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Abstract

The initial-value problem for the Korteweg-de Vries equation with a forcing
term has recently gained prominence as a model for a number of interesting
physical situations. At the same time, the modern theory for the initial-value
problem for the unforced Korteweg-de Vries equation has taken great strides
forward. The mathematical theory pertaining to the forced equation has not
kept up with recent advances. This aspect is rectified here with the development
of a broader theory for the initial-value problem for the forced Korteweg-de
Vries equation. The results obtained include analytic dependence of solutions
on both the initial condition and the forcing and allows the external forcing to
lie in function classes sufficiently large that a Dirac é-function or its derivative
is included.
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1 Introduction

Considered herein is the initial-value problem (IVP) for the forced Korteweg-de
Vries (KdV) equation
O+ ulpu + 0u = f(z,1),
(1.1)
u(z,0) = ug(z),
for z, t € R. Here, the dependent variable u = u(x,t) is a real-valued function of the
independent variables @ and ¢ that in most situations where the equation appears as a
model, correspond to distance measured in the direction of the waves propagation and
elapsed time. The initial value uy and external forcing f will be suitably restricted
presently.

The problem (1.1) arises naturally in situations close to those that lead to the
Korteweg-de Vries equation as an approximate model, but which feature suitably
small non-homogeneities. For example, the IVP (1.1) has arisen in studying wave
motion over a flat, horizontal bottom that has a localized perturbation (see Cole
[9] or Grimshaw and Smyth [14]) and in attempting to determine the response in a
channel to a surface disturbance moving into undisturbed fluid (cf. Akylas [1], Lee
[23] and Wu [28]). The forcing term f may also be thought of as providing a rough
accounting of terms that are neglected in arriving at the tidy KdV equation (1.2)
below.

Interest in (1.1) lagged behind that associated with the IVP

O+ ulpu + Ou = 0, z, t€ R,
(1.2)
u(z,0) = uo(z), T € R,

for the KdV equation. The intensive investigation of (1.2) by an army of scientists
was sparked in large measure by the inverse-scattering theory pertaining thereto. So
far, no effective means has been found to bring this fruitful theory to bear upon the
forced KdV equation (1.1). Indeed, this has remained a major open problem since

the 1970’s (see Miura [24]).

The well-posedness of the IVP (1.2) in the classical, Ly-based Sobolev spaces
H*(R) for s > 3/2 was well established in the mid-1970’s (cf. Bona and Smith
[3], Bona and Scott [4], Saut and Temam [26], Kato [15], [16] and the references
contained therein). In the early 1980’s Kato [17] discovered a subtle and rather
general smoothing effect for the IVP (1.2). While this effect had been apparent in
the early work of Cohen [8] (see also Sachs [25]), the simplicity and power of his



observations inspired new consideration of the IVP (1.2) by Constantin and Saut
[10], Ginibre and Velo [12] and Kenig, Ponce and Vega [18], [19] for example. This
theory shows the IVP (1.2) to be locally (resp. globally) well-posed in H* provided
only that s > 3/4 (resp. s > 1) [19], [20]. Recently, Bourgain [7] demonstrated (1.2)
to be globally well posed in H°(R) = L*(R) using a contraction-mapping argument
in a very cleverly chosen space. Combining Bourgain’s theory with their estimates
in [20], Kenig, Ponce and Vega [21] showed shortly thereafter that (1.2) is locally
well-posed in the space H°(R) provided only that s > —5/8.

By contrast, the theory pertaining to the IVP (1.1) for the forced KdV equation
has remained less developed. The following result was given by Bona and Smith [3]
in the early 1970’s.

Theorem 1.1 For given T' > 0 and s > 3, if (i) uwo € H*(R), (it) f € C(-T,T; H*(R)),
and (i) f, € C(=T,T;L*(R)), then the IVP (1.1) has a unique solution u €
C(~T,T; H(R))NC*(=T,T; L*(R)). In addition, the solution u depends continuously
in C(—T,T; H*(R)) on ug in H°(R) and f in C(—T,T; H*(R)) N CY(~T,T; L*(R)).

This result was strengthened recently by Zhang in [29] where he showed that the
conclusion of Theorem 1.1 holds without assumption (iii).

It is our purpose here to bring the theory for the IVP (1.1) into the general range
of what is known for the IVP (1.2). Four aspects of the IVP (1.1) will occupy us in
the body of the paper. Use will be made throughout of the recent developments for
the unforced problem (1.2) (cf. [6], [7], [12], [13], [18], [19], [20], [21], [30], [31]). While
in most aspects it is only required to adapt the tools available in previous works, the
theory that emerges is very much more satisfactory than the earlier results quoted
above.

Before going into a little more detail, it is convenient to discuss briefly our nota-

tional conventions.
Notation

In general, if X is a Banach space of functions of one or two variables, its norm
will be denoted by || - ||x except for the abbreviations listed now. The norm for L*(R)
will be written without decoration as simply || - || and the standard norm

ol = [ (+ IePylace) e (13)

for the L?-based Sobolev space H*(R), s any fixed real number, will be written as
indicated in (1.3). Here and elsewhere, a circumflex adorning a function of one or



two real variables denotes that function’s Fourier transform. In one instance, it will
be useful to consider the Fourier transform of a function g = g(x,t) in only the first
variable z, and this will be indicated by the non-standard notation § = g(¢,t). As
this partial transform only appears briefly, its notation should not cause confusion. If
X is a Banach space, C(a, b; X) is the functions u : [a,b] — X which are continuous.
This is a Banach space with the norm

sup ||u(t)||x-

a<t<b
In case a = —oo or b = oo, we will append a subscript b to connote that the mappings
u are bounded. Thus Cy(R; X) is the space of bounded, continuous mappings of R
into X equipped with the norm just displayed. The collection L(a,b; X) is defined
similarly, as are the Sobolev classes W*P(a, b; X) of function whose first & derivatives

lie in LP(a,b; X).

I. Well-posedness of the IVP (1.1) in the space H°(R)

Our goal is to update the known results for the IVP (1.1) to the general level of
Kenig, Ponce and Vega’s recent work [21] on the IVP (1.2). Indeed, armed with the
new tools introduced by Kenig, Ponce and Vega [18], [21] and Bourgain [7], we are
able to show that

for givenT >0 and s > —5/8, the IVP (1.1) is locally well-posed for initial data
ug in the space H*(R) and forcing f € L*(—=T,T; H*(R)) (f € L*(-T,T; H*(R))
if s > 3/4).

As a consequence of the above well-posedness result, the IVP (1.1) establishes a
nonlinear map K from the space H*(R)x L*(—T,T; H*(R)) to the space C(—T,T; H*(R))
by the specification Kj(uo, f) := u, where u is the solution of the IVP (1.1) corre-
sponding to the initial data ug and the forcing function f.

I1. Regularity of the map Kj.

For the homogeneous KdV equation, the IVP (1.2) also defines a nonlinear map
Ky from the space H*(R) to C(—T,T; H°(R)). Bona and Smith [3], and Kato [15],
[16] showed that K is continuous from the space H°(R) to the space C(—T,T; H*(R)).
Then, Saut and Temam [26] proved that Ky is Holder continuous with exponent %
from the space H**'/2(R) to the space L*(—T,T; H*(R)). These early results did
not use smoothing properties of the equation. Much stronger regularity can be estab-
lished by taking advantage of the various smoothing properties possessed by the KdV
equation. Simply as a by-product of their contraction-principle approach to the IVP



(1.2), Kenig, Ponce and Vega [20] showed that the map Kp is Lipschitz continuous
from the space H*(R) to the space C(—T,T; H°*(R)). Zhang [30] then proved that
the map Ky is infinitely many times Fréchet differentiable from the space H*(R) to
the space C(—T,T; H°(R)) and that for 6 > 0 sufficiently small, the formal Taylor

series expansion

o '('”-) n
Ku(é+h) = Z Ky’ (¢)[h"]

n=0

(1.4)

n!

converges in C(—T,T; H*(R)) uniformly for [|A]|; < &, which is the same as saying
that the map Ky is analytic from the space [{°(R) to the space C(—=T,T; H*(R)).
Here, K},n)(gzﬁ) is the n-th derivative of Ky at ¢, an n-multilinear map from the n-fold

product of H*(R) to C(—=T,T; H*(R)).

We show in this paper that

the map K corresponding to the IVP (1.1) is analytic from the space H*(R) x
L*(—=T,T; H*(R)) to the space C(—T,T; H°(R)).

As a result, the solution u of the IVP (1.1) can be expanded as a Taylor series
with respect to its initial data ug and the forcing function f. Since each term in the
Taylor series may be obtained by solving a linearized KdV equation, any solution of
the nonlinear IVP (1.1) can be written as a series of solutions of associated linear
problems.

II1. Smoothing properties of the IVP (1.1).

It is a standard issue arising in the study of inhomogeneous partial differential
equations to determine whether solutions have higher regularity than the forcing
term. For the IVP (1.1), the regularity of solutions u(z,t) in the spatial variable z
is usually the same as that of the forcing term f(z,t). However, for the associated
linear problem,

Ou+u=f, wu(z,0)=0,

standard semigroup theory shows that the solution u lies in C(=T,T; H**3(R)) if
f € WYY (=T,T; H*(R)). The price paid for the extra spatial regularity is that f
is required to have stronger regularity in the temporal variable t. We present here
similar results for the nonlinear problem (1.1). Indeed, we shall be able to prove the
following sort of theorem, stated here with zero initial data to keep the statement
simple.

