
Enhancing The Design Of NextG For Critical And
Massive IoT Devices And Applications

A DISSERTATION

SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL

OF THE UNIVERSITY OF MINNESOTA

BY

Udhaya Kumar Dayalan

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Prof. Zhi-Li Zhang

February, 2024



© Udhaya Kumar Dayalan 2024

ALL RIGHTS RESERVED



Acknowledgements

There are lot of things to be thankful for and appreciate in this life and in my PhD

journey. In this enriching journey, I am profoundly grateful for the unwavering support

and inspiration from colleagues, teachers, friends and family.

Advisor. First and foremost, my deepest thanks to Prof. Zhi-li Zhang for

guiding me through the intricate path of academia and for his unwavering guidance in

shaping my academic journey. Even though I was a part-time student with a full-time

job and 2 kids, Professor gave me the same support in everything, including his time

and supporting me to attend technical courses and travels to conferences. His passion

towards research and aim to conduct quality research was a great inspiration to me.

During these years, I was lucky enough to see the other beautiful side of Professor, his

love and compassion for his students. I always felt that he is always there for me, such

a humble and kind human being. I extend my heartfelt gratitude for his invaluable

insights, constructive feedback and mentorship throughout my PhD journey.

Manager/Mentor. My sincere thanks to my manager, Mr. Shane Gydesen,

whose unwavering support extended beyond the professional realm, making a significant

impact on my academic pursuits. He is a biggest factor in my academic and career

success. He never see his reportee’s as just a colleague, he invests on their career and

growth. He always makes sure that I do a proper wok-study-life balance. He was always

there for me during both good and bad times. A heartfelt thank you for his exceptional

support that transcended the boundaries of the workplace.

Committee. My sincere gratitude to the esteemed members of my PhD Thesis

Committee: Prof. Zhi-Li Zhang, Prof. Nikolaos Papanikolopoulos, Prof. Ku-

mar Mallikarjun, Prof. Ali Anwar, and Prof. Feng Qian. Your time, feedback,

and motivation were instrumental in shaping this research.

i



Grants. I would like to acknowledge the grants that supported my research.

This research was supported in part by the National Science Foundation (NSF) under

Grants CNS-1814322, CNS-1836772, CNS-1831140, CNS-1901103, CNS-2106771 and

CNS-2128489, and Seed Grants from University of Minnesota MnRI, CTS and CSE

and an unrestricted gift from InterDigital.

UMN Networking Lab. I would also like to acknowledge the exceptional ca-

maraderie and collaboration with my friends at UMN Networking Lab: Dr. Eman

Ramadan, Mr. Gaurav Gautham, Ms. Ngan Nguyen, Ms. Xinyue Hu,

Mr. Rostand A. K. Fezeu, Mr. Jason Carpenter, Mr. Wei Yu, Mr. Feng

Tian, Mr. Nitin Varyani, Mr. Ziyan Wu, Dr. Arvind Narayanan, and Mr.

Timothy J. Salo. Your support, collaboration, and shared time have been invaluable.

University of Minnesota. Thanks to the University of Minnesota for the teach-

ings, learning, and cherished memories since 2016. Special acknowledgment to my Mas-

ters (MSSE) advisor, Dr. Mike Whalen, and Prof. Mats Heimdahl for their

support. I like to thank Joseph (Joe) Nieszner, Graduate Programs Manager, for

his continued support, he was always there for me and other students.

Trane Technologies. I extend my gratitude to my current employer, Trane Tech-

nologies, for playing a pivotal role in my PhD journey. Thanks to Mr. Brady Mo-

roney and Mr. Anil Gopinathan for their unwavering support and motivation.

Thanks to my friends Mr. Jerome Beski, Mrs. Ann Arora, Mr. Nate Longen,

Mr. Jim Mckeever and Mr. Tom Basterash for all their love and support.

Minnesota. Minnesota holds a special place in my heart, and I am thankful for all

the beautiful memories since 2008.

Friends. To my Minnesota friends, your support during challenging times, es-

pecially when my family was away due to my son’s health situation, will forever be

cherished. The food and love you shared are eternally appreciated. The time I spent

with you all helped me to recover and recoup during challenging times. Looking forward

to make more memories with you all in the upcoming years. I owe a lifelong debt of

gratitude to my school and college friends, particularly Mr. Sathish Vasu, a true gift,

a selfless person who was always there for me when I had nothing, who generously pro-

vided his computer for my learning and college projects. My friend Mr. Selvaraj, who

inspired me and has been a constant support throughout my college life and beyond.

ii



Family. I express my deepest appreciation to all family members, especially my

brother Mr. Kirubakaran & family. You were a biggest support for me during

challenging times while pursuing my undergraduate. Special thanks to my father(-in-

law) Mr. Rajasekaran & family. You are my role-model and a wonderful mentor.

Thanks to my co-brother Mr. Raman & family, for their unwavering support.

Parents. To my dad, Mr. Dayalan, your wisdom resonates, and I hold no re-

grets—only love and joy for everything you have given me in my life. Even though, you

were not able to go to college, you made sure that both your kids got good education

from reputed institutions. Mom, Mrs. Santhanalakshmi, your sacrifice and uncondi-

tional love are beyond words. If you were not there, I would have not been an engineer

now. You sow the seed of importance of education deeply into me. You taught me

everything in my life and you are my first best friend. Instead of investing on materials

things, I am proud that my parents invested on the education of their kids.

Kids. Thanks and love to my kids. Ms. Varshini, your understanding, support,

and maturity have been a pillar for our family. You took good care and control of your

studies, so that I can focus on my PhD. Master. Pranav, you deserve all my time

post-PhD. Both of your faces were the source of inspiration and your touch were the

source of healing for me when I had challenging times during my PhD journey.

My Source. Well, I cannot say, first of all or finally for this special person in my

life because she exists throughout anything and everything of my life, my wife, Mrs.

Lakshmi. You’ve been a constant source of selfless, unconditional love. Words cannot

capture the depth of gratitude I feel. You were with me, held me and supported me

when I had nothing in my life. You brought the good stuff out of me and guided me

to uncover my true potential. You made sure I ate good food, practice yoga regularly,

meditate frequently and stayed healthy, so that I can focus on my work and PhD. You

took the ownership, led our family from front and took additional responsibilities, so

that I can focus on my studies. Thanks a lot for everything you have done for me and

our family all these years. Look, what you have made me, Dr. Udhaya Kumar Dayalan!

iii



Dedication

To my awesome wife Mrs. Lakshmi who is a big support for me since when I was/had

nothing and guided me in each aspects of life. To my beautiful kids Ms. Varshini and

Master. Pranav to whom I owe time. To my lovely parents Mr. Dayalan and Mrs.

Santhanalakshmi who gave me the wings to fly, freedom to think and try new things.

To my family and friends who held me up over the years.

iv



Abstract

The IoT world is evolving with the latest technology trends like edge computing,

augmented & virtual reality, machine learning, robotics and 5G. But still there is less

business productivity due to the slower technical adoption in the industrial automation

system. There is a tremendous need for autonomous networks in the manufacturing

industry to increase productivity and allow communication between people, devices

and sensors. And there are massive numbers (hundreds to thousands) of IoT devices in

a single factory depending on the scale of the industry. These factories consist of critical

IoT devices like fire or gas sensors which need to operate reliably with less latency. But

the existing wired and/or wireless networks are struggling to fulfill the computational

and resources for operations demand of the emerging technologies. In order to address

these needs of the industries with digital transformation happening in Industry 4.0, the

evolution of private 5G and 5G standards opens bigger opportunities.

In this thesis, we discuss the challenges and explore new opportunities of using 5G for

critical/massive IoT devices. While exploring the possibilities, we uncover some of the

challenges in IoT especially due to the vendor-locked IoT solutions and unavailability of

large scale IoT devices for evaluating end-to-end systems. We discussed the challenges

in detail and proposed novel solutions to overcome these challenges.

First, as the plethora of Internet of Things (IoT) devices gradually make their way

into our lives, several Cloud Service Providers (CSPs) have developed IoT gateway

platforms (SDKs) that solely connect IoT devices to their respective cloud. Such gate-

ways are cloud-centric. We study the state-of-the-art vendor-locked IoT Gateway so-

lutions and approaches and propose an edge-centric paradigm through an evolutionary

framework, dubbed VeerEdge for developing IoT gateways. We leverage computing and

storage capabilities at the network edge for edge-based device & IoT service.

Second, the IoT world is evolving with the latest technology trends like edge comput-

ing, augmented & virtual reality, machine learning, robotics and 5G. With the digital

transformation happening in Industry 4.0, many industries are moving towards private

5G networks. There are a massive number (hundreds to thousands) of IoT devices in a

v



single factory depending on the scale of the industry and these factories consist of crit-

ical IoT devices like fire or gas sensors which need to operate reliably with less latency.

In order to efficiently realize the capabilities such as ultra reliable low latency commu-

nications (URLLC), enhanced mobile broadband (eMBB) and massive machine-type

communications (mMTC) offered by 5G, the next generation IoT devices/applications

need a paradigm shift in their design and need to be evaluated under simulation using

5G networks before getting deployed in the real-world. However, many IoT simulators

run in isolation and do not interface with real-world IoT cloud systems or support 5G

networks. This isolation makes it difficult to design, develop and evaluate IoT applica-

tions/devices for industrial automation systems and for experiments to fully replicate

the diversity that exists in end-to-end, real-world systems using 5G networks. Kaala 2.0

is the first scalable, hybrid, end-to-end IoT and NextG system simulator that can inte-

grate with real-world IoT cloud services through simulated or real-world 5G networks.

Kaala 2.0 is intended to bridge the gap between IoT simulation experiments and the real

world using 5G networks. The simulator can interact with cloud IoT services, such as

those offered by Amazon, Microsoft and Google. Depending on the configuration, Kaala

2.0 supports simulation of User Equipment (UE), 5G Radio Access Network (RAN) and

5G Core and at the same time supports real-world User Equipment (UE), 5G Radio

Access Network (RAN) and 5G Core. Kaala 2.0 has the ability to simulate a large num-

ber of diverse IoT devices to evaluate mMTC, simulate events that may simultaneously

affect several sensors to evaluate URLLC and finally simulate large amounts of data to

evaluate eMBB.

Third, we argue that existing 5G network architecture is too rigid to support many

future applications with high bandwidth and low latency. This is in spite of the O-RAN

vision to endow radio access networks (RAN) with agility and intelligence via RAN in-

telligent controllers (RICs). We posit that not all data is of equal utility to applications,

and advocate an (application) semantics-aware, fine-grained, cross-layer and software-

defined framework to re-architect next-generation (NextG) networks. We focus on the

design of HyperRAN, an intelligent NextG RAN architecture that embeds application

semantics across the RAN protocol stack to enable agile and intelligent decision making.

At the core of HyperRAN is a declarative, programmable Hyper Scheduler that takes

into account application semantics, service requirements, user context as well as channel

vi



conditions for intelligent and adaptive radio resource scheduling.

Finally, we advocate an eBPF (extended Berkeley Packet Filter)+XDP (eXpress

Data Path) based framework for scaling and accelerating software packet processing

in (O-RAN compliant) NextG RANs. Using 5G Central Unit User Plane (CU-UP)

as a key case study, we present an initial design of our proposed framework, dubbed

PRANAVAM, and its key components. We also discuss additional design and options

for further improvements.

vii



Contents

Acknowledgements i

Dedication iv

Abstract v

List of Tables xii

List of Figures xiii

1 Introduction 1

1.1 Outline and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background & Motivation 6

2.1 5G Networks: 5G NR, RAN and Core . . . . . . . . . . . . . . . . . . . 6

2.2 Channels, Data Radio Bearers and 5G Flow-based QoS Framework . . . 8

2.3 RAN Dis-Aggregation and Open-RAN . . . . . . . . . . . . . . . . . . . 10

2.4 5G RAN Protocol Stack . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5 IoT System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5.1 With IoT gateway . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5.2 Without a IoT gateway . . . . . . . . . . . . . . . . . . . . . . . 14

2.5.3 IoT Gateway Architecture . . . . . . . . . . . . . . . . . . . . . . 15

2.5.4 Interoperability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.6 eBPF/XDP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

viii



3 VeerEdge: Towards an Edge-Centric IoT Gateway 18

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Terminology and Background . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.1 Cloud-Centric IoT Gateways . . . . . . . . . . . . . . . . . . . . 22

3.3 Challenges with cloud-centric IoT gateways . . . . . . . . . . . . . . . . 24

3.3.1 Cloud-Centric IoT Gateways: Issues . . . . . . . . . . . . . . . . 24

3.3.2 Case for an edge-centric IoT gateway . . . . . . . . . . . . . . . . 26

3.4 How to address these challenges? . . . . . . . . . . . . . . . . . . . . . . 26

3.4.1 Re-designing the IoT Gateway . . . . . . . . . . . . . . . . . . . 26

3.4.2 Building atop current IoT solutions . . . . . . . . . . . . . . . . 27

3.4.3 Proposed VeerEdge Gateway Design . . . . . . . . . . . . . . . . 27

3.5 Implementation and Evaluation . . . . . . . . . . . . . . . . . . . . . . . 30

3.5.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.5.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Kaala 2.0: Scalable IoT/NextG System Simulator 32

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2 Case for Kaala 2.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2.1 Ability to Interact with Real Systems using 5G Networks . . . . 34

4.2.2 Scenario-based Data/Event Simulation . . . . . . . . . . . . . . . 35

4.2.3 High-bandwidth Data Generation . . . . . . . . . . . . . . . . . . 36

4.3 Kaala 2.0 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.4 Kaala 2.0 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.4.1 Interacting with Real-World Systems using 5G networks . . . . . 40

4.4.2 Scenario-based Event Simulation . . . . . . . . . . . . . . . . . . 41

4.4.3 High-Bandwidth Data Simulation . . . . . . . . . . . . . . . . . . 43

4.4.4 NextG Network Support . . . . . . . . . . . . . . . . . . . . . . . 43

4.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.6 Evaluations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.6.1 Scalability and Performance . . . . . . . . . . . . . . . . . . . . . 46

4.6.2 Interacting with Real Systems using 5G Networks . . . . . . . . 47

ix



4.6.3 Scenario-based Event Simulation . . . . . . . . . . . . . . . . . . 47

4.6.4 High-bandwidth Data Generation . . . . . . . . . . . . . . . . . . 48

4.6.5 NextG Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.7 Related Work and State-of-Art . . . . . . . . . . . . . . . . . . . . . . . 49

4.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5 HyperRAN: Towards a Fine-Grained, Semantics-Aware, Intelligent

NextG Radio Access Network Architecture 52

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.2 Case for HyperRAN: Why Existing Solutions are Inadequate . . . . . . 55

5.2.1 HyperRAN Deployment Challenges and Opportunities . . . . . . 59

5.3 Framework Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.3.1 Design Principles and Architecture . . . . . . . . . . . . . . . . . 60

5.3.2 Application Service Endpoint Functions . . . . . . . . . . . . . . 61

5.3.3 NextG Core and RAN Networks . . . . . . . . . . . . . . . . . . 62

5.3.4 O-RAN SMO, Non-RT and NRT RICs . . . . . . . . . . . . . . . 63

5.3.5 Targeted Use Cases and Deployment Scenarios . . . . . . . . . . 63

5.4 HyperRAN Architecture and Hyper Scheduler Design . . . . . . . . . . 64

5.4.1 HyperRAN Architecture and Innovations . . . . . . . . . . . . . 64

5.4.2 Hyper Scheduler Design . . . . . . . . . . . . . . . . . . . . . . . 67

5.4.3 HyperRAN Core Design . . . . . . . . . . . . . . . . . . . . . . . 72

5.5 Implementation and Experimental Setup . . . . . . . . . . . . . . . . . . 76

5.5.1 HyperRAN Core Implementation . . . . . . . . . . . . . . . . . . 77

5.5.2 Weighted Proportional Sharing Algorithm . . . . . . . . . . . . . 77

5.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.6.1 Prioritizing Volumetric Video Layers to Reduce User Perceived

Stall Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.6.2 Prioritizing Context Important LiDAR Data through Smart Par-

titioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

x



6 PRANAVAM: Scaling Private 5G RAN via eBPF+XDP 91

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.2 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.2.1 Management Layer . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.2.2 Data Path Kernel Layer . . . . . . . . . . . . . . . . . . . . . . . 95

6.2.3 Data Path User Layer . . . . . . . . . . . . . . . . . . . . . . . . 96

6.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.4 Preliminary Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.4.1 Test Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.4.2 Data Traffic Generation . . . . . . . . . . . . . . . . . . . . . . . 97

6.4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.5 PRAVEGA Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.5.1 Kernel Based CU-UP . . . . . . . . . . . . . . . . . . . . . . . . 99

6.6 Additional Design Options . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7 Conclusion 104

References 107

Appendix A. Publications 122

A.1 Publications by Date . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

Appendix B. Common IoT Terms 124

B.1 IoT device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

B.2 IoT edge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

B.3 IoT gateway . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

B.4 IoT Hub . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

B.5 Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

B.6 Message Subscriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

B.7 MQTT Broker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

xi



List of Tables

3.1 Features Supported in Current Vendor-locked IoT Gateways . . . . . . . 20

4.1 Comparison of Kaala 2.0 with IoTNetSim . . . . . . . . . . . . . . . . . 47

5.1 Example Hyper Scheduler Policy Table. . . . . . . . . . . . . . . . . . . . . 67

5.2 Impacts of Weights Configuration in WPS Algorithm . . . . . . . . . . . . . . . . . 78

5.3 Data Trace Statistics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.4 Video Stall Time (Stationary). . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.5 Video Stall Time (Walking). . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.6 Video Stall Time (Driving) - Multiple UEs- Hybrid Experiments. . . . . . . . . . . 82

5.7 LiDAR Metrics. Priority Swapping Tests. (Stationary) . . . . . . . . . . . . . . 87

5.8 RAN Metrics, Multiple UEs 6K Video Streaming (Driving). . . . . . . . . . . . . 88

5.9 LiDAR QoS and QoE Metrics, Multiple UEs Tests alongside Volumetric Video Streaming. 89

xii



List of Figures

1.1 Gaps in Manufacturing Industry & Trends [1] . . . . . . . . . . . . . . . 2

2.1 5G RAN and Core Networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 O-RAN Arch. and APIs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Relations among Channels, DRBs, and QoS Flows. . . . . . . . . . . . . . . . . 10

2.4 5G Radio Access Network Protocol Stack. . . . . . . . . . . . . . . . . . 12

2.5 Monolithic RAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.6 O-RAN Disaggregated RAN Architecture and 5G Core . . . . . . . . . . . . 14

2.7 IoT System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.8 IoT Gateway Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.9 eBPF/XDP Sockets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1 Cloud-native and gateway-assisted IoT devices . . . . . . . . . . . . . . 22

3.2 Edge-Centric IoT Gateway Framework . . . . . . . . . . . . . . . . . . . 25

3.3 Regulator operation scenario. . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4 AWS runtime time delay - Jetson Nano . . . . . . . . . . . . . . . . . . 29

3.5 AWS runtime memory and CPU utilization - Jetson Nano . . . . . . . . 29

4.1 IoT (Edge) Devices, IoT Gateway and IoT Cloud . . . . . . . . . . . . . 35

4.2 Kaala 2.0 Layered Architecture . . . . . . . . . . . . . . . . . . . . . . . 37

4.3 Kaala 2.0 Network Architecture . . . . . . . . . . . . . . . . . . . . . . . 38

4.4 Sequence of data flow showing no differences in data flow between real

and simulated IoT devices . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.5 Kaala 2.0 Performance Evaluation - Mininet . . . . . . . . . . . . . . . . 42

4.6 Kaala 2.0 Performance Evaluation - Docker . . . . . . . . . . . . . . . . 42

5.1 Semantics-Aware, Fine-Grained, Cross-Layer, Software-Defined NextG Framework. . 60

5.2 HyperRAN Architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

xiii



5.3 Specification of Example Policy 1. . . . . . . . . . . . . . . . . . . . . . . . . 71

5.4 Specification of Example Policy 2. . . . . . . . . . . . . . . . . . . . . . . . . 72

5.5 Offloading Tagging Operations to DPU. . . . . . . . . . . . . . . . . . . 73

5.6 5G Core Side Design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.7 5G RAN End-to-end Protocol Stack. . . . . . . . . . . . . . . . . . . . . . . . 75

5.8 Packet Metadata. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.9 Data Collection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.10 Sample Time-series Plots of CQIs under Stationary (left) and Driving (right) Settings. 80

5.11 QoE Performance of 4K Points/Frame with Video Player Progress, Video Frame Qual-

ity Metrics (Stationary). Upper subfigures report buffer size for each layer during

transmission, and lower subfigures report the number of frames sent as the progress.

The lower buffer size and shorter total transmission time indicate better performance. 82

5.12 Baseline vs HyperRAN for QFI Timing (Stationary). . . . . . . . . . . . . . . . 84

5.13 Multiple UEs, LiDAR and 6K Video (Driving). . . . . . . . . . . . . . . . . . . 85

5.14 Stall Time of Base & Enhancement Layers of 4K Points/Frame (Stationary). . . . . 86

5.15 LiDAR and Sectors Reference. . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.1 PRANAVAM- eBPF/XDP Socket Based CU-UP . . . . . . . . . . . . . . . . 94

6.2 Test Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.3 Performance Comparison Between Regular and XDP Socket - Downlink . . . . 98

6.4 PRAVEGA- Pure Kernel eBPF Based CU-UP . . . . . . . . . . . . . . . . . 99

6.5 Pure Kernel eBPF Based CU-UP Flow - Downlink . . . . . . . . . . . . . . . 100

6.6 Ciphering Offloading Design . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.7 Preliminary Evaluation on Offloading Ciphering. . . . . . . . . . . . . . 102

xiv



Chapter 1

Introduction

Unlike earlier generations of cellular technologies, emerging 5G networks are designed

to enable a whole gamut of diverse new use cases from massive consumer/industrial IoT

devices to control, safety and other V2X (vehicle-to-everything) applications for au-

tonomous vehicles (AVs) and drones to ultra-high-resolution (8K & volumetric) live

video streaming, augmented/virtual reality (AR/VR), telemedicine and healthcare.

These new use cases are categorized as mMTC (massive machine type communication),

ULLRC (ultra-low latency reliable communication) services and eMBB (enhanced mo-

bile broadband). Emergent 5G networks introduce a wide spectrum of radio bands,

from 5G low-band (sub-1GHz spectrum bands) to 5G mid-band (1 GHz – 7.125 GHz fre-

quencies) and 5G high-band (24GHz – 60 GHz) including mmWave radio bands. These

spectrum radio bands coupled with the so-called flexible numerology[2] and frame struc-

ture, dynamic single/mini-slot scheduling (with dedicated Downlink (DL) and Uplink

(UL) symbols) and semi-persistent scheduling (SPS), slot configuration and aggregation

with preemptive scheduling mechanisms to support ultra-low, ultra-reliable and ultra-

high bandwidth applications. Likewise, much of the architectural designs of 5G radio

network (RAN) and core network (5GC) are driven by the needs to support these new

use cases by utilizing a wide and diverse range of spectrum bands.

These 5G promises and new capabilities trigger an important question: Is 5G’s

unique and complex architectural design and proposed flexible features “Enough” to

support envisioned 5G applications and services, some of which have high reliability,

1



2

Figure 1.1: Gaps in Manufacturing Industry & Trends [1]

confidentiality and security demands, others demand ultra-high bandwidth and ultra-

low latency with massive connectivity and supreme user quality of experience, or any

combination of the above? Specifically, can 5G’s high sensitivity to obstruction, es-

pecially mmWave 5G (e.g., moving cars/people, building, trees etc.) support existing

video streaming services? Can 5G help manufacturing industry to catch-up with the

technology changes shown in Fig. 1.1?

Intelligence and agility are part of the goals driving the O-RAN vision postulated

by the O-RAN Alliance [3]. Apart from a dis-aggregated architecture and open APIs,

O-RAN aims to make radio access networks (RAN) more agile and ”intelligent” by

introducing (non-real-time and near-real time) RAN intelligent controllers (RICs) (§2.3).

While ”softwarization” or ”cloudification” enabled by RAN disaggregation makes it

easier to introduce new features, e.g., incorporation of artificial intelligence (AI) models,

the extent to which RICs can enable 5G RAN to make intelligent decisions is still

fundamentally limited by the existing 5G RAN capabilities (see §5.2 for discussion). For

example, when the aggregated bandwidth demand exceeds the available radio resources,

no AI-guided RICs can magically resolve this fundamental demand-resource mismatch

problem.



3

The plethora of Things surge in recent years has more than ever influenced the IoT

Ecosystem: An end-to-end connected system of Things, operating systems, gateways,

middleware and cloud platforms [4]. This influx of Things drives researchers to con-

stantly look for new solutions to support service deployment velocity and integration

[5, 6, 7, 8, 9]. As these Things become an integral part of our lives, dependability of

IoT services within an IoT Ecosystem is paramount. Despite the prominence of an

interoperable IoT gateway on the dependability of IoT services, current gateways still

suffer from major challenges which restricts massive deployment and limited instal-

lation in practice. To emphasize these challenges: 1) Current gateway solutions are

equipped with multi-protocol parsers, each which support specific IoT protocols. This

hinders massive deployment considering the diversity of custom protocols within an IoT

Ecosystem. 2) Gateway solutions are vendor-specific. i.e., With different architectures,

unique IoT service functions and proprietary APIs [10]. The management of several

diverse unique end-to-end IoT deployment solutions is not ideal within the IoT Ecosys-

tem. 3) Current gateways have isolated scopes of supported devices. i.e., Each vendor

gateway deployment advocates a list of supported devices, making deployment locked

and limited, particularly in a diverse end-to-end cross-vendor deployment scenario.

The number of IoT devices in a building scales from 1 to more than thousands

depending various factors like the size of the building, number of people working or

accessing that building every day, and the type of operations performed in the building

(like data centers, call centers, universities, hospitals, IT companies, etc.). It is challeng-

ing to design and test different types of IoT devices [11] or to analyze and benchmark

performance and scalability of a large IoT Ecosystem [12]. Although we have few simu-

lation frameworks as listed in [13], none of the simulation frameworks provide simulation

of multi-vendor specific IoT devices [13]. And also the vendor-specific simulation option

given by the respective vendor CSP [14], can simulate only a single device and that

is specific to that vendor only [14]. And none of the simulation frameworks provide

simulation of multi-vendor specific IoT devices [13].



4

1.1 Outline and Contributions

In this thesis, we propose enhancing the design of NextG for critical & massive IoT

devices and applications. The outline of this dissertation, along with the primary con-

tributions of this dissertation are as follows:

In Chapter 2, we provide a review for required background knowledge including IoT

system architecture, 5G networks and O-RAN architecture. Moreover, we introduce the

detailed background which motivates our works of this dissertation.

In Chapter 3, we study the state-of-the-art vendor-locked IoT Gateway solutions and

propose an edge-centric paradigm through an evolutionary framework, dubbed VeerEdge

for developing IoT gateways that exploits the availability of multiple cloud services, stor-

age and computing capabilities on the network for edge-based device management and

configurations and ”best” IoT data analytics. We investigate a critical IoT gateway

functionality dubbed - Regulator that realizes the edge-centric gateway vision by con-

trolling the communication between vendor-specific IoT gateways and their respective

cloud services.

In Chapter 4, we introduce Kaala 2.0, a scalable, hybrid, end-to-end IoT system

simulator that is able to create IoT devices of various types to communicate with real-

world cloud IoT systems, with AWS, Amazon and Google IoT Cloud platforms as case

studies. Kaala is a scenario-based IoT simulator capable of mimicking various IoT

scenarios such as ”fire in a room or building” and ”5G network capable data generation

(including 4K/8K video IP cameras)” scenarios. Kaala 2.0 is able to generate massive

amounts of IoT data for prototyping data-intensive IoT applications.

In Chapter 5, we lay out an overall framework for re-architecting NextG networks.

Our framework enables application endpoint and network collaboration by (i) (adap-

tively) refactoring, partitioning and marking application data with semantic tags and

embedding them end-to-end across the network and down the network protocol stack;

and (ii) endowing NextG RAN with the agility to intelligently match available frequency

channels with differing characteristics to appropriate data (sub-)streams/objects, and

dynamically allocate fast varying radio resources to transport the right (amount/type

of) data with the best deliverable utility to an application.

In Chapter 6, we present an eBPF+XDP-based framework, dubbed PRANAVAM,



5

for (O-RAN compliant) future RAN architecture development. Using 5G CU-UP as

a key case study, we outline the initial design of our proposed PRANAVAM. Using

eBPF+XDP for kernel extension/bypassing, our preliminary evaluation shows that

PRANAVAM improves the throughput by 22-26% over existing 5G RAN implemen-

tations. We also discuss an additional design, PRAVEGA, in which the GTP-U packets

are completely handled in the kernel space without being sent to the user space. We

also discuss additional options to further accelerate software packet processing to scale

5G RAN implementation to meet bandwidth and latency demands.

In Chapter 7, we present concluding remarks, lessons learned, and thoughts for the

future.



Chapter 2

Background & Motivation

We provide a brief overview of 5G networks, 5G RAN protocol stack and O-RAN ar-

chitecture. We refer the reader to 3GPP specifications [15, 16, 17] and O-RAN spec-

ifications [3] for more details. Next, we briefly describe IoT system architecture, IoT

gateway architecture and interoperability. We end by a brief discussion of eBPF/XDP.

