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Abstract

This paper deals with sparse approximations by means of convex com-

binations of elements from a predetermined \basis" subset S of a function
space. Speci�cally, the focus is on the rate at which the lowest achievable

error can be reduced as larger subsets of S are allowed when constructing

an approximant. The new results extend those given for Hilbert spaces by
Jones and Barron, including in particular a computationally attractive in-

cremental approximation scheme. Bounds are derived for broad classes of

Banach spaces; in particular, for Lp spaces with 1 < p <1, the O(n�1=2)
bounds of Barron and Jones are recovered when p = 2.

One motivation for the questions studied here arises from the area of
\arti�cial neural networks," where the problem can be stated in terms

of the growth in the number of \neurons" (the elements of S) needed in

order to achieve a desired error rate. The focus on non-Hilbert spaces
is due to the desire to understand approximation in the more \robust"

(resistant to exemplar noise) Lp, 1 � p < 2 norms.

The techniques used borrow from results regarding moduli of smooth-

ness in functional analysis as well as from the theory of stochastic processes

on function spaces.

1 Introduction

The subject of this paper concerns the problem of approximating elements of a

Banach space X|typically presented as a space of functions|by means of �nite

linear combinations of elements from a predetermined subset S ofX. In contrast

to classical linear approximation techniques, where optimal approximation is

desired and no penalty is imposed on the number of elements used, we are

interested here in sparse approximants, that is to say, combinations that employ

few elements. In particular, we are interested in understanding the rate at which

the achievable error can be reduced as one increases the number allowed. Such
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questions are of obvious interest in areas such as signal representation, numerical

analysis, and neural networks (see below).

Rather than arbitrary linear combinations
P

i aigi, with ai's real and gi's

in S, it turns out to be easier to understand approximations in terms of com-

binations that are subject to a prescribed upper bound on the total coe�cient

sum
P

i jaij. After normalizing S and replacing it by S [ �S, one is led to

studying approximations in terms of convex combinations. This is the focus of

the current work.

To explain the known results and our new contributions, we �rst introduce

some notation.

1.1 Optimal Approximants

Let X be a Banach space, with norm k � k. Take any subset S � X. For each

positive integer n, we let linnS consist of all sums
Pn

i=1 aigi, with g1; : : : ; gn in

S and with arbitrary real numbers a1; : : : ; an, while we let conS be the set of

such sums with the constraint that all ai 2 [0; 1] and
P

i ai = 1. The distances

from an element f 2 X to these spaces are denoted respectively by

klinnS � fk := inf fkh� fk ; h 2 linnSg

and

kconS � fk := inf fkh� fk ; h 2 conSg :
Of course, always klinnS � fk � kconS � fk. For each subset S � X, linS =

[nlinnS and coS = [nconS denote respectively the linear span and the convex

hull of S. We use bars to denote closure in X; thus, for instance, coS is the

closed convex hull of S. Note that saying that f 2 linS or f 2 coS is the same as

saying that limn!+1 klinnS�fk = 0 and limn!+1 kconS�fk = 0 respectively;

in this case, we say for short that f is (linearly or convexly) approximable by S.

These distances as a function of n represent the convergence rates of the best

approximants to the target function f . The study of such rates is standard in

approximation theory (e.g.,Powell [23]), but the questions addressed here are

not among those classically considered.

Let � be a positive function on the integers. We say that the space X admits

a (convex) approximation rate �(n) if for each bounded subset S of X and each

f 2 coS, kconS � fk = O(�(n)). (The constant in this estimate is allowed

to, and in general will, depend on S, typically through an upper bound on the

norm of elements of S.) One could of course also de�ne the analogous linear
approximation rates; we do not do so because at this time we have no nontrivial

results to report in that regard. (The implications of the restriction to convex

approximates is examined in Appendix A.)

Jones [15] and Barron [2] showed that every Hilbert space admits an ap-

proximation rate �(n) = 1=
p
n. One of our objectives is the study of such rates

for non-Hilbert spaces. To date the larger issue of convergence rates in more
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general Banach spaces and in the important subclass of Lp, p 6= 2, spaces has

not been addressed. Barron [3] showed that the same rate is obtained in the

uniform norm, but only for approximation with respect to a particular class of

sets S.)

1.2 Incremental Approximants

Jones [15] considered the procedure of constructing approximants to f incremen-

tally, by forming a convex combination of the last approximant with a single
new element of S; in this case, the convergence rate in L2 is interestingly again

O(1=
p
n). Incremental approximants are especially attractive from a computa-

tional point of view. In the neural network context, they correspond to adding

one \neuron" at a time to decrease the residual error. We next de�ne these

concepts precisely.

Again let X be a Banach space with norm k � k. Let S � X. An incremental
sequence (for approximation in coS) is any sequence f1; f2; : : : of elements of

X so that f1 2 S and for each n � 1 there is some gn 2 S so that fn+1 2
co (ffn; gng).

We say that an incremental sequence f1; f2; : : : is greedy (with respect to

f 2 coS) if

kfn+1 � fk = inf
�
kh� fk j h 2 co (ffn; gg) ; g 2 S

	
; n = 1; 2; : : : :

The set S is generally not compact, so we cannot expect the in�mum to be

attained. Given a positive sequence � = (�1; �2; : : :) of allowed \slack" terms, we

say that an incremental sequence f1; f2; : : : is "-greedy (with respect to f) if

kfn+1 � fk < inf
�
kh� fk j h 2 co (ffn; gg) ; g 2 S

	
+ "n ; n = 1; 2; : : : :

Let � be a positive function on the integers. We say that S has an incremental
(convex) scheme with rate �(n) if there is an incremental schedule " such that,

for each f in coS and each "-greedy incremental sequence f1; f2; : : :, it holds

that

kfn � fk = O(�(n))

as n ! +1. Finally, we say that the space X admits incremental (convex)
schemes with rate �(n) if every bounded subset S of X has an incremental

scheme with rate �(n).

The intuitive idea behind this de�nition is that at each stage we attempt

to obtain the best approximant in the restricted subclass consisting of convex

combinations (1��n)fn+�ng, with �n in [0; 1], g in S, and fn being the previous
approximant. It is also possible to select the sequence �1; �2; : : : beforehand. We

say that an incremental sequence f1; f2; : : : is �-greedy (with respect to f) with

convexity schedule �1; �2; : : : if

kfn+1 � fk < inf
�
k ((1� �n)fn + �ng) � fk j g 2 S

	
+ "n ; n = 1; 2; : : : :
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Table 1: The order of the worst-case rate of approximation in Lp. \no" means

that the approximants do not converge in the worst case.

p 1 (1; 2) [2;1) 1
optimal 1 n1=p�1 n�1=2 1

incremental no n1=p�1 n�1=2 no

One could also de�ne the analogous linear incremental schemes, for which

one does not require �n 2 [0; 1], but, as before, we only report results for the

convex case.

Informally, from now on we refer to the rates for convex approximation

as \optimal rates" and use the terminology \incremental rates" for the best

possible rates for incremental schemes. For any incremental sequence, fn 2
con(S), so clearly optimal rates are always majorized by the corresponding

incremental rates.

The main objective of this paper1 is to analyze both optimal and incremental

rates in broad classes of Banach spaces, speci�cally including Lp, 1 � p � 1.

A summary of our rate bounds for the special case of the spaces Lp is given as

Table 1. In general, we �nd that the worst-case rate of approximation in the

\robust" Lp, 1 � p < 2, norms is worse than that in L2, unless some additional

conditions are imposed on the set S.

1.3 Neural Nets

The problem is of general interest, but we were originally motivated by appli-

cations to \arti�cial neural networks." In that context the set S is typically of

the form

S = fg : Rd ! R j 9 a 2 Rd; b 2 R; s:t: g(x) = ��(a � x+ b)g;

where � : R! R is a �xed function, called the activation or response func-

tion. Typically, � is a smooth \sigmoidal" function such as the logistic function

(1 + e�x)�1, but it can be discontinuous, such as the Heaviside function (the

characteristic function of [0;1)). The elements of linnS are called single hidden
layer neural networks (with activation � and a linear output layer) with n hid-
den units. For neural networks, then, the question that we investigate translates
into the study of how the approximation error scales with the number of hidden

units in the network.

Neural net approximation is a technique widely used in empirical studies.

Mathematically, this is justi�ed by the fact that, for each compact subset M of

1A preliminary version of some of the results presented in this paper appeared as (Darken,
Donahue, Gurvits and Sontag [6]).
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R
d, restricting elements of S to M , one has that linS = C0(M ), that is, linS is

dense in the set of continuous functions under uniform convergence (and hence

also in most other function spaces). This density result holds under extremely

weak conditions on �; being locally Riemann integrable and non-polynomial is

enough. See for instance (Leshno et al., [19]).

Spaces Lp with p equal to or slightly greater than one are particularly im-

portant because of their usefulness for robust estimation (e.g., Rey [24]). In

the particular context of regression with neural networks, Hanson [13] presents

experimental results showing the superiority of Lp (p� 2) to L2.

1.4 Connections to Learning Theory

Of course, neural networks are closely associated with learning theory. Let

us imagine that we are attempting to learn a target function that lies in the

convex closure of a predetermined set of basis functions S. Our learned estimate

of the target function will be represented as a convex combination of a subset

of S. For each n in an increasing sequence of values of n, we optimize our

choice of basis functions and their convex weighting over a su�ciently large

data set (the size of which may depend on n). Let us assume that the problem

is \learnable", e.g., that over the class of probability measures of interest on

the domain of the functions in S, the di�erence between one's estimates of the

error based on examples must converge to the true error uniformly over all

possible approximants. Then the generalization error (expected loss over the

true exemplar distribution) must go to zero at least as fast as the order of the

upper bounds in this work. Thus our bounds represent a guarantee of how fast

generalization error will decrease in the limiting case when exemplars are so

cheap that we do not care how many we use during training.

Moreover, since for error functions that are Lp norms our bounds are tight,

we can say something even stronger in this case. For Lp, there exists a set of

basis functions and a function in their convex hull such that no matter how many
examples are used in training, the error can decrease no faster than the bounds

we have provided. Thus, our results exhibit a worst-case speed limitation for

learning.

1.5 Contents of the Paper

It is a triviality that optimal approximants to approximable functions always

converge. However, the rates of convergence depend critically upon the structure

of the space. In some spaces, like L1, there exist target functions for which the

rate can be made arbitrarily slow (Sect. 2.1). In Banach spaces of (Rademacher)

type t with t > 1, however, a rate bound of O(n�(t�1)) is obtained (Sect. 2.2).