Forug =0 and s > —5/8, if the forcing term f € WY2(=T,T; H*(R)), then the
solutionu € C(=T,T; H***(R)) and if s > —17/8, then [ € W22(~T,T; H*(R))
implies that uw € C(—T,T; H*(R)) for any s’ < s 4 3/2.
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As a particular example, the theory allows one to take a Dirac é-function (or even
the derivative of a é-function) as a forcing function acting on the right-hand side of
the KdV equation and conclude the corresponding solution u lies in C(—T, T; H*( R))
for any s < 5/2 (for any s < 0).

Smoothing properties of the IVP (1.1) with respect to its initial data are also
considered. The IVP (1.1) is shown to have the same smoothing properties as those
proved by Kenig, Ponce and Vega [19] for the IVP (1.2).

IV. Global existence of solutions in the space H°(R).

[t is familiar in nonlinear analysis that a global existence result for an initial-value
problem usually follows from a local existence result and appropriate global a priori
estimates. For the IVP (1.1), the needed global estimates when s = 0 or s > 1 can
be established with the aid of forced versions of the conservation laws appertaining
to the unforced KdV equation (1.2). Consequently, we are able to show that for any
up € H*(R) and f € L*(R; H*(R)), the corresponding solution of the IVP (1.1) exists
globally in the space H*(R). However, when 0 < s < 1 or —5/8 < s < 0, the needed
estimates in H°(R) are not available. The question arises naturally as to whether a
solution of the IVP (1.1) exists for all time or blows up in a finite time in the space
H*(R) when —5/8 < s < 0or 0 < s < 1. This is an open question, even for the
homogeneous IVP (1.2) (cf. [21]).

An interesting point that casts some light on this last mentioned issue follows from
the analyticity of the map K;. For any s > —5/8 and T > 0, let DT be the collection
of all (uo, f) € H*(R) x L*(R, H°(R)) for which the corresponding solution u of the
IVP (1.1) exists in the whole interval (=7',7").

For —5/8 < s <0 or0<s<1andanyT >0, DI is a dense open subset of
H*(R) x L*(R, H*(R)).

The paper is organized as follows. In section 2, the most important linear estimates
from Kenig, Ponce and Vega [21] are briefly reviewed. Then consideration is given to
the associated linear IVP

Oy + Oz (vu) + Pu = f,
(1.5)
u(z,0) = uole),

for z,t € R where v = v(z,t) is a given function. The well-posedness of the IVP
(1.5) in the space H*(R) is established and estimates of the solution in term of wg
and f are provided. This theory is the basis for the demonstration of analyticity of
the map K;. In section 3, the well-posedness of the IVP (1.1) in the space H*(R)
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(s > —5/8) and the analyticity of the map K are established. Instead of dealing
directly with the nonlinear system (1.1) itself, we first consider the infinite system of
linear equations
w1 + Ouuyr) + 02y = hy,
(1.6)
y1(z,0) = hy,

and, for n > 2,

N | =

atyn + aa:(uyn) + 02"Ijn = —

n—1
Z < ;\7 ) ax(ykyn—k)a
k=0 ’

(1.7)
Yn(z,0) =0,

where u is assumed to be a solution of the IVP (1.1) corresponding to the initial data
ug and the forcing term f. According to the linear theory established in section 2,
the linear system (1.6)-(1.7) is solvable. It is then shown that

is a solution of the IVP (1.1) corresponding to the initial data ug+ h,, and the forcing
function f 4 hy provided the size of h,, and hj is small in a particular sense. The
well-posedness the IVP (1.1) and the analyticity of the map I; follow as corollaries.
In section 4, we discuss smoothing properties of the system (1.1), while section 5
provides global existence of solutions of the IVP (1.1) in H*(R)-spaces. In section 6,
theory is developed for the periodic IVP for the forced KdV equation, namely (1.1)
where ug is chosen from appropriate classes of periodic functions. Results similar to
those established for the IVP (1.1) posed on the entire real line R are obtained.

2 Linear Estimates

To begin, we introduce a special Sobolev-type space used by Kenig, Ponce and
Vega in [21], which is a modified version of the space first introduced by Bourgain in

(7).
For any s,b € R, let Y, be the completion of the space S(R?) of tempered test
functions with respect to the norm

W, = [ [ I = D +1eh*1f (€ ldear,



where f(£,7) denotes the Fourier transform of f(z,t). As shown in [21], if u € Y},
with s > —1 and b > 1/2, one has

u € Ci.(R; Li(R))
for any @ € (0,1 + s), and consequently

we L2, (R LA(R)),

x,loc

for 1 < p < 0. The space Y, has a very useful property described in the following
lemma taken from [21, Lemma 3.4].

Lemma 2.1 Let there be given s > —5/8 and o € C§°(R) with its support in the
interval (—1,1). Then there exists a o € (1/2,1) such that for any b € (1/2, o),
there is a 6y > (20— 1)/2 for which

lo*(87" )0 (wv)lly, o, < 6% llully. ,llolly,, (2.1)
for any u, v € Yy and 0 < 6 < 1.
The following useful result is an immediate corollary.

Lemma 2.2 Let s, 0 and b be as in Lemma 2.1. Then, for any u, v € Ysp and
T > 0, there is a ¢; = ¢1(T') such that

lo(T 71 )0 (uv)lly, ooy < exllelly,llvly, .- (2.2)

The space Y,;, has a stronger topology than the the space Cy(R; H°(R)) as the
following lemma shows.

Lemma 2.3 Let b > 1/2 and s € R be given. Then Y, C Cy(R; H*(R)) and there
is a constant ¢ > 0 such that for any f € Y,

sup ||/ (- )lls < e[l f
teER

Yeb-

Proof: According to the Plancherel Theorem,

(e}

sup | fI[2 = sup [ (1+[¢)*
teR teR J-co

GO

IN

(o ruglicol s



where f connotes the Fourier transform of f(z,t) with respect to the spatial variable
z. Then, using the Riemann-Lebesgue lemma and the fact that b > 1/2, it is found
that

~ 2 ~ 92
sup |f(6,0)] < ellf& N

tER
< of ir-entlien)| an

from which one obtains

su 2 cOooo T — &3 25| £(¢ 7)|2dédT
up 712 < o[ [ = €D+ DA Pded

= c|fIl5,,

The proof is complete. O

Let {W(¢)}*2 denote the unitary group generated by the operator
Af — f///
in the space L?(R). Then the solution of the linear IVP

at’l) —|— ag'() = O,
(2.3)
v(z,0) = vo(z),

for z,t € R, is given by v(-,t) = W (t)vo(-) and the solution of the inhomogeneous

equation

O + Pov = f(z,t),
(2.4)

v(z,0) =0,

in the same range of  and ¢ is expressed as
t
v(st) = [ Wit=1)f(,r)dr.
0
Now suppose that ¢ € C§°(R) with suppyp C (—1,1) and ¢(z) = 1 for every
z € [—1/2,1/2]. The following result may also be found in [21].
Lemma 2.4 For given s € R and b € (1/2,1], there is a constant ¢ such that
(87 )W ()uolly, , < 87722 |fuoll, (2.5)

and

(™) [ W= )il < 5O, (26)
for any 6 € (0,1).



Remark 2.5 Combining (2.1) and (2.6), one has

|l¢(5'1t)/0t W(t = 1)a?(1/8)(Ba(uv)) (-, 7)dr Iy, , < c6®lully, [lolly,,.  (2.7)

This comprises a global smoothing property of the linear KdV equation.

Attention is now turned to the more general linear problem

Oiu + Ox(vu) + agu =7,

u(z,0) = uo(z),

for z,1 € R, where v = v(z,1) is a given function. The following theorem provides a
key tool for demonstrating analyticity of the map K defined by the IVP (1.1).

Theorem 2.6 Suppose to be given s > —5/8, T > 0, b as in Lemma 2.1 with
1/2 < b < 1andv € Ysp. Then for any ug € H*(R) and f € Yi4_y, the IVP
(2.8) has a unique solution w € C(—=T,T; H*(R)) which is the restriction to (=T, T)
of a function u € Y;, that satisfies the estimate

lally,, < e (luolls + 11 fllv,pes ) » (2.9)
where ¢; = c1(T, [[v]ly,,)-

Proof: We attend first to the local existence of a solution using Kenig, Ponce and
Vega’s contraction-mapping argument [20]. To this end, rewrite (2.8) in its equivalent
integral-equation form

w( ) = W (L)uo(-) + /Ot W(t — 1) f(-,7)dr — /Ot W (L = 7)0u(wv)(-, 7)dr.

For the given auxiliary data (uo, f) and § € (0, 1), define a map I' of the space Y; as
follows;

Pw)() = $EOWDuol) +w(670) [ W(e=1)f(,7)dr -

h(67't) /(]t W(t — 7)o(67 )0 (vw) (-, 7)dT,

for any w € Y, where 0 € C§°(R) with ¢ = 1 on the support of 9, and the support
of o C (—1,1). Using Lemma 2.1 and Lemma 2.3, it is inferred that

P,y < 82 (Jluolls + 111y, - ) + 8@ 0% (t/8)Ba(vw) Iy,

INA

) 1-2b
c51-20)/2 (||u0||s + ||fHY.g,b—l> + c6%t= lvlly, s lwlly, -

10



Since 6y > (2b — 1)/2, one may choose § < 1 such that
26590+2_2—2b||v”y3’b <1. (2.10)
Define the quantity M to be

M = 2¢8 722 (|luolls + |1 f

Ys,b—l)? (2.11)

and let Hys connote the ball of radius M about zero in Y;,;. In these cicumstances,
it follows straightforwardly that for any w € Hpy,

Iy, < M.