RLC

MAC

PHY

PDCP

SDAP
RRC

gNB

UEs
5G/NextG Core

UPF
AF

AMF SMF PCF

Control Plane

User Plane

5G/NextG RAN

Fig1

Fig2

Fig3+4

Service Management 
Orchestration (SMO)Non-RT RIC

Near-RT RIC

A1

O-RAN

O-CU-CP O-CU

O-DU

O-Cloud

O-CU-UP

E2

F1

E1

O-RU
O2

O
pe

n 
Fr

on
th

au
l

O1

Service
Context

Hyper-RAN
CU-CP CU-DP

CU

Ring 
Buffer

RLC
DUHyper Scheduler

User Context

MAC
PHY

MAC
PHY

QFI User Context Channel (CQI) Action
QFI User Context Channel (CQI) Action

DRB Context

SDAP

PDCP

QF1
QF1

QF1
QF1

Figure 2.1: 5G RAN and Core Networks.

2.1 5G Networks: 5G NR, RAN and Core

As illustrated in Fig. 2.1, a 5G network consists of 5G RAN and 5G core. 5G RAN

retains largely the same protocol architecture as 4G LTE RAN – the main difference

lies in the introduction of a new SDAP sublayer at the top of its RAN protocol stack

6



7

to support the so-called flow-based QoS framework, which we will further discuss in

§2.2. The bottom 4 sublayers – PHY, MAC, RLC and PDCP – performs the same

functionality as those in 4G LTE. As in 4G LTE, RRC (radio resource control), part of

the RAN control plane (CP), is responsible for the configuration and control of the RAN

protocols. Besides the addition of SDAP, the main innovations in 5G RAN standards lie

primarily in 5G NR. 5G NR introduces wider channel bandwidths, flexible numerology

(subcarrier spacing), enhanced beamforming, MIMO (Multiple Input, Multiple Output),

and CA capabilities, among other improvements. These new features offer the potential

for significantly higher throughput (e.g., up to 1s and perhaps 10s of Gbps), potential

for ultra-low latency (e.g., sub-milliseconds) and ultra-reliable services. These in turn

lead to the promise (or “hype”) of many new use cases.

RLC

MAC

PHY

PDCP

SDAP
RRC

gNB

UEs
5G/NextG Core

UPF
AF

AMF SMF PCF

Control Plane

User Plane

5G/NextG RAN

Fig1

Fig2

Fig3+4

Service Management 
Orchestration (SMO)Non-RT RIC

Near-RT RIC

A1

O-RAN

O-CU-CP O-CU

O-DU

O-Cloud

O-CU-UP

E2

F1

E1

O-RU
O2

O
pe

n 
Fr

on
th

au
l

O1

Service
Context

Hyper-RAN
CU-CP CU-DP

CU

Ring 
Buffer

RLC
DUHyper Scheduler

User Context

MAC
PHY

MAC
PHY

QFI User Context Channel (CQI) Action
QFI User Context Channel (CQI) Action

DRB Context

SDAP

PDCP

QF1
QF1

QF1
QF1

Figure 2.2: O-RAN Arch. and APIs.

In contrast to 4G LTE, 5G core is re-architected by fully embracing “virtualization”

(or “softwarization” or “cloudification”): both CP and user plane (UP) are structured



8

into a set of (network) functions. In particular, 5G control plane comprises various

control functions such as AMF (Access Management Function), AUSF (Authentica-

tion Server Function), SMF (Session Management Function), and PCF (Policy Control

Function), which are responsible for managing access, authenticating users, establish-

ing and configuring protocol data unit (PDU) sessions. User data packets or PDUs

(protocol data units) between UE and a PDN (e.g., the public Internet) are carried in

PDU sessions and processed by one or more UPFs (user plane functions) in the 5G data

plane.

2.2 Channels, Data Radio Bearers and 5G Flow-based

QoS Framework

We now delve into some specifics of the 5G flow-based QoS framework, which is built on

top of the existing 4G LTE class-based or bearer-based framework. Hence understanding

how the latter works is crucial. We note first that 3GPP specifications introduce several

notions of “channels” that are used to carry data (both UP traffic as well as RRC

and cellular core Non-Access Stratum (NAS) – i.e., control plane – messages across

PHY, MAC and RLC sublayers. At the very bottom are physical (radio) channels that

actually transmit/carry data (after the PHY sublayer processing) in the form of radio

waves. Transport channels and logical channels can be viewed as interfaces between

PHY and MAC, and MAC and RLC sub-layers, respectively: PDUs (protocol data

units) of each logical channel from the RLC sublayer are multiplexed into MAC frames,

which are segmented into variable-size transport blocks and then passed down to the

PHY sublayer. The size of each transport block hinges primarily on the physical radio

channel characteristics and thus the modulation and coding scheme (MCS) used, but

also on the availability of data queued at the logical channel. RLC channels serve as the

interface between RLC and PDCP. In 5G, each RLC channel is configured with one of the

three modes, Transparent Mode (TM) for RRC/NAS control messages, Unacknowledged

Mode (UM) that can be used for user traffic that do not require reliability, e.g., voice

traffic, and Acknowledged Mode (AM) that are used by default for most user data.

Data radio bearers (DRBs) are entities in the PDCP sublayer to “carry” user data1,

1The corresponding entities for “carrying” RRC (and encapsulated NAS messages from the core)



9

and they are where QoS treatments are applied. When establishing a PDU session for

a user (or rather, UE), a DRB is created in PDCP, and a certain QoS class as specified

by the QCI (QoS class identifier) may be associated with it. 3GPP has pre-defined

a set of QCIs with fixed QoS parameters such as guaranteed or non-guaranteed bit

rates (GBR/non-GBR) priority level, packet error/loss rate, data burst volume, etc.

For example, certain QCIs are defined for conversational voice, real-time gaming, live

video streaming. QCI value 9 is typically used for the default DRB (thus with no QoS

provided).

5G builds on 4G QCIs, now referred to as 5GIs (5G QoS identifiers) [18]. The main

difference lies in the introduction of the SDAP sublayer which enables a “flow-based”

QoS framework [19]. The new SDAP header contains a 6-bit QoS Flow Identifier (QFI)

field as well as 1-bit reflective QoS Indication (RQI) and 1-bit RDI (reflective QoS flow

to DRB mapping indication). Now downlink TCP/UDP 5-tuple flows may be classified

at 5G core UPFs into QoS flows based on a set of packet detection rules (PDRs)

supplied by 5G PCF. Once entering the 5G RAN, SDAP assigns each user QoS flow

with a corresponding QFI based on configured rules and maps them to (pre-established)

DRBs with appropriate 5QI parameters. (If RQI is set, SDAP on the UE side will use

the same QFI value for uplink (UL) flow as is in the (downlink (DL) flow.) Hence

5G still relies on DRBs for QoS treatments2 as in 4G. In other words, from PDCP and

below, 5G QoS is not different from 4G QoS – DRBs with (pre-defined QoS parameters)

fundamentally determine how user data will be treated at the lower RAN sublayers, e.g.,

scheduling weights used by the MAC scheduler for radio resource allocation. What the

5G flow-based QoS framework provides is the ability to map different user (QoS) flows

to different DRBs at the 5G RAN. We will further expand on the limitations of the 5G

flow-based QoS framework in §5.2. The relations among various notions of channels,

DRBs and QoS flows are depicted in Fig. 2.3.

control messages are signal radio bearers (SRBs), which are mapped to RLC channels configured with
TM.

2Such QoS treatments are typically implemented in the PDCP sublayer using leaky-bucket rate
control, traffic shaping, admission control and other mechanisms. These mechanisms as well as how
DRBs are configured (e.g., what QCI parameters are supported or can be configured) are all vendor-
specific, closed and difficult, if not infeasible, to be dynamically programmed.



10

SDAP

PDCP

PHY

. . .

. . .

. . .

. . .

RLC

QoS flows

Radio bearers

RLC channels

logic channels. . .

MAC

physical (radio) channels

transport channels

Figure 2.3: Relations among Channels, DRBs, and QoS Flows.

2.3 RAN Dis-Aggregation and Open-RAN

Starting from 4G, RAN dis-aggregation has been studied by 3GPP, and is now stan-

dardized by the O-RAN Alliance. As shown in Fig. 2.2), the monolithic 5G gNB is

disaggregated into three components: centralized unit (O-CU) which runs the upper

(sub)layer functions of the 5G RAN protocol stack such as SDAP, PDCP and RRC,

distributed unit (O-DU) that runs RLC, MAC and upper PHY layer functions, and ra-

dio unit (O-RU) that consist of radio frequency (RF) front-end and antennas and runs

the lower PHY layer functions. O-CU is further split into O-CU-CP (control plane)

and O-CU-UP (user plane). With such a disaggregated RAN architecture, O-CU and

O-DU are envisaged to be implemented as software modules running on commodity

servers that form part of the (edge or back-end) cloud infrastructure (referred to as



11

O-Cloud. Further, O-RAN has introduced an orchestration and control framework for

managing, configuring and controlling the O-CU, O-DU and O-RU with open, standard-

ized APIs. The O-RAN architecture (see Fig. 2.2) includes i) a Service Management

and Orchestration (SMO) framework containing a Non-Real-Time RAN Intelligent Con-

troller (Non-RT RIC) implemented as rApps; and ii) a Near-Real-Time RAN Intelligent

Controller (nrt-RIC) implemented as xApps. The O-RAN alliance has defined various

APIs such as A1, E2, O1 between SMO, nrt-RIC, O-CU, O-DU, and other components

(Fig. 2.2).

As pointed out in Chapter 1, ”softwarization” or ”cloudification” enabled by the

O-RAN disaggregated RAN architecture makes it easier to introduce new features in

the RAN designs, and provides more flexibility in deploying customized RANs to meet

QoS requirements of specific use cases. However, while O-RAN RICs supposedly intro-

duce “intelligent control” of RAN, e.g., via (re-)configurations of RAN parameters or

features at the non- or near-real time basis, the extent of such “intelligent control” is

fundamentally limited by the existing 5G RAN capabilities3.

2.4 5G RAN Protocol Stack

Fig. 2.4 depicts the 5G RAN protocol stack specified by 3GPP, which resides below

the OSI network layer (“IP layer”). 5G RAN functions are traditionally performed by

dedicated (and closed) physical appliances (5G “base stations”), i.e., 5G nodeB (gNB)

(see Fig.2.5), that are supplied by cellular equipment vendors. 3GPP also introduces

a CU-DU split RAN architecture which is adopted by O-RAN: under this split, CU

performs the upper layer functions of the RAN protocol stack, namely, SDAP, PDCP

and RRC (radio resource control) layers; whereas DU performs the lower layer functions,

namely, RLC (reliable link control), MAC (media access control) and PHY (physical)

layers. While 3GPP also discussed multiple options for possibly further splitting the

lower layer functions of DU, e.g., between MAC and PHY or upper and lower parts

of the PHY layer, they were not pursued further by 3GPP. Instead, O-RAN adopts a

3As a case in point, both Phase I and Phase II use cases for O-RAN are mostly limited to RAN
management and traffic steering related issues [20], instead of enabling new use cases. As an industrial
forum, the O-RAN Alliance currently concerns itself mostly with inter-operability challenges via interface
standardization instead of architectural innovations.



12

Figure 2.4: 5G Radio Access Network Protocol Stack.

version of the latter option and standardizes it. Under the so-called 7.2x split specified

by O-RAN, DU performs the RLC, MAC and the upper part of the PHY layer functions,

whereas RU (radio unit) performs the lower part of the PHY layer functions. O-RAN

further split CU along the control and user (data) plane separation, and introduces

two components: CU-CP which performs RRC and PDCP control plane functions, and

CU-UP which performs SDAP and PDCP user plane functions. We refer the reader

to 3GPP specifications [15, 16, 17] and O-RAN specifications [3] for details. In this

thesis, we assume a disaggregated RAN architecture that follows the O-RAN standard,

and thus the disaggregated units are O-CU (O-CU-CP/O-CU-UP), O-DU and O-RU

(see Fig.2.6, where we indicate select standardized interfaces between the key units of

interest4). Subsequently, we will drop the prefix “O-” for clarity.

As depicted in Fig.2.6, CU-UP typically connects to multiple UPFs (via the NG

interface) on the 5G core side, and may connect to multiple DUs (via the F1 interface)

on the RAN side (the suffixes “-U” and “-C” in the interface names distinguish the user

4In the figure we have also included the additional O-RAN components such as SMO (service and
management orchestration), non-real-time RAN intelligent controller (non-RT RIC), and near-real-time
RIC (nRT RIC). Since these components are irrelevant to this thesis, so we will not elaborate here.



13

plane and control plane versions of the standardized interfaces). Hence it may become

a bottleneck in processing the downlink and uplink traffic between UPFs and DUs. We

note that both the 3GPP/O-RAN NG-U and F1-U interfaces are implemented using

the GTP (GPRS Tunnelling Protocol [21]) tunnels, more specifically, GTP-U tunnels,

which run on top of UDP/IP over Ethernet. Hence CU-UP can be implemented entirely

using commodity servers with conventional Ethernet-based network interfaces (NICs)

(and possibly also Ethernet-based smartNICs). In contrast, while DU connects to CU

via the F1 interface, the connection between DU and RU requires a specialized radio

fronthaul interface, the extended Common Public Radio Interface (eCPRI) [22].

While we can incorporate eBPF+XDP to optimize the packet processing in DU for

its F1-U interface with CU-UP, in this thesis we will focus on CU-UP due to its critical

role in the user plane data path between DU and UPF. The main SDAP function in CU-

UP involves adding or removing QFIs (quality-of-service flow identifiers) for downlink

data packets from UPF to DU or uplink data packets from DU to UPF, based on (pre-

defined) user data’s QCI (QoS class identifier) profiles (QCI tables). The PDCP-U

functions are more involved: besides integrity protection and ciphering, the PDCP-

U layer is also responsible for reliable data transfer by adding sequencing numbers,

buffering data, and performing retransmissions if needed. After adding/removing the

SDAP and PDCP headers, CU-UP routes the user data packets using appropriate GTP-

U tunnels to DUs/UPFs.

2.5 IoT System Architecture

Here, we briefly describe IoT system architecture, IoT gateway architecture and inter-

operability. The IoT System Architecture comprises the following components as shown

in Fig. 2.7 in any CSPs [23]. It consist of IoT devices, IoT gateway and the IoT hub.

Some of the IoT Ecosystem doesn’t have a IoT gateway and it depends on the setup.

In the further subsection, we will discuss in detail about the purpose of using an IoT

gateway.



14

RLC

MAC

PHY

PDCP

SDAP

RRC

gNB

5G/NextG  RAN

Figure 2.5: Monolithic
RAN

eBPF

CU-UP

Service Management & 

Orchestration Framework
O-RAN

Non-Real Time RIC

Near-Real Time RIC

RICs

eBPF

eBPF

O-DU

eBPF

eBPF Our Current Implementation

eBPF Our Future Plan

CU-CP

CU-UP

eBPF

O-DU

eBPF

O-DU

5G/NextG Core

AMF SMF PCF

AF

UPF

Control Plane

User Plane

eBPF

SDAP

PDCP

RRC

RLC

MAC

PHY-HIGH

PHY-LOW

GTP-U
F1-U

A1

O-RU

Figure 2.6: O-RAN Disaggregated RAN Architecture and 5G Core

2.5.1 With IoT gateway

If the building has a IoT gateway, then the IoT gateway acts as a one point communi-

cation to the internet [24]. There doesn’t need to be several individual connections to

the IoT hub. And also the gateway can act as a storage for the data from all the IoT

devices in the network and the processing of all data can be done in the IoT gateway

itself which helps certain local decisions to be performed for all the IoT devices at one

location.

2.5.2 Without a IoT gateway

If the building has multiple IoT edge devices without a IoT gateway, then each IoT

edge will establish its own tunnel to the IoT hub and each device needs to have its

own security credentials. Each IoT edge needs to have its own storage and each device

has to process its own data and certain decisions involving multiple devices cannot be

performed at one location locally. And the decisions which involve multiple IoT devices

need to be performed in the cloud which increases the latency in taking decisions.



15

Figure 2.7: IoT System Architecture

Figure 2.8: IoT Gateway Architecture

2.5.3 IoT Gateway Architecture

There is a mix and match of components in the IoT gateway architecture depending

on the vendor. Both AWS and Azure have few things in common and Google is still

catching up with the other 2 competitors [23]. A high-level IoT gateway architecture is

shown in Fig. 2.8. Some of the common components include MQTT broker, runtime,

containerization of modules, message subscriptions and connectivity to the respective

IoT hub.



16

2.5.4 Interoperability

Interoperability in broader terms is defined by IEEE as ”The ability of two or more sys-

tems or components from different manufacturers to communicate and exchange data

and to mutually use the information that has been exchanged”[25]. More specifically, IoT

Interoperability according to [26] is defined as the ability of two systems to communicate

and share services with each other. The ability for two or more systems to interoperate

is classified in four different layered models according to [4]: 1) Technical interoperabil-

ity: Connect heterogeneous IoT devices at a technical level (Device level or Network

Stack), 2) Syntactic interoperability: Interoperate the format and data structures used

in the exchanged of information amongst heterogeneous IoT system entities, 3) Semantic

interoperability: Connect the data exchanged and knowledge from IoT system compo-

nents in a meaningful way, on and off the Web and 4) Platform interoperability: Design

architectures of IoT Gateways and middleware to enable interoperability.

App (AF_XDP) App

XDP eBPF

Userspace

NIC

Kernelspace

Driver

Packets

XDP_

REDIRECT
XDP_

PASS

UDP

IP

Network Stack

Figure 2.9: eBPF/XDP Sockets

It is important to mention that the research in this work is to investigate the design



17

of an IoT gateway architecture to enable seamless cross-platform interoperability via a

dynamic configurable payload-based route edge function. We take advantage of various

platforms’ exposed interfaces to enable interaction between them through our proposed

framework. Our architecture has three key features: 1) It can be easily integrated

to other vendor platforms, 2) It enables platform interoperability irrespective of the

underlying vendor-locked technologies and 3) Does not require CSPs to make major

changes in their current IoT systems.

2.6 eBPF/XDP

Extended Berkeley Packet Filter (eBPF) [27] and eXpress Data Path (XDP) [28] are

(relatively) recent innovations in the Linux kernel that allow safe kernel extension and

kernel bypassing for more efficient network processing, among other usages. While eBPF

can be used for both the transmit and receive side operations, XDP operates only at the

receive side, residing within the NIC driver (see Fig. 2.9 for an illustration). We assume

the reader has some familiarity with eBPF & XDP, thus will not elaborate further.



Chapter 3

VeerEdge: Towards an

Edge-Centric IoT Gateway

3.1 Introduction

Many Internet of Things (IoT) systems are ”stovepipe systems”: they are closed, end-

to-end, sensor-device-to-cloud-application systems that operate independently of each

other. These stovepipe systems are unable to interact directly with each other, or share

most resources. In this chapter, we describe a new class of IoT gateways that is intended

to break down the barriers between these stovepipes, thereby permitting these systems

to share resources, particularly the applications that process and store the sensor data.

As a result, these new IoT gateways proposed here will permit the processing of sensor

data to be consolidated and optionally distributed or moved closer to the IoT devices

themselves.

A common example of these stovepipe IoT systems, and the challenges that these

systems often present, is a home that contains IoT devices from multiple vendors, such

as smart speakers. For instance, a homeowner might connect both a Google Nest Mini

and an Amazon Echo Dot to their home network. Each of these IoT devices is a closed

system, and is unable to share resources, subsystems, or procedures with devices from

other vendors. Each IoT device is managed by its own smartphone application and

communicates with its own cloud-based application. The user must learn and use two

different applications to configure and manage the smart speakers. More importantly,

18



19

because the data from the smart speakers is forwarded to their respective applications,

it is difficult for a single application to process the consolidated data from all of the

devices simultaneously, perhaps correlating or fusing data from these separate devices.

Likewise, processing the data from the smart speakers locally, or at the ”edge” of the

home network, is extremely difficult, because the data largely resides in the vendors’

cloud-based applications.

Several major cloud service providers (CSPs), including Amazon, Microsoft, and

Google, have made available IoT gateway frameworks, or software development kits

(SDKs), that simplify the development of IoT devices. IoT device vendors can use

these CSP-provided SDKs to simplify the development of their IoT systems: the SDKs

can be used as a platform upon which to develop software that connects the vendor’s

IoT device to a cloud-based application. Unfortunately, each of these CSP-provided

SDKs connect only to the respective vendor’s cloud service. For our purposes, we call

these CSP-provided IoT gateway platforms as cloud-centric, inasmuch as they connect

IoT devices only to the cloud services of that CSP.

We propose an edge-centric model for developing IoT gateways. Instead of merely

connecting IoT devices to cloud services, our edge-centric IoT gateway framework is

designed to i) leverage computing and storage capabilities at the network edge (e.g., a

Raspberry Pi device or a PC server collocated at a home Internet gateway or wireless

base station) for edge-based device and IoT service management (e.g., fault detection,

dynamic service subscription), data processing (e.g., data filtering & aggregation), and

so forth; and ii) exploit availability of multiple cloud services (from different vendors)

for “best” (e.g., fastest or cheapest) IoT data analytics. We summarize the outline and

major contributions below.

• (§3.2) We study three leading CSPs IoT solutions to ensure our proposed frame-

work augments current IoT gateway solutions . We especially evaluate similarities

and differences between them to identify north-bound (cloud facing) and south-

bound (on-premise IoT gateway facing) interfaces that can be leveraged within

our proposed gateway framework.

• (§3.4) We propose VeerEdge - an edge-centric IoT gateway framework, that ex-

ploits the availability of multiple cloud services, storage and computing capabilities



20

on the network for edge-based device management and configurations and ”best”

IoT data analytics.

• (§3.5) We investigate a critical IoT gateway functionality dubbed - Regulator that

realizes the edge-centric gateway vision by controlling the communication between

vendor-specific IoT gateways and their respective cloud services. Proof-of-concept

prototype using Amazon AWS and Microsoft Azure as case studies show that

(VeerEdge) incurs additional negligible overhead and minimal latency.

Table 3.1: Features Supported in Current Vendor-locked IoT Gateways

Features AWS Azure Google

Protocols
Modified Paho MQTT 3.1.1

(QoS 0 & QoS) 1
HTTP[S][29]

MQTT 3.1.1
HTTP[S] 1.1 over TLS 1.2

AMQP

Paho MQTT 3.1.1
QoS 0 & QoS 1

HTTP[S] [30, 31, 32]

Security
X.509 CA Signed

X.509 Self-Signed certificates [29]

X.509 CA Signed
X.509 Self-Signed certificates

Symmetric keys

JSON
Web Tokens [33]

Containerization Support ✓ ✓ ✕

Message Subscriptions ✓ ✓ ✕

Stream Manager ✓ ✕ ✕

Device Twins/Shadow ✓ ✓ ✕

On-demand Containerization [34] ✓ ✕ ✕

Device Monitoring ✕ ✓ ✕

3.2 Terminology and Background

In this section, we use the term ”IoT edge device”, or simply ”IoT device”, to describe

the end nodes in IoT systems, specifically the components that include sensors or ac-

tuators. These are the devices that generate IoT sensor data, or make changes in the

physical world in response to commands. For the purposes of this chapter, we classify

IoT devices into two categories:

1. ”cloud-native” devices: IoT devices that are able to connect directly to applica-

tions running on a cloud service using media such as Wi-Fi or cellular service 1.

Typically, cloud-native devices are ”locked” to a specific application running on a

particular cloud service.

1While we often describe applications as running on a cloud service, they could, in fact, be running
on any sort of server.



21

2. ”gateway-assisted” devices: IoT devices that are incapable of connecting directly

to an application running on a cloud service, and therefore require the services

of an IoT gateway to forward sensor data to a remote application for processing.

Gateway-assisted IoT devices usually connect to an IoT gateway via a low-power

wireless medium such as Bluetooth, Zigbee, Z-Wave, Thread, or similar protocol

because they lack the functionality to necessary communicate directly with cloud-

based applications. Examples of these gateway-assisted devices include: door or

window sensors, temperature sensors, or water sensors.

The data generated by the IoT devices is communicated to its end users using a

pub-sub system. A pub-sub system is an asynchronous way of communicating between

entities where a subscriber of a topic receives all the messages published to that topic.

Amazon refers their IoT pub-sub system as message subscriptions [35] while Azure

names it as routes [36]. In this chapter, we will consistently use the term message

subscriptions or paths irrespective of the vendors. There are three fields required for a

message subscription [35]. First, the source, from where the message originated. Next,

the destination, to which the message needs to be sent. And finally, the topic to which

one can subscribe to or publish message to.

”IoT portal/cloud” is the entry-point on the cloud. It is tied to and authenticates

only specific vendors’ devices and gateways and is largely responsible for heavy anal-

ysis(computation), deployment, notifications and updates. IoT gateways manage and

provide connectivity to cloud-based applications for gateway-assisted IoT devices. Com-

mon consumer-grade examples of IoT gateways include smart home gateways or home

automation gateways, such as the Samsung SmartThings hub. These devices implement

the protocols necessary to communicate with a cloud service and applications running on

that cloud service. Typically, IoT gateways implement a light-weight messaging proto-

col, such as MQTT or CoAP, which manages the transfer of sensor data and commands

between the IoT device and a cloud-based application.

An ”Edge function” run as containers [37] in the IoT gateway which is managed by

the IoT gateway’s run-time. Container is a unit of software that contains code and all its

dependencies (run-time, system tools, system libraries and settings) as a single package.

In Azure IoT, the containers packaged with custom code are called modules. And in

AWS IoT, these containers are called as lambda functions [34]. Additionally, in AWS,



22

the lambda functions can run as an individual process in the IoT gateway instead of a

container. As shown in Fig. 3.2, local database, web-server, machine learning services

are some of the examples for a edge function.

IoT Cloud

IoT Gateway

Gateway-assisted
devices Cloud-native

devices
Figure 3.1: Cloud-native and gateway-assisted IoT devices

Major cloud service providers offer what we refer to as ”IoT cloud services”, special-

ized services that support IoT devices and IoT gateways. For example, these IoT cloud

services generally support one or more common IoT messaging protocols, such as MQTT

or CoAP. While terminology differs among cloud vendors, we refer to these IoT-specific

services as ”IoT portals”. Cloud-hosted applications process and store IoT sensor data,

initiate notifications in response to IoT sensor data, and manage IoT devices and users.

3.2.1 Cloud-Centric IoT Gateways

Recently, several CSPs, including Google [30], Amazon Web Services (AWS) [38] and

Azure [24] have made available IoT gateway platforms, or SDKs, that IoT vendors may

integrate into their IoT devices or gateways. These CSP-provided SDKs simplify the

development of IoT devices and gateways, but at the expense of locking the vendors into

the SDKs’ respective cloud services. We summarize their similarities and differences in

Table 3.1 and briefly discuss them here.



23

AWS IoT Core

Amazon’s IoT Gateway SDK is called ”Greengrass” (GG) [39]. One major feature of

Greengrass is the runtime. GG’s runtime serves both as a client to the AWS cloud and

a server to ”gateway-assisted” AWS devices to marshal data and enable bi-directional

communication between these entities. GG’s runtime is equipped with a modified Paho-

based MQTT 3.1.1 implementation over TLS 1.2 encryption (MQTT over Websocket)

with X.509 certificate-based mutual authentication [29] 2. The runtime also offers sup-

port for Lambda functions – a server-less compute service to run code in response to

an event [38]. This functionality may simplify events-response and control within IoT

applications. The GG’s runtime maintains IoT device state information using ”Device

shadows” via a JSON serialization format [29] which simplifies management for mobility

support. Additionally, the runtime performs data aggregation, queuing and scheduling

before forwarding IoT data to the cloud.

Microsoft Azure IoT

Microsoft Azure IoT gateway SDK is also equipped with a customized runtime. At this

time, the runtime relies on a broker to communicate with the cloud. This broker can

be configured with either MQTT 3.1.1, AMQP or HTTP 1.1 protocols secured with

TLS 1.2. and token-based authentication [40]. Azure provides a simplified version of

Lambda functions called ”modules” – to run code based on a trigger [36].

Mobility support is provided via ”device twins” – a customized but different 3 JSON

serialization format [41] to maintain IoT device state information.

Google IoT Core

Googles’ gateway SDK is an embedded-device SDK. It supports HTTP 1.1 or a custom

Paho-based MQTT 3.1.1 protocol with TLS 1.2 with JSON Web Tokens (JWTs) [42] for

authentication [30, 31, 32]. Google’s gateway does not have a runtime. However, device

state information is maintained using ”device metadata” (maximum size of 256 KB),

2At the time of writing this thesis, GG V1 included MQTT QoS 0, ”fire and forgot” which does not
require any acknowledgement and QoS 1, ”fire and wait for acknowledgement” ensures an acknowledge-
ment is received.

3When compared with AWS device shadows.



24

”device configuration” (maximum size of 64 KB) and ”device state” (maximum size

of 64 KB) [43]. Unlike Azure and AWS that only support JSON serialization format,

Google also supports binary, text or serialized protocol buffers data formats [43].

We acknowledge that these vendor gateway SDKs render significant contributions

within the IoT systems. Nonetheless, they all embrace a cloud-centric approach and

still posses major drawbacks. Next, we describe their drawbacks and then make a case

for an edge-centric approach for IoT gateways.

3.3 Challenges with cloud-centric IoT gateways

Due to the recent surge of IoT devices, several IoT applications have been deployed in the

cloud to perform computation on the IoT data. Limitations like latency perceived by

end-systems, and increased bandwidth usage between the end-systems and the cloud

ought to move IoT data computation towards the edge. However, key-players like

Microsoft, Amazon, and Google only allow the management of IoT data on the cloud.

This in turn makes the management of IoT data that utilizes cloud-based applications

from different vendors, cumbersome. In this section, we explain in detail these challenges

posed by cloud-centric IoT gateways. As a results, presents a unique opportunity to

advocate an edge-centric IoT gateway in order to unlock the benefits of various IoT

applications provided by different vendors and to also enable convenient management

of IoT data.

