6.1 illustrates an overview of HDCluster. A dataset, containing n data samples with

f features, should be clustered into k groups. To represent the initial cluster centers,

k random hypervectors are generated—ClusterHV1, · · · ,ClusterHVk. ➊ Each data

sample is encoded using the record-based encoding method after the feature values have

been quantized into q levels, where feature indices are encoded with ID hypervectors

(random hypervectors), and feature values are encoded with V ∈ {L1, · · · ,Lq} (level

hypervectors)). ➋ In each iteration, every data sample is assigned to the cluster center

that reflects the highest similarity and is tagged accordingly. ➌ Cluster hypervectors

are updated by adding data samples associated with each cluster. ➍ Iterations will

be terminated if (i) the center hypervectors change slightly between two consecutive

iterations or (ii) the number of iterations exceeds the pre-defined number.

7.2.2 Classification using HDC

For classification, class hypervectors are trained during the training phase. To be more

specific, the class hypervector is the summation of the hypervectors belonging to the

103

same class. During the inference phase, the unknown data sample is encoded as a query

hypervector. The corresponding label is determined by the highest similarity among

the similarity results calculated by the query hypervector and the pre-trained class

hypervectors. Readers are referred to [19] for more details.

7.3 Methodology

7.3.1 Clustering using HDC

Algorithm Statistics

conduct 1,000 trials per case
pre-define possible #of clusters

median value of # of clusters in use
histogram

of clusters

Y=
in use

pre-defined

PHQ9

Week
1 2 3 4 5 6 7 80

Nredefine # of clusters

Trajectories

Figure 7.3: Clinical-trajectory-pattern clustering using HDC.

A schematic representation of the pipeline of HDC-based clustering of clinical tra-

jectories is shown in Figure 7.3. All n trajectories are encoded as query hypervectors,

which are denoted by {QueryHV1, · · · ,QueryHVn}. In Algorithm 1, statistical re-

sults are used to estimate the number of clusters for a given dataset, which contains

n data samples. Therefore, theoretically, this dataset has a range of clusters between

1 and n. Pre-specify the number of clusters as i (∈ [1, n]), and apply HDCluster for

the given system. Repeat this procedure for 1, 000 runs and track the number of clus-

ters practically in use. Note that the initial cluster hypervectors are generated with

random seed j for the jth run, where 1 ≤ j ≤ 1, 000. A boxplot is obtained, whose

x-axis represents the number of pre-defined clusters and y-axis represents the number

of clusters in use. The mode values of all boxes can generate a histogram, where the

x-axis lists all possible numbers of clusters and the y-axis reflects the corresponding

frequency. The highest bin statistically indicates the number of clusters for the given

clinical trajectories.

Why statistical results of applying HDCluster can estimate the number of clusters

for a given system? Based on different random seeds, the initial cluster hypervectors

are generated at random, indicating that these starting points (cluster hypervectors)

104

Algorithm 1 The number of clusters analysis.

Require: A system of encoded hypervectors.
1: for i = 1:n, where n is # of data samples do
2: Specify the number of clusters as i.
3: for j = 1:1000 do
4: Generate ClusterHV1, · · · ,ClusterHVi.
5: Apply HDCluster to label all QueryHVs.
6: Calculate #of clusters in use.
7: end for
8: Record the mode value over 1000 runs.
9: end for

10: Generate a histogram to display the frequency of all mode values. The highest bin
reveals the number of clusters for this system.

11: if #of pre-defined clusters != #of clusters in use then
12: Use the mode value of the system clusters as the #of pre-defined clusters.
13: end if

are equally likely to be selected from the hyperspace. It may be helpful to consider the

main idea behind our Algorithm 1 as an analogy to the estimation of probability based

on frequency statistics.

7.3.2 Category Prediction using HDC

Using 34 variables measured in four different cognitive tasks to predict the PHQ9 score,

such a numerical regression problem practically leads to roughly 5 MAE. The noisiness

of both PHQ9 scores and cognitive variables could cause such an unsatisfactory per-

formance. Instead, we propose a category prediction strategy to predict the concept

of clinical response after the TMS treatment. This category prediction is essentially a

binary classification task, label “1” indicates there exists a clinical response after the

TMS treatment while label “0” means no response.

Figure 7.4 illustrates the strategy of category prediction. A spreadsheet that contains

the weekly records of different subjects is used as the input for this category prediction.

In the preprocessing, ground truth (the correct “0” and “1” labels) should be pre-

determined for the raw data. Variables should be corrected/revised by subtracting its

baseline2 parameters per subject. Data are fed to an HDC-based classifier to conduct a

2Week 0 by default. Week 1 if Week 0 is missing.

105
22

su
bj

ec
ts

19
2

ob
se

rv
at

io
ns ID Week V1 V34 Y

0
		⋯

0
0
		⋯

0
1
		⋯
1
0

...PHQ9

Ø All features
Ø Feature selection: SelectKBest
Ø Dimensionality Reduction: PCA

Preprocessing Algorithms

Variable Correction
Ground Truth Determination 22 models

LOSOCV
Output

Y
0
		⋯

0
0
		⋯

0
1
		⋯
1
0

192
labels

Post
process

ing
Observation-wise

prediction (192 labels)
N

Subject-wise
prediction (22 labels)

Yany “1” over weeks

All-week observations
Few-week observations

	" 0
1
	⋯
8

	"
	"
	"

Criterion
PHQ9

Week
1 2 3 4 5 6 7 80

<=50%
“0”

“1”

Figure 7.4: Category prediction overview.

leave-one-subject-out cross-validation (LOSOCV). If no post-processing is applied, it is

an observation-wise prediction task; otherwise, a subject-wise prediction is conducted.

Ground Truth Determination

Two criteria are considered to determine the ground truth table.

Data in Use

Whether using the whole data in the spreadsheet is investigated in this work. For each

subject, we use the all-week observations and few-week observations, separately. For

the 35 features (week number and 34 cognitive variables), whether to use all features

or selected features is also investigated. In terms of selected features, we use the Se-

lectKBest algorithm for feature selection and principal component analysis (PCA) for

dimensionality reduction.

Post-processing

The post-processing strategy in our research is, for a certain subject, if any clinical

response “1” is detected over all eight weeks, then rTMS treatment is considered to be

effective for this subject.

For category prediction, three cases are mainly studied: (a) all week-observations

with criterion 1 (Case 1); (b) few week-observations with criterion 1 (Case 2); (c) few

week observations with criterion 2 (Case 3).

106

7.4 Experimental Results

7.4.1 Materials

Thirty-two patients undergoing eight weeks of rTMS treatment for MDD were asked

to complete four different cognitive tasks that assessed their cognitive control. During

this process, a total of 34 cognitive variables are measured. To store the treatment

information, patient ID, week number, PHQ9 score, and 34 cognitive variables are

recorded in a spreadsheet. In week 0, no TMS treatment is applied; therefore week 0

is considered a baseline for further analysis. In this dataset, there are n = 27 patients

who have consecutive eight-week PHQ9 scores for Task 1, whereas only n = 22 patients

have the full 34 cognitive variables for Task 2.

For clustering, a large dataset (n = 176) is used to test our proposed algorithm to

determine the number of clusters for a given system using HDCluster. In this dataset,

patients receive 6 or 8 weeks of TMS treatment. Only PHQ9 scores are recorded.

Since the 34 cognitive variables are not measured, this large dataset cannot be used for

category prediction purposes.

7.4.2 Clustering

Small Dataset

Figure 7.5 shows the clustering results using our proposed Algorithm 1 when n = 27

using N -gram-based encoding for non-binary HDC. For original clinical trajectories

(Figure 7.5(a)), since the number of clinical trajectories (data samples) is 27 subjects,

the number of clusters theoretically ranges from [1, 27]. We pre-define the number of

clusters to apply Algorithm 1. The boxplot describes the number of used clusters over

1, 000 runs for all possible 27 cases of predefined clusters. The most frequent number

of clusters in use (mode value per box) are marked by red dots. Among the 27 cases,

the number of clusters in use is prone to be 4 as statistically revealed by the histogram.

The corresponding clustering result using our proposed algorithm is shown in the third

column. The last column shows a clustering result using the traditional clustering

method, where the number of clusters is determined also by 4.

107

(a) Original trajectories clustering results using N -gram-based encoding for non-binary HDC.

(b) Baseline-corrected results using N -gram-based encoding for non-binary HDC.

Figure 7.5: Clinical-trajectory-pattern clustering using HDC for a small dataset (n =
27).

Using original clinical trajectories, the clustering result essentially suggests the clus-

ters of different levels of the PHQ9 scores: low, median, high, and top high. In clinics,

the rate of clinical trajectories is more of interest. Similar to [], a baseline correction is

conducted for the original data to subtract the baseline PHQ9 score per subject. Our

HDC-based algorithm indicates there should be 3 clusters, which lines up with the tradi-

tional method. Based on Figure 7.5(b), the clustering results reveal that trajectories of

patients who receive rTMS treatment are clustered as (i) no clinical change (ii) median

rate of change and (iii) fast rate of change.

108

(a) Original trajectories clustering results using N -gram-based encoding for non-binary HDC.

(b) Baseline-corrected results using N -gram-based encoding for non-binary HDC.

Figure 7.6: Clinical-trajectory-pattern clustering using HDC for a large dataset (n =
176).

Large Dataset

Figure 7.6 displays the clustering patterns using a large dataset (n = 176) for both orig-

inal and baseline-corrected trajectories. For original trajectories clustering, the boxplot

in Figure 7.6(a) reveals that the number of clusters in use tends to be no more than

18. Using Algorithm 1 with N -gram-based encoding for non-binary HDC, the number

109

of clusters for the given 176 trajectories is indicated to be 4. The corresponding clus-

tering patterns reflect four clusters/levels of disorder severity. For baseline-corrected

trajectories, 3 clustering patterns are indicated for the clinical response rates.

