
On the Efficiency and Consistency of
Visual-Inertial Localization and Mapping

A DISSERTATION
SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL

OF THE UNIVERSITY OF MINNESOTA
BY

Kejian Wu

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF

Doctor of Philosophy

Stergios I. Roumeliotis, Advisor

February, 2024

c© Kejian Wu 2024
ALL RIGHTS RESERVED

Acknowledgements

This dissertation would not have been possible without the help and support from numerous

people.

First, I would like to express my gratitude and appreciation to my advisor, Professor Stergios

Roumeliotis, for the countless effort he put to pass me his knowledge, for the weekends he

spent with me discussing research problems through reading groups, and for his continuous

encouragement to make me achieve more. In addition to the guidance in academic matters, he

has also taught me a serious research attitude by setting examples: Aim at the best and never

give up. Without his endless mentoring, I cannot become the researcher I am now. I am also

thankful for the time and valuable advice from the members of my committee, Professor Yousef

Saad, Professor Andrew Lamperski, and Professor Mingyi Hong.

I would like to thank all my amazing colleagues and friends at the MARS lab. Thanks

to the senior lab members, Faraz, Paul, Esha, Sam, Ke, and Joel, your priceless mentoring

helped me build up fundamental knowledges in robotics. Thanks to my peers, Chao, Dimitrios,

Ruipeng, Igor, and Luis. It’s you who walked me through the most difficult times. I will never

forget the nights we spent together trying to catch up deadlines. Lastly, thanks to the junior

lab members, Kourosh, Ryan, Georgios, Mrinal, Elliot, Ahmed, Katherine, Tien, and Tong. I

cannot accomplish this dissertation without the countless hours you spent with me on coding

and writing papers.

Most importantly, I would like to thank my family. My parents have always done everything

to support me so that I could follow my dreams, and have never failed to believe in me and care

about me with love. Many thanks to Jia Li, for her love and companionship during all the happy

and stressful times that we went through together. And finally, my deep thoughts to Ran Xu, I

will always miss you and carry our dreams and future with me throughout my life.

Last but not least, I gratefully acknowledge financial support from the National Science

i

Foundation, the University of Minnesota Department of Computer Science and Engineering, the

University of Minnesota Digital Technology Center, and Google Project Tango and Daydream.

ii

Abstract

Simultaneous localization and mapping (SLAM) is a prerequisite for a wide range of ap-

plications, such as robot navigation in GPS-denied areas, autonomous driving, and augmented

or virtual reality. As inertial measurement unit (IMU) and camera are becoming ubiquitous,

visual-inertial SLAM (VI-SLAM) systems have prevailed in these applications, in part because

of the complementary sensing capabilities and the decreasing costs and size of the sensors.

Although successful VI-SLAM systems have been developed over the past decade, there still

exist many challenges that limit the performance of such systems, especially when deployed on

resource-constrained mobile devices (e.g., smart phones, tablets, and wearable computers). In

this dissertation, we seek to address three key challenges for improving the efficiency, accuracy,

and consistency of VI-SLAM.

The first part of this dissertation considers the problem of short-term VI-SLAM, aka visual-

inertial odometry (VIO), where the system focuses its optimization over only a bounded-size

sliding window of recent states (poses and features), for achieving constant processing time.

While high computational efficiency is of critical importance for such systems, one of the main

limitations of existing VIO algorithms is the requirement of using double-precision arithmetic

for implementation, due to the ill-conditioning of the VIO problem. To address this issue,

we present a square-root inverse sliding-window filter for highly efficient and accurate VIO.

By maintaining and updating the upper-triangular Cholesky factor of the Hessian matrix, our

estimator can yield the same effective precision of regular filters while using only half of the

wordlength, thus enabling single-precision implementation. This leads to significant speedups

as compared to double-precision alternatives, especially on mobile devices with co-processors

that provide a 4-fold processing speed acceleration for 32-bit floating-point operations.

In the second part of this dissertation, we study the case when VI-SLAM systems are de-

ployed on mobile platforms that have restricted motions (e.g., ground robots or self-driving

cars). In such cases, we observe that the localization errors of VI-SLAM systems are signif-

icantly larger than those on the platforms moving freely in the 3D space. We investigate this

issue and discover that the restricted motion that ground robots often undergo (e.g., constant

speed or acceleration, or no rotation) alters the observability properties of VI-SLAM and ren-

ders additional unobservable directions (e.g., the scale, or roll and pitch angles). As a result,

iii

little or no information can be obtained along these directions in the estimates, which will de-

grade the localization accuracy of the employed VI-SLAM estimator. To address this limitation,

we extend the VI-SLAM system to incorporate extra information, from wheel-encoder data and

planar-motion constraints, which leads to significant improvements in positioning accuracy for

wheeled robots moving primarily on a plane.

Lastly, we address the long-term VI-SLAM problem. In such systems, in addition to the

local optimization of the short-term VI-SLAM, global adjustment of past states is performed

using loop-closure measurements (reobservations to previously-mapped features), so as to re-

duce global drifts in the estimates for long-term accuracy. In order to achieve real-time op-

eration, however, existing approaches often assume previously-estimated states to be perfectly

known (e.g., previous keyframes or maps), which leads to inconsistent estimates. This means

that the estimated covariance is unduly small and does not represent correctly the uncertainty

of the current state estimates, and combining these overly optimistic estimates with new mea-

surements later on will further degrade the accuracy of the system. Instead, based on the idea of

the Schmidt-Kalman filter, we derive a new consistent approximate method in the information

domain, which has linear memory requirements and adjustable (constant to linear) processing

cost. By employing this method with different configurations, we realize an efficient and accu-

rate long-term VI-SLAM system, the RISE-SLAM, which improves estimation consistency.

iv

Contents

Acknowledgements i

Abstract iii

List of Tables viii

List of Figures ix

1 Introduction 1
1.1 Visual-Inertial Localization and Mapping . 1

1.2 Challenges of Visual-Inertial Localization and Mapping on Mobile Devices . . 4

1.3 Research Objectives . 8

1.3.1 Efficient Short-Term VI-SLAM . 8

1.3.2 Planar VI-SLAM: Observability Analysis and Model Extensions 9

1.3.3 Efficient and Consistent Long-Term VI-SLAM 10

1.4 Structure of the Manuscript . 11

2 Efficient Short-Term Visual-Inertial Localization and Mapping 13
2.1 Introduction and Related Work . 14

2.2 VIO-SLAM Estimators . 17

2.2.1 Problem Formulation . 18

2.2.2 Filtering-based Methods . 22

2.2.3 Optimization-based Methods . 34

2.2.4 Applications to VIO-SLAM . 39

2.2.5 Our Proposed VIO Estimator . 40

v

2.3 SR-ISWF: VIO Problem Formulation and Information Management 42

2.3.1 State Vector . 42

2.3.2 Inertial Measurement Model and Cost Terms 43

2.3.3 Visual Measurement Model and Cost Terms 45

2.3.4 Visual-Inertial Information Management 47

2.4 SR-ISWF: Estimation Algorithm . 55

2.4.1 Cloned State Augmentation . 57

2.4.2 SLAM Feature Propagation . 59

2.4.3 Marginalization . 60

2.4.4 Covariance Factor Recovery . 62

2.4.5 SI Update: Current SLAM Feature Reobservations 63

2.4.6 Left-Nullspace Transformation . 65

2.4.7 SI Update: New SLAM Feature Initialization 67

2.4.8 SI Update: New SLAM and SI-MSCKF Pose Constraints 69

2.4.9 SO Update: SO-MSCKF Pose Constraints 72

2.4.10 Computing New State Estimate . 73

2.4.11 Computing New Prior Term . 73

2.5 Experimental Results . 74

2.5.1 System Setup . 74

2.5.2 Performance on the EuRoC Datasets 75

2.5.3 Performance on Cell-Phone Datasets 77

2.6 Summary . 80

3 Planar Visual-Inertial Localization and Mapping: Observability Analysis and
Model Extensions 81
3.1 Introduction and Related Work . 82

3.2 Preliminaries on Vision-aided Inertial Navigation System (VINS) 84

3.3 VINS: Observability Analysis Under Specific Motion Profiles 85

3.3.1 Constant Acceleration . 85

3.3.2 No Rotation . 86

3.4 VINS: Incorporating Extra Information . 88

3.4.1 VINS with Odometer . 88

vi

3.4.2 mVINS: VINS within a Manifold . 91

3.5 Experimental Results . 95

3.5.1 Assessment of the Motion’s Impact 95

3.5.2 System Performance Test . 97

3.6 Summary . 98

4 Efficient and Consistent Long-Term Visual-Inertial Localization and Mapping 99
4.1 Introduction and Related Work . 100

4.2 Inverse Schmidt Estimators . 103

4.2.1 Background: Estimation Consistency 104

4.2.2 Problem Formulation . 105

4.2.3 Exact Inverse Schmidt Estimator (ISE) 111

4.2.4 Approximate Inverse Schmidt Estimators 133

4.3 RISE-SLAM: A Resource-aware Inverse Schmidt Estimator for SLAM 137

4.3.1 System Overview . 137

4.3.2 Square-root Inverse Estimators for SLAM 138

4.3.3 RISE-SLAM: Exploration . 144

4.3.4 RISE-SLAM: Relocalization . 149

4.3.5 Experimental Results . 154

4.4 Summary . 157

5 Concluding Remarks 160
5.1 Summary of Contributions . 160

5.2 Future Research Directions . 163

References 165

Appendix A. Appendices for Chapter 3 174
A.1 Proof of Theorem 1 . 174

A.2 Proof of Theorem 2 . 175

A.3 Proof of Theorem 3 . 176

A.4 The Unobservable Direction of Scale . 177

A.5 The Unobservable Directions of Orientation 181

vii

List of Tables

2.1 The Filtering Methods: Four Equivalent Forms 24

2.2 RMSE of Position (cm) / Orientation (degree) Estimates on EuRoC Datasets . . 76

2.3 Laptop Timing Results per Estimator Run (msec) 77

2.4 Cell-Phone Datasets: Loop-Closure Error Percentages (%) 78

2.5 S4 Cell-Phone Timing Results per Estimator Run (msec) 79

2.6 Pixel Cell-Phone Timing Results per Estimator Run (msec) 79

3.1 Comparisons: Positioning RMSE (in Meters) of Different Methods Across

Datasets (xy - z - xyz - %) . 96

4.1 Position RMSE (cm) on EuRoC datasets . 156

4.2 Average running time (msec) of one estimator run 156

4.3 Medians of position NEES on EuRoC datasets 159

viii

List of Figures

1.1 Applications of localization: (a) Indoor robot navigation. (b) Autonomous driv-

ing. (c) Augmented reality. (d) Virtual reality. 2

1.2 Images from a camera: (a) Point features (green dots) extracted and tracked. (b)

A blurry image due to fast motion. (c) A dark image due to insufficient lighting. 3

2.1 An example of feature tracks in the sliding window and our corresponding vi-

sual information processing scheme: At the current time step k, the window

with size 4 contains cloned poses from time step k − 3 to k. Within this win-

dow, the feature tracks f1 and f2 are mature, as they are observed by the oldest

cloned pose at k − 3, while f3 and f4 are immature. We choose to initialize f1

as a new (SI-)SLAM feature, since its track is mature and spans the entire win-

dow. Meanwhile, the other mature feature track f2 is processed as SI-MSCKF,

since it is not observed by the newest pose at time step k. On the other hand,

the immature tracks f3 and f4 are processed as SO-MSCKF. After being pro-

cessed by the estimator, the SI-type feature track measurements of f1 and f2

are removed, since their information has been absorbed into the prior, while the

SO-type measurements of f3 and f4 remain as available for the next time step.

At the next time step k + 1, the window slides forward to contain poses from

k − 2 to k + 1, where f3 becomes mature, while f4 remains to be immature.

Additionally, the SLAM feature f1 is reobserved from the newest pose at time

step k + 1, and this measurement is processed as the SI-type. 52

2.2 An example of the Jacobian structure in the SLAM feature reobservation update. 64

2.3 An example of the Jacobian structures before and after the left-nullspace trans-

formation. 65

ix

2.4 An example of the Jacobian structures during the measurement-compression

transformation. 70

2.5 An example of the information factor and Jacobian structures during the pose-

constraint update. 71

2.6 EuRoC sequences: Estimated trajectories vs. ground truth, in MH05 (left) and

V103 (right). 77

2.7 Cell-phone datasets: Estimated trajectories from MSC-KF+ vs. our SR-ISWF,

overlaid onto the blueprints of the floor plans, in Dataset 1 (left) and Dataset 4

(right). 78

3.1 Geometric relation between the IMU, {I}, and odometer, {O}, frames when

the robot moves from time step k to k + 1. 89

3.2 The roll (left) and pitch (right) angles in degrees across time, when the robot is

moving on a flat surface. The mean is -0.08 and 0.2 degree, and the standard

deviation is 0.3 and 0.7 degree, respectively. 92

3.3 Geometric relationship between the IMU, {I}, odometer, {O}, and plane, {π},
frames when the robot moves on the plane, at time step k. 93

3.4 x− y overview of the Pioneer robot’s trajectory during the circular-motion ex-

periment: The ground truth is shown in blue solid line, while the VINS estimate

is shown in red dashed line. 94

3.5 Scale ratio results for: (i) Pioneer circular motion (blue solid line) with mean

0.16 and std 0.08; (ii) Hand-held motion (red dashed line) with mean 3e-3 and

std 0.03. 96

3.6 Illustration of the indoor Pioneer navigation trajectories, shown in red, esti-

mated by the VINS only (left), the VOD (middle), and the VOS (right), over-

layed on the floor plan. The ground truth, computed from the BLS method

offline, is shown in blue. 97

x

4.1 System overview. After initialization, the system starts in exploration mode

(Sec. 4.3.3), and switches to relocalization mode when a set of loop closures is

detected (Sec. 4.3.4). When in relocalization mode, besides the frontend thread

(Sec. 4.3.4), the system may run a backend thread to perform global adjustment

of past states (Sec. 4.3.4), while the frontend thread employs the backend’s

feedback (i.e., updated trajectory) to correct recent states (Sec. 4.3.4). Once

no loop closures are detected, the system switches back to exploration mode

(Sec. 4.3.3). 137

4.2 Structures of the information factors: (a) Prior. (b) Posterior after the update

using the optimal estimator. (c) Posterior after the update using the exact ISE

with half of the state vector updated. 141

4.3 Structure of the information factor when applying RISE. The QR factorization

does not involve R22. We drop the cost term ‖H⊕2 (x2 − x̂2)− e1‖2, and com-

bine R22 with R⊕11 and R⊕12 to form the new cost function C̄ for updating x1,

while x2 remains unchanged. Dropping this cost term is the key approximation

of RISE. And by ignoring the information in it, we preserve the sparsity of the

Cholesky factor. 143

4.4 Structure of the information factor corresponding to the exploration cost terms

before and after an update. FE does not exist for the first exploration, while in

the general case, it contains the cross information between the new and the old

map, where the dense columns on the left correspond to some last states of the

old map. 146

4.5 Structure of the information factor corresponding to the cost terms before and

after the transition step from exploration to relocalization. 151

4.6 Structure of the information factor corresponding to the relocalization cost

terms before and after a RISE update in the frontend. 153

4.7 NEES comparison in simulation: We run RISE-SLAM exploration mode (i.e.,

the optimal estimator) during the first loop, and for the second and third loops

where there are loop-closure measurements, we employ either: (a) RISE-SLAM

relocalization mode, or (b) assuming past poses and features as perfectly known

(i.e., zeroing out Jacobians w.r.t. them). 157

4.8 Histograms of position NEES on EuRoC datasets (VINS-Mono vs. RISE-SLAM)158

xi

Chapter 1

Introduction

1.1 Visual-Inertial Localization and Mapping

Localization, i.e., determining the position and orientation (pose) of a mobile platform in the

three-dimensional (3D) space, is a fundamental technology for a wide range of applications

(see Fig. 1.1), such as robot navigation [20, 21, 31, 81, 85], autonomous driving [3, 5, 17], and

augmented/virtual reality (AR/VR) [1, 2, 4, 6]. As an example, mobile robots must be able to

track their locations with respect to the environment, in order to perform path planning, obstacle

avoidance, and other high-level tasks. Similarly, in AR applications, the current pose of the

device is a crucial information for correctly rendering virtual contents onto surrounding scenes

of the real world, so that a virtual object would appear static and hence more realistic when

observed by humans.

Although GPS-based localization systems can directly provide positioning information,

there exist many environments that preclude their usage, such as indoors, urban canyons, under-

ground, underwater, outer space, etc. Moreover, the GPS accuracy, often in the order of meters,

may be insufficient for high-precision applications, such as self-driving cars navigating in traf-

fic. Furthermore, since GPS does not directly provide orientation information, sole reliance on

it may lead a robot to become disoriented, especially during stationary intervals.

Instead of relying on GPS, a more flexible approach is to utilize onboard sensors to infer

the location of the mobile platform. Sensors that are popular for localization purposes can be

classified into two categories: proprioceptive sensors (e.g., inertial measurement units (IMUs)

and odometers) and exteroceptive sensors (e.g., cameras, laser scanners, and sonars). In this

1

2

(a) (b)

(c) (d)

Figure 1.1: Applications of localization: (a) Indoor robot navigation. (b) Autonomous driving.
(c) Augmented reality. (d) Virtual reality.

dissertation, we focus on two low-cost and lightweight sensors, which are readily available

on most mobile devices (e.g., smart phones, tablets, and wearable computers): An IMU and

a camera. An IMU measures the linear acceleration and rotational velocity of the platform

to which it is rigidly connected. By integrating these measurements, one could track its 3D

pose at a high frequency due to the low processing cost. Unfortunately, simple integration of

high-rate IMU measurements that are corrupted by noise and bias, often results in fast error

accumulation and hence unreliable pose estimates for long-term navigation. Although high-end

tactical-grade IMUs exist, it remains prohibitively expensive for widespread deployments. On

the other hand, images from a camera provide rich information about the environment. From

these camera images, by extracting and tracking features of interest (e.g., points, see Fig. 1.2)

that belong to the static scene, one could infer the 3D motions of the platform. In addition, by

3

(a)

(b) (c)

Figure 1.2: Images from a camera: (a) Point features (green dots) extracted and tracked. (b) A
blurry image due to fast motion. (c) A dark image due to insufficient lighting.

performing mapping, a 3D map of the surrounding scene can be created in parallel, and uti-

lized to bound the localization error when the camera returns to a previously-mapped area (i.e.,

loop-closures). Pure vision-based navigation systems, however, suffer from robustness issues

under adverse operating conditions, such as image blur due to fast motions, insufficient lighting,

and lack of scene texture (see Fig. 1.2). Due to these complementary sensing capabilities of an

IMU and a camera, as well as their decreasing cost and size, over the past decade, it has be-

come a trending technology to perform localization and mapping, by combining and fusing data

from these two sensors, in the so-called visual-inertial navigation systems (VINS) [45]. More-

over, commercial-grade mobile devices, such as smart phones, have recently been recognized as

promising platforms for realizing VINS, because of their sensing capabilities and wide-spread

4

availability.

In this dissertation, we address the problem of visual-inertial simultaneous localization and

mapping (VI-SLAM), and develop algorithms that provide accurate and efficient solutions to it,

so as to enable real-time perception and navigation applications on mobile devices with limited

processing resources.

1.2 Challenges of Visual-Inertial Localization and Mapping on
Mobile Devices

VI-SLAM can be considered as an instance of the general problem of SLAM [19] (using par-

ticular visual and inertial sensors), which arises when a platform navigates within unknown

areas, i.e., it does not have access to a prior map of its environment. In these scenarios, in order

to determine the platform’s location with respect to its surroundings, a SLAM system is used

to build a map of the environment online while simultaneously localizing the sensor platform

within the same map. Therefore, the VI-SLAM problem is essentially a state estimation prob-

lem, where the state typically consists of sensor poses and map feature positions (as well as

other states such as calibration parameters, sensor biases, velocity, etc), given the visual-inertial

measurements from the IMU and the camera. It is well known that under the assumption of

additive white Gaussian noises, finding the optimal Maximum a Posteriori (MAP) estimate for

VI-SLAM can be cast as a nonlinear batch least-squares (BLS) problem, whose solution can

be obtained in either a batch [24, 87] or an incremental [51, 52] form. As time goes by and the

number of sensor poses and map features increases, however, these optimal approaches have an

increasing processing cost with time, typically between linear and quadratic in the total number

of states, and thus cannot provide high-frequency estimates when operating inside large areas.

In order to obtain efficient solutions, existing approaches in the VI-SLAM literature re-

lax the optimal BLS formulation into two sub-problems: The short-term and long-term VI-

SLAM. The short-term VI-SLAM, aka visual-inertial odometry (VIO) [42, 58, 69], focuses its

optimization over only a bounded-size sliding window of recent poses (as well as a local map),

by marginalizing out past states and measurements. The latency of such VIO methods is typi-

cally very low and does not increase with time, and hence is used for tracking the current pose of

the platform in real time. This local optimization scheme, however, results in an ever-increasing

5

drift in the pose estimates, due to its inability to process loop-closure measurements and per-

form global adjustment of past states. To overcome this limitation, long-term VI-SLAM, aka

full VI-SLAM, combines the advantages of both the optimal (global) and the VIO (local) ap-

proaches, by employing a multi-thread scheme [63, 71, 77]: A frontend thread runs a VIO to

track the current pose of the platform at a high frequency, while a backend thread optimizes,

at a higher processing cost and hence lower frequency, over the entire trajectory (using either

the optimal BLS [24] or its approximations [56,74,84]), and generates more accurate keyframe

pose estimates (and global maps) for relocalization. This way, loop-closure measurements are

utilized to improve long-term accuracy, while efficiency is still achieved at the same time.

Although real-time systems have been successfully developed for both short-term and long-

term VI-SLAM (e.g., [39, 59, 63, 77]), there still exist many challenges that limit the efficiency

and accuracy of such systems, especially when deployed on resource-constrained mobile de-

vices. First of all, as for the problem of short-term VI-SLAM (or VIO), the demand for high

computational efficiency is critical, i.e., a VIO algorithm needs to be extremely fast. This is due

to the fact that a VIO serves as the tracking frontend for real-time operations, and any significant

latency in this part of the navigation system would cause immediate performance degradation.

As an example, in VR applications, low motion-to-photon latency (< 20ms) is necessary to

deliver a convincing immersive experience. If the VIO motion-tracking module causes a large

latency, the screen display will lag behind the user’s movement, and the user can experience

disorientation and motion sickness. Meanwhile, existing VIO algorithms in the literature suffer

from several issues that negatively affect their speed. One of the main limitations is the re-

quirement of using double-precision arithmetic for implementation, due to the ill-conditioning

of the VIO problem (i.e., covariance/Hessian matrix’s condition number > 109), otherwise the

numerical errors can easily become the dominant error source affecting estimation accuracy, or

even cause the estimator to diverge. On the other hand, to achieve more computationally and

memory efficient VIO solutions on mobile devices, single-precision arithmetic is desired for the

following reasons: i) A 32-bit single-precision representation occupies less hardware resources,

and the corresponding operations are likely to be faster, than 64-bit double-precision represen-

tations, and ii) most current mobile devices feature ARM NEON co-processors that provide a

4-fold processing speed increase for 32-bit floating-point operations. Therefore, a VIO algo-

rithm that enables single-precision arithmetic is necessary for pose tracking with extremely-low

latency on mobile devices.

6

Another challenge of the VIO problem is the balancing between estimation accuracy and

computational efficiency. Given the large number of feature observations from camera im-

ages (typically hundreds per image, see Fig. 1.2), we need to determine a visual-information

processing scheme, i.e., to decide which feature measurements to use and how to use them.

Although more visual observations in general result in better localization accuracy, it has a

diminishing gain while increases the computational cost linearly with the number of measure-

ments. Thus, we need to select a portion of all available feature observations for bounding

the processing cost, while ensuring accuracy. Additionally, multiple observations towards a

same feature can be processed either as a mapped landmark for accuracy, as in the conventional

SLAM approaches, or as pose constraints for efficiency, as in the multi-state constraint Kalman

filter (MSC-KF) approach [69]. Moreover, since the measurement model describing the camera

observation is nonlinear, it is necessary to perform linearization of each measurement before

processing, either once for efficiency, as in the filtering-based methods [61, 69], or multiple

times (i.e., relinearization) to reduce the linearization error for accuracy, as in the optimization-

based methods [58, 77]. Therefore, given a limited processing resource on a mobile device, it

is of critical importance to establish a visual-information processing scheme, that chooses be-

tween these options, so as to maintain the low latency of the VIO algorithm while providing

highly-accurate pose estimates.

A second major issue of localization using the VINS arises when it is employed on mo-

bile platforms that have restricted motions (e.g., wheeled robots or self-driving cars). Consider

mobile robots navigating over a flat terrain. In many cases, it is necessary to estimate the full

6-degree-of-freedom (dof) pose of the robot in 3D space, since its motion is only approximately

planar, e.g., due to the unevenness or roughness of the surface, or the presence of ramps, bumps,

and low-height obstacles on the floor. Otherwise, the unmodeled part of the robot’s odometry

error will significantly increase and, in the absence of external corrections, may even cause the

estimator to diverge. On the other hand, VINS has been employed to successfully estimate the

6-dof pose of mobile platforms moving in 3D. Therefore, one would expect that it would be

straightforward to deploy a VINS for localizing robots moving in 2D (i.e., on a planar surface),

as this is an instance of the more general case of 3D motion. Surprisingly, however, this is

not true. In practice, we observe that the positioning error of VINS for such cases is signif-

icantly larger (e.g., > 1m) than what is typically expected (e.g., < 0.1m). This issue raises

a fundamental question about the VINS: What are the observability properties of VI-SLAM

7

under special motion profiles? Observability is an important property of a system, not only

because the observable directions provide the knowledge of what can be estimated, but also the

unobservable directions can be leveraged to avoid gaining incorrect information for improving

accuracy (i.e., observability-constrained filters [42, 47]). In the literature, it is well-known that

the VI-SLAM has only 4 unobservable dof corresponding to 3 dof of global translation and

1 dof of rotation around the gravity vector (yaw) [42, 66]. This result, however, holds only

when the IMU-camera pair undergoes generic 3D motion. In contrast, we need to analyze the

VI-SLAM’s observability properties under common motion profiles for ground vehicles, such

as constant speed/acceleration or no rotation, and identify the additional unobservable directions

if they exist. Furthermore, after the observability results are obtained, we need to extend the

VINS model to incorporate extra information (e.g., from wheel encoders, or the planar-motion

constraint) to ensure that information about the unobservable directions is always available, so

as to improve the localization accuracy of VINS when deployed on wheeled robots.

Finally, as for long-term VI-SLAM, recent algorithms [63, 71, 77] manage to achieve accu-

rate and efficient localization and mapping, but at the cost of inconsistent estimates. Specifi-

cally, to limit the processing cost, all these approaches employ approximations, e.g., keyframes

involved in the frontend’s relocalization are assumed to be perfectly known. Ignoring the corre-

sponding uncertainties of these states and their cross correlations with the current states, how-

ever, leads to inconsistent estimates.1 This means that the estimated covariance is unduly small

and does not represent correctly the uncertainty of the current state estimates (i.e., it does not

offer a reliable measure of the tracking quality). More importantly, combining these overly

optimistic estimates with new measurements later on can further degrade the accuracy of the

system, as new, precise measurements are weighted less in favor of the current estimates. In

fact, this problem of inconsistency has been acknowledged in the past, and remedies are of-

ten used to alleviate its negative impact on estimation accuracy, e.g., by inflating the assumed

covariance of the noise corresponding to the relocalization visual observations [65, 70]. These

heuristics, however, offer no guarantees on the estimation consistency or the system’s perfor-

mance. Instead, to guarantee consistent estimates, it is necessary to employ an approach that

1As defined in [48,49], a state estimator is consistent if the estimation errors are zero-mean and have covariance
matrix smaller than or equal to the one calculated by the estimator. For the purposes of this work, we focus on the
covariance requirement. Note that there exist additional sources of inconsistency, due to linearization errors and
local minima (see e.g., [47]). In this work, we focus on the inconsistency caused by the assumption that uncertain
quantities, such as a map, are perfectly known.

8

uses only consistent approximations. There exists one such estimator in the filtering domain:

The Schmidt-Kalman filter (SKF) [80]. The key idea of the SKF is to update only a subset of

the states (e.g., recent poses and features) and their corresponding covariance and cross cor-

relation terms, while leaving the rest (e.g., past poses and features) unaltered. By doing so,

the computational cost is reduced from quadratic to linear in the (potentially very large) size

of unchanged states. Meanwhile, the uncertainty of the past states is correctly accounted for

to guarantee consistent estimates. The SKF and its variants have been applied to the SLAM

problem [38,50,73], where their major drawback is their high memory requirements: Quadratic

in the size of all states due to the dense covariance matrix. Thus, the SKF cannot be employed

in large-scale VI-SLAM. On the other hand, it is well-known that the information-domain solu-

tions are more suitable for large-scale VI-SLAM, as the Hessian matrix and its corresponding

Cholesky factor are sparse [87]. Therefore, estimators following the Schmidt approximation,

but operating in the information form, is required, in order to obtain efficient and consistent esti-

mates for long-term VI-SLAM. Moreover, based on the requirements of a long-term VI-SLAM

system during its exploration (i.e., when navigating through a new area) vs. relocalization (i.e.,

when revisiting a previously-mapped area) phase, different configurations of the new estimator

need to be employed, so as to maximize accuracy while preserving efficiency.

1.3 Research Objectives

The primary objective of the research works in this dissertation is to improve the efficiency,

accuracy, and consistency of VI-SLAM, for both the short-term and long-term sub-problems,

by addressing the aforementioned challenges.

1.3.1 Efficient Short-Term VI-SLAM

In this work, we aim to design a short-term VI-SLAM (or VIO) algorithm that is highly effi-

cient and accurate. Specifically, while existing estimators for VIO operate in the regular (i.e.,

covariance or Hessian) forms and require double-precision number representations and arith-

metic, we propose to employ their square-root equivalent [14,68]. By maintaining and updating

the square-root factor of the covariance/Hessian matrix, square-root filters can yield the same

effective precision of regular filters while using only half of the wordlength, i.e., to enable

single-precision implementation. First, based on four equivalent forms of the filtering methods,

9

we analyze the potential gain in speed of square-root methods for VIO, especially on mobile

devices, as most modern smart phones and tablets are equipped with the ARM Neon processor

that allows for up to 4-time speed acceleration for 32-bit floating-point operations. To this end,

we present a square-root inverse sliding-window filter (SR-ISWF) for VIO, which maintains the

upper-triangular Cholesky factor of the Hessian matrix of a sliding window of recent poses and

features.

Additionally, we establish the correspondence between two main categories of estimation

methods in the VIO literature, i.e., the filtering and optimization-based approaches, with fo-

cus on their (re-)linearization behaviors. Based on our analysis, we design a hybrid visual-

information processing scheme for our VIO algorithm. In order to balance between estimation

accuracy and computational efficiency, our scheme combines: i) the SLAM and MSCKF feature

processing approaches, ii) relinearization of a selective portion of visual measurements, and iii)

a limiting budget on the number of features to be processed that bounds the total computational

cost.

Moreover, we further improve the efficiency of the algorithm by investigating the underly-

ing VIO problem structures. Under the square-root inverse estimation formulation, the main

numerical operation is a QR factorization. We split this entire QR process into multiple steps,

to better exploit the nonzero patterns of the Jacobian and information factor matrices involved

at each step, so as to achieve computational savings.

1.3.2 Planar VI-SLAM: Observability Analysis and Model Extensions

In this work, we investigate the fundamental cause of the large estimation error of VINS when

deployed on ground robots moving primarily on a plane. Based on our analysis, the restricted

motion that ground robots often undergo alters the observability properties of VINS and renders

additional unobservable directions. Specifically, we analytically show that: i) Scale becomes

unobservable if the platform moves with constant local linear acceleration (e.g., when following

a straight line path with constant speed or acceleration, or when making turns along a circular

arc with constant speed); ii) All 3-dof of global orientation become unobservable if the platform

does not rotate (e.g., when moving on a straight line, or a holonomic vehicle sliding sideways).

Since observability is a fundamental property of the VINS model itself, these additional unob-

servable directions will negatively impact the accuracy of any VI-SLAM estimator employed,

e.g., either BLS [24, 34, 51] or sliding-window filters/smoothers [15, 58, 59, 70, 89]. Although,

10

in practice, these specific motion constraints are never exactly satisfied all the time, when the

robot (even temporarily) approximately follows them, it acquires very limited information along

the unobservable directions. This will cause the information (Hessian) matrix estimated by the

VINS to be severely ill-conditioned, or even numerically rank-deficient, and hence degrades the

localization performance. As an evidence, we experimentally demonstrate the impact of such

motion on the VINS accuracy.

Furthermore, motivated by the key findings of our observability analysis, we focus on im-

proving the localization accuracy of VINS when deployed on wheeled robots. First, in order

to ensure that information about the scale is always available, we extend the VINS algorithm

to incorporate wheel-encoder measurements. Since these are often noisy and of frequency sig-

nificantly lower than that of the IMU, we process them in a robust manner, by first integrating

the raw encoder data and then treating them as inferred displacement measurements between

consecutive poses. Additionally, we take advantage of the fact that the robot moves on an ap-

proximately flat surface and introduce the manifold-(m)VINS, which explicitly considers the

planar-motion constraint in the estimation algorithm, to reduce drift out of the plane in position

estimates. This is achieved by analyzing the motion profile of the robot, and its deviation from

planar motion (e.g., due to terrain unevenness or vibration of the IMU-camera’s mounting plat-

form) and formulating stochastic (i.e., “soft”), instead of deterministic (i.e., “hard”) constraints,

that allow to properly model the vehicle’s almost-planar motion.