3.3.1 Cloud-Centric IoT Gateways: Issues

To marshal IoT data in current industrial IoT solutions, message subscriptions needs

to be configured in the cloud and then deployed in the IoT gateways. The data from

IoT devices is then routed through the IoT gateway to the relevant users based on these

subscriptions. This, however, poses several challenges in developing innovative and rich

IoT solutions, as discussed next.

Cumbersome cloud-based IoT device configuration. In-order to disable or

enable communication of IoT devices with the cloud, we need to completely remove or

re-add the paths that exist in the cloud and redeploy them on the IoT gateway. In

AWS and Azure, the paths need to be configured to enable communication between IoT



25

8GGT(FIG�*CVGYC[
���

&NQWF�
RQTVCN 5VTGCO�

$PCN[VKE
U

&NQWF
5VQTCIG

,R7�&ORXG

���
&NQWF�
RQTVCN 5VTGCO�

$PCN[VKEU

&NQWF�
5VQTCIG

,R7�&ORXG

���
&NQWF�
RQTVCN

5VTGCO�
$PCN[VKEU

&NQWF�
5VQTCIG

,R7�&ORXG0477�%URNHU

ZRUNHUV

5HJXODWRU

ZRUNHUV

� �

7DJ��VWHHU
SROLF\

5RXWHV��
)LOWHULQJ

���

'HYLFH�VHFXULW\�&RQWH[W
NH\V��FHUWV��DXWK��PHFKDQLVPV

6\VWHP�
VWDWH

9HQGRU�$
6'.9HQGRU�%
6'.9HQGRU�&
6'.V

:HE�6HUYHU
/RFDO�

'DWDEDVH

4W
PV
KO

G

4GCN�5KOWNCVGF�
ͲQ6�'GXKEGU

/QFWNGU��
.CODFC�)WPEVKQPU 4WPVKOG/366��+662�QT�&Q$2

�

�

�
ZRUNHUV

7DVN�TXHXLQJ

(FIG�
'GXKEGU

(FIG�
'GXKEGU

(FIG�
'GXKEGU

� ��� 8GPFQT�&8GPFQT�%8GPFQT�$

Figure 3.2: Edge-Centric IoT Gateway Framework

devices, edge functions and the IoT cloud.

Inflexible cloud-only IoT data management. Cloud-only management of IoT

data makes its management very difficult. To utilize applications from different CSPs’

clouds, we need multiple IoT gateways and also need to configure several paths on

each cloud portal. Such configurations in the cloud portal incurs higher latency since

the cloud is generally far away from the end-users. Moreover, these paths have to be

deployed in the IoT gateway after re-configuration in the cloud, thus, adding up to this

latency. For example, if a building already have a Azure IoT gateway, in order to send

videos data from an IP camera to AWS Kinetic Streams, an AWS GG IoT gateway need

to be installed and configured in the building. Management of multiple IoT gateways

is time consuming and challenging due to maintainability.

No/little support for cross-vendor edge computation and data analytics.

Vendor IoT gateways use the paths deployed in it to simply forward the IoT data

to vendor-specific applications hosted in the cloud. The inability to configure these

paths at the edge prevents IoT data to be dynamically routed to other CSPs’ cloud or

edge. Leveraging ”better” stream analytics and machine learning application of another

vendor is extremely difficult and impractical.



26

3.3.2 Case for an edge-centric IoT gateway

The challenges identified in the previous subsection leads us to advocate an edge-centric

architecture for designing IoT gateways. Instead of merely connecting IoT devices to

cloud services, we envision an edge-centric IoT gateway that i) leverages computing and

storage capabilities at the network for edge-based device management, configuration

and control, and ii) exploits the availability of multiple cloud services (from different

vendors) for ”best” (e.g., fastest or cheapest) IoT data analytic. An edge-centric IoT

gateway ought to enable sending IoT data to clouds of different vendors instead of

locking it to a specific vendor. Moreover, Edge-centric IoT gateways also make IoT

applications less prone to security attacks since there is more privacy compared to in

the cloud as the data resides locally. We achieve this by introducing regulator. Regulator

is a subsystem built atop existing vendor IoT gateway SDKs and enables flexible device

configuration and data management, dynamic cloud service subscriptions and message

routing. We provide a detailed description of regulator later.

3.4 How to address these challenges?

Given the challenges mentioned earlier, in this section, we discuss various solution ap-

proaches and highlight their limitations. We, then present our VeerEdge IoT gateway

architecture design.

3.4.1 Re-designing the IoT Gateway

One approach to address these challenges might be to re-design an IoT gateway from

scratch. This gateway should be open and not tied to any specific CSP IoT cloud portal.

Rather, it should provide multi-cloud support to connect, communicate and exchange

data with several vendor IoT cloud portals while still enabling local configurations.

This approach replaces the current CSPs’ IoT gateway solutions and imposes a unified

ontology or a consensus of the communication protocols and RESTFul APIs adopted.

According to the European project Unify-IoT, more than 300 IoT cloud platforms exist

today [44]. Therefore, an obvious problem with this approach is its inability to work

with existing IoT cloud portals, i.e., CSPs may need to re-design their IoT cloud portals



27

to add support for the unified APIs and protocols. This is impractical, time consuming

and might be less beneficial for some vendors.

Thus, several vendors might be reluctant to proceed with an agreement.

3.4.2 Building atop current IoT solutions

In this study, we take a different approach. Instead of re-designing an IoT gateway

from scratch, we build atop existing IoT gateways and only leverage their runtimes.

We propose a wrapper dubbed, Regulator which leverages vendor gateway SDKs to

connect to their respective IoT cloud portals. Specifically, this approach augments

current systems’ runtimes and take control of all communication happening between

the different vendor IoT gateways and their clouds portals.

The limitations with our approach are two folds. 1) There is no unified way for the

IoT devices to communication with the IoT gateway. Each vendor will still advocate

its unique security mechanisms for IoT device to authenticate with the IoT gateway. 2)

This solution is limited to ”gateway-assisted” IoT devices. Nonetheless, in this study, we

investigate this approach and augment current IoT gateway SDKs enabling multi-cloud

support, edge-computation, dynamic manageability using payload information within

Regulator, while still using the cloud.

3.4.3 Proposed VeerEdge Gateway Design

Fig. 3.2 summarizes the detailed architecture of VeerEdge. We discuss the major com-

ponents of VeerEdge below.

Runtime

In our design, the runtime does the heavy work. We build atop existing IoT gateways

by leveraging existing vendor gateway runtimes. AWS GG and Azure IoT gateway

runtimes come pre-build with a task scheduler, and an MQTT Broker. We therefore

use both runtimes during our implementation and show evaluation results in §3.5. We

augment their runtimes with Regulator - edge function.



28

���
&NQWF�
RQTVCN

,R7�&ORXG�%
9HQGRU�
6'.

0477�%URNHU

ZRUNHUV

5HJXODWRU
� �
ZRUNHUV

/RFDO�
'DWDEDVH

SXE�VX
E�SDWK

���
&NQWF�
RQTVCN

,R7�&ORXG�%
9HQGRU�
6'.

0477�%URNHU

ZRUNHUV

/RFDO�
'DWDEDVH

SXE�VX
E�SDWK

1NF�RCVJ0GY�RCVJ

���
&NQWF�
RQTVCN

,R7�&ORXG�$

$�

%�

'GUKIP

Figure 3.3: Regulator operation scenario.

IoT gateway SDKs

Within our edge-centric IoT gateway, we run Google, Azure and AWS gateway SDKs

[45, 24, 39] as edge functions. They provide the RESTFul APIs to communicate with

their IoT cloud portal. However, as describe later in sec. 3.4.3, Regulator controls all

paths in our design bringing IoT data closer to the edge. We host a local database for

data storage and a web server for local configurations and management, alleviating the

cloud-centric management.

Regulator

Regulator is primarily controlled by user configuration via the local webserver. Specific

configuration options like ”disable publish to cloud”, ”delete path x” and ”create path

y” can be configured. We consider ”disable publish to cloud” in §3.5 within regulator

during our implementation. This is because, our approach here involves creating and

deleting (temporarily disabling) paths. Traditionally, performing this function (”disable

publish to cloud”) requires, manually deleting and re-deploying the configuration locally

on the gateway on premise. In VeerEdge, the webserver performs a runtime interrupt via



29

regulator. (i) Regulator leverages the runtimes’ exposed APIs to discover the current

static paths (source, destination, topics) pairs. (ii) It creates (if it does not exist) a

new ”shared topic” and subscriber (usually the local database) on the system and (iii)

temporally disables the cloud facing path and redirects every packet via the new ”topic”

(path). This simple operation is summarized in Fig. 3.3.

By means of this functionality, Regulator can, 1) dynamically operate on all vendor

IoT Platform SDKs edge functions deployed on the system, 2) avoid downtime that

exist when re-deploying new cloud configurations and 3) seamlessly reduce unconnected

”stovepipes” between vendors, thus interoperability. However, for the first time, the

path need to be configured in the IoT cloud and deployed to the IoT gateway. And the

regulator controls the paths thereafter.

0 20 40 60 80 100
Number of Pkts sent

0.02

0.06

0.10

tim
eD

el
ay

[s
] AWS 

Runtime
Regulator
NoRegulator

Figure 3.4: AWS runtime time delay - Jetson Nano

0 20 40 60 80 100
Time [Seconds]

5

10

15

20

cp
u

Regulator
NoRegulator

0 20 40 60 80 100
Time [Seconds]

38

39

40

us
ed

RA
M

Figure 3.5: AWS runtime memory and CPU utilization - Jetson Nano



30

3.5 Implementation and Evaluation

In this section, we discuss the implementation and evaluation results of our proposed

design.

3.5.1 Implementation

We first implemented VeerEdge on a Raspberry Pi2 and show preliminary implemen-

tation results in [46]. Next, we extended our evaluations and implemented VeerEdge

on an NVIDIA Jetson Nano. The web-server is used for local configuration of paths,

the local database stored IoT data locally and Vendor A, B and C SDKs are Google’s,

Azure’s and AWS’ Gateway SDKs equipped with all security context for authenticat-

ing and communicating with their clouds portals. Regulator leverages these SDKs to

control and steer traffic based on the paths configured. At start-up, regulator takes

over the paths and controls the traffic based on the local user configuration. Through

this implementation, we were able to enhance the existing IoT gateway frameworks to

support local enable or disable of the message subscriptions without using the cloud

portal. Since the paths already exists, the communication between two entities pass

through without any issues and our implementation controls the pass-through only to

disable or alter the communication. Through this approach, we have eliminated cloud-

based configuration and an additional deployment. Additionally, regulator enables the

local control of paths between vendor-specific IoT gateway and multi-vendor IoT clouds,

which is not supported with current vendor Gateways.

3.5.2 Evaluation

First, we seek to quantify the additional delay incurred by processing every packets

via regulator. We simulated IoT devices to publish data to our universal gateway and

logged the time when every packet was sent. We configured a path to route every

packet to the local database, where we logged the time every packet was received. We

repeated this experience with and without regulator. In Fig. 3.4, we show the additional

delay incurred with regulator (the blue curve) and without regulator (the red curve)

leveraging the AWS GG runtime. Noticed that, regulator incurs negligible overhead

while addressing interoperability challenges in current CSPs’ IoT platforms.



31

Next, we collect the CPU and memory utilization with and without regulator to

understanding the additional overhead incurred with our approach. As shown in Fig

3.5, augmenting both AWS GG runtime with regulator result in more CPU and memory

usage as expected. This is because, all packets through the gateway are processed by

regulator, i.e., the payload needs to be matched to paths deployed on the system before

routing. These results show this approach incurs additional negligible overhead and

minimal latency. It is important to mention that, we acknowledge that, the additional

overhead incurred by this approach can be problematic in low latency IoT application

scenarios. Nonetheless, the results are promising.

3.6 Summary

In this study, we make the case to advocate a shift from a cloud-centric to an edge-

centric approach in IoT gateways. We proposed regulator, which augments current

vendor-locked IoT platform solutions by controlling paths from various vendor gateway

SDKs to the cloud. We evaluated our methods by using both AWS and Azure runtimes.

Our experiments show that our approach incurs negligible overhead and minimal latency.

Although we developed an approach to support interoperability from the IoT gateway

to the cloud, unlocking multi-vendor downstream IoT devices to vendor IoT gateway

still remains a challenge, especially since vendors adopt custom security mechanisms in

their IoT devices, gate SDKs and IoT cloud. Moreover, there is no standard message

subscriptions framework followed by the CSPs: AWS uses MQTT topics and Azure uses

endpoints. This challenge is left for future works. Our experiments clearly show that

the resource consumed by the Azure IoT gateway framework is relatively higher than

the AWS Greengrass. Thus, further exploration of both frameworks to understand why

can be a possible research direction. In summary, suggested future research direction

can be; 1) addressing the interoperability issues with vendor IoT edge devices and 2)

building an IoT gateway runtime that supports heavy edge computational tasks and

connects to multiple vendor cloud platforms.



Chapter 4

Kaala 2.0: Scalable IoT/NextG

System Simulator

4.1 Introduction

The proliferation of IoT devices in recent years has made it possible to develop innovative

smart services for homes, offices, businesses, cities and communities. Large cloud service

providers, such as Amazon, Microsoft and Google, offer cloud-based IoT data analytics

and AI services for collecting, storing and processing the massive amounts of IoT data

these devices generate. Because these new cloud IoT services often obviate the need

for IoT device vendors to deploy their own data centers, cloud services have become

integral components of most IoT systems.

Cloud IoT service vendors, such as AWS [38], Azure [47], Google [30] and Alibaba,

all aim to build their own IoT ecosystems, which currently do not interoperate with each

other. According to the UNIFY IoT project, more than 360 IoT companies exist today

[44]. While there are industry-led efforts to ensure interoperability between cloud IoT

services (e.g. via CHIP [48]), non-interoperable cloud IoT services are likely to remain

the rule, rather than the exception, for some time.

An alternative to waiting until physical devices have been developed and constructed,

is to use IoT simulators to test and evaluate prospective IoT devices, systems, and

designs. If these simulators and experiments are designed properly, simulation can

significantly reduce the gap between proof-of-concept (PoC) implementations and real

32



33

world deployments [49]. Unfortunately existing IoT simulators are limited in their

capabilities and scopes. 1) Many simulators are designed to run on a single laptop,

desktop or a server, and are therefore poorly positioned for large-scale simulations that

require significant computational power. 2) Most of simulators fail to capture the large

variety and diversity of IoT devices that exist today. For example, many are tailored

to simulating only small sensors with low bandwidth requirements, ignoring a variety

of IoT devices (e.g., surveillance cameras and autonomous vehicles) that consume large

amounts of network bandwidth and require real-time cloud connectivity. 3) Perhaps

more importantly, existing IoT simulators operate in isolation: they interface with only

a limited number of types of IoT devices and can not be integrated with existing cloud

services [50]. In short, existing IoT simulators cannot be used to effectively test and

evaluate prototype IoT systems, especially those that require computationally intensive

subsystems such as machine learning algorithms, Cloud IoT services, or IoT control

mechanisms running on edge computing facilities. Chernyshev et al. [49] in a recent

survey highlighted that an all-in-one simulator capable of supporting an end-to-end IoT

service is yet to be developed. Simulation tools and environments for assisting testing

and evaluating of unit testing and systematic evaluation of a smart IoT services with

diverse devices, edge and cloud computing components in an integrated fashion are

therefore sorely needed.

In this chapter, we present Kaala 2.0 – a modeling, simulation and emulation plat-

form that is capable of specifying IoT devices of various types, from low-powered sen-

sors to smart IoT devices requiring high bandwidth, such as IoT devices that anticipate

emerging 5G networks. Kaala 2.0 is an extension of Kaala [51] and simulates UE, RAN

and 5G Core at the same time connect to real-work UE, RAN and 5G Core. In addition

to simulating IoT devices, an important feature of Kaala 2.0 is its ability to interface

and connect with real-world cloud IoT services in an integrated fashion. The initial

version of Kaala 2.0 can use Amazon AWS [38], Microsoft Azure [47] and Google [30]

IoT cloud services. The main design goal of Kaala 2.0 is to help researchers and prac-

titioners to prototype various IoT scenarios, including those that use high-bandwidth

5G services, generate massive amounts of data, and to help bridge the gap that exists

between simulators and real-world system. The major contributions are summarized

below.



34

• We present Kaala 2.0: An IoT modelling and simulation platform that is able to

specify IoT devices of various types to communicate with real-world cloud IoT

systems, with AWS, Amazon and Google IoT Cloud platforms as case studies

through simulated or real-world 5G networks.

• Kaala 2.0 is a scenario-based IoT simulator capable of mimicking various IoT

scenarios such as ”fire in a room or building” to evaluate URLLC service of 5G

and ”5G network capable data generation (including 4K/8K video IP cameras)”

scenarios.

• Kaala 2.0 is able to simulate massive number of IoT devices to evaluate mMTC

service of 5G.

• Kaala 2.0 is able to generate massive amounts of IoT data for prototyping data-

intensive IoT applications to evaluate eMBB service of 5G.

The rest of the chapter is organized as follow. We motivate the design and use cases

of Kaala 2.0 in § 5.2. The design and implementation of Kaala 2.0 are presented in § 4.4

and § 4.5, respectively. Kaala 2.0 is evaluated in § 4.6 and conclude the chapter in § 4.8.

4.2 Case for Kaala 2.0

In this section, we use three case studies to argue the need for a better simulation

framework, while discussing their challenges.

4.2.1 Ability to Interact with Real Systems using 5G Networks

Emergent IoT applications are extremely complex and operate in a very diverse IoT

world. These are not just the smart speakers, smart thermostats, smart door locks in

our homes, but also sensors used in domains like in the oil, gas and automobile indus-

tries. These applications support different systems connected through IoT. Researchers

study, implement and test IoT prototyping ideas on simulators. These simulators by

far do not reflect the complexity that exist in the IoT world. For example, current IoT

simulators do not simulate vendor-specific IoT devices [13]. The IoT simulator provided

by AWS [14] can only simulate one type of IoT device. It simulates hard-coded IoT



35

Smart CarSmart Rail StreetlightsSmart TapSmart Lights

IoT Gateway

IoT Cloud

IoT Edge DevicesIoT Devices

A

B

C
D

Figure 4.1: IoT (Edge) Devices, IoT Gateway and IoT Cloud

messages and does not simulate the network characteristics (TCP/IP stack) along with

massive IoT data. To the best of our knowledge, current IoT simulators operate in iso-

lation and do not interact with real cloud IoT system, failing to reflect the complexity

present in the IoT world. Kaala 2.0 is intended to remedy these deficiencies. Kaala 2.0

simulates several vendor-specific (AWS, Google, and Azure) IoT devices with network

characteristics capability to connect and communicate with real cloud IoT systems.

Kaala 2.0 connects simulated IoT devices with real servers (within the complex IoT

world), so that services provided by cloud service providers can be used, validated and

verified. For instance, Kaala 2.0 connects simulated IP cameras, temperature sensors,

humidity sensors, flame sensors to the Amazon’s Kinetic video streams and building

logic around these sensors to simulate a fire event.

4.2.2 Scenario-based Data/Event Simulation

We use a fire-in-a-building event to make the case for the need of a scenario-based data

generation and 5G service. IoT data generated by current IoT simulators are hard-

coded [13]. That is, the data generated do not realistically models IoT data generated

by real sensors. A more realistic approach might be to generation sensor data based



36

on a distribution or based on the actual behavior of the sensor. Consider a Fire-in-a-

room scenario. When there is a fire in the building/room, the temperature in the room

increases and the temperature sensor will report a higher value than usual. The smoke

sensor will detect the smoke in the room and send the smoke alarm. The humidity

in the room increases and the humidity sensor will be sending the updated humidity

value. Some sensors might malfunction, burn or lost connection because of the fire.

Thus, relying a few sensors data values will be problematic. We might want to analyze

data from some other IoT devices (like a camera) to understand the prior and current

situation of the fire event to call an ambulance. IoT simulators ought to model such

scenarios. The inability of current IoT simulators to model real-world IoT scenarios

present Kaala 2.0 with a unique opportunity. We present more details of how Kaala 2.0

achieves this in § 4.4.2.

4.2.3 High-bandwidth Data Generation

IoT simulators ought to support next-generation network technologies such as 5G. With

higher 5G throughput, next generation IoT applications should seamlessly adapt to 5G.

However, this is not the case. This is due to the lack of tools (IoT Simulators) which

foster the design, development and deployment of 5G capable applications both on the

client and server side. For instance, a video streaming service provider like YouTube

or Netflix have millions of users watching videos. The throughput will depend on the

quality of the video. Recently 8K videos require significantly higher bandwidth (5G

speeds) to play a single frame compared to a 480p video quality. For example, a video

of ’X’ minutes sizes 119 MB for a 240p video. requires 1038 MB for a 1080p video

and 7284 MB for a 8K video. Thus, prototyping 5G next generation IoT applications

using an IoT simulator that can support massive data workloads seen in the production

environment should be addressed. Current IoT simulators do not support modelling

thousands of IoT devices with large amount of data. Kaala 2.0 realises this challenge by

simulating IP cameras that supports 8K video streaming and is able to scale to hundreds

(and even thousands) as shown later in § 4.6.



37

Application
Layer

Storage
Layer

Network
Layer

Mininet
Network

Real Network

IP Camera

Security
CertificatesVendor SDKs

Cloud
Layer

Amazon
Streams

IoT Sensors

Gateway
Layer IoT Gateway

Azure IoT 
Cloud

Google IoT 
Cloud

Simulated Real

Configuration
Files

Docker
Network

Figure 4.2: Kaala 2.0 Layered Architecture

4.3 Kaala 2.0 Architecture

Fig. 2.7 shows the system design of Kaala 2.0. As shown, Kaala 2.0 is able to integrate

real and simulated devices while leveraging vendor specific SDKs to connect them to real

systems in the cloud. Next, we motivate and detail each layer in Kaala 2.0’s architecture

as shown in Fig. 4.2.

There are three main objective of Kaala 2.0. 1) Simulates various IoT devices

including vendor-specific IoT devices and connect them to particular vendor’s cloud

IoT services. 2) Simulates realistic data across all applicable devices to mimic real IoT

service scenarios. 3) Generate high-throughput real data.

Cloud layer: This layer is the real cloud IoT systems that Kaala 2.0 connects to.



38

Home 1

Internet

Campus 2

Building 1
10.0.1.1./24

Home 2

10.0.2.1/24

Building 2
10.0.3.1/24

10.0.0.1/24

Simulated Real

Figure 4.3: Kaala 2.0 Network Architecture

It authenticates, validates and accepts incoming connections and IoT data from the IoT

gateway. The cloud layer provides core entities for massive data transformation, data

analysis and interpretation. It provides data stream processing resources and cloud

services for machine learning related tasks, business integration and user management.

It is also responsible for notification and historic data storage.

5G Core Layer: This layer is the simulated 5G core to which each of the simulated

RAN connects to. On the other end, the 5G Core connects to the internet. This can

be replaced with real-world 5G core as well in which the RAN also should be real-world

5G RAN and the UE need to have proper service to the real-world 5G provider.

RAN Layer: This layer is the simulated RAN to which the simulated UE’s connect

to. There can be more than one RAN and each RAN connect to one 5G core. This can

be replaced with real-world 5G RAN which connects to real-world 5G core as well in

which the UE need to have proper service to the real-world 5G provider.

Gateway layer: The IoT gateway connects Kaala 2.0 to real cloud IoT systems.



39

It runs vendor-provided SDKs, which contain the RESTFul APIs needed to connect

to the the cloud layer. It serves as an MQTT broker (server) to IoT (Edge) devices

and is a client that connects to the cloud. The MQTT broker receives IoT data from

the network layer and translates the data into vendor-specific data formats via their

SDKs. It retrieves security contexts from the storage layer, authenticates, validates and

connects to the cloud layer to forward the IoT data to the IoT cloud.

Network layer: The network layer connects all the other layers. It is a virtual

network that models a real network. It contains core network components like a DHCP

server, a DNS server, a switch and a gateway. Each modelled physical devices has a

virtual IP address. This layer provides the resources needed by the gateway to connect

to real systems via their domain names. Every instance of this layer creates a separate

isolated virtual network that can connect to real systems as shown in Fig.4.3. Our

evaluation results in § 4.6 show quantitative statistics of network utilization for an

end-to-end IoT scenario experiments.

Storage layer: The storage layer comprises of different vendor SDKs, security

contexts, data storage and configuration files. Cloud service providers support differ-

ent SDKs, RESTFul APIs, data formats, security mechanisms, certificates and keys.

This layer is responsible of contacting the service providers and obtaining the updated

certificates, keys and SDKs used by the gateway layer or the application layer for au-

thentication and validation.

Application layer: This is the layer responsible for simulation configurations,

parameters tuning, IoT device configuration, network configuration and experiment

scenarios. The main purpose of the application layer is to run application specific logic.

The application layer provides standard IoT device functionality, such as publishing

messages but the architecture supports easy extension of IoT device-specific logic by

inheriting from the base IoT device logic. One example for the application logic ex-

tension to basic application in Kaala 2.0 is adding support for IP cameras in which

the application creates IP camera related functionality to support high-bandwidth data

which is discussed in detail in § 4.4.2 and § 4.5.



40

4.4 Kaala 2.0 Design

In this section, we discuss Kaala 2.0’s design goals followed by a detailed design to

guide our implementation. The key design goals for Kaala 2.0 are four folds: 1) Con-

nect simulated IoT devices to real cloud IoT services, 2) provide extensibility of IoT

device characteristics for current and future IoT devices, 3) simulate real-time events

coordinated across multiple IoT devices and 4) generate realistic data to support current

and future technologies like 5G. In the next sub sections, we will discuss how Kaala 2.0

achieves these design goals.

4.4.1 Interacting with Real-World Systems using 5G networks

To support connection with both simulated and real networks including 5G networks,

we leverage Mininet [52] and docker [53]. Mininet has the capability to create various

types of virtual networks using different types of switches and controllers, and each host

will be running as a process. Docker has the capability to create virtual networks and

each host will have its own container [53]. These Mininet and docker virtual devices

have IP addresses assigned to them and therefore can connect to real physical networks.

As discussed earlier in § 4.2.1, we enable interoperation with real cloud IoT systems

by integrating vendors’ SDKs [47]. Both the Mininet and docker architecture supports

running real application processes in the respective host instances. Using this, the

simulated applications run the respective SDKs in the various hosts as processes. Since

the host application runs as a process, the host has access to all the files stored in the

machine in which the simulation framework is running. As a result, each host does not

need to have the individual vendors’ SDKs installed and can reuse the SDK installed in

the machine in which the simulation framework is running. This architecture is highly

scalable when compared to the architecture proposed by IoTNetSim in[13]. This is

because IoTNetSim creates virtual machine for each of the simulated devices. Moreover,

in IoTNetSim the SDKs need to be installed individually in each virtual machines. We

compare the scalability of Kaala 2.0 with IoTNetSim in § 4.6. The key advantage of

using Mininet is the ability to create a wide variety of multiple network architectures

based on a simple configuration [52]. Additionally, various network configurations with

different type of controller and switches can also be simulated and test for IoT traffic.



41

simulated

real

IoT
Device

IoT
Gateway

message

IoT
Cloud

message

messagemessage

IoT Edge
 Device

message message

Figure 4.4: Sequence of data flow showing no differences in data flow between real and
simulated IoT devices

Simulated IoT devices connect to the IoT gateway and we cover the implementation

details in § 4.5. Earlier in § 5.2, we motivated the need to simulate vendor-specific IoT

devices. In our proposed simulation framework design, both generic IoT devices and

vendor-specific IoT devices can be simulated. We isolated each of the IoT devices with its

own network resources. As a result, simulated IoT device can express the characteristics

of a real IoT device and also run application specific code for the respective simulated

IoT device. The simulated vendor-specific IoT device each run the respective vendor

IoT device SDK to connect to the respective vendor-specific IoT gateway or IoT Clouds.

4.4.2 Scenario-based Event Simulation

The design of Kaala 2.0 supports most of the real-time scenarios. We have also discussed

a couple of scenarios in §4.2.2. The basics of scenario based simulation is to coordinate

one or more simulated IoT devices to match values based on the scenarios at the same

duration range. Kaala 2.0 supports simulation of one or more scenarios at the same

time or in sequence. The fire in the room scenario is an in-built scenario in the Kaala

2.0 simulation framework. When there is a fire detected in the room, the smoke sensor

detects the smoke, the door lock opens automatically, the temperature in the room

increases, the humidity in the room increases as well and the IP camera in the room



42

1
2
3

pe
rc

en
t Kaala CPU Usage

0 5 10 15 20
Time [Seconds]

50

75

pe
rc

en
t

Kaala Memory Usage 10 Devices
100 Devices

Figure 4.5: Kaala 2.0 Performance Evaluation - Mininet

captures the video. The list of affected IoT devices and the respective values need to

be configured in the scenario configuration file which gets loaded while running the

simulation framework. The time occurrence of the scenario needs to be specified as

well. Not only values, Kaala 2.0 also support videos matching the scenario.

0.5

1.0

pe
rc

en
t Kaala CPU Usage

0 5 10 15 20
Time [Seconds]

50

75

pe
rc

en
t

Kaala Memory Usage
10 devices
100 devices

Figure 4.6: Kaala 2.0 Performance Evaluation - Docker



43

Kaala 2.0 support simulation of IP cameras and a default video will be played when

the IoT device is started. During the fire event, a fire video can be specified in the

configuration file and the simulated IP camera will start streaming the video with fire.

By this design, various scenarios can be simulated in Kaala 2.0. Assume that the quality

of video need to be changed based on the network bandwidth available or based on time.

This scenario can be easily simulated in Kaala 2.0 using the scenario configuration.