Table 7.1: LCMM results for original data (n = 27).

Model1 G2 AIC
Membership [%]

MSE
group1 group2 group3 group4 group5 group6 group7

Lin 1 1238.27 100.0 3.75
Lin 2 1241.26 66.67 33.33 3.81
Lin 3 1237.23 22.22 51.85 25.93 3.92
Lin 4 1224.73 48.15 14.81 11.11 25.93 3.95
Lin 5 1227.96 11.11 37.04 14.81 11.11 25.93 3.95
Lin 6 1228.23 11.11 33.33 14.81 11.11 3.70 25.93 4.07
Lin 7 1231.96 11.11 33.33 7.41 3.70 14.81 3.70 25.93 4.02

Quad 1 1198.04 100.0 2.14
Quad 2 1201.12 81.48 18.52 2.20
Quad 3 1208.68 22.22 37.04 40.74 2.25
Quad 4 1194.47 11.11 33.33 33.33 22.22 2.42
Quad 5 1189.21 37.04 7.41 25.93 3.70 25.93 2.61
Quad 6 1183.11 33.33 11.11 11.11 14.81 3.70 25.93 2.39
Quad 7 1173.39 18.52 18.52 7.41 22.22 7.41 14.81 11.11 2.35

Cub 1 1195.96 100.0 1.74
Cub 2 1197.18 85.19 14.81 1.63
Cub 3 1184.96 44.44 33.33 22.22 1.93
Cub 4 1222.99 0.00 25.93 74.07 0.00 1.75
Cub 5 1233.66 0.00 14.81 25.93 59.26 0.00 1.78
Cub 6 1220.96 0.00 0.00 44.44 33.33 22.22 0.00 1.93
Cub 7 1252.44 0.00 0.00 18.52 48.15 33.33 0.00 0.00 1.77
1Lin: linear; Quad: quadratic; Cub: cubic.
2G: number of clusters.

A classical algorithm, namely latent class mixed modeling (LCMM), is also applied

to this clustering problem as a comparison with HDC. Here, heterogeneous linear mixed

models are used, including “linear”, “quadratic”, and “cubic” formulas. Specifically, the

‘hlme’ function in the R language is employed. Table 7.1 reports the performance using

LCMM for the original data when n = 27. The pre-specified number of clusters ranges

from 1 to 7 because the maximum number of clusters identified by HDC is 7 as illustrated

in Appendix A.1. The metrics to determine the number of clusters using LCMM include

AIC3, membership4, and MSE for prediction. It is recommended that a good model

have a low AIC, a low MSE, and a percentage of each group greater than 10%. On

the basis of the lowest AIC, a quadratic model should be selected, which suggests seven

3short for Akaike’s information criterion, which measures the quality of the model. The lower the
AIC, the better performance the model achieves.

4reflects the percentage of each cluster in all data samples. In practical, “%group < 10%” should be
avoided.

110

clusters. However, its membership exists at least one group is less than 10%. For the

lowest MSE, a cubic model suggesting 2 clusters is the appropriate option; however, its

AIC is relatively high. Considering all three metrics, a cubic model with 3 clusters is

recommended by LCMM for original data.

Table 7.2: LCMM results for corrected data (n = 27).

Model G AIC
Membership [%]

MSE
group1 group2 group3 group4 group5 group6 group7

Lin 1 1178.20 100.0 3.99
Lin 2 1179.54 37.04 62.96 4.04
Lin 3 1184.81 25.93 33.33 40.74 4.04
Lin 4 1188.28 44.44 14.81 33.33 7.41 4.08
Lin 5 1192.18 18.52 3.70 29.63 40.74 7.41 4.21
Lin 6 1199.82 3.70 14.81 14.81 11.11 29.63 25.93 3.95
Lin 7 1202.84 3.70 14.81 14.81 11.11 11.11 37.04 7.41 4.06

Quad 1 1106.30 100.0 2.19
Quad 2 1106.48 25.93 74.07 2.26
Quad 3 1114.60 25.93 59.26 14.81 2.36
Quad 4 1117.78 25.93 3.70 59.26 11.11 2.35
Quad 5 1124.89 3.70 25.93 55.56 11.11 3.70 2.33
Quad 6 1130.33 14.81 11.11 25.93 29.63 7.41 11.11 2.37
Quad 7 1135.22 11.11 14.81 7.41 25.93 29.63 7.41 3.70 2.33

Cub 1 1097.89 100.0 1.68
Cub 2 1103.02 48.15 51.85 1.74
Cub 3 1105.90 33.33 48.15 18.52 1.64
Cub 4 1111.58 0.00 18.52 77.78 3.70 1.75
Cub 5 1123.56 0.00 18.52 3.70 77.78 0.00 1.75
Cub 6 1135.56 0.00 0.00 18.52 77.78 3.70 0.00 1.75
Cub 7 1147.56 0.00 0.00 18.52 3.70 77.78 0.00 0.00 1.75

Table 7.2 summarizes the performance of LCMM for baseline-corrected data when

n = 27. Similarly, the optimal choice is the cubic model which suggests 3 clusters. Figure

7.7 shows the clustering patterns using LCMM. Observe that the patterns reflect the

severity of MDD for original data, and the rates of change for baseline-corrected data.

As with the HDC results, the clustering trajectories follow a similar pattern, although

the final number of clusters may vary. When n = 176, LCMM suggests a cubic model

with 3 clusters for original data, while it suggests a cubic model with 2 clusters for

baseline-corrected data. Please refer to Appendix A.2 for more details.

111

(a) Original data. (b) Baseline-corrected data.

Figure 7.7: Trajectory clustering for LCMM when n = 27.

Table 7.3: Experimental results for category prediction using HDC.

Single-Pass Observation Subject

Method1 ACC SENSPECAUCParameters2 ACC SEN SPECAUCParameters

All Features

Case 1 70.31 45.71 75.80 0.61 [Enc1, B, ‘4’ ‘21’] 59.09 52.63 100.00 0.76 [Enc1, B, ‘6’ ‘21’]
Case 2 55.88 83.33 47.44 0.65 [Enc2, B, ‘2’ ‘21’] 54.55 47.37 100.00 0.74 [Enc2, B, ‘0’ ‘21’]
Case 3 62.75 70.45 56.90 0.64 [Enc2, B, ‘2’ ‘21’] 59.09 50.00 100.00 0.75 [Enc1, B, ‘4’ ‘21’]

SelectedKBest

Case 1 78.12 80.00 77.71 0.79 [Enc2, B, ‘1’ ‘1’ ‘2’ ‘21’] 72.73 62.50 100.00 0.81 [Enc2, B, ‘4’ ‘1’ ‘3’ ‘21’]
Case 2 77.45 83.33 75.64 0.79 [Enc2, B, ‘6’ ‘1’ ‘4’ ‘21’] 68.18 56.25 100.00 0.78 [Enc1, B, ‘3’ ‘1’ ‘5’ ‘21’]
Case 3 75.49 59.09 87.93 0.74 [Enc2, B, ‘5’ ‘1’ ‘1’ ‘21’] 72.73 60.00 100.00 0.80 [Enc2, NB, ‘5’ ‘1’ ‘10’ ‘21’]

PCA

Case 1 60.42 85.71 54.78 0.70 [Enc1, NB, ‘1’ ‘1’ ‘21’] 63.64 55.56 100.00 0.78 [Enc2, B, ‘9’ ‘2’ ‘21’]
Case 2 57.84 79.17 51.28 0.65 [Enc2, B, ‘7’ ‘21’ ‘21’] 54.55 47.37 100.00 0.74 [Enc1, B, ‘3’ ‘3’ ‘21’]
Case 3 67.65 65.91 68.97 0.67 [Enc2, B, ‘7’ ‘19’ ‘21’] 72.73 60.00 100.00 0.80 [Enc1, NB, ‘0’ ‘8’ ‘21’]

Retraining Observation Subject

Method ACC SENSPECAUCParameters ACC SEN SPECAUCParameters

All Features

Case 1 80.73 14.29 95.54 0.55 [Enc1, B, ‘1’ ‘21’] 54.55 50.00 58.33 0.54 [Enc1, NB, ‘7’ ‘21’]
Case 2 68.63 29.17 80.77 0.55 [Enc2, NB, ‘1’ ‘21’] 63.64 100.00 61.90 0.81 [Enc2, B, ‘0’ ‘21’]
Case 3 65.69 56.82 72.41 0.65 [Enc2, B, ‘9’ ‘21’] 63.64 52.94 100.00 0.76 [Enc2, B, ‘9’ ‘21’]

SelectedKBest

Case 1 83.3377.14 84.71 0.81 [Enc1, B, ‘6’ ‘1’ ‘2’ ‘21’] 72.73 100.00 66.67 0.83 [Enc2, B, ‘0’ ‘1’ ‘7’ ‘21’]
Case 2 77.45 58.33 83.33 0.71 [Enc2, NB, ‘5’ ‘1’ ‘2’ ‘21’] 77.27100.00 72.22 0.86 [Enc1, B, ‘9’ ‘1’ ‘30’ ‘21’]
Case 3 73.53 68.18 77.59 0.73 [Enc1, B, ‘4’ ‘1’ ‘15’ ‘21’] 81.82 69.23 100.00 0.85 [Enc1, NB, ‘1’ ‘1’ ‘9’ ‘21’]

PCA

Case 1 66.15 68.57 65.61 0.67 [Enc1, B, ‘0’ ‘22’ ‘21’] 59.09 52.63 100.00 0.76 [Enc1, B, ‘0’ ‘7’ ‘21’]
Case 2 76.47 50.00 84.62 0.67 [Enc1, NB, ‘2’ ‘5’ ‘21’] 63.64 100.00 61.90 0.81 [Enc2, B, ‘8’ ‘15’ ‘21’]
Case 3 68.63 63.64 72.41 0.68 [Enc2, B, ‘9’ ‘18’ ‘21’] 77.27 64.29 100.00 0.82 [Enc2, NB, ‘1’ ‘12’ ‘21’]

1Case 1: all week-observations with criterion 1; Case 2: few week-observations with criterion 1;
∗Case 3: few week-observations with criterion 2.
2Enc1: record-based; Enc2: permutation; B: binary HDC; NB: non-binary HDC.