For Lp spaces these results specialize to those of Table 1. Particular examples

of Lp spaces are given to show that the orders given in our bounds cannot in

general be sharpened (Sect. 2.3).
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Section 3 studies incremental approximation. A particularly interesting as-

pect of these results is that the new element of S added to the incremental

approximant is not required to be the best possible choice. Instead, the new

element can meet a less stringent test (Theorem 3.5). Also, the convex combi-

nation of the elements included in the approximant is not optimized. Instead

a simple average is used. (This is an example of a �xed convexity schedule, as

de�ned in Sect. 1.2.) Thus, our incremental approximants are the simplest yet

studied, simpler even than those of Jones [15]. Nonetheless, the same worst-case

order is obtained for these approximants on Lp, 1 < p < 1, as for the optimal

approximant. In more general spaces, the incremental approximants may not

even converge (Sect. 3.1). However, if the space has a modulus of smoothness

of power type greater than one, or is of Rademacher type t, then rate bounds

can be given (Sects. 3.2 and 3.3).

Both optimal and incremental convergence rates may be improved if S has

special structure (Sect. 4). In particular, we provide some analysis of the situ-

ation where S is a �nite-VC dimension set of indicator functions and the sup

norm is to be used (Sect. 4.2), which is a common setting for neural network

approximation.

2 Optimal Approximants

In this section we study rates of convergence for optimal convex approximates.

To illustrate the fact that the issue is nontrivial, we begin by identifying a class

of spaces for which the best possible rate �(n) is constant, that is to say, no

nontrivial rate is possible (Theorem 2.3). This class includes in�nite dimensional

L1 and L1 (or C(X)) spaces.

In Theorem 2.8 we study general bounds valid for spaces of (Rademacher)

type t. It is well-known that Lp spaces with 1 � p < 1 are of type minfp; 2g
(Ledoux and Talagrand [18]); on this basis an explicit specialization to Lp is

given in (10).

We then close this section with explicit examples showing that the obtained

bounds are tight.

2.1 Examples Of Spaces Where No Rate Bound Is Possi-

ble

In some spaces, the worst-case rate of convergence of optimal approximants can

be shown to be arbitrarily slow.

Lemma 2.1 Let (an) be a positive, convex (an + an+2 � 2an+1) sequence con-
verging to 0. De�ne a0 = 2a1 and bn = an�1� an. Let S = fa0ekg, where fekg
is the canonical basis in l1, and consider f = (bn) as an element of l1. Then
f 2 coS and

klinNS � fk = aN for all N:(1)
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Proof: Note that
P1

n=1 bn=a0 = 1, so clearly f 2 coS. By convexity (bn) is a

non-increasing sequence, so

klinNS � fk =
1X

i=N+1

bi =

1X
i=N+1

ai�1 � ai = aN :(2)

ut

Consider next the space l1. Let �k be an enumeration of all f�1; 0; 1g-valued
sequences that are eventually constant, i.e., �k(n) 2 f�1; 0; 1g for all n 2 N, and
for each k there exists an N such that �k(n) = �k(N ) for all n > N . For each n,

let gn 2 l1 be the sequence gn(k) = �k(n), and de�ne the map T : l1 ! l1 by

T (en) = gn. The reader may check that T is an isometric embedding. Therefore

T carries the example of Lemma 2.1 into l1.

What happens in c0, the space of all sequences converging to 0? We will now

construct a projection from T (l1) into c0 that will retain the desired convergence

rate. We will need, however, the extra restriction that the sequence (an) be

strictly convex, i.e., that an + an+2 > 2an+1.

Let bn = an�1 � an as before, and de�ne the auxiliary sequences

cN = minfn 2 N j bn < aNg
�cN = minfn 2 N j n > N + 1 and an < bN � bN+1g:

The sequence c is well de�ned because aN > 0 for all N and bn # 0. Similarly,

�c is well de�ned since an # 0 and by strict convexity bN � bN+1 > 0. Note that

cN � N + 1 < N + 2 � �cN . Moreover, cN (and hence �cN ) goes to in�nity with

N since bn > 0 for each n while aN # 0.
Next de�ne for each N 2 N,

AN = fk 2 N j �k(n) = 0 for n < cN and �k(n) = �k(�cN + 1) for n > �cNg;

and de�ne for convenience the single element set A0 = fk j �k = �kg, where
�k(n) is the sequence that is 1 for n = k and 0 otherwise. Then let A = [NAN .

Let P be the projection that sends an element h of l1 to the sequence

P (h)(k) = h(k) if k 2 A and P (h)(k) = 0 otherwise. Notice that if �k(n) 6= 0,

then k 62 AN for all N such that n < cN . Since cN ! 1, if follows that there

exists for each n only �nitely many k's in A such that �k(n) 6= 0. (Each AN is

a �nite set.) Therefore P (gn) = P � T (en) 2 c0 for each n, i.e., P � T : l1 ! c0.

It remains to show that

kP � T (f) � linNP � T (S)k = aN :

Let us introduce the notation ~h for P �T (h), h 2 l1, and similarly ~S for P �T (S).
It is clear that k ~f � linN ~Sk � aN , since T is an isometry and kPk = 1. To

examine the bound from below, let ~fN =
PN

n=1 dn~emn
be an arbitrary element
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of linN ~S, where fm1;m2; : : : ;mNg is a sampling of N of size N . We aim to

produce a k0 2 A such that ~fN (k0) = 0 and ~f(k0) � aN , since then

k ~f � ~fNk = sup
k2A

j ~f(k) � ~fN (k)j � j ~f(k0)� ~fN (k0)j � aN :

Let n0 = min(N n fm1;m2; : : : ;mNg). If n0 < cN , select k0 such that

�k0 = �n0 . If n0 = N + 1 (which is the largest possible value for n0), select k0
such that �k0(n) = 0 for n � N and = 1 otherwise. It follows from cN � N + 1

that k0 2 A in either event, and clearly ~fN (k0) = 0. Moreover, in the �rst case
~f (k0) = bn0 � aN by the de�nition of cN , while in the second case, ~f (k0) =P1
n=N+1 bn = aN .

Lastly, consider the case cN � n0 � N . Select k0 so that �k0(n) = 0 if

n 2 fm1;m2; : : : ;mNg or if n > �cN , and �k0(n) = 1 otherwise. This sequence is

guaranteed to be in AN , and ~fN (k0) = 0. Moreover,

~f (k0) =

�cNX
n=c

N

bn�k0(n) � bN +

�cNX
n=N+2

bn:

The inequality holds because �k0(n) = 1 for at least one n � N , and (bn) is a

decreasing sequence. It then follows from the de�nition of �cN that

bN +

�cNX
n=N+2

bn = bN + aN+1 � a�cN > aN ;

so k ~f � ~fNk � aN , completing the proof.

Lemma 2.2 Let (an) be a positive, strictly convex (an + an+2 > 2an+1) se-
quence converging to 0. Then there exists a bounded set S � c0 (with kgk � 2a1
for all g 2 S) and f 2 coS such that

kf � linNSk = aN for all N 2 N:

An alternate method of proof is to replace the projection P in the discussion

above with a map T 0 : l1 ! c0 de�ned by T 0(h)(k) = �kh(k), where �k # 0 is

carefully chosen (as a function of (an)) to preserve the inequality kT 0 � T (f) �
linNT

0 � T (S)k � aN . The details are left to the reader.

In either method, the constructed base set S � c0 depends on the rate

sequence (an). It is interesting to compare this with the situation in l1 and

l1, where the set S is universal, i.e., independent of (an). (Though the limit

function f 2 coS does vary with (an).)

The preceding discussion showing the absence of a rate bound in l1 relied

upon an isometric embedding of l1 into l1. This argument can of course be

extended to other spaces, and in fact it su�ces to have an isomorphic embedding,

i.e., a bounded linear map with bounded inverse.
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Theorem 2.3 Let X be a Banach space with a subspace isomorphic to either
l1 or c0. Then for any positive sequence (an) converging to 0, it is possible to
construct a bounded set S and f 2 coS such that

kcoNS � fk � klinNS � fk � aN :(3)

Proof: If (an) is not convex, then replace it with a convex sequence (�an) such

that �an � an for all n. This is a well-known construction. See, for example,

(Stromberg [28], p. 515). In the c0 case one may also substitute (�an + 1=n) for

(�an), if necessary, to make the sequence strictly convex.

The �rst inequality follows immediately from the de�nitions of coN and linN ,

so it su�ces to show klinNS�fk � aN . To do this, construct S and f in l1 or c0
via Lemma 2.1 or 2.2, replacing (an) with (kT�1kan), where T is the postulated

isomorphism. Then use T to transfer the example back into X. ut

Corollary 2.4 Let X be one of l1, L1[0; 1], c0, l1, L1[0; 1], or C[0; 1]. Then
there exists bounded subsets S in X and elements f 2 coS such that the con-
vergence of optimal approximates (convex or linear) to f 2 coS is arbitrarily
slow.

Proof: Let (an) be a sequence converging to 0 that denotes the desired conver-

gence rate. The results then follow immediately by application of Theorem 2.3

with appropriate choice of either l1 or c0 and of the isomorphism T . For l1
and c0 one obviously takes T to be the identity map. For L1[0; 1], �rst let

gn = 2n1(2�n;2�n+1) for n 2 N, where 1(a;b) denotes the characteristic function

of the interval (a; b), and de�ne the isometric isomorphismT from l1 into L1[0; 1]

by

(a1; a2; : : :) 7!
1X
n=1

angn:(4)

The remaining examples can all be realized with T mapping from c0. Of course,

c0 � l1, so in that instance we can take T to be the inclusion map. (Alternately

one may use the previously described isometric embedding of l1 into l1.) For

C[0; 1], consider any sequence g1; g2; : : : � C[0; 1] where for each n 2 N, kgnk = 1

and gn(x) = 0 if x 62 (2�n; 2�n+1). Then de�ne T from c0 to C[0; 1] via (4).

Since C[0; 1]� L1[0; 1], this T maps c0 into L1[0; 1] as well. ut

Theorem 2.3 can be broadly used to identify spaces for which no rate bound

is possible, because there are numerous known results characterizing Banach

spaces containing subspaces isomorphic to l1 or c0. For example:

Theorem 2.5 (Bessaga and Pelczynski 1958) Any Banach space that ad-
mits an unconditional basis contains a subspace that is either reexive or is
isomorphic to l1 or to c0.
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Whether or not the preceding theorem was true without the unconditional basis

assumption had been an open question until a counter-example was recently

produced by W. T. Gowers [10].

Theorem 2.6 (Rosenthal 1974) A Banach space X has a closed subspace
isomorphic to l1 if and only if every bounded sequence g1, g2, : : : in X has a
subsequence which is weakly Cauchy.