Because of the choice of M and §, a similar set of estimates shows that

IT(wq) — T'(w,)

1
Ys,b S é”wl - u)2 Ys,b

for any wy, we € Hp. HenceI' is a contraction on Hyy if § and M are chosen according
to (2.10) and (2.11). As a consequence, there exists a « € Hps such that

u(-l) = ¢(6‘1t)W(t)u0(-)+¢(6"1t)/0t W(i—7)f(-,7)dr

—p(571) /Ot W(t = 7)0(6~ 1) (wo) (-, 7)dr.
In particular, one has
u(+,t) = W(t)uo(-) + /Ot Wt —7)f(,7)dr — /: W(t — 7)0.(uv)(-, 7)dr

for —6/2 <t < §/2. Hence u(z,t) is a solution of (2.8) for —§/2 <t < §/2 and in
this range of ¢, satisfies

[[u(-1)

Because the local solution is obtained via the contraction-mapping principle, it is

Ve < 2e6072 2 ([luolls + 1| £lly, oo, ). (2.12)

straightforwardly inferred to be unique within its function class.

This local solution is easily extended to the entire interval (=7, 7). Indeed, be-
cause the time of existence § depends only on v and the solution u possesses the bound
(2.12) in Y, 4, a straightforward iteration of the contraction-mapping argument start-
ing with u(-, %) as initial data at successively larger values of |t'| allows one to conclude
in a finite number of steps existence and uniqueness on (—7',T"). The function u ob-
tained by pasting these local solutions together plainly lies in C(—1',T; H*(R)). That

11



it is the restriction to (—7,T) of a function in Y;, follows by writing it as a finite
sum of elements of Y; , using a partition of unity of [—7',T'] whose supports are based
on the local patches of solution obtained via the contraction-mapping principle. The
bound in (2.9) is obtained by applying (2.12) to each summand in the partition-of-
unity representation of u. The proof is complete. O

For any given T' > 0, s € R and b > 1/2, define
w* = {’U € )/S’b : 'U(',t) = ’U)(',t), Vit € (—T,T)}

and
Yg;) = {w", w € Y, }.

The space Yg; i1s a Banach space equipped with the quotient norm

“'W*Ihfg‘b = Uiég. vy, .-

According to the definition, v € Yf,; is a family of elements in the space Y;,. It will
occasionally be convenient to ignore the distinction between the equivalence class
v € Yg; and a representative of this class. As long as values of t € (=T,T') are in
question, this abuse causes no difficulty.

Remark 2.7 In the above notation, and keeping in mind the convention concerning
equivalence classes and their representatives, Theorem 2.6 may be restated as follows.

Let s > =5/8, T' > 0 and v € Y. Let b in the range (1/2,1] be chosen as in
Lemma 2.1. Then for any wo € H*(R) and f € Ysp_1, there is a unique u € qu;
which is a solution of (2.8) in the time interval (—T,T). Moreover, one has

vr < e (lluolls + 11lv..0) (2.13)

v.,) may tend to +oo if T — +o0 or ||vlly,, — +oo.

lu

where ¢; = ¢1(T, ||v

Corollary 2.8 If up = 0 and f = 0,(g192) with g1, g2 € Y., then the estimate
(2.18) can be written as

lellyz, < ellgilly, ,llgzlly. . (2.14)

ys’b) tends to zero as T — 0.

where ¢; = (T, ||v

Proof: Suppose that T' = §/2 where ¢ is determined by (2.10). Then from the first
part of the proof of Theorem 2.6,

lullyz, < 2e8"720*(6711)0u(9192)) 1V,

< 2660002 gy llgaly,,

= CZHgll Ys,bllg2||ys,b'

12



The case of an arbitrary finite value follows from this estimate and a partition-of-unity

representation. The proof is complete. O

3 Well-posedness and Analyticity

Throughout this section it is assumed that s > —5/8 and b > 1/2 are as in Lemma
2.1. Define the product space X, to be

Xop 1= H*(R) x Yy

It follows from Theorem 2.6 that for given 1" > 0 and (uo, f) € X4, there corresponds
at most one u € Y, which is a solution of the nonlinear IVP (1.1) in the time interval
(—=T,T). Thus solving the IVP (1.1) defines a map K; from X,; to Y} » given by
u = K($), where ¢ = (uo, f) € X, and u is the corresponding solution of the IVP
(1.1) if it exists.

Let DT DT(I\I) denote the domain of the map K'; in the space X, ;. Obviously,
DT is not empty since 0 € DT. We show that DT is an open set in the space X, and
that the nonlinear map K7 is analytic from DT to YT

Formally, if K} is an ana]ytlc mapplng from DT to )s b, then, forn =0,1,2,---, its
n-th order Fréchet derivative I& (gﬁ) at ¢ € DT exists and is the symmetric, n-linear
map from X, to Y}, » given as

n a"
‘[’§ )(¢)[]11,,lln] = {861 ?6 [‘I ¢+ ng}lk }
" 0,..0

for any hy,hs,...;hn € X5p. The homogeneous polynomial K}n)(qﬁ)[h”] of degree n
induced by K}n)(gb), where h"™ = (h, h,..., h) (n-components), is

dén

for h = (hyy, hy) € Xsp. If we define y, by

K ()[h"] = { Ki( + §h>}

£€=0

yn = K (8)[h"),
then it is formally ascertained that for —7' <t < T,
A1 + Ou(uyr) + Ogyr = hy,
(3.1)
yl(:z:,O) = huoa

13




and

Lo =

n—1
8tyn + aa:(uyn) + aﬁyn = - Z ( Z ) 0x(ykyn—k)7
(3.2)

yn(z,0) =0,
for n > 2, where v = K;(¢) and h = (hy,, hs) € Xsp.

On the other hand, for any ¢ = (ug, f) € DI, let u = K;(¢) and consider solving
the linear systems

{ O + O(uyy) + aﬁ?h = hy,

(3.3)
y1(2,0) = hy,
and .
1 t = L
B k=0 ' (3.4)

yﬂ(xv O) = 07

for n > 2, where h = (hy,, hy) € Xsp and @ is as in the previous section. It follows
from Theorem 2.6 that (3.3)-(3.4) defines a homogeneous polynomial of degree n from
Xsp to Y}; as described by the following proposition.

Proposition 3.1 Let T > 0 and ¢ € DI = DI(K;) be given and let u = K[(¢).
Then (8.3)-(3.4) defines a homogeneous polynomial ['s’}n)(qﬁ)[h"] of degree n from X
to Y[I,. Moreover, there exists a constant ¢z such that

[ynllyz, < cgnllllk,, (3.5)

for any n > 2, where c3 = ¢5(T, ||ullyz), and it may be that c3 — +00 as T — +oo
or “u||yTb — +00, bul in any case c3 — 0 if T — 0.

Proof: The proof is a straightforward consequence of Lemma 2.1 — Lemma 2.4 (cf.

(30, Prop. 3.3]. O
Define a Taylor polynomial P,(h) of degree n, for h € X, by

NI "
Paty = 32 KO e+ > %, (36)

and a Taylor series by
Plh) =2, IT

k=0
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Proposition 3.2 For any ¢ = (uo, f) € DI = DI(K), there exists an n > 0

depending only on ||[([(¢)”):Tb such that the formal Taylor series (3.7) is uniformly

convergent in the space Y with respect to h € Xy with ||b||x,, < 5. Moreover, if
= P(h), then v € Y] solves the IVP

dv +v8v + Pv=f+ hy,
(3.8)
v(z,0) = up + N

for =T <t <T.

Proof: It is readily seen that the sequence {P,(h)}S2, of Taylor polynomials is
Cauchy in Y, uniformly for A in the ball of radius  in X, for suitable 7. Indeed,

because of Proposition 3.1, it transpires that, for m > n >0,

m

[Pa(h) = P (B)llyr, = |l Z ||yT

m Hyk

2

YT

kg1
< > csllkllk,,-
k=n
If 7 1s chosen so that

7 < 1/(2¢3), (3.9)

then for h € X, with ||2||x,, <7, one has

1
ok

P

[Pn(h) = B (R)lyz, Z

which goes to zero uniformly as n, m — oo.

Since {P,(h)}52, is a Cauchy sequence in the space Y}, it makes sense to define
v = P(h) as its limit as n — oco. Then v € Y, and v solves the IVP (3.8). To see
this, note first that

o(z,0) = iyk(mo

k=0

= u(x,O) + yl(:C,O)

= uo(@) 4 hyy(z)-
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Moreover, since the series P(h) is absolutely convergent in the space Y, C C(-T, T} H*(R)),
it follows that

In consequence, we have

1
0w + 50:(v") + Ov = O + Z ‘y‘ + Pu+

[eS) 83 ) ) 0 &E wy 1 k-1 L
+ Z ()x(’lt )"*‘é{ (]“l ‘)AI Z ( ) Jan L)}

= (Otu + ;ar(uz) + aﬁu) + (91 + Oolugn) + By ) +

"0 n

F4

[o'e] 1 1 k-1 k
+ Z ﬁ {&yk + az(uyk) + 5 Z ( ) 8x(ynyn_k) + 823/;;}
k=2 """

= f + /lj.
The proof is complete. O

The following theorem is now readily adduced.

Theorem 3.3 (Analyticity) For any T > 0, the IVP (1.1) establishes a map K;
from the space X, to the space Y.}, having as its domain DT = DT(K;) a nonempty
open subset of X,,. The map K; is analytic from DT to Y in the sense that for any
¢ € DI, there exists an > 0 such that for any h € X, with ||h||x,, < n, the Taylor
series erpansion -

0 ’(n n
Ko - $ K@)

|
n=0 n.

converges in the space Yg;, Moreover, the convergence is uniform with regard to h in
the aforementioned ball in X .