1.3.3 Efficient and Consistent Long-Term VI-SLAM

In this work, we seek a novel estimator for efficient and accurate long-term VI-SLAM, while

improving estimation consistency. Specifically, motivated by the potential processing savings of

the SKF, as well as the low-memory requirements of the Hessian (or equivalently its Cholesky

factor) representation of the uncertainty, we first derive the exact equivalent of the SKF in

its square-root inverse form, i.e., by maintaining the Cholesky factor of the Hessian, since the

corresponding portion of the information factor does not change. Surprisingly, unlike the case of

the SKF, the exact inverse-form Schmidt estimator does not provide any computational savings

as compared to the optimal solver. Moreover, the involved operations introduce a large number

of fill-ins, leading to an almost dense information factor. This eventually makes the system too

slow, and hence unsuitable for real-time long-term VI-SLAM. To overcome these limitations,

we further introduce the resource-aware inverse Schmidt estimator (RISE), which is derived as

11

a further approximation of the exact inverse Schmidt estimator. The key idea behind RISE is to

drop a certain portion of the available information, so that: i) As in the exact inverse Schmidt,

past states as well as their corresponding portion of the information factor remain unaltered,

while at the same time, ii) Recent states are updated only approximately, instead of optimally,

so as to reduce both the processing cost and the factor fill-ins. Hence, RISE achieves both

computational and memory efficiency by keeping the information factor sparse. Meanwhile, it

is a consistent approximation to the optimal approach, as it only drops information, instead of

assuming any state to be perfectly known. More importantly, RISE allows trading accuracy for

efficiency, by adjusting the size of the window of the states selected to be updated.

Furthermore, we employ the RISE algorithm in various configurations to realize an accu-

rate and efficient long-term VI-SLAM system, the RISE-SLAM, which maintains a consistent

sparse information factor corresponding to all estimated states. Specifically, our system alter-

nates between two modes, exploration and relocalization, based on the availability of loop-

closure measurements. In order to balance between accuracy and efficiency, in each mode,

RISE is employed with various window sizes and different state orders. Similarly to most re-

cent VI-SLAM systems, our implementation incorporates two threads running in parallel: A

fast frontend thread for estimating the current poses and features at a high frequency, and a

lower-rate backend thread for globally adjusting the past states to achieve high accuracy. A key

difference, however, as compared to existing systems that solve multiple optimization problems

independently in different threads [63, 71, 77], is that RISE-SLAM always solves a single op-

timization problem, partitioned into two components each assigned to one of the two threads.

This is only possible because of the structure of RISE, whose approximation allows focusing

resources on only a subset of states at a time. As a result, in our system, important global correc-

tions from the backend are immediately reflected onto the frontend estimates, hence improving

the current tracking accuracy.

1.4 Structure of the Manuscript

• Chapter 2 describes a square-root inverse sliding-window filter (SR-ISWF) for efficient

short-term VI-SLAM.

• Chapter 3 presents observability analysis and model extensions for accurate planar VI-

SLAM.

12

• Chapter 4 introduces the RISE-SLAM algorithm for efficient long-term VI-SLAM with

improved estimation consistency.

• Chapter 5 provides the concluding remarks and an outlook on future research directions.

Chapter 2

Efficient Short-Term Visual-Inertial
Localization and Mapping

In this chapter, we address the problem of short-term visual-inertial localization and map-

ping, aka visual-inertial odometry (VIO). Specifically, we present a square-root inverse sliding-

window filter (SR-ISWF) for highly efficient and accurate VIO. While existing estimators in the

covariance/information form suffer from numerical issues, employing their square-root equiv-

alent enables the usage of single-precision number representations and arithmetic, thus achiev-

ing considerable speedups as compared to double-precision alternatives, especially on resource-

constrained mobile platforms. Additionally, we establish the correspondence between two main

categories of estimation methods in the VIO literature, i.e., the filtering and optimization-based

approaches, with focus on their (re-)linearization behaviors. Based on our analysis, we design

a hybrid visual information processing scheme for our VIO algorithm, that balances between

estimation accuracy and computational efficiency. Moreover, a detailed description of our SR-

ISWF estimation algorithm is presented, which focuses on the numerical procedures that en-

able exploiting the problem’s structure for gaining in efficiency. Our proposed approaches to

visual information processing and Jacobian structure utilization are fairly general and can ben-

efit other existing VIO algorithms. Finally, as compared to state-of-the-art VIO algorithms on

public datasets, our SR-ISWF achieves superior localization accuracy and speed. Additional ex-

perimental results on commercial-grade cell phones demonstrate our system’s ability for (faster

than) real-time operations on such resource-constrained mobile devices.

13

14

2.1 Introduction and Related Work

Visual-inertial simultaneous localization and mapping (VI-SLAM), where inertial data from

an inertial measurement unit (IMU) are combined with visual observations from a camera, to

compute the position and orientation (pose) of the sensing platform and build a map of the

environment simultaneously, has a wide range of applications, such as augmented/virtual real-

ity, autonomous driving, and robot navigation in GPS-denied areas [45]. Over the past years,

commercial-grade mobile devices (e.g., cell phones) have been recognized as promising plat-

forms for VI-SLAM, because of their sensing capabilities, and wide-spread, low-cost availabil-

ity [4].

Under certain assumptions, it is well known that the Maximum a Posteriori (MAP) estimator

for VI-SLAM can be cast as a nonlinear batch least-squares (BLS) problem, or often referred

to as bundle adjustment (BA) in the computer vision literature. BLS methods (e.g., [24, 87]),

however, that optimize over the entire state history, have processing and memory requirements

that increase at least linearly (often quadratically) with time, and thus are not amenable to

real-time implementations. Although incremental forms [51, 52] and approximations of the

BLS have been proposed (e.g., [56, 74]) to reduce the processing cost, they are still far from

being able to generate real-time estimates on resource-constrained mobile devices. To address

this issue, recent VI-SLAM systems employ a multi-thread scheme (e.g., [63, 71, 77]), where

a frontend thread estimates a small window of recent states for real-time performance, while

a backend thread optimizes, at a higher cost and lower frequency, over the entire trajectory

with loop-closure constraints, and generates more accurate keyframe pose estimates and global

maps for relocalization. In this chapter, we focus on the estimation problem in the frontend,

i.e., to design an algorithm for visual-inertial odometry (VIO) that optimizes over a bounded-

size sliding window of recent poses (as well as a local map), by marginalizing out past states

and measurements. We consider VIO estimators that require only constant processing time and

memory usage, without any long-term loop-closures.

The VIO problem has been studied extensively in the literature. One of the earliest suc-

cessful VIO algorithm is the multi-state constraint Kalman filter (MSC-KF) [69], where visual

observations are transformed into pose constraints by marginalizing the features, thereby ex-

cluding these features from the state vector to reduce the computational cost. Extensions of

15

the MSC-KF have been developed to improve its performance. In particular, based on the ob-

servability properties of the VIO(-SLAM) problem, observability-constrained (OC) MSC-KF

algorithms (e.g., [42, 61]) are introduced to improve the estimation consistency and accuracy.

A hybrid visual information processing scheme, combining pose constraints as in the MSC-KF

and a local map as in the conventional SLAM approaches, have been employed to increase the

(relatively) long-term accuracy and robustness of the estimator (e.g., [42, 60]). To address the

hardware limitations of mobile devices, online estimation and compensation for rolling-shutter

cameras with inaccurate time synchronization are developed (e.g. [39, 59]), as well as the in-

clusion of IMU-camera intrinsic and extrinsic parameters (e.g., [62]). Recently, a robocentric

formulation of the MSC-KF is introduced in [44], for improving the linearity properties of the

nonlinear measurement model and eliminating the observability mismatch issue as in the stan-

dard world-centric counterpart. Besides the MSC-KF algorithm, other extended Kalman filter

(EKF)-based VIO methods have been developed, such as [15] that directly uses pixel intensity

errors of image patches to achieve high tracking accuracy and robustness. While being highly

efficient, all these EKF-based approaches suffer from potentially large linearization errors, due

to the one-time linearization of the nonlinear measurement models before processing, and hence

degrading the estimation accuracy.

On the other hand, the EKF’s information-domain counterpart, the (extended) inverse filter

(EIF), allows for relinearization of the nonlinear measurements in a straightforward manner. By

formulating the VIO problem as nonlinear least squares, the Gauss-Newton method is employed

to solve for the state estimates iteratively (e.g., [25,46,82]). Similarly, optimization-based meth-

ods (e.g., [58,63,77]) aim to obtain the solution of the same nonlinear problem by using general

optimization solvers. In order to achieve efficiency, these methods maintain the sparsity of

the information (Hessian) matrix by discarding information during their marginalization step.

Nevertheless, through relinearization, all these information-domain approaches reduce the lin-

earization error but with a higher computational cost.

Although real-time performance has been successfully demonstrated, even on cell phones,

from both filtering-based and optimization-based VIO systems (e.g., [39, 59, 77]), all existing

estimators suffer from the ill-conditioning of the VIO problem (i.e., covariance/Hessian’s condi-

tion number ≥ 109), which necessitates using double-precision arithmetic for implementation.

Otherwise, the numerical errors can easily become the dominant error source affecting estima-

tion accuracy, or even cause the filter to diverge. Meanwhile, to achieve more computationally

16

and memory efficient VIO solutions on mobile devices, single-precision arithmetic is desired

for the following reasons: i) A 32-bit single-precision representation occupies less hardware

resources, and the corresponding operations are likely to be faster, than 64-bit double-precision

representations, and ii) most current mobile devices feature ARM NEON co-processors that

provide a 4-fold processing speed increase for 32-bit floating-point operations.

In order to overcome the numerical limitations of the estimators in the regular (i.e., co-

variance or Hessian) forms, square-root filters [14, 68] have been developed in the past that

improve numerical stability by maintaining and updating the square-root factor of the covari-

ance/Hessian matrix. Since the condition number of the square-root factor is the square root

of that of the corresponding covariance/Hessian matrix, square-root filters can yield the same

effective precision of regular filters while using only half of the wordlength.

Motivated by the superior numerical properties and hence the potential gain in speed of

square-root methods, in this chapter, we present the square-root inverse sliding-window fil-

ter (SR-ISWF) for VIO, which maintains the upper-triangular Cholesky factor of the Hessian

matrix of a sliding window of recent poses and features. Specifically, we choose the inverse

form, rather than the covariance form, for its simplicity in performing relinearizations as in

the optimization-based approaches. Also, under the square-root inverse formulation, we fo-

cus on taking advantage of the corresponding structures of the VIO problem for computational

efficiency. Our main contributions are:

• To the best of our knowledge, we present the first VIO estimator in the square-root infor-

mation domain, which enables single-precision numerical representation and arithmetic

for implementation. This leads to significant speedups of the program, especially on

mobile devices.

• We establish the equivalence and correspondence between the filtering-based and

optimization-based methods, especially on their (re-)linearization behaviors. Based on

our analysis, we identify three key factors for designing a state estimator.

• We introduce a hybrid visual information management and processing scheme, that is

suitable for any sparse-feature-based sliding-window VIO system, for balancing between

estimation accuracy and computational efficiency.

• We show the specific problem structures under our proposed information processing

scheme and the square-root inverse estimation formulation, that we exploit to obtain an

17

efficient VIO algorithm, the SR-ISWF. Moreover, some of the most important structure

findings and our approach for handling them, to achieve significant computational sav-

ings, are applicable to other popular VIO estimators, such as the MSC-KF and its exten-

sions.

• Our implementation of the proposed SR-ISWF algorithm outperforms alternative state-

of-the-art VIO systems on public datasets, in terms of localization accuracy and speed.

Experiments on cell phones show our system’s capability for real-time operations on

resource-constrained mobile devices.

The rest of the chapter is structured as follows: In Section 2.2, we discuss various popu-

lar estimation methods for the VIO-SLAM problem, and identify their key distinctive factors,

based on which we propose our VIO estimator. Then, Section 2.3 presents our visual-inertial

information management and processing scheme. The detailed SR-ISWF estimation algorithm

is derived in Section 2.4, with special attention to the problem structures and our approach of

utilizing them to achieve an efficient implementation. In Section 2.5, our algorithm is experi-

mentally evaluated in terms of accuracy and processing speed. Finally, Section 2.6 concludes

the chapter.

2.2 VIO-SLAM Estimators

The problem of visual-inertial odometry and/or SLAM (VIO-SLAM) can be cast as a state

estimation problem, where the state typically consists of sensor poses and map feature positions

(as well as other states such as calibration parameters, sensor biases, velocity, etc), and the

measurements are provided by the IMU and camera sensors. There exist two main categories of

estimation methods that are popular in the literature: Filtering-based (e.g., [15,32,42,44,46,61,

70,82]) and Optimization-based (e.g., [33,52,54,58,63,71,77,87]). Although many successful

VIO-SLAM systems have been developed in the past years based on these two approaches, the

correspondence and connection between them and their variants remain unclear. In this section,

we establish the mathematical equivalence between various forms of the filtering methods, and

show their correspondence to the optimization-based approaches.

Our derivation for the equivalence first focuses on the basic, optimal forms of each approach.

The incorporation of approximations for efficiency that are popular in the VIO-SLAM literature,

18

such as assuming previous states as perfectly known (e.g., [54, 71, 77]) or discarding certain

information from nonkeyframes (e.g, [58, 63, 74, 77]), are then discussed.

2.2.1 Problem Formulation

We start by presenting the estimation problem formulation. Note that, in this section, the as-

sumptions and models are kept abstract and general in purpose, so that the results and conclu-

sions drawn are not restricted to specific sensors or their configurations (e.g., stereo vs. mono).

Details of the particular visual-inertial states and models used in our proposed VIO algorithm

are presented later.

Our discussion follows a sliding-window scheme, where at each time step, some new states

come in, then all current states get updated, and finally some old states are removed from the

window. We consider the most general case where the number of states added and/or removed

per step can vary (from zero to multiple), and hence the size of the window may change from

time to time. This is arguably the broadest description of a SLAM estimation problem, as it can

scale from a single state (e.g., pose tracking) to the full/incremental batch formulation, depend-

ing on the horizon and processing scheme within the window: What states to add or remove,

when to add or remove them, which measurements to use, and which ones to absorb into the

prior. These are key design choices that affect the accuracy and efficiency of the estimator as

we discuss later.

State

The state vector to be estimated is denoted by x. It typically comprises sensor (e.g., IMU or

camera) poses, feature states (e.g., for points, lines, planes, etc), platform velocity, sensor biases

(e.g., for gyroscopes and accelerometers), intrinsic and extrinsic parameters, time synchroniza-

tion values between sensor clocks, to name a few.

At each time step, per the sliding-window scheme, some new states xν are added onto the

current state vector x, while some old states xµ are marginalized out of the window. After

marginalization, the remaining states xρ serve as the state vector for the next time step. In order

to compute the state estimates, three sources of information are combined: The prior knowledge

from previous time steps, the process model for the new states, and the measurements within

the window’s horizon. We briefly describe the models for each of these hereafter.

19

Prior

Prior information is typically available for the initial states, and then evolves through the update

and marginalization process at each time step. Although, in general, the prior constraint at the

first time step for the initial states can be nonlinear, all subsequent prior terms are in a linearized

form due to the marginalization process. Therefore, without loss of generality, the prior can be

described as a linearized constraint over the state x:

J0x− r0 = n0, with n0 ∼ N (0, I) (2.1)

which forms the following prior cost term:

Cp = ‖J0x− r0‖2I (2.2)

where J0 and r0 are the prior Jacobian and residual, respectively, and I denotes the identity ma-

trix. If J0 has full column rank (as for most filtering-based methods), the prior constraint (2.1)

and the cost term (2.2) can be written equivalently as:

x− x̂0 = n′0, with n′0 ∼ N (0,P0) (2.3)

Cp = ‖x− x̂0‖2P0
(2.4)

with

x̂0 = (JT0 J0)−1JT0 r0 (2.5)

P0 = A−1
0 = (JT0 J0)−1 (2.6)

Hence, the prior knowledge can be represented as a Gaussian distribution on the state vector,

with mean x̂0 and covariance P0 (or information A0), respectively.

Depending on the specific update and marginalization schemes, the prior term can vary in

terms of the states involved (e.g., from the oldest pose only, up to all states in the window),

as well as the amount of measurement information being absorbed into the prior after each

marginalization step. As we will explain later, these variations of the prior term is a distinctive

factor between the efficiency and accuracy for different estimators.

20

Process Model

The process model describes the state evolution from the previous state x to the new state xν .

For VIO-SLAM, for example, the process model typically corresponds to the motion constraints

between consecutive poses using IMU integration. In general, it can be described as a nonlinear

constraint over the states x and xν :

xν = f(x,u) + w, with w ∼ N (0,W) (2.7)

which gives the following nonlinear process cost term:

Cu = ‖xν − f(x,u)‖2W (2.8)

where f is a nonlinear function describing the process model, u is the known control input (e.g.,

from IMU data), and w and W are the additive white Gaussian noise of the process and its

covariance, respectively. Linearizing (2.7) around the state estimate x̂ and x̂ν , we obtain the

linearized process constraint and cost term:

x̃ν ' Φx̃− ru + w (2.9)

Cu ' ‖
[
Φ −I

] [x̃

x̃ν

]
− ru‖2W (2.10)

where x̃ = x− x̂ denotes the corresponding error state, and

Φ =
∂f

∂x

∣∣∣∣
x=x̂

(2.11)

ru = x̂ν − f(x̂,u) (2.12)

are the state transition (Jacobian) matrix and residual, respectively. If the new state’s estimate

is computed using the process model (as is usually the case for non-iterative filtering-based

methods), i.e., x̂ν = f(x̂,u), the process residual vanishes (i.e., ru = 0) as from (2.12).

21

Measurement Model

Sensor measurements, such as visual observations from the camera to feature points, lines, etc,

provide useful information for determining the state of a VIO-SLAM problem. In general, an

observation can be modeled as a nonlinear function of the entire state x:

z = h(x) + n, with n ∼ N (0,Σ) (2.13)

which gives the following nonlinear measurement cost term:

Cz = ‖z− h(x)‖2Σ (2.14)

where h is a nonlinear function describing the measurement model, z is the obtained measure-

ment (e.g., from camera image), and n and Σ are the additive white Gaussian noise of the

measurement and its covariance, respectively. Linearizing (2.13) around the state estimate x̂,

we obtain the linearized measurement constraint and cost term:

r ' Hx̃ + n (2.15)

Cz ' ‖Hx̃− r‖2Σ (2.16)

where

H =
∂h

∂x

∣∣∣∣
x=x̂

(2.17)

r = z− h(x̂) (2.18)

are the measurement Jacobian matrix and residual, respectively.

Given the prior, process model, and measurement information, in what follows, we first

present the filtering and optimization-based methods that fuse this information in order to es-

timate the state in a sliding-window scheme, and subsequently establish the correspondence

between their steps and show their equivalence.

22

2.2.2 Filtering-based Methods

Filtering methods (e.g., [15, 61, 69]) take as input the prior (2.3)-(2.6) and the linearized pro-

cess (2.9)-(2.12) and measurement (2.15)-(2.18) models. As mentioned earlier, there are two

basic assumptions commonly made in most filtering-based VIO-SLAM algorithms: i) The prior

covariance is always full rank, hence the estimate’s uncertainty as well as its inverse (i.e., the in-

formation) is well defined [see (2.6)]; ii) The new state’s estimate is computed using the process

model (i.e., x̂ν = f(x̂,u)), hence the process residual vanishes (i.e., ru = 0 [see (2.12)]). For

the sake of simplicity, here we also make these two assumptions when discussing the filtering al-

gorithms. Extensions to remove these assumptions, as appearing later in the optimization-based

methods, will be discussed shortly.

As compared to the classic literature on the subject of filtering with the conventional two-

step (prediction-update) process (e.g., [68]), our presentation of the filtering algorithms and

the proofs of their equivalence follow a three-step process under the aforementioned sliding-

window scheme. This is more general as it encompasses both filtering and optimization-based

VIO-SLAM algorithms. Specifically, under this sliding-window scheme, at each time step, a

filtering VIO-SLAM method performs the following three operations:

• State augmentation: The state vector x, from the previous time step, is augmented with

the new state xν . Both the state estimate and the corresponding covariance/information

matrix are augmented, by combining the prior information (2.3)-(2.6) with the linearized

process model (2.9)-(2.12).

• Update: The current (augmented) state vector x is updated to obtain the posterior esti-

mate, as well as the corresponding covariance/information, using the linearized measure-

ment model (2.15)-(2.18).

• Marginalization: A portion of the current state vector x, typically the oldest states xµ,

are marginalized out of the window. Both the state estimate and the corresponding co-

variance/information matrix are marginalized, resulting in a prior (for the next time step)

with respect to the remaining state xρ.

Note that the order of the last two steps can be switched, i.e., the marginalization step can take

place either before or after the update step. Also, this three-step process is a generalization

of the conventional two-step (prediction-update) filtering process: If xν and x represent the

23

same physical quantity (e.g., IMU pose) at two consecutive time steps, where the new state

is initialized using the process model (e.g., IMU integration) while the old one is chosen to

be marginalized, then the combined effect of the state augmentation and marginalization steps

realizes the conventional prediction step.

To carry out the operations in these three steps, in the VIO-SLAM literature, filters have

been employed in various forms. Based on their uncertainty/information representation, they

can be classified into the following four basic forms [14, 68]:

• Extended Kalman filter (EKF) (e.g. [15, 69]): The covariance matrix P is maintained

to represent the uncertainty of the state estimate.

• Square-root extended Kalman filter (SR-EKF): For numerical stability, factorization

methods utilize certain matrix decompositions of the covariance. Here, we focus on the

SR-EKF where the upper-triangular Cholesky factor U of the covariance matrix P is

maintained,1 with P = UTU.

• Extended inverse filter (EIF) (e.g. [46, 82]): The EIF maintains the information matrix

A, which equals the inverse of the covariance P, i.e., A = P−1, and hence the name.2

• Square-root extended inverse filter (SR-EIF) (e.g. [89]): Similarly to the SR-EKF,

the square-root form of the EIF maintains the information factor R, which is the upper-

triangular Cholesky factor of the information matrix A, with A = RTR.

These four filters are well-established in the literature (e.g., [14, 68]), and we hereby con-

sider their equations as readily known. The detailed algorithms are listed in Table 2.1, where the

equations haven been adapted to follow the aforementioned three-step process for the sliding-

window VIO-SLAM scheme, and organized according to the operations in each step, in order to

show the correspondence between the four filters. Moreover, under the sliding-window scheme,

when the new state is added during the state augmentation step in Table 2.1, two opposite state

orderings are used between the covariance and the inverse forms respectively. The choice of

1Other factorization forms also exist, such as the U-D covariance filter, but are mathematically equivalent to the
SR-EKF [14].

2A close relative to the EIF is the extended information filter [83, 88], where the information vector ŷ =
P−1x̂ is estimated instead of the state estimate x̂. These two formulations are very similar with each other and are
mathematically equivalent. Our presentation here focuses on the EIF.

24

Table 2.1: The Filtering Methods: Four Equivalent Forms

EKF SR-EKF EIF SR-EIF

Input Prior state estimate: x
State transition matrix: Φ

Process noise covariance: W
Measurement Jacobian: H
Measurement residual: r

Measurement noise covariance: Σ

Prior covariance: P Prior cov. sqrt factor: U Prior information matrix: A Prior information sqrt factor: R
where UTU = P where A−1 = P where RTR = A

State
Augment-
ation

Add new state xν to x:

x←
[
xν
x

]
x←

[
x
xν

]

P←
[
ΦPΦT+W ΦP

PΦT P

]
U←

[
W

T
2 0

UΦT U

]
A←

[
A+ΦTW−1Φ −ΦTW−1

−W−1Φ W−1

]
R←

[
R 0

W− 1
2 Φ −W− 1

2

]

Update S = HPHT + Σ
[

Σ
T
2 0

UHT U

]
QR
= T

[
S
T
2 G

0 U⊕

]
A⊕ = A + HTΣ−1H

[
R 0

Σ−
1
2 H Σ−

1
2 r

]
QR
= Q

[
R⊕ r⊕

0 e

]
P⊕ = P−PHTS−1HP b⊕ = HTΣ−1r

P← P⊕ U← U⊕ A← A⊕ R← R⊕

∆x = PHTS−1r ∆x = GTS−
1
2 r ∆x = A⊕

−1
b⊕ ∆x = R⊕

−1
r⊕

Update state: x⊕ = x + ∆x, x← x⊕

Marginal-
ization

Marginalize state xµ from x, and keep remaining state xρ: x← xρ

Permutation Π: Πx =

[
xρ
xµ

]
Permutation Π′: Π′x =

[
xµ
xρ

]

ΠPΠT =

[
Pρρ Pρµ

Pµρ Pµµ

]
UΠT = [U:ρ U:µ] Π′AΠ′T =

[
Aµµ Aµρ

Aρµ Aρρ

]
RΠ′T = [R:µ R:ρ]

U:ρ
QR
= T′

[
U′ρρ
0

]
A′ρρ = Aρρ −AρµA

−1
µµAµρ [R:µ R:ρ]

QR
= Q′

[
R′µµ R′µρ
0 R′ρρ

]
P← Pρρ U← U′ρρ A← A′ρρ R← R′ρρ

25

these state orderings affects the computational efficiency of the covariance and inverse square-

root filters as explained later. Also, for the clarity of presentation, the notation for the estimated

quantities in Table 2.1 has been simplified (e.g., x̂0 → x and P0 → P).

In what follows, we establish the mathematical equivalence between the four filters in Ta-

ble 2.1. We start by showing the pair-wise equivalence between the two regular forms (EKF

vs. EIF), followed by pairs of each regular one with its corresponding square-root form (EKF

vs. SR-EKF, and EIF vs. SR-EIF). For each step, we first describe the corresponding filter

equations (considered as known from the literature), and then show their equivalence by prov-

ing that, given the same input (i.e., the prior, process model, and measurements), the filter pairs

under consideration produce the exact same state and covariance/information estimates after

each step. Finally, throughout these derivations, we also discuss the analogies between these

different filter forms.

EKF⇐⇒ EIF

Establishing the equivalence between the EKF and the EIF requires proving that their state

estimates are equal, and the resulting information matrix for the EIF is the inverse of the corre-

sponding covariance matrix for the EKF. Note that in this derivation, certain permutations are

involved due to the opposite state orderings that are used between the covariance and the inverse

forms respectively (see Table 2.1 State Augmentation and Marginalization). While these state

orderings have no impact on the EKF or the EIF, as it will become evident later on, they are

chosen in order to improve the computational efficiency of the marginalization step of the cor-

responding square-root filters. Therefore, and to ensure easier correspondence later on with the

square-root forms (SR-EKF and SR-EIF), these different state orderings are kept for the regular

forms (EKF and EIF) here as well, and will not alter the equivalence result. In fact, our proof

implies that the equivalence between these filters holds for any state ordering.

Proof. i) State augmentation: Given the prior in (2.3) and the process model in (2.9), the state

26

and covariance augmentation for the EKF can be written as:

x̂	 =

[
x̂ν

x̂0

]
, x̂ν = f(x̂0,u) (2.19)

P	 =

[
ΦP0Φ

T + W ΦP0

P0Φ
T P0

]
(2.20)

On the other hand, from the equivalent prior cost term (2.4)-(2.6) and the process cost

term (2.10), the state augmentation of the EIF is the same with that of the EKF in (2.19) with the

permutation Π0 =

[
0 I

I 0

]
, i.e., x̂	 =

[
x̂0

x̂ν

]
, while the corresponding augmented information

matrix is:

A	 =

[
A0 0

0 0

]
+

[
ΦT

−I

]
W−1

[
Φ −I

]

=

[
A0 + ΦTW−1Φ −ΦTW−1

−W−1Φ W−1

]
(2.21)

The equivalence between (2.20) and (2.21) holds, as it can be easily verified that, given P0 =

A−1
0 [see (2.6)], A	 is the inverse of P	 with the permutation Π0, i.e., P	 = Π0A

	−1
ΠT

0 ,

by employing the block matrix inversion lemma [12].

ii) Update: The EKF performs state and covariance update based on the current prior and

the measurement model in (2.15). Meanwhile, the EIF minimizes the cost function that com-

bines cost terms corresponding to the same prior and measurement in (2.16). To solve this

(linearized) least-squares problem, the EIF formulates the corresponding normal equation by

computing [68]:

A⊕ = A + HTΣ−1H (2.22)

b⊕ = HTΣ−1r (2.23)

Then, the updated information matrix is A⊕, while the updated state estimate x̂⊕ is given by

x̂⊕ = x̂ + ∆x, where the state correction ∆x is obtained by solving the normal equation:

A⊕∆x = b⊕ (2.24)

27

which can be computed efficiently by a Cholesky factorization of A⊕. To prove the equivalence

with the EKF update, given that A−1 = P, we compute the inverse of the posterior information

matrix A⊕ in (2.22) using the matrix inversion lemma [12], i.e.,

A⊕
−1

= (A + HTΣ−1H)−1 (2.25)

= A−1 −A−1HT (HA−1HT + Σ)−1HA−1 (2.26)

= P−PHT (HPHT + Σ)︸ ︷︷ ︸
S

−1HP = P⊕ (2.27)

which becomes the standard covariance update for the EKF, with the residual covariance S. On

the other hand, the state correction from (2.24) is:

∆x = A⊕
−1

b⊕ = P⊕b⊕ (2.28)

= (P−PHTS−1HP)HTΣ−1r (2.29)

= PHTS−1(S−HPHT)Σ−1r (2.30)

= PHTS−1︸ ︷︷ ︸
K

r = Kr (2.31)

which is the state correction for the EKF update, with the standard Kalman gain K. Note

that (2.31) can also be obtained directly from (2.28), using the alternative expression of the

Kalman gain as K = P⊕HTΣ−1 [68].

iii) Marginalization: In order to separate the state xµ to be marginalized and the remaining

state xρ, the EKF first permutes and partitions the state vector and the covariance into:

Πx̂ =

[
x̂ρ

x̂µ

]
, ΠPΠT =

[
Pρρ Pρµ

Pµρ Pµµ

]
(2.32)

Then, for marginalization, the EKF simply takes x̂ρ and Pρρ as the remaining state and covari-

ance estimates. On the other hand, the EIF employs a different permutation where the remaining

state xρ is placed at the bottom of the state vector:

Π′x̂ =

[
x̂µ

x̂ρ

]
, Π′AΠ′T =

[
Aµµ Aµρ

Aρµ Aρρ

]
(2.33)

28

These opposite state orderings are chosen in correspondence to the ones required by their

square-root forms as shown later. Then, for marginalization, the EIF takes the same remain-

ing state estimate x̂ρ, while the information is computed using the Schur complement [68]:

A′ρρ = Aρρ −AρµA
−1
µµAµρ (2.34)

To prove their equivalence, from (2.32)-(2.33) and given A−1 = P, it is easy to verify that[
Pρρ Pρµ

Pµρ Pµµ

]
=

[
Aρρ Aρµ

Aµρ Aµµ

]−1

. Hence, from the block matrix inversion lemma and the

definition of A′ρρ in (2.34), we obtain Pρρ = (Aρρ −AρµA
−1
µµAµρ)

−1 = A′
−1

ρρ .

Remark 1: Under the assumption of the multivariate Gaussian distribution with respect to

the state vector and the residual, the EIF is the dual of the EKF, in terms of the fundamental

operations of conditioning and marginalization [68]. Specifically, the update step computes

the conditional distribution p(x̃|r) of the jointly-Gaussian random vector

[
r

x̃

]
, which has the

following covariance:

cov(

[
r

x̃

]
) =

[
S HP

PHT P

]
, Ψ (2.35)

and the information matrix (i.e., the inverse of the covariance):

Ψ−1 =

[
Σ−1 −Σ−1H

−HTΣ−1 A + HTΣ−1H

]
, Ξ (2.36)

While conditioning is hard in the covariance form, requiring the computation of the Schur

complement in Ψ to obtain the updated covariance P⊕ for the EKF [see (2.27)], it is easy in the

information form, which simply requires the bottom-right block in Ξ as the updated information

A⊕ for the EIF [see (2.22)]. In contrast, the opposite is true regarding the marginalization

operation, i.e., it is easy for the EKF [see (2.32)] while requires the Schur complement for the

EIF [see (2.34)].

For the problem of SLAM, it is well-known that while the covariance matrix is always

dense, the information (Hessian) matrix can be sparse, e.g., under the batch least-squares formu-

lation [24,87], or under the sliding-window scheme but with approximations such as discarding

certain measurements [58, 77]. Therefore, the inverse-domain approaches (e.g., the EIF) are

29

more efficient for SLAM estimation problems where the size of the map is large.

EKF⇐⇒ SR-EKF

To prove the equivalence between them, we need to show that their state estimates are equal,

and the resulting covariance factor for the SR-EKF is the (upper-triangular) square-root factor

of the corresponding covariance matrix for the EKF.

Proof. i) State augmentation: As compared to the EKF, the state augmentation of the SR-EKF

is the same as in (2.19), while the corresponding covariance factor is augmented as:

U	 =

[
W

T
2 0

U0Φ
T U0

]
(2.37)

where UT
0 U0 = P0 and W

1
2 W

T
2 = W. To prove the equivalence, it is straightforward to

show that U	
T
U	 = P	 from (2.20). Note that the resulting factor U	 in (2.37) is square

but not upper-triangular. In practice, an extra QR factorization step can be applied to upper

triangularize this factor.

ii) Update: The SR-EKF update equations can be derived from the residual-error state joint

covariance Ψ defined in (2.35). Specifically, it is easy to verify that Ψ has a square-root factor

Ψ
1
2 =

[
Σ

T
2 0

UHT U

]
, on which the SR-EKF update performs a QR factorization as [9]:

[
Σ

T
2 0

UHT U

]
QR
= T

[
S
T
2 G

0 U⊕

]
(2.38)

where UTU = P, Σ
1
2 Σ

T
2 = Σ, and T is the orthogonal transformation matrix of the QR fac-

torization with TTT = TTT = I. Then, from the result of this QR factorization in (2.38), the

SR-EKF takes U⊕ as the updated upper-triangular covariance factor, while the state correction

term ∆x is computed as:

∆x = GTS−
1
2 r (2.39)

Now we show its equivalence with the EKF update. First, from the two block columns of (2.38)

30

and the orthogonality of T, we obtain:

S
1
2 S

T
2 = HUTUHT + Σ = S (2.40)

U⊕
T
U⊕ = UTU−GTG (2.41)

where S is defined in (2.27). Hence, from (2.40), the resulting top-left block S
T
2 of the QR

factor is indeed a square-root factor of the residual covariance S. Partitioning T =
[
T1 T2

]
,

then, from (2.38), it is straightforward to show that G = TT
1

[
0

U

]
and T1 =

[
Σ

T
2

UHT

]
S−

T
2 ,

which gives the expression of G as:

G = S−
1
2 HUTU = S−

1
2 HP (2.42)

Finally, substituting (2.42) into (2.41), we obtain:

U⊕
T
U⊕ = UTU−GTG = P−PHTS−1HP = P⊕ (2.43)

Hence, the updated factor U⊕ is the square-root factor of the posterior covariance P⊕ for the

EKF as in (2.27). Similarly for the state correction term in (2.39):

∆x = GTS−
1
2 r = PHTS−1r = Kr (2.44)

which is the state correction for the EKF update, with the standard Kalman gain K as in (2.31).

iii) Marginalization: Similarly to the EKF, the SR-EKF employs the same permutation Π

to partition the state vector and takes the remaining state x̂ρ as in (2.32). As for the covariance

factor U, only its columns need to be permuted, instead of a symmetric permutation as in the

case of the covariance [see (2.32)], since row permutations have no impact on a square-root

factor. Specifically, the factor U is permuted and then partitioned column-wise as:

UΠT =
[
U:ρ U:µ

]
(2.45)

Note that this permutation Π is chosen so that x̂ρ is placed at the top of the state vector,

and hence its corresponding columns U:ρ in the covariance factor are permuted to the left

[see (2.45)], as required by the following procedure. Then, a QR factorization is performed

31

on U:ρ as:

U:ρ
QR
= T′

[
U′ρρ

0

]
(2.46)

Given UTU = P, from (2.32) and (2.45)-(2.46), it is straightforward to show that U′TρρU
′
ρρ =

UT
:ρU:ρ = Pρρ, and hence after this marginalization, the resulting upper-triangular QR factor

U′ρρ for the SR-EKF is the square-root factor of the corresponding covariance Pρρ for the

EKF.