For selected criteria of SelectKBest, ‘0’: f classif, ‘1’: mutual info classif.

112

7.4.3 Category Prediction

As mentioned in Sec. 7.3.2, we consider the observation-based and subject-based cate-

gory prediction. The first case predicts the efficacy of TMS treatment for a patient on

a weekly basis, while the second case considers all predicted weekly results to make a

final decision on the effectiveness of TMS treatment. Specifically, if any “1” is detected

among all predicted week labels, the TMS treatment is considered effective in producing

a clinical response.

Apart from using all features, a small number of features is considered by feature

selection or dimensionality reduction. For feature selection, we use the SelectKBest

algorithm with two selection criteria: “f classif” (measures the F values) and “mu-

tual info classif” (measures the mutual information) in the scikit learn library [150].

For dimensionality reduction, we consider PCA. Since we have in total of 35 features,

we sweep the small number of features from 1 to 34.

Regarding HDC, we normalized the raw data into [0, 1], the quantization level is

specified as q = 21, and the random seed ranges from [0, 9].

Table 7.3 lists the simulation results for category prediction using HDC. Note that

for category prediction, we use 35 features (34 measured cognitive variables and week

number) to predict the concept of clinical response. The information in the “parameters”

column is listed in the order of (a) encoding algorithms, types of HDC, random seed,

and quantization level for all features; (b) encoding algorithms, types of HDC, random

seed, selection criteria, k selected features and quantization level for SelectKBest, (c)

encoding algorithms, types of HDC, random seed, k components and quantization level

for PCA.

According to this Table 7.3, (a) the best performance for subject-based category pre-

diction is 0.86 AUC, which is higher than that for observation-based category prediction

by 0.05. (b) Retraining can lead to optimal performance in both observation-based and

subject-based category prediction scenarios. (c) In seven out of nine cases, predictions

based on subjects perform better than predictions based on week-wise observations.

This can be attributed to the fact that predicting categories based on observations re-

quires a higher level of accuracy for weekly predictions as compared to the subject-wise

category prediction which makes one prediction using all eight weeks’ results. (d) Fea-

ture engineering is proven to be efficient in improving category prediction since not all

113

features contain useful information. For this particular research task, SelectKBest is

sufficient and its optimal performance is achieved when the feature selection criterion

based on mutual information is adopted. (e) This table also reveals that non-binary

HDC cannot always guarantee a higher performance than binary HDC. Additionally,

the optimal performance is achieved by different random seeds. The observation implies

that HDC performance may not be deterministic or robust and could be approximate

or stochastic. However, it is widely believed in the literature that HDC is resistant to

noise since the information is uniformly distributed across all d bits [130].

Table 7.4: Comparison with SVM.

Observation Subject

Method ACC SEN SPECAUCParameters ACC SEN SPECAUCParameters

SelectKBest
Case1 85.94 57.14 92.36 0.75 1000, 0.1, [3 0 6], RBF 86.36 100 80 0.9 2, 0, ‘scale’, [0 1 1], Sigmoid

83.33 77.14 84.71 0.81 [Enc1, B, ‘6’ ‘1’ ‘2’ ‘21’], Retraining 72.73 100.00 66.67 0.83 [Enc2, B, ‘0’ ‘1’ ‘7’ ‘21’], Retraining

Case2 86.27 62.50 93.59 0.78 1000, ‘scale’, [0 0 10], RBF 90.91 88.89 92.31 0.91 1, 0.01, ‘scale’, [0 0 2], Sigmoid
77.45 83.33 75.64 0.79 [Enc2, B, ‘6’ ‘1’ ‘4’ ‘21’], Single-pass 77.27 100.00 72.22 0.86 [Enc1, B, ‘9’ ‘1’ ‘30’ ‘21’], Retraining

Case3 81.37 65.91 93.10 0.80 0.5, -0.01, ‘scale’, [2 1 2], Sigmoid 90.91 88.89 92.31 0.91 0.5, -0.01, ‘scale’, [2 1 2], Sigmoid
75.49 59.09 87.93 0.74 [Enc2, B, ‘5’ ‘1’ ‘1’ ‘21’], Single-pass 77.27 64.29 100.00 0.82 [Enc2, NB, ‘1’ ‘12’ ‘21’], Retraining

We applied SVM with the kernel of linear, RBF, and sigmoid functions to the same

dataset for three cases. Table 7.4 compares the performance of HDC with the traditional

SVM. Only the optimal results for each case are listed. We find: (a) HDC achieves

comparable performance with SVM in observation-wise category prediction, whereas

traditional SVM outperforms HDC for subject-wise category prediction by 0.05 AUC.

(b) Subject-wise category prediction can achieve the highest performance (0.91 AUC),

a 10% improvement over observation-wise category prediction. (c) For both SVM and

HDC, the optimal performance is achieved when SelectKBest is applied across three

cases.

7.4.4 Further Discussion

Importance/Motivation of Clustering

The experimental results for Case 3 in Table 7.3 give us a piece of strong evidence

that the knowledge of the clustering patterns for the baseline-corrected data can be

harnessed for category prediction (criterion 2 in Figure 7.4). Additionally, for a few

weeks of observation, the clustering results show a downward trend for PHQ9 scores

114

from weeks 4 to 7, followed by a rise at week 8. As a result, the week 8 observation is

excluded from the analysis.

Length of Trajectories

For time-series clustering, classic algorithms even support unequal-length trajectory

clustering [151]. In this work, only equal-length trajectories are studied by HDC.

Cost of Our Proposed Algorithm 1

Given n data samples, over j = 1, 000 experiments are conducted even for a single pre-

defined number of clusters. The complexity of this algorithm is measured by O(jn).

Ideally, the greater the number of experiments (j) we conduct, the more accurate the

approximation for the number of clusters. To determine the number of clusters, there

should be a more elegant method that has less complexity/cost.

7.5 Conclusion

This chapter addresses two research tasks using HDC: (i) clustering for the clinical tra-

jectories after TMS treatment and (ii) category prediction using 34 measured cognitive

variables.

We have developed an algorithm for clustering that utilizes the existing HDCluster

to derive statistical data for estimating or approximating the number of clusters in a

given system. We test our proposed algorithm for a small n = 27 and a large n = 176.

The group of clinical trajectories is suggested to have four clusters for original data

and three clusters for baseline-corrected data. The corresponding clustering patterns

follow a similar pattern as those indicated by the classic LCMM, however, the number

of clusters varies.

Our analysis includes both observation-wise and subject-wise category prediction.

The former scenario yields an AUC of 0.81, while the latter one achieves an AUC of 0.86.

Improving performance in binary classification has been shown to be efficient through

(a) feature engineering, particularly feature selection using SelectKBest; (b) retraining

technique for HDC; (c) random seeds for the generation of seed hypervectors in HDC;

(d) tailoring the classification goal while still ensuring its significance. This means, for

115

subject-wise category prediction, we do not require as high an accuracy as that required

for observation-wise category prediction. The efficiency of recovery following rTMS

treatment is still measurable.

Future work will be directed towards three avenues. First, a more elegant HDC-

based algorithm to determine the number of clusters with less computational complexity

should be developed. Additionally, without loss of generality, it is important to test the

statistical estimation of the clusters of a given system across various machine-learning

datasets. Second, this work only investigates equal-length trajectory clustering. Further

research could be focused on another practical scenario of clustering trajectories with

unequal lengths. Third, it is important to identify applications in which the performance

is not significantly affected by the random seeds used for seed hypervector generators.

Chapter 8

Conclusion and Future Directions

This dissertation investigates the applicability of HDC to biosignal-centric tasks, such

as seizure detection and prediction (iEEG data), brain graph classification (fMRI data),

and TMS treatment analysis (brain stimulation measurement). In this chapter, we sum-

marize the key findings of our study and identify potential avenues for future research.

8.1 Key Findings

Below is a summary of the key findings.

• Our research contributes to the growing body of evidence supporting the potential

of HDC for seizure detection, as demonstrated in previous studies [9, 16, 95]. In

contrast to these studies, we use the Kaggle dataset [28] to evaluate the perfor-

mance of HDC in this application. Our experimental results indicate that PSD en-

coding outperforms LBP encoding for seizure detection using HDC. Interestingly,

we find that even a low dimensionality of d = 100 achieves good performance,

highlighting the efficiency of HDC for this task.

• We uncover essential insights regarding the efficiency of PSD and LBP encoding

methods for seizure detection and prediction. Specifically, we find that PSD and

LBP encoding demonstrate high efficacy for seizure detection tasks. However,

when it comes to seizure prediction, these encoding methods fall short in terms

of their predictive capabilities. These findings underscore the need for further

116

117

research and development of more advanced encoding techniques tailored explicitly

for seizure prediction applications.

• Our study highlights the potential of GrapHD encoding for brain graph classifica-

tion, which outperforms the existing HDC encoding algorithms, including record-

based and N-gram-based encoding. Notably, GrapHD encoding is more efficient

in terms of memory requirements.

• We emphasize the impact of random seed on the clustering performance of HDC,

revealing that the existing HDCluster algorithm may not be as robust as ex-

pected. To address this limitation, we propose more reliable clustering algorithms

that leverage the unique characteristics of hypervectors. Specifically, we utilize

similarity measurements to group similar hypervectors and distinguish less sim-

ilar ones, resulting in more accurate and robust clustering performance. These

findings have important implications for the development and application of HDC

in various domains.