In particular, since 0 € DT, there exists an > 0 depending on T, such that
for any ¢ = (uo, f) € Xsp with [[¢|lx,, < 5, the IVP (1.1) has a unique solution

16




u € Y7, defined at least in the time interval (—=T,T'). Moreover, according to (3.9)
and Proposition 3.1, 7 — oo as T" — 0. The local well-posedness of the IVP (1.1)
thus follows as a corollary to Theorem 3.3.

Theorem 3.4 (Local well-posedness) For any up € H*(R) and f € Y,_1, there
exists a T = T(|Juolls, || flly.,,) and a unique u € Y.}, which is a solution of the IVP
(1.1) on the time interval (=T, T) and which satisfies

leelyz, < ellfuolls + 11l os)

for some constant ¢ = c(||uolls, || fllv.,_,) > 0. Moreover, for any T' < T', there exists

a neighborhood U of (o, f) in the space X, such that the map K; is analytic from
U to Ysﬂ'.

4 Smoothing Properties

Consideration is first given to smoothing properties of the IVP (1.1) with regard
to the forcing term f.

Lemma 4.1 For any s,b € R, the embedding
I/Vl_b'2(R, ]{5—3(1—[»)(]%)) C )/s,b~1
s continuous.

Proof: Since

L+ €] =1+ |33
<14 (€~ 7|+ |3
< (1418 — T3 4+ |r|)/3

for some positive numerical constant ¢, it follows that, for any u € W'=b2(R, H*=3¢-D(R)),

lellyrvaqmsa-ogy = [ [ (1+ €D+ Ir — €26 Du(e, 7) Pdgdr

o oo I 14 [7))20=0)(1 4 |£])6(-b)
= /_oo /_00(1 +[¢])*e30 "”(1 (+ 1T||)2(|1)_b)(1 (+ - ‘_6231)2(1_17)|u(§,7)12d5d7

<e [ [Tl e 4 )P0 u(e, 7) Pdedr

= cllully,, -
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The proof is complete. O

The next theorem now follows directly from Theorem 3.4.

Theorem 4.2 Let s > —5/8 be given and b > 1/2 be as in Lemma 2.1. Then for
any ug € H*(R) and f € WI=b2(R, H*=3(=Y(R)), there is a Ty > 0 and a unique
u € YsTbl which defines a solution of the IVP (1.1) corresponding to the initial data ug
and the forcing f.

Note that the b in the above theorem can be chosen as close to % as one likes. As
a consequence, we have the following result.

Corollary 4.3 Let s > —17/8 be given. For any [ € W2?(R, H*(R)) and up €
115+%(R), there ezists a Ty > 0 such that the corresponding solution w of the IVP
(1.1) lies in the space C(=Ty, Ty, H*(R)) for any s' < s + 3/2.

As Corollary 4.3 indicates, the price paid for a gain in spatial regularity of the
solution of the IVP (1.1) is the assumption of more temporal regularity in the forcing
function f. If one is willing to assume further temporal regularity, then the conclusion
of the last result can be strengthened.

Theorem 4.4 Let T > 0 and s > —5/8 be given and let b > 1/2 be chosen as in
Lemma 2.1. Then for any uo € H*T3(R) and f € WY3(=T,T; H*(R)), there exists
aTy, >0 and a unique u € Y;";} which is a solution of the IVP (1.1) over the time
interval (=T1,T1) where Ty < T depends on ||uol|s43 and || f|ly,,_,. Moreover,

Ou €Yl and we C(—T,T; H(R)). (4.1)
Proof: If v = d,u, then v is a solution of the IVP

O + O (uv) + v = fi,

o(z,0) = f(z,0) — uf(z) — o(e)up(x).

Because of the regularity of the initial data and the forcing term, it is deduced from
the preceding theory that u and G,u lie in YsTbl for some Ty > 0. In Fourier transformed
variables, this means

[ @l (1P I @ )Place g < co.
Since b < 1, there is a constant ¢ such that
(T4 1ED% < el +|r =€) + 7)™
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Hence it follows that

/_o:o /::)(1 + |£|)2(s+3b)(1 + |T’)1—b"&(§,’r)|2(lfd7‘
< [ [P0 PO b - €)M, m) P

< 400,

or, what is the same,

u € W'P(R; T (R)).
This in turn implies that
Opu € L*(=Ty, Ty; H*T*71(R))

and

u@xu c LQ(—Tl, Tl, [‘[s(R))
Finally, it is seen by writing the equation in the form
Ugpe = [ — UU; — Uy

that
u € C(—Tl, Tl, Hs+3(R)).
The proof is complete. O
Remark 4.5 Ifit isonly assumed f, f; € Y; ;-1 rather than f € W'(-T,T; H*(R)),

we still have

uwe WPHR: HP(R)).

This follows immediately from the sort of calculation appearing in the proof of the
last theorem.

Attention is now given to smoothing properties of the [IVP (1.1) with regard to
its initial data, which is the property that solutions may be more regular in their
spatial variable than the initial data. Let s > 0 and 7' > 0 be given. For a function
w: Rx[-T,T] — R, define the quantities

/\1(T’w) = sup Hw('vt)llsv
[_TvT]

T 1/2
No(T,w) = (sup / |Dsa,,w(:c,t)|2dt> :
T -T
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T 1/4
As(Tw;l) = (/T | J 00 (-, t)||zodi>
with { € [0, — 3/4] where J* = (1 — 92)*/?,
1/2
M(T,w;r)=(1+T)" (/ sup Ier(a:,t)lzclw)
R (~T,T]
with r € [0,s — 3/4] and p > 3/4 a fixed constant, and
1(T5 w) = max {\(T,w), Aao(T,w), A3(T,w; 1), A\(T,w;7)}.
Define also the function class XZ:;S by
X1 ={we C(—T,T; H(R) : A)(T,w) < o)

for (r,1) € [0,5 — 2] x [0,5 — 2). This linear space is a Banach space when equipped
with the norm
”wH_\’z“f = A:,I(T»w)a

introduced by Kenig, Ponce and Vega [20]. Clearly, XZ:,’S is a subspace of C(—=T,T; H*(R))
with a stronger topology. It has the following important properties established in [20].

Proposition 4.6 Let T > 0, s > 3/4 and (I,r) € [0,3/4] x [0,3/4) be given. Then
we have

W (t)uoll e < elfuoll (42)
t T
| [ Wit mdrlgre < e+ 1) [ l5¢,m)llar, (43)
and T
[ 0wt < TV2(1+ Tl gz o] (44)

where p > 3/4 is constant.

Remark 4.7 The estimate (4.2) reveals a stronger version of both the Kato smooth-
ing effect and the Strichartz’ global smoothing effect for the unitary group W(t) (cf.
[20]). The estimates (4.3) and (4.4) show a global smoothing property which is similar
to (2.7).

In [20], Kenig, Ponce and Vega showed that for any ug € H*(R) with s > 3/4,
the IVP (1.2) for the homogeneous KdV equation has a unique solution u € XZ,’S. A
similar result holds for the IVP (1.1) of the forced KdV equation. Indeed, the same
arguments as those used in section 3 provide the following result.
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Theorem 4.8 Let s > 3/4, T' > 0 and (I,r) € (0,5 — 3/4] x [0,s — 3/4) be given.
Then for any (uo, f) € H*(R) x L*(=T,T; H*(R)), there is a

Ty = Th(llwolls, | flzr (—zrsmrmy)) < T

and a unique solution u € XZ}’S to the IVP (1.1) satisfying

”““.\'TT;'S < c([fwolls + 1 fllr (=7,13m2(Rr)))-

Moreover, for any T' < T\, there exists a neighborhood U of (uo, f) in the space
H*(R) x L'(=T,T; H*(R)) such thal the map K| is analytic from U to the space
X,

The space L*(—=T,T; H*(R)) is a subspace of the space L'(—T,T; H*(R)) and the
space Y;j_1. But the space Y and the space XTTJ'S are not related by one being
included in the other. Neither are the spaces L'(—T,T; H*(R)) and Y,;_; so related.
This raises an interesting question. Suppose ug € H*(R) and f € L*(-T,T; H*(R))
with s > 3/4. Then Theorem 3.4 provides a solution u; € Y], for the IVP (1.1) and
Theorem 4.8 provides us another solution u, € XZ:,’S. Are these two solutions the
same? This question is related to the following uniqueness problem for the IVP (1.1).

Uniqueness Problem: Suppose wy, u, € C(=T,T; H°(R)) are bolh solutions of
the equation

Owu 4+ ulzu + Ogu =f

for some f € L*(=T,T, H*(R)). Does the fact ui(-,0) = uy(-,0) in the space H*(R)
imply uy(+,t) = ua(-,t) in H*(R) fort € [-T,T]?

The answer is affirmative if s > 3/2 and the proof is an easy exercise. The issue
remains open when s < 3/2. There are many discussions in the literature about the
uniqueness problem for the IVP (1.2) for the KdV equation (cf. [13] and [22]). But
the results thus far extant require that either the solution w is in a stronger space
than C(—T,T; H°(R)) or the initial data decays at a certain rate as £ — too. The
uniqueness results appearing in Theorem 3.4 and Theorem 4.8 also require solutions
in spaces stronger than C(—T,T;H*(R)), namely Y, and X}:f, respectively. On
the other hand, these uniqueness results do imply uniqueness of the so-called strong
solutions of the IVP (1.1). These are defined as follows.