Theorem 2.7 (Rosenthal 1994) If X is a Banach space such that Y � is
weakly sequentially complete for all linear subspaces Y of X, then c0 embeds
in X.

2.2 Bounds for Type t Spaces

We recall some basic de�nitions �rst.

A Rademacher sequence (�i)
n
i=1 is a �nite sequence of independent zero mean

random variables taking values from f�1;+1g. Given any Banach space X, any

Rademacher sequence (�i)
n
i=1, and any �xed �nite sequence (fi)

n
i=1 of elements

of X, we can view in a natural manner the expression
Pn

i=1 �ifi as a ran-

dom variable taking values in X. With this understanding, the space X is of

(Rademacher) type t (with constant C) if for each Rademacher sequence (�i)

and each sequence (fi) it holds that

E
X �ifi

t � C
X

kfikt :(5)

Theorem 2.8 Let X be a Banach space of type t, where 1 � t � 2. Pick
S � X, f 2 co(S), and K > 0 such that 8g 2 S, kg � fk � K. Then for all n,

kconS � fk � KC1=t

n1�1=t
;(6)

where C is a constant depending on X but independent of n.

Proof: 8� > 0; 9n�, �1; : : : ; �n� 2 R+, and f1; : : : ; fn� 2 S such that

n�X
i=0

�i = 1;

n�X
i=0

�ifi +� = f;

and k�k < �. Take �j to be a sequence of independent random variables on X

taking value fi with probability �i. Then for any � 2 (0; 1),

E

f �
1

n

nX
j=1

�j


t

(7)
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which follows because �(x) = xt is a convex function for 1 � t � 2. Since the

range of �j has �nitely many values and the space is type t, by (Ledoux and

Talagrand [18], Prop. 9.11, p. 248) it follows that:

E


nX
j=1

(f � �j ��)


t

� C

nX
j=1

E kf � �j ��kt :(8)

On the other hand, we have:

Ekf � �1 ��kt =

n�X
i=1

�ikf � fi ��kt(9)

�
n�X
i=1

�i (kf � fik+ k�k)t

<

n�X
i=1

�i(K + �)t

= (K + �)t:

Without loss of generality, assume 0 < � < 1 and take � = �. Then combining

(7), (8), and (9),

E

f �
1

n

nX
j=1

�j


t

<
C(K + �)t

nt�1(1� �)t�1
+ �:
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We conclude that for some realization of the �j (labeled gj) the inequality must

hold, i.e., f �
1

n

nX
j=1

gj


t

<
C(K + �)t

nt�1(1� �)t�1
+ �:

Taking the in�mum with respect to all � > 0 proves the theorem. ut
We now give a specialization to Lp, 1 � p < 1. These spaces are of type

t = minfp; 2g. From (Haagerup [11]) we �nd that the best value for C in (6) is 1

if 1 � p � 2 and
p
2 [�((p+ 1)=2)=

p
�]

1=p
if 2 < p <1. One may use Stirling's

formula to get an asymptotic formula for the latter expression.

Corollary 2.9 Let X be an Lp space with 1 � p < 1. Suppose S � X,
f 2 coS, and K > 0 such that 8g 2 S, kg � fk � K. Then for all n,

kconS � fk � KCp

n1�1=t
;(10)

where t = minfp; 2g, and Cp = 1 if 1 � p � 2, Cp =
p
2 [�((p + 1)=2)=

p
�]

1=p

for 2 < p <1. For large p, Cp �
p
p=e.

2.3 Tightness of Rate Bounds

We show that the orders of the rate bounds for Lp given in (10) are tight. That

is, we give speci�c examples of Lp spaces and subsets S with target functions

f 2 coS where optimal approximants converge with the order speci�ed by our

bounds.

Theorem 2.10 There exists S � lp, 1 < p < 1, and f 2 coS such that
kconS � fkp = Kn1=p�1 where K = supg2S kf � gkp.

Proof: Let S consist of the elements of the canonical basis, i.e.,

S = f(1; 0; 0; : : :); (0; 1; 0; 0; : : :); (0; 0; 1; 0; 0; : : :); : : :g:

Then f := 0 is in the closed convex hull of S and supg2S kf � gkp = 1. Let fn
be an element of conS that is to approximate 0. So fn is of the form

fn =

nX
k=1

akgnk ;

where each gnk is an element of S, and the ak are non-negative and sum to 1.

Without loss of generality, we may assume the gnk are distinct, since otherwise

we would be e�ectively working in comS with m < n. Then

kfn � 0kp =
nX

k=1

a
p
k:
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It is easy to see that the error is minimized by taking the ak's all equal, namely

8k, ak = 1=n (Jensen). Therefore

kfn � 0k � n(1�p)=p = n1=p�1:

ut

Next we show that the O(n�1=2) bound for Lp, 2 < p < 1, is tight (see

Corollary 2.9). We borrow from computer science the notation  (n) = 
(�(n))

to mean that there is a constant C > 0 so that  (n)=�(n) � C for all n large

enough. For the purposes of the next result, we say a space Lp is admissible if

there exists a Rademacher sequence de�nable on it; for instance, Lp(0; 1) with

the usual Lebesgue measure is one such space.

Proposition 2.11 For any admissible Lp, 2 < p < 1, there exists a subset S
and an f 2 coS such that kconS � fkp = 
(n�1=2).

Proof: Let �i, i.i.d. on f-1,+1g, be a Rademacher sequence. De�ne S = f�ig,
which is a subset of the unit ball in Lp. Using the upper bound of Khintchine's

Inequality (Khintchine [17]; Ledoux and Talagrand [18], Lemma 4.1, p. 91), one

can show that 0 2 coS. Suppose the best approximation of 0 by a convex sum

of n elements of S is
Pn

i=1 �i�k(i). Then by the lower bound of Khintchine's

Inequality, 
nX
i=1

�i�k(i)


Lp

� Ap

sX
i

�2i = Apk(�i)kl2 :

But we have already given an example in l2 (in the proof of Theorem 2.10) for

which the last term is 
(n�1=2). ut

3 Incremental Approximants

We now start the study of incremental approximation schemes. Unlike the sit-

uation with optimal approximation, incremental approximations are not guar-

anteed to even converge. In general, the convergence of incremental schemes

appears to be intimately tied to the concept of norm smoothness. In Theo-

rem 3.1 we show that smoothness is equivalent to at least a monotonic decrease

of the error, and then in Theorem 3.4 it is proved that uniform smoothness is

a su�cient condition to guarantee convergence. (It is possible to construct a

smooth space with an �-greedy sequence that does not converge|Appendix D.

However, if an �-greedy sequence converges, then it can only converge to the

desired target function|Corollary 3.2.)

In Sects. 3.2 and 3.3 we study upper bounds on the rate of convergence for

spaces with modulus of smoothness of power type greater than 1 and for spaces

of (Rademacher) type t, 1 < t � 2. The Lp spaces, 1 < p < 1, are examples
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�
�
��
@
@
@@��

��
@
@
@@

q (0; 0)

q fn

qg1 qg2

Figure 1: Incremental approximants may fail to converge in some spaces. Consider

approximating f = (0; 0) by linear combinations of elements from ffn; g1; g2g according
to the L1(R

2) metric. The best approximant by one point is fn. The rotated square

is the contour of the norm about f on which fn lies. The best approximant by a

linear combination of fn and g1 or g2 is once again fn. Thus even though f is in
the convex hull of ffn; g1; g2g, incremental approximants fail to converge or even to

decrease monotonically.

of spaces with modulus of smoothness of power type t = min(p; 2) (see Ap-

pendix B), which themselves sit inside the more general class of spaces of type

t. (See, for example, (Lindenstrauss and Tzafriri [22], p. 78; Deville et al. [7],

p. 166), while (James [14]) shows that the containment is strict. See also (Figiel

and Pisier [9]).) The upper bounds obtained for incremental approximation er-

ror in the power type spaces agree with the bounds for optimal approximation

error obtained in Sect. 2.2 (albeit with a slightly larger constant of proportional-

ity), which are shown to be the best possible in Sect. 2.3. Therefore little is lost

by using incremental approximates instead of optimal approximates, at least in

worst-case settings. The incremental convergence bounds obtained in Sect. 3.3

for type-t spaces are weaker, but only slightly, than the optimal approximation

error bounds obtained in Sect. 2.2

3.1 Convergence of Greedy Approximants

The �rst remark is that for some spaces there may not exist any nondecreasing

rate whatsoever. In the terminology given in the introduction, it may be the

case that there are greedy incremental sequences for f for which kfn � fk 6!
0. This will happen in particular if there are a set S and two elements f 6=
fn 2 coS so that for each g 2 S and each h 2 co (ffn; gg) di�erent from fn,

kh � fk > kfn � fk; in that case, the successive minimizations result in the

sequence fn; fn; : : :, which doesn't converge to f . Geometrically, convergence of

incremental approximants can fail to occur if the unit ball for the norm has a

sharp corner. This is illustrated by the example in Fig. 1, for the planeR2 under

the L1 norm. In order to use the intuition gained from this example, we need a

number of standard but often less-known notions from functional analysis.
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If X is a Banach space and f 6= 0 is an element of X, a peak functional for
f is a bounded linear operator, that is, an element F 2 X�, that has norm = 1

and satis�es F (f) = kfk. (The existence for each f 6= 0 of at least one peak

functional is guaranteed by the Hahn-Banach Theorem.) Geometrically, one

may think of the null space of F �kfk as a hyperplane tangent at f to the ball

centered at the origin of radius kfk. (For Hilbert spaces, there is a unique peak
functional for each f , which can be identi�ed with (1=kfk)f acting by inner

products.) The space X is said to be smooth if for each f there is a unique
peak functional. (Roughly, this means that balls in X have no \corners.") The

modulus of smoothness of any Banach space X is the function � : R�0 ! R�0

de�ned by

�(r) :=
1

2

�
sup kfk=kgk=1 fkf + rgk+ kf � rgkg � 2

�
Note that, by sub-additivity of norms, always �(r) � r. For Hilbert spaces,

one has �(r) =
p
1 + r2 � 1. A Banach space is said to be uniformly smooth

if �(r) = o(r) as r ! 0; in particular, Hilbert spaces are uniformly smooth,

but so are Lp spaces with 1 < p < 1, as is reviewed in Appendix B. (Here

one has an upper bound of the type �(r) < crt, for some t > 1, which implies

uniform smoothness.) As a remark, we point out that uniformly smooth spaces

are reexive, but the converse implication does not hold.

The next result implies that greedy approximants always result in mono-

tonically decreasing error if and only if the space is smooth. In particular, if

the space is not smooth, then one can not expect greedy (or even �-greedy) in-

cremental sequences to converge. (Since one may always consider the translate

S � ffg as well as a translation by f of all elements in a greedy sequence, no

generality is lost in taking f = 0.)