• We propose one method of manipulating HDCluster to determine the number of

clusters for given clinical trajectories for rTMS. We have demonstrated that cat-

egory prediction (classification) is more accurate than numerical value prediction

(regression) for TMS treatment analysis.

8.2 Future Outlook

The future would be oriented towards:

• Instead of LBP and PSD features, more efficient features for seizure prediction

should be explored to enhance the performance.

• We trained our seizure detection and prediction model on an individual basis,

which means that it is subject-specific. However, we recognize the importance

of exploring group-based analysis for seizure detection and prediction, which can

potentially enhance the scalability and generalizability of our models. Further-

more, given the diverse range of epilepsy types and presentations, it is crucial

to consider the unique characteristics of each subtype when developing predictive

118

models. By gaining a deeper understanding of the complexities of epilepsy and

utilizing a range of modeling approaches, we can advance our ability to detect and

predict seizures accurately, ultimately improving the quality of life for individuals

with epilepsy.

• While HDC is capable of encoding higher dimension information, feature engineer-

ing remains a crucial step in the development of effective HDC classifiers when

fewer resources are available. Our research on seizure detection, for instance, has

demonstrated that a carefully selected set of three features is sufficient for achiev-

ing high performance on the Kaggle dataset. This highlights the importance of

identifying the most relevant features for a given task and developing an efficient

pipeline for feature selection. Therefore, it is recommended to explore efficient

features for HDC classifiers.

• We applied the GrapHD encoding to brain graph classification with reduced mem-

ory requirements as compared to the other two HDC-based encoding approaches.

Although we have successfully completed the encoding phase for classification,

there is potential for further exploration of the GrapHD representation in the de-

coding phase. By extracting information from the graph structure, we can gain

insights into the most distinct brain regions for different brain states, which can

enhance our understanding of brain function and facilitate the development of

more targeted interventions for neurological disorders.

• More “cognition” aspects of HDC, including analogical reasoning, relationship

representation, and analysis, should be further developed.

• One of the key strengths of HDC lies in its energy efficiency. Simple bit-wise ma-

nipulations and the ability to enable parallel operations make HDC an attractive

option for developing hardware platforms and architecture. To fully realize the

benefits of HDC in practical applications, it is important to investigate specific

hardware implementations and acceleration techniques for a given task.

References

[1] Abbas Rahimi, Tony F Wu, Haitong Li, Jan M Rabaey, H-S Philip Wong, Max M

Shulaker, and Subhasish Mitra. Hyperdimensional computing nanosystem. arXiv

preprint arXiv:1811.09557, 2018.

[2] Pentti Kanerva. Sparse Distributed Memory. MIT press, 1988.

[3] Sohum Datta, Ryan AG Antonio, Aldrin RS Ison, and Jan M Rabaey. A pro-

grammable hyper-dimensional processor architecture for human-centric IoT. IEEE

Journal on Emerging and Selected Topics in Circuits and Systems, 9(3):439–452,

2019.

[4] Dominic Widdows and Trevor Cohen. Reasoning with vectors: A continuous

model for fast robust inference. Logic Journal of the IGPL, 23(2):141–173, 2015.

[5] Abbas Rahimi, Pentti Kanerva, and Jan M Rabaey. A robust and energy-efficient

classifier using brain-inspired hyperdimensional computing. In Proceedings of the

2016 International Symposium on Low Power Electronics and Design, pages 64–

69. ACM, 2016.

[6] Abbas Rahimi, Simone Benatti, Pentti Kanerva, Luca Benini, and Jan M Rabaey.

Hyperdimensional biosignal processing: A case study for EMG-based hand gesture

recognition. In 2016 IEEE International Conference on Rebooting Computing

(ICRC), pages 1–8. IEEE, 2016.

[7] Mohsen Imani, Chenyu Huang, Deqian Kong, and Tajana Rosing. Hierarchi-

cal hyperdimensional computing for energy efficient classification. In 2018 55th

119

120

ACM/ESDA/IEEE Design Automation Conference (DAC), pages 1–6. IEEE,

2018.

[8] Mohsen Imani, Deqian Kong, Abbas Rahimi, and Tajana Rosing. VoiceHD: Hy-

perdimensional computing for efficient speech recognition. In 2017 IEEE Inter-

national Conference on Rebooting Computing (ICRC), pages 1–8. IEEE, 2017.

[9] Alessio Burrello, Lukas Cavigelli, Kaspar Schindler, Luca Benini, and Abbas

Rahimi. Laelaps: An energy-efficient seizure detection algorithm from long-term

human iEEG recordings without false alarms. In 2019 Design, Automation & Test

in Europe Conference & Exhibition (DATE), pages 752–757. IEEE, 2019.

[10] Justin Morris, Mohsen Imani, Samuel Bosch, Anthony Thomas, Helen Shu, and

Tajana Rosing. Comphd: Efficient hyperdimensional computing using model com-

pression. In 2019 IEEE/ACM International Symposium on Low Power Electronics

and Design (ISLPED), pages 1–6. IEEE, 2019.

[11] Mohsen Imani, Samuel Bosch, Mojan Javaheripi, Bita Rouhani, Xinyu Wu, Fari-

naz Koushanfar, and Tajana Rosing. Semihd: Semi-supervised learning using

hyperdimensional computing. In IEEE/ACM International Conference On Com-

puter Aided Design (ICCAD), pages 1–8, 2019.

[12] Alec Xavier Manabat, Celine Rose Marcelo, Alfonso Louis Quinquito, and Anasta-

cia Alvarez. Performance analysis of hyperdimensional computing for character

recognition. In 2019 International Symposium on Multimedia and Communication

Technology (ISMAC), pages 1–5. IEEE, 2019.

[13] Prathyush Poduval, Ali Zakeri, Farhad Imani, Haleh Alimohamadi, and Mohsen

Imani. Graphd: Graph-based hyperdimensional memorization for brain-like cog-

nitive learning. Frontiers in Neuroscience, page 5, 2022.

[14] Mohsen Imani, Yeseong Kim, Thomas Worley, Saransh Gupta, and Tajana Ros-

ing. HDCluster: An accurate clustering using brain-inspired high-dimensional

computing. In 2019 Design, Automation & Test in Europe Conference & Exhibi-

tion (DATE), pages 1591–1594. IEEE, 2019.

121

[15] Pentti Kanerva. Hyperdimensional computing: An introduction to computing

in distributed representation with high-dimensional random vectors. Cognitive

computation, 1(2):139–159, 2009.

[16] Alessio Burrello, Kaspar Schindler, Luca Benini, and Abbas Rahimi. One-shot

learning for iEEG seizure detection using end-to-end binary operations: Local

binary patterns with hyperdimensional computing. In 2018 IEEE Biomedical

Circuits and Systems Conference (BioCAS), pages 1–4. IEEE, 2018.

[17] Aditya Joshi, Johan T Halseth, and Pentti Kanerva. Language geometry using

random indexing. In International Symposium on Quantum Interaction, pages

265–274. Springer, 2016.

[18] Mohsen Imani, Tarek Nassar, Abbas Rahimi, and Tajana Rosing. HDNA: Energy-

efficient DNA sequencing using hyperdimensional computing. In 2018 IEEE

EMBS International Conference on Biomedical & Health Informatics (BHI), pages

271–274. IEEE, 2018.

[19] Lulu Ge and Keshab K Parhi. Classification using Hyperdimensional computing:

A review. IEEE Circuits and Systems Magazine, 20(2):30–47, 2020.

[20] Lulu Ge and Keshab K Parhi. Seizure detection using power spectral density via

hyperdimensional computing. In ICASSP 2021-2021 IEEE International Con-

ference on Acoustics, Speech and Signal Processing (ICASSP), pages 7858–7862.

IEEE, 2021.

[21] Lulu Ge and Keshab K Parhi. Applicability of hyperdimensional computing to

seizure detection. IEEE Open Journal of Circuits and Systems, 3:59–71, 2022.

[22] Lulu Ge and Keshab K Parhi. Hyperdimensional computing cannot predict

seizures using lbp and psd features from ieeg. 2023. [Accepted] .

[23] Lulu Ge, Ali Payani, Hugo Latapie, and Keshab K Parhi. Classifying functional

brain graphs using graph hypervector representation. 2023 Asilomar Conference

on Signals, Systems, and Computers, 2023. [Accepted] .

122

[24] Lulu Ge and Keshab K Parhi. Robust clustering using hyperdimensional comput-

ing.

arXiv preprint arXiv:2312.02407, 2023.

[25] Lulu Ge, Aaron McInnes, Alik S Widge, and Keshab K Parhi. Determining

the number of clusters of clinical response of transcranial magnetic stimulation

treatment using hyperdimensional computing. 2024. [Will Be Submitted] .

[26] Lulu Ge, Aaron McInnes, Alik S Widge, and Keshab K Parhi. Classification of

clinical response of transcranial magnetic stimulation treatment using hyperdi-

mensional computing. 2024. [Will Be Submitted] .

[27] The SWEC-ETHZ iEEG database. http://ieeg-swez.ethz.ch/.

[28] Upenn and mayo clinic’s seizure detection challenge. https://www.kaggle.com/

c/seizure-detection/data.

[29] Paul Smolensky. Tensor product variable binding and the representation of sym-

bolic structures in connectionist systems. Artificial intelligence, 46(1-2):159–216,

1990.

[30] Tony A Plate. Holographic reduced representations. IEEE Transactions on Neural

networks, 6(3):623–641, 1995.

[31] Pentti Kanerva et al. Fully distributed representation. PAT, 1(5):10000, 1997.

[32] Dmitri A Rachkovskij and Ernst M Kussul. Binding and normalization of bi-

nary sparse distributed representations by context-dependent thinning. Neural

Computation, 13(2):411–452, 2001.

[33] Ross W Gayler. Multiplicative binding, representation operators & analogy (work-

shop poster). 1998.

[34] Kenny Schlegel, Peer Neubert, and Peter Protzel. A comparison of vector symbolic

architectures. arXiv preprint arXiv:2001.11797, 2020.