Definition: A function v € C(=T,T; H*(R)) is called a strong solution of the IVP
(1.1) if there exists a sequence {un }oo_y lying in C°(=T,T; H*(R)) such that

m=1

8tum + umaa:um + 3§Um = fm
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forz e R, te (-T,T),

nlﬂ?go —;Etp<T [um (-, ¢) —u(-,t)|ls =0,

and for which

Jim |l fm = fllzz-125m5Rr)) = 0.

Proposition 4.9 Let s > —5/8 and T > 0 be given. Then the IVP (1.1) has at
most one strong solution v € C(=T,T; H*(R)) for any given uo € H*(R) and f €
L*(—T,T; H*(R)).

Proof: It suffices to show that if v € C(—T,T; H*(R)) is a strong solution of the
IVP (1.1), then u € Y], since the IVP (1.1) has at most one solution in this space.

Let {um}2_, be a sequence of functions corresponding to the assumption that u is
a strong solution of the IVP (1.1). Our theory shows that for all m, u., € YSI;) Note
that f tends to f in the space L*(—T,T; H*(R)) and that u,(-,0) tends to wuo(:)
in the space H*(R). In addition, sup_s scq ||tn (-, 1)|[s is bounded independently of
m. It follows from the local well-posedness result in Theorem 4.8 that the sequence
{un}52_, is a Cauchy sequence in the space )sjb whose limit v is a solution of the IVP
(1.1) corresponding to the given ug and f. Since u is a limit of {u,} in the space
C(—T,T; H*(R)) and the space Y} is a stronger subspace of C(—=T,T; H*(R)), we

must have u =v. O

Corollary 4.10 Let s > 3/4 and T > 0 be given. Let uy be the unique solution of
the IVP (1.1) in the space XTTf and u,y the unique solution of the IVP (1.1) in the
space Ys:’;) Then uy = uy for =T <t <T.

Proof: It follows from Proposition 4.9 and the fact that both u; and wuy are strong
solutions of the IVP (1.1). O

In consequence of these developments, we have the following result.

Theorem 4.11 Let s > 3/4 and T > 0 be given. For any ug € H*(R) and f €
L*(—=T,T; H*(R)), there exists a Ty = Ti(||uolls, | fllc2(-7.1;m:r)) < T such that
the IVP (1.1) has a unique strong solution u € C(—=11,Ty; H*(R)). Moreover, the
solution lies in Yg;l and X,F{T"s, where b > 1/2 is as in Lemma 2.1 and (I,r) is as in

Proposition 4.6.
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5 Global Existence Results in the Space H*(R)

The local well-posedness theory developed in the preceding sections leads naturally
to consideration of whether or not the solutions can generally be continued in time,
so becoming global solutions of the IVP. Of course, if the auxiliary data (uo, f) is
sufficiently regular, global solutions are known to obtain therefrom via the earlier
theory [3], [29]. However, for weaker specification, it is possible that solutions might
blow up in finite time, so ceasing to exist at a certain point. This issue arises pointedly
when one is concerned with the IVP (1.1) as an approximate description of wave
phenomena.

The following two criteria for whether or not a solution of the IVP (1.1) ceases
to exist in finite time follow from Theorem 3.4 and 4.8, respectively, by a standard
argument. Throughout this section, we continue to suppose that b > 1/2 is fixed in
accordance with the requirement that Lemma 2.1 is valid.

Proposition 5.1 Let s > —5/8 and T' > 0 be given. Then for any uo € H*(R) and
f € Yip1, there exists a marimal value Ty with 0 < Ty < T such that the IVP (1.1)
has a unique solution u € Yg,‘f for any Ty < Ti. The mazimal value Ty < T if and
only if

lim |lu(-,t)|[s = +oo.

4

Proposition 5.2 Let s > 3/4, (I,r) € [0,s —3/4] x [0,5s —3/4) and T > 0 be given.
Then for any (uo, f) € H*(R) x LY(=T,T; H*(R)), there is a mazimal value Ty with
0 < Ty <T such that for any To < Ty, the IVP (1.1) has a unique solution u € X,:,rf’s
and Ty < T if and only if

fim. -, 1), = +oo.

t—»l

In consequence of these results, global a priori estimates for solutions of the IVP
(1.1) in the space H*(R) suffice to infer the global well-posedness of the IVP (1.1).
It is to the provision of such bounds that attention is now turned.

Lemma 5.3 Let there be given T > 0 and u € C(=T,T; H®(R)) a solution of the
IVP (1.1). Then the following inequalities appertain to u:

sup Ju(- 0 < ¢ (nuon + [ solar). (5.1

T
sup [[u(-,t)[i < ¢ (IIUon + llwoll + /_T IIf(-,t)Illdt) ; (5.2)

[—TrT]
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and for any s > 0,

T
s 1, O < e ([ 10t Mot ) (ol + [ 15 0lat) (59

where the numerical constants ¢ and ¢, are independent of ug and f.

Proof: The proof of the estimates (5.1) and (5.2) is standard. The estimate (5.3)
follows from the argument used in the proof of Lemma 3.2 in [19]. O

Theorem 5.4 (Global well-posedness) Lets > 1, T >0 and (I,7) € [0,5—3/4] x
[0,s —3/4). Then, for any (uo, f) € H*(R) x L'(=T,T; H*(R)), the IVP (1.1) has
a unique solution u € X;{l’s. Moreover, the corresponding map K is analytic from

H*(R) x L}~T.T; H*(R)) to the space X,

Proof: This follows from the global a priori estimates (5.2), (5.3), Proposition 5.2
and Theorem 4.8. O

Notice that the estimates (5.1)-(5.3) for smooth solutions are given in terms of
the H*(R)-norm of the initial data and the L'(—T,T, H*(R)) norm of the forcing
function f. Of course, for any T > 0, we know

L*(~T,T,H*(R)) C L'(~T,T; H*(R))

and

LT, T; H'(R)) C Yap1.

However, the spaces L'(—T,T; H°(R)) and Y;,_1 are not related to each other by
inclusion.

Theorem 5.5 (Global well-posedness) Let T' > 0 be given.
(i) For any (uo,f) € L*(R) x L*(=T,T;L*(R)), the IVP (1.1) has a unique

solution u € YOTb and the associated correspondence K is an analytic mapping between
these spaces. :

(ii) For any s > 1 and (uo, f) € H*(R) x L*(—T,T; H*(R)), the IVP (1.1) has
a unique solution u € Yf; N XZ,’S and in this case also K is an analytic mapping

between these function classes.

Proof: In the case s = 0, the result follows directly from the a priori estimates (5.1)
and Proposition 5.1 by a standard argument.
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If s > 1, the IVP (1.1) has a solution u € XTTJ’S according to Theorem 5.4. In
particular,

sup ||u(-,t)]|s < 4+o0. (5.4)
[_TvT]

On the other hand, from Corollary 4.10,
u(-,t) = v(-,t) in the space H*(R), for t € (=Ty,T}), (5.5)

where v is the unique solution of the IVP (1.1) in the space Ys];} corresponding to
(uo, f) for some Ty > 0. Because of the estimate (5.4) and Theorem 3.4, the solution
v can be extended to the whole interval (=T, T') in such a way that v € ¥} and (5.5)
holds for t € (=T, T). The proof is complete. O,

The cases where 0 < s < 1 or —5/8 < s < 0 are interesting since the needed
global a priori estimates are not available, although the IVP (1.1) has been shown to
be locally well-posed for these ranges of s. This raises the question mentioned before
of whether the corresponding solutions blow up in finite time or exist globally in the
space H*(R).

As an application of the analyticity of the map K, a partial answer to this problem
can be provided. For (ug, f) € X4, the corresponding solution u of the IVP (1.1)
exists globally in the space H*(R) if and only if

(uo, f) € DI = DST(KI), for any T > 0.
Now we know that if —5/8 < s <0,
L*(R) x L*(R; L*(R)) c DT

and if 0 < s <1,
HY(R) x L*(R,H*(R)) c DT

for any T > 0. In addition, DT is a non-empty open subset of X, according to
Theorem 3.1. The following theorem is then obvious.

Theorem 5.6 Let s > —5/8 be given. Then, for any T > 0, DI = DI(K) is a
dense open subset of the space X.

We close this section by giving still another global existence result.

Theorem 5.7 Let T'> 0 and s > 0 be given. For any
ug € H*(R) and f e Wh3(=T,T; H*(R)),
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there exists a unique u € Y which is a solution of the IVP (1.1) in the time interval

(=T,T). Moreover,
dueY), and ue C(-T,T; HF(R)).

Proof: It follows from Theorem 5.5 (s = 0) and Theorem 2.6 that u, u, € Y.
Then using the argument presented in the proof of Theorem 4.4, one has u €

L*(=T,T; H**3(R)). In particular,

T
| s )yt < co.
It then follows from (5.3) that

sup Jju(-, )]s < oo
[_T’T]

for any s > 0. As a result, u € Yj}, Then Theorem 4.11 implies
du €Y, weC(=T,T;H(R))

for any T' > 0. The proof is complete. O

6 Forced KdV Equation on a Periodic Domain

In this final section of the paper, we analyze the periodic initial-value problem
for the forced KdV equation. The situation in view assumes that both the initial
data and the forcing function as regards its spatial variation are periodic of the
same period, and focuses on solutions having the same periodicity in space. This
problem is usually somewhat artificial as regards application to physically interesting
situations. However, it frequently arises in numerical simulation where unbounded
domains are hard to model and the relative simplicity of imposing periodic boundary
conditions is very attractive. As a model of physical reality, the idea is usually that
the initial disturbance and the forcing often take place far from boundaries, and hence
the imposition of periodicity should not affect the solution significantly provided the
period is large enough. According to the theory in [5], this approach is justified over
certain time scales provided the initial data is suitably evanescent at f-oco.