EIF⇐⇒ SR-EIF

Similarly to the previous case, to prove the equivalence between them, we need to show that

their state estimates are equal, and the resulting information factor for the SR-EIF is the (upper-

triangular) square-root factor of the corresponding information matrix for the EIF.

Proof. i) State augmentation: As compared to the EIF, the state augmentation of the SR-EIF is

the same, while the corresponding information factor is augmented as:

R	 =

[
R0 0

W− 1
2 Φ −W− 1

2

]
(2.47)

where RT
0 R0 = A0. To prove the equivalence, it is straightforward to show that R	

T
R	 =

A	 from (2.21). Note that, similarly to the factor augmentation for the SR-EKF, the resulting

factor R	 in (2.47) is square but not upper-triangular, and an extra QR factorization step can be

applied to upper triangularize this factor.

ii) Update: As compared to the EIF that solves the corresponding least-squares problem by

the normal equation as in (2.22)-(2.24), the SR-EIF operates in the square-root domain, i.e.,

using the information factor and the measurement Jacobian. Specifically, given RTR = A, it

is easy to verify that the updated information A⊕ in (2.22) has a square-root factor A⊕
1
2 =[

R

Σ−
1
2 H

]
, on which the SR-EIF update performs a QR factorization as [9]:

[
R 0

Σ−
1
2 H Σ−

1
2 r

]
QR
= Q

[
R⊕ r⊕

0 e

]
(2.48)

32

where the factor A⊕
1
2 on the left-hand side has been augmented with the prewhitened residual

vector Σ−
1
2 r, so as to obtain r⊕ efficiently in-place [37], and Q is the orthogonal transformation

matrix of the QR factorization. Then, from the result of this QR factorization in (2.48), the SR-

EIF takes R⊕ as the updated upper-triangular information factor, while the state correction term

∆x is computed as:

∆x = R⊕
−1

r⊕ (2.49)

Now we show its equivalence with the EIF update. First, from the first block column of (2.48)

and the orthogonality of Q, we obtain:

R⊕
T
R⊕ = RTR + HTΣ−1H = A⊕ (2.50)

Hence, the updated factor R⊕ is the square-root factor of the posterior information A⊕ for the

EIF as in (2.22). Similarly, it can be shown that:

R⊕
T
r⊕ = HTΣ−1r = b⊕ (2.51)

where b⊕ is defined in (2.23). Then, from (2.50)-(2.51), the state correction term in (2.49) can

be written as:

∆x = R⊕
−1

r⊕ = R⊕
−1

R⊕
−T

R⊕
T
r⊕ = A⊕

−1
b⊕ (2.52)

which is the state correction for the EIF update as in (2.28).

iii) Marginalization: Similarly to the EIF, the SR-EIF employs the same permutation Π′

to partition the state vector and takes the remaining state x̂ρ as in (2.33). Accordingly, the

information factor R is permuted and then partitioned column-wise as:

RΠ′T =
[
R:µ R:ρ

]
(2.53)

Note that, in contrast to the state reordering for the SR-EKF’s marginalization [see (2.45)], this

permutation Π′ is chosen so that x̂ρ is placed at the bottom of the state vector, and hence its

corresponding columns R:ρ in the information factor are permuted to the right [see (2.53)],

as required by the following procedure. Then, a QR factorization is performed on the entire

33

permuted factor as: [
R:µ R:ρ

]
QR
= Q′

[
R′µµ R′µρ

0 R′ρρ

]
(2.54)

from which the SR-EIF takes the bottom-right block R′ρρ as the resulting upper-triangular in-

formation factor after marginalization. To show its equivalence with the EIF, given RTR = A,

from (2.33) and (2.53)-(2.54), the QR factor

[
R′µµ R′µρ

0 R′ρρ

]
is indeed a square-root factor of

the permuted information matrix

[
Aµµ Aµρ

Aρµ Aρρ

]
, from which it can be easily verified that

R′TρρR
′
ρρ = Aρρ − AρµA

−1
µµAµρ = A′ρρ as defined in (2.34). Therefore, for the marginal-

ization, the resulting information factor R′ρρ for the SR-EIF is the square-root factor of the

corresponding information matrix A′ρρ for the EIF.

Remark 2: For the update step, the regular filters operate with the covariance/information

matrix and employ the Cholesky decomposition, on the residual covariance matrix for the EKF

[see (2.27)] or the posterior information matrix for the EIF [see (2.24)]. In contrast, the square-

root filters operate with the square-root factors and Jacobians and employ the QR decomposition

(see (2.38) for the SR-EKF and (2.48) for the SR-EIF). Moreover, since the update step essen-

tially translates into adding more information to the prior, the EIF increases its information by

addition of the measurement information [see (2.22)] while the EKF decreases its covariance by

subtraction [see (2.27)], and hence correspondingly in their square-root forms, the update pro-

cess can be represented as a Cholesky factor update for the SR-EIF [see (2.50)] vs. downdate

for the SR-EKF [see (2.43)].

Remark 3: As compared to the regular filters (the EKF and EIF), these square-root forms

have several advantages in numerical stability [9, 14]. Specifically, while the numerical rep-

resentation of the covariance/information matrix can be indefinite in practice due to numerical

errors, the product of the corresponding square-root factor is always nonnegative definite, and

hence results in a better numerical representation. More importantly, the condition number of

the square-root factor is the square root of that of the corresponding covariance/information ma-

trix. This means that only half as many significant digits are required for the square-root filter

computations as compared with those of the regular filters, leading to potential faster programs

for real-world systems.

34

Remark 4: While the state ordering does not affect the computational complexity of the reg-

ular filters due to the symmetry of the covariance/information matrix, it is an important factor

for all three steps of the square-root filters where the factor is kept upper-triangular. Specifically,

as for marginalization, it requires less computation if the columns corresponding to the states

to be marginalized are ordered to the right within the covariance factor, as from (2.45)-(2.46)

for the SR-EKF, while the opposite is true for the SR-EIF marginalization [see (2.53)-(2.54)].

These two state orderings are reflected in Table 2.1 under the sliding-window scheme, where

the new states are added to one end of the state vector so that the old states (to be marginalized)

appear on the other end in favor of the marginalization computation for each square-root filter,

respectively. Note that, however, this ordering is not necessarily optimal for the computation of

the state augmentation or the update step. In practice, in order to choose the right state ordering

for a square-root estimation algorithm (i.e., the ordering of the columns of the corresponding

upper-triangular covariance/information factor) that minimizes the overall complexity, opera-

tions from all steps should be considered, with properties of the specific problem taken into

account.

In summary, there are four basic forms for the filtering methods, i.e, the covariance and

inverse filters with their corresponding square-root versions, and through the three-step process

under the sliding-window scheme, we have shown that they are all mathematically equivalent to

each other. This conclusion agrees with that of the classic filtering literature (e.g., [14, 68]). In

addition, since these filters operate in different domains (covariance/information vs. its square

root) and employ different matrix factorizations (Cholesky vs. QR decomposition), they have

distinct numerical characteristics, as well as the impact of state ordering on their computational

complexity. Note that, so far, we have only discussed these filters in their basic forms. Next, we

establish their correspondence with the optimization-based methods, and discuss the extensions

to these basic filters that make them equivalent to the optimization-based methods.

2.2.3 Optimization-based Methods

In order to reduce the linearization error for higher estimation accuracy, optimization-based

methods (e.g., [58, 77]) employ relinearization of the nonlinear cost terms, both within each

time step and across multiple time steps. In brief, at each time step, iterative optimization

techniques are first used to compute the state estimates as the minimum of the nonlinear cost

function corresponding to all available information in the current sliding window. Then, the

35

marginalization process absorbs only the necessary portion of all available information into the

prior, while the remaining (nonlinear) cost terms can be reused and relinearized at subsequent

time steps. In what follows, we discuss these two steps of the optimization-based methods in

detail, and show how these operations for the relinearization can be carried out equivalently for

the filtering-based methods.

Nonlinear Optimization

At each time step, the state estimates are computed using all cost terms within the current sliding

window, including the prior in (2.2), the process model in (2.8), and the measurements in (2.14),

which lead to the following nonlinear least-squares cost to be minimized:

C = Cp + Cu + Cz

= ‖J0x− r0‖2I + ‖xν − f(x,u)‖2W + ‖z− h(x)‖2Σ (2.55)

To solve this problem, one popular approach is to use the Gauss-Newton method [87] that

iteratively relinearizes these nonlinear least-squares terms. Specifically, per iteration, the cost

function C in (2.55) is approximated by its corresponding linearized terms around some state

estimate x̂ [see (2.2), (2.10), and (2.16)]:

C ' ‖J0x̃− r′0‖2I + ‖
[
Φ − I

] [x̃

x̃ν

]
− ru‖2W + ‖Hx̃− r‖2Σ (2.56)

where x̃ = x − x̂ is the corresponding error state, and r′0 = r0 − J0x̂. Then, this linear least-

squares problem in (2.56) is typically solved in the regular information/inverse form, i.e., by

forming the corresponding normal equation with the information (Hessian) matrix A⊕:

A⊕∆x = b⊕ (2.57)

A⊕ =

[
A0 + ΦTW−1Φ −ΦTW−1

−W−1Φ W−1

]
+ HTΣ−1H (2.58)

b⊕ =

[
JT0 r′0

0

]
+

[
ΦTW−1ru

−W−1ru

]
+ HTΣ−1r (2.59)

36

followed by a Cholesky factorization of the Hessian matrix A⊕ to obtain the state update ∆x.

Finally, this process is repeated multiple times until certain convergence criterion is satisfied.

To establish its correspondence with the process of the filtering methods, if we com-

pare (2.57)-(2.59) to the EIF’s equations [see Table 2.1 and (2.21)-(2.24)], then it is obvious

that the operations here are just a composition of the two steps, state augmentation and update,

of the EIF. Therefore, given the equivalence between the EIF and the other three filter forms

in Section 2.2.2, we conclude that, the nonlinear optimization process (with the Gauss-Newton

algorithm) per iteration of the optimization-based methods, is equivalent to the combination of

the state augmentation and update steps of the filtering methods. This result is expected as both

methods eventually solve the same underlying linearized problem in (2.56).

Furthermore, the optimization-based methods iterate this process to obtain the optimal so-

lution for the nonlinear problem, while the filters in their basic forms as in Table 2.1 effectively

performs only one iteration of this process. The change of linearization points between itera-

tions of the nonlinear optimization also leads to the existence of the prior and process residu-

als, i.e., the first two terms of b⊕ in (2.59). Extensions of the filters, however, to incorporate

multiple iterations, as well as the handling of these residual terms due to relinearization, are

straightforward and have been developed in the literature. Specifically, the exact same equa-

tions as in (2.57)-(2.59) hold for the EIF [46, 82], while for the EKF it becomes the iterated

EKF (IEKF) [16, 68]. These are summarized in the following remark:

Remark 5: The iterative optimization that relinearizes the nonlinear cost terms within the

sliding window at each time step, can be carried out equivalently for the filters, in both covari-

ance and inverse forms.

Lastly, it is worth noting that, besides the basic form of the nonlinear optimization as pre-

sented here in (2.55)-(2.59), other common variations also exist, such as using robustified cost

functions instead of least squares [41, 87], or employing alternative nonlinear-optimization

solvers based on line-search or trust-region methods (e.g, Levenberg-Marquardt instead of

Gauss-Newton algorithm) [8, 13]. These extensions, however, can also be realized under the

filtering framework.

Marginalization

As old states are removed out of the window, optimization-based methods employ the same

marginalization procedure as in the filtering methods to absorb information into the prior. The

37

equations are identical to that of the EIF, i.e., through the Schur complement as in (2.34). The

main difference, however, is that only a portion of all available information is used for marginal-

ization, i.e., only the cost terms that involve the states to be marginalized (e.g., the oldest pose in

the window), while the remaining nonlinear terms can be reused and relinearized again at sub-

sequent time steps. As a result, all the nonlinear cost terms in (2.55) in the current optimization

window can be categorized into two types:

• State-and-information (SI) cost terms: They are used in the marginalization step to

generate a new prior term consisting of both state and information estimates. Hence,

after the marginalization step, these SI terms are completely absorbed into the prior with

their corresponding linearization point fixed, and cannot be reused or relinearized at any

subsequent time step.

• State-only (SO) cost terms: They are not involved in the marginalization process, and

hence do not contribute to the prior’s information estimates, but are used in the nonlinear

optimization step (together with the SI terms) to obtain more accurate estimates for the

state only (as the new linearization point). Hence, after the marginalization step, these SO

terms are not absorbed into the prior, and can be reused and relinearized again at multiple

subsequent time steps.

These two types of measurement processing represent the preference between computational

efficiency vs. estimation accuracy. Specifically, since the information of the SI-type cost terms

is efficiently contained in the prior, it avoids reprocessing and hence saves computational cost.

This, however, comes at the cost of early fixation of linearization points for these SI terms,

leading to suboptimal solutions for the nonlinear optimization problem in (2.55). In contrast,

since the information of the SO-type cost terms is not contained in the prior and can be reused

in the optimization problems at multiple subsequent time steps, it enables further relinearization

for these terms in order to reduce the linearization errors through smoothing, and hence results

in better solutions for the nonlinear optimization problem in (2.55). The reprocessing of these

SO-type terms, however, leads to a higher computational cost.

Optimization-based methods typically minimize the employment of the SI-type processing

at every time step, i.e, only the cost terms that involve the marginalized states are used in the

marginalization, while all other terms are kept and processed as the SO-type (e.g., [58,77]). This

way, they maximize the accuracy of their solutions to the nonlinear optimization problem. On

38

the other hand, the filters in their basic forms, as in Table 2.1, use all the available information

in marginalization for efficient processing, i.e., all cost terms are treated as the SI-type and

absorbed into the prior, and hence cannot be relinearized at subsequent time steps. Extensions,

however, to include the SO-type processing equivalently in the filtering framework have been

developed in the literature. Specifically, the exact same marginalization process (i.e., using the

Schur complement operation), but with only the SI-type terms, holds for the EIF [46, 82]. As

for the EKF, these extensions are more tricky, since in this case, the prior information matrix

resulting from the marginalization can be singular, and hence the corresponding covariance

matrix cannot be represented in a numerically stable manner. Nevertheless, it can be done

equivalently as described in the iterative Kalman smoother (IKS) [57], by decomposing the

prior term into a covariance for a subset of the prior states and a set of linearized constraints.

These are summarized in the following remark:

Remark 6: The marginalization scheme of the optimization-based methods, that absorbs

only a portion of all available cost terms (SI-type) into the prior while enabling relinearization

of the remaining nonlinear cost terms (SO-type) across multiple time steps, can be carried out

equivalently for the filters, in both covariance and inverse forms.

Finally, we would like to point out the possibility of executing the optimization-based meth-

ods in their equivalent square-root forms:

Remark 7: Similarly as in the case of the filtering methods, computations in the

optimization-based methods can be done equivalently in the square-root form (e.g., [51, 52]):

One simply needs to replace the corresponding linear systems in each optimization iteration and

the marginalization process with the corresponding square-root ones, as that of the SR-EIF.

In summary, filtering and optimization-based methods are just two approaches of solving

the same problem as in (2.55), and they are fundamentally equivalent. As compared to the filters

in their basic forms, the optimization-based methods perform relinearization of the nonlinear

cost terms, both within each time step and across multiple time steps. On the other hand, the

filters can also be extended to incorporate these relinearization operations, both in the (regular

or square-root) covariance and inverse forms, and in this case become exactly equivalent to

those optimization-based methods. When compared, the basic filtering methods process each

cost term only once, and hence are more efficient but have larger linearization errors, thus are

less accurate in general, due to the lack of relinearization. In contrast, the optimization-based

methods reprocess each cost term multiple times, and hence can achieve the optimal nonlinear

39

solution, thus are more accurate, but at a higher processing cost. Therefore, the choice in

between these two extremes (instead of between these two approaches) should be made based

on the trade-off between the accuracy and efficiency for the specific estimation task of the VIO-

SLAM system.

2.2.4 Applications to VIO-SLAM

So far we have discussed the optimal forms of both filtering and optimization-based methods.

In practice, when applied to the VIO-SLAM problem, it is common to include certain approxi-

mations in order to reduce the computational cost of these methods. One such approximation is

to assume some previously-estimated states as perfectly known, e.g., previous poses or mapped

features during relocalization (e.g., [54, 71, 77]). This improves efficiency, but at the cost of in-

consistent estimates and hence less accuracy [27]. Another popular practice in keyframe-based

approaches is to discard information from nonkeyframes during the marginalization step, either

directly the visual measurements (e.g., [58, 77]), or feature correspondences (e.g., [63, 74]), in

order to maintain the sparsity of the Hessian matrix. Hence, this loss of information trades es-

timation accuracy for computational efficiency. Regardless, we would like to point out that, all

these extra approximations can be incorporated easily in both filtering and optimization-based

methods, and do not affect their equivalence mentioned earlier.

When designing an estimator for VIO-SLAM, one can choose either the filtering or the

optimization-based framework, since they are fundamentally equivalent. And under either

framework, in order to define a particular estimator, several key factors need to be determined.

These factors have been briefly mentioned earlier and are summarized here:

Prior vs. Relinearization

As explained earlier, at each time step, every measurement can be processed either as the SI-

type or the SO-type: The SI-type cost terms are absorbed into the prior term at the current time

step, which become the prior for the next time step. This is more efficient, but with potentially

larger linearization errors; Meanwhile, the SO-type cost terms are used only when computing

the state estimates and are not absorbed into the prior, thus can be reprocessed and relinearized

at multiple time steps, which leads to more accurate estimates but at a higher cost. Therefore,

the choice of a measurement cost term being processed as either the SI-type or the SO-type is a

40

distinctive factor that determines between efficiency and accuracy for different estimators. For

example, in the VIO-SLAM literature, some methods employ only the SI-type processing for

all measurements at each time step (e.g., [42, 61, 69]) in order to achieve high efficiency, while

others enable the SO-type processing (e.g., [46, 57, 58, 77, 82]) for improved accuracy.

Optimization Window Horizon

Under the sliding-window scheme, depending on the size and horizon of the window, the esti-

mator can scale from a single state filtering (e.g., pose tracking) to the full batch/incremental

smoothing (e.g., the optimal full SLAM solution). For example, in the VIO-SLAM literature,

there exist VIO methods that consider only a constant-sized window of recent states (e.g., poses

and features) to serve as an efficient tracking frontend (e.g., [15, 32, 58, 69, 77]), as well as

global-adjustment methods that optimize over the entire state history to serve as an accurate

loop-closing backend (e.g., [51, 56, 71, 74, 84]).

Square-Root vs. Regular Forms

As presented earlier, an estimator (filtering or optimization-based), can be realized in either

the regular (i.e., covariance or information) form, or equivalently its square-root form. As

for the VIO-SLAM problem, estimators in the covariance or information form require double-

precision numerical representation and arithmetic, due to the ill-conditioning of the covari-

ance/information matrix in practice (i.e., condition number ≥ 109), otherwise the numerical

errors can easily become the dominant error source affecting estimation accuracy, or even cause

the estimator to diverge. Meanwhile, to achieve the same numerical accuracy and stability, the

square-root alternatives only require single-precision representation. Hence, implementations

using the square-root methods may lead to significant speedups as compared to their regular-

form counterparts. This is especially true when operating on mobile devices, as most modern

smart phones and tablets are equipped with the ARM Neon processor that allows for up to

4-time speed acceleration for 32-bit floating-point operations.

2.2.5 Our Proposed VIO Estimator

Based on the three key factors in Section 2.2.4, we define the following distinctive characteris-

tics of our proposed VIO estimator, the square-root inverse sliding-window filter (SR-ISWF).

41

First, for the underlying estimation framework, we choose to employ the square-root inverse

form, hence the name, so as to enable single-precision arithmetic and operations for improved

speed. We choose the inverse form, rather than the covariance form, for its simplicity in per-

forming relinearizations as explained earlier. To the best our knowledge, this is the first VIO

algorithm that allows for single-precision implementation.

As for the optimization window’s horizon, we choose to employ a constant-sized sliding

window of recent poses (as well as the features observed from them), which is a common

practice in the VIO literature. This is to ensure constant computational and memory cost as

time goes by, which is a basic requirement of a VIO algorithm. As a result, our proposed

algorithm can be used as a fast while locally accurate tracking frontend in a multithread full

VI-SLAM system.

Moreover, similarly to the optimization-based methods, our proposed SR-ISWF algorithm

employs relinearization of the nonlinear cost terms, both within each time step by iterating the

update procedure, and across multiple time steps by using the SO-type measurement processing

in addition to the SI-type. In order to balance between accuracy and efficiency, however, we

choose to relinearize only a selective portion of all available cost terms. This way, in terms of

the relinearization behavior, our estimator is a mixture of the filtering (in basic forms) and the

optimization-based methods. Our particular information management and processing scheme,

as presented later in Section 2.3.4, is another major technical contribution of this chapter.

Finally, our SR-ISWF algorithm does not employ any aforementioned approximation, such

as assuming previous states as perfectly known, or discarding information during marginaliza-

tion. This, however, leads to a dense prior information factor matrix, and will slow down the

algorithm when the size of the state vector becomes too large, e.g., when a large number of

SLAM features are estimated. To overcome this limitation, as explained later in Section 2.3.4,

we employ both SLAM and MSCKF type processing for the feature measurements, which al-

lows for utilizing as much visual information as available while bounding the size of the state

vector at the same time. As a result, our SR-ISWF algorithm achieves high tracking accuracy

with great computational efficiency.

In what follows, Section 2.3 describes in detail our proposed visual-inertial information

management and processing scheme that balances between accuracy and efficiency. Then,

in Section 2.4, we show how to use these selected information terms to obtain the state and

information estimates efficiently under the square-root inverse formulation, by exploiting the

42

underlying problem structures.

2.3 SR-ISWF: VIO Problem Formulation and Information Man-
agement

In correspondence to the general problem formulation in Section 2.2.1, in this section, we first

present details of the particular visual-inertial states, process and measurement models, and

their corresponding cost terms, used in our proposed SR-ISWF VIO algorithm. Then, we focus

on the management and processing scheme of these visual-inertial states and information, so as

to achieve estimation accuracy and computational efficiency at the same time.

2.3.1 State Vector

At each time step k, the following state vector is estimated:

xk =
[
xTS xTC xTP xTE

]T
(2.60)

The first component xS is the state of the currently-observed SLAM features, with xS =[
xTf1 · · · xTfN

]T
, where xfj , for j = 1, · · · , N , denotes the state of the corresponding point

feature fj . Here the feature state is represented using the inverse-depth parametrization (i.e., a

3×1 vector with homogeneous coordinates and inverse depth) with respect to its first observing

camera pose within the current sliding window, for improved numerical accuracy [23]. These

SLAM features are maintained as a local map for tracking the poses of the device accurately in

the short term (see Section 2.3.4).

The state xC consists of a sliding window of recent poses, from xCk−M+1
to xCk , where

xCi , for i = k −M + 1, · · · , k, denotes the state of the cloned3 IMU pose at time step i, and

M is the size of the sliding window. Each cloned pose state xCi is defined as:

xCi =
[
IiqTG

GpTIi tdi

]T
(2.61)

where IiqG is the quaternion representation of the orientation of the global frame {G} in the

3We refer to the same stochastic cloning as in [69], for maintaining past IMU poses in a sliding window estima-
tor.

43

IMU’s frame of reference {Ii} at time step i, and GpIi is the position of {Ii} in {G}. Addi-

tionally as in [39], in order to handle the issue of time synchronization between the sensors on

commercial-grade mobile devices, we also include in the cloned pose state the unknown and

varying IMU-camera time offset4 tdi at time step i.

The parameter state xP consists of the constant but unknown parameters as:

xP =
[
IqTC

IpTC tr

]T
(2.62)

where IqC is the quaternion representation of the orientation of the camera frame {C} in the

IMU frame {I}, and IpC is the position of {C} in {I}. Additionally as in [39], we estimate the

rolling-shutter time tr of the camera (i.e., the readout time of each image, which is constant)

for mobile devices. Moreover, this parameter state can also contain other quantities of interest,

such as IMU and/or camera intrinsics as in [62].

Finally, the states necessary for modeling the IMU process, besides the pose, are kept in the

IMU extra state xE as:

xE =
[
bTgk

GvTIk bTak

]T
(2.63)

where bgk and bak correspond to the gyroscope and accelerometer biases, respectively, and
GvIk is the velocity of {Ik} in {G}, at the current time step k.

The evolution of the state vector across the different steps of our SR-ISWF algorithm, and

the ordering of these states within the state vector that affects the computational cost, are de-

scribed later in Section 2.4.

2.3.2 Inertial Measurement Model and Cost Terms

Integration of the IMU data provides motion constraints between two consecutive cloned IMU

poses. This corresponds to the process model and its cost terms in Section 2.2.1. Here we

follow the standard approach for modeling the IMU process as in [42, 86]. Specifically, the

IMU measures the device’s rotational velocity and linear acceleration contaminated by white

Gaussian noises and time-varying biases. The gyroscope and accelerometer measurements,

4Similarly as in [39], we consider the general case where the IMU and camera operate at different frequencies,
and their time stamps are reported in different clocks and are not accurate. Thus, the unknown time difference
between the two sensors is time-varying and needs to be estimated per image.

44

ωm(t) and am(t), are:

ωm(t) = Iω(t) + bg(t) + ng(t)

am(t) = C(IqG(t))(Ga(t)− Gg) + ba(t) + na(t) (2.64)

where the noise terms, ng(t) and na(t), are modeled as zero-mean white Gaussian noise pro-

cesses, C(q) is the rotation matrix corresponding to q, and the gravitational acceleration Gg

is considered a known deterministic constant. The device’s rotational velocity Iω(t) and lin-

ear acceleration Ga(t), from (2.64), can be used to relate consecutive IMU poses through the

continuous-time system equations:

Iq̇G(t) =
1

2
Ω(ωm(t)− bg(t)− ng(t))

IqG(t)

Gv̇I(t) = CT (IqG(t))(am(t)− ba(t)− na(t)) + Gg

GṗI(t) = GvI(t), ḃg(t) = nwg(t), ḃa(t) = nwa(t)

Iq̇C(t) = 0, IṗC(t) = 0, ṫd(t) = ntd(t), ṫr(t) = 0 (2.65)

where the biases and the IMU-camera time offset are modeled as random walks driven by zero-

mean white Gaussian noise processes nwg(t), nwa(t), and ntd(t), respectively.

Given the inertial measurements uk−1:k =
[
ωT
mk−1:k

aTmk−1:k

]T
within the time interval[

tk−1, tk

]
, analytical integration of (2.65) is used to determine the discrete-time system equa-

tions, which imposes a constraint between the consecutive cloned IMU states xIk−1
and xIk

(after linearizing with respect to the noise terms) as:

xIk = f(xIk−1
,uk−1:k) + wk (2.66)

and the corresponding nonlinear cost term:

Cu(xIk−1
,xIk) = ‖xIk − f(xIk−1

,uk−1:k)‖2Wk
(2.67)

where the cloned IMU state xIk =
[
xTCk xTEk

]T
[see (2.61) and (2.63)], and wk is the discrete-

time zero-mean white Gaussian noise with covariance Wk. Linearizing (2.66), around the state

45

estimates x̂Ik−1
and x̂Ik , results in the following linearized inertial constraint and cost term:

x̃Ik ' Φk,k−1x̃Ik−1
− ruk + wk (2.68)

Cu(x̃Ik−1
, x̃Ik) ' ‖

[
Φk,k−1 −I

] [x̃Ik−1

x̃Ik

]
− ruk‖

2
Wk

(2.69)

where the error state x̃Ik = xIk − x̂Ik , Φk,k−1 is the state transition (Jacobian) matrix, and

ruk = x̂Ik − f(x̂Ik−1
,uk−1:k) is the residual (i.e., IMU propagation error). Details of the IMU

integration, including the analytical expressions for Φk,k−1 and Wk, can be found in [42, 86].

Moreover, as in [42], the state transition matrix Φk,k−1 is modified to satisfy the observability

constraints for improving the estimation consistency.

2.3.3 Visual Measurement Model and Cost Terms

Camera images provide observations to features from the camera poses. This corresponds to the

measurement model and its cost terms in Section 2.2.1. Specifically, we extract point features

and track them across images within the current window as visual measurements to be pro-

cessed. When working with commercial-grade mobile devices (e.g., cell phones), the images

suffer from the rolling-shutter effect, where the image pixel rows are read sequentially in time,

so each row has a different actual observation time. In addition, there exists a time-varying

offset between the IMU and the camera’s time stamps, i.e., the two clocks are not synchronized

and their time stamps are inaccurate. To handle these issues, we employ the interpolation model

in [39], where each camera pose is interpolated using its two closest cloned poses.

In general, a point-feature measurement model can be written as:

zji = h(Ci+tpfj) + nji = h(xfj ,xF) + nji (2.70)

where zji is a point-feature measurement in pixel coordinates, Ci+tpfj is the feature’s position

expressed in the camera frame of reference at the exact acquisition time instant of this pixel

measurement, nji is zero-mean white Gaussian noise with covariance σ2I2, and I2 is the 2 × 2

identity matrix. As in (2.70), a visual measurement is a nonlinear function of the states involved:

i) The feature’s state xfj , which is expressed with respect to its first observing camera pose

within the current window; ii) Some poses in the cloned pose states xC and the parameter state

46

xP . And for convenience, we have defined:

xF =
[
xTC xTP xTE

]T
(2.71)

which is a subset of the entire state vector in (2.60), comprising all states except the SLAM

features. Thus, each feature measurement contributes a nonlinear cost term:

Cz(xfj ,xF) = ‖zji − h(xfj ,xF)‖2σ2I2
(2.72)

Linearizing (2.70), around the state estimates x̂fj (initially from point-feature triangulation) and

x̂F , results in the following linearized visual constraint and cost term:

rjz,i ' Hj
f,ix̃fj + Hj

F,ix̃F + nji (2.73)

Cz(x̃fj , x̃F) ' ‖Hj
f,ix̃fj + Hj

F,ix̃F − rjz,i‖
2
σ2I2

(2.74)

where Hj
f,i and Hj

F,i are the corresponding feature and pose Jacobians, respectively, and rjz,i

is the measurement residual (i.e., reprojection error). Note that Hj
F,i has nonzero columns

corresponding to only the involved poses of this measurement and the parameter states. Details

of the specific camera measurement model that we adopt, including the analytical expressions

for the Jacobians and their modifications to satisfy the observability constraints, can be found

in [39].

As a feature is tracked across multiple images, we define the feature track as the collection

of all the visual measurements to this feature from all its observing poses. Combining together

all its `j observations within the current window, from (2.74), each feature track contributes a

visual cost term:

Cz0(x̃fj , x̃F) =

k∑
i=k−M+1

Cz(x̃fj , x̃F)

= ‖Hj
f x̃fj + Hj

F x̃F − rjz‖2σ2I2`j
(2.75)

where Hj
f , Hj

F , and rjz are the stacked feature Jacobian, pose Jacobian, and residual, respec-

tively. Note that due to the nonzero pattern of each Hj
F,i, H

j
F has a specific structure that we will

utilize later. To further reveal the information portions of the cost term Cz0 , consider a 2`j×2`j

47

orthogonal matrix Qj
L, partitioned as Qj

L =
[
Qj
L1

Qj
L2

]
, where the 3 columns of Qj

L1
span

the column space of Hj
f , while the 2`j − 3 columns of Qj

L2
span its left nullspace [69]. If we

apply the orthogonal transformation, defined by QjT

L , to the Jacobians and residual in (2.75) as:

QjT

L1
Hj
f = Rj

f , QjT

L1
Hj
F = Fj

1, QjT

L1
rjz = ζj1

QjT

L2
Hj
f = 0, QjT

L2
Hj
F = Fj

2, QjT

L2
rjz = ζj2 (2.76)

which we name the left-nullspace (LNS) transformation, then, each feature track’s cost term

Cz0 in (2.75) becomes:

Cz0(x̃fj , x̃F) = ‖Hj
f x̃fj + Hj

F x̃F − rjz‖2σ2I2`j

= ‖QjT

L (Hj
f x̃fj + Hj

F x̃F − rjz)‖2σ2I2`j

= ‖Rj
f x̃fj + Fj

1x̃F − ζ
j
1‖

2
σ2I3︸ ︷︷ ︸

Cz1(x̃fj , x̃F)

+ ‖Fj
2x̃F − ζ

j
2‖

2
σ2I2`j−3︸ ︷︷ ︸

Cz2(x̃F)

(2.77)

As a result, Cz0 is equivalently transformed into two cost terms. Since Rj
f is invertible, for any

x̃F , there always exists an x̃fj that makes the first term Cz1(x̃fj , x̃F) zero. Therefore, min-

imizing Cz0 is equivalent to minimizing only the second term Cz2(x̃F), which corresponds to

marginalizing the feature state. Thus we can conclude that, Cz1(x̃fj , x̃F) contains only informa-

tion about the feature’s state, while all the information on the cloned poses (and the parameter

state) is contained in Cz2(x̃F), which is exactly the pose constraint used by the MSC-KF algo-

rithm [69].