[35] Michael Hersche, José del R Millán, Luca Benini, and Abbas Rahimi. Exploring

embedding methods in binary hyperdimensional computing: A case study for

http://ieeg-swez.ethz.ch/
https://www.kaggle.com/c/seizure-detection/data
https://www.kaggle.com/c/seizure-detection/data

123

motor-imagery based brain-computer interfaces. arXiv preprint arXiv:1812.05705,

2018.

[36] Abbas Rahimi, Sohum Datta, Denis Kleyko, Edward Paxon Frady, Bruno Ol-

shausen, Pentti Kanerva, and Jan M Rabaey. High-dimensional computing as a

nanoscalable paradigm. IEEE Transactions on Circuits and Systems I: Regular

Papers, 64(9):2508–2521, 2017.

[37] Randal E Bryant, O’Hallaron David Richard, and O’Hallaron David Richard.

Computer systems: a programmer’s perspective, volume 2. Prentice Hall Upper

Saddle River, 2003.

[38] Agnieszka Patyk- Lońska, Marek Czachor, and Diederik Aerts. A comparison of

geometric analogues of holographic reduced representations, original holographic

reduced representations and binary spatter codes. In 2011 Federated Conference

on Computer Science and Information Systems (FedCSIS), pages 221–228. IEEE,

2011.

[39] Peter J Olver and Chehrzad Shakiban. Applied Linear Algebra. Springer, 2018.

[40] Manuel Schmuck, Luca Benini, and Abbas Rahimi. Hardware optimizations of

dense binary hyperdimensional computing: Rematerialization of hypervectors,

binarized bundling, and combinational associative memory. ACM Journal on

Emerging Technologies in Computing Systems (JETC), 15(4):1–25, 2019.

[41] Dmitri Rachkovskij. Linear classifiers based on binary distributed representations.

International Journal Information Theories & Applications, 2007.

[42] Ernst M Kussul, Lora M Kasatkina, Dmitri A Rachkovskij, and Donald C Wun-

sch. Application of random threshold neural networks for diagnostics of micro

machine tool condition. In 1998 IEEE International Joint Conference on Neural

Networks Proceedings. IEEE World Congress on Computational Intelligence (Cat.

No. 98CH36227), volume 1, pages 241–244. IEEE, 1998.

[43] EM Kussul. On image texture recognition by associative-projective neurocom-

puter. In Proceedings of ANNIE’91 Conference, Intelligent Engineering Systems

through Artificial Neural Networks, pages 453–458. ASME Press, 1991.

124

[44] DA Rachkovskij and TV Fedoseyeva. On audio signals recognition by multilevel

neural network. In Proceedings of The International Symposium on Neural Net-

works and Neural Computing-NEURONET, volume 90, pages 281–283, 1990.

[45] Beth Logan et al. Mel frequency cepstral coefficients for music modeling. In Ismir,

volume 270, pages 1–11, 2000.

[46] Denis Kleyko and Evgeny Osipov. Brain-like classifier of temporal patterns.

In 2014 International Conference on Computer and Information Sciences (IC-

COINS), pages 1–6. IEEE, 2014.

[47] Mohsen Imani, Samuel Bosch, Sohum Datta, Sharadhi Ramakrishna, Sahand Sala-

mat, Jan M Rabaey, and Tajana Rosing. Quanthd: A quantization framework for

hyperdimensional computing. IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, 2019.

[48] Abbas Rahimi, Pentti Kanerva, José del R Millán, and Jan M Rabaey. Hy-

perdimensional computing for noninvasive brain–computer interfaces: Blind and

one-shot classification of eeg error-related potentials. In 10th EAI International

Conference on Bio-inspired Information and Communications Technologies (for-

merly BIONETICS), number CONF, pages 19–26, 2017.

[49] Ali Moin, Andy Zhou, Abbas Rahimi, Simone Benatti, Alisha Menon, Senam

Tamakloe, Jonathan Ting, Natasha Yamamoto, Yasser Khan, Fred Burghardt,

et al. An EMG gesture recognition system with flexible high-density sensors and

brain-inspired high-dimensional classifier. In 2018 IEEE International Symposium

on Circuits and Systems (ISCAS), pages 1–5. IEEE, 2018.

[50] Denis Kleyko, Abbas Rahimi, Dmitri A Rachkovskij, Evgeny Osipov, and Jan M

Rabaey. Classification and recall with binary hyperdimensional computing: Trade-

offs in choice of density and mapping characteristics. IEEE transactions on neural

networks and learning systems, 29(12):5880–5898, 2018.

[51] Mohsen Imani, John Messerly, Fan Wu, Wang Pi, and Tajana Rosing. A binary

learning framework for hyperdimensional computing. In 2019 Design, Automation

& Test in Europe Conference & Exhibition (DATE), pages 126–131. IEEE, 2019.

125

[52] Mohsen Imani, Justin Morris, Samuel Bosch, Helen Shu, Giovanni De Micheli, and

Tajana Rosing. Adapthd: Adaptive efficient training for brain-inspired hyperdi-

mensional computing. In 2019 IEEE Biomedical Circuits and Systems Conference

(BioCAS), pages 1–4. IEEE, 2019.

[53] Mohsen Imani, Sahand Salamat, Behnam Khaleghi, Mohammad Samragh,

Farinaz Koushanfar, and Tajana Rosing. SparseHD: Algorithm-hardware co-

optimization for efficient high-dimensional computing. In 2019 IEEE 27th Annual

International Symposium on Field-Programmable Custom Computing Machines

(FCCM), pages 190–198. IEEE, 2019.

[54] Tony F Wu, Haitong Li, Ping-Chen Huang, Abbas Rahimi, Gage Hills, Bryce

Hodson, William Hwang, Jan M Rabaey, H-S Philip Wong, Max M Shulaker,

et al. Hyperdimensional computing exploiting carbon nanotube FETs, resistive

RAM, and their monolithic 3D integration. IEEE Journal of Solid-State Circuits,

53(11):3183–3196, 2018.

[55] Ross W Gayler. Vector symbolic architectures answer jackendoff’s challenges for

cognitive neuroscience. arXiv preprint cs/0412059, 2004.

[56] Abbas Rahimi, Pentti Kanerva, Luca Benini, and Jan M Rabaey. Efficient

biosignal processing using hyperdimensional computing: Network templates for

combined learning and classification of ExG signals. Proceedings of the IEEE,

107(1):123–143, 2018.

[57] Dmitri A. Rachkovskij. Representation and processing of structures with binary

sparse distributed codes. IEEE Transactions on Knowledge and Data Engineering,

13(2):261–276, 2001.

[58] Sahand Salamat, Mohsen Imani, Behnam Khaleghi, and Tajana Rosing. F5-

hd: Fast flexible FPGA-based framework for refreshing hyperdimensional com-

puting. In Proceedings of the 2019 ACM/SIGDA International Symposium on

Field-Programmable Gate Arrays, pages 53–62, 2019.

[59] Geethan Karunaratne, Manuel Le Gallo, Giovanni Cherubini, Luca Benini, Abbas

126

Rahimi, and Abu Sebastian. In-memory hyperdimensional computing. CoRR,

abs/1906.01548, 2019, 1906.01548.

[60] Haitong Li, Tony F Wu, Abbas Rahimi, Kai-Shin Li, Miles Rusch, Chang-Hsien

Lin, Juo-Luen Hsu, Mohamed M Sabry, S Burc Eryilmaz, Joon Sohn, et al. Hyper-

dimensional computing with 3D VRRAM in-memory kernels: Device-architecture

co-design for energy-efficient, error-resilient language recognition. In 2016 IEEE

International Electron Devices Meeting (IEDM), pages 16–1. IEEE, 2016.

[61] UCI machine learning repository. http://archive.ics.uci.edu/ml/datasets/

ISOLET.

[62] Zisheng Zhang and Keshab K Parhi. Seizure detection using wavelet decomposi-

tion of the prediction error signal from a single channel of intra-cranial EEG. In

2014 36th annual international conference of the IEEE engineering in medicine

and biology society, pages 4443–4446. IEEE, 2014.

[63] Zisheng Zhang and Keshab K Parhi. Low-complexity seizure prediction from

iEEG/sEEG using spectral power and ratios of spectral power. IEEE transactions

on biomedical circuits and systems, 10(3):693–706, 2015.

[64] Zisheng Zhang and Keshab K Parhi. Seizure detection using regression tree based

feature selection and polynomial SVM classification. In 2015 37th Annual In-

ternational Conference of the IEEE Engineering in Medicine and Biology Society

(EMBC), pages 6578–6581. IEEE, 2015.

[65] Zisheng Zhang and Keshab K Parhi. Seizure prediction using polynomial SVM

classification. In 2015 37th Annual International Conference of the IEEE Engi-

neering in Medicine and Biology Society (EMBC), pages 5748–5751. IEEE, 2015.

[66] Keshab K Parhi and Zisheng Zhang. Discriminative ratio of spectral power and

relative power features derived via frequency-domain model ratio with applica-

tion to seizure prediction. IEEE transactions on biomedical circuits and systems,

13(4):645–657, 2019.

[67] Stephen I Gallant and T Wendy Okaywe. Representing objects, relations, and

sequences. Neural computation, 25(8):2038–2078, 2013.

http://archive.ics.uci.edu/ml/datasets/ISOLET
http://archive.ics.uci.edu/ml/datasets/ISOLET

127

[68] Hadamard matrix. https://docs.scipy.org/doc/scipy-0.14.0/reference/

generated/scipy.linalg.hadamard.html.

[69] Simon S Haykin. Adaptive filter theory. Pearson Education India, 2014.

[70] Pentii Kanerva, Jan Kristoferson, and Anders Holst. Random indexing of text

samples for latent semantic analysis. In Proceedings of the Annual Meeting of the

Cognitive Science Society, volume 22, 2000.