Here, we treat the periodic IVP with a finite period, and leave aside the question
of the relationship between the periodic IVP and the pure IVP. Because the period A
is finite and the equation is written in a frame of reference having no linear transport
term J,u, a simple change of variables allows us to assume A = 1, and this convenient

normalization will be adopted hereafter.
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Let H*(S) denote the real Sobolev space of order s (s > 0) on the unit length
circle S in the plane. H*(S) may be characterized as the space of real 1-periodic
functions v whose Fourier series

v(z) ~ i vpexp(2imha) (6.1)

is such that ]

ol = {i(l + |k1>28|vk|2}2 < +oo. (6.2

-0
The left-hand side of (6.2) defines a Hilbert-space norm on the linear space H*(S).
Let D? represent the {ractional derivative of order s, so if v has the Fourier series in
(6.1), then

D*v ~ > wilkPexp(2irka).
We consider the IVP for the forced KdV equation, namely

O+ udpu + Pu = f, u(z,0) = uo(x), (6.3)

forze S, teR.
The IVP (6.3) is first normalized by subtracting the mean-value of a putative

solution. For any integrable, real-valued function g defined on S, its mean value is
denoted by [g¢] and is given by

o) = [ g() de.

Let u be a solution of the IVP (6.3) and let v = w — [ug]. Then v is a solution of the

IVP

0w + []0zv + v0v + O2v = f,
{ 64
v(z,0) = uo(z) — [uo).

It is straightforward to see that [v(+,1)] = 0 provided that [f(-,%)] = 0.

Let s > 0 and B € R be given. For w: S x R — R, define Af(w), j=1,2,3, to
be

oo

- 1/2
M(w) = ( S+l [T —n +ﬁn|)ltb(n,7)l2dr> ,

n=—0oo

s ol w(n, 7)|? 12
M) = (35 e 7 el
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Af(w) = ( S (1+ Inl)* [/“ [tb(n, 7)] (hr)l/f

= oo 1+ |7 —n3+ fn]

Let
Zy={we LS x R): M(w) < oo},

which is a Hilbert space equipped with the norm
||w||Z/s3 = AP (w).

In addition, let

Fy={f(a,t): @ €S, te R A(f)+AS(f) < oo}

with the norm
1 1lrs == AS(F) + AS(f).

Obviously, we have

L*(R, H(S)) C F}.

The space Zj was first introduced by Bourgain [7] to deal with the periodic IVP for
the homogeneous KdV equation. It has the following properties.

Lemma 6.1 Let s > 0, B € R and let u, v € Zj satisfy
W =0, [el(t)=0. (6.5)
Then 1t follows that
(67 4)0u(wv) || < €872 fJullz 0]l 23, (6.6)

where P s as in Lemma 2.4, an element of C°(R), suppyp C (—1,1) and p =1 on

Remark 6.2 This is very minor modification of Lemma 7.41 and 7.42 in Bourgain
[7]. A nice feature of the spaces Zj is that their structure absorbs the dispersion
relation of the KdV equation. The estimate (6.6) reveals a very subtle smoothing
effect in this context.

The following two technical lemmas may be found worked out in Bourgain [7] and
Zhang [31].
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Lemma 6.3 For any h € Z3,

1 (87 0)hllz5 < c(b)6 =721

75 (6.7)

for any b with 1/2 < b < 1, where v is as above. The constant ¢(b) may tend to +oo
as b — 1/2.

Let {Wp(t)}*,, denote the unitary group generated in L?(.S) by the operator
Apf = ="~ Bf',
which is defined for any f € H3(S).

Lemma 6.4 Let ¢ be as above, let B € R be fized and let ug € H*(S) and f € F},

where s > 0. Then we have

(87 ) Wp(t)uollzy < clluolls, (6.8)

1—

16(670) [ Walt = r)f(r)drllzy < e85, (6.9)

for any b > 1/2, where ¢ may depend on'b. For any T with 0 < T < oo and f € F},

sup
[_TvT]

< cA§(f).

S

b5~ 1) /O" Wa(t — 7)f(-, 7)dr

Define another space X by
(& = {(uo, /) € H*(S) x By : [uol = B, [f(~0)] =0}
and for any 7' > 0 and s > 0,
Zyr = Zy0C(=T,T; H*(R)).

As in the non-periodic case, the IVP (6.3) defines a nonlinear map Kp from the space
X} to the space Zj 1 via the correspondence Kp((uo, f)) := u, where u € Z3 7 is the
solution of the IVP (6.3) on the time interval (—71,T) corresponding to the initial
data ug and the forcing term f.

Let DT(Kp) be the domain of the map Kp. Then an argument entirely similar to
that used in the non-periodic case gives the following results.

Theorem 6.5 Let s > 0, T > 0 and B € R be given. Then the following results hold.
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1. (Analyticity) DT (Kp) is a non-empty, dense, open set in the space X5 and the
map Kp is analytic from its domain to the space Z§ 1 (cf. [31]).

2. (local Well-posedness) For any (uo, f) € X5, there exists a Ty = Ty(||uls, 1fllzs)
with 0 < Ty < T such that the IVP (6.3) has a unique solution u € Z5 7.
Moreover, for any T" < Ti, there is a neighborhood U of (ug, f) in the space X3
such that the map Kp 1is analytic from U to the space Z5 7

3. (Global well-posedness) If s =0, or s =1, or s > 2, then

H*(S) x L*(~T,T; H*(S)) Cc DI(Kp).

The following is a version of Theorem 5.7 for the periodic IVP.

Theorem 6.6 Let s > 0 and T > 0 be given. Then, for any ug € H*"3(S) with
[ug) = B and f € WY(=T,T; H*(S)) with [f(-,t)] = 0, the IVP (6.8) has a unique
solution u € Zj p. Moreover,

due Zip and we C(=T,T; H*(S)).
A version of Lemma 4.1 for periodic function classes is the following.

Lemma 6.7 Let s, € R be given. Then
WYX (R, H*(S)) C Fj
for any s’ < s+ 3/2.

As a consequence, one can show by methods that are now familiar the following
theorem.

Theorem 6.8 Let s > —3/2 be given. For any ug € [:fs+%(S) with [ug] = B and
f e WYX R, H*(S)) with [f(-,t)] = 0, the corresponding solution u of the IVP (6.3)
lies in the space Z5 1 for any s’ < s+ 3/2; where T > 0 may depend on ||uo||s43/2
and Hf”Fl;+3/2.

There are two serious restrictions in the above results. First they require [f(-,1)] =
0 to get an existence result. Secondly, the map /p is only shown to be continuous
from the space Xj to the space Zj, rather than from H*(S) x L*(R, H*(S)) to
C(=T,T;H*(S)). For instance, if f = 0, v, = ug/n with uo a non-zero element

of H*(S), the above result does not imply that the corresponding solution u, of
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associated IVP (6.3) goes to zero as n — oo. These restrictions result from the
assumptions entailed in Lemma 6.1. It is not clear whether they can be removed.

On the other hand, it has been known for many years that the map K correspond-
ing to the IVP of the homogeneous KdV equation is continuous from the space H*(.9)
to the space C(—T,T; H*(S)) when s > 3/2 (cf. [17] and [26]). In the following we

show that a similar result holds for the forced KdV equation using energy estimates.

Theorem 6.9 For s > 2 and T >0, if ug € H*(S) and f € L'(=T,T; H*(S)), then
the IVP (6.3) has a unique solution v € C(=T,T; H*(S)). Moreover, the solution u
depends continuously on ug in H*(S) and f in L}*(=T,T; H*(S)).

Remark 6.10 If 3/2 < s < 2, a local well-posedness result can be obtained using
the same approach.

Proof of Theorem 6.9: It suffices to show the existence and continuous dependence.
The proof of the uniqueness is a simple exercise for this range of s.

First choose a family {f.} C C*(0,T; H*(S)) and a family {¢.} C H*(S) such
that, for any r > 0, € > 0,

[ @ellosr = O(75),  [Ide = tolls—r = o(™%), (6.10)

| fellpr (-rrsmreesy = O(e78), and||fe — fllps—,rme-r(s)) = 0(€?) (6.11)

as € | 0. The construction of such approximating families is straightforward and may
be found in [3], for example.

For € > 0, consider the regularized IVP
Ous + uc0put 4+ O2u = fo, u(x,0) = ¢e(z). (6.12)

It has a unique solution u¢ € C(=T,T; H*(S)) (cf. [3] and [26]).

Claim 1. Given T > 0, there are constants K, independent of € such that,

sup [[u(-,t)|ls < K, (6.13)
[_T’T]
and for any r > 0, |
sup [|u(,)|s4r = O (€75) (6.14)
[_TyT]

ase |0

It is not difficult to show that (6.13) is true when s = 2 by using the forced version
of the conservation laws for the KdV equation. This bound implies ||u|| is bounded
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by a constant K, independently of 1 > ¢ > 0 and t € [-7,T]. In general, for [ > s,
we apply the operator D' to both sides of the equation in (6.12) and take the L?-inner
product of the resulting equation with D'u¢, coming thereby to the relation

Ld

5 7l D'wlls + (D' dsu), D) = (D'f,, D).