2.3.4 Visual-Inertial Information Management

Given the visual-inertial measurements and their cost terms, we need to determine the specific

approach of information management, i.e., the way in which the state vector evolves and the

corresponding measurement processing scheme for estimating these states.

Cloned State Management Scheme

When a new camera image arrives at time step k, the corresponding IMU frame’s pose state

xCk [see (2.61)] and extra state xEk [see (2.63)] are cloned and added to the state vector, if

48

the camera has undergone sufficient motion from the previous cloned pose, in order to provide

geometry for point feature triangulation. The specific IMU frame to be cloned is chosen at the

instance of the IMU data that is closest to the image in terms of their time stamps. Meanwhile,

the oldest cloned pose xCk−M is marginalized, so as to maintain a constant size of the pose

sliding window.

Inertial Information Processing Scheme

Once the new cloned IMU states are added to the state vector, we use the corresponding inertial

measurements to initialize these states. This corresponds to the state augmentation step in

Section 2.2.2. Specifically, we use the inertial cost term, Cu(x̃Ik−1
, x̃Ik) from (2.69), which

represents the information of IMU propagation from the previous cloned IMU state xIk−1
to

the current new one xIk . Similarly to most filtering-based VIO methods (e.g., [42, 61, 69]),

we choose not to relinearize or reprocess the IMU cost term, i.e., it is processed as the SI-

type and absorbed into the prior immediately, so as to reduce the computational cost. This is

due to the fact that, although relinearization can be carried out efficiently by performing IMU

preintegration [33], reprocessing the inertial cost terms requires to include all the IMU extra

states for all the clones in the window. This will significantly increase the state vector’s size and

hence the computational cost. Instead, by not reprocessing the inertial cost terms, the previous

IMU extra state xEk−1
can be marginalized right after the cloned state augmentation step, as

it is no longer needed afterwards. Meanwhile, only the current IMU extra state xEk is kept

[see (2.63)] during the subsequent update step using the visual information.

Visual Information Processing Scheme

The visual information from camera observations to point features are utilized to correct the

state estimates. This corresponds to the update step in Section 2.2.2. Given the large amount of

visual observations (easily hundreds of them per image), however, we need to choose carefully

their processing scheme, so as to achieve high estimation accuracy while maintaining great

computational efficiency at the same time, especially when operating on resource-constrained

platforms. To do so, we employ two types of hybrid visual processing approaches: i) SLAM

and MSCKF feature processing, and ii) SI-type and SO-type measurement processing.

First, similarly as in [42, 60], our algorithm employs a hybrid feature processing scheme of

49

both SLAM and MSCKF features:

• SLAM features: As in typical SLAM approaches, these features’ states xS are added

into the estimator’s state vector [see (2.60)] and updated across time. By maintaining

a map of the scene, SLAM features increase the estimation accuracy and improve the

estimator’s robustness, especially when viewed over many frames. In terms of the cost

terms in (2.77), Cz1 is used for initializing new SLAM features, while Cz2 is exploited for

update. Then at subsequent time steps, reobservations to these estimated SLAM features,

i.e., Cz in (2.74), are used to further improve the feature estimates, as well as localizing

the camera poses. Finally, when a SLAM feature is no longer observed by the newest

pose in the sliding window, it is marginalized and removed from the state vector.

• MSCKF features: These features are processed as in the MSC-KF approach [69], hence

the name,5 where the feature states are marginalized on-the-fly to generate efficient local

multi-state constraints with respect to their observing camera poses [see (2.77)]. In terms

of the cost terms, this approach employs only the cost term Cz2 in (2.77) for update. As

a result, MSCKF features are not mapped, i.e., the feature states are not added into the

estimator’s state vector for direct estimation, so as to reduce the computational cost.

Under the sliding-window scheme, the SLAM feature processing is in general more accurate,

while the MSCKF scheme is more efficient, depending on the feature’s track length. Specifi-

cally, the track length of a feature is defined as the number of camera observations of the entire

feature track, which depends on the appearance of the feature in the camera images across time

and the results of the image processing module, while is independent of the specific size of the

sliding window. If a feature’s track length is smaller than or equal to the window size, i.e., the

entire feature track is contained within one epoch of the sliding window, then processing it as

a SLAM or MSCKF feature will give exactly the same pose estimates, since in this case, as

explained in Section 2.3.3 [see (2.77)], all the information on the poses from this feature track

is represented as the cost term Cz2 . Otherwise, if a feature track is longer than the window’s

size, then applying the MSCKF scheme actually cuts the entire track into multiple pieces of

shorter tracks, where each one of these shorter tracks is processed as a different feature. As a

result, the effective track length of a MSCKF feature can never exceed the size of the window,

5Throughout this chapter, we use the term “MSC-KF” to denote the overall filtering algorithm in [69], while
“MSCKF features” signifies the features processed in such a manner.

50

and this scheme trades accuracy for efficiency, by dropping information on feature correspon-

dences. In contrast, the SLAM processing scheme preserves the correspondence information of

a feature track, by adding the feature state into the state vector and hence allowing to process

subsequent reobservations to the same feature, and thus is more accurate and robust than the

MSCKF scheme. This advantage, however, comes with a higher processing cost, as it increases

the size of the state vector, as well as that of the corresponding covariance/information matrix

(or its factor), especially when the matrix is dense. Therefore, to summarize, we choose to pro-

cess features whose track lengths are smaller than the sliding window’s size as MSCKF features

for efficiency, while those with longer tracks are preferably to be processed as SLAM features

for accuracy.

At this point, it is worth noting that, when processing the visual information of a feature

track to initialize it as a new SLAM feature, all existing VIO-SLAM methods directly employ

the cost term Cz0 in (2.75) that corresponds to the original feature measurements. Instead, in this

work, we propose to use the alternative but equivalent cost terms after the LNS transformation,

i.e., Cz1 +Cz2 in (2.77), so that: i) The update operation of new SLAM feature initialization can

be carried out in a uniform manner with that of the MSCKF features (i.e., both using the cost

term Cz2), which results in an easier implementation of the algorithm, and more importantly,

ii) the computational savings achieved by exploiting the Jacobian structures of the MSCKF

feature tracks during the update procedure also apply to the case of new SLAM feature initial-

ization. Details of the SLAM and MSCKF feature measurement processing in our algorithm

are presented later in Section 2.4.

Moreover, besides the hybrid processing scheme with both SLAM and MSCKF features,

another mechanism for balancing between accuracy and efficiency, as explained earlier in Sec-

tion 2.2.4, is by choosing between the SI-type vs. SO-type measurement processing, i.e., by

deciding on which measurements to be absorbed into the prior at the current time step, while

others to update only the state estimates so that they can be reprocessed and relinearized at

subsequent time steps. As mentioned earlier in Section 2.2.3, optimization-based methods typ-

ically maximize the usage of SO-type processing per measurement for accuracy, by selecting

as SO-type all the measurements whose absorption into the prior can be postponed to later time

steps (e.g., [58, 77]). Instead, in this work, we choose to relinearize only a selective portion of

all these measurements, by performing a coarser selection of the processing scheme per feature

track, where each track comprises multiple measurements to a feature. This is due to the fact

51

that, the MSCKF features can only be processed per track (using the transformed cost term Cz2)

instead of per measurement, as well as the new SLAM feature initialization as we choose to for

the reasons mentioned earlier. As a result, our measurement processing scheme trades accuracy

for efficiency. Specifically, under the sliding-window scheme, at each time step, in order to

determine the choice between the SI-type and SO-type processing for each feature track, we

classify all available feature tracks in the current window into the following two categories (see

Fig. 2.1):

• Immature feature tracks: These are the features that are observed by some cloned poses

in the current window, but not by the oldest cloned pose yet. All feature tracks start as

immature, as in the beginning a track only covers some newest poses of the window at

these epochs. Since these tracks have not reached the tail of the window, their measure-

ments can be reprocessed and relinearized across multiple time steps. Hence, we choose

to use them as the SO-type for accuracy. After being processed by the estimator, these

SO-type feature track measurements remain as available for the next time step.

• Mature feature tracks: These are the features that are observed by the oldest cloned

pose in the current window. As time goes by and the estimation window slides forward

in time, all immature feature tracks eventually become mature, i.e., when a feature’s first

observing pose becomes the oldest cloned pose of the window at a certain epoch. Since

these tracks have reached the tail of the window, and the oldest pose will be marginal-

ized at the next time step, this is the last chance to absorb their information into the prior,

i.e., postponing their processing to future epochs of the sliding window will lead to loss of

information. Hence, we choose to use these tracks’ measurements within the current win-

dow as the SI-type for efficiency. After being processed by the estimator, these SI-type

feature track measurements can no longer be used in the future, and hence are removed.

Given the two types of hybrid visual processing approaches (i.e., SLAM+MSCKF fea-

tures and SI+SO-type measurement processing), in this work, we propose to combine them

to create our visual information processing strategy under the sliding-window scheme. Specifi-

cally, based on our discussions so far, the key factors for determining between these processing

choices are the maturity and the track length of a feature track within the current window. When

a new feature track enters the sliding window and is immature, it is processed as the SO-type.

52

Figure 2.1: An example of feature tracks in the sliding window and our corresponding visual
information processing scheme: At the current time step k, the window with size 4 contains
cloned poses from time step k − 3 to k. Within this window, the feature tracks f1 and f2 are
mature, as they are observed by the oldest cloned pose at k − 3, while f3 and f4 are immature.
We choose to initialize f1 as a new (SI-)SLAM feature, since its track is mature and spans the
entire window. Meanwhile, the other mature feature track f2 is processed as SI-MSCKF, since
it is not observed by the newest pose at time step k. On the other hand, the immature tracks f3

and f4 are processed as SO-MSCKF. After being processed by the estimator, the SI-type feature
track measurements of f1 and f2 are removed, since their information has been absorbed into the
prior, while the SO-type measurements of f3 and f4 remain as available for the next time step.
At the next time step k + 1, the window slides forward to contain poses from k − 2 to k + 1,
where f3 becomes mature, while f4 remains to be immature. Additionally, the SLAM feature f1

is reobserved from the newest pose at time step k+ 1, and this measurement is processed as the
SI-type.

53

Note that for the SO-type processing, the SLAM and MSCKF feature approaches are identi-

cal regardless of the track length, since after the SO-type processing the prior will not contain

any information on the feature’s state, and the entire feature track can be reprocessed freely at

following time steps. In fact, the only impact of processing such SO-type feature tracks is to

have a better estimate (linearization point) for the state vector, by using these tracks’ multi-state

constraint cost terms Cz2 . Hence, we use SO-MSCKF to denote any feature track for the SO-

type processing. On the other hand, as time goes by and a feature track becomes mature, we

choose to process it as the SI-type, and either as SI-SLAM (or simply denoted by SLAM) or

SI-MSCKF based on its track length within the current window: If the track spans the entire

window, then it has chance to last longer and to be reobserved, hence it is initialized as a new

SLAM feature, by processing as the SI-type its entire track within the current window. Reob-

servations to this SLAM feature, from the newest pose of the window at subsequent time steps,

are immediately processed as the SI-type for efficiency; Otherwise, if the track is shorter than

the window span, i.e., the feature is not observed from the newest poses of the current window,

and hence this track is unlikely to continue, it is processed as the SI-MSCKF. An example of

our visual information processing scheme is illustrated in Fig. 2.1.

As compared to the sliding-window VIO methods that employ both SLAM and MSCKF

features but with only the SI-type processing (e.g., [42, 60]), by adding the SO-type measure-

ment processing, our hybrid visual information processing scheme has the following advantages

in practice: i) It enables using visual observations as soon as they become available for obtain-

ing a better estimate for the current states, while allowing for delayed decision on a feature

track to be processed as either a SLAM or MSCKF feature, depending on its track length after

it becomes mature. ii) By using the same information repeatedly for updating the state, it im-

proves the estimator’s robustness by avoiding the case of running out of visual measurements

at certain epochs of the sliding window, which can happen when only the SI-type processing is

employed, especially under adverse conditions (e.g., in areas with limited number of features).

iii) By relinearizing the nonlinear visual cost terms across multiple time steps, it reduces the

linearization error and hence improves accuracy.

Finally, in order to address the limitations on processing capabilities of resource-constrained

platforms, we bound the total computational cost of each estimator run, by setting a budget on

54

the number of feature tracks that can be processed in each update, for each of the aforemen-

tioned processing types (i.e., SLAM, SI-MSCKF, and SO-MSCKF). When the number of avail-

able feature tracks is larger than the allowed budget, features are selected based on their track

lengths, with higher priority given to the longer tracks, since they contain more information in

general.

In summary, we have proposed a hybrid visual information processing scheme for sliding-

window VIO. Our scheme combines the SLAM+MSCKF feature approach with the SI+SO-type

measurement processing, while complying with the limiting budget for each type, in order to

balance between the estimation accuracy and computational efficiency. Note that our proposed

scheme is not restricted to any specific estimator, i.e., it can be used for any sparse-feature-based

sliding-window VIO algorithm regardless of the estimation framework (see Section 2.2). The

detailed steps for carrying out our proposed scheme are listed below:

(i) Feature track management: At each time step, all available feature tracks in the current

window are classified into the mature and immature groups, and are arranged by their

track lengths. This can be accomplished efficiently by updating the result from the pre-

vious time step, considering the evolution of the cloned poses under the sliding-window

scheme.

(ii) Current SLAM feature reobservation [ZR (CZR)]: For each SLAM feature in the cur-

rent state vector: If the feature is reobserved from the newest pose, this measurement is

selected to be processed as the SI-type; Otherwise, if the feature is not reobserved, its

state is set to be marginalized.

(iii) New SLAM feature initialization [ZS (CZ1
S

+CZ2
S

)]: If the number of remaining SLAM

features is smaller than the SLAM budget, new SLAM features are selected from the

mature feature tracks that span the entire window. These features’ states are set to be

added into the state vector, and their tracks are to be processed in the SI-type SLAM

manner.

(iv) SI-MSCKF feature selection [ZM (CZ2
M

)]: Feature tracks are selected to fulfill the SI-

MSCKF budget, from the mature group and in the descending order of track length. These

tracks are to be processed in the SI-type MSCKF manner.

55

(v) SO-MSCKF feature selection [Z̄M (C̄Z2
M

)]: Feature tracks are selected to fulfill the SO-

MSCKF budget, from both the immature and mature groups and in the descending order

of track length. These tracks are to be processed in the SO-type MSCKF manner.

(vi) Estimator run: All selected measurements (cost terms) are processed by the estimator

(see Section 2.4).

(vii) Feature measurement removal: All measurements processed as the SI-type are re-

moved, while the ones as the SO-type remain as available for future uses.

2.4 SR-ISWF: Estimation Algorithm

Given the selected visual-inertial measurements (cost terms) and their corresponding process-

ing scheme as described in Section 2.3.4, in this section, we present our SR-ISWF estimation

algorithm that performs the numerical operations to compute an estimate of the state vector

[see (2.60)], as well as its corresponding information factor, with special attention to specific

problem structures that are exploited for an efficient implementation.

Specifically, at each time step k, the input of the algorithm consists of the prior and the

selected visual-inertial measurements, as well as the current state estimate to be used as the

linearization point. First, the visual-inertial measurements to be processed are described in

detail in Section 2.3.4, and their corresponding cost terms are summarized here: The inertial

cost term Cu [see (2.69)] represents the information arising from the IMU measurements uk−1:k,

the visual cost terms CZR [see (2.74)] from all the reobservation measurements ZR to the current

SLAM features, CZ1
S

+ CZ2
S

[see (2.77)] from all the new SLAM feature (to be initialized) track

measurements ZS , and CZ2
M

and C̄Z2
M

from all the SI-MSCKF and SO-MSCKF feature track

measurements ZM and Z̄M , respectively. Finally, the prior information, which is generated by

our estimator from the previous time step k − 1, is represented by the prior cost term:

Cp(x̃k−1) = ‖Rk−1x̃k−1 − rk−1‖2 (2.78)

where ‖·‖ denotes the standard vector 2-norm, Rk−1 and rk−1 are the prior information square-

root factor matrix (i.e., the upper-triangular Cholesky factor of the prior information/Hessian

matrix) and the prior residual vector, respectively. x̃k−1 = xk−1 − x̂k−1 is the error state

56

corresponding to the current state estimate (linearization point) x̂k−1. Note that in (2.78), the

prior residual rk−1 6= 0 due to the processing of the SO-type cost terms (see Section 2.4.11).

The main objective of our estimation algorithm is to compute the new state estimate, by

minimizing the total cost function C?k that contains all the information from the prior, inertial,

and visual cost terms:

C?k = Cp + Cu + CZ (2.79)

where CZ represents the collection of the nonlinear cost terms Cz in (2.72) from all aforemen-

tioned visual measurements Z. In order to solve this nonlinear least-squares problem, our esti-

mator employs the Gauss-Newton optimization, where each iteration minimizes the linearized

least-squares cost function:

C?k = Cp + Cu + CZR + CZ1
S

+ CZ2
S

+ CZ2
M︸ ︷︷ ︸

C⊕k

+ C̄Z2
M

(2.80)

which is solved in the square-root inverse form, following the basic numerical procedure of the

SR-EIF (see Table 2.1), so as to enable single-precision implementation for improved speed.

Note that, as explained in Section 2.2.3, we use the total cost function C?k , including both the

SI-type and SO-type terms, to compute the new state estimate (as the linearization point), while

the posterior cost function C⊕k , containing only the SI-type terms, to generate the new prior for

the next time step.

Same as in the SR-EIF (see Table 2.1), the main numerical operation of our algorithm’s up-

date procedure, where the visual cost terms are processed, is a QR factorization as in (2.48). A

naive approach would stack all the measurement Jacobians together with the prior information

factor, and perform a large QR factorization, considering all the involved matrices as dense.

Instead, in our algorithm, we split this entire QR process into multiple steps, where each step

executes a portion of this process, according to the different measurement types in (2.80). Al-

though mathematically equivalent, this enables us to better utilize the underlying problem struc-

tures of each measurement type, i.e., we explicitly analyze and exploit the nonzero patterns of

the Jacobian and information factor matrices involved at each step, and implement specialized

QR functions for them, so as to achieve computational savings. Additionally, as explained in

Section 2.2.2, the state ordering is an important factor that affects the computational cost of the

square-root estimators. We choose the specific ordering as in (2.60), which defines the column

57

ordering of the (upper-triangular) information factor and all Jacobian matrices, so that it allows

for exploiting the nonzero patterns of these matrices to achieve a lower cost for our QR factor-

izations. Finally, as explained later (see Section 2.4.6 and 2.4.8), some of these most important

structural findings and our approach for handling them, can be applied to many other popular

VIO estimators, besides our SR-ISWF, to achieve significant computational savings. This is

another major contribution of this chapter.

In what follows, we describe in detail all the steps of our SR-ISWF estimation algorithm.

We show the effect of each step on the cost function to be minimized in (2.80), the evolution

of the state vector from xk−1 to xk, and the specific problem structures with our state ordering.

An overview of our SR-ISWF estimation algorithm is shown in Algorithm 1.

2.4.1 Cloned State Augmentation

The estimator run is triggered when a new IMU clone becomes available at time step k. As

described in Section 2.3.4, the current state vector xk−1, from the previous time step k − 1, is

augmented with the new cloned IMU states xIk [see (2.66)] as:

xαk =
[
xTk−1 xTIk

]T
(2.81)

where xk−1 follows the form in (2.60). In terms of the cost function [see (2.80)], the prior term

Cp in (2.78) is combined with the inertial cost term Cu in (2.69), which is obtained by integrating

the IMU measurements uk−1:k, to yield:

Cα(x̃αk) = Cp(x̃k−1) + Cu(x̃Ik−1
, x̃Ik)

= ‖Rk−1x̃k−1− rk−1‖2 + ‖
[
Φk,k−1 − I

][x̃Ik−1

x̃Ik

]
− ruk‖

2
Wk

= ‖Rαx̃αk − rα‖2 (2.82)

where

Rα =

 Rk−1 0

W
− 1

2
k Φ̆k,k−1 −W

− 1
2

k

 , rα =

 rk−1

W
− 1

2
k ruk


Φ̆k,k−1 =

[
0 · · ·0 Φ

(C)
k,k−1 0 · · ·0 Φ

(E)
k,k−1

]
(2.83)

58

Algorithm 1 SR-ISWF Estimation Algorithm

Input:

• Current state estimate x̂k−1

• Prior info sqrt factor Rk−1 and prior residual rk−1

• Inertial measurements uk−1:k

• Current SLAM feature reobservations ZR

• New SLAM feature track measurements ZS

• SI-MSCKF feature track measurements ZM

• SO-MSCKF feature track measurements Z̄M

Estimator Run:

− Cloned state augmentation [(2.69) (2.81) (2.83)]

− SLAM feature propagation [(2.84) (2.85) (2.86)]

− Marginalization [(2.88) (2.90)]

− Covariance factor recovery [(2.95)]

− Update (iterated):

– Linearization: Jacobians and residuals [(2.74)]

– SI Update: Current SLAM feature reobservations [(2.98) (2.99)]

– Left-nullspace transformation [(2.75) (2.101)]

– SI Update: New SLAM feature initialization [(2.104) (2.106) (2.107)]

– SI Update: New SLAM and SI-MSCKF pose constraints [(2.110) (2.111) (2.113)]

– SO Update: SO-MSCKF pose constraints [(2.115)]

– Computing new state estimate [(2.117) (2.118)]

− Computing new prior term [(2.120)]

Output:

• New state estimate x̂k

• New prior info sqrt factor Rk and prior residual rk

59

where Φ
(C)
k,k−1 and Φ

(E)
k,k−1 are block columns of the Jacobian Φk,k−1 with respect to the cloned

IMU pose and extra states [see (2.61) and (2.63)], respectively. Thus, same as in the SR-EIF

[see (2.47)], this cloned state augmentation step simply requires augmenting the prior informa-

tion factor with the IMU propagation Jacobians, as well as for the prior residual as in (2.83).

2.4.2 SLAM Feature Propagation

Due to the inverse-depth feature parametrization used in our algorithm for improved numerical

accuracy, the SLAM features’ states in the state vector xk−1 in (2.81) are expressed with respect

to their first observing camera pose within the current sliding window, which is simply the oldest

cloned pose xCk−M of the window, as we choose to initialize new SLAM features from only

the mature feature tracks (see Section 2.3.4). Under the sliding-window scheme, however, this

“anchor” pose is the tail of the window and is about to be marginalized (see Section 2.4.3).

Meanwhile, the SLAM feature tracks can last longer than the window’s horizon, and in order to

process reobservation measurements to these SLAM features (see Section 2.4.5) in a consistent

manner, their states need to be re-anchored to another cloned pose within the current window.

Hence, at every time step k, prior to the marginalization process, our algorithm shifts the SLAM

features’ anchor pose from xCk−M to its next cloned pose xCk−M+1
, which will be the new tail

of the window after marginalization. Specifically, this corresponds to replacing the current

state vector xαk by a new one xβk , where the SLAM features’ states [see (2.81) and (2.60)] are

propagated from Ck−Mxfj to Ck−M+1xfj , for j = 1, · · · , N . To do so, we employ the geometric

relation between the two feature states, through the two involved cloned poses and the IMU-

camera extrinsics, which can be described as a nonlinear deterministic constraint:

Ck−M+1xfj = g(Ck−Mxfj ,xCk−M ,xCk−M+1
,xP) (2.84)

where xP is the parameter state in (2.62). Given the current state estimate x̂αk , from (2.84) we

compute the propagated feature estimate Ck−M+1 x̂fj . In terms of the cost function, it needs to be

transformed to be expressed in the new error state vector x̃βk . To do this, we first linearize (2.84)

around the current state estimate, and multiply it from the left by the inverse of the Jacobian

60

with respect to Ck−M x̃fj , to obtain:

Ck−M x̃fj ' Gj
f
Ck−M+1 x̃fj + Gj

Ck−M
x̃Ck−M

+ Gj
Ck−M+1

x̃Ck−M+1
+ Gj

P x̃P (2.85)

where the G matrices are the corresponding Jacobians. Then, substituting (2.85) into Cα(x̃αk)

in (2.82), for all the SLAM features j = 1, · · · , N , we get the new cost function Cβ(x̃βk) as:

Cα(x̃αk) = ‖Rαx̃αk − rα‖2 = ‖Rβx̃
β
k − rβ‖2 = Cβ(x̃βk) (2.86)

where the new factor Rβ is obtained by modifying the original factor Rα using the G matrices

in (2.85), while the residual remains unchanged, i.e., rβ = rα.

Note that the factor modification in (2.86) can be carried out very efficiently: Only four

small blocks, whose columns correspond to the involved states in (2.85), at the top rows of the

factor need to be modified, thanks to the (almost) upper-triangular structure of Rα, with the

columns corresponding to the SLAM feature states to the left due to our state ordering in (2.60).

Moreover, we only need to propagate the SLAM features to be kept at the current time step,

while the others are about to be marginalized (see Section 2.4.3) and thus their anchor pose

does not matter.

As a result of this SLAM feature propagation step, in our algorithm, all currently estimated

SLAM features are always anchored to the oldest cloned pose of the sliding window at any time

step.

2.4.3 Marginalization

As described in Section 2.3.4, in order to maintain constant complexity, at every time step k,

our algorithm marginalizes the following states within the current sliding window: The oldest

cloned pose xCk−M , the previous IMU extra state xEk−1
, and the SLAM features xµS that are no

longer tracked. If we define the state vector consisting of all these states to be marginalized as:

xµk =
[
xµ

T

S xTCk−M xTEk−1

]T
(2.87)

61

and xρk, following the form in (2.60), denotes the remaining states after removing xµk from the

current state vector xβk , then we have:

ΠMxβk =
[
xµ

T

k xρ
T

k

]T
(2.88)

where ΠM is a permutation matrix. Consequently, from (2.86) and (2.88), the columns of the

factor Rβ are permuted correspondingly, since:

Cβ(x̃βk) = ‖Rβx̃
β
k − rβ‖2 = ‖RβΠ

T
M

[
x̃µk

x̃ρk

]
− rβ‖2

= ‖
[
Rβ:µ Rβ:ρ

] [x̃µk
x̃ρk

]
− rβ‖2 = Cβ(x̃µk , x̃

ρ
k) (2.89)

where the column-permuted factor is partitioned as RβΠ
T
M =

[
Rβ:µ Rβ:ρ

]
. In terms of the

cost function, marginalization corresponds to removing the error state x̃µk from the cost function

Cβ(x̃µk , x̃
ρ
k), by minimizing with respect to it. To achieve this, we perform the following QR

factorization: [
Rβ:µ Rβ:ρ rβ

]
QR
= QM

[
Rµµ Rµρ rµ

0 Rρρ rρ

]
(2.90)

Substituting (2.90) into (2.89) yields:

Cβ(x̃µk , x̃
ρ
k) =

∥∥∥∥∥
[
Rµµ Rµρ

0 Rρρ

][
x̃µk

x̃ρk

]
−

[
rµ

rρ

]∥∥∥∥∥
2

= ‖Rµµx̃
µ
k + Rµρx̃

ρ
k − rµ‖2 + ‖Rρρx̃

ρ
k − rρ‖2 (2.91)

Since Rµµ is invertible, for any x̃ρk, there always exists an x̃µk that makes the first cost term

in (2.91) zero. Hence, from (2.91), the cost function after marginalization, Cρ(x̃ρk), is simply

the second cost term:

Cρ(x̃ρk) = min
x̃µk

Cβ(x̃µk , x̃
ρ
k) = ‖Rρρx̃

ρ
k − rρ‖2 (2.92)

Thus, same as in the SR-EIF [see (2.53)-(2.54)], this marginalization step requires permuting

the factor column-wise as in (2.89), and then performing a QR factorization on the permuted

62

factor as in (2.90), where the factor is augmented with the residual so that rρ is obtained in-

place (i.e., QM does not need to be formed explicitly [37]). During this QR process, we take

advantage of the (almost) upper-triangular structure of the factor Rβ before the permutation to

achieve computational savings.

As a result of this marginalization step, only the remaining state vector xρk is kept, and it

follows the form and ordering in (2.60). Additionally, the corresponding information factor

Rρρ, whose columns have the same state ordering, is upper-triangular.

2.4.4 Covariance Factor Recovery

In order to improve the accuracy and robustness of our estimator, we perform the Mahalanobis

distance test on all visual measurement cost terms for outlier rejection. It is in general more

effective than the reprojection error check, since it takes into account the uncertainties of the

current state estimates that are used to compute the measurement residual (i.e., reprojection

error). Specifically, the Mahalanobis distance γ is defined as:

γ = ‖rz‖2S = rTzS−1rz, S = HPρρH
T + σ2I (2.93)

where the measurement Jacobian H and residual rz are as in (2.74) and (2.77). The residual

covariance S requires the covariance Pρρ for the current state estimate, which is not explicitly

maintained in our square-root inverse estimator. Instead, we have the information factor Rρρ

[see (2.92)], and they are related as:

Pρρ = (RT
ρρRρρ)

−1 = R−1
ρρ R−Tρρ = UρρU

T
ρρ (2.94)

where

Uρρ = R−1
ρρ (2.95)

is the upper-triangular covariance factor. Hence, prior to the subsequent update procedure, our

algorithm first recovers this covariance factor Uρρ as in (2.95). Then, from (2.93) and (2.94), S

is computed as:

S = (HUρρ)(HUρρ)
T + σ2I (2.96)

63

This way we need not compute explicitly the covariance matrix Pρρ, which is numerically

unstable since its condition number is the square of that of the factor Uρρ or Rρρ.

While the Mahalanobis distance test for outlier rejection is commonly used in EKF-based

VIO methods (e.g., [15, 62, 69]), it is typically absent in estimators in the information/inverse

form where a large Hessian matrix is kept (e.g., [58,77,82]), due to the highly expensive opera-

tion of recovering the dense covaraince matrix/factor, despite the sparsity of the Hessian matrix.

In contrast, in our algorithm, the size of the state vector and the corresponding information fac-

tor is much smaller, because of the MSCKF-type feature processing and the marginalization

of all previous IMU extra states within the current window. Moreover, in (2.95), since Rρρ

is upper-triangular, its inverse can be computed efficiently by solving with the identity matrix

using backward substitution. As a result, the Mahalanobis distance test is enabled in our algo-

rithm by recovering the covariance factor with minimal overhead, which leads to reliable outlier

rejection and hence higher estimation accuracy and robustness.

2.4.5 SI Update: Current SLAM Feature Reobservations

From this point on, our estimation algorithm enters the update procedure, where all the input

visual measurements are processed: i) Reobservations (ZR), from the newest cloned pose of

the window, to the current SLAM features whose states are kept in the state vector; ii) Fea-

ture track measurements (ZS , ZM , and Z̄M), from multiple cloned poses within the window,

to some new features. Since these two types of visual measurements have different Jacobian

structures, they are processed separately in our algorithm. We start with the update step using

the reobservations, followed by the ones using the new feature tracks.

Each SLAM feature reobservation corresponds to a single visual measurement zjk as

in (2.70), from the newest cloned pose xCk , to a current SLAM feature fj in the state vector xρk.

Here the SLAM feature’s state Ck−M+1xfj is expressed with respect to the oldest cloned pose

xCk−M+1
of the window, due to the SLAM feature propagation step earlier (see Section 2.4.2).

After linearization, each measurement’s Jacobian and residual in (2.74) are first used to perform

the Mahalanobis distance test [see (2.93) and (2.96)]. Then, all the inlier measurements are em-

ployed for update. In terms of the cost function [see (2.80)], this update step corresponds to

combining the current cost function Cρ in (2.92) with CZR , which consists of visual cost terms

64

Figure 2.2: An example of the Jacobian structure in the SLAM feature reobservation update.

Cz in (2.74) from these reobservation measurements, to obtain:

Csr(x̃ρk) = Cρ(x̃ρk) + CZR(x̃S , x̃F)

= ‖Rρρx̃
ρ
k − rρ‖2 +

Nsr∑
j=1

‖Hj
f,kx̃fj + Hj

F,kx̃F − rjz,k‖
2
σ2I

=

∥∥∥∥∥
[

Rρρ

1
σHsr

]
x̃ρk −

[
rρ

1
σrzsr

]∥∥∥∥∥
2

(2.97)

where

Hsr =
[
· · · HjT

sr · · ·
]T
, rzsr =

[
· · · rj

T

z,k · · ·
]T

Hj
sr =

[
0 · · ·0 Hj

f,k 0 · · ·0 Hj
F,k

]
(2.98)

with Nsr the total number of inlier reobservation measurements. If we perform the following

QR factorization: [
Rρρ rρ
1
σHsr

1
σrzsr

]
QR
= Qsr

[
Rsr rsr

0 esr

]
(2.99)

then, after dropping the constant term ‖esr‖2, the cost function Csr in (2.97) after the reobser-

vation update becomes:

Csr(x̃ρk) = ‖Rsrx̃
ρ
k − rsr‖2 (2.100)

Thus, same as in the SR-EIF [see (2.48)], this update step requires performing a QR factoriza-

tion as in (2.99), where rsr is obtained in-place through the QR process.

To carry out the QR factorization in (2.99), we exploit the fact that Rρρ is upper-triangular,

and that the Jacobian matrix Hsr in (2.98) has a specific structure, as shown in Fig. 2.2. Hence,

with our state ordering in (2.60) where the Jacobian’s columns corresponding to the SLAM

feature states are to the left, we first permute the rows of the stacked matrix according to their

65

Figure 2.3: An example of the Jacobian structures before and after the left-nullspace transfor-
mation.

leading entry positions. As a result, the permuted matrix is almost upper-triangular, with a large

portion of zeros at the bottom-left corner, which allows an efficient QR factorization.