[71] Gabriel Recchia, Magnus Sahlgren, Pentti Kanerva, and Michael N Jones. En-

coding sequential information in semantic space models: Comparing holographic

reduced representation and random permutation. Computational intelligence and

neuroscience, 2015, 2015.

[72] Denis Kleyko, Evgeny Osipov, Daswin De Silva, Urban Wiklund, Valeriy Vyatkin,

and Damminda Alahakoon. Distributed representation of n-gram statistics for

boosting self-organizing maps with hyperdimensional computing. In International

Andrei Ershov Memorial Conference on Perspectives of System Informatics, pages

64–79. Springer, 2019.

[73] Tharindu Bandaragoda, Daswin De Silva, Denis Kleyko, Evgeny Osipov, Ur-

ban Wiklund, and Damminda Alahakoon. Trajectory clustering of road traffic

in urban environments using incremental machine learning in combination with

hyperdimensional computing. In 2019 IEEE Intelligent Transportation Systems

Conference (ITSC), pages 1664–1670. IEEE, 2019.

[74] Michael Hersche, Sara Sangalli, Luca Benini, and Abbas Rahimi. Evolvable hy-

perdimensional computing: Unsupervised regeneration of associative memory to

recover faulty components. In IEEE International Conference on Artificial Intel-

ligence Circuits and Systems (AICAS), Genoa, Italy, March 23-25, 2020. IEEE,

2020.

[75] Denis Kleyko, Evgeny Osipov, Alexander Senior, Asad I Khan, and Yaşar Ah-

met Şekerciogğlu. Holographic graph neuron: A bioinspired architecture for pat-

tern processing. IEEE transactions on neural networks and learning systems,

28(6):1250–1262, 2016.

https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.linalg.hadamard.html
https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.linalg.hadamard.html

128

[76] Isaac Triguero, Salvador Garćıa, and Francisco Herrera. Self-labeled techniques

for semi-supervised learning: taxonomy, software and empirical study. Knowledge

and Information systems, 42(2):245–284, 2015.

[77] Fateme Rasti Najafabadi, Abbas Rahimi, Pentti Kanerva, and Jan M Rabaey.

Hyperdimensional computing for text classification. In Design, Automation Test

in Europe Conference Exhibition (DATE), University Booth, pages 1–1, 2016.

[78] Abbas Rahimi, Artiom Tchouprina, Pentti Kanerva, José del R Millán, and Jan M

Rabaey. Hyperdimensional computing for blind and one-shot classification of EEG

error-related potentials. Mobile Networks and Applications, pages 1–12, 2017.

[79] Okko Räsänen and Sofoklis Kakouros. Modeling dependencies in multiple parallel

data streams with hyperdimensional computing. IEEE Signal Processing Letters,

21(7):899–903, 2014.

[80] Okko J Räsänen and Jukka P Saarinen. Sequence prediction with sparse dis-

tributed hyperdimensional coding applied to the analysis of mobile phone use

patterns. IEEE transactions on neural networks and learning systems, 27(9):1878–

1889, 2015.

[81] Denis Kleyko, Evgeny Osipov, Ross W Gayler, Asad I Khan, and Adrian G Dyer.

Imitation of honey bees’ concept learning processes using vector symbolic archi-

tectures. Biologically Inspired Cognitive Architectures, 14:57–72, 2015.

[82] Ozgur Yilmaz. Connectionist-symbolic machine intelligence using cellu-

lar automata based reservoir-hyperdimensional computing. arXiv preprint

arXiv:1503.00851, 2015.

[83] Denis Kleyko, Sumeer Khan, Evgeny Osipov, and Suet-Peng Yong. Modality

classification of medical images with distributed representations based on cellular

automata reservoir computing. In 2017 IEEE 14th International Symposium on

Biomedical Imaging (ISBI 2017), pages 1053–1056. IEEE, 2017.

[84] Guglielmo Montone, J Kevin O’Regan, and Alexander V Terekhov. Hyper-

dimensional computing for a visual question-answering system that is trainable

end-to-end. arXiv preprint arXiv:1711.10185, 2017.

129

[85] Denis Kleyko, Evgeny Osipov, Nikolaos Papakonstantinou, and Valeriy Vyatkin.

Hyperdimensional computing in industrial systems: the use-case of distributed

fault isolation in a power plant. IEEE Access, 6:30766–30777, 2018.

[86] A Mitrokhin, P Sutor, C Fermüller, and Y Aloimonos. Learning sensorimotor

control with neuromorphic sensors: Toward hyperdimensional active perception.

Science Robotics, 4(30):eaaw6736, 2019.

[87] Okko Johannes Räsänen. Generating hyperdimensional distributed representa-

tions from continuous-valued multivariate sensory input. In CogSci, 2015.

[88] Samuel Bosch, Alexander Sanchez de la Cerda, Mohsen Imani, Tajana Simunic

Rosing, and Giovanni De Micheli. QubitHD: A stochastic acceleration method for

HD computing-based machine learning. arXiv preprint arXiv:1911.12446, 2019.

[89] Mohsen Imani, Yeseong Kim, Sadegh Riazi, John Messerly, Patric Liu, Farinaz

Koushanfar, and Tajana Rosing. A framework for collaborative learning in secure

high-dimensional space. In 2019 IEEE 12th International Conference on Cloud

Computing (CLOUD), pages 435–446. IEEE, 2019.

[90] Zisheng Zhang and Keshab K Parhi. MUSE: Minimum uncertainty and sample

elimination based binary feature selection. IEEE Transactions on Knowledge and

Data Engineering, 31(9):1750–1764, 2018.

[91] Pedro Alonso, Kumar Shridhar, Denis Kleyko, Evgeny Osipov, and Marcus Li-

wicki. HyperEmbed: Tradeoffs between resources and performance in NLP tasks

with hyperdimensional computing enabled embedding of n-gram statistics. arXiv

preprint arXiv:2003.01821, 2020.

[92] Denis Kleyko, Mansour Kheffache, E Paxon Frady, Urban Wiklund, and Evgeny

Osipov. Density encoding enables resource-efficient randomly connected neural

networks. arXiv preprint arXiv:1909.09153, 2019.

[93] Denis Kleyko, Edward Paxon Frady, and Evgeny Osipov. Integer echo state net-

works: Hyperdimensional reservoir computing. arXiv preprint arXiv:1706.00280,

2017.

130

[94] Alexander G Anderson and Cory P Berg. The high-dimensional geometry of

binary neural networks. arXiv preprint arXiv:1705.07199, 2017.

[95] Una Pale, Tomas Teijeiro, and David Atienza. Systematic assessment of

hyperdimensional computing for epileptic seizure detection. arXiv preprint

arXiv:2105.00934, 2021.

[96] Alessio Burrello, Simone Benatti, Kaspar Schindler, Luca Benini, and Abbas

Rahimi. An ensemble of hyperdimensional classifiers: Hardware-friendly short-

latency seizure detection with automatic ieeg electrode selection. IEEE journal of

biomedical and health informatics, 25(4):935–946, 2020.

[97] Isabell Kiral-Kornek, Subhrajit Roy, Ewan Nurse, Benjamin Mashford, Philippa

Karoly, Thomas Carroll, Daniel Payne, Susmita Saha, Steven Baldassano, Terence

O’Brien, et al. Epileptic seizure prediction using big data and deep learning:

toward a mobile system. EBioMedicine, 27:103–111, 2018.

[98] Nhan Duy Truong, Anh Duy Nguyen, Levin Kuhlmann, Mohammad Reza

Bonyadi, Jiawei Yang, Samuel Ippolito, and Omid Kavehei. Convolutional neural

networks for seizure prediction using intracranial and scalp electroencephalogram.

Neural Networks, 105:104–111, 2018.

[99] Benjamin H Brinkmann, Joost Wagenaar, Drew Abbot, Phillip Adkins, Simone C

Bosshard, Min Chen, Quang M Tieng, Jialune He, FJ Muñoz-Almaraz, Paloma

Botella-Rocamora, et al. Crowdsourcing reproducible seizure forecasting in human

and canine epilepsy. Brain, 139(6):1713–1722, 2016.

[100] Yun Park, Lan Luo, Keshab K Parhi, and Theoden Netoff. Seizure prediction

with spectral power of eeg using cost-sensitive support vector machines. Epilepsia,

52(10):1761–1770, 2011.

[101] Florian Mormann, Ralph G Andrzejak, Christian E Elger, and Klaus Lehnertz.

Seizure prediction: the long and winding road. Brain, 130(2):314–333, 2007.

[102] Josef Parvizi and Sabine Kastner. Human intracranial eeg: promises and limita-

tions. Nature neuroscience, 21(4):474, 2018.

131

[103] John V Guttag, Ali Hossam Shoeb, Blaise Bourgeois, S Ted Treves, Steven C

Schachter, Herman A Edwards, John Connolly, et al. Patient-specific seizure

onset detection system, October 20 2011. US Patent App. 13/153,819.

[104] Rosana Esteller, Javier Echauz, T Tcheng, Brian Litt, and Benjamin Pless. Line

length: an efficient feature for seizure onset detection. In 2001 Conference Pro-

ceedings of the 23rd Annual International Conference of the IEEE Engineering in

Medicine and Biology Society, volume 2, pages 1707–1710. IEEE, 2001.

[105] Keshab K Parhi and Zisheng Zhang. Method and apparatus for prediction and

detection of seizure activity, October 1 2019. US Patent 10,426,365.

[106] Nhan Duy Truong, Anh Duy Nguyen, Levin Kuhlmann, Mohammad Reza

Bonyadi, Jiawei Yang, Samuel Ippolito, and Omid Kavehei. Integer convolutional

neural network for seizure detection. IEEE Journal on Emerging and Selected

Topics in Circuits and Systems, 8(4):849–857, 2018.