4.4.3 High-Bandwidth Data Simulation

Next, in-order to simulate high-bandwidth scenario, we design our simulated IP camera

using a Real-Time Streaming Protocol (RTSP) server [54]. The server will listen in a

port and the client will be listening in a different port. The producer of the video will

connect to the server port and the consumer of the video will be connecting to the client

port to play the video. Both the producer and consumer can be designed to run in any

host, so that the traffic flows through the network. More about RTSP implementation

and evaluation is discussed in §4.5 and §4.6.3.

4.4.4 NextG Network Support

In order to support NextG simulation, Kaala 2.0 is designed to support regular network

connection to the cloud as well as connecting to the cloud through RAN and 5G Core.

In case of NextG, each IoT device will connect to the 5G network as an UE. The design

supports connecting the IoT gateway to the RAN as a UE or each IoT device as an

UE to the RAN. If each IoT device acts as an UE, then those devices wont be able to

integrate with a IoT gateway, it needs to connect to the IoT cloud through the 5G Core.

Once the UE is connected to the 5G Core, then it can start sending the IoT related

data to the IoT cloud through the RAN and 5G Core. Each IoT device will have an

option to be a regular IoT device or NextG capable device. Kaala 2.0 supports both

simulated or real-world UE’s. The real-world UE’s can connect only to real-world RAN

and the simulated UE’s can connect only to simulated RAN due to the radio conditions.

Because in simulations, the radio conditions are simulated as well. The real-world RAN

can connect to both simulated or real-world 5G core based on the system setup.



44

4.5 Implementation

We used mininet [52] and docker framework [53] to simulate the IoT devices. The simu-

lator framework can simulate both the generic IoT devices and the vendor-specific IoT

device. Since we are leveraging the mininet framework, each IoT device runs in its own

process and gets dedicated network characteristics. We used the NodeJS version of the

mininet framework to simulate the IoT devices. And for the docker version, each IoT

device runs in its own container. The generic IoT device uses the basic MQTT client

and the vendor-specific IoT device uses the respective vendor specific client SDK to

communicate to the IoT gateway. The IoT gateway information including the authen-

tication details required to connect to the vendor-specific IoT gateway are passed as

parameters while starting respective vendor-specific simulated IoT devices, so that each

device knows which IoT gateway they need to connect, authenticate and communicate

with. Each simulated IoT device also consists of a profile which tells the type of device

it simulates and the list of properties associated with the IoT device. Using this imple-

mentation, we were able to simulate vendor-specific IoT devices and at the same time,

provide dedicated network resources to each of the IoT devices.

The simulation framework loads a configuration file during startup. This configura-

tion files includes the list of IoT devices which needs to be simulated. And the support

for new IoT devices can be easily added to Kaala 2.0 by just adding a profile for the

newly added IoT device. The new IoT device can either use the generic application

logic which sends data periodically based on the configuration which is discussed next

or implement its own application logic. Each IoT device entry in that list contains a list

of properties and these properties can be easily extended for new properties. Some of

the key properties include the name of the IoT device, the profile (light, HVAC, smoke

sensor, etc.) of the IoT device, the type of device (generic or vendor-specific) and finally

the list of properties and the respective time-interval to report to the IoT gateway. If

the device type is vendor-specific, then the authentication information including the

certificates are passed as arguments through the proposed design.

There is a another configuration file which is called as scenario configuration file.

The main purpose of this configuration file is to configure when the scenario need to be

executed, the list of IoT devices properties which need to be included in the scenario



45

and the values of the properties of those IoT devices during the scenario. The default

values need to be specified at the end of the scenario based configuration file in-order to

complete the scenario. For example after the fire in the room scenario finished running,

either the next scenario needs to follow in the configuration file or the normal values

added for the simulated IoT devices to continue execution. Otherwise, the simulation

framework will keep simulating the values of the fire in the room scenario.

As discussed in §4.4.2, there are two main components in simulating an IP camera,

the producer and the consumer. The video which need to be streamed in the IP camera

need to be configured in the simulation configuration file along with the time of stream.

Based on the configuration, Kaala 2.0 will connect to the RTSP server to send video

data. The producer keeps producing the video to the RTSP server by connecting to the

local RTSP server port and the consumers can consume the video by connecting to the

client port of the RTSP server of the respective IP camera IoT devices.

The main advantage of Kaala 2.0 over IoTNetSim is that, IoTNetSim creates virtual

images for each IoT device but Kaala 2.0 uses processes for each IoT device. We tried

to perform additional performance evaluation with IoTNetSim but due to the design of

IoTNetSim, we were not able to control the periodic interval of the simulated sensors

within the IoTNetSim framework. IoTNetSim does not simulate close-to-real devices.

The definition of close-to-real devices is that, when connected to an IoT gateway or

IoT cloud, the IoT gateway or IoT cloud will not be able to differentiate whether the

connected client is a real or simulated IoT device.

We leveraged Open Air Interface’s (OAI) [55] UE, RAN and 5G Core modules for

Kaala 2.0. Each of the IoT device will run OAI’s UE module. In order to simulate

5G networks, the 5G Core and RAN are started in sequence. Then the IoT devices

are deployed and the UE module in the IoT device connects to the configured RAN

accordingly. If a IoT device is configured to be a NextG capable, then it will acts as

a UE and try to connect to the 5G RAN else it will try to connect to the cloud using

regular IP network.



46

4.6 Evaluations

In this section, we seek to understand the scalability and performance of Kaala 2.0. We

connect simulated IoT devices to a real networks (we use Amazon AWS as case study)

and finally evaluate a scenario based simulation.

4.6.1 Scalability and Performance

Since the simulation are usually run in a machine by the developer or tester, we want to

understand the scalability and performance of running Kaala 2.0 in a regular machine.

For the experimental setup, we used a Linux Virtual Machine (VM) which was allocated

4GB memory, 2 processors and 20GB for storage. The VM was running Ubuntu. To

understand the memory consumption and scalability capability of Kaala 2.0, we con-

ducted two experiments; In the first and second experiment, we simulated 10 and 100

IoT devices respectively. The simulated IoT devices were a combination of temperature

sensor, smoke sensor, humidity sensor, flame sensor and motion sensor. Each of these

sensors publish their data based on their IoT device profile every 15 seconds. The data

in Fig.4.5 shows that as the number of sensors increases, the processor and memory

usage increases significantly. Kaala 2.0 is not just a simulator, it is an emulator as

well. Each sensor runs its application logic in an individual process. So the processor

and memory usage are expected to increase as the number of devices scale up. This is

because as the number of IoT devices increases, more processes are created.

Since Kaala 2.0 uses mininet and docker framework for simulating IoT devices, for

each IoT device, mininet and docker framework creates a network interface. So as

the number of IoT devices increases, there is time taken to configure a new network

interface in the host machine, get a new IP address and bring the interface up. The

initial spike in both the memory and processor usage shows that both the mininet and

docker framework consumes both memory and processor to create and setup the virtual

network. And an additional reason for the spike is due to the spawn of processes or

containers for each of the simulated IoT devices.



47

Table 4.1: Comparison of Kaala 2.0 with IoTNetSim

Features IoTNetSim Kaala 2.0

Vendor-Specific IoT Devices ✕ ✓
MQTT Protocol Broker ✕ ✓

Cloud Layer ✓ ✕

Semi-Real IoT Devices ✕ ✓
5G Capable Scenarios ✕ ✓

5G RAN ✕ ✓
5G Core ✕ ✓

4.6.2 Interacting with Real Systems using 5G Networks

For this experiment setup, first we created a user profile in the AWS IoT [56]. Then

configured an IoT device along with the necessary security certificates which are re-

quired to authenticate and connect to the AWS IoT Cloud. The security certificates

are downloaded in the host machine in which Kaala 2.0 is running. Next, in Kaala 2.0

configuration, we specify that a vendor-specific IoT device need to be simulated and the

path to the downloaded security certificates are configured as well. The IoT device can

be of any profile because this is a proof-of-concept experiment scenario. These steps

can be repeated for any number of vendor-specific devices. The same steps can also be

followed for different vendors like Microsoft Azure or Google IoT clouds as well. Then,

we start the simulation framework. Based on the loaded configuration, Kaala 2.0 knows

that a vendor-specific IoT device needs to be simulated and the application in the sim-

ulated devices will try to connect to the IoT gateway or IoT cloud using the provided

security contexts. Once connected, the simulated IoT device will start publishing the

data. Particularly, in this experiment, all the data is published to AWS IoT cloud.

4.6.3 Scenario-based Event Simulation

In this section, we assess the scenario-based event simulation in Kaala 2.0. First, for

fire in the room scenario, the necessary IoT devices were configured via the Kaala 2.0

configuration file. This configuration file is also a pre-configured profile in Kaala 2.0.

Initially, all the IoT devices will be publishing respective data to the IoT gateway or



48

IoT cloud and the data will be related to normal operation in a room. In the scenario

configuration file, the time to start the scenario based simulation will be specified. At

that time, each IoT device property configured in the scenario configuration file will be

configured with the value specified in the scenario configuration file. And the values gets

changed synchronously across all these IoT devices. The flame sensor will report ’true’

stating that a flame is detected. The temperature sensor shows a significant increase in

the current temperature. And also a video in which fire is shown is played exactly at the

same time. Additionally, there can be two sub-scenarios on fire. First one is to make the

motion sensor detecting a movement in the room and the next one with motion sensor

not sensing any movement or person in the room. This will help to validate scenarios

like what happens when a person is in the room during the fire event and what happens

when there is no person inside the room when the fire event occurs.

4.6.4 High-bandwidth Data Generation

Next, sending high-bandwidth data was validated. As discussed in §4.4.2, Kaala 2.0

have an RTSP server running when simulating an IP camera IoT device. The server

and client port of the RTSP server are configurable in the IP camera IoT device profile.

As of now the simulated IP camera IoT device can run server and client on the same

port number. This can be a potential future work to support different ports for different

IP camera IoT devices. A 8K video is sent to the simulated IP camera by connecting

to the server port of the RTSP server. And the consumer consumes the video by

connecting to the client port of the RTSP server which is running in the simulated

IP camera IoT device. Both the producer and consumer were ran in a different host

other than the IP camera IoT device, so that the traffic is flowed in the network. The

video being played by the producer can be completely controller by the application

using the simulator configuration file. And also the timing of different scenarios can be

controlled and configured by the scenario based configuration file. We also simulated

a scenario in which the quality of video changes based on the time. First 30 minutes,

the producer was configured to produce 8K video and then for the next 30 minutes a

4K video was produced. This proves that Kaala 2.0 is capable of simulating videos of

different qualities to test different scenarios of streaming applications.



49

4.6.5 NextG Simulation

During the startup, an instance of 5G Core and RAN are started and the RAN is

connected to the 5G Core. In the configuration file, if the IoT device is configured as

NextG capable, then the IoT device acts as a UE and successfully connected to the

configured RAN. Once when the UE is successfully attached to the RAN, the IoT data

is sent through the RAN and 5G Core to the IoT cloud. Support for multiple UE’s

connecting to the 5G core was evaluated and the data flow from the UE to the IoT

cloud through the RAN and 5G Core was evaluated as well.

4.7 Related Work and State-of-Art

In this section, we discuss related works and especially discuss the Start-of-art simulator

we used to compare Kaala 2.0 with in § 4.6. IoT simulators can be grouped into the

application layer, Network layer and Cloud layer simulators. Each of these simulators

serve different purposes and can be used in different IoT solutions. We discuss a few

simulators per layers hereon.

Cloud simulators: In a recent survey [49], the authors identify IOTSim [57] as a

Cloud layer simulator widely used in IoT research today. IOTSim focuses on replicating

the diversity and heterogeneity that exists amongst IoT devices while generating big

data for processing using MapReduce model in the cloud. IOTSim is based on CloudSim

[58], another popular IoT cloud simulator platform. The key design goal of CloudSim

is to model service brokers, different cloud policies within an IoT cloud infrastructures.

IOTSim extends CloudSim with IoT application modelling support and enables big

data processing in cloud computer environments. Other Cloud based simulators in

the literature are GreenCloud [59] and iCanCloud [60]. GreenCloud is an energy-aware

cloud simulators for packet-level research. These cloud simulators are widely used in the

IoT research. Nonetheless, they all lack IoT network connectivity and the IoT network

layer modelling.

Network simulators: Like NS-3 [61], OMNeT++ [62], iCanCloud [60] have been

widely used in wireless sensor networks. iCanCloud focuses on simulation of Amazon

instances on the cloud. It does this by implementing a fully flexible hypervisor that



50

lets users manage the brokering policies within Amazon instances on the cloud by con-

necting various VMs with the TCP/IP stack. OverSim [63] and PlanetSim [64] are

based on OMNet++ and Java respectively and both focuses on simulating overlay net-

works. PlanetSim is easily extensible, easy to used and learn and easily integrated into

other frameworks. All the above network simulators do not follow IoT standards, IoT

protocols and IoT radio models.

Application simulators: These simulators focus on modelling IoT protocols

like MQTT, CoAP and AMQP and resource management in a controlled environment.

However, they lack IoT Cloud layer prototyping. Some examples of IoT application-

based simulators in the literature include: MDCSim [65], iFogSim [66], and IOTSim

[57]. MDCSim is a multi-tier data center simulator that can be used to develop and

study IoT application on a multi-tier cloud architecture. MDCSim implements each

individual tier in a flexible and fully configurable manner and supports IoT pub/sub

data communication model. iFogSim adapts a Sense-Process-Actuate model in which

simulated edge devices publish data via an IoT network for applications running on Fog

devices to subscribe to. These fog devices then process and translates these data into ac-

tions that are forwarded to actuators. iFogSim takes into account IoT network protocols

and make studying the resource management policies (i.e., network congestion, latency

(timeliness), energy consumption, and operational cost) with an IoT environment very

easy.

Most recently, Maria et al. proposed IoTNetSim [67] to model an end-to-end IoT

services in a multi-layered manner. It is a platform that models IoT heterogeneous

nodes with all their characteristics like mobility, energy, and profile. IoTNetSim aims

at modelling an IoT service across all layers. i.e., From the cloud, Fog, Edge, IoT and

application layer with various IoT network designs. It models IoT connectivity using

Virtual Machines (VM) with an event-based engine that is configurable. Support for

IoT node mobility is implemented via latitude and longitudes coordinates that are read

from a .csv file which follows a previous pre-recorded behavior pattern. IoTNetSim uses

CloudSim for cloud simulation functions like modularization, large data process and

resource management simulators. IoTNetSim sensor data is simulated in real-time and

days worth data can be simulated in few seconds.

To the best of our knowledge, a major issue with all current IoT simulators is



51

their inability to connect to real systems (i.e., part simulation and part real system

prototyping interactions). Additionally, they do not support vendor specific IoT (edge)

device modelling capable of communicating with vendor IoT gateway SDKs. 5G capable

scenarios modelling are not also supported, therefore this chapter sets to address these

drawbacks within Kaala 2.0 [68].

4.8 Summary

We have presented Kaala 2.0 – a modelling, simulation and emulation platform that are

capable of creating IoT devices of various types. Using our proposed simulation frame-

work, we were able to simulate multi-vendor specific IoT devices in a single simulation

framework. We also simulated real-time events like fire in a room/building scenario and

evaluated how this work can be extended for other real-time scenarios. We were able

to simulate devices which can generate large amount of data to verify and validate 5G

technology.



Chapter 5

HyperRAN: Towards a

Fine-Grained, Semantics-Aware,

Intelligent NextG Radio Access

Network Architecture

5.1 Introduction

Promises of 5G inspired a slew of new applications and services with disparate band-

width, latency, and reliability requirements. These include volumetric video streaming,

Digital Twins, cooperative autonomous driving, and other V2X (vehicle-to-everything)

use cases. To meet these requirements, 5G improved upon 4G LTE (Long-Term Evo-

lution) with new capabilities such as intra- and inter-frequency Carrier Aggregation

(CA) [69], a ”flow-based” QoS (quality-of-service) architecture and network slicing. In

addition to low- and mid-band frequency ranges, 5G New Radio (NR) expands into

the mmWave high-band frequency range. Future 6G is considering sub-THz and THz

frequency bands. While these bands offer far higher data rates, they suffer many issues,

such as limited coverage ranges, requiring line-of-sight (LoS), and sensitivity to block-

age and environmental factors. Supporting diverse applications with disparate service

needs requires not only expanding network capacity, but also intelligence and agility to

52



53

efficiently utilize the scarce radio resources.

We posit that not all data is of equal utility to an application. This is true for

(volumetric) video, LiDAR, and other sensor data used in augmented/virtual reality

(AR/VR), Digital Twins, and V2X applications which require high bandwidth for data

delivery. For example, for tele-operations of an autonomous vehicle [70], LiDAR data

points within the field of view are in general more critical than, say, those on the right

side of the vehicle. Likewise, data points containing moving objects that are potentially

safety-critical are more important than those containing stationary or background ob-

jects (which, e.g., can be accurately predicted via generative AI. Hence in order to

effectively utilize the scarce radio resources, we must exploit application semantics and

endow the RAN with the agility and intelligence, for example, enabling it to intelli-

gently match diverse radio channels with fast varying conditions to application data

with differing utilities, and make smart, dynamic radio resource allocations accordingly.

This leads us to re-architect the radio network architecture for next-generation (NextG)

wireless networks. The key contributions are summarized below.

• We layout an overall framework for re-architecting NextG networks (§5.3). It is de-

signed based on four core principles: application-aware & semantics-guided, fine-grained,

truly cross-layer, and programmable. Our framework enables application endpoint and

network collaboration by (i) (adaptively) refactoring, partitioning, and marking appli-

cation data with semantic tags and embedding them end-to-end across the network and

down the network protocol stack; and (ii) endowing NextG RAN with the agility to

intelligently match available frequency channels with differing characteristics to appro-

priate data (sub-)streams/objects, and dynamically allocate fast varying radio resources

to transport the right (amount/type of) data with the best deliverable utility to an ap-

plication.

• This chapter focuses on the design of HyperRAN (§5.4), a novel NextG RAN ar-

chitecture which embodies the design principles outlined above. It is fine-grained in

that data within the same applications session or flow may be dynamically mapped to

different radio channels in accordance with their utility to the application, thus with

differentiated QoS treatment. This is achieved by embedding application semantics,

service, and user contexts across the RAN protocol stack, which enables intelligent



54

radio resource allocation that takes into account application semantics, service require-

ments, user context as well as fast varying channel conditions. Hence HyperRAN is both

(application) semantics-aware and intelligent. This is in contrast to the existing 5G

“flow-based” QoS architecture where data belonging to the same “QoS” flows are always

treated the same inside the RAN such as radio channel and resource allocation (see 2.2).

Realizing the proposed HyperRAN architecture has now become feasible by fully em-

bracing and exploiting the ”softwarization” and ”cloudification” of RAN disaggregation.

In particular, our HyperRAN design is O-RAN compliant. By embedding application

semantics across the RAN protocol stack with fine-grained, rule-based control logic, we

program the HyperRAN behavior via O-RAN RICs, and endows it with the agility and

intelligence for application-aware, fine-grained, cross-layer decision making.

• At the core of HyperRAN is Hyper Scheduler (§5.4.2) which sits between the Ra-

dio Link Control (RLC) and Media Access Control (MAC) (sub)layers of the standard

RAN protocol stack (see Fig. 5.1): it can be viewed as part of a new “upper” MAC

layer. Configured with one or multiple cells and radio channels (with, e.g., CA), the

(low-level) MAC and physical (PHY) layers are responsible for scheduling data trans-

missions from a set of (virtual) MAC queues (or virtual RLC channels) at a faster time

scale, e.g., slot- or multiple-slot levels (sub-1 ms (millisecond) or 1ms). In contrast,

Hyper Scheduler operates at a slower time scale, e.g., sub-frame or frame-levels (several

or 10’s ms). It is responsible for dynamically mapping and assigning (user) data to dif-

ferent ”radios” (one per each low-level MAC scheduler) based on application semantics,

Quality of Experience (QoE), user context, and channel conditions. Hyper Scheduler

is programmable; its decisions are controlled by declarative policies or rules supplied

by O-RAN near-real-time RIC that can be dynamically updated, e.g., when the user

context such as mobility has changed. In addition, Hyper Scheduler adaptively deter-

mines when to re-transmit or discard data. Hence, when radio resources are limited,

low-priority or stale data may be dynamically discarded.

• We implement a ”proof-of-concept” prototype of HyperRAN with the basic build-

ing blocks including Hyper Scheduler using srsRAN [71] as the code-base. We reuse and

set up multiple (slightly modified) PHY/MAC layers to emulate a multi-band RAN, and

re-architect and modify the RLC/Packet Data Convergence Protocol (PDCP)/Service

Data Adaptation Protocol (SDAP) modules.



55

• For evaluation, we consider two emerging use cases with high-bandwidth and in-

teractive low latency requirements – ultra-high-resolution volumetric video and LiDAR

data streaming for co-operative driving. We set up a testbed with HyperRAN and

multiple emulated UEs (user equipment) and conduct experiments under various set-

tings using real-world radio channel traces collected from commercial 5G networks. Our

experimental evaluations show HyperRAN provides significant improvements to volu-

metric video streaming and LiDAR streaming: For volumetric video streaming across

stationary and mobility scenarios, HyperRAN significantly outperforms existing solu-

tions such as end-to-end bit rate (End-point) adaptation, CA and Static Channel Map-

ping by significant margins. For example, it reduces video stall time between 46-75%

under stationary and 22-64% for mobility cases through improved buffer occupancy

for critical base layers. For LiDAR streaming, HyperRAN’s flexible and contextual

prioritization and discard policies netted a 50x reduction in LiDAR packet delivery

time, a 7.7% reduction in overall LiDAR packet loss compared to baseline results. Fur-

ther, under challenging scenarios with multiple UEs running volumetric video streaming

and LiDAR streaming, HyperRAN leverages application-aware traffic prioritization for

intelligent decision making, providing roughly 15% improved delivery rate with 2-4×
reduction in latency.

In a nutshell, we aim to fully exploit the benefits afforded by ”softwarization” and

”cloudification” to re-architect NextG RAN to meet future application demands. The

proposed HyperRAN is a first step towards this goal, as there are many challenges yet

to be solved. We envisage HyperRAN to be first deployed in ”private” NextG networks

for new (vertical) industrial use cases (cf. §5.3.5).

5.2 Case for HyperRAN: Why Existing Solutions are In-

adequate

We present two use cases to argue why existing solutions are inadequate to support

future applications, which motivate our proposed HyperRAN architecture. In §5.6 we

will employ these use cases to demonstrate the limitations of existing solutions and

benefits of HyperRAN using ”real-world” data.



56

Use Cases. Consider (a) cooperative driving where an edge cloud service streams Li-

DAR data representing the dynamic 3D environment mapping to assist an autonomous

shuttle to “see” objects (e.g., a bicyclist attempting to cross an intersection from another

road) that might be obstructed from its field of view. Such a dynamic 3D environment

may be constructed from data collected from multiple sensors mounted on the road in-

frastructure and/or from other autonomous vehicles (AVs). Cooperative driving is one

of the key use cases that 5G is envisaged to enable. Consider further that (b) Alice, a

passenger, is streaming a volumetric video, e.g., as part of an extended reality (XR) or

metaverse application while riding in the shuttle. The 5G radio cell towers (gNBs) along

the shuttle route are often configured with multiple cells (and radio bands). However,

as the shuttle moves along the roadway, the number of cells that it is under coverage

may vary, and more importantly, the radio channel conditions can vary significantly. As

a result, the total bandwidth demand of each use case individually (or together) may

frequently exceed the radio resources available [72, 73]. What can we do to ensure good

quality-of-experience (QoE) for such use cases?

Why End-to-End Adaptation Inadequate? The classic approach to tackle this

fundamental demand-resource mismatch problem is to rely on end systems to perform

bit rate adaptation. For example, current video streaming services employ an adaptive

bit rate (ABR) algorithm that adapts to changing network conditions by selecting video

chunks encoded at different bit rates based on measured network throughput. For use

case (a), we may divide LIDAR data into sectors per “frame” (360◦ scan) and deliver

only a subset of the sectors based on the estimated available bandwidth at the end

system (e.g., the edge cloud service). For volumetric video streaming in use case (b), it

is perhaps more natural to employ scalable video coding (SVC) (see, e.g., [74, 75, 76]) to

progressively encode 3D video frames using multiple layers. As first pointed out in [72],

relying on end-to-end bit rate adaptation may not be effective due to several reasons.

First, due to wildly varying channel conditions and fluctuating bandwidth (especially

when a user is mobile, e.g., driving), it is difficult to measure and estimate the network

throughput accurately for bit rate adaptation. Second, and perhaps more importantly,

the channel conditions vary far faster than the end-to-end bit rate adaptation cycles.

This may lead to two bad effects: (i) if the end system decides the network bandwidth

is sufficiently high to accommodate more LiDAR sectors or video layers, the channel



57

condition may have become poor when the data arrives at the 5G RAN. (ii) If the

end system decides the network bandwidth is low and it thus selects fewer sectors or

layers to transmit. However, a previously moving object that blocked the light-of-sight

(LoS) path of, say, a mmWave channel, has moved out of the way, and thus the channel

condition becomes good again. This leads to a loss of opportunity to transmit more

data. In §5.6, we conduct experiments that indeed confirm the inadequacy of end-to-end

available bit rate adaptations under fast varying channel conditions.

Why the Existing 5G QoS Framework Also Inadequate? Using the 5G QoS

framework, we can, for example, transmit each LiDAR sector or video layer as separate

“QoS” flows and mark them with different QFIs (thus associating them with different

5QI profiles/QoS treatments). For example, we can assign QoS flows containing LiDAR

sectors in the front view of the shuttle with higher priority and better QoS treatments

than those containing other sectors. Likewise, we can assign the QoS flow containing the

video base layer with the highest priority and QoS class, while other layers with decreas-

ing priorities and QoS classes. When the available radio resources are insufficient [77]

to meet the bandwidth demands of all the QoS flows, in theory the 5G RAN can deliver

only higher priority flows, dropping data from the lower priority QoS flows. However, in

practice several major issues arise. First, QoS flows are mapped to fixed DRBs with pre-

configured QoS parameters, which are then mapped to (fixed) RLC and logic channels

(MAC queues), and finally transport and physical (radio) channels. If one radio channel

always outperforms other channels, this would not have been an issue. Unfortunately,

this is not the case in general (see Fig. 5.10 for real channel quality indicators (CQI)

measurement results). It is in general difficult, if not feasible, to dynamically associate

different radio channels to DRBs (thus QoS flows), based on, e.g., channel conditions.

One might be able to reconfigure the QoS-flow-to-DRB or DRB-to-channel mappings

via RRC (semi-dynamically); Availability of such function is often vendor-specific, and

can only be performed in an ad hoc manner. Further, such re-configuration or channel

re-mapping cannot be done in an application-specific or context-dependent manner. For

example, when the shuttle is at a bus stop with LoS to a gNB, we may prefer to use

the available mmWave channel to “burst” a large amount of higher-priority lower-layer

video data [72] whereas when the shuttle is driving, we may prefer to use mid-band

5G channels for lower-layer video data. Whereas for cooperative driving, we may also



58

prefer to use 5G low-band channels for safety-critical V2X data due to their better reli-

ability and large coverage, while always mapping LiDAR data to mid-band channels in

accordance with the data priority and channel conditions. Moreover, the 5G flow-based

framework may still be too coarse-grained for many emerging applications. For exam-

ple, for LiDAR data, even after dividing into sectors, the bandwidth requirement of a

single sector (QoS flow) may still be too large to be met. However, not all data points

in the sector may be of significance – when available radio resources are not sufficient

to meet all bandwidth demands, ideally only data points that cover objects of interest

need to be delivered. This cannot be done in today’s 5G RAN. All in all, we need

general programmable interfaces to control the RAN “internal” behavior dynamically,

in accordance with application semantics, radio channel conditions and user mobility,

environmental and other contexts (e.g., the shuttle is stationary at a bus stop).

In summary, we argue that existing 5G networks are too rigid to provide the agility

and intelligence to make dynamic decisions to adapt to fast varying radio channel condi-

tions in accordance with application semantics, service requirements and user/environment

contexts. More specifically, the existing 5G RAN architecture suffers from the following

limitations. 1) Inflexible, Implicit Static Mapping. As discussed in §2.2, the ex-

isting 5G RAN architecture, QoS flows are mapped to DRBs with pre-configured QoS

parameters. DRBs are bound to the lower-(sub)layers channels. In other words, the

QoS treatments of DRBs, e.g., bit rate guarantees, are implicitly passed down to the

MAC layer (e.g., via ”hard-coded” scheduling weights) for radio resource scheduling.

2) Stale Data. As an example of such inflexibility, the MAC scheduler is obliged to

transmit “stale” packets that have been buffered despite they have passed their “use-

ful” deadlines. This not only wastes scarce radio resources, but also further impedes the

timely delivery of future (still “useful”) data. 3) Not Fine-Grained. The flow-based

QoS framework in 5G treats all data within a flow, e.g., a video stream, the same way,

despite that there are I, P, B frames or base and enhanced layers of different utilities to

the application QoE. 4) Not Programmable. All in all, the RAN functionality and

features are hard-coded and not programmable. 5) Vendor-specific, Closed Imple-

mentation Limiting the Potential of O-RAN. Despite the fact that O-RAN has

defined open interfaces (e.g., the E2 interface) for “intelligent” RAN control, without

an open & programmable architecture, RAN implementations are largely vendor-specific



59

and closed. This severely limits the potential of O-RAN (see also footnote 3 in Chapter

2). We believe that the research community can play a vital role in further advancing 5G

to NextG by fully leveraging the potential afforded by the disaggregated and softwarized

RAN architecture.