2.4.6 Left-Nullspace Transformation

Now we use the new feature tracks to perform updates, where measurements of the new SLAM

features (ZS), the SI-MSCKF features (ZM), and the SO-MSCKF features (Z̄M), are all pro-

cessed in a uniform manner. Specifically, as described in Section 2.3.3, each feature track fj

contributes a linearized cost term Cz0 as in (2.75), which after the LNS transformation in (2.76),

becomes equivalently Cz1 + Cz2 as in (2.77). To realize this LNS transformation, there exist in-

finitely many Qj
L2

that span the LNS of the feature Jacobian Hj
f . An arbitrary choice, however,

would in general make the transformed pose Jacobian Fj
2 in (2.76) dense, despite the structure

of the original pose Jacobian Hj
F [see (2.75) and Fig. 2.3]. To this end, we propose a particular

Qj
L2

(implicitly), so that the resulting Fj
2 has a favorable structure, which will be exploited in

the update steps afterwards to achieve computational savings (see Section 2.4.8).

Specifically, we carry out the LNS transformation in (2.76) through the following QR fac-

torization: [
Hj
f Hj

F rjz

]
QR
=
[
Qj
L1

Qj
L2

]
︸ ︷︷ ︸

Qj
L

[
Rj
f Fj

1 ζj1

0 Fj
2 ζj2

]
(2.101)

where we employ Givens rotations [37] to triangularize Hj
f into Rj

f , with the following specific

order of elimination: The elements in Hj
f are zeroed out column-wise from left to right, and

66

within each column from bottom to top. Meanwhile, this sequence of Givens rotations are

applied to Hj
F and rjz , so that Fj and ζj are obtained in-place through this QR process. Note

that Qj
L is never formed explicitly. Rather, we are implicitly defining our particular Qj

L as the

underlying orthogonal matrix of this Givens-based QR factorization in (2.101).

As a result of this specialized LNS transformation, in (2.101), the transformed feature Jaco-

bian Rj
f is square and upper-triangular. More importantly, based on the structure of the original

pose Jacobian Hj
F and our specific order of the Givens process, it can be verified that the result-

ing pose Jacobian Fj
2 has a block-upper-triangular structure, as shown in Fig. 2.3. By doing

this, the computational savings achieved are twofold: i) During the LNS transformation, each

Givens rotation needs to be applied to only a subset of the columns of Hj
F , that have nonzero

elements in the two rows undergoing the current Givens rotation. ii) After the LNS transforma-

tion, the resulting block-upper-triangular structure of Fj
2 is utilized afterwards, when many such

pose Jacobians from all the feature tracks are stacked together for update (see Section 2.4.8).

Moreover, the structure information of these pose Jacobians can be obtained analytically, i.e.,

no numerical search is required to find out the exact locations of their nonzero elements. First,

the structure of Hj
F is determined by the feature track’s observation pattern within the current

window. Then, given this information and our Givens process, the row and column indices of

the structural corners (marked by red dots in Fig. 2.3) are easily derived, which define uniquely

the exact block-upper-triangular structure of the resulting Fj
2.

To ensure this block-upper-triangular structure of Fj
2, the dense Jacobian columns in Hj

F

must be placed at the rightmost position (see Fig. 2.3). This leads to our choice for a portion

of the state ordering in (2.60). Specifically, these dense columns correspond to two sets of

states: i) The parameter state xP , which we arrange next to the cloned pose states xC ; ii) The

cloned pose state of a feature’s first observing pose within the window, which varies among

different features. Therefore, there exists no ordering for xC that will generate the desired

Jacobian structure for all the feature tracks. In practice, under our visual processing scheme

(see Section 2.3.4), the majority of selected feature tracks are mature (including all of ZS and

ZM , as well as some of Z̄M), whose first observing pose is the oldest cloned pose xCk−M+1
.

Hence, at each time step k, we reorder xCk−M+1
to the end of all other cloned pose states, i.e.,

in (2.60) we have:

xC =
[
xTCk−M+2

· · · xTCk xTCk−M+1

]T
(2.102)

67

This reordering is carried out during the marginalization step within the remaining state vector

xρk [see (2.88)]. As a result, for mature feature tracks, the block-upper-triangular structure of

Fj
2 is guaranteed (see Fig. 2.3). On the other hand, as an immature feature track may start from

anywhere in the window, there will be a dense block column corresponding to its first observing

pose in the front part of Fj
2, and thus we consider this entire Jacobian block as dense. Note that

this is a drawback in terms of efficiency, due to the inverse-depth feature parametrization with

respect to local frames, in exchange for numerical accuracy.6

As a result of this LNS transformation step, for each new feature track, we split its infor-

mation into two cost terms as in (2.77), where Cz1 contains only information about the new

feature’s state, while Cz2 holds all the information on the cloned poses and the parameter states.

Then, the Mahalanobis distance test [see (2.93) and (2.96)] is performed using only the Cz2
part to determine inlier feature tracks. Next, in our algorithm, the Cz1 terms from all the inlier

new SLAM feature tracks (i.e., CZ1
S

) are used to initialize these new SLAM features (see Sec-

tion 2.4.7), while those from the MSCKF feature tracks are discarded as these features’ states

are not to be estimated. Additionally, the Cz2 terms from all the inlier feature tracks (i.e., CZ2
S

,

CZ2
M

, and C̄Z2
M

) are employed to perform updates (see Section 2.4.8 and 2.4.9).

2.4.7 SI Update: New SLAM Feature Initialization

In this step, states of the inlier new SLAM features, denoted by xνS , are added into the current

state vector xρk. Specifically, xνS =
[
xν

T

f1
· · · xν

T

fNns

]T
, where each feature’s state xνfj is ex-

pressed with respect to the oldest cloned pose xCk−M+1
as its track is mature, and Nns is the

total number of these new SLAM features. Recall that, from (2.60) and (2.71), the current state

vector xρk is partitioned as:

xρk =
[
xTS xTF

]T
(2.103)

where xS consists of the current (existing) SLAM features’ states. Now we append xνS to the

end of xS as:

xk =
[
xTS xν

T

S xTF

]T
(2.104)

6Throughout this chapter, we address the problem in the challenging case where both local feature parametriza-
tion and interpolation model are employed, which result in more complicated problem structures. Modifications to
our approach, to handle cases without these complications, are straightforward.

68

which forms the final state vector xk for time step k. In terms of the cost function [see (2.80)],

the current cost Csr in (2.100) is combined with CZ1
S

, which consists of cost terms Cz1 in (2.77)

from all inlier new SLAM feature tracks after the LNS transformation, to obtain:

Cns(x̃k) = Csr(x̃ρk) + CZ1
S
(x̃νS , x̃F)

= ‖Rsrx̃
ρ
k − rsr‖2 +

Nns∑
j=1

‖Rj
fS

x̃νfj + Fj
1S

x̃F − ζj1S‖
2
σ2I

= ‖Rnsx̃k − rns‖2 (2.105)

where

Rns =



RSS 0 RSF

1
σR1

fS
1
σF1

1S

0
. . .

...
1
σRNns

fS
1
σFNns

1S

0 0 RFF


(2.106)

rns =
[

rTS
1
σζ

1T
1S
· · · 1

σζ
NT
ns

1S
rTF

]T
(2.107)

and we have partitioned the current information factor Rsr and residual rsr from (2.100), ac-

cording to the state partition of xρk in (2.103), as:

Rsr =

[
RSS RSF

0 RFF

]
, rsr =

[
rS

rF

]
(2.108)

Thus, this step of new SLAM feature initialization simply requires augmenting the current

information factor, by inserting the corresponding Jacobians into it as in (2.106), according

to the state augmentation in (2.104), and similarly for the residual as in (2.107). Note that this

resulting factor Rns in (2.106) is already upper-triangular, since both RSS and RFF are upper-

triangular from Rsr in (2.108), and Rj
fS

, for j = 1, · · · , Nns, is upper-triangular from the QR

factorization of the LNS transformation in (2.101).

69

2.4.8 SI Update: New SLAM and SI-MSCKF Pose Constraints

Pose constraints, from all the inlier new feature tracks to be processed as the SI-type, are in-

corporated during this update step. They correspond to cost terms Cz2 in (2.77) after the LNS

transformation, from the new SLAM and the SI-MSCKF feature tracks, i.e., CZ2
S

and CZ2
M

, re-

spectively, which are processed together in a uniform manner. In terms of the cost function

[see (2.80)], these terms are added to the current cost Cns in (2.105), to yield:

C⊕k (x̃k) = Cns(x̃k) + CZ2
S
(x̃F) + CZ2

M
(x̃F)

= ‖Rnsx̃k − rns‖2 +

Nns∑
j=1

‖Fj
2S

x̃F − ζj2S‖
2
σ2I

+

Nm∑
i=1

‖Fi
2M

x̃F − ζi2M ‖
2
σ2I (2.109)

In order to take advantage of the different structures of the involved matrices here, we adopt a

two-step approach to obtain C⊕k : First, we compute CZ2
S

+ CZ2
M

, since the Jacobians of these

two cost terms share similar structures. Then, we perform an efficient update to combine the

resulting term with Cns.
Specifically, to compute CZ2

S
+ CZ2

M
, we stack together all their Jacobians and residuals

in (2.109) as:

F2SM =
[
· · · FjT

2S
· · · · · · FiT

2M
· · ·
]T

ζ2SM =
[
· · · ζj

T

2S
· · · · · · ζiT2M · · ·

]T
(2.110)

where F2SM can be very tall if many feature tracks are processed. Then, we perform the fol-

lowing QR factorization on these stacked Jacobian and residual:

[
F2SM ζ2SM

]
QR
= QF2

[
RF2 rζ2

0 eζ2

]
(2.111)

which, after dropping the constant term ‖eζ2‖2, transforms CZ2
S

+ CZ2
M

into:

CZ2
S
(x̃F) + CZ2

M
(x̃F) = ‖RF2 x̃F − rζ2‖2σ2I (2.112)

70

Figure 2.4: An example of the Jacobian structures during the measurement-compression trans-
formation.

where the transformed pose Jacobian RF2 is upper-triangular.

The procedure from (2.110) to (2.112) is exactly the measurement-compression (MC) trans-

formation on the pose constraints in the MSC-KF algorithm [69]. Here, in our case, the QR

factorization in (2.111) is carried out efficiently, by utilizing the block-upper-triangular struc-

ture of each Fj
2 in F2SM (see Fig. 2.4), resulting from our specialized LNS transformation (see

Section 2.4.6). To do so, as shown in Fig. 2.4, we first perform a row permutation on the

stacked Jacobian F2SM , as well as on ζ2SM , by interleaving its rows according to their leading

entry positions, which are determined by the indices of the structural corners of each Fj
2 block

(see Fig. 2.3). After this row permutation, the Jacobian matrix has a structure similar to block-

upper-triangular, with a large portion of zeros at the bottom-left corner. Again, indices of the

structural corners (marked by red dots in Fig. 2.4) of this permuted matrix are easily computed,

from those of each Fj
2 as an output of the LNS transformation step. As a result, an efficient QR

factorization is executed on the permuted matrix based on this structure information.

At this point, we would like to note that, both the LNS and MC transformations involve

only measurement Jacobians and residuals, but not the information factor, and hence are not

restricted to our specific estimator. For example, these steps are found in the MSC-KF algo-

rithm [69]. Therefore, our approach for exploiting the corresponding structures during these

transformations, can be applied to any VIO method that employs the MSCKF feature track

processing (with or without SLAM features), so as to achieve computational savings. And

71

Figure 2.5: An example of the information factor and Jacobian structures during the pose-
constraint update.

this holds regardless of the specific estimation framework used, including the four filter forms

and optimization-based methods described in Section 2.2, such as the original MSC-KF algo-

rithm [69] or its extensions (e.g., [42, 57, 61]). In fact, we have implemented our specialized

LNS and MC transformations for the MSC-KF algorithm in the covariance form and our SR-

ISWF presented here in the square-root inverse form, and observed significant speedups in both

cases.

Next, given the cost term CZ2
S

+ CZ2
M

in (2.112) after the MC transformation, we combine it

with Cns as in (2.109) to perform the update. Same as in the previous update step [see (2.99)],

this requires a QR factorization on the stacked matrix of the information factor Rns and the

Jacobian RF2 , together with the residuals. This QR factorization can be carried out efficiently

for two reasons: First, the pose constraint in (2.112) involves only the state xF , which, by the

design of our state ordering in (2.60), is at the end of the state vector xk [see (2.104)]. Therefore,

as shown in Fig. 2.5, the QR factorization affects only the corresponding RFF block of Rns

in (2.106), instead of the entire factor, as:[
RFF rF
1
σRF2

1
σrζ2

]
QR
= Q⊕FF

[
R⊕FF r⊕F

0 eF

]
(2.113)

Second, since both RFF and RF2 are upper-triangular, a row permutation is performed on the

stacked matrix, where we alternate between these two matrices and take one row at a time. As

a result, the permuted matrix is almost upper-triangular, with a large portion of zeros at the

72

bottom-left corner, which allows an efficient QR factorization (see Fig. 2.5).

Finally, after the pose-constraint update in (2.113), the cost function C⊕k in (2.109) becomes:

C⊕k (x̃k) = ‖R⊕k x̃k − r⊕k ‖
2 (2.114)

where R⊕k and r⊕k are the same as Rns and rns in (2.106) and (2.107), except that their RFF

and rF blocks (corresponding to the state xF) have been updated to R⊕FF and r⊕F , respectively.

At this point of our estimation algorithm, all the input SI-type measurements (ZR, ZS ,

and ZM) have been used for update, i.e., information from all the SI-type visual cost terms

(CZR , CZ1
S

, CZ2
S

, and CZ2
M

) are absorbed to generate the posterior cost function C⊕k in (2.114)

[see (2.80)]. A copy of its information factor R⊕k and residual r⊕k is saved at this moment, and

to be used later when we compute the new prior term for the next time step (see Section 2.4.11).

2.4.9 SO Update: SO-MSCKF Pose Constraints

After all the SI-type cost terms are processed, we now use the SO-type ones to perform a further

update. They correspond to the pose constraints C̄Z2
M

from the inlier SO-MSCKF feature tracks

Z̄M after the LNS transformation. In terms of the cost function [see (2.80)], C̄Z2
M

is added to

the posterior cost C⊕k in (2.114), to yield:

C?k(x̃k) = C⊕k (x̃k) + C̄Z2
M

(x̃F) = ‖R?
kx̃k − r?k‖2 (2.115)

which is computed following the same procedure of the SI-type pose-constraint update as

in (2.109)-(2.114). Similarly to the case of R⊕k [see (2.113)-(2.114)], this updated informa-

tion factor R?
k is upper-triangular and has the same structure as in (2.106), where only its R⊕FF

block (corresponding to the state xF) is further updated (and similarly for r?k).

At this point, all the information, from both the SI-type and SO-type cost terms, has been

incorporated into the total cost function C?k in (2.115) [see (2.80)]. As compared to the poste-

rior cost C⊕k in (2.114), C?k contains more information, by including the SO-type cost terms in

addition to the SI-type ones, and hence will lead to a better state estimate in general. Note that,

however, because of this inclusion of the SO-type terms, C?k is used for computing only the new

state estimate (see Section 2.4.10), but not the new prior term (see Section 2.4.11).

73

2.4.10 Computing New State Estimate

The last step of our estimation algorithm’s update procedure is to obtain the new state estimate.

Specifically, we compute the state correction term ∆xk, by minimizing the total cost function

C?k in (2.115), as:

∆xk = argmin
x̃k

C?k(x̃k) = argmin
x̃k

‖R?
kx̃k − r?k‖2 (2.116)

Since, from the previous update step, R?
k is invertible and upper-triangular, this is equivalent to

solving the linear equation:

R?
k∆xk = r?k (2.117)

which, same as in the SR-EIF [see (2.49)], simply requires a backward substitution. Moreover,

this operation is carried out even more efficiently, by taking advantage of the specific structure

of R?
k, where its top-left corner is block-diagonal [see (2.106)]. Then, after solving for ∆xk,

the state update is given by:

x̂?k = x̂k + ∆xk (2.118)

where x̂k is the current state estimate, and x̂?k is the new state estimate to serve as our new

linearization point.

This is the end of the update procedure. In order to achieve smaller linearization error

and hence higher estimation accuracy, besides the relinearization across multiple time steps by

using the SO-type cost terms for update, our estimation algorithm also performs relinearization

within each time step by iterating the update procedure (see Algorithm 1). This corresponds to

the iterative Gauss-Newton optimization, where the nonlinear cost terms CZ, from all the visual

measurements Z, are relinearized [see (2.72)-(2.74)] around the newest state estimate.

2.4.11 Computing New Prior Term

After the update procedure is complete, our estimation algorithm employs a final step to gen-

erate the new prior term for the next time step. The new prior term is essentially the posterior

cost C⊕k in (2.114), which consists of information from all the SI-type cost terms, but not the

SO-type ones (as opposed to C?k). This posterior cost C⊕k (x̃k), however, is with respect to the

old state estimate (linearization point) x̂k before the state update, i.e., x̃k = xk − x̂k. Now that

the state estimate has been updated to the new x̂?k as in (2.118), we need to modify C⊕k (x̃k) so

that it corresponds to this new linearization point, in order to make it usable for the next time

74

step. To do so, we substitute (2.118) into (2.114) to obtain:

C⊕k (x̃k) = ‖R⊕k x̃k − r⊕k ‖
2 = ‖R⊕k x̃?k − r′k‖2 = Cp(x̃?k) (2.119)

where r′k = r⊕k −R⊕k ∆xk, and Cp(x̃?k) is the new prior term with respect to the new linearization

point x̂?k, i.e., x̃?k = xk − x̂?k. Moreover, from (2.117) and the fact that R?
k equals R⊕k except

only the R⊕FF block (and similarly for r?k) (see Section 2.4.9), it can be verified that r′k is further

simplified into:

r′k = r⊕k −R⊕k ∆xk =

[
0

r⊕F −R⊕FF∆xF

]
(2.120)

where ∆xF is the tail segment of the state correction term ∆xk, corresponding to the state xF

[see (2.104)]. Note that r′k 6= 0 due to the update step using the SO-type cost terms.

As a result of this step, we have obtained the new prior term Cp(x̃?k) in (2.119) for the next

time step [as in (2.78)]. Note that, since this prior includes no information from the SO-type cost

terms, all the currently-processed SO-MSCKF feature track measurements Z̄M can be reused

and relinearized freely at the next time step.

This marks the end of our SR-ISWF estimation algorithm. The outputs are (see Algo-

rithm 1): The new state estimate x̂k ← x̂?k, the new prior information factor Rk ← R⊕k , and

the new prior residual rk ← r′k, for the next time step.

2.5 Experimental Results

In order to evaluate our proposed SR-ISWF algorithm, we implemented this VIO system and

tested its performance on visual-inertial datasets. We first compare our system with state-of-the-

art VIO implementations, in terms of the estimation accuracy and running speed, using publicly-

available datasets. Then, we also show its performance on commercial-grade cell phones with

limited processing powers.

2.5.1 System Setup

We implemented a single-threaded pipeline consisting of feature extraction and tracking to pro-

vide visual measurements to the filter. First, we extract 400 ORB [79] features per image and

75

match them based on their descriptors against previous images in the sliding window to gen-

erate feature tracks. Then, a 2-Point RANSAC [55] is used for initial outlier rejection. As for

a VIO system, no loop-closure measurement is generated or used. The visual measurements

are assumed to be contaminated by zero-mean white Gaussian noises with σ = 1.5 pixels.

After that, the information manager selects within the window a maximum of 20 SLAM, 30

SI-MSCKF, and 30 SO-MSCKF features. These feature measurements, as well as the corre-

sponding IMU data, are then processed by our estimator, which maintains a sliding window of

M = 10 cloned poses. These clones are selected based on the motion of the platform, i.e.,

when the IMU frame has moved for more than 5 centimeters (cm) or rotated for 5 degrees.

Finally, our implementation uses only single-precision floating-point arithmetic, enabled by our

square-root formulation.

2.5.2 Performance on the EuRoC Datasets

We compare the performance of our proposed SR-ISWF on the EuRoC [18] datasets,

against state-of-the-art open-source VIO estimators: i) Optimization-based methods, includ-

ing OKVIS [58], VINS-Mono [77] (without loop closure), and ICE-BA [63] (without loop

closure); ii) Filtering-based methods, including ROVIO [16] (EKF-based) and OpenVINS [36]

(MSC-KF-based). Since our implementation focuses on VIO, we did not compare to vision-

only systems, such as [71]. The datasets contain stereo images from global shutter cameras

(20 Hz) and IMU measurements (200 Hz), along with ground-truth poses from VICON. We use

only the left-camera images, as our evaluation focuses on the setup with a monocular camera

and an IMU. Code of each compared system is downloaded from its Github repository and run

with its provided configuration file for EuRoC datasets.

Localization Accuracy

We compute the root-mean-square error (RMSE) of the estimated positions and orientations, of

the current (latest) pose at each time step, by comparing to the ground truth, i.e., the absolute

trajectory error (ATE), to evaluate the localization accuracy of all estimators considered. Each

estimated trajectory is aligned with the ground-truth coordinate frame by a 3D-to-3D matching

using [43]. The results are shown in Table 2.2. As evident, our algorithm achieves the highest

accuracy on the majority of sequences and also on average. This is because: i) Our algorithm

76

Table 2.2: RMSE of Position (cm) / Orientation (degree) Estimates on EuRoC Datasets
Dataset OKVIS VINS-Mono ICE-BA ROVIO OpenVINS SR-ISWF

no lc no lc (ours)
MH 01 easy 34.56 / 3.51 15.58 / 1.50 13.09 / 2.40 21.39 / 3.97 15.59 / 3.24 12.00 / 1.91
MH 02 easy 40.94 / 3.53 17.82 / 2.31 17.63 / 3.14 37.78 / 3.98 11.92 / 1.48 12.10 / 1.37

MH 03 medium 22.08 / 1.59 19.52 / 1.64 20.43 / 1.36 31.22 / 3.20 17.45 / 1.74 10.77 / 0.93
MH 04 difficult 33.68 / 1.46 34.84 / 1.49 30.48 / 2.09 57.31 / 1.34 32.13 / 1.39 28.37 / 0.65
MH 05 difficult 42.52 / 1.37 30.26 / 0.71 23.10 / 2.82 69.80 / 1.28 40.21 / 1.53 16.34 / 1.22

V1 01 easy 10.63 / 5.94 8.87 / 6.34 12.42 / 6.02 15.39 / 6.14 6.31 / 5.60 5.16 / 5.57
V1 02 medium 11.60 / 2.23 11.03 / 3.28 11.80 / 1.91 13.01 / 1.81 6.82 / 1.80 10.64 / 1.97
V1 03 difficult 22.66 / 4.42 18.71 / 6.22 19.12 / 2.30 15.48 / 3.49 6.67 / 3.16 6.11 / 2.50

V2 01 easy 16.18 / 1.12 8.61 / 2.03 14.66 / 1.99 10.40 / 1.44 8.87 / 2.41 7.80 / 1.84
V2 02 medium 18.06 / 3.25 15.99 / 4.36 14.17 / 1.89 15.24 / 1.72 6.48 / 1.58 9.56 / 1.13
V2 03 difficult 28.48 / 3.76 27.79 / 3.24 15.32 / 1.97 11.48 / 1.43 22.15 / 2.09 13.01 / 1.40

Average 25.58 / 2.93 19.00 / 3.01 17.47 / 2.54 27.14 / 2.71 15.87 / 2.36 11.99 / 1.86

optimally processes all available measurements (within the budget), without discarding any

visual information as in those optimization-based methods compared. ii) As compared to those

filtering-based methods, the extra SO-type processing employed in our algorithm effectively

reduces the linearization errors. iii) A better outlier rejection due to the Mahalanobis-distance

test, which is enabled efficiently in our algorithm as explained in Section 2.4.4. Examples of

our estimated trajectories vs. ground truth are shown in Fig. 2.6.

Computational Efficiency

We run all systems on a laptop with Intel Core i7-6700HQ 2.60GHz x 8 CPU to evaluate the

efficiency of each estimator. For speed comparisons, we focus only on the estimation portion

of each system and do not consider the time spent in other modules (e.g., image processing).

Average timing results, in milliseconds (msec), per estimator run are shown in Table 2.3. As

evident, our SR-ISWF is significantly faster than all other estimators.7 This is mainly because:

i) Our state size is much smaller, due to the MSCKF feature processing and the exclusion of

all IMU extra states except for only the current clone. ii) Only a selective portion of all visual

measurements (the SO-type ones) are relinearized by our information processing scheme. iii)

We exploit fully the specific problem structures for computational savings. iv) Single-precision

arithmetic enabled by our square-root formulation, as compared to all other systems that require

7Although we do not compare to ORB-SLAM as their open-source implementation do not use IMU, it is worth
noting that according to [63] and Table 2.3, ORB-SLAM is more than 10 times slower than ours.

77

Figure 2.6: EuRoC sequences: Estimated trajectories vs. ground truth, in MH05 (left) and V103
(right).

Table 2.3: Laptop Timing Results per Estimator Run (msec)
OKVIS VINS-Mono ICE-BA ROVIO OpenVINS SR-ISWF

no lc no lc (ours)
27 52 11 27 19 7

double-precision.

2.5.3 Performance on Cell-Phone Datasets

To examine the capability of our proposed SR-ISWF for real-time operation on resource-

constrained devices, we evaluate its performance on commercial cell phones. Two cell phones

are used as our test beds: The Samsung S4 and the Google Pixel phone. The S4 is equipped

with a 1.6 GHz quad-core Cortex-A15 ARM CPU, a MEMS-quality IMU running at 100 Hz,

and a rolling-shutter camera providing images with resolution 640× 480 at 30 Hz. The camera

and the IMU have separate clocks, while the image time-stamps are inaccurate. Similar sensor

settings hold for the Pixel phone, while it has a faster Quad-core CPU (2.15 GHz dual core +

1.6 GHz dual core). We use the same system setup as mentioned earlier, but with a different

image-processing module for higher speed on cell phones. Specifically, the pipeline extracts

300 FAST corners [78] from images at 15 Hz, which are tracked by the KLT algorithm [64]

across images. When running on the cell phones, in addition to single-precision arithmetic, our

implementation further accelerates the major computational steps of our algorithm (i.e., all QR

78

Table 2.4: Cell-Phone Datasets: Loop-Closure Error Percentages (%)
Trajectory MSC-KF+ SR-ISWF SR-ISWF
Length (m) Naive

Dataset 1 285 0.65 0.48 0.44
Dataset 2 56 0.52 0.71 0.77
Dataset 3 97 0.50 0.52 0.55
Dataset 4 105 0.58 0.74 0.70
Dataset 5 198 0.42 0.35 0.27
Average 0.53 0.56 0.55

Figure 2.7: Cell-phone datasets: Estimated trajectories from MSC-KF+ vs. our SR-ISWF,
overlaid onto the blueprints of the floor plans, in Dataset 1 (left) and Dataset 4 (right).

factorizations) by using ARM NEON intrinsics.

For speed comparisons, we also implemented two equivalent estimators to our SR-ISWF: i)

The “MSC-KF+”, which is an extension to the basic MSC-KF algorithm [69], so that it follows

the same information processing scheme as ours, i.e., including in addition the SLAM feature

and SO-type processing. ii) The “naive” SR-ISWF, which is the same as our algorithm while

ignoring the problem structures, by considering all matrices involved in its QR factorizations as

dense.

79

Table 2.5: S4 Cell-Phone Timing Results per Estimator Run (msec)
MSC-KF+ SR-ISWF Naive SR-ISWF

Estimator Run
Mean / Std 50.7 / 6.8 52.1 / 7.0 23.5 / 4.3

Total Pipeline
Mean 114.4 100.2 71.8

Table 2.6: Pixel Cell-Phone Timing Results per Estimator Run (msec)
ORB Matching FAST-KLT

Estimator Run 11 15
Image Processing 32 20

Total Pipeline 51 44

Localization Accuracy

Five indoor datasets are collected using the S4 cell phone. Due to lack of ground truth, in all

datasets, the device is returned back to its starting position. This allows us to quantitatively

evaluate the accuracy of the estimators using the loop-closure error percentage, which is com-

puted as the ratio of the distance between the estimated starting and ending points against the

total distance travelled. The results are shown in Table 2.4. In addition, to visualize the estima-

tion accuracy, we overlay the estimated trajectories onto the floor plans’ blueprints as reference,

which are depicted in Fig. 2.7. As evident, all three estimators achieve comparable levels of

accuracy (about half percent loop-closure error on average), and their trajectories overlay each

other in most places, which are expected as these estimators are equivalent.

Computational Efficiency

Table 2.5 shows the run time of the three algorithms on the S4 cell phone. First, we observe

that the MSC-KF+, which operates in the covariance form, has a similar speed to that of the

naive SR-ISWF. Then, by switching to our specialized QR functions designed for the prob-

lem structures and accelerated with the NEON co-processor, the estimator run time of our

SR-ISWF is reduced to less than half of the others. Finally, timing results of our SR-ISWF

pipeline on the Pixel phone are reported in Table 2.6, where we compare the two aforemen-

tioned image-processing options, i.e., ORB descriptor matching vs. FAST-KLT tracking. Due

to the higher speed of FAST-KLT, this approach reduces the latency of the overall pipeline,

although it slightly increases the estimation time due to more tracked corners. Based on these

80

results, our SR-ISWF algorithm achieves (faster than) real-time operations on both cell phones.

2.6 Summary

In this chapter, we studied the problem of designing a state estimator for visual-inertial odom-

etry (VIO). As a theoretical foundation, we showed four equivalent forms of the filtering meth-

ods, and established their correspondence to one iteration of the nonlinear optimization-based

methods. Furthermore, we discussed extensions of the basic filters, for performing the same re-

linearization processes as in the optimization-based methods. In our analysis, we introduced the

concept of state-only (SO) processing, that relinearizes the same measurement across multiple

time steps, for obtaining better state estimates. Based on our discussion of these estimators and

their applications to the VIO-SLAM problem, we determined the key aspects of our proposed

VIO estimator, the square-root inverse sliding-window filter (SR-ISWF): i) It operates in the

square-root inverse form, so as to enable using single-precision format for performing numer-

ical operations very fast. ii) It employs a hybrid visual information processing scheme, which

combines the SLAM+MSCKF feature approach with the SI+SO type measurement process-

ing, for achieving estimation accuracy and computational efficiency at the same time. Given

the selected visual-inertial information, we derived in detail all steps of our estimation algo-

rithm in the square-root inverse form. Moreover, further computational savings were gained

by taking advantage of the nonzero patterns of the information factor and Jacobian matrices

involved. Our approach for exploiting the Jacobian structures during the left-nullspace (LNS)

and measurement-compression (MC) transformations is also applicable to other popular VIO

methods, such as the MSC-KF algorithm. A complete VIO system with the proposed SR-ISWF

algorithm was implemented and compared to open-source state-of-the-art VIO alternatives on

the EuRoC datasets. Results showed that our SR-ISWF provides better pose tracking accuracy,

with significantly reduced processing time. And it achieves fast running speed even on cell

phones, allowing for real-time operations on these resource-constrained mobile devices.

Chapter 3

Planar Visual-Inertial Localization
and Mapping: Observability Analysis
and Model Extensions

In this chapter, we consider the problem of visual-inertial localization and mapping, under the

special case of planar motions. Specifically, we present a vision-aided inertial navigation system

(VINS) for localizing wheeled robots. In particular, we prove that VINS has additional unob-

servable directions, such as the scale, when deployed on a ground vehicle that is constrained

to move along straight lines or circular arcs. To address this limitation, we extend VINS to

incorporate low-frequency wheel-encoder data, and show that the scale becomes observable.

Furthermore, and in order to improve the localization accuracy, we introduce the manifold-

(m)VINS that exploits the fact that the vehicle moves on an approximately planar surface. In

our experiments, we first show the performance degradation of VINS due to special motions,

and then demonstrate that by utilizing the additional sources of information, our system achieves

significantly higher positioning accuracy, while operating in real-time on a commercial-grade

mobile device.

81

82

3.1 Introduction and Related Work

Over the past 20 years, extensive research has focused on simultaneous localization and map-

ping (SLAM) with mobile robots navigating over flat terrain [10, 26]. In the absence of GPS,

various exteroceptive sensors (e.g., ultrasonic, laser scanners, cameras, and, more recently,

RGB-D) have been used in conjunction with 2D wheel odometry to determine, typically, the

3-degree-of-freedom (dof) position and orientation (pose) of the robot. In most cases, however,

the underlying planar-motion assumption is only approximately satisfied (e.g., due to the un-

evenness, or roughness, of the surface, the presence of ramps, bumps, and low-height obstacles

on the floor), thus significantly increasing the unmodeled part of the robot’s odometry error and

leading to low-accuracy estimates or, in the absence of external corrections, even divergence.

On the other hand, vision-aided inertial navigation systems (VINS), where visual observa-

tions from a camera are combined with data from an inertial measurement unit (IMU) to esti-

mate the 6-dof pose of a platform navigating in 3D, have been shown to achieve high-accuracy

localization results (e.g., [58, 70]), even on low-cost mobile devices (e.g., [59, 89]). Therefore,

one would expect that it would be straightforward to deploy a VINS for localizing robots mov-

ing in 2D. Surprisingly, however, this is not the case. And one of the main reasons is that

the restricted motion (approximately planar and, for the most part, along arcs or straight lines at

constant speed or acceleration) that ground robots often undergo when navigating, e.g., indoors,

alters the observability properties of VINS and renders certain, additional, dof unobservable.

Specifically, as proven in [42,66], a VINS has 4 unobservable dof corresponding to 3 dof of

global translation and 1 dof of rotation around the gravity vector (yaw). This result, however,

holds only when the IMU-camera pair undergoes generic 3D motion. In contrast, and as shown

in this chapter, additional dof, such as the scale, become unobservable when the robot is re-

stricted to move with constant acceleration.1 In particular, under the simplifying assumption of

perfectly-known gyroscope biases, [67] showed that the VINS’s initial state cannot be uniquely

determined for certain motions, but without specifying which are the additional unobservable

directions. In this work, we consider the most general case of unknown gyroscope biases and

determine these unobservable directions analytically.2

1Note that although the motion constraints considered are never exactly satisfied, as explained later on and
shown experimentally, motion profiles close to these significantly reduce the information along the unobservable
directions, and hence degrade the localization accuracy.