Write the second term on the left-hand side of the last equation as
(u‘ch')qu, D’u‘) + ([D’ s uflOpus, Dlu‘) ,

where the commutator [D' : uJv = D'(uv) — uD'w. Applying Lemma 1.1 in [26] and
using the fact that D' and 3, commute shows that, on account of the just mentioned
bound on ||u|s,

| (D' (u ), D'

< el 2 )| Dh s || + l(uchazuﬁ, Dlu‘)

1
< [\’2||D1U6[H|Uc||1 + 5 |(3I1L€Dlue, Dlu‘>
” € € 1 € € €
< (ehallill+ 1Dl + 5wl D' ) 10|
< ol D + ol D

In consequence, there appears the differential inequality

1d ) 6
§E”Dlu€“2 < 02“Dlu ||2 4 HDlu WU Felli + e1)-

This in turn implies that

Dt < et [ 1)

for a suitable constant ¢ that depends on 1" and the bound K on ||u||;. Reference
to (6.10) and (6.11) shows that both (6.13) and (6.14) hold.

Next it is shown that {u¢}so is a Cauchy sequence in C(—=T,T; H*(S)). Its limit
as € — 0 is the desired solution of the problem. This approach has the advantage

that it provides the continuous dependence of solutions on the auxiliary data almost
automatically (cf. [3] and [19]).

Assume 0 < € < € and let w = u¢ — u¢'. Then w solves the IVP
w + udpw + wpu® +BPw=Af, w(z,0)= A, (6.15)
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where
Af=fe=fo, DY =de—the.
Claim 2.
sugﬂ}”w(',t)ﬂl = o(esfi;l) (6.16)

as e | 0.

In fact, taking the L%-scalar product of each member of the equation in (6.15)
with w, there appears

1d

1 /
. 2 € € - .
2(11”10” + (a.’l:u 'lU,'U)) - 5 (aa:u ,’LU) — (AJ,U)),

which implies that

T
sup a0l < e(lavt+ 7 1asia)

because of (6.13). Then, applying J, to each member of the equation in (6.15) and
taking the L?-scalar product with d,w, we see after integration by parts that

%HaszQ = - ((&Du6 + ‘Z&Cucl)(?xw,agpw> -2 (qu"w, 3xw> +2(0: A f, Oyw)
< e+ 22|zl + a2 llwlloo |Gzl + 1A fIl| Ozl

< alldzwl® + cllwlellOzwl + 10:Af ][0z

by (6.13), which, when combined with (6.17), implies (6.16).

Now we prove that

sup [lw(-, )]s = o(1) (6.18)
[_TvT]

as € | 0. Applying D® to each member of the equation in (6.15) and taking the
L?*-scalar product with D*w, there obtains the differential equation

%HDSwH2 = =2(D*(u0,w), D°w) — 2 (Ds(warud), Dsw) +

+ 2(D°Af,Dw). (6.19)
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By again using Lemma 1.1 in [26] and (6.13) in (6.19), it is found as above that

[(D*(u0pw), D°w) | = [([D°:u|0w, Dw) + (u‘DSHw, Dsw) |
< c||DPwl|?
and
‘(Ds(waxucl), Dsw)! = ‘([Ds : w]ucl, Dsw> + (w.Dstf’, Dsw)‘

IN

I[D* = wlu || D*w|| + | D** || |aw] [ D*w]]
< | D2wlf? + o(eT)O(e8)|| D w)|

< dID%wl* + o(1)]| D*w].

It thus follows from (6.19) that
d s 2 s 2 s s s
LDl < Dl + o(Dl| D]l + [0 A S| Dl

which implies (6.18). The proof is complete. O

References

[1] T. R. Akylas, On the excitation of long nonlinear water waves by a moving
pressure distribution, J. Fluid Mech. 141 (1984), 455 — 466.

[2] T. B. Benjamin, J. L. Bona and J. J. Mahony, Model equations for long waves
in nonlinear, dispersive media, Philos. Trans. Roy. Soc. London A 272 (1972),
47 - 78.

[3] J. L. Bona and R. Smith, The initial-value problem for the Korteweg-de Vries
equation, Philos. Trans. Roy. Soc. London A 278 (1975), 555 — 601.

[4] J. L. Bona and L. R. Scott, Solutions of the Korteweg-de Vries equations in
fractional order Sobolev spaces, Duke Math. J. 43 (1976), 87 — 99.

[5] J. L. Bona, Convergence of periodic wavetrains in the limit of large wavelength,

Appl. Scientific Res. 37 (1981), 21 — 30.

34



[6] J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets
and applications to non-linear evolution equations, part I: Schrédinger equations,
Geometric and Functional Analysis 3(1993), 107 - 156.

[7] J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets
and applications to non-linear evolution equations, part II: the KdV equation,
Geometric and Functional Analysis 3 (1993), 209 - 262.

[8] A. Cohen, Solutions of the Korteweg-de Vries equation from irregular data, Duke
Math. J. 45 (1978), 149 - 181.

[9] S. L. Cole, Transient waves produced by flow past a bump, Wave Motion 7 (1985),

579 - 587.

[10] P. Constantin and J.-C. Saut, Local smoothing properties of dispersive equations,

J. Amer. Math. Soc. 1(1988), 413 — 446.

[11] W. Craig, T. Kappeler and W. A. Strauss, Gain of regularity for equations of
the Korteweg-de Vries type, Ann. Inst. Henrt Poincaré 9(1992), 147 - 186.

[12] J. Ginibre and G. Velo, Smoothing properties and retarded estimates for some
dispersive evolution equations, preprint.

[13] J. Ginibre and Y. Tsutsumi, Uniqueness for the generalized Korteweg-de Vries
equations, SIAM J. Math. Anal. 20 (1989), 1388 — 1425.

[14] R. H. J. Grimshaw and N. Smyth, Resonant flow of a stratified fluid over topog-
raphy, J. Fluid Mech. 169 (1986), 429 — 464.

[15] T. Kato, Quasilinear equations of evolutions, with applications to partial differ-
ential equation, Lecture Notes in Math. 448 (1975), Springer-Verlag, 27 - 50.

[16] T. Kato, On the Korteweg-de Vries equation, Manuscripta Math. 29 (1979), 89
- 99.

[17] T. Kato, On the Cauchy problem for the (generalized) Korteweg-de Vries equa-
tions, Advances in Mathematics Supplementary Studies, Studies in Applied Math.
8(1983), 93 — 128.

[18] C. E. Kenig, G. Ponce and L. Vega, Oscillatory integrals and regularity of dis-
persive equations, Indiana University Math. J. 40(1991), 33 - 69.

[19] C. E. Kenig, G. Ponce and L. Vega, Well-posedness of the initial value problem
for the KdV equation, J. Amer. Math. Soc., 4 (1991), 323 — 347.

35



[20)

[21]

[26]

[27]

28]

29]

(30]

31]

C. E. Kenig, G. Ponce and L. Vega, Well-posedness and scattering results for the

generalized Korteweg-de Vries equations via the contraction principle, Comm.
Pure Appl. Math. 46 (1993), 527 - 620.

C. E. Kenig, G. Ponce and L. Vega, The Cauchy problem for the Korteweg-de
Vries equation in Sobolev spaces of negative indices, Duke Math. J. 71 (1993), 1
- 21.

S. N. Kruzhkov and A. V. Faminskii, Generalized solutions of the Cauchy prob-
lem for the Korteweg-de Vries equation, Math. U.S.S.R. Sbornik 48 (1984), 93 -
138.

S.-J. Lee, Generation of long water waves by moving disturbances, Ph. D. thesis,
1985, California Institute of Technology.

R. M. Miura, The Korteweg-de Vries equation: A survey of results, SIAM review
18(1976), 412 - 459.

R. L. Sachs, Classical solutions of the Korteweg-de Vries equation for non-smooth
initial data via inverse scattering, Comm. P.D.E. 10 (1985), 29 - 89.

J.-C. Saut and R. Temam, Remarks on the Korteweg-de Vries equation, Israel

J. Math. 24(1976), 78 - 87.

Y. Tsutsumi, The Cauchy problem for the Korteweg-de Vries equation with
measures as initial data, SIAM J. Math. Anal. 20 (1989), 582 — 588.

T. Y. Wu, Generation of upstream advancing solitons by moving disturbances,

J. Fluid Mech. 184 (1987), 75 — 99.

B.-Y. Zhang, Some results for the nonlinear dispersive wave equations with ap-
plications to control, Ph. D. thesis, University of Wisconsin-Madison, 1990.

B.-Y. Zhang, Taylor series expansion for solutions of the KdV equation with
respect to their initial values, the IMA preprint, Series # 1015 Aug. 1992 (to
appear in J. Funct. Anal.).

B.-Y. Zhang, A remark on the Cauchy problem for the Korteweg-de Vries equa-
tion on a periodic domain, the IMA preprint, Series # 1155 July 1993.