5.2.1 HyperRAN Deployment Challenges and Opportunities

As a new RAN architecture design, HyperRAN will likely encounter many practical and

engineering challenges in future deployment. For instance, diverse business agreements

may be necessary to support different services from each operator. HyperRAN might

also need to address the requirements of numerous active services that prefer dedicated

channels. It’s important to note that these challenges are orthogonal to the core techni-

cal challenges we aim to tackle and introduce. Moreover, they are not new or unique to

HyperRAN; for instance, the introduction of network slicing has not deterred 3GPP or

mobile operators from embracing the concept. The ongoing trends of ”softwarization”

and ”cloudification” in O-RAN have significantly reduced hurdles to system integration

and deployability. As such, we argue that HyperRAN can be incrementally deployed,

and scaled by running more instances. For example, HyperRAN can be deployed in

parallel to a ”conventional” 5G RAN to support a subset of applications/services for

which the cellular provider has established service agreements. In private NextG net-

works, HyperRAN can be deployed to support industrial ”vertical services” such as

tele-medicine [78], smart warehouse [79, 80], and robotaxi [70].

5.3 Framework Overview

The HyperRAN compromises UE, RAN, O-RAN RIC, 5G Core, external data network,

application client, and application server. Some components were modified and some of

the components are introduced as part of HyperRAN. The modified components which

were done following the architecture and design of existing components. In the next

sub-sections, we describe the design change needed for each of the identified components.



60

mobile

endpoint

gNB

5G/NextG Core

UPF

UPF

AF

AMF SMF PCF

control plane

user plane

Packet Data Network (PDN)
or Mobile Edge Cloud (MEC)

server

endpoint

application service

provider (controller)

RLC

MAC

PHY

PDCP

SDAP

RRC

TCP/IPv6

(semantic tag)

SDAP

(QFI)

TCP/IPv6

(semantic tag)

SDAP

(QFI)

TCP/IPv6

(semantic tag)

SDAP

(QFI)

TCP/IPv6

(semantic tag)

flow          semantic
headers    tag

QFI

flow          semantic
headers    tag

QFI

QoS Table

semantics manifests

& QoS profiles

packet data unit (PDU)

5G/NextG Radio Network

(RAN)

radio channels

& resources

DU
CU

O-RAN RIC

Service Management and Orchestration Framework

Non-Real Time RIC

Near-Real Time RIC

Figure 5.1: Semantics-Aware, Fine-Grained, Cross-Layer, Software-Defined NextG Framework.

5.3.1 Design Principles and Architecture

We lay out four core principles that guide the design of our proposed NextG framework

below:

•Application-Aware & Semantics-Guided. With growing demands for bandwidth,

we believe that intelligent radio resource allocation and scheduling must be application-

aware. As not all data is of equal utility to an application, decision-making must be

guided by (application) semantics. This requires cooperation from application service

endpoints.

• Fine-Grained. Unlike the existing 5G QoS architecture which is flow-based (see §2.1),

our approach is more fine-grained. Application endpoints can (dynamically) partition

data into smaller data chunks, objects or sub-streams (“subflows”), and mark them with

appropriate (service-specific) semantic tags. At the finest granularity, our approach al-

lows per-packet (differentiated) QoS treatment. Such a fine-grained approach allows us

to more efficiently utilize scarce radio resources.

• (Truly) Cross-Layer. Application semantics information is not only passed down

from the application to the IP layer, but more importantly, also embedded across the



61

NextG HyperRAN (sub-layer) protocol stack. Such information will be used by our

novel Hyper Scheduler running at the (upper) MAC sub-layer to intelligently match

application data (of various utilities) to diverse radio channels and enable (radio/cell-

specific) MAC schedulers to allocate radio resources accordingly.

• Software-Defined. Our framework is software-defined and programmable in that it

follows the same principles of software-defined networking (SDN), where the behavior

of data/user plane functions is controlled and programmed by the control plane. How-

ever, our design is more flexible and fine-grained. In NextG core networks, we mark

data packets via service-specific QoS tables, extending the SDN flow tables. In NextG

(Hyper)RAN, we program the Hyper scheduler via (service-specific) policies or rules

supplied by O-RAN RICs.

The overall architecture of our framework is schematically sketched in Fig. 5.1,

where we have depicted the relations between a NextG carrier (with its constituent

core network, RAN, and O-RAN controllers) and an application service provider (with

its service controller and server/client endpoints). Next, we briefly describe the major

functions of each key component.

5.3.2 Application Service Endpoint Functions

Our basic premise is that an application service provider (ASP) enters into a cooperative

service level agreement (SLA) certain financial or other arrangements) with a NextG

carrier to collaboratively provide support for its application or service over the NextG

network. An ASP controller, e.g., residing within a mobile edge cloud (MEC) close

to the NextG network, supplies the NextG network orchestrator with (service-specific)

application semantics manifests and QoS profiles, e.g., specified similar to the service

(abstraction) models defined in O-RAN SMO or ONAP [81]. The ASP may also supply

the NextG carrier with application functions (AFs) for service-specific data processing,

e.g., data classification, filtering and mapping of semantic tags to (service-specific) QFIs.

We note that all these operators are performed either at the time of service creation or

at the time of user (PDU) session establishment, with appropriate rules/policies pushed

to the relevant network elements.

At the time of data generation and delivery, the ASP application endpoints will

mark (fine-grained) data objects or sub-streams (video layer frames/chunks or LiDAR



62

sectors/objects) with appropriate semantic tags for the (desired) QoS treatments over

the NextG network, in accordance with a pre-defined application (semantics) schema.

We note that such tasks can now be performed readily and automatically using AI

algorithms, e.g., for object recognition. Application semantic tags can be embedded

in the transport or IP layer headers in multiple ways1. In Fig. 5.1 we assume that

new P4 headers are defined to carry semantics tags fields. In our current prototype

implementation for evaluation, we use an IPv6 extension header to encode application

semantics tags.

5.3.3 NextG Core and RAN Networks

Based on the SLA with the ASP, the NextG network may implement the application

service in a (dedicated) network slice or treat the service ”normally” without allocat-

ing a network slice. In either case, the NextG core network will institute appropriate

control functions, such as SMFs and AMFs to set up and authenticate packet data net-

work (PDN) sessions for the application flows and track the mobility of mobile client

endpoints. In particular, the Policy Control Function (PCF) will define policies and

rules for classifying and mapping (ASP-specific) application semantic tags to (service-

specific) QFI values. These rules are implemented as QoS tables (extending the SDN

flow tables). Each entry of a QoS table is of the form ⟨ flow header; semantic tags |
QFI ⟩. In other words, besides the ”standard” headers used in SDN for flow matching,

the QoS table also includes (service-specific) semantics tags for data classification and

mapping.

Upon receiving the data from the application, the NextG user plan functions (UPFs),

possibly assisted by service-specific AFs, will classify the packet data units (PDUs) using

the QoS tables and encapsulate them in the SDAP headers with appropriate QFI values.

Once reaching the NextG radio access network, HyperRAN will map the QFI values to

metadata associated with PDUs in accordance with the ASP service context (configured

via O-RAN). The metadata will be embedded and passed down the HyperRAN protocol

1 For example, we can embed the semantics tags in a new QUIC extension header and use QUIC
as the transport layer protocol. We can also embed them using the DSCP (Differentiated Service Code
Point) bits in the IPv4 header. We can also re-purpose the IPv6 flow label or use an IPv6 extension
header to carry the semantics tags. More generally, we can use the P4 language to define new headers
with new semantics tags fields as well as to specify (application-specific) rules and write programs for
integrated application/transport/network layer data packet processing.



63

sub-layers and utilized by the Hyper Scheduler for intelligent radio channel mapping and

radio resource scheduling (see §5.4 and §5.4.2 for more details).

5.3.4 O-RAN SMO, Non-RT and NRT RICs

Our design follows the specifications and guidelines from O-RAN. For example, non-RT

RIC is responsible for configuring the Hyper Scheduler. The nrt-RT RIC will provide

policies and rules, and periodically update them (e.g., using an AI algorithm), to instruct

and influence the behavior of Hyper Scheduler. The role of O-RAN will be discussed

further in §5.4 and §5.4.2. There are many challenges and issues yet to addressed

to realize the proposed framework end-to-end, e.g., design of application schema for

(dynamic) data partition and application semantics tagging (cf. §5.3.2 and §5.6), due

to space limitation we will not elaborate here. The remainder of the chapter focuses

on the challenges in incorporating semantics-aware, fined-grained intelligent control in

radio access networks.

5.3.5 Targeted Use Cases and Deployment Scenarios

HyperRAN is especially designed to enable emerging/future use cases such as XR/

multiverse, cooperative autonomous driving, Digital Twins that require not only ultra-

high bandwidths (from 100s Mbps to several Gbps of ”raw” data throughput) but also

low latency (at the time scales of 10s to 100s ms2). Furthermore, for use cases with more

stringent latency requirements, HyperRAN can readily incorporate 5G URLLC as it,

if supported by the underlying MAC/PHY sublayers, since HyperRAN utilizes existing

MAC/PHY for its lower layer functions (§5.4.2). It can further provide added benefits of

traffic prioritization for URLLC communications based on application needs. As stated

earlier, we expect HyperRAN to be first deployed in ”private” NextG networks (or as

separate RAN instances running in parallel to existing 5G RAN instances) to support

2The latency requirements are congruent to dynamics in typical machine-environment interactions
and human-machine-environment interactions, where objects typically do not move at the sub-ms speed,
and therefore radio channels do not vary faster than such time scales and conform to the human
perceptual/cognitive needs and interactive control requirements. In contrast to the 5G URLLC (Ultra-
Reliable Low-Latency Communication) service which is designed for low-bit-rate, sub-ms (machine-to-
machine) communications, supporting these new uses cases with both high bandwidth and low latency
requirements is more challenging, due to scarce radio resources and more dynamic (radio) environments
they operate in.



64

emerging vertical industrial use cases. We elaborated on these points in §5.2.1.

5.4 HyperRAN Architecture and Hyper Scheduler De-

sign

We provide an overview of the proposed HyperRAN architecture, highlighting the key

innovations we advance to support our design goals (cf. §5.3.1). We then delve into the

design of Hyper Scheduler.

5.4.1 HyperRAN Architecture and Innovations

We adopt O-RAN’s disaggregated RAN specification and split the main RAN functions

into O-CU (central unit) and O-DU (distributed unit). To address the challenges high-

lighted above and fully take advantage of the software nature and multi-core servers on

which CUs/DUs will be hosted, we completely re-architect the NextG RAN architecture

to enable flexibility and programmability while also enhancing efficiency and scalabil-

ity. To this end, we introduce several key innovations. While some of the ideas and

mechanisms have been widely adopted in other settings (e.g., cloud computing and 5G

core), our novelties lie in applying and extending them creatively to tackle the unique

challenges in RAN designs.

First of all, we explicitly separate data (which holds user PDU sessions/flows), com-

pute (which executes various protocol processing entities or functions) and state (which

holds control and other metadata and governs the behavior of protocol functions) 3. By

consolidating user data in a shared packet ring buffer and employing Data Plane Devel-

opment Kit (DPDK) as well as other SmartNIC functions available in modern multi-core

servers, we develop an efficient software packet processing pipeline with kernel bypass

and zero copying. Associated with each user PDU is a configurable metadata container

that can be used to pass along information across the layers, e.g., flow tags that can

facilitate fast table look-up, semantic tags for (adaptive) QoS treatments, timestamps

3This is in contrast to existing open-source 5G RAN reference implementations [71, 55], which, as
a vestige of existing 5G and previous generations’ hardware-based RAN architectural implementations,
organize data processing around the RAN protocol layer processing “entities” (e.g., PDCP, RLC entities)
as specified in 3GPP specs. Such design couples user data with the compute processes (“protocol
processing entities”), producing many inefficiencies and making it harder to scale.



65

for dynamic packet scheduling to meet latency requirements or packet dropping when

deadline has been exceeded. We introduce a set of (hierarchical) index queues con-

taining (packet header) references to logically group and track individual user PDU

sessions/flows (i.e., they form “virtual queues”). This is illustrated in Fig. 5.8. As

in most cloud computing systems today, we organize compute resources into a pool of

(preconfigured) worker threads associated with the CPU cores, further treat and decom-

pose protocol processing entities as a (configurable) sequence/graph of modular protocol

functions or (compute) tasks, and dynamically schedule and map the modular protocol

functions (tasks) to the worker threads/CPU cores. This not only eliminates the over-

heads of process context switching, spawning or killing CPU processes, but also makes

it easier to scale the protocol processing. For instance, if one PDCP entity becomes

overloaded, more worker threads/cores may be allocated to process its constituent QoS

flows. We explicitly decouple the state from protocol functions so that the state can

be separately managed. This enables resiliency and scalability (e.g., by appropriately

replicating the state to scale out). Perhaps more importantly, it makes the behavior of

protocol functions programmable, as we will further illustrate below. Last but not least,

we introduce a novel Hyper Scheduler in the MAC layer that sits on top of (traditional,

now “low-level”) MAC schedulers (see below and §5.4.1 for more discussion). The Hy-

perRAN architecture is schematically depicted in Fig. 5.2. We briefly summarize the

key O-RU and O-DU designs below.

HyperRAN O-CU. The packet ring buffer contains both DL and UL data from/to

5G UPFs and to/from O-DUs, both communicated via GTP-U tunnels. Logically there

is a RX (receive) ring buffer and a TX (transmit) ring buffer. On the receiving side, the

DPDK-based packet processing pipeline receives packets from UPFs and O-DUs, pro-

cessing and placing them into the (logical RX) ring buffer. On the transmitting side, it

removes packets from the (logical TX) ring buffer, process and transmit them. The core

orchestration and task scheduling maps protocol processing entities/functions (tasks)

to CPUs and worker threads. For example, packets from user data streams (or “flows”)

are processed by an SDAP entity which, besides attaching an SDAP header with an

appropriate (service-specific) QFI value, tags the individual packets with “semantic

tags” stored in the metadata associated with the packets. Note that unlike existing 5G

QoS flows, packets belonging to the same HyperRAN “flow” or data stream may carry



66

different (service-specific) QFI values. The “semantic tags” may be used to facilitate

fast packet processing rule (PPR) table lookup for, e.g., subsequent PDCP processing;

they may even be passed down to O-DUs for appropriate RLC/Hyper Scheduler pro-

cessing. By embedding and encoding application semantics via metadata to influence

QoS treatments across the protocol stack, our design is thus truly cross-layer. The

(service-specific) PPR table is part of the state maintained by O-CU. Additional state

information includes the service context, user context, PDU session context, and QoS

context. They are installed, removed, configured and (semi-dynamically) modified via

RRC and O-RAN RICs. By adopting a software-defined, rule-based paradigm, we make

the behavior of protocol functions programmable. For example, by installing appropriate

PPRs, we can program the PDCP processing entities to whether or not apply header

processing to individual packets, what integrity protection and ciphering mechanisms

to use, whether or not to re-transmit lost packets, or discard packets that have been

buffered for some time, or where to route/re-route packets, and so forth, depending on

the service QoS requirements, user context (e.g., user mobility patterns) and application

semantics (e.g., how important the data is).

HyperRAN O-DU. The packet ring buffer in the O-DU will only be used for the

data to/from with O-CU, as the communications between O-DU and O-RU use the

(specialized) open fronthaul interface (7.2 split eCPRI) [22]. Both RLC processing and

Hyper Scheduler are programmable based on rules configured by RRC and O-RAN (non-

RT and nrt) RICs. For example, instead of the three fixed RLC modes – the transparent

(TM), unacknowledged (UM) and acknowledged) (AM) modes in the existing RAN, we

can configure an RLC entity to process individual packets using mixed UM/AM modes

based on the associated “semantics” tags. The introduction of a Hyper Scheduler makes

(multi-radio) MAC scheduling programmable, without making significant changes to

existing complex (low-level) MAC schedulers that are more intimately tied to the PHY

layer. Furthermore, it enables us to perform intelligent multi-radio scheduling to match

application semantics with fast varying radio channel characteristics based on software-

defined rules or scheduling logic.



67

GTP-U Tunnels

O-RAN
non-RT RIC

O-RAN
near-RT RIC Low-level 

Mac Scheduler

MAC PHY

Low-level 
Mac Scheduler

MAC PHY

Packet Processing 
Pipeline

Core Orchestration 
& Task Scheduling

O-RU O-RU

NICs

virtual MAC 
queues

fronthaul 
interfaces to

Scheduling Policy Tables

Framework Library... ...

(to O-CUs)

RLC channels
(index queues)

... RLC entities
(protocol functions)

Hyper
Scheduler

RLC

MAC/PHY

packet ring buffer

GTP-U Tunnels

Packet Processing 
Pipeline

Core Orchestration 
& Task Scheduling

NICs
State

(to UPFs & O-DUs)

Framework Library

Packet Processing 
Rule (PPR) Tables

QoS context

UE context

PDU context

service 
context

data streams/flows
(index queues)

DRB lists
(index queues)

...

PDU Session

...

Packet Ring Buffer

PDCP entities
(protocol functions)

SDAP entities

Data Compute

RRC PDCP-C

control plane 

Figure 5.2: HyperRAN Architecture.

5.4.2 Hyper Scheduler Design

In the design of Hyper Scheduler, we assume that there are two or more (low-level) MAC

schedulers (one for each “radio” or radio technology). The (low-level) MAC schedulers

typically operate at much faster time-scales, e.g., at a single slot or multi-slot level (sub-

1 ms or 1 ms level). In contrast, Hyper Scheduler operates at a slower time scale, e.g., at

the multiple sub-frame (several ms) or frame level (10’s ms). As alluded earlier, existing

MAC schedulers used in commercial RANs are highly complex and often intimately tied

to the PHY layer processing. This is particularly the case when CA of multiple radio

channels is employed (within the same “radio”), where time synchronization of different

frame structures and other PHY layer issues must be confronted. With Hyper Scheduler,

we introduce intelligence and programmability (For example, in our implementation,

we are able to re-use the MAC/PHY implementations of existing open source RAN

platforms [55] [71] with slight modifications to the interfaces with the RLC layer). As

illustrated in Fig. 5.2, Hyper Scheduler takes data from the RLC channels, map and

schedule data from these channels to the low-level MAC schedulers. We maintain a list

of (virtual) MAC queues per each (low-level) MAC scheduler. These MAC queues (a

list of virtual RLC channels) serve as the interface to each low-level MAC scheduler.

Table 5.1: Example Hyper Scheduler Policy Table.

NAME #[UE+SID] QFI UE-Context CQI PD

EP1 #[46, 3]
10, 20 Stationary ≥ 10 Prefer Bandwidth
10, 20 Walking ≥ 5 Prefer CQI
30, 40 Walking ≥ 0 Drop if Deadline Passes

EP2 #[47, 4]
10, 20 Stationary ≥ 0 Prefer CQI

10, 20,30,40 Driving ≥ 0 Drop if Deadline Passes



68

Declarative Policy-Based Decision Engine. Hyper Scheduler applies service-specific

policies to map and schedule user data to radios/radio channels that account for ser-

vice requirements, application semantics, radio characteristics (e.g., band and coverage

range), dynamic channel conditions and user context (e.g., mobility patterns). The

policies are declaratively specified (using the extended E2 interface) and supplied by

the O-RAN non-RT RIC; and they can be dynamically updated by O-RAN nrt- RIC.

Hence the behavior of Hyper Scheduler is software-defined and programmable. Using

layered (volumetric) video streaming as an application use case, Figs. 5.3 & 5.4 shows

two example policies specifications, where there are two radios. In Example Policy 1

(EP1), a) when the UE is stationary and the CQIs of both radios ¿ 10, the base layers

video streams (indicated with QFI=10,20) always prefers the radio with highest band-

width; otherwise, it prefers the radio with the highest CQI; the enhancement layer video

streams (QFI=30,40) are transmitted using the second radio; b) when the UE is walk-

ing, the base layers are always delivered using radio 1 (which has larger coverage) unless

its CQI ¡ 5; otherwise, it is assigned to radio with highest CQI is preferred; enhancement

layers are scheduled using the second radio. In terms of prioritization and discard (PD)

handling, base layers video data is never discarded; whereas enhancement layer video

data will be dropped if the delivery deadline (20 ms) has passed. For enhancement

layer data, the radio resource allocation priority is given in the increasing order of QFI

(i.e., data with QFI=30 is first scheduled on the second radio before data with QFI=40,

etc.). In Example Policy 2 (EP2), when UE is stationary, the base layer always prefers

radio with best CQI; if there is not sufficient radio resource, the second radio is also

used for the base layer data delivery; whatever remaining available radio resources are

assigned for enhancement layer data delivery in the priority order of QFIs. In EP1,

the base layer video is only delivered using one radio; the other radio is used for the

enhancement layer data delivery. Hence at least two layers of video are delivered simul-

taneously. In contrast, EP2 may stripe the base layer across two radios to maximize its

timely delivery at the expense of no radio resources allocated for the enhancement layer

data delivery. These declarative policies are then translated into a scheduling policy

table (see Table 5.1 for an example) which is used by Hyper Scheduler for periodic radio

mapping and scheduling decisions (see below). The PHY layer periodically informs the



69

Hyper Scheduler of the latest Channel Quality Indicator (CQI) and other channel con-

dition information, e.g., block-level error rates (BLERs); whereas the O-RAN nrt-RIC

may dynamically update Hyper Scheduler with the user context when the UE mobility

pattern has changed. In §5.6 we will use EP1 and EP2 above (and their variations) to

evaluate Hyper Scheduler.

Radio Channel Mapping and Scheduling. Hyper Scheduler performs two basic

functions periodically: 1) it intelligently maps user data to radios (low-level MACs) us-

ing the scheduling policy and logic encoded in the declarative rule-based decision engine;

and 2) it schedules (new) user data for low-level MAC transmissions by placing them,

dynamically (re-)prioritize packets in the (virtual) low-level MAC queues and discard

stale buffered data if necessary (see below). It operates in two stages (pseudocode in

Algorithm 1 & 2). In the first radio mapping stage, Hyper Scheduler polls the (virtual)

RLC channel list and uses the metadata (e.g., flow tags that encode service id, user

id and data stream/flow id’s as hashes) associated with data packets to look up the

scheduling policy table, and use the corresponding decision engine rules to map them to

a preferred radio (or a list of preferred radios). Optionally, for each radio, the required or

desired bit rates, time sensitivity priority or desired time for transmission, and whether

data can be discarded if deadline is past may be calculated and attached as metadata.

The output of stage 1 is a (tentative) list of user data radio assignment queues. In

the second (data scheduling) stage, Hyper Scheduler employs the weighted proportional

sharing (WPS) algorithm [82, 83, 84] to assign data to radio, taking into account the

radio bandwidth available and user data QoS requirements. It first scans the existing

(virtual) MAC queues, re-prioritize packets (by adjusting scheduling weights) and dis-

card any stale data, and estimate the (maximal) available bandwidth on each radio for

the current Hyper Scheduler scheduling period. Hyper Scheduler then polls the (ten-

tative) list of user data radio assignment queues, and for each (“non-stale”) data item,

Hyper Scheduler assigns it to its most preferred radio if there is sufficient bandwidth,

otherwise, the next preferred radio, and so forth. If no bandwidth is available on any

radio, it is postponed for the next Hyper Scheduler scheduling period. The assigned

data item is tagged with a scheduling weight and inserted into the corresponding low-

level (virtual) MAC queue. The scheduling weights will be used by the low-level MAC

scheduler for radio resource assignment.



70

Algorithm 1 Hyper Scheduler Stage 1 Procedure(mac id)

1: packet list ← RLC list[mac id].pdu list
2: for packet ∈ packet list do
3: //loop through packets in RLC queue and in-place assign calculated tags
4: //using HS table policy (destined radio, discard tag, ...)
5: packet qfi ← packet.tags.qfi
6: packet uid ← packet.tags.uid
7: packet UE state ← packet.tags.UE state
8: assigned policy ← policy schedule table lookup(packet qfi, packet uid, packet UE state, ra-

dios cqi)
9: //Select the radio id based on the PD code in assigned policy
10: packet.tags.list assigned radio channels ← select radio channels(assigned policy)
11: //Check for policy code and determine if packet should be discarded
12: packet.tags.discard ← check packet discard(assigned policy)
13: packet.tags.bandwidth requirement ← assigned policy.bandwidth requirement
14: end for
15: Hyper Scheduler Stage 2 Procedure()

Algorithm 2 Hyper Scheduler Stage 2 Procedure()

1: for queue ∈ mac queue do
2: //loop through in packet inside MAC virtual list, discard, delay, or process packet
3: //Re-prioritize queue based on QFI and wait time
4: queue ← HS MAC Prioritize(queue)
5: packet list ← queue.pdu list
6: for packet ∈ packet list do
7: list assigned radio channels ← packet.tags.list assigned radio channels
8: discard ← packet.tags.discard
9: bandwidth requirement ← packet.tags.bandwidth requirement
10: if discard then
11: continue
12: else
13: deliver ← False
14: for radio channel ∈ list assigned radio channels do
15: if list radio current bandwidth[radio channel] ≥ bandwidth requirement then
16: MAC send packet(radio channel, packet)
17: deliver ← True
18: break
19: end if
20: end for
21: if not deliver then
22: //Bandwidth of current radio does not suffice, delay until next sending round
23: queue.append(packet)
24: end if
25: end if
26: end for
27: end for



71

1 UE:

2 stationary:

3 - conditions:

4 - {greaterThan: {value1: "CQI_1", value2: 10}}

5 - {greaterThan: {value1: "CQI_2", value2: 10}}

6 # for base layer

7 - {equalTo: {value1: "QFI", value2: 10}

8 or {value1: "QFI", value2: 20}}

9 action:

10 - assignRadio: radioWWithMaxAvailableBandwidth

11 - conditions:

12 - {greaterThan: {value1: "CQI_1", value2: 10}}

13 - {greaterThan: {value1: "CQI_2", value2: 10}}

14 # for enhancement layer

15 - {equalTo: {value1: "QFI", value2: 30}

16 or {value1: "QFI", value2: 40}}

17 action:

18 - assignRadio: radioWithMinAvailableBandwidth

19 - conditions:

20 - {lessThanOrEqual: {value1: "CQI_1", value2: 10}}

21 - {lessThanOrEqual: {value1: "CQI_2", value2: 10}}

22 # for base layer

23 - {equalTo: {value1: "QFI", value2: 10}

24 or {value1: "QFI", value2: 20}}

25 action:

26 - assignRadio: radiowithMaxCQI

27 - conditions:

28 # for enhancement layer

29 - {equalTo: {value1: "QFI", value2: 30}

30 or {value1: "QFI", value2: 40}}

31 action:

32 - assignRadio: radioWithMinCQI

33 walking:

34 - conditions:

35 - {greaterThanOrEqual: {value1: "CQI_1", value2: 5}}

36 # for base layer

37 - {equalTo: {value1: "QFI", value2: 10}

38 or {value1: "QFI", value2: 20}}

39 action:

40 - assignRadio: radioWithMaxCQI

41 - conditions:

42 - {lessThan: {value1: "CQI_1", value2: 5}}

43 # for base layer

44 - {equalTo: {value1: "QFI", value2: 10}

45 or {value1: "QFI", value2: 20}}

46 action:

47 - assignRadio: radiowithMaxCQI

48 - conditions:

49 # for enhancement layer

50 - {equalTo: {value1: "QFI", value2: 30}

51 or {value1: "QFI", value2: 40}}

52 action:

53 - assignRadio: radiowithMinCQI

54 delivery_deadline:

55 - conditions:

56 - {greaterThan: {value1: "deadline", value2: 20}}

57 action:

58 - dropEnhancementLayer

Figure 5.3: Specification of Example Policy 1.



72

1 UE:

2 stationary:

3 - conditions:

4 # for base layer

5 - {equalTo: {value1: "QFI", value2: 10}

6 or {value1: "QFI", value2: 20}}

7 action:

8 - assignRadio: radioWithMaxCQI

9 - conditions:

10 # for enhancement layer

11 - {equalTo: {value1: "QFI", value2: 30}

12 or {value1: "QFI", value2: 40}}

13 action:

14 - assignRadio: radioWithMinCQI

15 - conditions:

16 # for base layer

17 - {equalTo: {value1: "QFI", value2: 10}

18 or {value1: "QFI", value2: 20}}

19 - notSufficientResource

20 action:

21 - assignRadio: BothRadios

22 - conditions:

23 # for enhancement layer

24 - {equalTo: {value1: "QFI", value2: 30}

25 or {value1: "QFI", value2: 40}}

26 - notSufficientResource

27 action:

28 - assignRadio: drop

Figure 5.4: Specification of Example Policy 2.

Packet Prioritization, Re-transmissions & Discarding. When a packet arrives

from the UPF to O-CU, it may be marked with a timestamp as part of the new metadata

(Fig. 5.8); this metadata may be passed down to O-DU with the packet. Depending

on the scheduling policy/logic programmed for each user/service/data stream, Hyper

Scheduler can use the timestamp to dynamically prioritize and schedule packets for

transmissions/re-transmissions via the lower-level MAC radio schedulers. When data

becomes stale (i.e., past its deadline), the Hyper Scheduler may discard it from the

buffer. This avoids wasting scarce radio resources for unnecessary data transmissions/re-

transmissions and ensures prioritized delivery of time-sensitive data.

5.4.3 HyperRAN Core Design

Fig. 5.6 illustrates the workflow on the core side of HyperRAN. In the first step, the

application providers or operators define rules for the application traffic in terms of

headers and traffic behaviors.



73

DPU
ARM

Tagging

Regex Engine

Host
UPF

Data
Network

DPDK

Offload

Flow Steer ing

(a) Offloaded Operations

rx
DPI

 queue Tagging tx

Initialize
Suricata 
signature

Initialize
DPDK 

environment

Suricata 
signature

Actions for 
Matched 

Flows

Policy 
Control Path

Data Path

(b) DPU Initialization and Data-plane Operations

Figure 5.5: Offloading Tagging Operations to DPU.