2Note that observability is a fundamental property of the VINS model itself, and does not depend on the specific
estimator employed for SLAM. Thus, the additional unobservable directions of monocular-VINS will negatively

83

Furthermore, motivated by the key findings of our observability analysis, in this chapter

we focus on improving the localization accuracy of VINS when deployed on wheeled robots.

Firstly, in order to ensure that information about the scale is always available (e.g., even for the

periods of time when the robot moves with almost constant acceleration), we extend the VINS

algorithm to incorporate wheel-odometry measurements. Since these are often noisy and of

frequency significantly lower than that of the IMU, we process them in a robust manner, by first

integrating the raw encoder data and then treating them as inferred displacement measurements

between consecutive poses. Additionally, we take advantage of the fact that the robot moves on

an approximately flat surface and introduce the manifold-(m)VINS, which explicitly considers

the planar-motion constraint in the estimation algorithm to reduce the localization error. This is

achieved by analyzing the motion profile of the robot, and its deviation from planar motion (e.g.,

due to terrain unevenness or vibration of the IMU-camera’s mounting platform) and formulating

stochastic (i.e., “soft”), instead of deterministic (i.e., “hard”) constraints, that allow to properly

model the vehicle’s almost-planar motion. In summary, our main contributions are:

• We analytically determine the unobservable dof of VINS under special, restrictive mo-

tions.

• We extend VINS to process low-frequency odometric measurements, thus rendering scale

always observable.

• We introduce the mVINS which incorporates constraints about the motion of the vehicle

(in this case, approximately planar) to improve the localization accuracy.

• Through experiments, we validate the key findings of our theoretical analysis, and demon-

strate the increased accuracy of the proposed VINS-algorithm extensions when deployed

on a tablet onboard a wheeled robot that navigates within a large-scale building.

In what follows, we first present an overview of VINS (Sect. 3.2) followed by its observabil-

ity analysis when undergoing specific motion profiles (Sect. 3.3). Sect. 3.4 describes the process

for incorporating additional information in the VINS, and in particular odometric measurements

(Sect. 3.4.1) and motion constraints (Sect. 3.4.2). In Sect. 3.5, we present the experimental val-

idation of the proposed algorithm. Finally, Sect. 3.6 summarizes this chapter.

impact the accuracy of both batch-least-squares (e.g., [24, 34, 51]) and sliding-window filters/smoothers (e.g., [15,
58, 59, 70, 89]).

84

3.2 Preliminaries on Vision-aided Inertial Navigation System
(VINS)

In this section, we provide a brief review of the monocular-VINS which serves as the key

component of our system. The VINS estimates the following state vector:

x =
[
IqTG bTg

GvTI bTa
GpTI | GfT1 · · · GfTN

]T
(3.1)

where IqG is the unit quaternion that represents the orientation of the global frame {G} in the

IMU frame {I} at time t. GvI and GpI are the the velocity and position of {I} in {G}, re-

spectively, and the gyroscope and accelerometer biases are denoted by bg and ba, respectively.

Finally, the positions of point features in {G} are denoted by Gfj , j = 1, ..., N .

The IMU provides measurements of the rotational velocity, ωm, and the linear acceleration,

am, as:

ωm(t) = Iω(t) + bg(t) + ng(t) (3.2)

am(t) = C(IqG(t))(Ga(t)− Gg) + ba(t) + na(t)

where the noise terms, ng(t) and na(t) are modelled as zero-mean, white Gaussian noise pro-

cesses, while the gravitational acceleration, Gg, is considered a known constant. The IMU’s

rotational velocity Iω(t) and linear acceleration Ga(t), in (3.2), can be used to derive the

continuous-time system equations:

Iq̇G(t) =
1

2
Ω(ωm(t)− bg(t)− ng(t))

IqG(t)

ḃg(t) = nwg(t)

Gv̇I(t) = C(IqG(t))
T (am(t)− ba(t)− na(t)) +

Gg

ḃa(t) = nwa(t)

GṗI(t) =
GvI(t)

Gḟj(t) = 0, j = 1, . . . , N (3.3)

where, Ω(ω) ,

[
−bωc ω

−ωT 0

]
for ω ∈ R3, b·c denotes the skew-symmetric matrix, while the

IMU biases are modelled as random walks driven by white, zero-mean Gaussian noise processes

nwg(t) and nwa(t), respectively.

85

As the camera-IMU pair moves, the camera provides measurements of point features ex-

tracted from the images. Each such measurement, zj , is modeled as the perspective projection

of the point feature fj , expressed in the current IMU frame3 {I}, onto the image plane:

zj =
1

z

[
x

y

]
+ nj ,


x

y

z

 , Ifj = C(IqG)(Gfj − GpI) (3.4)

where the measurement noise, nj , is modeled as zero mean, white Gaussian. For modeling the

IMU propagation [see (3.3)] and camera observations [see (3.4)], including their error equations

and analytical Jacobians, we follow [42].

3.3 VINS: Observability Analysis Under Specific Motion Profiles

Observability is a fundamental property of a dynamic system and provides important insights.

Previous works have studied the observability properties of VINS, and employed the results

of their analysis to improve the consistency of the estimator [42]. Specifically, in [42, 66], it

was shown that, for generic motions, a VINS has four unobservable directions (three for global

translation and one for global yaw).

In this chapter, we are interested in the case when the VINS is deployed on a ground vehicle,

whose motion is approximately planar, and, for the most part, along a straight line (e.g., when

moving forward) or a circular arc (e.g., when turning). In particular, we are interested in the

impact that such motions have on the VINS’s observability properties, and hence the accuracy

of the corresponding estimator.

3.3.1 Constant Acceleration

Consider that the platform moves with constant local linear acceleration (e.g., on a circle), i.e.,

Ia(t) , C(IqG(t))Ga(t) ≡ Ia, ∀ t ≥ t0 (3.5)

where Ia is a constant vector with respect to time, we prove the following theorem:

3For clarity of presentation, we assume that the IMU-camera frames coincide. In practice, we estimate the
IMU-camera extrinsics online.

86

Theorem 1: The linearized monocular-VINS model of (2.65) - (3.4) has the following ad-

ditional unobservable direction, besides the global translation and yaw, if and only if condi-

tion (3.5) is satisfied:

Ns =



03×1

03×1

GvI0

−Ia
GpI0
Gf1

...
GfN


(3.6)

Proof : See Appendix A.1.

Remark: The unobservable direction in (3.6) corresponds to the scale, as shown in Ap-

pendix A.4.

The physical interpretation of Thm. 1 is that, when the local acceleration is non-varying, one

cannot distinguish the magnitude of the true body acceleration from that of the accelerometer

bias, as both of them are, at least temporarily, constant. As a consequence, the magnitude of the

true body acceleration can be arbitrary, leading to scale ambiguity.

At this point, we should note that in most cases in practice, a ground vehicle moves on

a plane with (almost) constant acceleration, such as when following a straight line path with

constant speed or acceleration, or when making turns along a circular arc with constant speed,

etc. Based on Thm. 1, these motions render the scale estimated by the VINS inaccurate.

3.3.2 No Rotation

Consider that the platform has no rotational motion, i.e., the orientation remains the same across

time:
It
GC , C(IqG(t)) ≡ I0

G C, ∀ t ≥ t0 (3.7)

where It denotes the IMU frame at time t. Then, the following theorem regarding observability

holds:

87

Theorem 2: The linearized VINS model of (2.65) - (3.4) has the following additional unob-

servable directions, besides the global translation, if and only if condition (3.7) is satisfied:

No =



I0
G C

03×3

−bGvI0c
I0
G CbGgc
−bGpI0c
−bGf1c

...

−bGfNc


(3.8)

Proof : See Appendix A.2.

Remark: The unobservable directions in (3.8) correspond to all 3 dof of global orientation

instead of only yaw, as shown in Appendix A.5.

The physical interpretation of Thm. 2 is that, when there is no rotational motion, one cannot

distinguish the direction of the local gravitational acceleration from that of the accelerometer

bias, as both of them are, at least temporarily, constant. As a consequence, the roll and pitch

angles become ambiguous.

The motion profile considered in Thm. 2 is the case typically followed by a robot moving

on a straight line, or (for a holonomic vehicle) sliding sideways. In such cases, due to the lack

of observability, the orientation estimates generated by the VINS become inaccurate.

In summary, moving with constant acceleration or without rotating can introduce extra un-

observable directions to the VINS model. At this point, we should reiterate that, although, in

practice, these specific motion constraints are never exactly satisfied all the time, when the robot

(even temporarily) approximately follows them, it acquires very limited information along the

unobservable directions. This will cause the information (Hessian) matrix estimated by the

VINS to be severely ill-conditioned, or even numerically rank-deficient, and hence degrades the

localization performance. The impact of such motion on the VINS accuracy is demonstrated

experimentally in Sect. 3.5.

Among the two cases of unobservability, that of global orientation (see Thm. 2) is the one

that can be easily alleviated by allowing the robot to deviate from its straight-line path. On

the other hand, rendering scale observable is quite challenging as it would require the robot

88

to constantly change its acceleration, which would increase the wear and tear of its mobility

system. Instead, in what follows, we propose to address this issue and ensure scale observability

by extending the VINS to incorporate measurements provided by the robot’s wheel odometer.

3.4 VINS: Incorporating Extra Information

In order to improve the performance of VINS for wheeled vehicles, we hereafter present our

methodology for incorporating two additional sources of information: (i) Odometry measure-

ments and (ii) Planar-motion constraints.

3.4.1 VINS with Odometer

Most ground vehicles are equipped with wheel encoders that provide low-frequency, often

noisy, and maybe only intermittently, reliable measurements of the motion of each wheel. On

the other hand, these measurements contain scale information necessary for improving the ac-

curacy of VINS under constant-acceleration motions. In particular, the wheel-encoder data can

be transformed into local 2D linear and rotational velocity measurements by employing the

odometer intrinsics,4 i.e.,

v =
rlwl + rrwr

2
, w =

rrwr − rlwl
a

(3.9)

where wl, wr are the rotational velocities of the left and right wheels, respectively, rl, rr are

their corresponding radii, and a denotes the vehicle’s baseline.

First, we show that adding these odometric measurements makes the scale of VINS observ-

able:

Theorem 3: Given the odometry measurements of (3.9), the scale direction in (3.6) of the

linearized VINS model [see (2.65) - (3.4)] becomes observable.

Proof : See Appendix A.3.

In particular, the odometer’s linear velocity measurements contain the absolute scale in-

formation. Thus, an odometric sensor improves the localization accuracy of VINS not only

4In this work, we compute offline the batch least-squares estimates of the wheel encoder intrinsics, including
the baseline and the radius of each wheel, based on visual, inertial, and odometry data. Subsequently, we consider
them as known quantities. Note that these intrinsic states are observable within VINS.

89

Figure 3.1: Geometric relation between the IMU, {I}, and odometer, {O}, frames when the
robot moves from time step k to k + 1.

by recording additional motion measurements, but primarily by providing critical information

along the VINS’s scale direction which often becomes unobservable due to the vehicle’s motion.

In order to process the noisy odometer data in a robust manner, instead of using the velocity

measurements in (3.9), we propose to integrate them and fuse the resulting 2D displacement

estimates into the 3D VINS. We start by deriving the measurement model, where we assume

that, between consecutive odometer readings, the motion is planar. Hence, the transformation

between two consecutive odometer frames, {Ok} and {Ok+1}, involves a rotation around only

the z axis by an angle OkφOk+1
:

Ok
Ok+1

C = Cz(
OkφOk+1

) (3.10)

and a translation within the x-y plane, i.e., the first two elements of the translation vector
OkpOk+1

. Integrating the linear and rotational velocities obtained from the odometer provides

measurements to these 3-dof quantities, i.e.,

φk = OkφOk+1
+ nφ (3.11)

dk = ΛOkpOk+1
+ nd, Λ =

[
e1 e2

]T
(3.12)

where
[
nφ nTd

]T
is a 3× 1 zero-mean Gaussian noise vector.

90

Furthermore, from the geometric constraints, depicted in Fig. 3.1, the transformation be-

tween two consecutive odometer frames, at time steps k and k + 1, can be written as:

Ok
Ok+1

C = O
I C Ik

G C
Ik+1
G CT O

I CT (3.13)
OkpOk+1

= OpI + O
I C Ik

G C(GpIk+1
− GpIk −

Ik+1
G CT O

I CTOpI) (3.14)

where O
I C and OpI are the rotation and translation of the odometer-IMU extrinsics,5 respec-

tively.

Next, we employ (3.11)-(3.14) to derive the Jacobians and residuals of the corresponding

measurement models to be used by the VINS estimator.

Rotational Component

By equating (3.10) to (3.13), and employing small-angle approximations in the rotation matrices

involved, we obtain the following error equation:

δφ = O
I C δθIk −

O
I CIk

G Ĉ
Ik+1
G ĈT δθIk+1

− nφe3 (3.15)

with bδφc = I3 −Cz(φk)
Ok
Ok+1

ĈT

Ok
Ok+1

Ĉ = O
I C Ik

G Ĉ
Ik+1
G ĈT O

I CT

where Ĉ denotes the estimate of the rotation matrix C, and δθ is the error state of the cor-

responding quaternion parameterization. The third element of the vector δφ represents the

angular error between the measured and the estimated in-plane rotation. Multiplying both sides

of (3.15) with eT3 yields the Jacobians and residual:

HδθIk
= eT3

O
I C , HδθIk+1

= −eT3
O
I ĈIk

G Ĉ
Ik+1
G ĈT

r = eT3 δφ (3.16)

5In this work, we compute offline the batch least-squares estimates of the odometer-IMU extrinsics, based on
visual, inertial, and odometry data. Subsequently, we consider them as known quantities. The observable directions
of the VINS with odometer extrinsics are presented in [40].

91

Translational Component

By substituting (3.14) into (3.12) and linearizing, it is straightforward to obtain the following

Jacobians and residual:

HδθIk
= ΛO

I Cbξc, HδθIk+1
= ΛO

I CIk
G Ĉ

Ik+1
G ĈT bOI CTOpIc

HpIk
= −ΛO

I CIk
G Ĉ , HpIk+1

= ΛO
I CIk

G Ĉ

r = dk − Λ(OpI + O
I C ξ) (3.17)

with ξ , Ik
G Ĉ(Gp̂Ik+1

− Gp̂Ik −
Ik+1
G ĈTO

I CTOpI).

Finally, (3.16) and (3.17) represent stochastic constraints between the poses of the platform,

and can be combined in a tightly-coupled manner into standard VINS estimators.

3.4.2 mVINS: VINS within a Manifold

In many cases in practice, the trajectory of a moving object often lies within some manifold.

Ground vehicles, for example, travel mostly on a plane, especially when navigating indoors.

The knowledge of this specific motion manifold can provide additional information for improv-

ing the localization accuracy of VINS.

A motion manifold can be described mathematically as geometric constraints, g(x) = 0,

where g is, in general, a nonlinear function of the state x. There are two approaches for incor-

porating such information into a VINS:

Deterministic Constraints

A standard VINS estimator (e.g., a filter or a smoother) optimizes a cost function C(x) arising

from the information in the sensor (visual, inertial, and potentially odometric) data (e.g., [24,34,

58,89]), while the motion manifold is described as a deterministic constraint of the optimization

problem, i.e.,

min C(x) (3.18)

s.t. g(x) = 0

For VINS, the cost function C(x) typically takes the form of nonlinear least squares,

92

Figure 3.2: The roll (left) and pitch (right) angles in degrees across time, when the robot is
moving on a flat surface. The mean is -0.08 and 0.2 degree, and the standard deviation is 0.3
and 0.7 degree, respectively.

and (3.18) can be solved by employing iterative Gauss-Newton minimization [76].

Stochastic Constraints

In practice, the motion manifold is never exactly satisfied. Fig. 3.2 depicts the platform’s roll

and pitch angles across time, when a ground robot (a Pioneer 3 in our case) is moving on a flat

surface. During an ideal planar motion, the roll and pitch angles would have remained constant.

As evident, however, this is not the case in practice due to the vibrations of the moving platform

and the unevenness of the surface. To account for such deviations, we model the manifold as a

stochastic constraint g(x) = n, where n is assumed to be a zero-mean Gaussian process with

covariance R, and incorporate this information as an additional cost term:

min C(x) + ||g(x)||2R (3.19)

Note that (3.19) can be solved by employing standard VINS estimators. Moreover, this

stochastic approach (as compared to the deterministic one) provides more flexibility for reject-

ing false information due to outliers. Specifically, we employ the Mahalanobis distance test

to detect and temporally remove the constraints when they are least likely (in the probabilistic

sense) to be satisfied (e.g., when the robot goes over a bump).

93

Figure 3.3: Geometric relationship between the IMU, {I}, odometer, {O}, and plane, {π},
frames when the robot moves on the plane, at time step k.

In what follows, we focus on a specific manifold, the one corresponding to planar motion,

and present in detail how to employ this information in VINS. The frame of the plane, {π}, is

defined so that the x−y plane coincides with the physical plane. We parameterize the plane with

a 2-dof quaternion, πqG, representing the orientation between the plane frame and the global

frame, and a scalar πzG, denoting the perpendicular distance from the origin of the global frame

to the plane. The error state of the quaternion πqG is defined as a 2 × 1 vector δθπ so that the

error quaternion is given by δq ,
[

1
2δθ

T
π 0 1

]T
. Note that our parameterization agrees with

the fact that a plane in the 3D space has 3 dof. As depicted in Fig. 3.3, we can express the

geometric constraint of the odometer frame, {O}, moving within the plane, as:

g(x) =

[
ΛO
I CIk

G Cπ
GCTe3

πzG + eT3
π
GC(GpIk −

Ik
G CTO

I CTOpI)

]
= 0 (3.20)

where the first block element (2×1 vector) corresponds to the planar rotational constraint, i.e.,

that the roll and pitch angles are zero between {π} and {O}, while the second block element

(scalar) corresponds to the planar translational constraint, i.e., that the position displacement

along the z-axis is zero between {π} and {O}.
Lastly, we provide the Jacobians of the planar model, derived from (3.20), employed by the

VINS estimator:

94

Figure 3.4: x − y overview of the Pioneer robot’s trajectory during the circular-motion exper-
iment: The ground truth is shown in blue solid line, while the VINS estimate is shown in red
dashed line.

i) Rotational component:

HδθIk
= ΛO

I CbIkG Ĉπ
GĈTe3c

Hδθπ = ΛO
I CIk

G Ĉπ
GĈT

[
−e2 e1

]
(3.21)

ii) Translational component:

HδθIk
= eT3

π
GĈIk

G ĈT bOI CTOpIc

Hδθπ = (Gp̂Ik −
Ik
G ĈTO

I CTOpI)
T π
GĈT

[
−e2 e1

]
HpIk

= eT3
π
GĈ , HzG = 1. (3.22)

95

3.5 Experimental Results

We aim to examine the impact of different motions on the localization accuracy of VINS, as

well as to validate the proposed methods for incorporating information from the odometer and

the motion manifold. Note that our observability findings and the proposed methods are generic

and not restricted to any particular VINS estimator. In our experiments, we chose the square-

root inverse sliding window filter (SR-ISWF) [89] that is implemented with single-precision

data types, in order to obtain highly-efficient localization results on mobile devices.6

Our testing platform involves commercial-grade sensors and CPU: A Pioneer 3 DX robot,7

with a Project Tango tablet [7] mounted on it for visual and inertial sensing, as well as for

processing. This tablet has a 2.3 GHz quad-core NVIDIA Tegra K1 CPU and 4 GB on-chip

RAM, and is able to record: (i) MEMS-based IMU data, at 100 Hz, and (ii) Grayscale images

from its wide field-of-view camera, with a resolution of 640×480, at 30 Hz. Around 200 FAST

corners [78] are extracted from each image and tracked using the Kanade-Lucas-Tomasi (KLT)

algorithm [64] at a frequency of 15 Hz. Then, a 2-pt RANSAC [55] is used for initial outlier

rejection. The SR-ISWF estimator maintains a sliding window of 15 poses, which are selected

at a frequency of about 7 Hz (depending on the motion).

3.5.1 Assessment of the Motion’s Impact

We compare the localization results of the VINS, within the same environment, between two

motion profiles: (i) Generic motion, where we hand-hold the tablet and walk regularly, and

(ii) Constant (local) acceleration motion, where the tablet is mounted on the Pioneer robot that

follows a circular motion. Fig. 3.4 illustrates the VICON8 ground truth and the VINS filter’s

estimated trajectory. Note that as expected in practice, the vehicle’s path (ground truth) is not

a perfect circle; Instead, it only approximately follows one of the special motions considered

here. Regardless, as evident from Fig. 3.4, significant scale error appears in the VINS estimates,

which validates the conclusion of Thm. 1. We further compare the scale ratio between the two

motions considered, as shown in Fig. 3.5. The scale ratio is computed as the estimated distance

6Similar results were observed when using the native Google Tango [7] VINS onboard the tablet.
7http://www.mobilerobots.com/ResearchRobots/PioneerP3DX.aspx
8http://www.vicon.com/

96

Figure 3.5: Scale ratio results for: (i) Pioneer circular motion (blue solid line) with mean 0.16
and std 0.08; (ii) Hand-held motion (red dashed line) with mean 3e-3 and std 0.03.

Table 3.1: Comparisons: Positioning RMSE (in Meters) of Different Methods Across Datasets
(xy - z - xyz - %)

DS Path (m) VINS VO VOD VOS
1 1080 9.8 - 1.5 - 9.9 - 0.91% 2.4 - 1.6 - 2.9 - 0.27% 4.3 - 0.1 - 4.3 - 0.4% 2.7 - 0.08 - 2.7 - 0.25%
2 876 13.8 - 1.1 - 13.8 - 1.6% 1.9 - 1.2 - 2.2 - 0.26% 4.5 - 0.14 - 4.5 - 0.52% 1.9 - 0.09 - 1.9 - 0.22%
3 954 8.3 - 1.2 - 8.4 - 0.88% 3.2 - 1.5 - 3.5 - 0.37% 7.8 - 0.22 - 7.8 - 0.82% 3.1 - 0.11 - 3.1 - 0.32%
4 1048 11.7 - 0.99 - 11.7 - 1.1% 3.7 - 1.0 - 3.8 - 0.37% 7.6 - 0.26 - 7.6 - 0.73% 3.6 - 0.07 - 3.6 - 0.34%
5 1034 9.7 - 0.99 - 9.8 - 0.94% 1.6 - 1.4 - 2.1 - 0.2% 3.2 - 0.12 - 3.2 - 0.31% 1.6 - 0.08 - 1.6 - 0.15%

between consecutive poses divided by that of the ground truth, and shifted by one:

SR =
dest
dgt
− 1 (3.23)

which measures the quality of the scale estimates, i.e., the closer this quantity is to zero, the

better is the scale estimate. As evident, the scale ratio corresponding to the hand-held motion

stays around zero, while that of the circular motion drifts away. Finally, the positioning root

mean square error (RMSE) of the hand-held vs. circular motion is 14 cm vs. 81 cm, respectively.

These results confirm that when a vehicle undergoes (even approximately) special motions,

the reduced information available to the VINS along the unobservable directions significantly

degrades the localization accuracy of the corresponding estimator.

97

Figure 3.6: Illustration of the indoor Pioneer navigation trajectories, shown in red, estimated by
the VINS only (left), the VOD (middle), and the VOS (right), overlayed on the floor plan. The
ground truth, computed from the BLS method offline, is shown in blue.

3.5.2 System Performance Test

We further test the localization accuracy of our system on the Pioneer robot. Five datasets are

collected by driving the Pioneer each time for ∼ 1 km through a large building. In addition

to the IMU-camera data, the Pioneer wheel encoders provide readings at 10 Hz. We compare

the localization results among the following setups: (i) VINS only, (ii) VINS plus odometer

(VO), (iii) VINS plus odometer plus deterministic planar constraint (VOD), and (iv) VINS plus

odometer plus stochastic planar constraint (VOS). The ground truth is computed from the batch

least squares (BLS) offline, using all available (visual, inertial, and odometric) measurements.

Fig. 3.6 illustrates the estimated trajectories, overlayed on the building’s floor plan as ref-

erence. As evident, the pure VINS suffers from very large errors due to the restricted motion

(mostly constant-speed, on straight lines), while as more information becomes available, the

positioning accuracy improves significantly. Also, the VOS outperforms the VOD, since the

stochastic constraint better models the approximately planar motion due to the vibrations of the

moving platform and the unevenness of the ground surface. Table 3.1 compares quantitatively

the positioning error between different methods across all datasets (DS), where each block con-

tains the following RMSE (in meters) results: xy - z - xyz total position - as percentage of the

total distance traveled. From these results, we draw the following conclusions: First, between

VO and VINS, when the odometer measurements are added, the x-y positioning accuracy is

improved dramatically, since more scale information is injected. Second, by comparing VOD

98

and VOS to VINS and VO, it is evident that the planar motion constraints improve mostly

the estimates in the z direction, as the error along the perpendicular direction is restricted by

the constraint. Lastly, the stochastic constraint of VOS consistently improves the positioning

accuracy, while the deterministic one of VOD has a negative impact, due to its modeling error.

In terms of efficiency, our system runs in real time on the tablet. Specifically, the whole

VINS pipeline is taking 68 msec per cloned pose, including the 36 msec spent on the SR-

ISWF filter update. Note also that our efficient implementation of the proposed methods (for

processing odometer data and planar constraints) takes less than 1 msec for each. Overall,

∼ 50% of the total CPU is used by our program when performing updates at ∼ 7 Hz.

Finally, it is worth mentioning that our system is able to work robustly in

both indoor and outdoor environments. Demonstrating videos are available at:

http://mars.cs.umn.edu/research/VINSodometry.php

3.6 Summary

In this chapter, we proved that the VINS scale, or 2 additional dof of its global orientation,

become unobservable when the robot moves with constant acceleration, or it is not rotating,

respectively. For this reason, and as demonstrated in our experiments, directly employing VINS

on a wheeled robot results in inaccurate pose estimates. To address this issue, we incorpo-

rated wheel-encoder measurements into VINS and showed that the scale becomes observable.

Furthermore, we introduced mVINS that properly models the ground robot’s almost-planar mo-

tion and directly employs this information in the estimator. Experimental results showed that

special motions indeed lead to larger positioning errors when using VINS on a wheeled robot.

Incorporating, however, odometry measurements, as well as stochastic constraints modeling the

vehicle’s planar motion, provide additional information and lead to significant improvements in

positioning accuracy.

Chapter 4

Efficient and Consistent Long-Term
Visual-Inertial Localization and
Mapping

In this chapter, we address the problem of long-term visual-inertial localization and mapping,

aka the full simultaneous localization and mapping (SLAM) that enables global adjustment

with loop closures. In particular, we present the RISE-SLAM algorithm for performing ef-

ficient visual-inertial SLAM, while improving estimation consistency. Specifically, in order

to achieve real-time operation, existing approaches often assume previously-estimated states

to be perfectly known, which leads to inconsistent estimates. Instead, based on the idea of

the Schmidt-Kalman filter, which has processing cost linear in the size of the state vector but

quadratic memory requirements, we derive a new consistent approximate method in the infor-

mation domain, which has linear memory requirements and adjustable (constant to linear) pro-

cessing cost. In particular, this method, the resource-aware inverse Schmidt estimator (RISE),

allows trading estimation accuracy for computational efficiency. Furthermore, and in order to

better address the requirements of a SLAM system during an exploration vs. a relocalization

phase, we employ different configurations of RISE (in terms of the number and order of states

updated) to maximize accuracy while preserving efficiency. Lastly, we evaluate the proposed

RISE-SLAM algorithm on publicly-available datasets and demonstrate its superiority, both in

terms of accuracy and efficiency, as compared to alternative visual-inertial SLAM systems.

99

100

4.1 Introduction and Related Work

Simultaneous localization and mapping (SLAM) is necessary in a wide range of applications,

such as robot navigation in GPS-denied areas, autonomous driving, and augmented/virtual re-

ality. Recently, successful vision-only SLAM systems have emerged that employ one or mul-

tiple cameras [30, 54, 71]. Another popular choice is to combine the visual information with

inertial data, from an inertial measurement unit (IMU), for increased robustness and accu-

racy [58, 63, 69, 72, 77]. In both cases, it is well known that under certain assumptions, finding

the Maximum a Posteriori (MAP) estimate for SLAM can be cast as a nonlinear batch least-

squares (BLS) problem, and the optimal solution, for the camera poses and feature positions,

can be obtained in either a batch [24, 87] or an incremental [51, 52] form. These optimal ap-

proaches, however, have an increasing processing cost with time, typically between linear and

quadratic in the number of poses and features, and thus cannot provide high-frequency estimates

when operating inside large areas. On the other end of the spectrum, visual(-inertial) odometry

systems [16,28,29,35,42,58,69,89] focus their optimization over only a bounded sliding win-

dow of recent poses. The latency of these methods is typically very low and does not increase

with time, but this comes at the expense of an ever-increasing drift in the pose estimates, due to

their inability to process loop-closure measurements and perform global adjustment.

In order to achieve accuracy and efficiency at the same time, recent visual(-inertial) SLAM

systems aim to combine the advantages of both the optimal (global) and the odometry (local)

approaches, by employing a multi-thread scheme [54, 63, 71, 77]: A frontend thread estimates

the current or several recent poses (as well as a local map) in constant time for real-time perfor-

mance, while a backend thread optimizes, at a higher cost and lower frequency, over the entire

trajectory (using either the optimal BLS [24] or its approximations [56, 74, 84]), and generates

more accurate keyframe pose estimates and global maps for relocalization. To limit the pro-

cessing cost, however, all these approaches employ approximations, e.g., keyframes involved

in the frontend’s relocalization are assumed to be perfectly known. Ignoring the corresponding

uncertainties of these states and their cross correlations with the current states, however, leads

to inconsistent estimates.1 This means that the estimated covariance is unduly small and does

1As defined in [48,49], a state estimator is consistent if the estimation errors are zero-mean and have covariance
matrix smaller than or equal to the one calculated by the estimator. For the purposes of this work, we focus on the
covariance requirement. Note that there exist additional sources of inconsistency, due to linearization errors and
local minima (see e.g., [47]). In this work, we focus on the inconsistency caused by the assumption that uncertain
quantities, such as a map, are perfectly known.

101

not represent correctly the uncertainty of the current state estimates (i.e., it does not offer a

reliable measure of the tracking quality). More importantly, combining these overly optimistic

estimates with new measurements later on can further degrade the accuracy of the system, as

new, precise measurements are weighted less in favor of the current estimates. In fact, this

problem of inconsistency has been acknowledged in the past, and remedies are often used to

alleviate its negative impact on estimation accuracy, e.g., by inflating the assumed covariance

of the noise corresponding to the relocalization visual observations [65, 70]. These heuristics,

however, offer no guarantees on the estimation consistency or the system’s performance.

On the other hand, the sparse extended information filter (SEIF) of [83, 88] is a consistent

approximate SLAM algorithm, whose cost (between linear and cubic in the map’s size) though

for recovering the state estimate from the information vector makes it prohibitive for real-time

operation. Specifically, although approximations involving early-terminating iterative solvers

reduce processing during exploration, the required number of iterations for loop closures makes

the cost often larger than that of direct solvers.

At this point, we should note that there exists a consistent approximation in the filtering

domain: The Schmidt-Kalman filter (SKF) [80]. The key idea of the SKF is to update op-

timally only a subset of the states (e.g., recent poses and features) and their corresponding

covariance and cross correlation terms, while leaving the rest (e.g., past poses and features)

unaltered. By doing so, the computational cost is reduced from quadratic to linear in the (po-

tentially very large) size of unchanged states. Meanwhile, the uncertainty of the past states is

correctly accounted for to guarantee consistent estimates. The SKF and its variants have been

applied to the SLAM problem [38, 50, 73], where their major drawback is their high memory

requirements: Quadratic in the size of all states due to the dense covariance matrix. Thus, the

SKF cannot be employed in large-scale SLAM. On the other hand, it is well-known that the

information-domain solutions are more suitable for large-scale SLAM, as the Hessian matrix

and its corresponding Cholesky factor are sparse [87]. To leverage this fact, [27] adapted the

SKF to incorporate a previously-computed sparse Cholesky factor of a given map’s Hessian.

The approach, however, is a filtering one, and can only be used to perform map-based localiza-

tion given an offline-built map, but not SLAM.

Motivated by the potential processing savings of the SKF, as well as the low-memory re-

quirements of the Hessian (or equivalently its Cholesky factorization) representation of the un-

certainty, in this work, we seek to derive a Schmidt-type estimator in the information domain,

102

that we can apply to the SLAM problem. To do so, we first derive the exact equivalent of the

SKF in its square-root inverse form, i.e., by maintaining the Cholesky factor of the Hessian,

since the corresponding portion of the information factor does not change [90]. Surprisingly,

unlike the case of the SKF, the exact inverse-form Schmidt estimator does not provide any

computational savings as compared to the optimal solver [53]. Moreover, the involved opera-

tions introduce a large number of fill-ins, leading to an almost dense information factor. This

eventually makes the system too slow, and hence unsuitable for real-time long-term SLAM.

To overcome these limitations, we further introduce the resource-aware inverse Schmidt

estimator (RISE), which is derived as a further approximation of the exact inverse Schmidt esti-

mator [90]. The key idea behind RISE is to drop a certain portion of the available information,

so that: i) As in the exact inverse Schmidt, past states as well as their corresponding portion of

the information factor remain unaltered, while at the same time, ii) Recent states are updated

only approximately, instead of optimally, so as to reduce both the processing cost and the factor

fill-ins. Hence, RISE achieves both computational and memory efficiency by keeping the infor-

mation factor sparse. Meanwhile, it is a consistent approximation to the optimal approach, as it

only drops information, instead of assuming any state to be perfectly known. More importantly,

RISE allows trading accuracy for efficiency, by adjusting the size of the window of the states

selected to be updated. In the extreme case when all states are chosen for update, RISE becomes

exactly equivalent to the optimal solver without any information loss.