[107] Ryan Chen and Keshab K Parhi. Seizure prediction using convolutional neural

networks and sequence transformer networks. In 2021 43rd Annual International

Conference of the IEEE Engineering in Medicine & Biology Society (EMBC),

pages 6483–6486. IEEE, 2021.

[108] M Dümpelmann. Early seizure detection for closed loop direct neurostimulation

devices in epilepsy. Journal of neural engineering, 16(4):041001, 2019.

[109] Alessio Burrello, Kaspar Anton Schindler, Luca Benini, and Abbas Rahimi. Hy-

perdimensional computing with local binary patterns: One-shot learning for

seizure onset detection and identification of ictogenic brain regions from short-

time ieeg recordings. IEEE transactions on bio-medical engineering, 67(2):601–

613, 2020.

[110] Steven N Baldassano, Benjamin H Brinkmann, Hoameng Ung, Tyler Blevins,

Erin C Conrad, Kent Leyde, Mark J Cook, Ankit N Khambhati, Joost B Wage-

naar, Gregory A Worrell, et al. Crowdsourcing seizure detection: algorithm devel-

opment and validation on human implanted device recordings. Brain, 140(6):1680–

1691, 2017.

132

[111] Jundong Li, Kewei Cheng, Suhang Wang, Fred Morstatter, Robert P Trevino, Jil-

iang Tang, and Huan Liu. Feature selection: A data perspective. ACM Computing

Surveys (CSUR), 50(6):94, 2018.

[112] Una Pale, Tomas Teijeiro, and David Atienza. Exploration of hyperdimensional

computing strategies for enhanced learning on epileptic seizure detection. arXiv

preprint arXiv:2201.09759, 2022.

[113] Han-Tai Shiao, Vladimir Cherkassky, Jieun Lee, Brandon Veber, Edward E Pat-

terson, Benjamin H Brinkmann, and Gregory A Worrell. Svm-based system for

prediction of epileptic seizures from ieeg signal. IEEE Transactions on Biomedical

Engineering, 64(5):1011–1022, 2016.

[114] Farzad Samie, Sebastian Paul, Lars Bauer, and Jorg Henkel. Highly efficient and

accurate seizure prediction on constrained IoT devices. In 2018 Design, Automa-

tion & Test in Europe Conference & Exhibition (DATE), pages 955–960. IEEE,

2018.

[115] Hanchuan Peng, Fuhui Long, and Chris Ding. Feature selection based on mu-

tual information criteria of max-dependency, max-relevance, and min-redundancy.

IEEE Transactions on pattern analysis and machine intelligence, 27(8):1226–1238,

2005.

[116] Ali Hossam Shoeb. Application of machine learning to epileptic seizure onset

detection and treatment. PhD thesis, Massachusetts Institute of Technology, 2009.

[117] Mike Heddes, Igor Nunes, Pere Vergés, Dheyay Desai, Tony Givargis, and Alexan-

dru Nicolau. Torchhd: An open-source python library to support hyperdimen-

sional computing research. arXiv preprint arXiv:2205.09208, 2022.

[118] American epilepsy society seizure prediction challenge. https://www.kaggle.

com/competitions/seizure-prediction.

[119] Bhaskar Sen, Shu-Hsien Chu, and Keshab K Parhi. Ranking regions, edges and

classifying tasks in functional brain graphs by sub-graph entropy. Scientific re-

ports, 9(1):1–20, 2019.

https://www.kaggle.com/competitions/seizure-prediction
https://www.kaggle.com/competitions/seizure-prediction

133

[120] Connectomedb database. https://db.humanconnectome.org.

[121] Edward Paxon Frady, Denis Kleyko, and Friedrich T Sommer. Variable binding for

sparse distributed representations: Theory and applications. IEEE Transactions

on Neural Networks and Learning Systems, 2021.

[122] Pankaj K Agarwal and Nabil H Mustafa. K-means projective clustering. In

Proceedings of the twenty-third ACM SIGMOD-SIGACT-SIGART symposium on

Principles of database systems, pages 155–165, 2004.

[123] David Arthur and Sergei Vassilvitskii. K-means++: the advantages of careful

seeding. In Proceedings of the eighteenth annual ACM-SIAM symposium on Dis-

crete algorithms, pages 1027–1035, 2007.

[124] Stephen C Johnson. Hierarchical clustering schemes. Psychometrika, 32(3):241–

254, 1967.

[125] Fionn Murtagh and Pedro Contreras. Algorithms for hierarchical clustering: an

overview. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discov-

ery, 2(1):86–97, 2012.

[126] Fionn Murtagh and Pedro Contreras. Algorithms for hierarchical clustering: an

overview, II. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Dis-

covery, 7(6):e1219, 2017.

[127] Lance Parsons, Ehtesham Haque, and Huan Liu. Subspace clustering for high

dimensional data: a review. Acm sigkdd explorations newsletter, 6(1):90–105,

2004.

[128] Samuel Kaski. Dimensionality reduction by random mapping: Fast similarity com-

putation for clustering. In 1998 IEEE International Joint Conference on Neural

Networks Proceedings. IEEE World Congress on Computational Intelligence (Cat.

No. 98CH36227), volume 1, pages 413–418. IEEE, 1998.

[129] Saransh Gupta, Behnam Khaleghi, Sahand Salamat, Justin Morris, Ranganathan

Ramkumar, Jeffrey Yu, Aniket Tiwari, Jaeyoung Kang, Mohsen Imani, Baris

Aksanli, et al. Store-n-learn: Classification and clustering with hyperdimensional

https://db.humanconnectome.org.

134

computing across flash hierarchy. ACM Transactions on Embedded Computing

Systems (TECS), 21(3):1–25, 2022.

[130] Justin Morris, Kazim Ergun, Behnam Khaleghi, Mohen Imani, Baris Aksanli,

and Tajana Simunic. HyDREA: Utilizing hyperdimensional computing for a more

robust and efficient machine learning system. ACM Transactions on Embedded

Computing Systems, 21(6):1–25, 2022.

[131] Brendan J Frey and Delbert Dueck. Clustering by passing messages between data

points. science, 315(5814):972–976, 2007.

[132] Zhuowen Zou, Hanning Chen, Prathyush Poduval, Yeseong Kim, Mahdi Imani,

Elaheh Sadredini, Rosario Cammarota, and Mohsen Imani. BioHD: an efficient

genome sequence search platform using hyperdimensional memorization. In Pro-

ceedings of the 49th Annual International Symposium on Computer Architecture,

pages 656–669, 2022.

[133] Linda L Carpenter, Philip G Janicak, Scott T Aaronson, Terrence Boyadjis,

David G Brock, Ian A Cook, David L Dunner, Karl Lanocha, H Brent Solva-

son, and Mark A Demitrack. Transcranial magnetic stimulation (TMS) for major

depression: a multisite, naturalistic, observational study of acute treatment out-

comes in clinical practice. Depression and anxiety, 29(7):587–596, 2012.

[134] Shawn M McClintock, Irving M Reti, Linda L Carpenter, William M McDon-

ald, Marc Dubin, Stephan F Taylor, Ian A Cook, O John, Mustafa M Husain,

Christopher Wall, et al. Consensus recommendations for the clinical application

of repetitive transcranial magnetic stimulation (rTMS) in the treatment of de-

pression. The Journal of clinical psychiatry, 79(1):3651, 2017.

[135] Tyler S Kaster, Jonathan Downar, Fidel Vila-Rodriguez, Kevin E Thorpe, Kfir

Feffer, Yoshihiro Noda, Peter Giacobbe, Yuliya Knyahnytska, Sidney H Kennedy,

Raymond W Lam, et al. Trajectories of response to dorsolateral prefrontal rtms in

major depression: a three-d study. American Journal of Psychiatry, 176(5):367–

375, 2019.

135

[136] Cathy S Chen, R Becket Ebitz, Sylvia R Bindas, A David Redish, Benjamin Y

Hayden, and Nicola M Grissom. Divergent strategies for learning in males and

females. Current Biology, 31(1):39–50, 2021.

[137] Claire M Gillan, Michal Kosinski, Robert Whelan, Elizabeth A Phelps, and

Nathaniel D Daw. Characterizing a psychiatric symptom dimension related to

deficits in goal-directed control. elife, 5:e11305, 2016.

[138] Claire M Gillan, Eyal Kalanthroff, Michael Evans, Hilary M Weingarden, Ryan J

Jacoby, Marina Gershkovich, Ivar Snorrason, Raphael Campeas, Cynthia Cervoni,

Nicholas Charles Crimarco, et al. Comparison of the association between goal-

directed planning and self-reported compulsivity vs obsessive-compulsive disorder

diagnosis. JAMA psychiatry, 77(1):77–85, 2020.

[139] Valerie Voon, Andrea Reiter, Miriam Sebold, and Stephanie Groman. Model-

based control in dimensional psychiatry. Biological psychiatry, 82(6):391–400,

2017.

[140] Roger Ratcliff and Gail McKoon. The diffusion decision model: theory and data

for two-choice decision tasks. Neural computation, 20(4):873–922, 2008.

[141] Maxwell Shinn, Norman H Lam, and John D Murray. A flexible framework for

simulating and fitting generalized drift-diffusion models. ELife, 9:e56938, 2020.

[142] Thomas V Wiecki, Imri Sofer, and Michael J Frank. HDDM: Hierarchical bayesian

estimation of the drift-diffusion model in python. Frontiers in neuroinformatics,

page 14, 2013.

[143] Milton E Strauss, Christopher J McLouth, Deanna M Barch, Cameron S Carter,

James M Gold, Steven J Luck, Angus W MacDonald III, J Daniel Ragland, Cha-

ran Ranganath, Brian P Keane, et al. Temporal stability and moderating effects

of age and sex on cntracs task performance. Schizophrenia bulletin, 40(4):835–844,

2014.