74

Application 
Service 

Provdier

AFUPF Data
Network

PCF

2.Synthesize Tagging Rules

3.2 Tagging Rules
RAN

Network

4. Semantic Tagging

6.Per formance statistics

5. Tagged-based QFI  Mapping

1.Flow Descr iptor

3.1 QER Rules

(a) Semantic Tagging

UPF

PFCP 
Session 

Matching

PDR 
Lookup

PDR

PDR

PDR
FAR BAR

QER

Tagged-based 
QFI  Mapping

(b) UPF

Figure 5.6: 5G Core Side Design.

In the second step, the PCF synthesizes rules based on all existing ones to create a

more efficient representation to be deployed on the AF. The rules consist of two parts:

the rules for tag-based QoS flow mapping (in the form of QER) for UPF and the ones for

tagging the packets in the AF, which are installed in step 3. In step 4, the AF tags the

packets based on headers and traffic characteristics, providing application-level insights

to the packets. When the UPF receives the packets in step 5, it chooses the appropriate

QFI value based on the semantic tags. If the O-RAN is unable to accommodate the

application requirements, it reports the statistics to our controller for rule adjustment.



75

UPF

DNUE

SDAP

RRC

PDCPRLCMACPHY

GTP Tunnel

5G Core

PDU SessionRadio Channel

DRB

QoS Flow

Radio Channel

RLC Channel

DRB

QoS Flow

5G RAN
Radio Channel

SRB

5G Control Plane

Port

RLC Channel

RLC Channel

Figure 5.7: 5G RAN End-to-end Protocol Stack.

flow tag app. tag
(QFI, etc.)

QoS para. timestamp

reserved

PDU 
(packet)

m
etadata

Figure 5.8: Packet Metadata.



76

5.5 Implementation and Experimental Setup

HyperRAN Implementation. We have implemented a prototype of HyperRAN

on commodity Intel multi-core servers with 100 Gbps Ethernet NICs with the DPDK

support. Our implementation relies on srsRAN [71] as the code-base, which incor-

porates CA, although we also frequently consult the OAI RAN implementation [55]

for reference but neither srsRAN nor OAI RAN support multiple radios. We reuse

the srsRAN’s PHY/MAC layer implementation and set up multiple (slightly mod-

ified) PHY/MAC layers to emulate a multi-band, multi-RAT RAN. We completely

re-architect the RLC/PDCP/SDAP layers, and modularize their implementations, re-

using as much of the code as possible while re-implementing them into modular protocol

functions (see §5.4). We implemented Hyper Scheduler in such a manner that it can be

turned on or off during start-up or dynamically during runtime. We plan to make our

implementation publicly available in the future.

5G Core, O-RAN & UE Implementations and Experimental Setup. To facili-

tate end-to-end evaluation, we also modify the implementation of Open5GS [85] which

is used as the 5G core in our evaluation. Open5GS already supports QFI, we add a novel

application semantics based QFI to the 5G core. We include the details of 5G core imple-

mentation in the §5.5.1. We leverage OAI’s FlexRIC implementation [86] as the O-RAN

RICs. We send the Hyper Scheduler’s policies via the existing FlexRIC’s E2 interface.

We also extend the E2 interface in FlexRIC to update the Hyper Scheduler policies at

the run-time. The policy operations include adding a new policy, modifying an existing

policy, and deleting an existing policy. The Hyper Scheduler periodically sends statis-

tics and other information to the FlexRIC. We further extend the implementation of

srsRAN’s UE (srsUE) to add multi-radio/multi-band support. We implemented mul-

tiple UEs support in HyperRAN to perform multiple clients and hybrid experiments.

As discussed in §5.4.2, we implemented a WPS algorithm (more details in §5.5.2) in

HyperRAN to support user data QoS requirements. We evaluate HyperRAN, and the

entire 5G ecosystem (5G Core, RAN, O-RAN, Non-RT RIC, O-RAN Near-RT (nrt)

RIC, etc.) as well as application use cases (see §5.6) on a testbed comprised of two Intel

multi-core servers with 64 GB RAM and Core i5 processors running Ubuntu 20.04.



77

5.5.1 HyperRAN Core Implementation

As illustrated in Fig. 5.5, the tagging module is offloaded to the Nvidia Bluefield 2 [87]

to potentially save CPU cycles on the host. By leveraging hardware-accelerated OVS,

the packets can be directed to the ARM cores for tagging and statistics collection.

The hardware-accelerated regular expression matching engine provided by the DPU

can handle offloading pattern matching operations. To implement this functionality,

we utilize the default ECPF (Embedded CPU Function Ownership Mode) [88] in the

Bluefield.

The tagging module is implemented as a DPDK application [89]. In the control path,

within the DPDK environment, fine-grained flow patterns are compiled into Suricata

signatures, and tagging policies are initialized accordingly. In the data path, using

Receive Side Scaling (RSS), the packets are distributed across multiple cores, each of

which runs a polling thread. Upon receiving packets, the thread first checks if a flow ID

is detected by the connection tracking hardware offloads. If the packets are not marked

with a flow ID, new flows are created using the doca dpi flow create [90]. Subsequently,

the packets are inserted into a DPI queue for hardware-accelerated processing. By

calling doca dpi dequeue, the application obtains the signature ID and utilizes it to

perform the tagging operations defined by the tagging policy. Finally, the packets are

forwarded to the host.

5.5.2 Weighted Proportional Sharing Algorithm

We have extended the MAC scheduler algorithm in srsRAN [71] to incorporate a WPS

algorithm, enabling more precise and equitable resource allocation across UEs. This

enhancement involves calculating DL and UL priorities, which are pivotal in the dynamic

allocation of transmission time intervals (TTIs) to UEs. In the implementation, the DL

and UL priorities for each UE are computed based on their expected bitrates r, the

average network bitrate R, and a fairness coefficient f , all weighted by a specific value

w assigned to each UE by the Hyper Scheduler, as described in §5.4.2. We illustrated

the priority P as follows:

We evaluate the impact of weights on performance using two UEs, setting the f to

the default value 2 and fix the value of w2 to 1, illustrated in Table 5.2. According to



78

P =


r

Rf×w
, if R ̸= 0

0, if r = 0

∞, otherwise

Table 5.2: Impacts of Weights Configuration in WPS Algorithm

w1/w2 Throughput (UE1) [Mbps] Throughput (UE2) [Mbps]

1 10.4 10.4

5 14.3 6.12

10 15.4 5.08

25 18.1 2.75

50 19.1 2.59

the result, the allocation of throughput is increased when we assign more weights to the

UE.

5.6 Evaluation

We evaluate HyperRAN using three illustrative and representative application use cases

that require high bandwidth and are time-sensitive: 1) volumetric video streaming,

2) LiDAR streaming (for cooperative autonomous driving) and 3) hybrid experiments

using both video streaming, and LiDAR streaming with multiple UEs. We use an

experimental set-up presented in §5.5 where HyperRAN is equipped with two radios,

each configured with two channels. For baseline experiments, we employ CA which

uses single radio with four channels. For end-to-end evaluation, we implement a video

streaming simulator and LiDAR streaming pipeline. Additionally, we added End-point

Adaptation support to video streaming simulator using ABR algorithms for additional

comparisons. This algorithm aims to occupy maximum bandwidth by adjusting bitrate

according to channel conditions. We evaluate the performance of HyperRAN using

different Hyper Scheduler policies and compare them with baselines. For ”realistic”

evaluation, we collect real-world multi-radio/channel bandwidth and CQI traces from



79

5G Probes

XCAL is running
for data collection

Figure 5.9: Data Collection.

commercial 5G networks to drive the emulations. All evaluations are conducted under

the same 5G network trace files emulating a consistent environment ensuring fairness

of comparisons. We expect our results to translate well to real 5G speeds and latency.

Commercial 5G Multi-Radio Datasets. Fig. 5.9 illustrates our 5G data collection

platform, where smartphones are placed side-by-side and tethered to the professional 5G

diagnostic tool XCAL [91]. We performed two experiments, with each phone locked to a

different radio channel serving as the baseline and employing the same default channel

for the multiple UEs competition. We collected PHY throughput and CQI data of

four 5G mid-band channels from two US 5G operators under various environments and

mobility settings (stationary, walking, and driving), see Table 5.3 for summary trace

statistics. Fig. 5.10 show sample CQI traces of 4 channels collected at the same time. We

see that the channel conditions can dramatically change, and no channel is consistently

better than the others.



80

Table 5.3: Data Trace Statistics.

Commercial 5G Traces

Mobility Stationary Driving

Scenario Downtown
Highway
Downtown

Duration ∼60 min ∼430 min

Coverage 12 hot spots ∼650 km

# of Operators 2 2

# of Channels 4 4

Figure 5.10: Sample Time-series Plots of CQIs under Stationary (left) and Driving (right) Settings.

5.6.1 Prioritizing Volumetric Video Layers to Reduce User Perceived

Stall Time

Application Semantics. In volumetric video streaming, each frame is segmented into

multiple layers. The number of layers successfully delivered to the client side affects the

quality of the frame in the video streaming client. The first two layers, or base layers, are

required to play a frame at a minimal quality, and thus their delivery is most important.

Each subsequent layer above the base layers referred to as enhancement layers, rely on

strict layer order being delivered or else be discarded by the client and thus render a

lower-quality frame and/or cause stalling. Thus, the Hyper Scheduler will prioritize the

lower layers based on the data’s QFI value, each channel’s bandwidth, and CQI. With

this approach, the base layers are prioritized. In the context of our experiments, Hyper

Scheduler may decide against sending enhancement frames to preserve the QoE of the

video playback if the network is particularly constrained.



81

Table 5.4: Video Stall Time (Stationary).

Points/Frame 4K 5K 6K

Required Tput (Mbps) 86.4 108 129.6

CA 37s 59s 71s

End-point Adaptation 25s 28s 34s

Static Channel Mapping 20s 25s 30s

HyperRAN EP1 12s 13s 17s

HyperRAN EP2 10s 13s 16s

Table 5.5: Video Stall Time (Walking).

Points/Frame 4K 5K 6K

Required Tput (Mbps) 86.4 108 129.6

CA 124s 128s 133s

End-point Adaptation 72s 76s 98s

Static Channel Mapping 50s 60s 69s

HyperRAN EP1 41s 48s 49s

HyperRAN EP2 40s 48s 50s

Volumetric Video Baseline Scenarios and Metrics Collected. We evaluate two

Hyper Scheduler policies EP1 and EP2 in the Volumetric Video streaming scenario

against a case where video is delivered with CA, where Static Channel Mapping as-

signs specific QFI marked packets to a specific radio channel, and where an End-point

Adaptation algorithm adjusts streaming bitrates in face of network constraints. We also

evaluate a multiple UEs case with two simultaneous devices running video streaming.

We collect two metrics: (1) Stall time, the amount of time a stream spends waiting for

data to come in and (2) Buffer size, the amount of frames in the client buffer awaiting

playback.



82

Table 5.6: Video Stall Time (Driving) - Multiple UEs- Hybrid Experiments.

Points/Frame 4K 5K 6K

Required Tput 86.4 108 129.6

Static Channel Mapping 179s 213s 280s

HyperRAN EP2 65s 82s 95s

0

20

40

60

80

B
u

ff
e
r 

S
iz

e
 (

#
F
ra

m
e
s)

Base Layer
Enhancement Layer 1
Enhancement Layer 2

0 5 10 15 20 25 30 35 40
Timeline (seconds)

0

50

100

150

200

P
ro

g
re

ss
(#

F
ra

m
e
)

#Frame Played

(a) CA

0

10

20

30

B
u

ff
e
r 

S
iz

e
 (

#
F
ra

m
e
s)

0 5 10 15 20 25
Timeline (seconds)

0

50

100

150

200
P

ro
g

re
ss

(#
F
ra

m
e
)

(b) Static Channel Mapping

0

10

20

30

40

B
u

ff
e
r 

S
iz

e
 (

#
F
ra

m
e
s)

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Timeline (seconds)

0

50

100

150

200

P
ro

g
re

ss
(#

F
ra

m
e
)

(c) HyperRAN EP1

0

10

20

30

B
u

ff
e
r 

S
iz

e
 (

#
F
ra

m
e
s)

0 2 4 6 8 10 12 14 16
Timeline (seconds)

0

50

100

150

200

P
ro

g
re

ss
(#

F
ra

m
e
)

(d) HyperRAN EP2

Figure 5.11: QoE Performance of 4K Points/Frame with Video Player Progress, Video Frame Quality
Metrics (Stationary). Upper subfigures report buffer size for each layer during transmission, and lower
subfigures report the number of frames sent as the progress. The lower buffer size and shorter total
transmission time indicate better performance.



83

Results. Our evaluations are outlined in Tables 5.4, 5.5 and Fig.5.11. From the

experimental results, we see that the CA case has the highest buffer size, indicating

failures to deliver the base layers (refer Fig. 5.11a), resulting in frequent stalls averaging

a total of 55 seconds. Fig. 5.11b shows that the Static Channel Mapping case fairs a little

better utilizing both radios to effectively deliver more layers, but due to enhancement

layers competing for radio resources with the base layers, the overall stall time is still

quite high at an average of 25 seconds. As shown in Table 5.4, EP1 and EP2 provide

a dramatically lower stall rate averaging 13 seconds, yielding a 46-75% reduction in

stall time compared to the baselines. Notably, despite the application-level adaptation

occurring in the End-point Adaptation approach, HyperRAN’s RAN level optimizations

provide better performance.

Considering the mobility cases, despite the more challenging mobility of driving,

we see in Table 5.5, HyperRAN provides a 22-64% improvement to stall time over

the baselines. This is even more noticeable under the multiple UEs assumption where

HyperRAN EP2 results in a 63% reduction in stall time. Another contrast, the CA case

is unable to deliver enhancement layers or base layers effectively due to poor utilization

of radio resources. As shown in Figs. 5.11c & 5.11d, HyperRAN achieves the best

overall performance by dropping enhancement layers under bottleneck and prioritizing

base layers delivery. This is visualized in the tighter spread of stall times observed

in Fig. 5.14, where the CA case sees a wide range and overall worse performance for

base layers and enhancement layers contrasted with the enhancement-less EP1 and EP2

cases.

5.6.2 Prioritizing Context Important LiDAR Data through Smart Par-

titioning

Application Semantics. To leverage HyperRAN for the LiDAR use-case we identify

application semantics needed for streaming. LiDAR is composed of many point samples

generated by a full 360-degree sweep around a device. This constitutes a large amount of

data to transmit, and not all of this is equally important at all times. From a Connected

Autonomous Vehicle (CAV) example with the LiDAR scan broken up in Fig. 5.15, a

vehicle may be spotted only in sector Q1 & Q2, and thus be critical data to send

leaving the other zones at a lower priority. We annotate the LiDAR data with priority



84

0 10 20 30 40
Test Runtime (S)

0
1
2
3
4
5
6

Pa
ck

et
 D

el
ay

 (S
ec

on
ds

)

Sector 1
Sector 3
Sector 4

(a) Static Channel Mapping.

0 10 20 30 40
Test Runtime (S)

0
1
2
3
4
5
6

Pa
ck

et
 D

el
ay

 (S
ec

on
ds

)

Sector 1
Sector 2
Sector 3
Sector 4

(b) HyperRAN EP2 QFI-based Dynamic Mapping.

Figure 5.12: Baseline vs HyperRAN for QFI Timing (Stationary).



85

0 10 20 30 40
Test Runtime (S)

0
1
2
3
4
5
6

Pa
ck

et
 D

el
ay

 (S
ec

on
ds

)

Sector 1
Sector 3
Sector 4

(a) Static Channel Mapping

0 10 20 30 40
Test Runtime (S)

0
1
2
3
4
5
6

Pa
ck

et
 D

el
ay

 (S
ec

on
ds

)

Sector 1
Sector 3
Sector 4

(b) HyperRAN EP2

Figure 5.13: Multiple UEs, LiDAR and 6K Video (Driving).



86

Baseline Static EP1 EP2
0.0

0.1

0.2

0.3

0.4

St
al

l T
im

e 
(s

ec
on

ds
) Base Layers

Enhancement Layers

Figure 5.14: Stall Time of Base & Enhancement Layers of 4K Points/Frame (Stationary).

semantics and HyperRAN will deliver each partition’s LiDAR data with Q1 & Q2 at

highest priority. The priority attached to Q1 & Q2 could migrate to Q3 and Q4 as the

sighted vehicle is detected in those subsequent sectors, resulting in lower priority for the

now empty Q1 & Q2. HyperRAN may also discard data in sectors that are delivered

too late, as in the real use-case samples where a vehicle was is not as important as where

it currently is. Additionally, in the creation of these semantics we leverage HyperRAN’s

multi-radio support to send the top priority sectors on two different radios along with

the lower priority sectors reducing competition for radio resources.

LiDAR Baseline Scenario and Metrics Collected. We evaluate against a simple

Static Channel Mapping (SCM) case, providing a baseline and contrast for HyperRAN’s

ability to deliver semantically marked traffic over a diverse radio and condition envi-

ronment. We utilize two test cases: (1) Like the example described above, two vehicles

enter the radius of the detecting vehicle, resulting in the need to prioritize the sectors

where the vehicles are and change priority as the vehicle moves around the LiDAR. The

priority order of vehicle 1 is 8 & 7 then 6 & 5. Vehicle 2’s order is 1 & 2 then 2 & 3. (2)

We evaluate a multiple UEs case wherein volumetric video streaming at differing quality

rates is occurring alongside LiDAR streaming on two separate devices going through

the same RAN. This illustrates how HyperRAN leverages WPS to improve delivery of



87

Truck

Truck

Q1 Q2
Q3

Q4 Q1 Q4
Q5Q6

Q7

Q8

Q2 Q3

Figure 5.15: LiDAR and Sectors Reference.

Table 5.7: LiDAR Metrics. Priority Swapping Tests. (Stationary)

Approach Sector Avg Sample Avg Sample Sector Avg Sample Avg Sample
Latency (S) Loss % Latency (S) Loss %

Static Channel Mapping

Sector 1 0.85 ± 0.07 99.90% Sector 5 6.19 ± 2.17 64.66%
Sector 2 N/A ± N/A 100.00% Sector 6 5.53 ± 2.25 57.93%
Sector 3 4.22 ± 1.20 56.50% Sector 7 3.53 ± 1.30 90.52%
Sector 4 4.13 ± 1.20 55.24% Sector 8 4.22 ± 0.76 98.02%

HyperRAN EP2

Sector 1 0.46 ± 0.13 63.18% Sector 5 1.55 ± 0.75 74.45%
Sector 2 0.42 ± 0.13 62.28% Sector 6 1.49 ± 0.75 74.89%
Sector 3 2.01 ± 1.54 76.33% Sector 7 0.66 ± 0.48 66.84%
Sector 4 1.93 ± 1.48 76.24% Sector 8 0.70 ± 0.48 66.38%

LiDAR data under multiple client’s pressure. There are no changing priorities for this

use-case and Sectors 3, 4, 5, and 6 are set as high priority. From our experiments we

collect (1) Packets Discarded by Policy, which reflects the number of packets the Hyper-

RAN policy drops during operation, (2) Time Packet in Queue, which reflects how much

time a packet held by the RAN is queued before being delivered to the destination, (3)

Sample Latency, which is the application-level time it takes for a single LiDAR sample

(made up of several packets) to arrive on the destination side, and (4) the Sample Loss,

which is how many LiDAR samples were lost vs those sent by the client application.

Results. In Table. 5.7, we see the baseline SCM struggle to consistently and quickly

deliver data packets resulting in latency roughly 2x+ slower than the HyperRAN results.

We also see HyperRAN’s discard policy helping to lower the overall packet loss by

around 7.7% across all sectors. Similarly, this discard and priority approach overcomes

the significant sector failure the baseline suffered with Sectors 1 and 2. With further



88

Table 5.8: RAN Metrics, Multiple UEs 6K Video Streaming (Driving).

Approach QFI Time Packet Packets Discarded
in Queue (S) By Policy

HyperRAN EP2

11 1.18± 0.80 0.00%
12 2.71± 2.27 0.00%
13 3.82± 2.38 99.89%
14 7.77± 6.77 99.69%

Static Channel Mapping

11 6.35± 2.36 0.00%
12 11.82± 4.31 0.00%
13 5.84± 2.18 0.00%
14 12.58± 4.48 0.00%

examination of the SCM case in Fig. 5.12a, we see failure to deliver virtually all of

Sector 2 & 1’s packets. In contrast, in HyperRAN’s Fig. 5.12b, we see prioritization

delivers Sector 1 & 2 with lower loss rates and faster speeds, and then swaps priority

to Sector 3 & 4 for the second half. Note: Sectors 5-8 omitted from figures for clarity.

From the second test case involving multiple UEs and parallel video streaming, we see

that HyperRAN provides a beneficial triage-like effect under network competition. In

Figs. 5.13a-5.13b HyperRAN provides a 2-4x reduction in latency for the higher priority

sectors (more in Table 5.9). This priority is reflected in the 100% (or near) loss rates

in the lower priority sectors as HyperRAN is discarding lower priority data to make

room for the LiDAR data amongst the video data pressure. This impact is reflected for

RAN metrics in Table. 5.8 where we see overall loss is shifted onto the lower priority

QFI values providing lower 15% lower loss rate and faster speeds. Note: The video

and LiDAR share the same prioritization, and thus when grouped by QFI will contain

values differing somewhat from the LiDAR specific results. Note: LiDAR sends lots of

UDP data and the constrained nature of our testing system results in high loss such as

the 90% observed in baseline.

5.7 Related Work

Since the late 90’s [92, 93], scheduling algorithms in wireless data networks that take

into account channel conditions, diversity and fairness while providing QoS to users

have been studied extensively; voluminous theoretical studies have been published, see,

e.g., [94, 95, 96, 97, 98, 83, 99, 100] and survey paper [101]. Measurement-based and

theoretical analysis of its effectiveness in these networks have been carried out, see,



89

Table 5.9: LiDAR QoS and QoE Metrics, Multiple UEs Tests alongside Volumetric Video Streaming.

Approach Sector Avg Sample Avg Sample Sector Avg Sample Avg Sample
Latency (S) Loss % Latency (S) Loss %

HyperRAN EP2 - 4k

1 nan ± nan 100.00% 5 1.77 ± 0.71 65.33%
2 nan ± nan 100.00% 6 1.65 ± 0.68 66.30%
3 3.10 ± 1.58 68.26% 7 nan ± nan 100.00%
4 2.94 ± 1.57 67.02% 8 1.36 ± 0.20 99.95%

Static Channel Mapping - 4k

1 14.61 ± 3.06 94.78% 5 7.54 ± 1.52 84.80%
2 14.54 ± 1.17 98.93% 6 7.01 ± 1.94 82.56%
3 12.38 ± 4.75 83.16% 7 5.94 ± 3.18 91.78%
4 12.80 ± 4.61 79.91% 8 6.07 ± 3.40 94.27%

HyperRAN EP2 - 6k

1 0.57 ± 0.56 99.80% 5 2.00 ± 0.81 64.80%
2 nan ± nan 100.00% 6 1.93 ± 0.81 65.94%
3 2.95 ± 1.81 70.27% 7 nan ± nan 100.00%
4 2.86 ± 1.82 69.59% 8 nan ± nan 100.00%

Static Channel Mapping - 6k

1 9.13 ± 5.18 99.83% 5 3.89 ± 1.96 99.58%
2 nan ± nan 100.00% 6 5.08 ± 2.72 93.75%
3 12.94 ± 4.46 79.59% 7 6.83 ± 2.34 78.12%
4 12.71 ± 4.35 78.33% 8 7.52 ± 2.01 82.96%

e.g., [102, 103, 82, 104]. None of these studies consider incorporating application se-

mantics in scheduling decisions. Cross-layer design has been a major theme in wireless

networks, but most studies largely rely on passing relevant information up or down

the protocol stack to address specific problems, e.g., congestion control and related is-

sues [105, 106, 107, 108, 109, 110, 111, 112]. Network slicing is another topic that has

been widely studied, see [113] for examining the use of network slicing to support QoS

in 5G networks. Machine learning has been widely applied to tackle various problems

in wireless networks, e.g., for spectrum monitoring, channel modeling and estimation,

massive MIMO and beam-forming, power control, user detection and mobility tracking,

and so forth (see, e.g., [114, 115, 116, 117, 118]; and [119, 120, 121, 122, 123] for surveys).

None of these studies tackle the fundamental limitations of the current 5G network ar-

chitecture. The two available open source RAN projects OAI [55] and srsRAN [71]

doesn’t support multiple-bands simultaneously. We first highlight the limitations of 5G

flow-based QoS architecture in an earlier position paper [124] and prototype paper [125].

5.8 Summary

In this chapter, we designed, implemented, and evaluated HyperRAN, a fine-grained,

cross-edged, QoS framework that provides an enhanced QoE for emerging applications.



90

HyperRAN is the first framework that supports emulation of multiple channels simulta-

neously and excels in performance when compared to other available open-source RAN

systems. The Hyper Scheduler is integrated with the O-RAN RIC and send metrics. Our

system provides significant stability and improved QoS and QoE for relevant use-cases

in volumetric video and LiDAR streaming. In the future, we plan to employ machine

learning algorithms on the collected data to more efficiently use the radio resources.

We would also like to exploit the LiDAR data and perform packet-based QoS approach

to efficiently prioritize critical data and to drop/de-prioritize irrelevant/lower priority

frames. Finally, we hope to examine real-time smart prioritization of multi-modal data

streams.



Chapter 6

PRANAVAM: Scaling Private 5G

RAN via eBPF+XDP

6.1 Introduction

With the needs for more flexibility, openness and programmability, not only cellular core

networks but also radio access networks (RANs) are moving towards virtualization and

cloudification. Both 3GPP and the Open-RAN (O-RAN) Alliance have introduced new

disaggregated RAN architectures that divide 5G RANs into, for example, Central Unit

(CU) and Distributed Unit (DU). CU is further split into CU-UP (CU user plane) and

CU-CP (CU control plane), see Chapter 2 for more details. In particular, the O-RAN

Alliance has introduced intelligent RAN controllers (RICs) and defined open interfaces

for communications among the disaggregated units and RICs. Softwarization or “cloud-

ification” of 5G and Next-Generation (NextG) RANs and core networks are especially

appealing to many industrial use cases, as it makes it easier to support industrial ver-

ticals and private 5G [126] and NextG networks For example, RAN functionality can

be tailored to the specific bandwidth, latency and reliability requirements of these use

cases, and existing features may be upgraded or new features can be readily rolled out

as the requirements or use cases change over time.

While software affords the benefits of programmability and scale-out, software imple-

mentation of RAN is in generally far slower than dedicated hardware appliances. This

is further compounded by the needs for more complex, dynamic and intelligent features

91



92

in NextG RANs. This is particular the case for applications that that require a large

number of simultaneous connections, high bandwidth, low latency and stringent relia-

bility such as many industrial IoT (Internet of Things) and Industrial 4.0 Digital Twins

use cases. Therefore, scaling the NextG RAN software architecture while maintaining

its programmability and openness is a key challenge in future RAN development.

In this work we advocate an eBPF+XDP-based framework for scaling and acceler-

ating software packet processing in NextG RANs. As a concrete example, we focus on

5G CU-UP as a key case study. On the one hand, CU-UP performs the upper layers

of the 5G RAN protocol stack – Service Data Adaptation Protocol (SDAP) and Packet

Data Convergence Protocol (PDCP) – and does not require specialized radio signal

processing hardware (see Chapter 2). On the other hand, CU-UP often connects with

several UPFs (User Plane Functions) in the 5G core as well as multiple DUs. As it

lies on the critical path between the users and service endpoints, it must be capable

of processing 10s or 100s millions of downlink packets from the core network to user

equipment (UE) and uplink packets from UE to the core network per second in order to

meet the bandwidth demands and minimize latency. Taking advantage that connections

between CU-DU and CU-UPF are Ethernet-based, we exploit exploit eBPF and XDP

for kernel extension, kernel bypassing and software packet processing optimization. We

summarize the key contributions of our chapter below.

• We present an eBPF+XDP-based framework, dubbed PRANAVAM, for (O-RAN

compliant) future RAN architecture development. Using 5G CU-UP as a key case study,

we outline the initial design of our proposed PRANAVAM.

• Using eBPF+XDP for kernel extension/bypassing, our preliminary evaluation

shows that PRANAVAM improves the throughput by 22-26% over existing 5G RAN

implementations. We will make our code publicly available.

• We also discuss an additional design, PRAVEGA, in which the GTP-U packets

are completely handled in the kernel space without being sent to the user space.

• We also discuss additional options to further accelerate software packet processing

to scale 5G RAN implementation to meet bandwidth and latency demands.

While our initial design focuses on 5G RAN CU-UP, the ultimate goal is to apply

PRANAVAM as a general framework for future RAN architecture development to meet

the needs for openness, programmability, scalability and evolvability.



93

6.2 Design

In this section, we present PRANAVAM’s architecture and design for fast processing

of user plane packets in CU-UP of the RAN. The overall design of PRANAVAM is

schematically sketched in Fig.6.1.

Features. The key feature of CU-UP is routing and forwarding packets to respective

DUs in downlink or UPFs in uplink. The main features supported by PRANAVAM are

listed below:

eBPF Maps. There are several types of eBPF Maps [127] available and each map is

used for a particular purpose. In our design, we use two types of eBPF Maps. First,

the ”eBPF XSKMAP Map”, which is used to redirects raw XDP frames to AF XDP

sockets (XSKs) and it has two ring buffers, ”RX Ring” and ”TX Ring”. Second, ”eBPF

PERCPU ARRAY Map”, which is used to store and retrieve traffic statistics between

the kernel and user space. More details about how these eBPF Maps are used are

discussed in detail in the below sections.