Furthermore, we employ the proposed RISE algorithm in various configurations to realize

an accurate and efficient visual-inertial SLAM system, the RISE-SLAM, which maintains a

consistent sparse information factor corresponding to all estimated states. Specifically, our sys-

tem alternates between two modes, exploration and relocalization, based on the availability of

loop-closure measurements. In order to balance between accuracy and efficiency, in each mode,

RISE is employed with various window sizes and different state orders. Similarly to most recent

SLAM systems, our implementation incorporates two threads running in parallel: A fast fron-

tend thread for estimating the current poses and features at a high frequency, and a lower-rate

backend thread for globally adjusting the past states to achieve high accuracy. A key difference,

however, as compared to existing systems that solve multiple optimization problems indepen-

dently in different threads [63, 71, 77], is that RISE-SLAM always solves a single optimization

problem, partitioned into two components each assigned to one of the two threads. This is only

possible because of the structure of RISE, whose approximation allows focusing resources on

103

only a subset of states at a time. As a result, in our system, important global corrections from

the backend are immediately reflected onto the frontend estimates, hence improving the current

tracking accuracy. In summary, our main contributions are:

• To the best of our knowledge, we derive the first equivalent of the Schmidt-Kalman filter

in its inverse form, the exact inverse Schmidt estimator (exact ISE).

• We derive the resource-aware inverse Schmidt estimator (RISE), which approximates the

exact inverse Schmidt and has adjustable processing cost, while preserving sparsity and

ensuring consistency.

• We introduce RISE-SLAM, for building 3D maps and relocalizing within previously-

mapped areas in a consistent manner with constant cost.

• We implement RISE-SLAM and assess its performance. As compared to state-of-the-art

approaches, our algorithm achieves the best performance in terms of estimation accuracy

and processing time.

The rest of the chapter is structured as follows: Sec. 4.2 presents in detail our derivation of

the exact inverse Schmidt estimator, as well as its approximation, the resource-aware inverse

Schmidt estimator. Then, in Sec. 4.3, we apply these inverse Schmidt estimators to the problem

of visual-inertial SLAM, and describe our RISE-SLAM algorithm. Finally, Sec. 4.4 concludes

the chapter.

4.2 Inverse Schmidt Estimators

The Kalman filter (KF) and its information-domain equivalent, inverse filter (IF), are popular

algorithms for localization and navigation applications [68]. And in order to improve the nu-

merical stability, their square-root forms have been developed, i.e., the square-root Kalman filter

(SR-KF) and the square-root inverse filter (SR-IF) [14]. When nuisance parameters exist, the

Schmidt-Kalman filter (SKF) [80] can be used for reducing the dimensionality of the state es-

timate, while still considering the uncertainty of these parameters and ensuring the correctness

of the covariance matrix, i.e., to guarantee estimation consistency. In this section, we introduce

the SKF’s information-domain equivalent in its square-root form, i.e., the square-root inverse

104

Schmidt estimator (SR-ISE or ISE). To the best of our knowledge, this is the first time that the

information form of the SKF has been developed.

Furthermore, we provide complexity analysis of the exact ISE, and identify its limitations

in terms of computational efficiency. In order to reduce the processing cost even more, we in-

troduce further approximations based on the exact ISE and obtain other consistent alternatives.

One important outcome is the resource-aware inverse Schmidt estimator (RISE), that enables

trading estimation accuracy for computational efficiency, and hence is more flexible when em-

ployed to provide sufficiently accurate solutions with low processing and memory cost at the

same time.

This section is organized as follows: We start by providing background knowledge in

Sec. 4.2.1 on estimation consistency, which is an important concept ensured by the Schmidt

approach. The problem of finding the exact equivalent of the Schmidt-Kalman filter (SKF) in

the information domain is formulated in Sec. 4.2.2. Then, Sec. 4.2.3 presents in detail a com-

plete derivation of the exact inverse Schmidt estimator (ISE) algorithm, as well as its complexity

analysis. Further approximations of the exact ISE, for gaining in computational efficiency, are

introduced in Sec. 4.2.4, including the resource-aware inverse Schmidt estimator (RISE).

4.2.1 Background: Estimation Consistency

Definition of Estimation Consistency

As defined in [48, 49], a state estimator is consistent if the estimation errors are zero-mean

and have covariance matrix smaller than or equal to the one calculated by the estimator. For

the purposes of this work, we focus on the covariance requirement, while the zero-mean error

requirement is typically satisfied in general. In other words, an estimator is consistent, if the

estimated covariance (or the inverse of the estimated Hessian matrix for estimators in the in-

formation form) is greater than or equal to, in the matrix positive-semidefinite sense, the true

covariance computed by an optimal approach (e.g., KF or IF).

Consistency is an important concept in the theory of estimation, as it is a fundamental

property of an estimator, with inconsistency typically indicating a bad performance or even

failure of the estimator. Specifically, according to the definition, inconsistency means that the

estimated covariance (or its information equivalent) is overly confident and does not represent

correctly the uncertainty of the current estimate. Hence, the estimated covariance does not offer

105

a reliable measure of the quality of the state estimate. More importantly, combining these overly

optimistic estimates with new measurements later on will further degrade the accuracy of the

results.

Inconsistent Approximations

In practice, however, in order to limit the computational cost and achieve efficient solutions, ap-

proximations that lead to inconsistent estimates are commonly used. For example, in the liter-

ature of simultaneous localization and mapping (SLAM), most state-of-the-art systems employ

approximations where some previously-estimated states are assumed to be perfectly known,

such as past keyframes involved in the system’s frontend thread during relocalization. Ap-

parently, assuming some imperfect states as perfectly-known ignores the uncertainty of these

states, and hence the estimated covariance based on this assumption will become falsely opti-

mistic as compared to the true uncertainty. Therefore, these approaches generate inconsistent

estimates according to the definition, and the estimation accuracy will suffer, in exchange for

faster processing speed.

In fact, the problem of inconsistency has been acknowledged in the SLAM community in

the past, and remedies are often used to alleviate its negative impact on estimation accuracy,

e.g., by artificially inflating the covariance of the noise corresponding to the relocalization vi-

sual observations [65, 70]. These heuristics, however, offer no guarantees on the estimation

consistency or the system’s performance. To address this issue, in this work, we focus on con-

sistent approximations and present novel estimators that ensure estimation consistency.

4.2.2 Problem Formulation

Kalman Filter (KF) and Schmidt-Kalman Filter (SKF)

The standard Kalman filter (KF) estimates a state vector x ∈ Rn×1 and the corresponding er-

ror covariance matrix P ∈ Rn×n. It is optimal in the minimum mean-squared-error (MMSE)

sense, and has a quadratic complexity in the size of all estimated states, in both computational

and memory requirements. To achieve more efficient solutions, approximations have been in-

troduced to the KF. One of such existing methods is the Schmidt-Kalman filter (SKF) [80].

Specifically, when nuisance parameters exist, the SKF reduces the dimensionality of the esti-

mated state, and hence lowers the computational cost down to linear. Meanwhile, it considers

106

the uncertainty of these parameters and ensures the correctness of the updated covariance, i.e.,

to guarantee estimation consistency.

Specifically, if x is splitted into

x =
[
xT1 xT2

]T
, with x1 ∈ Rn1×1, x2 ∈ Rn2×1, and n1 + n2 = n (4.1)

and correspondingly for the covariance matrix:

P =

[
P11 P12

P21 P22

]
, with P11 ∈ Rn1×n1 , PT

21 = P12 ∈ Rn1×n2 , and P22 ∈ Rn2×n2

(4.2)

where x1 consists of the states of interest (to be updated) and x2 consists of all other states (not

to be updated), then the SKF performs the following update:

S = HPHT + Im (4.3)

K = PHTS−1 ,

[
K1

K2

]
, with K1 ∈ Rn1×m and K2 ∈ Rn2×m (4.4)

x̂s =

[
x̂1 + K1r

x̂2

]
(4.5)

Ps =

[
P11 −K1SKT

1 P12 −K1SKT
2

P21 −K2SKT
1 P22

]
(4.6)

where H ∈ Rm×n denotes the pre-whitened measurement Jacobian (so that the measurement

noise has covariance equal to the m × m identity matrix Im), r ∈ Rm×1 the pre-whitened

measurement residual, S the residual covariance, K the Kalman gain, and x̂ the prior state

estimate, respectively. Note that, after the SKF update, x̂1, P11, and P12 become exactly the

same as the result of the standard KF update, while x̂2 and P22 remain unchanged. This way,

the SKF updates only the states of interest and the corresponding covariance blocks, and hence,

achieves computational savings as compared to the KF.

The SKF is an approximation to the KF (or equivalently the SR-IF), in the sense that it

drops a certain amount of available information, i.e., the portion corresponding to x2. This can

107

be shown analytically as follows: The posterior covariance after the KF update is given by:

P⊕ = P−KSKT (4.7)

Therefore, the SKF covariance update in (4.6) can be written as:

Ps = P⊕ + K̄2SK̄T
2 , with K̄2 ,

[
0n1×m

K2

]
(4.8)

and hence, the corresponding information is:

Hs , Ps−1
= (P⊕ + K̄2SK̄T

2)−1 = P⊕
−1 −P⊕

−1
K̄2(S−1 + K̄T

2 P⊕
−1

K̄2)−1K̄T
2 P⊕

−1

= H⊕ −H⊕K̄2(S−1 + K̄T
2H⊕K̄2)−1K̄T

2H⊕, with H⊕ , P⊕
−1

(4.9)

If we define the Cholesky factorization of the following symmetric positive-definite (SPD) ma-

trix:

S−1 + K̄T
2H⊕K̄2 , LsL

T
s (4.10)

then (4.9) becomes:

Hs = H⊕ −H⊕K̄2L
−T
s L−1

s K̄T
2H⊕

= H⊕ − Js
T
Js, with Js , L−1

s K̄T
2H⊕ ∈ Rm×n (4.11)

which shows that the information term Js
T
Js is discarded during the SKF update. Due to this

fact, the SKF is a consistent approximation of the KF [see (4.11)], i.e.,

Ps ≥ P⊕ (4.12)

in the matrix positive-semidefinite sense.

On the other hand, note that, among all possible approximate algorithms that do not update

x2, the SKF is the “best” one in the sense that all the information on x1 has been absorbed. This

is obvious as the updated state estimate and covariance of x1 are exactly the same as those of

the optimal KF.

When applied to the SLAM problem, similarly to the optimal KF, the major drawback of

108

the SKF is its high memory requirements: Quadratic in the size of all states due to the dense

covariance matrix. Thus, the SKF cannot be employed in large-scale SLAM tasks.

Inverse Filter (IF)

The inverse filter (IF) is the information-domain equivalent of the KF, where the Hessian matrix

H = P−1 is maintained and estimated instead of the covariance P, and hence the name. For

updates, it simply adds new information contribution terms from the measurements to the prior

information, as:

H⊕ = H + HTH (4.13)

And the state is updated by solving the normal equation using the Cholesky factorization of

H⊕.

It is well-known that the information domain solutions are more suitable for large-scale

SLAM, as the Hessian matrix and its corresponding Cholesky factor are sparse [87].

Square-Root Inverse Filter (SR-IF)

The square-root inverse filter (SR-IF) is the square-root form equivalent of the IF (hence equiv-

alent to the KF as well), and it maintains the (upper-triangular) Cholesky factor R ∈ Rn×n of

the Hessian matrix:

P−1 = H = RTR (4.14)

At each update step, the SR-IF solves the following optimization problem:

min
x̃
||Rx̃− r0||2 + ||Hx̃− r||2 (4.15)

where x̃ , x − x̂ denotes the error state. In the above cost function C, the first term corre-

sponds to the prior information, and the second term arises from the (linearized) measurement

equations. Note that, the prior residual, r0, is nonzero if the linearization and solve are carried

out iteratively, in order to reduce linearization errors.

To solve this least-squares problem, a QR factorization is performed on the stacked matrix

109

of the prior information factor R and the measurement Jacobian H:[
R

H

]
= Q⊕

[
R⊕

0m×n

]
, with Q⊕

T
Q⊕ = Q⊕Q⊕

T
= In+m (4.16)

where R⊕ ∈ Rn×n is the upper-triangular factor of the QR factorization. In terms of the cost

function, this update process can be interpreted as:

C = ||Rx̃− r0||2 + ||Hx̃− r||2 =

∥∥∥∥∥
[
R

H

]
x̃−

[
r0

r

]∥∥∥∥∥
2

(4.17)

=

∥∥∥∥∥Q⊕T
[
R

H

]
x̃−Q⊕

T

[
r0

r

]∥∥∥∥∥
2

(4.18)

=

∥∥∥∥∥
[

R⊕

0m×n

]
x̃−Q⊕

T

[
r0

r

]∥∥∥∥∥
2

(4.19)

=
∥∥R⊕x̃− r⊕1

∥∥2
+
∥∥r⊕2 ∥∥2

, with

[
r⊕1

r⊕2

]
, Q⊕

T

[
r0

r

]
, r⊕1 ∈ Rn×1 and r⊕2 ∈ Rm×1

(4.20)

where from (4.17) to (4.18) we have used the fact that multiplying the unitary matrix Q⊕ (from

the QR factorization) preserves the norm of a vector. By minimizing (4.20), the solution is

given by:

x̃ = R⊕
−1

r⊕1 (4.21)

and hence the updated state estimate and information factor are given by x̂⊕ = x̂ + x̃ and R⊕,

respectively. As mentioned before, this process can be repeated iteratively till convergence to

reduce linearization errors.

As compared to the IF in the Hessian form, the SR-IF operates on the square-root factor

domain, and the update employs QR factorization on the sqaure-root factor instead of Cholesky

factorization on the Hessian. This provides better numerical stability and acuuracy, but at the

expense of slower processing speed [37].

110

Inverse Schmidt Estimator (ISE) Problem Formulation

Motivated by the potential processing savings of the SKF, as well as the low-memory re-

quirements of the Hessian (or equivalently its Cholesky factorization) representation of the un-

certainty, in this work, we seek to derive the Schmidt estimator, but in the information domain.

Specifically, our objective is to find the exact inverse Schmidt estimator (ISE), i.e., to derive an

algorithm that is exactly equivalent to the SKF, while operating in the information domain.

As mentioned in the previous subsections, an estimator in the information domain can take

two forms: Either the Hessian form (e.g., the IF) or the square-root form (e.g., the SR-IF). For

the task of finding the inverse equivalent of the SKF, however, the Hessian form does not seem

to provide any computational savings, because all the blocks of the Hessian matrix will need to

be updated. To be specific, if we compute the inverse of the SKF’s updated covariance matrix

in (4.6), the corresponding updated Schmidt Hessian matrix will require changes in all of its

four blocks, as compared to the prior Hessian before the Schmidt update. This is in contrast

to the SKF, as the (potentially very large) portion of P22 remains unchanged, from which the

SKF achieves computational savings. As a result, compared to the optimal IF, the Schmidt

approximation in the Hessian form will not lead to any processing savings, while its solution is

only suboptimal, and hence is meaningless.

Instead, as shown later, the Schmidt approximation preserves the corresponding portion

(R22) of the square-root information factor, and hence may bring potential computational ben-

efits due to the saved work for this portion. Therefore, in this work, we focus on finding the

information-domain Schmidt estimators in the square-root inverse form. And from this point on,

by saying “inverse Schmidt estimator”, we refer to only the square-root inverse form estimator

that operates on the Cholesky factor of the Hessian.

Under the square-root inverse form, the problem of finding the exact square-root inverse

Schmidt estimator (SR-ISE, or simply ISE) can be formulated as follows: Given the (invertible

and upper-triangular) prior information factor R and the measurement Jacobian H:

R =

[
R11 R12

0n2×n1 R22

]
, H =

[
H1 H2

]
(4.22)

where R11 ∈ Rn1×n1 , R12 ∈ Rn1×n2 , R22 ∈ Rn2×n2 , H1 ∈ Rm×n1 , and H2 ∈ Rm×n2 , find

111

the algorithm that computes the updated Schmidt information factor Rs ∈ Rn×n (invertible and

upper-triangular as well), such that it reflects the covariance matrix of the SKF [see (4.6)], i.e.,

Ps−1
= RsTRs, with Rs =

[
Rs

11 Rs
12

0n2×n1 Rs
22

]
(4.23)

with the same block sizes as defined in R. Similarly for the state update: The updated state

estimate x̂s should be equal to that of the SKF [see (4.5)]. Note that there are several basic

underlying requirements of the algorithm: At any step, the algorithm (i) should not compute ex-

plicitly the covariance matrix, since we seek an inverse (information-domain) approach, and (ii)

should not compute explicitly the information matrix, since we require the square-root form.

4.2.3 Exact Inverse Schmidt Estimator (ISE)

In this section, we present the detailed derivation of the exact ISE algorithm. First, we propose

a generic framework that operates in the square-root information domain, inspired by the SKF

and the SR-IF. Then, we derive several sufficient and necessary conditions, under which this

framework becomes equivalent to the SKF. Last, based on one of these equivalent conditions,

an efficient exact ISE algorithm is presented.

A Generic Framework

As a first step, our objective is to seek a square-root information-domain algorithm that shares

two fundamental properties with the SKF: (i) The x2 part of the state vector is not updated

during the Schmidt process, i.e., the state estimate, x̂2, and the corresponding covariance block,

P22, remain intact [see (4.5) and (4.6)]; (ii) It is a consistent approximation of the optimal

SR-IF, i.e., the resulting inferred covariance is conservative as compared to that of the SR-IF

[see (4.12)].

Our proposed algorithm follows the approach of the SR-IF, where a unitary transformation,

defined by the QR factor Q⊕, is performed on the cost function [see (4.18)]. In our algo-

rithm, instead of employing this specific unitary matrix Q⊕, a generic unitary matrix Ŭ is used.

112

Specifically, in terms of the cost function to be minimized [see (4.17)]:

C = ||Rx̃− r0||2 + ||Hx̃− r||2 =

∥∥∥∥∥
[
R

H

]
x̃−

[
r0

r

]∥∥∥∥∥
2

(4.24)

=

∥∥∥∥∥∥∥∥


R11 R12

0 R22

H1 H2


[
x̃1

x̃2

]
−


r1

0

0n2×1

r


∥∥∥∥∥∥∥∥

2

(4.25)

=

∥∥∥∥∥∥∥∥


R11 R12

H1 H2

0 R22


[
x̃1

x̃2

]
−


r1

0

r

0n2×1


∥∥∥∥∥∥∥∥

2

(4.26)

=

∥∥∥∥∥∥∥∥Ŭ
T


R11 R12

H1 H2

0 R22


[
x̃1

x̃2

]
− ŬT


r1

0

r

0n2×1


∥∥∥∥∥∥∥∥

2

(4.27)

where Ŭ ∈ R(n+m)×(n+m) is unitary, i.e., ŬT Ŭ = ŬŬT = In+m. Note that from (4.24)

to (4.25), we have used the fact that r0 =

[
r1

0

0n2×1

]
, i.e., the prior residual has only a nonzero

block corresponding to the x1 part, since x2 will not be updated in the process.

As mentioned earlier, the first objective is to preserve the state x2. The following lemma

states the condition when this requirement is satisfied:

Lemma 1. Given an invertible and upper-triangular prior information factor R as in (4.22),

and the corresponding prior covariance matrix P as in (4.2). An algorithm updates the factor

into another invertible and upper-triangular matrix R′, with the corresponding covariance P′.

Then the covariance corresponding to x2 remains unchanged, i.e., P′22 = P22, if and only if

the corresponding information factor remains unchanged, i.e., R′22 = R22 (up to the sign of

each row).

Proof. From (4.14) and (4.22), using block matrix inversion, the (2,2) block of the covariance

matrix can be written in terms of the information factor blocks as:

P = (RTR)−1 =

[
RT

11R11 RT
11R12

RT
12R11 RT

12R12 + RT
22R22

]−1

⇒ P22 = R−1
22 R−T22 (4.28)

113

Similarly, we have P′22 = R′−1
22 R′−T22 . Hence, P′22 = P22 is equivalent to R′−1

22 R′−T22 =

R−1
22 R−T22 , or equivalently R′T22R

′
22 = RT

22R22. Since both R′22 and R22 are invertible and

upper-triangular matrices, they are the Cholesky factors of the same SPD matrix. Hence, R′22 =

R22 (up to the sign of each row) from the uniqueness of the Cholesky factorization of a SPD

matrix.

Therefore, from Lemma 1, in order to preserve x2, the updated (upper-triangular) informa-

tion factor should take the form:

R′ =

[
R′11 R′12

0 R22

]
(4.29)

with the R22 block stays unchanged. Based on this key result, we propose the matrix Ŭ to take

the following form:

Ŭ =

[
U

In2

]
(4.30)

where U ∈ R(n1+m)×(n1+m) is a unitary matrix. Note that here Ŭ is unitary if and only if U is

unitary. Substituting (4.30) into (4.27), the cost function C becomes:

C =

∥∥∥∥∥∥∥∥∥∥∥
[
UT

In2

]
R11 R12

H1 H2

.

0 R22


[
x̃1

x̃2

]
−

[
UT

In2

]
r1

0

r

.

0n2×1



∥∥∥∥∥∥∥∥∥∥∥

2

(4.31)

Partition the columns of U as U =
[
U1 U2

]
, with U1 ∈ R(n1+m)×n1 and U2 ∈ R(n1+m)×m,

114

and define:

R′11 , UT
1

[
R11

H1

]
∈ Rn1×n1 , R′12 , UT

1

[
R12

H2

]
∈ Rn1×n2 (4.32)

J1 , UT
2

[
R11

H1

]
∈ Rm×n1 , J2 , UT

2

[
R12

H2

]
∈ Rm×n2 , J ,

[
J1 J2

]
∈ Rm×n

(4.33)

r′ , UT
1

[
r1

0

r

]
∈ Rn1×1, rJ , UT

2

[
r1

0

r

]
∈ Rm×1 (4.34)

=⇒

[
R′11 R′12

J1 J2

]
= UT

[
R11 R12

H1 H2

]
and

[
r′

rJ

]
= UT

[
r1

0

r

]
(4.35)

then the cost function C in (4.31) can be written as:

C =

∥∥∥∥∥∥∥∥∥∥∥


R′11 R′12

J1 J2

.

0 R22


[
x̃1

x̃2

]
−


r′

rJ

.

0n2×1



∥∥∥∥∥∥∥∥∥∥∥

2

(4.36)

=

∥∥∥∥∥
[
R′11 R′12

0 R22

][
x̃1

x̃2

]
−

[
r′

0n2×1

]∥∥∥∥∥
2

+

∥∥∥∥∥[J1 J2

] [x̃1

x̃2

]
− rJ

∥∥∥∥∥
2

(4.37)

=

∥∥∥∥∥R′x̃−
[

r′

0n2×1

]∥∥∥∥∥
2

+ ‖Jx̃− rJ‖2 (4.38)

with R′ defined in (4.29). Note that, at this point, the cost function is still equal to the orig-

inal cost C as in (4.17) (since any unitary transformation will not change the cost value), and

minimizing it would generate the exact same update results as in the optimal SR-IF.

With the expression of the cost function C in (4.38), we are ready to introduce the necessary

approximation step in our proposed algorithm, in order to imitate the SKF: The second term in

the cost function is discarded. As a result, the new cost function C′ consists of only the first

115

term in (4.38), i.e.,

C =

∥∥∥∥∥R′x̃−
[

r′

0n2×1

]∥∥∥∥∥
2

+ ‖Jx̃− rJ‖2 =⇒ C′ =

∥∥∥∥∥R′x̃−
[

r′

0n2×1

]∥∥∥∥∥
2

(4.39)

which leads to the new optimization problem:

min
x̃

∥∥∥∥∥R′x̃−
[

r′

0n2×1

]∥∥∥∥∥
2

(4.40)

and from which the solution (state correction) is given by:

x̃? = R′−1

[
r′

0n2×1

]
=

[
R′11 R′12

0 R22

]−1 [
r′

0n2×1

]
=

[
R′−1

11 r′

0n2×1

]
(4.41)

and hence the state update can be written as:

x̂′ = x̂ + x̃? =

[
x̂1 + R′−1

11 r′

x̂2

]
(4.42)

Clearly, only the x1 portion of the state vector has been changed, while x2 remains the same.

Meanwhile, the updated information factor is given by R′ [from (4.40)], and from its expression

in (4.29), the block R22 stays unchanged, and hence, so as the corresponding covariance block

P22 due to Lemma 1. Note that, in the above analysis, we have assumed that the updated factor

block R′11 is invertible, which is a fundamental requirement for the proposed procedure to be a

valid update.

Lastly, as desired, this approach is a consistent approximation to the optimal SR-IF, due

to the step of discarding the second cost term in (4.38). Specifically, dropping a cost term

corresponds to ignoring the information contained in it, and hence leads to less amount of

information to be absorbed in the update, or equivalently larger uncertainty (covariance) in the

updated estimates. This result matches the fact that the SKF drops information as well, as shown

in (4.11), and hence justifies the necessity of this approximation step. The consistency of the

proposed algorithm is stated formally in the following lemma:

Lemma 2. Given an invertible prior information factor R and a measurement Jacobian H. Let

116

P⊕ denote the posterior covariance matrix given by an optimal approach (e.g., KF or SR-IF),

and let P′ denote the covariance matrix corresponding to the updated information factor R′

in (4.40). Then P′ ≥ P⊕, in the matrix positive-semidefinite sense.

Proof. The posterior covariance matrix represents the uncertainty of the posterior state esti-

mates considering all available information, i.e.,

P⊕ = (RTR + HTH)−1 (4.43)

and by the same arguments from (4.24) to (4.38), i.e., by introducing the unitary transformation

defined in (4.30), the posterior covariance matrix is equal to:

P⊕ = (RTR + HTH)−1 = (R′TR′ + JTJ)−1 (4.44)

Meanwhile, by definition, P′ = (R′TR′)−1 from (4.40). Hence, by the matrix inversion lemma,

we obtain:

P′ −P⊕ = (R′TR′)−1 − (R′TR′ + JTJ)−1

= (R′TR′)−1JT
[
Im + J(R′TR′)−1JT

]−1
J(R′TR′)−1 ≥ 0 (4.45)

To summarize, our proposed approach first combines the prior knowledge with the mea-

surement information [see (4.24)], then decomposes part of the combined information into two

pieces by projecting it onto the two block columns of a unitary matrix [see (4.31) - (4.38)],

and last drops one of these two resulting information pieces to obtain the final updated factor

[see (4.39)]. This procedure is shown in Alg. 2. Note that, as mentioned before and written

out in Alg. 2, we need to guarantee that the updated information factor is meaningful and struc-

tured, i.e., the final factor R′ is invertible and upper-triangular. Based on the assumption that

the input factor R, and hence the R22 block, is invertible and upper-triangular, this requirement

is satisfied if and only if the resulting R′11 block is invertible and upper-triangular. As a result,

this requirement poses basic constraints on the matrix U1, in addition to having orthonormal

columns.

To conclude, Alg. 2 satisfies the following desired properties (regardless of the choice of the

117

Algorithm 2 A Generic Framework
1: Input: Current state estimate x̂, prior information factor R and residual r0, pre-whitened

measurement Jacobian H and residual r
2: procedure UPDATE

3: Obtain a unitary matrix: U =
[
U1 U2

]
, such that R′11 is invertible and upper-

triangular

4: Perform the unitary transformation: R′11 ← UT
1

[
R11

H1

]
, R′12 ← UT

1

[
R12

H2

]
, r′ ←

UT
1

[
r1

0

r

]
5: Information factor update: R′ ←

[
R′11 R′12

0 R22

]
6: State update: x̂′ ←

[
x̂1 + R′−1

11 r′

x̂2

]
7: end procedure
8: Output: Updated state estimate x̂′ and information factor R′

unitary matrix U): (i) It preserves the estimate and the information factor block of x2 (and hence

the corresponding covariance block), and (ii) it is a consistent approximation of the optimal SR-

IF. These are the two fundamental properties shared with the SKF. Note that, Alg. 2 presents a

generic framework in the sense that it represents a family of algorithms by choosing a different

matrix U. One could potentially employ this framework to obtain an algorithm that generates

an approximate solution and achieves computational savings, as compared to the SR-IF, due to

the fact that x2 and R22 are not updated. In what follows, we show the procedure to obtain the

specific U (either explicitly or implicitly) that leads to the exact square-root inverse Schmidt

estimator, which was our initial goal. Later on, we also present alternative algorithms, special

cases of this generic framework that have lower processing requirements and cause fewer fill-

ins, when the factor is sparse.

Exact ISE: Sufficient and Necessary Conditions

Under the framework of Alg. 2, our objective is to find the specific matrix U such that this

algorithm becomes the exact ISE, i.e., the updated state estimates and covariance matrix are

equal to those of the SKF. Note that, since Alg. 2 is a square-root inverse approach, it does not

compute explicitly the covariance matrix, but instead, the information factor. Hence, by saying

the updated covariance of Alg. 2, we refer to the underlying covariance matrix corresponding to

118

the updated information factor, as can be computed using (4.14). Moreover, from this point on,

we assume that the input prior factor R is invertible and upper-triangular, and will not repeat

this assumption in our subsequent statements.

So far, we have considered only the equivalence with respect to the x2 portion of the entire

state (i.e., the unchanged part). What remains to be accomplished is to establish the same

equivalence with respect to x1 (i.e., the changed, or updated part). For this reason, we analyze

the condition on the equivalence of the covariance blocks that are changed in the SKF update,

i.e., the (1, 1), (1, 2), and (2, 1) blocks. The result is stated in the following lemma:

Lemma 3. Let P′ , (R′TR′)−1 denote the covariance matrix corresponding to the updated

information factor R′ of Alg. 2, and let Ps denote the updated covariance matrix of the SKF.

Then

P′11 = Ps
11, P′12 = Ps

12, and P′21 = Ps
21 (4.46)

if and only if JP′(:,1) = 0m×n1 , where P′(:,1) ,

[
P′11

P′21

]
denotes the first block column of the

matrix P′.

Proof. In the proof of Lemma 2, we have shown that [see (4.45)]:

P′ −P⊕ = (R′TR′)−1JT
[
Im + J(R′TR′)−1JT

]−1
J(R′TR′)−1 (4.47)

where P⊕ denotes the posterior covariance after the KF update and J is defined in (4.33).

Substituting P′ = (R′TR′)−1 gives:

P′ −P⊕ = P′JT (Im + JP′JT)−1JP′ (4.48)

If we partition the block columns of P′ corresponding to x1 and x2 as P′ =
[
P′(:,1) P′(:,2)

]
,

then we obtain:

P′ −P⊕ =

[
P′T(:,1)

P′T(:,2)

]
JT (Im + JP′JT)−1J

[
P′(:,1) P′(:,2)

]

=

[
P′T(:,1)J

T (Im + JP′JT)−1JP′(:,1) P′T(:,1)J
T (Im + JP′JT)−1JP′(:,2)

P′T(:,2)J
T (Im + JP′JT)−1JP′(:,1) P′T(:,2)J

T (Im + JP′JT)−1JP′(:,2)

]
(4.49)

On the other hand, the SKF and the KF have the same updated covariance blocks (1, 1), (1, 2),

119

and (2, 1) [see (4.6)]:

Ps
11 = P⊕11, Ps

12 = P⊕12, and Ps
21 = P⊕21 (4.50)

Therefore, (4.46) is equivalent to:

P′11 = P⊕11, P′12 = P⊕12, and P′21 = P⊕21 (4.51)

or in the block matrix form as:

P′ −P⊕ =

[
0n1×n1 0n1×n2

0n2×n1 ∗

]
(4.52)

which holds true if and only if JP′(:,1) = 0 in (4.49), since (Im+JP′JT)−1 is a SPD matrix.

As Lemma 3 demands, in order to absorb all the information of x1 (as is the case of the

SKF), the Jacobian matrix J of the discarded information must be orthogonal to the directions

of the updated covariance blocks corresponding to x1.

At this point, with Lemma 1 and Lemma 3 in place, we are ready to state our first main

result, that presents a sufficient and necessary condition for finding the exact ISE as a mathe-

matical equivalent to the SKF, under the framework of Alg. 2:

Theorem 1. Given the same input, Alg. 2 and the SKF output the same updated state estimates

and covariance matrices, respectively, i.e., x̂′ = x̂s and P′ = Ps, if and only if JP′(:,1) = 0.

Proof. (i) Necessity: The necessity of the condition follows directly from Lemma 3: If P′ =

Ps, then the three sub-blocks must equal, as in (4.46). Hence, the condition JP′(:,1) = 0 holds

from its necessity in Lemma 3.

(ii) Sufficiency: (a) As for the covariance, from the condition’s sufficiency in Lemma 3,

we know that (4.46) holds, i.e., the (1, 1), (1, 2), and (2, 1) blocks of the covariance are equal.

The last remaining block, (2, 2), are equal as a property of Alg. 2 that we have shown earlier:

Since R′22 = R22 (see the information factor update in Alg. 2), P′22 = P22 = Ps
22 holds true

from Lemma 1 and the property of the SKF [see (4.6)]. Hence, P′ = Ps holds as all the (four)

sub-blocks of the covariance are equal. (b) As for the state estimates, x̂′2 = x̂2 = x̂s2 holds,

again because of the property of Alg. 2 (see the state update in Alg. 2) and the SKF [see (4.5)].