36



Recent IMA Preprints

# Author/s Title .

1160 L. Qiu, B. Bernhardsson, A. Rantzer, E.J. Davison, P.M. Young & J.C. Doyle, A formula for
computation of the real stability radius

1161 Maria Inés Troparevsky, Adaptive control of linear discrete time systems with external disturbances
under inaccurate modelling: A case study

1162 Petr Klou&ek & Franz S. Rys, Stability of the fractional step ©-scheme for the nonstationary
Navier-Stokes equations

1163 Eduardo Casas, Luis A. Fernandez & Jiongmin Yong, Optimal control of quasilinear parabolic equations

1164 Darrell Duffie, Jin Ma & Jiongmin Yong, Black’s consol rate conjecture

1165 D.G. Aronson & J.L. Vazquez, Anomalous exponents in nonlinear diffusion

1166 Ruben D. Spies, Local existence and regularity of solutions for a mathematical model of thermomechanical
phase transitions in shape memory materials with Landau-Ginzburg free energy

1167 Pu Sun, On circular pipe Poiseuille flow instabilities

1168 Angelo Favini, Mary Ann Horn, Irena Lasiecka & Daniel Tataru, Global existence, uniqueness and

regularity of solutions to a Von Karman system with nonlinear boundary dissipation
1169 A. Dontchev, Tz. Donchev & I. Slavov, On the upper semicontinuity of the set of solutions of differential
inclusions with a small parameter in the derivative

1170 Jin Ma & Jiongmin Yong, Regular-singular stochastic controls for higher dimensional diffusions — dynamic
programming approach
1171 Alex Solomonoff, Bayes finite difference schemes

1172 Todd Arbogast & Zhangxin Chen, On the implementation of mixed methods as nonconforming methods for
second order elliptic problems

1173 Zhangxin Chen & Bernardo Cockburn, Convergence of a finite element method for the drift-diffusion
semiconductor device equations: The multidimensional case

1174 Boris Mordukhovich, Optimization and finite difference approximations of nonconvex differential inclusions
with free time

1175 Avner Friedman, David S. Ross, and Jianhua Zhang, A Stefan problem for reaction-diffusion system

1176 Alex Solomonoff, Fast algorithms for micromagnetic computations

1177 Nikan B. Firoozye, Homogenization on lattices: Small parameter limits, H-measures, and discrete

Wigner measures
1178 G. Yin, Adaptive filtering with averaging

1179 Wlodzimierz Byrc and Amir Dembo, Large deviations for quadratic functionals of Gaussian processes

1180 Ilja Schmelzer, 3D anisotropic grid generation with intersection-based geometry interface

1181 Alex Solomonoff, Application of multipole methods to two matrix eigenproblems

1182 A.M. Latypov, Numerical solution of steady euler equations in streamline-aligned orthogonal coordinates

1183 Bei Hu & Hong-Ming Yin, Semilinear parabolic equations with prescribed energy

1184 Bei Hu & Jianhua Zhang, Global existence for a class of Non-Fickian polymer-penetrant systems

1185 Rongze Zhao & Thomas A. Posbergh, Robust stabilization of a uniformly rotating rigid body

1186 Mary Ann Horn & Irena Lasiecka, Uniform decay of weak solutions to a von Karman plate with nonlinear

boundary dissipation

1187 Mary Ann Horn, Irena Lasiecka & Daniel Tataru, Well-posedness and uniform decay rates for weak solutions
. to a von Karman system with nonlinear dissipative boundary conditions

1188 Mary Ann Horn, Nonlinear boundary stabilization of a von Karman plate via bending moments only

1189 Frank H. Shaw & Charles J. Geyer, Constrained covariance component models

1190 Tomasz Luczaka, A greedy algorithm estimating the height of random trees

1191 Timo Seppaldinen, Maximum entropy principles for disordered spins

1192 Yuandan Lin, Eduardo D. Sontag & Yuan Wang, Recent results on Lyapunov-theoretic techniques for
nonlinear stability

1193 Svante Janson, Random regular graphs: Asymptotic distributions and contiguity

1194 Rachid Ababou, Random porous media flow on large 3-D grids: Numerics, performance, & application to
homogenization

1195 Moshe Fridman, Hidden Markov model regression

1196 Petr Kloucéek, Bo Li & Mitchell Luskin, Analysis of a class of nonconforming finite elements for Crystalline
microstructures

1197 Steven P. Lalley, Random series in inverse Pisot powers

1198 Rudy Yaksick, Expected optimal exercise time of a perpetual American option: A closed-form solution

1199 Rudy Yaksick, Valuation of an American put catastrophe insurance futures option: A Martingale approach
1200 Janos Pach, Farhad Shahrokhi & Mario Szegedy, Application of the crossing number

1201 Avner Friedman & Chaocheng Huang, Averaged motion of charged particles under their self-induced electric

1202 Joel Spencer, The Erdos-Hanani conjecture via Talagrand’s inequality



1203 Zhangxin Chen, Superconvergence results for Galerkin methods for wave propagation in various porous media

1204 Russell Lyons, Robin Pemantle & Yuval Peres, When does a branching process grow like its mean? Conceptual
proofs of Llog L criteria

1205 Robin Pemantle, Maximum variation of total risk

1206 Robin Pemantle & Yuval Peres, Galton-Watson trees with the same mean have the same polar sets

1207 Robin Pemantle, A shuffle that mixes sets of any fixed size much faster than it mixes the whole deck

1208 Itai Benjamini, Robin Pemantle & Yuval Peres, Martin capacity for Markov chains and random walks in
varying dimensions

1209 Wlodzimierz Bryc & Amir Dembo, On large deviations of empirical measures for stationary Gaussian processes

1210 Martin Hildebrand, Some random processes related to affine random walks

1211 Alexander E. Mazel & Yurii M. Suhov, Ground states of a Boson quantum lattice model

1212 Roger L. Fosdick & Darren E. Mason, Single phase energy minimizers for materials with nonlocal spatial
dependence

1213 Bruce Hajek, Load balancing in infinite networks

1214 Petr Klouéek, The transonic flow problems stability analysis and numerical results

1215 Petr Klouéek, On the existence of the entropic solutions for the transonic flow problem

1216 David A. Schmidt & Chjan C. Lim, Full sign-invertibility and symplectic matrices

1217 Piermarco Cannarsa & Maria Elisabetta Tessitore, Infinite dimensional Hamilton-Jacobi equations and

Dirichlet boundary control problems of parabolic type
1218 Zhangxin Chen, Multigrid algorithms for mixed methods for second order elliptic problems

1219 Zhangxin Chen, Expanded mixed finite element methods for linear second order elliptic problems I
1220 Gang Bao, A note on the uniqueness for an inverse diffraction problem

1221 Moshe Fridman, A two state capital asset pricing model

1222 Paolo Baldi, Exact asymptotics for the probability of exit from a domain arid applications to simulation
1223 Carl Dou & Martin Hildebrand, Enumeration and random random walks on finite groups

1224 Jaksa Cvitanic & Ioannis Karatzas, On portfolio optimization under “drawdown” constraints

1225 Avner Friedman & Yong Liu, A free boundary problem arising in magnetohydrodynamic system -
1226 Dominic Welsh, Randomised approximation schemes for Tutte-Grothendieck invariants

1227 Zhangxin Chen, Bernardo Cockburn, Carl L. Gardner, & Joseph W. Jerome, Quantum hydrodynamic
simulation of hysteresis in the resonant tunneling diode

1228 E.G. Kalnins, G.C. Williams, & Willard Miller, Jr., Intrinsic characterisation of the separation
constant for spin one and gravitational perturbations in Kerr geometry

1229 Zhangxin Chen, Large-scale averaging analysis of multiphase flow in fractured reservoirs

1230 Bruce Hajek & Babu Narayanan, Multigraphs with the most edge covers

1231 K.B. Athreya, Entropy maximization

1232 F.I. Karpelevich & Yu.M. Suhov, Functional equations in the problem of boundedness of stochastic
branching dynamics

1233 E. Dibenedetto & V. Vespri, On the singular equation f(u); = Au

1234 M.Ya. Kelbert & Yu.M. Suhov, The Markov branching random walk and systems of reaction-diffusion
(Kolmogorov—Petrovskii—Piskunov)' equations

1235 M. Hildebrand, Random walks on random regular simple graphs

1236 W.S. Don & A. Solomonoff, Accuracy enhancement for higher derivatives using Chebyshev collocation
and a mapping technique

1237 D. Gurarie, Symmetries and conservation laws of two-dimensional hydrodynamics

1238 Z. Chen, Finite element methods for the black oil model in petroleum reservoirs

1239 G. Bao & A. Friedman, Inverse problems for scattering by periodic structure

1240 G. Bao, Some inverse problems in partial differential equations

1241 G. Bao, Diffractive optics in periodic structures: The TM polarization

1242 C.C. Lim & D.A. Schmidt, On noneven digraphs and symplectic pairs

1243 H.M. Soner, S.E. Shreve & J. Cvitanié, There is no nontrivial hedging portfolio for option pricing
with transaction costs

1244 D.L. Russell & B-Yu Zhang, Exact controllability and stabilizability of the Korteweg-de Vries equation

1245 B. Morton, D. Enns & B-Yu Zhang, Stability of dynamic inversion control laws applied to nonlinear
aircraft pitch-axis models

1246 S. Hansen & G. Weiss, New results on the operator Carleson measure criterion

1247 V.A. Malyshev & F.M. Spieksma, Intrinsic convergence rate of countable Markov chains

1248 G. Bao, D.C. Dobson & J.A. Cox, Mathematical studies in rigorous grating theory

1249 G. Bao & W.W. Symes, On the sensitivity of solutions of hyperbolic equations to the coefficients

1250 D.A. Huntley & S.H. Davis, Oscillatory and cellular mode coupling in rapid directional solidification

1251 M.J. Donahue, L. Gurvits, C. Darken & E. Sontag, Rates of convex approximation in non-Hilbert spaces

1252 A. Friedman & B. Hu, A Stefan problem for multi-dimensional reaction diffusion systems

1253 J.L. Bona & B-Y. Zhang, The initial-value problem for the forced Korteweg-de Vries equation

1254 A. Friedman & R. Gulliver, Organizers, Mathematical modeling for instructors