Theorem 3.1 Let X be Banach space. Then:

1. Assume that X is smooth, and pick any S � X so that 0 2 coS. Then for
each nonzero f 2 X there is some g 2 S and some ~f 2 co(ff; gg) di�erent
from f so that k ~fk < kfk.

2. Conversely, if X is not smooth, then there exist an S � X so that 0 2 coS

and an f 2 S so that, for every g 2 S and every ~f 2 co(ff; gg) di�erent
from f , k ~fk > kfk.

Proof: Assume that X is smooth, and let S and f be as in the statement. Let

F be the (unique) peak functional for f . There must be some g 2 S for which

F (g) < kfk=2 ;(11)

since otherwise fh 2 X j F (h) = kfk=2g would be a hyperplane separating

co(S) from 0 2 coS. De�ne

f� = (1� �)f + �g for � 2 [0; 1].



16 Donahue, Gurvits, Darken, and Sontag

We wish to show that kf�k < kfk for some � 2 (0; 1], as this will establish the

�rst part of the Theorem. For this, consider the peak functional F� for f�. Note

that

lim
�#0

F�(f) = lim
�#0

F�(f�) + F�(f � f�) = lim
�#0

kf�k = kfk:(12)

The unit ball in X� is weak-� compact (Alaoglu), so the net (F�)�2(0;1) (where

� # 0) has a convergent subnet, say F�� ! F �, with kF �k � 1. The functional

H 7! H(f) (de�ned on H 2 X�) is of course continuous with respect to the

weak-� topology, so F��(f) ! F �(f). By (12) we have F��(f)! kfk, so F � is

in fact a peak functional for f . But X is smooth, so F � = F . Therefore there

exists �0 2 (0; 1] such that jF�0(g) � F (g)j < kfk=2, which combines with (11)

to give F�0(g) < kfk. Therefore

kf�0k = F�0(f�0)

= (1� �0)F�0(f) + �0F�0(g)

< kfk;

since �0 > 0. This proves the �rst assertion.

We now prove the converse. Since X is not smooth, there is some unit vector

f with two distinct peak functionals F and F 0, that is, F and F 0 are � 1 on

the unit sphere and F (f) = F 0(f) = 1. Since F 6= F 0, there is some h 2 X so

that F (h) 6= F 0(h). Let

g := h�
�
F (h) + F 0(h)

2

�
f :

Note that F (g) + F 0(g) = 0 and F 0(g) 6= 0; scaling g, we may assume that

F 0(g) = 2. Consider now the set S = ff; g1; g2g, where g1 = g and g2 = �g;
note that 0 2 coS. This provides the needed counterexample, since

k(1� �)f + �g1k � F 0 ((1 � �)f + �g) = 1 + � > 1 = kfk

and

k(1� �)f + �g2k � F ((1� �)f � �g) = 1 + � > 1 = kfk

for each � > 0. ut

It is interesting to remark that, for the set S built in the last part of the

proof, even elements in the a�ne span of f and g1 (or of f and g2) have norm

> 1 if distinct from f , that is, the inequalities hold in fact for all � 6= 0. (For

� < 0, interchange F and F 0 in the last pair of equations.)

It is an easy consequence of the �rst part of Theorem 3.1 that greedy incre-

mental approximates in a smooth Banach space can converge only to the target

function:
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Corollary 3.2 Let X be a smooth Banach space with S � X. Let f 2 coS and
suppose f1, f2, : : : is an incremental �-greedy sequence with respect to f , where
the schedule �1; �2; : : : converges to 0. If the sequence (fn) converges, then it
converges to f .

Proof: With out loss of generality, we may assume that f = 0. Suppose

limn fn = f1 6= 0. Then by the �rst part of Theorem 3.1, there exists g 2 S and

� 2 [0; 1] such that k(1��)f1+�gk < kf1k. De�ne � = kf1k�k(1��)f1+�gk,
and choose N large enough so kf1 � fnk < �=3 and �n < �=3 for all n > N .

Fix n > N . Then k(1� �)fn + �gk < kf1k � 2�=3, but (fn) is �-greedy, which

implies kfn+1k < kf1k � �=3. But this is impossible since by choice of N ,

kf1 � fn+1k < �=3. Therefore the limit f1 = 0, as desired. ut

It is possible, however, to have an �-greedy sequence that fails to converge.

See Appendix D. This situation is avoided if X is uniformly smooth, as we shall

see below. But �rst we need a technical lemma that captures the geometric

properties of smoothness necessary to obtain stepwise estimates of convergence.

This lemma is used not only in Theorem 3.4, but also throughout Sect. 3.2.

Lemma 3.3 Let X be a Banach space with modulus of smoothness �(u), and
let S � X. Assume that 0 2 co(S) and let f 6= 0 be an element of co(S). Let F
be a peak functional for f . Then

k(1� �)f + �gk � (1 � �)

�
1 + 2�

�
�kgk

(1 � �)kfk

��
kfk + �F (g);(13)

for all 0 � � < 1 and all g 2 S. Furthermore, for any � > 0, there exists a
g 2 S such that F (g) < �.

Proof: Pick any 0 � � < 1 and g 2 S. If g = 0 then (13) is trivially satis�ed,

so assume g 6= 0.

De�ne h = f + ug=kgk and h� = f � ug=kgk for u � 0. Then from the

de�nition of the modulus of smoothness we have

khk+ kh�k � 2kfk [1 + �(u=kfk)] :

But

kh�k =

f � u

kgkg
 � F

�
f � u

kgkg
�

= kfk � uF (g)=kgk:

Therefore

khk � kfk (1 + 2�(u=kfk)) + uF (g)=kgk:(14)

If we set u = �kgk=(1� �), we get

(1� �)f + �g = (1� �)h;
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which combines with (14) to prove (13).

Finally, given � > 0, suppose there is no g 2 S such that F (g) < �. Then the

a�ne hyperplane fh 2 X j F (h) = �=2g would separate S from 0, contradicting

0 2 co(S). ut

Theorem 3.4 Let X be a uniformly smooth Banach space. Let S be a bounded
subset of X and let f 2 co(S) be given, and let (�n) be an incremental schedule
with

P1
k=1 �k <1. Then any �-greedy (with respect to f) incremental sequence

(fn) � coS converges to f .

Proof: Pick K � supg2S kf � gk, and let (fn) be an �-greedy incremental

sequence. De�ne

an := kfn � fk:

We want to show that an ! 0. To this end, let a1 = lim infn!1 an. Since (fn)

is �-greedy, an+1 � an + �n and an+m � an +
Pm�1

k=n �k. But
P1

k=n �k ! 0 as

n!1, so in fact a1 = limn!1 an. Suppose a1 > 0. Then from the de�nition

of �-greedy and (13), it follows that

an+1 � inf
�;g

�
(1 � �)

�
1 + 2�

�
�K

(1� �)an

��
an + �Fn(g � f)

�
+ �n;

where � is the modulus of smoothness for X, Fn is the peak functional for

fn � f , and the in�mum is taken over all 0 � � < 1 and g 2 S. (In relation to

Lemma 3.3, everything here is translated by �f .) The modulus of smoothness

is a non-decreasing function, so certainly

�

�
�K

(1 � �)an

�
� �

�
2�K

(1� �)a1

�

for large enough n. Using this and taking the limit as n!1 in the preceding

inequality yields

a1 � a1

�
1 + inf

�
�

�
4K

a1

� (u(�))

u(�)
� 1

��
;

where u(�) := (2�K)= [(1� �)a1]. But u(�) ! 0 as � ! 0, so by uniform

smoothness �(u)=u ! 0 as � ! 0. Therefore the quantity in the in�mum is

negative, and a contradiction is reached. Thus, a1 must be zero. ut

The stepwise selection of � = �n in the above proof apparently depends upon

the modulus of smoothness �(u). We shall see in the next section that if we have

a non-trivial power type estimate on the modulus of smoothness then it su�ces

to use �n = 1=(n+ 1), i.e., fn+1 becomes a simple average of g1; g2; : : : ; gn+1.



Rates of Convex Approximation 19

3.2 Spaces with Modulus of Smoothness of Power Type

Greater than One

We next give rate bounds for incremental approximates that hold for all Ba-

nach spaces with modulus of smoothness of power type greater than one (The-

orems 3.5 and 3.7). Keep in mind that �(u) � ut with t > 1 is a su�cient

condition for X to be uniformly smooth, and holds in particular for Lp-spaces

if 1 < p <1. (See Appendix B.)

Theorem 3.5 Let X be a uniformly smooth Banach space having modulus of
smoothness �(u) � ut, with t > 1. Let S be a bounded subset of X and let
f 2 co(S) be given. Select K > 0 such that kf � gk � K for all g 2 S, and �x
� > 0. If the sequences (fn) � co(S) and (gn) � S are chosen recursively such
that

f1 2 S(15)

Fn(gn � f) � 2

nt�1kfn � fkt�1 ((K + �)t �Kt) := �n(16)

fn+1 =

�
n

n+ 1

�
fn +

�
1

n+ 1

�
gn;(17)

(where Fn is the peak functional for fn � f ; we terminate the procedure if fn =

f), then

kfn � fk � (2t)1=t(K + �)

n1�
1
t

�
1 +

(t� 1) log2 n

2tn

�1=t
:(18)

Recall that (16) can always be obtained, since otherwise fh 2 X j Fn(h �
f) = �n=2g would be a hyperplane separating S from f 2 co(S).

Proof: Replacing S with S � f allows us to assume without loss of generality

that f = 0 and kgk � K for all g 2 S. Also let us write ~K for K + �.

Applying Lemma 3.3 with g = gn and � = 1=(n+ 1) yields

kfn+1k � nkfnk
n + 1

�
1 + 2�

�
kgnk
nkfnk

��
+

�n

n+ 1
(19)

� nkfnk
n + 1

2
41 +

 
(2)1=t ~K

nkfnk

!t
3
5 :

If we set

an :=
nkfnk

(2)1=t ~K

into the previous inequality we obtain

an+1 � an(1 + 1=atn):
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Applying the triangle inequality to (17) yields

an+1 � an + 1=(2)1=t < an + 3=2

by Lemma B.3 (40).

In order to apply Lemma C.3, we need only show that (50) holds for n = 2

or for n = 1 with a1 � 1. Note �rst that

a1 =
kf1k

(2)1=t ~K
<

1

(2)1=t
< tt

by Lemma B.3 (43). So (18) holds for n = 1, and if a1 � 1 then we can apply

Lemma C.3 immediately. Otherwise a1 < 1, in which case

a2 � a1 +
1

(2)1=t
< 1 +

1

(2)1=t
<

�
5t� 1

2

�1=t

;

by Lemma B.4, and so (50) holds for n = 2.