Design. As shown in Fig.6.1, PRANAVAM is divided into three layers: (i) Management

Layer, (ii) Data Path Kernel Layer (DPKL), and (iii) Data Path User Layer (DPUL).

During uplink or downlink, the user plane data passes through both DPKL and DPUL.

The packets are processed differently during uplink and downlink. We will discuss the

detailed design of each of these layers below.

6.2.1 Management Layer

This is one of the user space layer which manages the control plane part of PRANAVAM.

The Management Layer consists of three main components as listed below:

(i) E1 Session Manager. It actively manages the E1 Session of CU-UP with CU-

CP. During start-up, the CU-UP connects to the configured CU-CP. The CU-UP can

connect to only one CU-CP. For each connected UE, the CU-CP instructs CU-UP with

necessary information about the UE which includes QFI to DRB mapping and along

with the ciphering and integrity protection for each DRBs. The E1 Session Manager

instructs the eBPF Program Manager to dynamically load the eBPF program into the

kernel space.



94

Data Path User Layer

SDAP

PDCP

NIC

Parser

User Space

Kernel Space

Hardware

C/C++ libbpf Library

Classifier

Rx Ring Data Path Kernel Layer (XDP/eBPF)

UPFs

DUs

Management Layer

eBPF Program 

Manager

eBPF 

Programs

CU-CP

CU-UP

N3

E1-C

E1 Session 

Manager

F1-U

GTP-U Packets

XDP_REDIRECT

QFI

Mapped 

to DRB

Integrity 

Protection

Ciphering

Sequencing

XDP_PASS

eBPF 

Maps
Network Stack

IP

UDP

Tx Ring

Report 

Manager

Downlink

Uplink

Both

Figure 6.1: PRANAVAM- eBPF/XDP Socket Based CU-UP

(ii) eBPF Program Manager. It is responsible to manage the lifecycle of the

eBPF program. Based on the instruction from the E1 Session Manager, it loads the

eBPF bytecode in the kernel space. There will be only one eBPF program per NIC. If



95

the CU-UP machine has multiple NIC, then the eBPF Program Manager loads a eBPF

program for each NIC.

(iii) Report Manager. It manages the status and statistical information of the

components of PRANAVAM. It interacts with the ”eBPF PERCPU ARRAY Map” to

get the sent and received packets information in the DPKL periodically. It also gets the

sent and received packets information in the DPUL as well using an API.

6.2.2 Data Path Kernel Layer

This is the kernel space layer which process the user plane traffic inside the eBPF/XDP

and is one of the Data Path layers. The DPKL uses ”eBPF XSKMAP Map” to send

(downlink) and receive (uplink) packets directly to and from the DPUL.

Downlink During downlink, the CU-UP receives the user plane data from the UPFs.

Following are the key components of DPKL for downlink:

(i) Parser. This is the first component which gets called for each packet (from the

UPF) received in the NIC. The main functionality of the Parser is to parse each packet

and validate it for valid ”ethernet header” structure. If the packet doesn’t have valid

structure, then the packets are dropped using ”XDP DROP”. The Parser component

passes the valid packets to the Classifier.

(ii) Classifier. It classifies and send downlink GTP-U packets to DPUL using

”XDP REDIRECT” through ”eBPF XSKMAP Map” and pass other packets to the

network stack using ”XDP PASS”. The classifier uses two fields each GTP-U packet

to classify downlink GTP-U packets. The first field is ”Message Type” and the value

should be ”255” for GTP-U PDU Sessions. And the next field is ”PDU Type” in the

”PDU Session Container” extension header of the GTP-U packet which should be ”0”

for downlink. The value will be ”1” for uplink GTP-U packets. When a GTP-U packet

contains any other value in either of these fields, then the packet will be sent to the

network stack rather than ”eBPF XSKMAP Map”.

Uplink There is no work in kernel space for uplink because the GTP-U packets are al-

ready parsed, classified and inserted directly into the ”eBPF XSKMAP Map”s ”TX Ring”

and assigned to the kernel space in the user space itself, which sends the packets to the

UPF through the NIC.



96

6.2.3 Data Path User Layer

DPUL is the other user space layer and the other part of the Data Path layer. This

layer consists of the higher layers of the RAN protocol stack such as PDCP and SDAP.

DownlinkDuring downlink, the packets from the DPKL are available in ”eBPF XSKMAP

Map”s ”RX Ring”. DPUL polls the ”eBPF XSKMAP Map”s ”RX Ring” for packets.

First, each packet is processed for SDAP function in which the QFI value is retrieved and

respective DRB is assigned in the PDCP function based on the QFI to DRB mapping.

Next, the data undergoes the configured PDCP function processing such as integrity

protection and ciphering. Finally, the data is routed to the respective DU based on the

established PDU session.

Uplink In the current design, eBPF is not used for data data traffic between CU-

UP and DUs. During uplink, DPUL receives the user plane data from the DUs using

regular socket, then process the PDCP function and assign the data to the respective

DRBs in which integrity protection and ciphering are done. Next, the SDAP function

is processed and the respective DRB to QFI mapping is assigned. Finally, instead of

routing the packet to UPF using regular socket, the data is inserted into the ”eBPF

XSKMAP Map”s ”TX Ring”. In order to send the data to the UPF, the kernel need

to be explicitly notified using the ”sendto()” call.

6.3 Implementation

In this section, we briefly discuss the implementation of PRANAVAM’s design discussed

in §6.2. For CU-UP, we considered to leverage either srsRAN [71] or Open Air Inter-

face (OAI) RAN [55]. We decided to leverage OAI because OAI supports the O-RAN

split using multiple network interfaces. Even though srsRAN claims that they support

O-RAN support, their CU-CP, CU-UP and DU are integrated with tightly-coupled func-

tion calls and not network interfaces. The Management Layer and DPUL are developed

in C and the DPKL is developed using restrict C. As discussed in the design section,

we implemented two types of eBPF Maps and the ”eBPF XSKMAP Map” has two ring

buffers. Not all network interfaces support XDP (native mode), so we added support

for both generic and native mode. In generic mode, PRANAVAM will work continue to

work without any issues but there won’t be any improved performance as seen in native



97

mode. In order to avoid packet loss during heavy traffic and for better performance

since we run the application and the driver on the same core, PRANAVAM supports

poll mode. Even if we run the CU-UP and the kernel driver in different cores, poll mode

reduces the number of syscalls needed for TX path.

6.4 Preliminary Evaluation

6.4.1 Test Setup

The test setup for PRANAVAM’s performance evaluation is shown in Fig.6.2. We

conducted the experiments in a 6 CPU and 8GB RAM Ubuntu 20.04.6 OS virtual

machine created on top of 11th Gen Intel(R) Core(TM) i3, 4 Cores, 8 logical processors

machine. The end-to-end 5G system which consists of 5G core, RAN and UE was

emulated in a single machine. We used OAIs 5G core, CU-CP, DU, UE along with our

modified CU-UP for our experiments. Each component (AMF, SMF, NRF, UPF) of

the OAIs 5G core were running in its own docker container inside the virtual machine.

The CU-CP, CU-UP, DU and UE were ran as processes inside the virtual machine. We

didn’t isolate the system under test on purpose because we want to show the end-to-end

performance results under close to realistic conditions.

UPFDU
CU-UP

eBPF Based
UE

CU-CP

F1-U N3

E2

iPerf3 

Server

Figure 6.2: Test Setup

6.4.2 Data Traffic Generation

For evaluation, we used iperf3 [128] as a data generator. Our focus was on comparing

the performance between regular socket and eBPF/XDP socket. We didn’t use high-

speed traffic generators because the other OAI components used in the end-to-end tests



98

don’t achieve higher throughput. We ran the iperf3 server in a server machine behind

UPF and the client in the OAI UE. In the client side, we used -P option to generate

multiple parallel flows for generating diverse traffic, -u for UDP packets and -R option

to conduct performance evaluation in the downlink direction.

6.4.3 Results

Fig.6.3 shows the throughput per number of parallel connections from a single UE. The

results shows a performance improvement of around 22-26 percent in PRANAVAM in

the downlink direction from the 5G core to UE. There is a linearity between the number

of parallel connections and the throughput. We also noticed that there is a performance

degrade in both regular socket and XDP as the number of parallel connection increases.

We have shown the results only for the downlink direction as the results are clearly

visible when heavy traffic is going from 5G core to UE than the uplink traffic from the

UE to the 5G core. We would like to provide additional clarification on the throughput

shown in Fig.6.3. The downlink throughput for 1 connection from a single UE was

around 40 Mbps because of the throughput limitation of several others components

in the end-to-end system used for evaluation. As mentioned in the §6.3, we built our

solution on top of OAIs 5G core, RAN and UE reference implementation.

41

25

30

35

40

Parallel Connections (P)T
h
ro

u
g
h
p
u
t
(M

b
it
s/

S
e
co

n
d
s)

Regular

XDP

Figure 6.3: Performance Comparison Between Regular and XDP Socket - Downlink



99

6.5 PRAVEGA Design

In this section, we present the initial design of PRAVEGA. In this design, the GTP-U

packets are completely handled in the kernel space without being sent to the user space.

6.5.1 Kernel Based CU-UP

Fig.6.4 illustrates the proposed design for the pure kernel based CU-UP. The Data Path

Layer are configured by the Management Layer using eBPF Maps [127]. The detailed

workflow of this design is shown in Fig.6.5. The key components of this design are

discussed below:

NIC

PARSER

User Space
Control Plane

Kernel Space
Data Plane

Hardware

C/C++ libbpf Library

eBPF 
Maps

CLASSIFIER FORWARDER

Rx Ring Tx Ring
Data Path Layer

UPFs DUs

Management Layer

eBPF Program 
Manager

eBPF 
Programs

CU-CP

CU-UP

N3 F1-U

E1-C E1 Session Manager

Report 
Manager

Figure 6.4: PRAVEGA- Pure Kernel eBPF Based CU-UP



100

Parser. The ’Parser’ component gets called for each packet received in the NIC.

’Parser’ filters and send GTP-U user plane packets to ’Classifier’ and pass the other

type of packets to the network stack.

Classifier. The ’Classifier’ which processes the SDAP layer, retrieves the PDU session

and QFI value from each packet. Next, it validates the PDU session information and

assign the respective DRB for each packet based on the QFI-DRB Mapping. Finally, it

forwards the packet to the ’Forwarder’.

Forwarder. The ’Forwarder’ which processes the PDCP layer, consists of a set of

DRBs per UE. Each packet passes through the respective DRB undergoing integrity

protection, ciphering and sequence numbering. Finally, it routes the modified GTP-U

packet to the respective DU based on the established PDU session.

NIC RX NIC TXPARSER

GTP-U Packets

UPFs N3 DUs

XDP_REDIRECT

QFI-DRB 
Mapping

PDU 
Sessions

Tunnel ID
PDU Session

QFI
QFI

Mapped to DRB

Integrity Protection

Ciphering

Sequencing

DOWNLINK

F1-U

CLASSIFIER

FORWARDER

Figure 6.5: Pure Kernel eBPF Based CU-UP Flow - Downlink

6.6 Additional Design Options

To improve performance and better utilize computational resources, we explore dynam-

ically offloading operations to the DPU, particularly ciphering. As it needs to perform

operations on every bit of the packet payload, ciphering is CPU intensive [129] and can



101

DPU

eBPF

Ciph/Deciph

Host

VFVF

128-EEA3

CU-UP

UPF 
Traffic

Classifier

    
       

        eBPF

VF

DispatcherPF

2

3

1 No Cipher ing 23 Cipher ing

1

Per-flow
Ciph
Policy

Figure 6.6: Ciphering Offloading Design

pollute the cache (which is crucial for the performance of stateful packet processing on

the host [130, 131, 132], and mitigate interference on other cores [133]). To improve

CPU utilization, cache efficiency, and leverage cost-efficiency cores on DPU, we design a

ciphering operations offloading policy and dynamically offload the ciphering/deciphering

operations to the SmartNIC. The dynamically offloading policy can be based on, but

not limited to, the following factors: the high-level policy associated with the QoS flows

on the types of traffic (whether it is sensitive information), the movement of the users

(whether user move from a secure environment to an insecure environment), and the

load current hardware infrastructure can handle.

Fig.6.6 illustrates the design of the offloading of ciphering operations of the downlink

traffic path on 5G CU-UP. When traffic arrives at the DPU, the hardware can provide

coarse-grained classification based on whether the traffic needs ciphering based on the

installed rules (such as OVS rules on Bluefield SmartNIC). If it does not, the traffic

will be sent to the host directly for further processing. And if not sure, the traffic

will be processed by the eBPF/DPDK based ciphering/deciphering network functions

running in the general-purpose processing unit (core) on the SmartNIC. The network



102

Offloaded Baseline0

5

10
Th

ro
ug

hp
ut

 (G
bp

s)

Offloaded Baseline0.8

0.9

1.0

1.1

1.2

1.3

LL
C 

M
iss

es
 P

er
 P

ac
ke

t

Figure 6.7: Preliminary Evaluation on Offloading Ciphering.

function consists of a stateful classifier that classifies packets based on the per-flow

ciphering policy, which is dynamically changed based on the high-level policy and current

environment. Based on the policy, the packet will be sent directly to the host or ciphered

by the ciphering module. Using this design, we allow for a fine-grained policy to improve

both the security and efficiency of the RAN system.

We have performed a preliminary evaluation ( Fig.6.7) of the potential benefits on

a server to show its effectiveness. We play a synthetic traffic of 1024-byte packets with

50% of the traffic that requires ciphering operations. With the offloading feature on,

traffic is instead sent to the ciphering component in SmartNIC for ciphering as designed.

From the result we show that offloading can improve the performance of the data plane

and improve the utilization of the host cache.

6.7 Related Work

While eBPF and eBPF/XDP have been widely used in various (wired) networking and

cloud computing systems, for example, to optimize service mesh/serverless comput-

ing [134], their application to 5G networks are rather limited. We are aware of only

two recent papers, both apply eBPF/XDP to 5G core networks. In [135], eBPF/XDP

based 5G UPF is implemented and they deploy it in a restrictive environment such

as MEC (multi-access edge computing). In another paper [136], the focus is again on



103

eBPF/XDP kernel-based 5G UPF with fallback on user-space for more complex packet

handling. In [137], the authors proposed a 5G Mobile Gateway based on eBPF/XDP,

but the solution is completely implemented in the 5G core. None of these works consider

applying eBPF/XDP to 5G RAN. In a two-page poster paper [138], we outlined an ini-

tial design of a purely kernel-based CU-UP design. Building on this, in this chapter we

advance, implement and evaluate the combination of user-space+kernel-based CU-UP

framework.

6.8 Summary

In this chapter, we designed, and evaluated PRANAVAM, an eBPF+XDP based frame-

work for open, programmable and scalable NextG RANs. Our evaluation shows that

there is more than 22% improvement in PRANAVAM when compared to using regular

sockets. We also discuss the design of offloading the ciphering operations to the Smart-

NIC using fine-grained, dynamic per-flow ciphering policy to improve the efficiency of

the host and the security of the 5G RAN. As a future work, we are planning to imple-

ment the entire data plane layers of each components in the NextG system using eBPF

and evaluate our system using real-world workload.



Chapter 7

Conclusion

In this thesis, we proposed a few solutions to improve the interoperability in the IoT

Ecosystem. Although we came up with an approach to support interoperability from

the IoT gateway to the cloud, there are still challenges connecting multi-vendor down-

stream IoT devices to a vendor-specific IoT gateway, especially due to the vendor-specific

security mechanisms implemented in the IoT gateway and IoT hub. The proposed en-

hancements to the message subscriptions proves the possibility of local configuration

and control of the message subscriptions framework and also enhances the message sub-

scriptions functionality provided by the respective CSPs by adding an enable or disable

option to the individual message subscription without any configuration changes in the

IoT hub. The evaluation shows that the proposed method didn’t increase any signifi-

cant latency in the message communication between the entities. Using our proposed

simulation framework, we were able to simulate multi-vendor specific IoT devices in a

single simulation framework. The régulateur disables the communication between any

entities when the specific message topic or endpoint or payload matches the local con-

figuration to disable the communication. As of now, it doesn’t disable communication

only between two entities. But in future, we can extend this functionality to disable

communication only between two entities. The régulateur is implemented as a module

but we have a plan to integrate this functionality to the IoT gateway’s runtime itself

to decrease the latency. And also there are no standard message subscriptions frame-

work followed by the CSPs, AWS uses MQTT topic and Azure uses endpoints, we are

planning to propose a standard message subscriptions framework in IoT gateway. We

104



105

didn’t run any server instances in the IoT hub to collect any metrics to understand

and analyze the performance impact in the IoT hub, so our future work will focus on

extending the performance evaluation to the IoT hub.

We have presented Kaala 2.0 – a modelling, simulation and emulation platform

that are capable of creating IoT devices of various types. Using our proposed simula-

tion framework, we were able to simulate multi-vendor specific IoT devices in a single

simulation framework. We also simulated real-time events like fire in a room/building

scenario and evaluated how this work can be extended for other real-time scenarios. We

were able to simulate devices which can generate large amount of data to verify and

validate 5G technology.

We argued for the need to shift the way we develop applications for 5G to utilize

ML throughput prediction, adaptive content bursting, dynamic radio(band) switching

to make video streaming applications 5G-aware. Using real-world 5G traces, our results

show these mechanisms can improve user’s QoE, despite wildly varying 5G throughput.

We designed, implemented, and evaluated HyperRAN, a fine-grained, cross-edged,

QoS framework that provides an enhanced QoE for emerging applications. Our frame-

work is first to support emulation of multiple channels simultaneously. HyperRAN also

excels in performance when compared to other available open-source RAN systems.

The Hyper Scheduler is integrated with the O-RAN RIC and send metrics. Our system

leverages these features to provide significant stability and improved QoS and QoE for

relevant use-cases in volumetric video and LiDAR streaming. In the future, we plan to

employ machine learning algorithms on the collected data to more efficiently use the

radio resources. We would also like to exploit the LiDAR data and perform packet-

based QoS approach to efficiently prioritize critical data and to drop/de-prioritize irrel-

evant/lower priority frames. Finally, we hope to examine real-time smart prioritization

of multi-modal data streams.

Finally, we designed, and evaluated PRANAVAM, an eBPF+XDP based framework

for open, programmable and scalable NextG RANs. Our evaluation shows that there is

more than 22% improvement in PRANAVAM when compared to using regular sockets.

We also discuss the design of offloading the ciphering operations to the SmartNIC using

fine-grained, dynamic per-flow ciphering policy to improve the efficiency of the host and

the security of the 5G RAN. As a future work, we are planning to implement the entire



106

data plane layers of each components in the NextG system using eBPF and evaluate

our system using real-world workload.



References

[1] Deloitte. Rewriting the rules for the digital age, 2017.

[2] 3GPP. 5G NR; Physical channels and modulation. Technical Specification (TS)

38.211, 3rd Generation Partnership Project (3GPP), 04 2018. Version 14.2.2.

[3] O-RAN Alliance. O-ran alliance, 2023.

[4] Sharu Bansal and Dilip Kumar. Iot ecosystem: A survey on devices, gateways, op-

erating systems, middleware and communication. International Journal of Wire-

less Information Networks, pages 1–25, 2020.

[5] Jinhwan Jung, Jihoon Ryoo, Yung Yi, and Song Min Kim. Gateway over the air:

towards pervasive internet connectivity for commodity iot. In Eyal de Lara, Iqbal

Mohomed, Jason Nieh, and Elizabeth M. Belding, editors, MobiSys ’20: The 18th

Annual International Conference on Mobile Systems, Applications, and Services,

Toronto, Ontario, Canada, June 15-19, 2020, pages 54–66. ACM, 2020.

[6] Aditya Nugur, Manisa Pipattanasomporn, Murat Kuzlu, and Saifur Rahman.

Design and development of an iot gateway for smart building applications. IEEE

Internet Things J., 6(5):9020–9029, 2019.

[7] Partha Pratim Ray, Nishant Thapa, and Dinesh Dash. Implementation and perfor-

mance analysis of interoperable and heterogeneous iot-edge gateway for pervasive

wellness care. IEEE Trans. Consumer Electron., 65(4):464–473, 2019.

[8] Tolulope Adesina and Oladiipo Osasona. A novel cognitive iot gateway framework:

Towards a holistic approach to iot interoperability. In 2019 IEEE 5th World Forum

on Internet of Things (WF-IoT), pages 53–58. IEEE, 2019.

107



108

[9] Jose Macias, Harold Pinilla, Wilder E. Castellanos, José Alvarado, and Andres

Sánchez. Design and implementation of a multiprotocol iot gateway. CoRR,

abs/2001.08171, 2020, 2001.08171.

[10] Mahda Noura, Mohammed Atiquzzaman, and Martin Gaedke. Interoperability

in internet of things: Taxonomies and open challenges. Mobile Networks and

Applications, 24(3):796–809, 2019.

[11] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy Katz,

Andy Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica, and

Matei Zaharia. A view of cloud computing. Commun. ACM, 53(4):50–58, April

2010.

[12] O. Bello M. Chernyshev, Z. Baig and S. Zeadally. Internet of things (iot): Re-

search, simulators, and testbeds. IEEE Internet of Things Journal, 5(3):1637–

1647, 2018.

[13] Blair Salama, Elkhatib. Iotnetsim: A modelling and simulation platform for end-

to-end iot services and networking. ACM SIGCOMM Computer Communication

Review, 2019.

[14] AWS. Iot device simulator.

[15] 3rd Generation Partnership Project. Release 15. https://www.3gpp.org/

release-15, April 2020.

[16] 3rd Generation Partnership Project. Release 16. https://www.3gpp.org/

release-16, July 2020.

[17] 3rd Generation Partnership Project. Release 17. https://www.3gpp.org/

release-17, March 2021.

[18] RF Wireless World. 5QI table — 5G QoS identifier values and meanings.

https://www.rfwireless-world.com/5G/5G-QoS-Identifier-5QI.html. Ac-

cess: 03/17/2023.

[19] Devopedia. 5G Quality of Service. https://devopedia.org/

5g-quality-of-service. Access: 03/17/2023.

https://www.3gpp.org/release-15
https://www.3gpp.org/release-15
https://www.3gpp.org/release-16
https://www.3gpp.org/release-16
https://www.3gpp.org/release-17
https://www.3gpp.org/release-17
https://www.rfwireless-world.com/5G/5G-QoS-Identifier-5QI.html
https://devopedia.org/5g-quality-of-service
https://devopedia.org/5g-quality-of-service


109

[20] O-RAN ALLIANCE. O-RAN Use Cases and Deployment Scenarios.

https://static1.squarespace.com/static/5ad774cce74940d7115044b0/

t/5e95a0a306c6ab2d1cbca4d3/1586864301196/O-RAN+Use+Cases+and+

Deployment+Scenarios+Whitepaper+February+2020.pdf.

[21] Wikipedia. Gprs tunnelling protocol, 2022.

[22] Common Public Radio Interface. Specification overview, 2023.

[23] Altexsoft. Making sense of iot platforms: Aws vs azure vs google vs ibm vs cisco,

2020.

[24] Microsoft. Configure an iot edge device to act as a transparent gateway.

[25] Ieee standard glossary of software engineering terminology. ANSI/ IEEE Std 729-

1983, pages 1–40, 1983.

[26] J. Kiljander, A. D’elia, F. Morandi, P. Hyttinen, J. Takalo-Mattila, A. Ylisaukko-

Oja, J. Soininen, and T. S. Cinotti. Semantic interoperability architecture for

pervasive computing and internet of things. IEEE Access, 2:856–873, 2014.

[27] ebpf - introduction, tutorials community resources, 2023.

[28] Toke Høiland-Jørgensen, Jesper Dangaard Brouer, Daniel Borkmann, John

Fastabend, Tom Herbert, David Ahern, and David Miller. The express data

path: Fast programmable packet processing in the operating system kernel. In

Proceedings of the 14th International Conference on Emerging Networking EXper-

iments and Technologies, CoNEXT ’18, page 54–66, New York, NY, USA, 2018.

Association for Computing Machinery.

[29] AWS IoT. Aws iot developer guide, 2020.

[30] Google Cloud . Overview of internet of things — solutions — google cloud, 02

2019.

[31] Google Cloud. Publishing over the http bridge — cloud iot core documentation,

2019.

https://static1.squarespace.com/static/5ad774cce74940d7115044b0/t/5e95a0a306c6ab2d1cbca4d3/1586864301196/O-RAN+Use+Cases+and+Deployment+Scenarios+Whitepaper+February+2020.pdf
https://static1.squarespace.com/static/5ad774cce74940d7115044b0/t/5e95a0a306c6ab2d1cbca4d3/1586864301196/O-RAN+Use+Cases+and+Deployment+Scenarios+Whitepaper+February+2020.pdf
https://static1.squarespace.com/static/5ad774cce74940d7115044b0/t/5e95a0a306c6ab2d1cbca4d3/1586864301196/O-RAN+Use+Cases+and+Deployment+Scenarios+Whitepaper+February+2020.pdf


110

[32] Google Cloud. Publishing over the mqtt bridge — cloud iot core documentation,

2019.

[33] Google IoT Core. Using json web tokens (jwts) — cloud iot core documentation,

06 2020.

[34] Amazon AWS. Aws lambda – product features, 2019.

[35] AWS. Configure devices and subscriptions.

[36] Microsoft. Deploy azure iot edge modules from the azure portal.

[37] Docker. What is a container?

[38] AWS. Run lambda functions on the aws iot greengrass core - aws iot greengrass,

11 2018.

[39] AWS. Machine learning inference with aws iot greengrass solution accelerator, 10

2019.

[40] Microsoft kgremban. Learn how the runtime manages devices - azure iot edge, 11

2019.

[41] Microsoft. Understand azure iot hub device twins, February 2020.

[42] M. Jones, J. Bradley, and N. Sakimura. Json web token (jwt).

[43] Google Cloud. Devices, configuration, and state — cloud iot core documentation,

06 2020.

[44] UNIFY-IoT Project. Deliverable d03.01, report on iot platform activities, 2016.

[45] Google. Using gateways.

[46] Udhaya Kumar Dayalan, Rostand AK Fezeu, Nitin Varyani, Timothy J Salo, and

Zhi-Li Zhang. Eciot: Case for an edge-centric iot gateway. In Proceedings of the

22nd International Workshop on Mobile Computing Systems and Applications,

pages 154–156, 2021.

[47] Microsoft Azure. Azure/azure-iot-sdks, 12 2020.



111

[48] CHIP. Project connected home over ip.

[49] Maxim Chernyshev, Zubair Baig, Oladayo Bello, and Sherali Zeadally. Internet of

things (iot): Research, simulators, and testbeds. IEEE Internet of Things Journal,

5(3):1637–1647, 2017.

[50] Udhaya Kumar Dayalan, Rostand A. K. Fezeu, Nitin Varyani, Timothy J. Salo,

and Zhi-Li Zhang. Veeredge: Towards an edge-centric iot gateway. In 2021

IEEE/ACM 21st International Symposium on Cluster, Cloud and Internet Com-

puting (CCGrid), pages 690–695, 2021.

[51] Udhaya Kumar Dayalan, Rostand A. K. Fezeu, Timothy J. Salo, and Zhi-Li

Zhang. Kaala: Scalable, end-to-end, iot system simulator. In Proceedings of

the ACM SIGCOMM Workshop on Networked Sensing Systems for a Sustainable

Society, page 33–38, 2022.

[52] Mininet. Mininet - an instant virtual network on your laptop (or other pc).

[53] Docker. Get started with docker.

[54] IETF. Real time streaming protocol (rtsp).

[55] Open Air Interface. Open air interface, 2022.

[56] AWS. aws/aws-iot-device-sdk-embedded-c, 12 2020.

[57] Xuezhi Zeng, Saurabh Kumar Garg, Peter Strazdins, Prem Prakash Jayaraman,

Dimitrios Georgakopoulos, and Rajiv Ranjan. Iotsim: A simulator for analysing

iot applications. Journal of Systems Architecture, 72:93–107, 2017.

[58] Rodrigo N Calheiros, Rajiv Ranjan, Anton Beloglazov, César AF De Rose, and

Rajkumar Buyya. Cloudsim: a toolkit for modeling and simulation of cloud com-

puting environments and evaluation of resource provisioning algorithms. Software:

Practice and experience, 41(1):23–50, 2011.

[59] Dzmitry Kliazovich, Pascal Bouvry, and Samee Ullah Khan. Greencloud: a packet-

level simulator of energy-aware cloud computing data centers. The Journal of

Supercomputing, 62(3):1263–1283, 2012.



112

[60] Alberto Núñez, Jose L Vázquez-Poletti, Agustin C Caminero, Gabriel G Castañé,

Jesus Carretero, and Ignacio M Llorente. icancloud: A flexible and scalable cloud

infrastructure simulator. Journal of Grid Computing, 10(1):185–209, 2012.

[61] George F Riley and Thomas R Henderson. The ns-3 network simulator. In Mod-

eling and tools for network simulation, pages 15–34. Springer, 2010.

[62] András Varga and Rudolf Hornig. An overview of the omnet++ simulation en-

vironment. In Proceedings of the 1st international conference on Simulation tools

and techniques for communications, networks and systems & workshops, page 60.

ICST (Institute for Computer Sciences, Social-Informatics and . . . , 2008.

[63] Ingmar Baumgart, Bernhard Heep, and Stephan Krause. Oversim: A flexible

overlay network simulation framework. In 2007 IEEE global internet symposium,

pages 79–84. IEEE, 2007.

[64] Pedro Garćıa, Carles Pairot, Rubén Mondéjar, Jordi Pujol, Helio Tejedor, and

Robert Rallo. Planetsim: A new overlay network simulation framework. In In-

ternational Workshop on Software Engineering and Middleware, pages 123–136.

Springer, 2004.