[144] Brian M Sweis, Samantha V Abram, Brandy J Schmidt, Kelsey D Seeland, An-

gus W MacDonald III, Mark J Thomas, and A David Redish. Sensitivity to “sunk

costs” in mice, rats, and humans. Science, 361(6398):178–181, 2018.

136

[145] Adam P Steiner and A David Redish. Behavioral and neurophysiological correlates

of regret in rat decision-making on a neuroeconomic task. Nature neuroscience,

17(7):995–1002, 2014.

[146] Brian M Sweis, Mark J Thomas, and A David Redish. Mice learn to avoid regret.

PLoS Biology, 16(6):e2005853, 2018.

[147] Samantha V Abram, Yannick-André Breton, Brandy Schmidt, A David Redish,

and Angus W MacDonald. The web-surf task: A translational model of human

decision-making. Cognitive, Affective, & Behavioral Neuroscience, 16:37–50, 2016.

[148] Tao Yu, Yichi Zhang, Zhiru Zhang, and Christopher M De Sa. Understanding

hyperdimensional computing for parallel single-pass learning. Advances in Neural

Information Processing Systems, 35:1157–1169, 2022.

[149] Ruixuan Wang, Xun Jiao, and X Sharon Hu. ODHD: one-class brain-inspired

hyperdimensional computing for outlier detection. In Proceedings of the 59th

ACM/IEEE Design Automation Conference, pages 43–48, 2022.

[150] scikit-learn. https://scikit-learn.org.

[151] Xiao Wang, Fusheng Yu, Witold Pedrycz, and Jiayin Wang. Hierarchical cluster-

ing of unequal-length time series with area-based shape distance. Soft Computing,

23:6331–6343, 2019.

https://scikit-learn.org

Appendix A

Supplementary Results

A.1 Clustering Results using HDC.

A.1.1 Small Dataset

Figure A.1 shows the other six clustering results for the clinical trajectories when n = 27.

Based on the analysis, it has been recommended that the baseline-corrected data can

be grouped into three clusters while the original data can be grouped into four clusters.

For binary HDC with record-based encoding, the indication is different. It suggests two

clusters for baseline-corrected data and three clusters for original data.

A.1.2 Large Dataset

Figure A.2 shows the other six clustering results for the clinical trajectories when n =

176. Based on the analysis, it has been recommended that the number of clusters for

both original and baseline-corrected data should be equal to or less than seven.

Using N -gram-based encoding for non-binary HDC, original trajectories are grouped

into four clusters, and baseline-corrected trajectories are grouped into three clusters

when n = 176.

137

138

Non-binary HDC using record-based encoding

(a) Original data.
(b) Baseline-corrected data.

Binary HDC using N -gram-based encoding

(c) Original data.
(d) Baseline-corrected data.

Binary HDC using record-based encoding

(e) Original data. (f) Baseline-corrected data.

Figure A.1: Clinical-trajectory-pattern clustering using HDC for a small dataset (n =
27).

139

Non-binary HDC using record-based encoding

(a) Original data. (b) Baseline-corrected data.

Binary HDC using N -gram-based encoding

(c) Original data. (d) Baseline-corrected data.

Binary HDC using record-based encoding

(e) Original data.
(f) Baseline-corrected data.

Figure A.2: Clinical-trajectory-pattern clustering using HDC for a large dataset (n =
176).

140

A.2 Clustering Results using LCMM.

For longitudinal data, latent class models are typically used.

A.2.1 Large Dataset

For n = 176, Table A.1 summarizes the clustering performance using LCMM for original

data, while Table A.2 reports the performance for baseline-corrected data. LCMM

indicates the optimal choice when the cubic model is employed. Thus, original data are

divided into 3 clusters, whereas baseline-corrected data are divided into 2 clusters. The

corresponding clustering patterns are shown in Fig. A.3.

Table A.1: LCMM results for original data (n = 176).

Model G AIC
Membership [%]

MSE
group1 group2 group3 group4 group5 group6 group7

Lin 1 6004.45 100.0 2.49
Lin 2 6004.58 85.80 14.20 2.50
Lin 3 5984.53 53.41 5.68 40.91 2.54
Lin 4 5982.27 53.41 6.82 1.70 38.07 2.57
Lin 5 5987.74 22.16 27.27 35.23 7.39 7.95 2.55
Lin 6 5993.90 33.52 22.16 3.41 6.82 26.70 7.39 2.56
Lin 7 5994.64 22.16 18.18 7.39 12.50 15.91 15.34 8.52 2.57

Quad 1 5828.19 100.0 1.42
Quad 2 5809.75 83.52 16.48 1.42
Quad 3 5810.61 52.84 11.36 35.80 1.43
Quad 4 5809.27 17.61 43.75 3.41 35.23 1.44
Quad 5 5801.60 17.61 42.61 27.27 5.11 7.39 1.44
Quad 6 5795.07 15.91 22.16 27.84 22.16 3.41 8.52 1.47
Quad 7 5774.17 0.57 19.32 18.75 22.16 4.55 27.27 7.39 1.52

Cub 1 5802.02 100.0 1.20
Cub 2 5793.46 4.55 95.45 1.23
Cub 3 5774.26 23.30 40.34 36.36 1.11
Cub 4 5769.66 42.61 18.18 1.70 37.50 1.15
Cub 5 5763.67 50.00 14.77 2.27 10.23 22.73 1.13
Cub 6 5757.28 53.98 6.82 2.84 23.86 2.27 10.23 1.18
Cub 7 5762.22 25.00 16.48 13.07 10.23 23.30 3.98 7.95 1.12

141

Table A.2: LCMM results for corrected data (n = 176).

Model G AIC
Membership [%]

MSE
group1 group2 group3 group4 group5 group6 group7

Lin 1 5616.39 100.0 2.75
Lin 2 5605.29 99.43 0.57 2.79
Lin 3 5607.15 0.57 81.82 17.61 2.76
Lin 4 5606.00 9.09 36.93 46.02 7.95 2.75
Lin 5 5609.28 9.09 35.80 7.39 14.20 33.52 2.76
Lin 6 5608.08 0.57 39.20 7.39 9.66 40.91 2.27 2.76
Lin 7 5614.29 0.57 7.39 27.84 11.36 39.20 11.36 2.27 2.78

Quad 1 5267.78 100.0 1.44
Quad 2 5246.74 29.55 70.45 1.44
Quad 3 5255.81 15.34 75.57 9.09 1.45
Quad 4 5229.10 0.57 35.80 14.77 48.86 1.46
Quad 5 5230.24 0.57 21.02 24.43 41.48 12.50 1.47
Quad 6 5230.29 0.57 14.20 24.43 19.89 39.77 1.14 1.49
Quad 7 5231.86 0.57 19.32 14.77 25.57 14.20 24.43 1.14 1.49

Cub 1 5195.39 100.0 1.02
Cub 2 5155.13 31.82 68.18 1.00
Cub 3 5156.13 6.25 34.09 59.66 1.01
Cub 4 5136.23 42.05 18.75 35.23 3.98 1.04
Cub 5 5137.50 3.98 13.07 18.75 36.93 27.27 1.05
Cub 6 5128.61 0.57 10.23 10.80 40.34 35.80 2.27 1.07
Cub 7 5132.27 0.57 21.02 16.48 22.16 24.43 13.07 2.27 1.07

(a) Original data. (b) Baseline-corrected data.

Figure A.3: Trajectory clustering for LCMM when n = 176.

	Acknowledgements
	Dedication
	Abstract
	Contents
	List of Tables
	List of Figures
	Introduction
	Research Overview
	Dissertation Outline
	Summary of Contributions

	Classification using HDC: a review
	Introduction
	Background on HDC
	Classical Computing vs HDC
	Data Representation
	Similarity Measurement
	Data Transformation

	Learning and Classification By HDC
	The HD Classification Methodology
	Encoding Methods for HDC
	Benchmarking Metrics in HDC

	Applications in HD Classification
	Letters
	Signals
	Images
	Summary

	Conclusion

	Applicability of seizure detection using HDC
	Introduction
	Methodology
	LBP Method
	PSD Method
	Hypervector Distance Plot

	Materials
	iEEG Dataset from Kaggle Contest
	Training, Validation and Test Data
	Performance Evaluation

	Experimental Results
	LBP Method
	PSD Method
	Discussion on LBP and PSD Methods

	Conclusion

	Applicability of seizure prediction using HDC
	Introduction
	Preliminaries
	Basics of HDC
	Seizure Prediction Dataset
	Flow Chart of the Employed Approaches
	Training and Test Workflow

	Methodology
	LBP Method
	PSD Method

	Experimental Results
	Conclusions

	Classifying functional brain graphs using graph hypervector representation
	Introduction
	Methodology
	Record-based Encoding
	GrapHD Encoding

	Materials
	HCP Dataset and Preprocessing
	Flowchart of The Approaches

	Experimental Results
	Training and Test Workflow
	Evaluation Metrics
	Performance Comparison
	Performance Improvement By Sub-Graphs

	Conclusion

	Clustering using HDC
	Introduction
	Traditional Clustering Algorithms
	HDCluster

	Methodology
	Similarity-Based K-means
	Equal Bin-Width Histogram
	Equal Bin-Height Histogram
	Similarity-Based Affinity Propagation

	Materials
	Dataset Description

	Experimental Results
	Experimental Setup
	Comparison with HDCluster
	Original Data Space vs Hyperdimensional Space
	Further Discussion

	Conclusion

	Clustering and classification for brain stimulation with HDC
	Introduction
	Preliminaries
	Basics of HDC
	Classification using HDC

	Methodology
	Clustering using HDC
	Category Prediction using HDC

	Experimental Results
	Materials
	Clustering
	Category Prediction
	Further Discussion

	Conclusion

	Conclusion and Future Directions
	Key Findings
	Future Outlook

	References
	 Appendix A. Supplementary Results
	Clustering Results using HDC.
	Small Dataset
	Large Dataset

	Clustering Results using LCMM.
	Large Dataset