It follows in either case that

an �
�
tn +

t� 1

2
log2 n

�1=t
for all n � 1.

Rewriting in terms of fn proves the theorem. ut

Recall that in Lp spaces, the modulus of smoothness is of power order t,

where t = min(p; 2). The next corollary follows immediately from the preceding

theorem and Lemma B.1.

Corollary 3.6 Let S be a bounded subset of Lp, 1 < p < 1, with f 2 co(S)

given. De�ne q = p=(p � 1) and select K > 0 such that kf � gk � K for all
g 2 S. Then for each � > 0, there exists a sequence (gn) � S such that the

sequence (fn) � co(S) de�ned by

f1 = g1 fn+1 = nfn=(n+ 1) + gn=(n+ 1)

satis�es

kf � fnk �
21=p(K + �)

n1=q

�
1 +

(p� 1) log2 n

n

�1=p
if 1 < p � 2 and

kf � fnk �
(2p� 2)1=2(K + �)

n1=2

�
1 +

log2 n

n

�1=2

if 2 � p <1.
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We now interpret Theorem 3.5 in terms of �-greedy sequences. Let f , S, and

X be as in that theorem, and let (fn) be an �-greedy sequence with respect to

f , which as before we can assume to be 0. Then

kfn+1k � inf
�;g

(
(1 � �)

"
1 + 2

�
�kgk

(1� �)kfnk

�t#
kfnk+ �Fn(g)

)
+ �n

� inf
g

(
nkfnk
n + 1

"
1 + 2

�
kgk
nkfnk

�t#
+ Fn(g)=(n + 1)

)
+ �n;

by Lemma 3.3. The outside inequality holds also if (fn) is only �-greedy with

respect to the convexity schedule �n = 1=(n+ 1). Now given that the modulus

of convexity satis�es �(u) � ut (t > 1), �x � > 0, and select an incremental

schedule (�n) satisfying �n � �=nt. Then using the fact that kgk � K for all

g 2 S and that there exists g 2 S with Fn(g) smaller than any preassigned

positive value, we get

kfn+1k �
nkfnk
n+ 1

"
1 + 2

�
K

nkfnk

�t#
+ �=nt:

Recalling the de�nition of �n, we see that �=n
t � �n=(n+1), and a comparison

with (19) shows that the bound obtained in Theorem 3.5 also holds for the

�-greedy sequence (fn) as well. This proves

Theorem 3.7 Let X be a uniformly smooth Banach space with modulus of
smoothness �(u) � ut, with t > 1. Then X admits incremental convex schemes
with rate 1=n1�1=t. Moreover, if the incremental schedule (�n) satis�es �n �
�=nt where � is any �xed positive value, and if (fn) is either �-greedy or �-
greedy with convexity schedule �n = 1=(n + 1), then the error to the target
function at step n+ 1 is bounded above by (18).

The specialization of this result to Lp spaces, analogous to Corollary 3.6, is

straightforward and is left to the reader.

Remark: The only non-constructive step in the proof of Theorem 3.5 is

the determination of g 2 S such that Fn(g � f) � �n, where Fn is the peak

functional for fn � f . In Lp spaces, Fn can be associated with the function in

Lq (q = p=(p� 1)) de�ned by

hn(x) := sign(fn � f(x))jfn � f(x)jp�1=kfn � fkp�1p ;

so

Fn(g � f) =

Z
hn(x) (g(x)� f(x)) dx:

This means that to satisfy (16), one must �nd g 2 S such thatZ
hn(x)g(x) dx � �n +

Z
hn(x)f(x) dx:
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(We should note that
R
hn(x)f(x) dx is likely to be negative.)

The speci�c details of �nding such a g will depend on the neuron class S

under consideration. But as an example, suppose S consists of those functions

g(x) having the form ��(a � x+ b), where a 2 Rd, b 2 R, � is a �xed activation

function, and x 2 Rd is allowed to vary over a subset 
 � Rd. Then we are left

with �nding an a and b such that����
Z



hn(x)�(a � x+ b) dx

���� � �
Z



hn(x)f(x) dx� �n:(20)

Actually, the condition f 2 coS implies the existence of an a and b such that the

left hand side of (20) is at least as large as �
R


hn(x)f(x) dx, so this may be

viewed as a maximization problem. We do not need to �nd the global maximum,

however, but only a value satisfying the weaker condition (20).

3.3 Rate Bounds in Type t Spaces

We turn our attention now to determining rate bounds for incremental approx-

imants in Rademacher type t spaces with 1 < t � 2 (Corollary 3.14). The

constants in the bounds are implicit. Furthermore, the rate bounds for the case

of Lp spaces (not given explicitly) are slightly weaker than those established in

the previous section.

Banach and Saks [1] showed that if a sequence g1; g2; : : : is weakly convergent

to f in Lp(0; 1), 1 < p < 1, then there is a subsequence gk1; gk2 ; : : : that is

Cesaro summable in the norm topology to f , i.e., kf �
Pn

i=1 gki=nk ! 0. This

result was extended to uniformly convex spaces by Kakutani [16]. We give now

a generalization that holds in Banach spaces of type t > 1.

De�nition 3.8 (Generalized Banach-Saks Property (GBS))

A Banach space X has the GBS property if for each bounded set S and each
f 2 coS, there exists a sequence g1; g2; : : : in S such that kf �

Pn

k=1 gk=nk ! 0.

If � is a given function on N, we say that X has the GBS(�) property if for
each f and set S as above one can always �nd some sequence satisfying the
convergence rate kf �

Pn
k=1 gk=nk = O(�(n)).

A probabilistic proof of the GBS(�) property for arbitrary Banach spaces of

type t > 1 is given below. We will make use of the following basic property of

type t spaces: If a Banach space X is of type t, then for any independent mean

zero random variables �i 2 X taking �nitely many values, E(k�1+ : : :+ �nkt) �
C
Pn

i=1Ek�ikt (Ledoux and Talagrand [18], p. 248). We also need the following

result from (Ledoux and Talagrand [18], Theorem 6.20, p. 171).

Theorem 3.9 Suppose that �i are independent mean zero random variables in
X, Ek�ikN �1, 1 � i � n, N > 1, N 2 N. Then there is a universal constant
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K such that

E


nX
i=1

�i


N

�
 
K

N

logN

"
E


nX
i=1

�i

 +
�
E max

1�i�n
k�ikN

� 1
N

#!N

:(21)

The following corollary plays a crucial role in our argument.

Corollary 3.10 Suppose that k�ik �M , and Banach space X is of type t > 1.
Then

E


nX
i=1

�i


N

� ANn
N
t :(22)

Proof:

E


nX
i=1

�i


N

�
�
K

N

logN

h
E
�X �i

�+M
i�N

�
 
K

N

logN

"�
E

X �i

t�
1
t

+M

#!N

�

0
@K N

logN

2
4C 1

t

 
nX
i=1

Ek�ikt
! 1

t

+M

3
5
1
A
N

�
�
K

N

logN

�N �
C

1
tMn

1
t +M

�N
� ANn

N
t :

Here we used the inequality

E(j�j) � [E(j�jt)] 1t ; t � 1;

which is a special case of Jensen's inequality. ut

Below we follow a standard construction using the Borel-Cantelli Lemma.

We �rst recall this classical result:

Lemma 3.11 ((Borel-Cantelli)) If
P
P (An) <1, then P (B) = 0, where

B =
\
k�1

[
n�k

An:(23)

Note that in the above equation, B is exactly the set of those x for which x 2 An

for in�nitely many n.
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Theorem 3.12 Let us consider a sequence �i of independent, bounded, zero
mean random variables in a Banach space X of type t > 1. Then with probability
one,  1n

nX
i=1

�i

 = o(n
1
t
�1+�)(24)

for any � > 0.

Proof: Using Lemma 3.11, we will prove that for any a > 0 and � > 0,

X
n�1

P

( 1n
nX
i=1

�i

 � an
1
t
�1+�

)
<1:

By the Chebyshev inequality, 8N 2 N,

P

(
nX
i=1

�i

 � �

)
� E

0
@


nX
i=1

�i


N
1
A ��N

� ANn
N
t ��N

:= �(N;n; �):

The second inequality follows from Corollary 3.10. So

�(N;n; an
1
t
+�) =

ANn
N
t

aNn
N
t
+N�

=
AN

aNnN�
:

For su�ciently large N , N� > 1 and

X
n�1

AN

aNnN�
<1:

Thus by Borel-Cantelli,

8a > 0; P

(
9(nk); nk k!1�! 1 s:t:

 1

nk

nkX
i=1

�i

 � a(nk)
1
t
�1+�

)
= 0:

Since the union of countably-many zero-measure sets also has zero measure, it

follows that for any (al) converging to 0,

P

(
9l; 9(nk); nk k!1�! 1 s:t:

 1

nk

nkX
i=1

�i

 � al(nk)
1
t
�1+�

)
= 0;

which implies that

P

(
lim
n!1

 1
n

Pn

i=1 �i


n
1
t
�1+�

= 0

)
= 1:
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ut

Now everything is ready to investigate the GBS(�) property. Suppose that

f 2 coS � X. Then for any � > 0 there exists a k(�) < 1 and g�i 2 S, ��i > 0

for 1 � i � k(�) with
Pk(�)

i=1 �
�
i = 1 such thatf �

k(�)X
i=1

��ig
�
i

 < �:

De�ne

~f� :=

k(�)X
i=1

��ig
�
i :

Let us consider a positive sequence (�n) such that

1

n

nX
j=1

�j � n
1
t
�1:

Also we need a sequence of independent random variables �j such that Pf�j =
g
�j
i g = �

�j
i for each i, 1 � i � k(�j). Then

1

n

nX
j=1

�j � f

 =


1

n

nX
j=1

(�j � ~f�j )�
1

n

nX
j=1

(f � ~f�j )


�


1

n

nX
j=1

�j

+ n
1
t
�1:

Here �j = �j � ~f�j , so E�j = 0. Applying Theorem 3.12 immediately yields:

Theorem 3.13 Any Banach space of type t, 1 < t � 2, has the GBS(n
1
t
�1+�)

property for all � > 0.