[65] Seung-Hwan Lim, Bikash Sharma, Gunwoo Nam, Eun Kyoung Kim, and Chita R

Das. Mdcsim: A multi-tier data center simulation, platform. In 2009 IEEE

International Conference on Cluster Computing and Workshops, pages 1–9. IEEE,

2009.

[66] Harshit Gupta, Amir Vahid Dastjerdi, Soumya K Ghosh, and Rajkumar Buyya.

ifogsim: A toolkit for modeling and simulation of resource management techniques

in the internet of things, edge and fog computing environments. Software: Practice

and Experience, 47(9):1275–1296, 2017.

[67] Maria Salama, Yehia Elkhatib, and Gordon Blair. Iotnetsim: A modelling and

simulation platform for end-to-end iot services and networking. In Proceedings of

the 12th IEEE/ACM International Conference on Utility and Cloud Computing,

pages 251–261, 2019.



113

[68] Udhaya Kumar Dayalan, Timothy J. Salo, Rostand A. K. Fezeu, and Zhi-Li

Zhang. Kaala 2.0: Scalable iot/nextg system simulator. IEEE Network, 37(3):240–

246, 2023.

[69] Wei Ye, Jason Carpenter, Zejun Zhang, Rostand AK Fezeu, Feng Qian, and Zhi-

Li Zhang. A closer look at stand-alone 5g deployments from the ue perspective.

In 2023 IEEE International Mediterranean Conference on Communications and

Networking (MeditCom), pages 86–91. IEEE, 2023.

[70] T-Mobile. Teleoperated driving: safely controlling cars remotely. https:

//www.t-systems.com/de/en/industries/automotive/connected-mobility/

teleoperated-driving. Access: 03/17/2023.

[71] srsRAN Project. srsRAN, 2023.

[72] Eman Ramadan, Arvind Narayanan, Udhaya K. Dayalan, Rostand A. K. Fezeu,

Feng Qian, and Zhi-Li Zhang. Case for 5g-aware video streaming applications. In

Proceedings of the ACM SIGCOMM Workshop on 5G Measurements, Modeling,

and Use Cases, 5G-MeMU’21, 2021.

[73] Jason Carpenter, Wei Ye, Feng Qian, and Zhi-Li Zhang. Multi-modal vehicle data

delivery via commercial 5g mobile networks: An initial study. In 2023 IEEE 43rd

International Conference on Distributed Computing Systems Workshops (ICD-

CSW), pages 157–162. IEEE, 2023.

[74] Anis Elgabli, Vaneet Aggarwal, Shuai Hao, Feng Qian, and Subhabrata Sen. Lbp:

Robust rate adaptation algorithm for svc video streaming. IEEE/ACM Transac-

tions on Networking, 26(4):1633–1645, 2018.

[75] Yunzhuo Liu, Bo Jiang, Tian Guo, Ramesh K Sitaraman, Don Towsley, and Xin-

bing Wang. Grad: Learning for overhead-aware adaptive video streaming with

scalable video coding. In Proceedings of the 28th ACM International Conference

on Multimedia, pages 349–357, 2020.

[76] Siyuan Xiang, Min Xing, Lin Cai, and Jianping Pan. Dynamic rate adaptation

for adaptive video streaming in wireless networks. Signal Processing: Image Com-

munication, 39:305–315, 2015.

https://www.t-systems.com/de/en/industries/automotive/connected-mobility/teleoperated-driving
https://www.t-systems.com/de/en/industries/automotive/connected-mobility/teleoperated-driving
https://www.t-systems.com/de/en/industries/automotive/connected-mobility/teleoperated-driving


114

[77] Arvind Narayanan, Eman Ramadan, et al. Lumos5G: Mapping and Predicting

Commercial MmWave 5G Throughput. In ACM IMC’20, 2020.

[78] Qualcomm. How 5G can transform telemedicine to tackle today’s

toughest challenges. https://www.qualcomm.com/news/onq/2021/01/

how-5g-can-transform-telemedicine-tackle-todays-toughest-challenges.

Access: 11/20/2023.

[79] Techwire Asia. 5G is key for AI autonomous warehouses. https://techwireasia.

com/2023/10/how-is-5g-enhancing-ai-autonomous-warehouses/. Access:

11/20/2023.

[80] ATT. ATT Participates in Department of Defense Demon-

stration of 5G-enabled Smart Warehouse Solutions at Naval

Base Coronado. https://www.rcrwireless.com/20220609/5g/

att-participates-dod-demo-5g-enabled-smart-warehouse-solutions.

Access: 11/20/2023.

[81] The Linux Foundation Projects. ONAP. https://www.onap.org/. Access:

03/17/2023.

[82] Raymond Kwan, Cyril Leung, and Jie Zhang. Proportional fair multiuser schedul-

ing in lte. IEEE Signal Processing Letters, 16(6):461–464, 2009.

[83] Christian Wengerter, Jan Ohlhorst, and Alexander Golitschek Edler von Elb-

wart. Fairness and throughput analysis for generalized proportional fair frequency

scheduling in ofdma. In 2005 IEEE 61st vehicular technology conference, volume 3,

pages 1903–1907. IEEE, 2005.

[84] Yongzhou Chen, Ruihao Yao, Haitham Hassanieh, and Radhika Mittal. Channel-

Aware 5g RAN slicing with customizable schedulers. In 20th USENIX Symposium

on Networked Systems Design and Implementation (NSDI 23), pages 1767–1782,

Boston, MA, April 2023. USENIX Association.

[85] Open5GS. Open5gs, 2023.

https://www.qualcomm.com/news/onq/2021/01/how-5g-can-transform-telemedicine-tackle-todays-toughest-challenges
https://www.qualcomm.com/news/onq/2021/01/how-5g-can-transform-telemedicine-tackle-todays-toughest-challenges
https://techwireasia.com/2023/10/how-is-5g-enhancing-ai-autonomous-warehouses/
https://techwireasia.com/2023/10/how-is-5g-enhancing-ai-autonomous-warehouses/
https://www.rcrwireless.com/20220609/5g/att-participates-dod-demo-5g-enabled-smart-warehouse-solutions
https://www.rcrwireless.com/20220609/5g/att-participates-dod-demo-5g-enabled-smart-warehouse-solutions
https://www.onap.org/


115

[86] Robert Schmidt, Mikel Irazabal, and Navid Nikaein. Flexric: An sdk for next-

generation sd-rans. In Proceedings of the 17th International Conference on Emerg-

ing Networking EXperiments and Technologies, CoNEXT ’21, page 411–425, New

York, NY, USA, 2021. Association for Computing Machinery.

[87] Nvidia bluefield data processing units, 2023.

[88] Nvidia bluefield modes of operation, 2023.

[89] Data plane development kit, 2023.

[90] Nvidia doca dpi programming guide, 2023.

[91] Accuver. Accuver — XCAL. http://accuver.com/sub/products/view.php?

idx=6, 2020.

[92] Paul Bender, Peter Black, Matthew Grob, Roberto Padovani, Nagabhushana Sind-

hushyana, and Andrew Viterbi. Cdma/hdr: a bandwidth efficient high speed wire-

less data service for nomadic users. IEEE Communications magazine, 38(7):70–77,

2000.

[93] A Jalali, R Padovani, and R Pankaj. Data throughput of cdma-hdr a high

efficiency-high data rate personal communication wireless system. In VTC2000-

Spring. 2000 IEEE 51st Vehicular Technology Conference Proceedings (Cat. No.

00CH37026), volume 3, pages 1854–1858. IEEE, 2000.

[94] Harold J Kushner and Philip A Whiting. Asymptotic properties of proportional-

fair sharing algorithms. Technical report, BROWN UNIV PROVIDENCE RI DIV

OF APPLIED MATHEMATICS, 2002.

[95] Matthew Andrews and Lisa Zhang. Scheduling algorithms for multi-carrier wire-

less data systems. In Proceedings of the 13th annual ACM international conference

on Mobile computing and networking, pages 3–14, 2007.

[96] David N. C. Tse, Pramod Viswanath, and Lizhong Zheng. Diversity-multiplexing

tradeoff in multiple-access channels. IEEE Transactions on Information Theory,

50(9):1859–1874, 2004.

http://accuver.com/sub/products/view.php?idx=6
http://accuver.com/sub/products/view.php?idx=6


116

[97] J Nicholas Laneman, David NC Tse, and Gregory W Wornell. Cooperative diver-

sity in wireless networks: Efficient protocols and outage behavior. IEEE Trans-

actions on Information theory, 50(12):3062–3080, 2004.

[98] Sem Borst. User-level performance of channel-aware scheduling algorithms in

wireless data networks. In IEEE INFOCOM 2003. Twenty-second Annual Joint

Conference of the IEEE Computer and Communications Societies (IEEE Cat. No.

03CH37428), volume 1, pages 321–331. IEEE, 2003.

[99] Krister Norlund, Tony Ottosson, and Anna Brunstrom. Fairness measures for best

effort traffic in wireless networks. In 2004 IEEE 15th International Symposium on

Personal, Indoor and Mobile Radio Communications (IEEE Cat. No. 04TH8754),

volume 4, pages 2953–2957. IEEE, 2004.

[100] Matthew Andrews, Krishnan Kumaran, Kavita Ramanan, Alexander Stolyar, Phil

Whiting, and Rajiv Vijayakumar. Providing quality of service over a shared

wireless link. IEEE Communications magazine, 39(2):150–154, 2001.

[101] Matthew Andrews. A survey of scheduling theory in wireless data networks.

Wireless Communications, pages 1–17, 2007.

[102] Cédric Westphal. Monitoring proportional fairness in cdma2000r.

[103] Akhilesh Pokhariyal, Guillaume Monghal, Klaus I Pedersen, Preben E Mogensen,

Istvan Z Kovacs, Claudio Rosa, and Troels E Kolding. Frequency domain packet

scheduling under fractional load for the utran lte downlink. In 2007 IEEE 65th

Vehicular Technology Conference-VTC2007-Spring, pages 699–703. IEEE, 2007.

[104] Akhilesh Pokhariyal, Klaus I Pedersen, Guillaume Monghal, Istvan Z Kovacs,

Claudio Rosa, Troels E Kolding, and Preben E Mogensen. Harq aware frequency

domain packet scheduler with different degrees of fairness for the utran long term

evolution. In 2007 IEEE 65th Vehicular Technology Conference-VTC2007-Spring,

pages 2761–2765. IEEE, 2007.

[105] Keith Winstein, Anirudh Sivaraman, and Hari Balakrishnan. Stochastic forecasts

achieve high throughput and low delay over cellular networks. In Presented as



117

part of the 10th {USENIX} Symposium on Networked Systems Design and Imple-

mentation ({NSDI} 13), pages 459–471, 2013.

[106] Yasir Zaki, Thomas Pötsch, Jay Chen, Lakshminarayanan Subramanian, and

Carmelita Görg. Adaptive congestion control for unpredictable cellular networks.

In Proceedings of the 2015 ACM Conference on Special Interest Group on Data

Communication, pages 509–522, 2015.

[107] Feng Lu, Hao Du, Ankur Jain, Geoffrey M Voelker, Alex C Snoeren, and Andreas

Terzis. CQIC: Revisiting cross-layer congestion control for cellular networks. In

Proceedings of the 16th International Workshop on Mobile Computing Systems

and Applications, pages 45–50. ACM, 2015.

[108] Thomas Nitsche, Carlos Cordeiro, Adriana B Flores, Edward W Knightly, Eldad

Perahia, and Joerg C Widmer. Ieee 802.11 ad: directional 60 ghz communication

for multi-gigabit-per-second wi-fi. IEEE Communications Magazine, 52(12):132–

141, 2014.

[109] Sanjib Sur, Ioannis Pefkianakis, Xinyu Zhang, and Kyu-Han Kim. Wifi-assisted 60

ghz wireless networks. In Proceedings of the 23rd Annual International Conference

on Mobile Computing and Networking, pages 28–41. ACM, 2017.

[110] Sanjib Sur, Xinyu Zhang, Parmesh Ramanathan, and Ranveer Chandra. Beamspy:

enabling robust 60 ghz links under blockage. In 13th USENIX Symposium on

Networked Systems Design and Implementation (NSDI 16), pages 193–206, 2016.

[111] Xing Xu, Yurong Jiang, Tobias Flach, Ethan Katz-Bassett, David Choffnes, and

Ramesh Govindan. Investigating transparent web proxies in cellular networks.

In International Conference on Passive and Active Network Measurement, pages

262–276. Springer, 2015.

[112] Dongzhu Xu, Anfu Zhou, Xinyu Zhang, Guixian Wang, Xi Liu, Congkai An,

Yiming Shi, Liang Liu, and Huadong Ma. Understanding operational 5g: A first

measurement study on its coverage, performance and energy consumption. In

Proceedings of the Annual Conference of the ACM Special Interest Group on Data



118

Communication on the Applications, Technologies, Architectures, and Protocols

for Computer Communication, page 479–494. ACM, 2020.

[113] Qiang Ye, Junling Li, Kaige Qu, Weihua Zhuang, Xuemin Sherman Shen, and

Xu Li. End-to-end quality of service in 5g networks: Examining the effectiveness

of a network slicing framework. IEEE Vehicular Technology Magazine, 13(2):65–

74, 2018.

[114] Robert Margolies, Ashwin Sridharan, et al. Exploiting mobility in proportional

fair cellular scheduling: Measurements and algorithms. IEEE/ACM Transactions

on Networking (TON), 24(1):355–367, 2016.

[115] A. Chakraborty, M. S. Rahman, H. Gupta, and S. R. Das. Specsense: Crowd-

sensing for efficient querying of spectrum occupancy. In IEEE INFOCOM 2017 -

IEEE Conference on Computer Communications, pages 1–9, May 2017.

[116] Emmanouil Alimpertis, Athina Markopoulou, Carter Butts, and Konstantinos

Psounis. City-wide signal strength maps: Prediction with random forests. In The

World Wide Web Conference, WWW ’19, page 2536–2542, New York, NY, USA,

2019. Association for Computing Machinery.

[117] A. Samba, Y. Busnel, A. Blanc, P. Dooze, and G. Simon. Instantaneous through-

put prediction in cellular networks: Which information is needed? In 2017

IFIP/IEEE Symposium on Integrated Network and Service Management, pages

624–627, 2017.

[118] Lifan Mei, Runchen Hu, Houwei Cao, Yong Liu, Zifa Han, Feng Li, and Jin Li.

Realtime mobile bandwidth prediction using lstm neural network. In International

Conference on Passive and Active Network Measurement, pages 34–47. Springer,

2019.

[119] Hongji Huang, Song Guo, Guan Gui, Zhen Yang, Jianhua Zhang, Hikmet Sari,

and Fumiyuki Adachi. Deep learning for physical-layer 5g wireless techniques:

Opportunities, challenges and solutions. IEEE Wirel. Commun., 27(1):214–222,

2020.



119

[120] Zhijin Qin, Hao Ye, Geoffrey Ye Li, and Biing-Hwang Fred Juang. Deep learning

in physical layer communications. IEEE Wirel. Commun., 26(2):93–99, 2019.

[121] Alessio Zappone, Marco Di Renzo, and Mérouane Debbah. Wireless networks

design in the era of deep learning: Model-based, ai-based, or both? IEEE Trans.

Commun., 67(10):7331–7376, 2019.

[122] Mingzhe Chen, Ursula Challita, Walid Saad, Changchuan Yin, and Mérouane

Debbah. Artificial neural networks-based machine learning for wireless networks:

A tutorial. IEEE Commun. Surv. Tutorials, 21(4):3039–3071, 2019.

[123] Chaoyun Zhang, Paul Patras, and Hamed Haddadi. Deep learning in mobile and

wireless networking: A survey. IEEE Commun. Surv. Tutorials, 21(3):2224–2287,

2019.

[124] Zhi-Li Zhang, Udhaya K. Dayalan, Eman Ramadan, and Timothy J. Salo. To-

wards a software-defined, fine-grained qos framework for 5g and beyond networks.

In Proceedings of the ACM SIGCOMM Workshop on Network Meets AI & ML,

NetAI’21, 2021.

[125] Udhaya Kumar Dayalan, Rostand A. K. Fezeu, Timothy J. Salo, and Zhi-Li

Zhang. Prototyping a fine-grained qos framework for 5g and nextg networks

using powder. In 2022 18th International Conference on Distributed Computing

in Sensor Systems (DCOSS), pages 416–419, 2022.

[126] Cisco. Cisco private 5g solution overview, 2023.

[127] Prototype Kernel. ebpf maps, 2023.

[128] iPerf3. iperf3. https://iperf.fr/, June 2023.

[129] Roberto Avanzi and Billy Bob Brumley. Faster 128-eea3 and 128-eia3 software.

In Information Security: 16th International Conference, ISC 2013, Dallas, Texas,

November 13-15, 2013, Proceedings, pages 199–208. Springer, 2015.

[130] Peng Zheng, Wendi Feng, Arvind Narayanan, and Zhi-Li Zhang. Nfv performance

profiling on multi-core servers. In 2020 IFIP Networking Conference (Networking),

pages 91–99. IEEE, 2020.

https://iperf.fr/


120

[131] Ziyan Wu, Tianming Cui, Arvind Narayanan, Yang Zhang, Kangjie Lu, Antonia

Zhai, and Zhi-Li Zhang. Granularnf: Granular decomposition of stateful nfv at

100 gbps line speed and beyond. ACM SIGMETRICS Performance Evaluation

Review, 50(2):46–51, 2022.

[132] Hamid Ghasemirahni, Tom Barbette, Georgios P Katsikas, Alireza Farshin, Amir

Roozbeh, Massimo Girondi, Marco Chiesa, Gerald Q Maguire Jr, and Dejan

Kostić. Packet order matters! improving application performance by deliberately

delaying packets. In 19th USENIX Symposium on Networked Systems Design and

Implementation (NSDI 22), pages 807–827, 2022.

[133] Amin Tootoonchian, Aurojit Panda, Chang Lan, Melvin Walls, Katerina Argy-

raki, Sylvia Ratnasamy, and Scott Shenker. {ResQ}: Enabling {SLOs} in network

function virtualization. In 15th USENIX Symposium on Networked Systems De-

sign and Implementation (NSDI 18), pages 283–297, 2018.

[134] Shixiong Qi, Leslie Monis, Ziteng Zeng, Ian-chin Wang, and K. K. Ramakrish-

nan. Spright: Extracting the server from serverless computing! high-performance

ebpf-based event-driven, shared-memory processing. In Proceedings of the ACM

SIGCOMM 2022 Conference, SIGCOMM ’22, page 780–794, New York, NY, USA,

2022. Association for Computing Machinery.

[135] Thiago A. Navarro do Amaral, Raphael V. Rosa, David F. Cruz Moura, and

Christian E. Rothenberg. An in-kernel solution based on xdp for 5g upf: Design,

prototype and performance evaluation. In 2021 17th International Conference on

Network and Service Management (CNSM), pages 146–152, 2021.

[136] Christian Scheich, Marius Corici, Hauke Buhr, and Thomas Magedanz. Express

data path extensions for high-capacity 5g user plane functions. In Proceedings of

the 1st Workshop on EBPF and Kernel Extensions, eBPF ’23, page 86–88, New

York, NY, USA, 2023. Association for Computing Machinery.

[137] Federico Parola, Sebastiano Miano, and Fulvio Risso. A proof-of-concept 5g mo-

bile gateway with ebpf. In Proceedings of the SIGCOMM ’20 Poster and Demo

Sessions, SIGCOMM ’20, page 68–69, New York, NY, USA, 2021. Association for

Computing Machinery.



121

[138] Udhaya Kumar Dayalan, Ziyan Wu, Gaurav Gautam, Feng Tian, and Zhi-Li

Zhang. Pravega: Scaling private 5g ran via ebpf/xdp. In Proceedings of the 1st

Workshop on EBPF and Kernel Extensions, eBPF ’23, page 89–91, New York,

NY, USA, 2023. Association for Computing Machinery.

[139] Cisco. Five components of iot edge devices.



Appendix A

Publications

In addition to this dissertation, the presented work and results are also documented in

the following published papers.

A.1 Publications by Date

• Udhaya Kumar Dayalan, Jason Carpenter, Ngan Nguyen, Wei Ye, Ziyan Wu

and Zhi-Li Zhang. 2024. ”HyperRAN: Towards a Fine-Grained, Semantics-Aware,

Intelligent NextG Radio Access Network Architecture”. Under Submission, 2024.

• Udhaya Kumar Dayalan, Ziyan Wu, Gaurav Gautam, Feng Tian, and Zhi-

Li Zhang. 2023. ”Towards an eBPF+XDP based Framework for Open, Pro-

grammable and Scalable NextG RANs”. In 2023 IEEE Future Networks World

Forum (FNWF ’23).

• Udhaya Kumar Dayalan, Ziyan Wu, Gaurav Gautam, Feng Tian, and Zhi-

Li Zhang. 2023. ”PRAVEGA: Scaling Private 5G RAN via eBPF/XDP”. In

Proceedings of the ACM SIGCOMM 2023 1st Workshop on eBPF and Kernel

Extensions (eBPF ’23).

• Udhaya Kumar Dayalan, Rostand A. K. Fezeu, Timothy J. Salo, and Zhi-Li

Zhang. 2022. ”Kaala 2.0: Scalable IoT/NextG System Simulator”. In IEEE

Network, vol. 37, no. 3, May/June 2023.

122



123

• Udhaya Kumar Dayalan, Rostand A. K. Fezeu, Timothy J. Salo and Zhi-Li

Zhang. 2022. ”Prototyping a Fine-Grained QoS Framework for 5G and NextG

Networks using POWDER”. 2022 18th International Conference on Distributed

Computing in Sensor Systems (DCOSS ’22).

• Udhaya Kumar Dayalan, Rostand A. K. Fezeu, Timothy J. Salo, and Zhi-Li

Zhang. 2022. ”Kaala: scalable, end-to-end, IoT system simulator”. In Pro-

ceedings of the ACM SIGCOMM Workshop on Networked Sensing Systems for a

Sustainable Society (NET4us ’22).

• Zhi-Li Zhang, Udhaya Kumar Dayalan, Eman Ramadan, and Timothy J. Salo.

2021. ”Towards a Software-Defined, Fine-Grained QoS Framework for 5G and

Beyond Networks”. In Proceedings of the ACM SIGCOMM 2021 Workshop on

Network-Application Integration (NAI ’21).

• Eman Ramadan, Arvind Narayanan, Udhaya Kumar Dayalan, Rostand A. K.

Fezeu, Feng Qian, and Zhi-Li Zhang. 2021. ”Case for 5G-aware video streaming

applications”. In Proceedings of the 1st Workshop on 5G Measurements, Model-

ing, and Use Cases (5G-MeMU ’21).

• Udhaya Kumar Dayalan, Rostand A. K. Fezeu, Nitin Varyani, Timothy J. Salo

and Zhi-Li Zhang. 2021. ”VeerEdge: Towards an Edge-Centric IoT Gateway”.

2021 IEEE/ACM 21st International Symposium on Cluster, Cloud and Internet

Computing (CCGrid ’21).

• Udhaya Kumar Dayalan, Rostand A. K. Fezeu, Nitin Varyani, Timothy J.

Salo, and Zhi-Li Zhang. 2021. ”ECIoT: Case for an Edge-Centric IoT Gateway”.

In Proceedings of the 22nd International Workshop on Mobile Computing Systems

and Applications (HotMobile ’21).



Appendix B

Common IoT Terms

Below are some of the common IoT terms:

B.1 IoT device

IoT devices cannot directly connect to the internet [23]. These devices communicate

over Zigbee or Bluetooth [45]. Some of the IoT device examples are motion sensor, light

switch, water sensor, door/window sensor.

B.2 IoT edge

IoT edges have the ability to communicate to the IoT hub on the internet. Some of its

common functionalities [139] include publishing telemetry events, getting configuration

data, custom applications and providing offline support. IoT edge devices also store and

process the data locally. They are capable of running machine learning models.These

are stand-alone devices and doesn’t not support downstream IoT devices as shown in

Fig. 2.7.

B.3 IoT gateway

IoT gateway provides all the capability of an IoT edge and much more [24]. They act

as a router connecting to the internet when the downstream IoT device can’t directly

124



125

connect to the IoT hub, such as a ZigBee or Bluetooth device [45]. And also helps

authenticating to IoT hub when the device can’t send its own credentials, or to provide

an additional layer of security by using the credentials of both the IoT device and the

IoT gateway. IoT gateway also helps in translating protocols. For example, the IoT

device communicates BACnet or Modbus protocol to the gateway and the gateway

device translates it to MQTT protocol before sending it to the IoT hub.

B.4 IoT Hub

The IoT Hub is called using several other names like IoT Cloud, IoT core, etc. Basically

this is the cloud side of the IoT architecture. The IoT hub connects, processes, stores,

and analyzes data. IoT hub scales to multiple edge devices and have various capabilities

based on the respective CSPs.

B.5 Modules

Modules run as containers [37] in the IoT gateway which is managed by the IoT gate-

way’s run-time. Container is a unit of software that contains code and all its de-

pendencies (run-time, system tools, system libraries and settings) as a single package.

Containers [37] runs in most of the Operating System with the support of an engine.

In Azure IoT, the containers package with custom code are called modules. And in

AWS IoT, these containers are called as lambda functions [34]. Additionally, in AWS,

the lambda functions can run as an individual process in the IoT gateway instead of a

container. As shown in Figure 2.8, local database, web-server, machine learning services

are some of the examples for a module.

B.6 Message Subscriptions

Message subscriptions is a concept in IoT which allows communication between vari-

ous entities listed above in this section [35]. Because, by default these entities cannot

communicate to each other. Message subscriptions is a term introduced by AWS IoT.

In Azure IoT, the message subscriptions are called as routes [36]. For consistency, in



126

this thesis, we will be using message subscriptions while describing the functionality

of Azure IoT as well. The message subscriptions are configured based on the MQTT

message topic or endpoints. There are 3 fields required for a message subscription [35].

First, the ’source’, from where the message originated. Next, the ’destination’, to which

the message needs to be sent. And finally, AWS requires a message ’topic’ or Azure

requires the ’endpoint’.

B.7 MQTT Broker

The MQTT broker is a key component in an IoT gateway. The downstream IoT devices

talk to the gateway through the broker. Each vendor has specific security mechanisms

added to authenticate downstream IoT devices which is discussed in detail in section

3.2.1. The MQTT broker receives the MQTT messages sent to them and forwards the

MQTT messages based on the message subscriptions. If there are no configurations

for a particular topic or endpoint based on the vendor-specific IoT gateway, then the

MQTT message is dropped by the MQTT broker.


	Acknowledgements
	Dedication
	Abstract
	List of Tables
	List of Figures
	Introduction
	Outline and Contributions

	Background & Motivation
	5G Networks: 5G NR, RAN and Core
	Channels, Data Radio Bearers and 5G Flow-based QoS Framework
	RAN Dis-Aggregation and Open-RAN
	5G RAN Protocol Stack
	IoT System Architecture
	With IoT gateway
	Without a IoT gateway
	IoT Gateway Architecture
	Interoperability

	eBPF/XDP

	VeerEdge: Towards an Edge-Centric IoT Gateway
	Introduction
	Terminology and Background
	Cloud-Centric IoT Gateways

	Challenges with cloud-centric IoT gateways
	Cloud-Centric IoT Gateways: Issues
	Case for an edge-centric IoT gateway

	How to address these challenges?
	Re-designing the IoT Gateway
	Building atop current IoT solutions
	Proposed VeerEdge Gateway Design

	Implementation and Evaluation
	Implementation
	Evaluation

	Summary

	Kaala 2.0: Scalable IoT/NextG System Simulator
	Introduction
	Case for Kaala 2.0
	Ability to Interact with Real Systems using 5G Networks
	Scenario-based Data/Event Simulation
	High-bandwidth Data Generation

	Kaala 2.0 Architecture
	Kaala 2.0 Design
	Interacting with Real-World Systems using 5G networks
	Scenario-based Event Simulation
	High-Bandwidth Data Simulation
	NextG Network Support

	Implementation
	Evaluations
	Scalability and Performance
	Interacting with Real Systems using 5G Networks
	Scenario-based Event Simulation
	High-bandwidth Data Generation
	NextG Simulation

	Related Work and State-of-Art
	Summary

	HyperRAN: Towards a Fine-Grained, Semantics-Aware, Intelligent NextG Radio Access Network Architecture
	Introduction
	Case for HyperRAN: Why Existing Solutions are Inadequate
	HyperRAN Deployment Challenges and Opportunities

	Framework Overview
	Design Principles and Architecture
	Application Service Endpoint Functions
	NextG Core and RAN Networks
	O-RAN SMO, Non-RT and NRT RICs
	Targeted Use Cases and Deployment Scenarios

	HyperRAN Architecture  and Hyper Scheduler Design
	HyperRAN Architecture and Innovations
	Hyper Scheduler Design
	HyperRAN Core Design

	Implementation and Experimental Setup
	HyperRAN Core Implementation
	Weighted Proportional Sharing Algorithm

	Evaluation
	Prioritizing Volumetric Video Layers to Reduce User Perceived Stall Time
	Prioritizing Context Important LiDAR Data through Smart Partitioning

	Related Work
	Summary

	PRANAVAM: Scaling Private 5G RAN via eBPF+XDP
	Introduction
	Design
	Management Layer
	Data Path Kernel Layer
	Data Path User Layer

	Implementation
	Preliminary Evaluation
	Test Setup
	Data Traffic Generation
	Results

	PRAVEGA Design
	Kernel Based CU-UP

	Additional Design Options
	Related Work
	Summary

	Conclusion
	References
	 Appendix A.  Publications
	Publications by Date

	 Appendix B.  Common IoT Terms
	IoT device
	IoT edge
	IoT gateway
	IoT Hub
	Modules
	Message Subscriptions
	MQTT Broker