This can be restated as:

Corollary 3.14 Let X be a Banach space of type t, 1 < t � 2, and let S be a
bounded subset of X with f 2 coS. Then for all � > 0, there exists a sequence
(gi) � S such that the incremental sequence

fn =
1

n

nX
i=1

gi =
n� 1

n
fn�1 +

1

n
gn(25)

satis�es
kf � fnk = o(n

1
t
�1+�):(26)
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Remark: The GBS(�) property guarantees for f 2 coS and S bounded the

existence of (gn) � S such that kf �
Pn

i=1 gi=nk ! 0. It is not true in general

that one may pick all the gn distinct. Consider for example the Hilbert space `2
(which is of type 2, i.e., GBS(1=

p
n)) and S = (en), where (en) is an orthonormal

basis. Then coS =
P

i�0�iei where �i � 0 and
P
�i = 1. But if enk 6= enl ,

(nk 6= nl) then

1

N

NX
i=1

eni
k�k�! 0:

However, it is possible to give necessary and su�cient conditions for the

existence of a sequence of distinct elements (gi) � S as above:

Theorem 3.15 Let X be a Banach space of type t, 1 < t � 2, S � X, f 2 coS.
There exists a sequence (gi) � S where 8i 6= j, gi 6= gj such that k

P
gi=n�fk !

0 i� for all �nite K � S, f 2 co(S nK).

Proof: That f 2 co(S nK) for all �nite K is su�cient follows from the discus-

sion preceding Theorem 3.13. With this condition holding, we are free to choose

the g
�j
i to be distinct for all i and j.

Necessity follows from considering a single �nite-cardinality set K � S such

that f 62 co(S nK). Assume there exists a sequence of distinct elements (gi) � S

such that kf �
Pn

i=1 gi=nk ! 0. We will construct a sequence in co(S n K)

converging to f , which is a contradiction.

Since jKj < 1 there must be an r > 0 such that 8n > r, gn 2 S nK. Let

s > r. Then

fs :=
1

s

sX
i=1

gi =
1

s

rX
i=1

gi +
1

s

sX
i=r+1

gi:

As s!1, the �rst sum tends to zero, so the second must tend to f . Therefore

the sequence

1

s � r

sX
i=r+1

gi =
s

s� r

1

s

sX
i=r+1

gi

must also tend to f . Each element of this sequence is in co(S nK). ut

4 Additional Assumptions on S

We will now study the e�ect of imposing additional assumptions on the subset S
that allow favorable L2-like rate bounds in more general spaces. That is, instead

of constraining the whole space X, we study additional general assumptions on

S that allow better rates. The possible su�ciency conditions that we study

are: (1) boundedness by L2, (2) classes of indicator functions. This last case is

especially interesting in pattern classi�cation applications, and the connections

with Vapnik-Chervonenkis dimension|�rst discovered by Barron in (Barron

[3])|are especially intriguing.



Rates of Convex Approximation 27

4.1 S Bounded in L2

For subsets S that happen to be dominated in L2, better rates are available.

Proposition 4.1 Let D be a measure space with m(D) < 1. Given 1 � p1 <

p2 < 1 and S � Lp2 (D), suppose there exists h 2 Lp2(D) such that for all
g 2 S, jg(x)j � h(x) for a.e. x 2 D. Then Sp1 = Sp2 , where Sp denotes the
closure of S in Lp(D). Moreover, if (gn) � S is convergent in Lp2 (D) to a
function f , then kf � gnkp1 � m(D)1=p1�1=p2kf � gnkp2 for all n.

Proof: Since m(D) <1, we have S � Lp2 (D) � Lp1 (D). Also, gn
p1! f implies

the existence of a subsequence (gnk) which converges to f a.e.. But both f and

the subsequence (gnk) are bounded pointwise a.e. by h 2 Lp2 (D), so it follows

from the dominated convergence theorem that gnk
p2! f . Thus f 2 Sp2 and so

Sp1 � Sp2 .

Let r = p2=p1 and s = p2=(p2 � p1). Then r and s are conjugate exponents

and from H�older's inequality we haveZ
jf � gnjp1 � k jf � gnjp1kr k1ks:

Taking the p1-th root of both sides yields

kf � gnkp1 � kf � gnkp2 k1ksp1
= m(D)1=p1�1=p2 kf � gnkp2 ;

which shows Sp2 � Sp1 and provides the stated inequality. ut

The following Corollary of Theorem 3.5 and Proposition 4.1 shows that for

special S we can get O(1=
p
n) incremental convergence even in Lp with p < 2.

(Of course the optimal convergence rate obeys this bound as well.) The result

holds in particular for the case where S is a collection of uniformly pointwise

bounded functions (for example, indicator functions) on a bounded subset of

R
N .

Corollary 4.2 Let S be a set of real-valued functions on a �nite-measure space
D with an h 2 L2(D) such that for all g 2 S, jg(x)j � h(x) for a.e. x 2 D.
Then for any f 2 coSp, 1 � p � 2, there exists an incremental sequence f1, f2,
: : : in coS with kf � fnkp = O(1=

p
n).

Proof: The result follows for p = 2 by Theorem 3.5. For 1 � p < 2, take

the sequence generated by Theorem 3.5 in L2(D), and apply Proposition 4.1

to show that the 1=
p
n convergence rate for this sequence holds in Lp(D) as

well. ut

Note, however, that in view of Theorem 3.1, we cannot expect every sequence

that is �-greedy in L2(D) to be necessarily �-greedy in Lp(D).
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4.2 Results for VC Classes in Sup Norm Spaces

In Theorem 2.3 it was shown that in general there can be no rate bound in L1.

However, in the special case that S consists of indicator functions and has �nite

VC dimension, a good rate bound exists even for the sup norm (Theorem 4.6).

Our bounds are slightly weaker than that given by (Barron [3]) (ours are \big

O" as compared to \little O"). However, the proof method here seems worthy

of note, especially as it makes use of more basic results than the central limit

theorem relied upon in (Barron [3]).

Next we explore the implications of good convergence rate bounds on the

VC dimension of the corresponding set S. Good convergence rate bounds for S

do not imply that S has a �nite V C dimension (Theorem 4.7), i.e., the converse

of Theorem 4.6 is false. However, if any nontrivial rate bound holds uniformly
for all subsets of S, its VC dimension must be �nite (Theorem 4.8).

De�nition 4.3 Let F be a class of indicator functions on a set X. Its dual F 0

is de�ned as the class fevx; x 2 Xg of indicator functions on F , where

evx(f) = f(x) 8f 2 F :

Thus, for each element of X there is a unique element of F 0, named evx. Note

that it may be the case that evx = evy for x 6= y. One thinks of evx as

the \evaluation at x operator" for elements of F . Note that evx contains the

members of F which contain x. (If an indicator function takes the value one on

an element of its domain it may be said to \contain" it. In fact, we will identify

evx with ff 2 F : f(x) = 1g)

De�nition 4.4 Let V C be the operator on classes of indicator functions that
measures the Vapnik-Chervonenkis (VC) dimension. If F is a class of indicator
functions, we de�ne the co-VC dimension by

coV C(F ) := V C(F 0):(27)

Lemma 4.5 Denote by M (
;�) the Banach space of all bounded signed mea-
sures � on (
;�) equipped with the norm k�k := j�j(
) � �+(
) + ��(
). Let
C � �; consider the operator j :M (
;�)! l1(C) de�ned by j(�) = (�(c))c2C .
Then V C(C) < 1 i� there exists a constant K such that for any Rademacher
sequence i and all �nite sequences (�i) �M (
;�),

E


X
i

ij(�i)

 � K

 X
i

k�ik2
!1=2

:(28)

If such a K exists, K = K0
p
V C(C), where K0 is a universal constant.

Proof: Follows trivially from (Ledoux and Talagrand [18], Theorem 14.15,

p. 418). ut
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Theorem 4.6 Let F be a class of indicator functions on a set X. Then F �
l1(X). Let coV C(F ) = d < 1. Then for any h 2 coF , kconF � hk �
K(d=n)1=2, where K is a universal constant.

Proof: Since h 2 coF , 8� > 0, 9k� 2 coF s:t: kh� k�k < �. We will neglect the

� and write merely k where convenient. For some n�, k� =
Pn�

i=1 �ifi, wherePn�
i=1 �i = 1, ai > 0, and fi 2 F . Let �k := �(F 0 [[n�i=1fffigg). M (F;�k) is a

Banach space of bounded measures on F . The norm of � 2M (F;�k) is k�kM =

j�j(F ) = �+(F ) + ��(F ). De�ne mi 2M (F;�k) to be the probabilistic point-

mass measure with support on fi, i.e.,mi assigns measure 1 to sets containing fi
and 0 otherwise. De�ne �k :=

Pn
i=1 �imi. Let �l be �nite-valued i.i.d. random

variables taking value mi with probability �i. De�ne j : M (F;�k) ! l1(X)

by j(�) := (�(evx))x2X . Note that j is a linear operator. By the triangle

inequality,

E�

j
 

nX
i=1

�l=n

!
� h

 � E�

j
 X

l

(�l � �k)

! =n+ kh� kk :

By a simple inequality (Ledoux and Talagrand, [18], Lemma 6.3, p. 152),

E�


X
l

j (�l � �k)

 � 2E�E


X
l

lj(�l � �k)

 ;
where l are i.i.d. random variables taking values +1 and -1 with equal proba-

bility. Then by Lemma 4.5,

E


X
l

lj(�l � �k)

 � K
p
d

sX
l

k�l � �kk2M :

Since �l and �k are both probability measures, k�l��kkM � k�lkM+k�kkM = 2.

Combining the above, we have

E�

j
 

nX
i=1

�l=n

!
� h

 � 4K
p
dp

n
+ �:

Since the inequality is true for all � > 0 it remains true for � = 0. Since for some

realization of the �l the inequality must still hold, the theorem is proven. ut
The mere fact of the existence of a convergence rate bound for a set of

indicator functions does not imply that the set has �nite VC dimension. We

give an example to make this point.

Theorem 4.7 Let X be a measure space with an in�nite number of measurable
sets. Let S denote the set of characteristic functions of all measurable sets.
Clearly the VC dimension of S is in�nite. However, if f 2 coS, then f can be
approximated by an element of conS with error less than 1=n (in the uniform
metric).
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Proof: If f 2 coS, then clearly 0 � f(x) � 1 for all x 2 X. Fix n and de�ne

Ak = f�1 ([(k � 1)=n; 1])

for k = 1; 2; : : : ; n. (Note that some Ak may be empty.) Let gk be the charac-

teristic function for Ak. Each gk is in S since f must be a measurable function.

The function

fn =

nX
k=1

(1=n)gk

is in conS and satis�es

0 � fn(x) � f(x) < 1=n

for all x 2 X. (Moreover, this shows that coS equals the set of measurable

functions with range in [0; 1].) ut
However, if it is the case that one given convergence rate bound holds for

all �nite subsets of a set of characteristic functions, then the VC dimension of

this set is �nite.

Theorem 4.8 Let F be a set of indicator functions on a set X and C � F .
Let �(C; r) be the worst-case rate of approximation of a member of the closed
convex hull of C by r elements of C. Assume that there is some function h so
that h(r) ! 0 as r ! 1 such that �(C; r) � h(r) for all �nite C � F . Then
V C(F ) <1.

Proof: We argue by contradiction. Assume that V C(F ) = 1. Then also

coV C(F ) =1. Thus, for each integer n there are elements x1; x2; : : : ; x2n 2 X
and functions f1; : : : ; fn 2 F such that (f1; : : : ; fn) takes all 2

n possible values

on these points. De�ne Cn := ff1; : : : ; fng. Consider approximating f :=Pn
i=1 fi=n 2 coCn by r elements of Cn. By the symmetry of f , we can without

loss of generality write the approximant as g =
Pr

i=1�ifi. Then

kg � fksup = sup
X

jg(x)� f(x)j

= sup
X

�����
rX

i=1

�
�i �

1

n

�
fi(x)�

nX
i=r+1

1

n
fi(x)

�����
=

1

2
sup
X

�����
rX

i=1

�
�i �

1

n

�
[2fi(x)� 1]�

nX
i=r+1

1

n
[2fi(x)� 1]

�����
=

1

2

 
rX

i=1

�����i � 1

n

����+
nX

i=r+1

1

n

!

since there is an element x 2 X for which 2fi(x) � 1 is of the same sign as

�i � 1=n for 1 � i � r and is negative one for i > r. Thus

kg � fksup �
1

2

n� r

n
=

1

2

�
1� r

n

�
:(29)
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Since the bounding function for the error, h, converges to zero, there exists

q > 0 such that h(q) < 1=4. But the worst-case error approximating elements

of C2q with q functions from this set is greater than [1 � q=(2q)]=2 = 1=4, a

contradiction. This establishes the claim. ut

Acknowledgements

This work was partially completed while Michael Donahue and Eduardo Sontag

were visiting Siemens Corporate Research.

A Implications of the Convexity Assumption

Constraining f to lie within the convex closure of S (instead of the linear span)

e�ectively reduces the size of the set of approximable functions. Which functions

are being left out? For the case of functions on a real interval under the sup

norm where S is the set of Heavisides, there is a tidy answer.

De�ne Fv :=

ff : [a; b]! R j Var(f) � v; 8t 2 [a; b]; jf(t)j � vg:(30)

The following is an elementary theorem (Lick [20], Exercise 22, p. 364).

Lemma A.1 Let (fn) be a sequence of functions each in Fv. Then there exists
a subsequence converging everywhere to a limit function also in Fv.

Let H be the set of Heavisides on R, i.e., H = fh : R! R j 9�; h = I[�;1)g.
De�ne

Hv := ff : R! R j 9h 2 H s:t: f = vh or f = �vh(31)

or f = vh0 or f = �vh0

where 8t 2 [a; b]; h0(t) = h(�t)g:

Theorem A.2 Fv = co(Hv)sup:

Proof: We �rst show co(Hv)sup � Fv. Let f 2 co(Hv)sup. Then there exists

sequence (fn) with fn 2 co(Hv) and fn
sup! f . By Lemma A.1, there is a

subsequence (fk(n)) converging everywhere to a limit in Fv. This limit must be

the same function as f , so f 2 Fv.
Now we show Fv � co(Hv)sup. Let f 2 Fv, and �x � > 0. Since f is of

bounded variation, it can have at most a countable number of discontinuities.

In particular, if the jump at the nth discontinuity is jn then
P
jjnj � v, and so

jjnj < � for all but at most a �nite number of n's. Let I1; : : : ; Ik be a partition of

[a; b] into �nitely many non-intersecting sets that are either intervals or isolated



32 Donahue, Gurvits, Darken, and Sontag

points, with [In = [a; b] such that the variation of f on In is less than � for

all n. In constructing such a partition, one makes sure that the opposing sides

of jumps of size � or greater (at most �nite in number) belong to di�erent In.

Consider a function f� which is constant on each of the In with a value no less

than the minimum of f on In and no greater than the maximum of f on In. It

is immediately apparent that f� 2 Fv and kf � f�ksup < �. It is also clear that

f� 2 co(Hv), and since � was arbitrary, we have established that f 2 co(Hv)sup.

ut

By an elementary argument (analogous to the proof of Theorem 4.7), one

can show that if f 2 Fv, kconHv � fksup = O(1=n).

At this point, it is natural to ask what is the class of functions that can be

uniformly approximated by neural nets with Heaviside activations, that is, what

is the closure of the linear span (not the convex hull) of the maps fromHv (which

is the same for all v of course). This is a classical question; see for instance

(Dieudonn�e [8], VII.6): the closure is the set of all regulated functions, that is,

the set of functions f : [a; b] ! R for which limx!x
�

0

f(x) and limx!x
+

0

f(x)

exist for all x0 2 [a; b) and x0 2 (a; b], respectively. Thus by constraining

target functions to the convex closure of Hv instead of the span, we are losing

the ability to approximate those regulated functions that are not of bounded

variation.

In the multivariable case, that is, f : K ! R with K a compact subset of

R
n, the situation is far less clear. If f has \bounded variation with respect to

half-spaces" (i.e., is in the convex hull of the set of all half spaces (Barron [3]),

and in particular if f admits a Fourier representation

f(x) =

Z
Rn

eih!;xi ~f (!)d!

with Z
Rn

k!kj ~f (!)jd! <1;

then by (Barron [3]) there are approximations with rate O(1=
p
n) (since f is in

the convex hull of the Heavisides). But the precise analog of regulated functions

is less obvious. One might expect that piecewise constant functions can be uni-

formly approximated, for instance, at least if de�ned on polyhedral partitions,

but this is false.

For a counterexample, let f be the characteristic function of the square

[�1; 1]2 in R2, and let K be, for instance, a disc of radius 2 centered on (0; 0).

Then it is impossible to approximate f to within error 1=8 by a one hidden-

layer neural net, that is, a linear combination of terms of the formH(hw; xi+b),
with w 2 R2 and b 2 R. (Constant terms on K can be included, without loss

of generality, by choosing b appropriately.) This is proved as follows. If there

would exist a function g of this form, that approximates to within 1=8, then close
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to the boundary of the disc its values are in the range (�1=8; 1=8), and near the

center of the square it has values > 7=8. Moreover, everywhere the values of

g are in (7=8;+1)
S
(�1=8; 1=8). Now, the function 3g � (1=2) is again in the

same span, and it now has values in (2;+1) and (�1; 0) in the same regions.

This contradicts (Sontag [27], Prop. 3.8). (Of course, one can also prove this

directly.)

B Properties of the Modulus of Smoothness

In this section we collect some inequalities related to power type estimates of

the modulus of smoothness. In particular, the �rst lemma shows that Lp spaces

are of power type t = min(p; 2). (See Corollary 3.6 and Theorem 3.7.)

Lemma B.1 If X = Lp, 1 � p < 1, then the modulus of smoothness �(u)
satis�es

�(u) �
�
up=p if 1 � p � 2

(p� 1)u2=2 if 2 � p <1(32)

for all u � 0.

Proof: From the de�nition of the modulus of smoothness we have

2(�(u) + 1) = supfkf + gk + kf � gk j kfk = 1; kgk = ug
� 21=q supf(kf + gkp + kf � gkp)1=p j kfk = 1; kgk = ug;(33)

where q = p=(p� 1). The inequality follows from the concavity of the function

t! t1=p. Next we make use of some inequalities given by Hanner [12]:

(kfk + kgk)p + j kfk � kgk jp � kf + gkp + kf � gkp(34)

� 2(kfkp + kgkp);

for 1 < p � 2. The inequalities hold in the reverse sense if 2 � p < 1. (The

second inequality above is actually due to Clarkson [5].) Combining this with

(33) yields

2(�(u) + 1) �
�

2(1 + up)1=p if 1 � p � 2

21=q ((1 + u)p + j1� ujp)1=p if 2 � p <1:

Therefore

�(u) �

8<
:

(1 + up)1=p � 1 if 1 � p � 2�
(1 + u)p + j1� ujp

2

�1=p
� 1 if 2 � p <1

(35)

This result is cited in (Lindenstrauss [21]). It is possible to use the methods in

(Hanner [12]) to show that the above bounds on �(u) are tight.
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For 1 < p � 2, (32) now follows immediately by Lemma C.1. For p � 2 and

0 � u � 1 a Taylor series expansion provides�
(1 + u)p + (1� u)p

2

�1=p
= 1 +

p� 1

2
u2 � (p� 1)(2p� 3)(p+ 1)

24
�4;

for some � 2 (0; u). In particular, for p � 2 the last term is negative, and so

�
(1 + u)p + (1� u)p

2

�1=p

� 1 � p� 1

2
u2:(36)

For u > 1 we divide by u and use (36) again:�
(u+ 1)p + (u � 1)p

2

�1=p

= u

�
(1 + 1=u)p + (1� 1=u)p

2

�1=p

� u+
p� 1

2u
:

Let F (u) = 1 + (p� 1)u2=2� u� (p� 1)=(2u). Note that F (1) = 0 and

F 0(u) = (p � 1)u� 1 + (p� 1)=(2u2)

� (p � 1)� 1

� 0;

for u � 1 and p � 2, so u+ (p� 1)=(2u) � 1 + (p� 1)u2=2. Therefore�
(1 + u)p + j1� ujp

2

�1=p
� 1 � p� 1

2
u2

for all p � 2 and u � 0. ut

For completeness we include the following result.

Theorem B.2 Let X be a Banach space. The modulus of smoothness for X
satis�es

�(u) � u for all u � 0.(37)

Furthermore, if X is L1 or L1 with dimension at least 2, then

�(u) = u for all u � 0.(38)

Proof: For an arbitrary Banach space

�(u) = sup

�
kf + gk+ kf � gk

2
� 1 j kfk = 1, kgk = u

�
� sup fkfk + kgk � 1 j kfk = 1, kgk = ug
= u;
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proving (37). To prove (38), it evidently su�ces to show the existence of f and

g with kfk = 1 and kgk = u such that kf + gk + kf � gk = 2(1 + u). To this

end, for h 2 X de�ne

h>�(x) =

�
h(x) if h(x) > �

0 otherwise

and

h<�(x) =

�
h(x) if h(x) < �

0 otherwise.

Note that both h>� and h<� are in X for all �.

Since dim(X) � 2, there must exist a non-constant h 2 X. For such an h

one can always �nd an � such that kh>�k > 0 and kh<�k > 0. If X = L1 take

f =
h>�

kh>�k
g = u

h<�

kh<�k
;

else if X = L1 select

f = 1 g(x) = u [sign (h(x)� �)] :

In either case kf + gk = kf � gk = 1 + u, and the result follows. ut

The following technical lemma uses an inequality of Lindenstrauss to pro-

vide several lower bounds on  as a function of t for spaces with modulus of

smoothness �(u) � ut. These are needed in Theorem 3.5.

Lemma B.3 Let X be a Banach space with modulus of smoothness �(u) satis-
fying �(u) � ut for all u � 0. Then 1 � t � 2 and

t �
�

[(2� t)t]
1�t=2

(t� 1)t�1 if 1 < t < 2

1 if t = 1 or t = 2.
(39)

Moreover, for all t 2 [1; 2],

 �
p
2� 1;(40)

 � 3�t=2;(41)

 � 2t�1=5t=2;(42)

 >
1

t
e�3=2e:(43)

Proof: Lindenstrauss [21] givesp
1 + u2 � 1 � �(u) � ut for all u � 0.(44)
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Letting u ! 1 shows that t � 1, and if t = 1 then  � 1. Applying the �rst

inequality of Lemma C.1 to
p
1 + u2 shows

u2

2 + u2
� ut:

Letting u # 0 proves that t � 2 and if t = 2 then  � 1=2.

Therefore t satis�es 1 � t � 2, and inequalities (39) through (43) hold if

t = 1 or t = 2. Next assume 1 < t < 2, and rewrite (44) as

 �
p
1 + u2 � 1

ut
for all u � 0.

In particular, this inequality holds if we replace u with
p
(2� t)t=(t�1), which

gives

 � (2� t)1�t=2(t� 1)t�1

tt=2
:(45)

This completes the proof of (39).

Inequality (40) follows from (44) by setting u = 1. Using u =
p
3 provides

(41), and (42) is obtained with u =
p
5=2.

To prove (43), place the inequality xx � e�1=e into (45) to obtain

 � t�t=2e�1=2ee�1=e:

Then use 1 < t < 2 to complete the proof. ut

Figure 2 compares these estimates. The relation (39) is the best obtainable

from (44). Note in this regard that the Lp-spaces with 1 � p = t � 2 have  =

1=t. The remaining inequalities are weaker than (39), but have less complicated

forms and are therefore easier to use. The �rst (40) is a simple bound that

is independent of t. The inequality (41) is a re�nement generally useful for

smaller t, say 1 � t � 1:6, whereas (42) is only slightly improved over the

constant estimate (40) for t close to 1, but signi�cantly better than (41) for t

close to 2. Finally, although (43) is inferior to (41) for all t, it has the advantage

of showing easily that the product t is always bigger than 1=2 (e�3=2e � 0:576).

Often the form of the estimate is of more importance than its tightness, as can

be seen in the proof of Lemma B.4, a technical lemma needed in Theorem 3.5.

Lemma B.4 Let �(u) be the modulus of smoothness of a Banach space, and
assume that �(u) � ut for all u � 0 (t 2 [1; 2] is �xed). Then

1 +
1

(2)1=t
<

�
5t� 1

2

�1=t
:(46)
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1

t
e�3=2e

2t�1=5t=2
3�t=2

p
2� 1

1

t
[(2� t)t]1�t=2(t� 1)t�1

2.01.81.61.41.21.0

1.0

0.8

0.6

0.4

0.2

0.0

Figure 2: Comparison of lower bound estimates on  (from Lemma B.3) as a

function of t.
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Proof: De�ne h(t) to be the right-hand side of (46). Then the derivative of

h(t) has the same sign as

5t� 1

2

�
1� log

�
5t� 1

2

��
+
1

2
:(47)

But (47) is decreasing in t for t > 3=5, so h0(t) = 0 for at most one point

t0 2 [1; 2] (in fact t0 � 1:4724), which would be a local maximum for h. In

particular, for any subinterval [t1; t2] � [1; 2], it must be that

h(t) � min(h(t1); h(t2)) for all t 2 [t1; t2].

For our purposes we divide the interval [1; 2] into two subintervals: [1; 5=4] and

[5=4; 2]. Evaluating h at the endpoints yields

h(1) = 2

h(5=4) = (21=8)4=5 > 2:16

h(2) = 3=
p
2 > 2:12:

Therefore h(t) � 2 for all t 2 [1; 5=4], and h(t) � 2:12 for all t 2 [5=4; 2].

We now obtain bounds on the left-hand side of (46) on the same intervals

via Lemma B.3. From (41) we get

1 +
1

(2)1=t
� 1 +

p
3

21=t
� 1 +

p
3

24=5
< 2 for all t 2 [1; 5=4]:

Thus (46) holds for 1 � t � 5=4. Using (42) we obtain

1 +
1

(2)1=t
� 1 +

p
5

2
< 2:12 for all t 2 [5=4; 2]:

Therefore (46) also holds for 5=4 � t � 2, and the lemma is proved. ut

C Miscellaneous Inequalities

Here we collect several inequalities needed in the main body of the text.

Lemma C.1 Let 0 � r � 1. Then for all x > �1,
1 + x

1 + (1� r)x
� (1 + x)r � 1 + rx:

Proof: The right-hand inequality follows from the concavity of the function

(1 + x)r for 0 � r � 1, since y = 1 + rx is the tangent line to the graph of this

function at x = 0. Applied to 1� r, this inequality is (1+ x)1�r � 1+ (1� r)x,
which is the left-hand inequality. ut
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Lemma C.2 If 1 � t � 2, then

(1 + x)t � 1 + tx+ t(t� 1)x2=2 for all x � 0.(48)

Proof: A Taylor series expansion at 0 provides

(1 + x)t = 1 + tx+ t(t � 1)x2=2 + t(t� 1)(t� 2)�3=6

for some � 2 (0; x). The last term is non-positive for 1 � t � 2, and the result

follows. ut

The following lemma may be viewed as pertaining to a discrete analogue

of the di�erential equation y0 = y1�t, the general solution of which is y(x) =

(tx+ C)1=t. The result can be used to provide bounds on the convergence rate

of sequences having incremental changes compatible with the estimates from

Lemma 3.3. These two results are cobbled together to produce Theorems 3.5

and 3.7.

Lemma C.3 Let (an) be a nonnegative sequence satisfying

an+1 � an +min

�
3

2
;

1

at�1n

�
(49)

for all n, where 1 � t � 2. If

an �
�
tn+

t� 1

2
log2 n

�1=t

(50)

is satis�ed for some n � 2, or for n = 1 with a1 � 1, then it is satis�ed for all
n0 > n as well.

Proof: Let us take bn := tn + (1=2)(t � 1) log2 n, assume that an � b
1=t
n , and

proceed by induction, i.e., show that an+1 � b
1=t
n+1.

Suppose �rst that an < 1 and n � 2. Then

b
1=t
n+1 � b

1=t
3 � (6 + (1=2) log2 3)

1=2 > 5=2:

The second inequality follows from the fact that the function t 7! (3t+(1=2)(t�
1) log2 3)

1=t is decreasing in t for t 2 [1; 2], and so attains its minimum at t = 2.

But then

an+1 � an + 3=2 < 5=2 < b
1=t
n+1;

as desired.

Alternatively, suppose that an � 1. Then since the function x 7! x(1+1=xt)

is nondecreasing for x � 1, we have

an+1 � an(1 + 1=atn) � b1=tn (1 + 1=bn)
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� b1=tn

�
1 +

t

bn
+
t(t � 1)

2b2n

�1=t
(by Lemma C.2)

�
�
t(n+ 1) +

t� 1

2
log2(n+ 1) +

t � 1

2n
� t � 1

2
log2(1 + 1=n)

�1=t
:

By the concavity of the logarithm, log2(1+1=n) � 1=n (for n � 1), which along

with the de�nition of bn+1 yields

an+1 � b
1=t
n+1;

concluding the proof. ut

D An Example of a Smooth Banach Space with

Non-Converging �-Greedy Sequences

In Sect. 3.1 it was shown that �-greedy sequences in uniformly smooth spaces

always converge (provided
P
�k < 1), and that smoothness is necessary and

su�cient for monotonically decreasing error in incremental approximants. We

now construct an example showing that simple smoothness is insu�cient to

guarantee convergence of �-greedy sequences.

Let a = (a(n)) be a sequence of real numbers. De�ne the sequence of

functions (Fn) (the norm sequence) from RNto R+ [ f0g recursively by

F1(a) = ja(1)j

Fn(a) = [(Fn�1(a))
pn + ja(n)jpn]1=pn ;

where (pn) is a �xed sequence (called the norm power sequence) with 1 � pn <

1 for all n.

Note that for each a, Fn(a) is nondecreasing with n. De�ne

X(pn) :=

�
a 2 RNj sup

n
Fn(a) <1

�
;(51)

and for a 2 X(pn)

kak := F (a) := lim
n!1

Fn(a):(52)

The reader may verify that X(pn) equipped with the norm (52) is a Banach

space. (This space is similar to the modular sequence spaces studied in (Woo

[29]).) If (pn) is bounded and pn > 1 for all n, then it can be shown that X(pn)

is smooth. Also we use the notation en 2 X(pn) to denote the canonical basis

element en(k) = �n(k). (Note that kenk = 1 for all n independent of (pn).)
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Proposition D.1 Let (n) be a strictly decreasing sequence converging to 1.
Then there exists a norm power sequence (pn) that is non-increasing, converges
to 1, and has pn > 1 for all n, such that the bounded set S = f�1e1g [
fnengn2Nin X(pn) admits for each incremental schedule (�n) an incremental
sequence (an) � coS that is �-greedy with respect to 0 but does not converge.
(Note that 0 2 coS.)

Proof: X(pn) is determined by its power sequence (pn). Choose p1 > 1 arbi-

trarily, and recursively select pn 2 (1; pn�1] to satisfy

inf
0���1

[(1� �)n�1]
pn + (�n)

pn > 1:(53)

This can always be done because the inequality holds for pn = 1 and so by

continuity in pn holds also for all pn su�ciently close to 1.

Now let (�k) be a �xed incremental schedule. We build an �-greedy (with

respect to 0) sequence (ak) � S � coS as follows. Let a1 = n1en1 be any

�1-greedy element of S with n1 > 1 (i.e., n1 < minf1+ �1; 1g). Assuming that

ak�1 = nk�1enk�1 with nk�1 > 1, we will show that we can pick ak = nkenk
with nk > nk�1 to be �k-greedy. Indeed, suppose that

bk = (1 � �)ak�1 + �gk

is an �k-greedy step, where gk 2 S. It follows from (53) and the monotonicity

of n that kbkk > 1, so we can pick nk > nk�1 such that

kbkk > nk = knkenkk:

Therefore, taking ak = nkenk yields an �k-greedy increment.

We de�ne the sequence (ak) recursively in this manner to complete the con-

struction. ut
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