120

To show that x̂′1 = x̂s1, we start from the fact that x̂s1 = x̂⊕1 , where x̂⊕ denotes the updated state

estimates of the KF [see (4.5)], or equivalently of the SR-IF. As we have shown earlier, the SR-

IF updates the state by solving the optimization problem (4.15), where the cost function C can

be written equivalently as in (4.38) [see the arguments from (4.24) to (4.38)]. By minimizing

this least-squares cost function, the state correction computed by the SR-IF can be obtained

through the normal equation as:

x̃⊕ = (R′TR′ + JTJ)−1(R′T

[
r′

0n2×1

]
+ JTrJ)

= (P′−1 + JTJ)−1(R′T

[
r′

0n2×1

]
+ JTrJ)

=
[
P′ −P′JT (Im + JP′JT)−1JP′

]
(R′T

[
r′

0n2×1

]
+ JTrJ) (4.53)

From the condition JP′(:,1) = 0 ⇐⇒ P′(1,:)J
T = 0, since P′ is symmetric ⇐⇒[

In1 0n1×n2

]
P′JT = 0, and the state partitioning x̃⊕ =

[
x̃⊕1

x̃⊕2

]
=⇒ x̃⊕1 =[

In1 0n1×n2

]
x̃⊕, we obtain:

x̃⊕1 =
[
In1 0n1×n2

]
x̃⊕

=
[
In1 0n1×n2

] [
P′ −P′JT (Im + JP′JT)−1JP′

]
(R′T

[
r′

0n2×1

]
+ JTrJ)

=
[
In1 0n1×n2

]
P′R′T

[
r′

0n2×1

]

=
[
In1 0n1×n2

]
(R′TR′)−1R′T

[
r′

0n2×1

]

=
[
In1 0n1×n2

]
R′−1

[
r′

0n2×1

]

=
[
In1 0n1×n2

] [R′11 R′12

0 R22

]−1 [
r′

0n2×1

]
= R′−1

11 r′ (4.54)

121

which leads to the updated state estimate x̂⊕1 of the SR-IF as:

x̂⊕1 = x̂1 + x̃⊕1 = x̂1 + R′−1
11 r′ (4.55)

Comparing this to the state update in Alg. 2, we can see that x̂′1 = x̂⊕1 = x̂s1. Combining it with

the previous result x̂′2 = x̂s2, we conclude that x̂′ = x̂s, as both (two) sub-blocks of the state

estimates are equal.

Recall that, the one and only degree of freedom in Alg. 2 is the unitary matrix U, and by

choosing different U matrices, it results in different matrices J and R′ (hence P′) [see (4.35)].

Therefore, as Theorem 1 demands, in order to find the exact ISE as a specific realization of

Alg. 2, the task now becomes to seek a unitary matrix U such that the condition JP′(:,1) =

0 is satisfied. This condition poses an implicit constraint on the matrix U, and in order to

come up with an actual algorithm, we have further derived several other equivalent but explicit

constraints, based on this one. The result is stated in the following lemma:

Lemma 4. Assume that U =
[
U1 U2

]
is a unitary matrix. Define the following matrices:

G1 ,

[
R11

H1

]
∈ R(n1+m)×n1 , G2 ,

[
R12

H2

]
∈ R(n1+m)×n2 , A , R−T22 GT

2 ∈ Rn2×(n1+m)

(4.56)

Then the following statements are equivalent:

(C1) JP′(:,1) = 0.

(C2)
[
G1(UT

1 G1)−1UT
1 − In1+m

]
(In1+m + ATA) U1 = 0.

(C3) The columns of U1 form an orthonormal basis for the column space of (In1+m +

ATA)−1G1.

(C4) The columns of U1 form an orthonormal basis for the right null space of QT
2 (In1+m +

ATA), where the columns of Q2 form a basis for the left null space of G1.

Proof. (C1)⇐⇒ (C2): From the definition of P′, and the expression of R′ in (4.29), we obtain:

122

P′ = (R′TR′)−1 =

[
R′−1

11 R′−T11 + R′−1
11 R′12R

−1
22 R−T22 R′T12R

′−T
11 −R′−1

11 R′12R
−1
22 R−T22

−R−1
22 R−T22 R′T12R

′−T
11 R−1

22 R−T22

]
(4.57)

which gives the expression of the first block column of P′, i.e., P′(:,1). Hence,

JP′(:,1) = 0

⇐⇒ J1(R′−1
11 R′−T11 + R′−1

11 R′12R
−1
22 R−T22 R′T12R

′−T
11)− J2R

−1
22 R−T22 R′T12R

′−T
11 = 0

⇐⇒ J1(R′−1
11 + R′−1

11 R′12R
−1
22 R−T22 R′T12)− J2R

−1
22 R−T22 R′T12 = 0 (since R′11 is invertible)

⇐⇒ UT
2

[
G1(UT

1 G1)−1UT
1 (I + ATA)U1 −ATAU1

]︸ ︷︷ ︸
,Γ1

= 0

(from (4.32), (4.33), and (4.56))

⇐⇒ UT
2 Γ1 = 0

⇐⇒ Γ1 = U1 (since U =
[
U1 U2

]
is unitary and UT

1 Γ1 = I)

⇐⇒ G1(UT
1 G1)−1UT

1 (I + ATA)U1 −ATAU1 = U1 (from the definition of Γ1)

⇐⇒
[
G1(UT

1 G1)−1UT
1 − I

]
(I + ATA) U1 = 0.

(C2) ⇐⇒ (C3): Define Γ2 , G1(UT
1 G1)−1UT

1 − I ∈ R(n1+m)×(n1+m). We can show

that:

Γ2G1 = 0 =⇒ dim{null(Γ2)} ≥ n1 (since rank(G1) = n1 because R11 is invertible)

Γ2U2 = −U2 =⇒ rank(Γ2) ≥ m
(since U =

[
U1 U2

]
is unitary and rank(U2) = m)

rank(Γ2) + dim{null(Γ2)} = n1 +m (rank-nullity theorem)

from which we have:

dim{null(Γ2)} = n1 (4.58)

=⇒ col(G1) = null(Γ2) (4.59)

123

where col(·) denotes the column space of a matrix, while null(·) the right null space. Hence,[
G1(UT

1 G1)−1UT
1 − I

]
(I + ATA) U1 = 0

⇐⇒ Γ2 (I + ATA) U1 = 0 (from the definition of Γ2)

⇐⇒ col((I + ATA) U1) = null(Γ2) (from (4.58) and rank((I + ATA) U1) = n1)

⇐⇒ col((I + ATA) U1) = col(G1) (from (4.59))

⇐⇒ col(U1) = col((I + ATA)−1 G1) (since I + ATA is invertible)

⇐⇒ The columns of U1 form an orthonormal basis for col((I + ATA)−1 G1).

(since U1 has orthonormal columns)

(C3)⇐⇒ (C4): Given the matrix Q2, whose columns form a basis for the left null space of

G1, i.e., QT
2 G1 = 0. Since G1 ∈ R(n1+m)×n1 and is of full column rank, the dimension of its

left null space must be m, and hence, we have Q2 ∈ R(n1+m)×m and is of full column rank as

a basic requirement of being a basis. Moreover, since I + ATA is invertible, we obtain:

(I + ATA)−1 G1 ∈ R(n1+m)×n1 , with full column rank n1

QT
2 (I + ATA) ∈ Rm×(n1+m), with full row rank m

=⇒ dim{null(QT
2 (I + ATA))} = n1

QT
2 G1 = [QT

2 (I + ATA)]
[
(I + ATA)−1G1

]
= 0

=⇒ null(QT
2 (I + ATA)) = col((I + ATA)−1G1) (4.60)

which shows that the right null space of QT
2 (I + ATA) is the same subspace as the column

space of (I + ATA)−1G1. Therefore, if the columns of U1 form an orthonormal basis for

either one subspace, so they do for the other.

Among those conditions listed in Lemma 4, the first one is our starting point (from The-

orem 1) as an implicit constraint on the matrix U, the second presents an explicit constraint

involving just the U1 portion, which is the only necessary part needed in Alg. 2, while the last

two conditions are direct statements on how to obtain such a matrix U1. Hence, if one computes

a matrix U1, based on condition (C3) or (C4), and substitute it into Alg. 2, then this would give

a square-root inverse algorithm that is equivalent to the SKF. On the other hand, in addition to

being equivalent to the SKF, our desired ISE in the square-root form has further requirements

124

to be satisfied as mentioned before, i.e., the resulting information factor R′ should be invertible

and upper-triangular. As for the invertibility, it turns out that this is automatically guaranteed

by the condition (C3) or (C4), as stated in the following lemma:

Lemma 5. In Alg. 2, if U1 satisfies the condition (C3) or (C4) in Lemma 4, then the updated

factor R′ is invertible.

Proof. Since the condition (C3) and (C4) are equivalent [see (4.60)], it suffices to show the

proof for just one of them, and here we choose (C3) for simplicity: Since both G1 and U1 have

full column rank, from the condition (C3), there must exist an invertible matrix E, such that:

(I + ATA)−1G1 = U1E

=⇒ G1 = (I + ATA)U1E

=⇒ R′11 = UT
1 G1 = UT

1 (I + ATA)U1E = (I + UT
1 ATAU1)E (4.61)

based on the definition of R′11 in (4.32) and that U1 has orthonormal columns as state in con-

dition (C3). Therefore, from (4.61), we can see that R′11 must be invertible as a product of

two invertible matrices. Moreover, given the assumption that R is invertible, and hence R22

as well, we conclude that R′ is invertible as a block upper-triangular matrix with invertible

diagonal blocks [see its expression in (4.29)].

As for the upper-triangular structure of R′, it poses an additional constraint on the matrix

U1. Note that, the conditions in Lemma 4 do not give a unique choice of U1. In fact, there

are infinitely many matrices that will satisfy these conditions: It can be verified that, if a matrix

U?
1 satisfies the conditions in Lemma 4, then so does the matrix U?

1Q, where Q ∈ Rn1×n1 is

any arbitrary unitary matrix. This is reasonable because, for the underlying Schmidt Hessian

matrix, its corresponding square-root factor [see (4.14)] is nonunique, if no other requirement of

the factor is specified. With the additional restriction that R′ be upper-triangular, or equivalently

R′11, the choice of U1 is then unique (up to the sign of each column), due to the uniqueness of

the Cholesky factorization of a SPD matrix (i.e., the Schmidt Hessian). Hence, as our goal is

to obtain an exact ISE in the square-root form that maintains an upper-triangular information

factor, we need to add this additional constraint on U1.

To conclude, we summarize the results of our previous analyses with the following state-

ment:

125

Theorem 2. Alg. 2 is an exact ISE in the square-root form, with the updated information factor

being invertible and upper-triangular, if and only if the matrix U1 satisfies the condition (C3)

or (C4) in Lemma 4, and R′11 = UT
1 G1 is upper-triangular.

Theorem 2 is a direct combination of the results of Theorem 1, Lemma 4, and Lemma 5,

hence no further proof is needed. The sufficient and necessary condition stated here consists of

two parts: The first part guarantees the equivalence to the SKF and the invertibility of the up-

dated factor, while the second regularizes the upper-triangular structure of the factor as required.

Theorem 2 provides useful guidelines for realizing the exact ISE algorithm. In what follows,

we utilize this result and present our proposed exact ISE algorithm that is both computationally

efficient and numerically stable.

Exact ISE: The Algorithm

The condition stated in Theorem 2 can lead directly to the exact ISE algorithm. In fact, starting

from either one of the constraints (C3) and (C4) on the matrix U1, we have found several

versions of the algorithm. All these realizations are mathematical equivalents of the same exact

ISE, but meanwhile, they differ in terms of the computational efficiency and numerical stability.

As an example, since the condition in Theorem 2 consists of two parts, one approach would

accordingly decompose the matrix U1 into the following form:

U1 = U′1U
′′
1, with U′1 ∈ R(n1+m)×n1 and U′′1 ∈ Rn1×n1 (4.62)

where U′1 satisfies the constraint (C3) or (C4), while the unitary matrix U′′1 is chosen such that

the resulting factor is upper-triangular. It is straightforward to verify that their product U1 obeys

the condition in Theorem 2. Therefore, this is a valid approach, and the corresponding exact

ISE algorithm can be carried out as (if the constraint (C3) is selected, for instance):

1. Obtain G1 ←

[
R11

H1

]
and G2 ←

[
R12

H2

]

2. Compute A← R−T22 GT
2

3. Compute Γ← (In1+m + ATA)−1G1

126

4. Compute the thin QR factorization of Γ = U′1RΓ, then compute R′11 ← U′T1 G1, R′12 ←

U′T1 G2, and r′ ← U′T1

[
r1

0

r

]

5. Compute the QR factorization of R′11 = U′′1Rs
11, then compute Rs

12 ← U′′T1 R′12 and

rs ← U′′T1 r′

6. Information factor update: Rs ←

[
Rs

11 Rs
12

0n2×n1 R22

]

7. State update: x̂s ←

[
x̂1 + Rs−1

11 rs

x̂2

]

where the superscript s is used to denote the fact that this algorithm is the Schmidt estimator,

i.e., it is equivalent to the SKF (see the definitions in Sec. 4.2.2). As evident, this procedure is a

special realization of Alg. 2, where a specific U1 matrix is obtained implicitly based on Theo-

rem 2, as the product of two matrices: (i) U′1, whose columns, due to the thin QR factorization in

Step 4, become an orthonormal basis for the column space of Γ, following the constraint (C3),

and (ii) U′′1 , which transforms the previous Schmidt factor block R′11 into another equivalent

but upper-triangular factor block Rs
11, due to the QR factorization in Step 5.

Although this is a correct exact ISE algorithm, it has several drawbacks for numerical im-

plementations: Firstly, the matrices U′1 and U′′1 are formed explicitly in the two QR processes,

hence reducing the computational efficiency. Second, the matrix inversion in Step 3 can cause

loss in numerical accuracy. Lastly, the upper-triangular structure of the input factor block R11

is destroyed during the process, i.e., R′11 is in general dense, and hence results in the need of the

triangularization step (see Step 5), which brings extra computational cost. While the first issue

can be solved by using in-place QR operations so as to gain speed, the last two problems are

caused by the approach itself, and cannot be eliminated easily without switching to a different

scheme. In what follows, we present the “best” algorithm in terms of the computational effi-

ciency and numerical stability, among many potential algorithms that we have found based on

Theorem 2. This proposed method consists of several QR factorizations as its major operations,

ensuring superior numerical behaviors. Moreover, the upper-triangular structure of the factor is

respected throughout the entire process, achieving high efficiency by taking full advantage of

this property.

127

We start from the constraint (C4). Instead of a direct usage of this constraint to find U1,

however, we first apply a unitary transformation on G1 and G2, and then follow the conditions

in (C4), but now with respect to the new resulting matrices. Specifically, we first perform the

QR factorization of G1 as:

G1 =

[
R11

H1

]
= QG1

[
R̄11

0m×n1

]
(4.63)

=⇒
[
G1

... G2

]
QR−−→ QT

G1

[
G1

... G2

]
=

 R̄11
... R̄12

0m×n1

... H̄2

 =
[
Ḡ1

... Ḡ2

]
(4.64)

with Ḡ1 ,

[
R̄11

0m×n1

]
= QT

G1
G1 and Ḡ2 ,

[
R̄12

H̄2

]
, QT

G1
G2 (4.65)

where the QR factor R̄11 ∈ Rn1×n1 is guaranteed to be a full-rank upper-triangular matrix,

since G1 is of full column rank. Define the following matrix Ā, similarly to the matrix A

in (4.56), as:

Ā , R−T22 ḠT
2 = AQG1 (4.66)

Now we apply the statement in the constraint (C4) to these new inputs, i.e., we find a matrix

Ū1, whose columns form an orthonormal basis for the right null space of Q̄T
2 (I+ĀT Ā), where

the columns of Q̄2 form a basis for the left null space of Ḡ1. The advantage brought by this

pre-transformation procedure is twofold: (i) Given the expression of Ḡ1, its left null space can

be found in closed-form as Q̄2 =
[
0m×n1 Im

]T
, and (ii) given the upper-triangular structure

of Ḡ1, it turns out that there is an efficient way to compute the updated factor block ŪT
1 Ḡ1,

where the upper-triangular structure is always maintained. Specifically, we have:

Q̄2 =
[
0m×n1 Im

]T
=⇒ Q̄T

2 (I+ĀT Ā) =
[
0m×n1 Im

]
(In1+m+ĀT Ā) = B̄T (4.67)

where we have defined:

Ā ,
[
Ā1 Ā2

]
, with Ā1 ∈ Rn2×n1 and Ā2 ∈ Rn2×m (4.68)

B̄ ,

[
B̄1

B̄2

]
, with B̄1 , ĀT

1 Ā2 ∈ Rn1×m and B̄2 , Im + ĀT
2 Ā2 ∈ Rm×m (4.69)

128

As mentioned above, the columns of Ū1 should form an orthonormal basis for the right

null space of Q̄T
2 (I + ĀT Ā) = B̄T , or equivalently, the left null space of B̄. Note that

B̄ ∈ R(n1+m)×m is of full column rank, since B̄2 is SPD [see (4.69)]. Therefore, after B̄

is computed, our next task is to obtain the updated factor blocks ŪT
1 Ḡ1 and ŪT

1 Ḡ2, where

Ū1 forms the left null space of B̄. A naive approach would first compute Ū1 explicitly, and

then obtain the factor blocks through matrix multiplications. This is inefficient, and it can be

improved by performing a QR factorization on B̄, while computing ŪT
1 Ḡ1 and ŪT

1 Ḡ2 through

in-place operations. Moreover, special care must be taken for this QR process, in order to take

full advantage of the specific structure of Ḡ1 for efficiency. Specifically, a standard QR (e.g.,

through Householder transformations [37]) would destroy the upper-triangular structure of Ḡ1,

and results in a dense factor block ŪT
1 Ḡ1, and hence, a follow-up step will be required to tri-

angularize it. It would be ideal if we can find a way to compute the factor blocks such that the

structure is fully exploited, and furthermore, result in an upper-triangular matrix for ŪT
1 Ḡ1 au-

tomatically at no extra cost. Indeed, we find that this is possible, through the following two-step

approach: First, a QR factorization is performed only on the lower portion of B̄, i.e., the B̄2

matrix, to triangularize it:

[
B̄

... Ḡ1
... Ḡ2

]
=

B̄1
... R̄11

... R̄12

B̄2
... 0m×n1

... H̄2

 , B̄2 = Q̄B2R̄B2 (4.70)

=⇒
[
B̄

... Ḡ1
... Ḡ2

]
QR−−→

[
In1

Q̄T
B2

] [
B̄

... Ḡ1
... Ḡ2

]
=

 B̄1
... R̄11

... R̄12

R̄B2

... 0m×n1

... H̄′2

 (4.71)

with H̄′2 , Q̄T
B2

H̄2 (4.72)

where the QR factor R̄B2 ∈ Rm×m is guaranteed to be a full-rank upper-triangular matrix,

since B̄2 is SPD. Note that, in this step, we have utilized the fact that the lower portion of

Ḡ1 is zero, and hence it remains to be zero during the in-place QR process. This way, with

Ḡ1 unchanged, this first step can be carried out with minimal operations. Next, in the second

step, we aim to zero out the B̄1 block, through another in-place QR factorization, to obtain the

desired left null space and its multiplication with the stacked factor blocks, but in an implicit

way for efficiency. Moreover, as mentioned before, the resulting factor block (1, 1) should be

guaranteed to be upper-triangular. To achieve this, we employ the QR with Givens rotations,

129

which has the flexibility in terms of the rows involved in each update and also the order in

which the zeros are introduced [37], and hence keeping the desired upper-triangular structure.

To be specific, based on the fact that Ḡ1 and R̄B2 are both upper-triangular, we propose a Given

process with the following rule:

(R1) Use the diagonal elements of R̄B2 to zero out all the elements of B̄1, in the following

order: From left to right in terms of columns, and within each column, from bottom to top

in terms of rows. Specifically, for each element of B̄1 with row index i and column index

j, i ∈ {1, 2, . . . , n1} and j ∈ {1, 2, . . . ,m}, perform a Givens rotation to zero out this

element, involving the following two rows: The i-th row of B̄1 and the j-th row of R̄B2 .

By tracing the evolution of the non-zero pattern during the Givens process following this rule,

it can be verified that, the upper-triangular structure of the R̄11 block is kept all the way to the

end, i.e., when B̄1 becomes completely zero. Mathematically, this Givens QR process can be

presented as: [
B̄1

R̄B2

]
=
[
Ū′B Q̄′B

] [0n1×m

R̄′B2

]
(4.73)

=⇒

 B̄1
... R̄11

... R̄12

R̄B2

... 0m×n1

... H̄′2

 QR−−→

[
Ū′B Q̄′B

]T  B̄1
... R̄11

... R̄12

R̄B2

... 0m×n1

... H̄′2

 =

0n1×m
... Rs

11

... Rs
12

R̄′B2

... Js1
... Js2

 (4.74)

with Rs
11 , Ū′TB

[
R̄11

0m×n1

]
∈ Rn1×n1 , Rs

12 , Ū′TB

[
R̄12

H̄′2

]
∈ Rn1×n2

Js1 , Q̄′TB

[
R̄11

0m×n1

]
∈ Rm×n1 , Js2 , Q̄′TB

[
R̄12

H̄′2

]
∈ Rm×n2

(4.75)

where Ū′B ∈ R(n1+m)×n1 spans the left null space of the matrix

[
B̄1

R̄B2

]
, while Q̄′B ∈

R(n1+m)×m spans the column space of it, and they together form a unitary matrix, whose trans-

pose represents the product of the sequence of the Givens rotations, according to the order

in (R1). As mentioned earlier, due to this specific Given process, the resulting factor block Rs
11

130

is guaranteed to be upper-triangular. Note that, this is possible because of the upper-triangular

structure of both Ḡ1 and R̄B2 , thanks to the previous two QR processes, in (4.64) and (4.71).

Finally, after all these three QR steps, the updated information factor blocks are given by Rs
11

and Rs
12 in (4.75), while Js1 and Js2 are the Jacobian blocks corresponding to the dropped infor-

mation [see (4.32) – (4.39) for correspondence].

Now we prove the correctness of this proposed approach, i.e., it is indeed an exact ISE

algorithm. Based on the generic framework of Alg. 2, we first find the specific underlying U1

matrix, that describes the entire unitary transformation defined in the above procedure, and then

show that it satisfies the condition in Theorem 2. Specifically, as described above, our approach

consists of three consecutive QR steps, where each of them defines a unitary transformation,

converting the input information Jacobians, step by step, into the final updated factor blocks

[see (4.64), (4.71), and (4.74)]:

[
G1

... G2

] QT
G1−−−→

[
Ḡ1

... Ḡ2

]
I

Q̄T
B2


−−−−−−−→

R̄11
... R̄12

0
... H̄′2


[
Ū′B Q̄′B

]T
−−−−−−−−−→

Rs
11

... Rs
12

Js1
... Js2


(4.76)

=⇒
[
Rs

11

... Rs
12

]
= Ū′TB

[
I

Q̄T
B2

]
QT
G1

[
G1

... G2

]
=

(
QG1

[
I

Q̄B2

]
Ū′B

)T [
G1

... G2

]
(4.77)

Hence, if we define:

U1 , QG1

[
I

Q̄B2

]
Ū′B, with U1 ∈ R(n1+m)×n1 and UT

1 U1 = In1 (4.78)

then Rs
11 = UT

1 G1 and Rs
12 = UT

1 G2. Comparing this result to Step 4 of Alg. 2, it is evident

that this specific U1 in (4.78) is exactly the underlying matrix representing our entire unitary

transformation. As expected, this orthonormal matrix U1 is the combination of the three or-

thonormal Q factors, corresponding to the three QR steps in our proposed approach. Next, we

show that this specific U1 satisfies the condition stated in Theorem 2. First of all, as required

by the second part of the condition, the resulting factor block Rs
11 = UT

1 G1 is guaranteed to be

upper-triangular, by the design of the last Given QR with the specific rule (R1). As for the first

131

part of the condition, we show that (C4) holds true for this specific U1, i.e., the columns of U1

form an orthonormal basis for the right null space of QT
2 (I + ATA), where Q2 spans the left

null space of G1. Given that QG1 is the Q factor of the QR factorization of G1, from (4.63),

we choose Q2 to be the second block column of QG1 , hence it spans the left null space of G1

as required. Moreover, since QG1 is unitary, i.e., QT
G1

QG1 = I, taking the second block row of

this equation gives QT
2 QG1 =

[
0 I

]
. Now we can show that:

QT
2 (I + ATA)U1

= QT
2 (I + ATA)QG1

[
I

Q̄B2

]
Ū′B (from the definition of U1 in (4.78))

= QT
2 QG1(I + QT

G1
ATAQG1)

[
I

Q̄B2

]
Ū′B

(since QG1Q
T
G1

= I because QG1 is unitary)

=
[
0 I

]
(I + QT

G1
ATAQG1)

[
I

Q̄B2

]
Ū′B (since QT

2 QG1 =
[
0 I

]
)

=
[
0 I

]
(I + ĀT Ā)

[
I

Q̄B2

]
Ū′B (from the definition of Ā in (4.66))

= B̄T

[
I

Q̄B2

]
Ū′B =

(
Ū′TB

[
I

Q̄T
B2

][
B̄1

B̄2

])T

(from the definition of B̄ in (4.67) and (4.69))

=

(
Ū′TB

[
B̄1

R̄B2

])T

(from the QR factorization in (4.70))

= 0 (from the QR factorization in (4.73))

Hence, U1 belongs to the right null space of QT
2 (I + ATA). Moreover, since this null space is

of dimension n1 as shown in (4.60), and U1 has n1 orthonormal columns, these columns must

form an orthonormal basis for this null space. Therefore, by Theorem 2 with (C4), we conclude

that this specific U1 in (4.78), which is a summarized representation of our proposed approach,

leads to a valid exact ISE algorithm.

132

Algorithm 3 The Exact Inverse Schmidt Estimator (ISE)
1: Input: Current state estimate x̂, prior information factor R and residual r0, pre-whitened

measurement Jacobian H and residual r
2: procedure UPDATE

3: Perform the in-place QR of
[
R11

H1

]
as:

R11
... R12

... r1
0

H1
... H2

... r

 QR−−→

R̄11
... R̄12

... r̄1

0
... H̄2

... r̄2


4: Compute

[
Ā1

... Ā2

]
← R−T22

[
R̄T

12

... H̄T
2

]
, then compute B̄1 ← ĀT

1 Ā2 and B̄2 ←
I + ĀT

2 Ā2

5: Perform the in-place QR of B̄2 as:
[
B̄2

... H̄2
... r̄2

]
QR−−→

[
R̄B2

... H̄′2
... r̄′2

]
6: Perform the in-place QR of

[
B̄1

R̄B2

]
as:

 B̄1
... R̄11

... R̄12
... r̄1

R̄B2

... 0
... H̄′2

... r̄′2

 QR−−→ 0
... Rs

11

... Rs
12

... rs

R̄′B2

... Js1
... Js2

... rsJ

, by Givens rotations following (R1)

7: Information factor update: Rs ←
[
Rs

11 Rs
12

0 R22

]
8: State update: x̂s ←

[
x̂1 + Rs−1

11 rs

x̂2

]
9: end procedure

10: Output: Updated Schmidt state estimate x̂s and information factor Rs

133

The proposed exact ISE algorithm is summarized in Alg. 3.2 By Theorem 2, this estimator

is mathematically equivalent to the SKF but in the square-root inverse form (see the definitions

in Sec. 4.2.2), and the updated information factor is guaranteed to be invertible and upper-

triangular. Note that, it is a special realization of the generic framework in Alg. 2, i.e., Steps 3 –

6 in Alg. 3 are particular realizations of Steps 3 – 4 in Alg. 2, with the specific U1 as defined

in (4.78), but obtained implicitly through three consecutive QR factorizations.

In order to achieve efficient implementations, all the QR factorizations should be performed

in place, i.e., the transpose of the Q factor is applied in its factored form to the stacked matrices,

without explicitly computing the Q factor. Furthermore, as designed, the upper-triangular struc-

ture of the information factor’s (1, 1) block is maintained throughout the entire algorithm, and

hence should be taken into account during each QR process. Lastly, the two matrix-inversion

operations in Steps 4 and 8 involve only upper (or lower) triangular matrices, and hence can be

computed efficiently by backward (or forward) substitutions.

As for the computational complexity, it can be shown that the total complexity of Alg. 3

sums up to O
(
(n1 +m)[n2

2 +m(n2 + n1 +m)]
)
. Typically, in practice, we would apply the

Schmidt estimator when a major portion of the state vector is to remain the same, i.e., when

n2 � n1 + m. Under this assumption, the total cost is simplified to O
(
(n1 +m)n2

2

)
. This

quadratic cost in n2 is due to the solve operation with the upper-triangular matrix R22 ∈ Rn2×n2

in Step 4, which in this case becomes the dominant step in terms of the computational cost.

Furthermore, if in addition, the input factor block R22 is sparse, and the solve can be done

in linear time in n2, then the total cost is reduced to O (m(n1 +m)n2), which is now linear

with respect to n2. One such practical example is the problem of SLAM, where the square-

root information factor is indeed sparse [24, 87], and hence potentially may allow efficient

approximate solutions by using the exact ISE.

4.2.4 Approximate Inverse Schmidt Estimators

So far we have successfully derived the exact inverse Schmidt estimator (ISE), which is the

information-domain equivalent of the SKF. And as mentioned before, the exact ISE is a special

realization of the generic framework presented in Alg. 2. Furthermore, among all those algo-

rithms that this generic framework covers, the exact ISE is the optimal one, in the sense that

2As mentioned before, in order to reduce linearization errors, this update procedure (including the linearization
of the measurement equations) can be repeated iteratively till convergence.

134

it minimizes the mean squared error of the posterior estimate of x1, as is also the case for its

covariance-domain equivalent SKF. In other words, the exact ISE absorbs all the information

of x1, and updates its estimate to be the same as that of the optimal KF or SR-IF. Due to this

optimality, the computational complexity of the exact ISE algorithm, as mentioned earlier, is

still high (up to quadratic in the size of x2). Hence, we would like to further relax this opti-

mality constraint, and seek to obtain alternative algorithms that are further approximations with

respect to the exact ISE, while gaining in efficiency. Specifically, while x2 remains unaltered as

before, we propose to update x1 only approximately, instead of optimally as in the case of the

exact ISE, so as to reduce the computational cost.

To achieve this, we first identify the computationally-dominant step of the exact ISE algo-

rithm, i.e., the back-solve operation with R22 in Step 4 of Alg. 3, since the size of R22 can be

potentially very large. Then, instead of using the exact factor block R22, we propose to employ

various approximate versions of it in the solving operation so that this step (as well as other

steps) becomes less expensive. In what follows, we present two such algorithms, both of which

are derived as further approximations of the exact ISE using this idea. Meanwhile, they are also

special realizations of the generic framework in Alg. 2, and because of this, they inherit the

properties of Alg. 2, i.e., x2 is preserved and the estimates are consistent.

Resource-aware Inverse Schmidt Estimator (RISE)

The first approximate algorithm is obtained by simply setting R22 = ∞ in Step 4 of the exact

ISE algorithm (see Alg. 3). This immediately eliminates Step 4-6 from the procedure. Hence,

comparing this to the three-step QR procedure in Alg. 3, we can see that this algorithm only

takes the first QR step from the exact ISE, while removing the next two. The proposed algorithm

is presented in Alg. 4. In fact, this algorithm is a special realization of the generic framework

in Alg. 2, as it can be obtained by choosing U = QG1 , where QG1 is the Q factor of the QR

factorization of G1, as defined in (4.63).

The gain in speed of this algorithm is obvious: Since it is a “trimmed” version of Alg. 3, the

computational cost is strictly lower than that of the exact ISE. In fact, the block R22 is never

involved in the procedure, and the total cost is at most linear in n2. If in addition, R12 and H2

are sparse, then the complexity of this entire algorithm becomes constant (depending on n1)

with respect to n2. Hence, the advantage of Alg. 4 is its fast speed. The disadvantage, however,

is that this estimator does not provide any performance guarantee in terms of the accuracy of

135

Algorithm 4 The Resource-aware Inverse Schmidt Estimator (RISE)
1: Input: Current state estimate x̂, prior information factor R and residual r0, pre-whitened

measurement Jacobian H and residual r
2: procedure UPDATE

3: Perform the in-place QR of
[
R11

H1

]
as:

R11
... R12

... r1
0

H1
... H2

... r

 QR−−→

R̄11
... R̄12

... r̄1

0
... H̄2

... r̄2


4: Information factor update: Rr ←

[
R̄11 R̄12

0 R22

]
5: State update: x̂r ←

[
x̂1 + R̄−1

11 r̄1

x̂2

]
6: end procedure
7: Output: Updated state estimate x̂r and information factor Rr

the updated state x1. Specifically, unlike the exact ISE algorithm in Alg. 3, the state update in

Alg. 4 only depends on the stacked Jacobian matrix

[
R11

H1

]
corresponding to x1, as well as the

residual vector

[
r1

0

r

]
, while R12, R22, and H2 have no impact on the state update. Hence, this

state update step is equivalent to that of the inconsistent approach, where R12, R22, and H2 are

ignored, i.e., x2 is assumed to be known perfectly with zero uncertainty. The key difference,

however, is that by updating and keeping track of the cross term R12, Alg. 4 maintains the

correct information factor and thus achieves consistent estimates.

More importantly, this proposed algorithm is resource-aware, i.e., it allows trading estima-

tion accuracy for computational efficiency according to the availability of processing resources,

by adjusting the size of the window of the states selected to be updated (i.e., the size of x1 with

respect to the entire x). Smaller windows provide less accurate estimates at higher rates, while

larger windows allow for higher accuracy at the cost of longer processing times. In the extreme

case when all states are chosen for update (i.e., x1 = x), this algorithm becomes exactly equiv-

alent to the optimal SR-IF without any information loss, since in this case the x2 part vanishes

and no cost term is dropped. For this reason, we name it the resource-aware inverse Schmidt

estimator, or RISE.

136

Other Approximations

The second approximate algorithm is obtained by setting R22 to be its reduced form in Step 4

of the exact ISE algorithm (see Alg. 3). Specifically, if the R22 matrix is (block) diagonally

dominant, one way would be to use a banded version of it, taking the original upper-triangular

matrix but only up to a certain bandwidth. This bandwidth can be an adjustable parameter,

which controls the balancing between accuracy and speed: In general, a larger bandwidth would

lead to smaller discrepancy between the results of this approximate algorithm and those of the

exact ISE, and hence more accurate estimates, but at a slower speed. Other approximate forms

of the R22 matrix are also possible, depending on the specific characteristics of this matrix. The

procedure of this proposed algorithm is omitted here, as it is very similar to Alg. 3, with the

only change being that the R22 matrix in Step 4 is replaced by its approximate as described

above.

To summarize, in this section, we presented several novel inverse Schmidt estimators. First,

we derived the exact inverse Schmidt estimator (ISE), which is mathematically equivalent to the

Schmidt-Kalman filter (SKF), but in the square-root information form. A detailed derivation of

our proposed exact ISE algorithm was presented. Specifically, we started by proposing a generic

framework, which shares some fundamental properties with the SKF, such as preserving some

portion of the state and ensuring estimation consistency. Next, we proved several sufficient

and necessary conditions, under which the generic framework becomes the desired exact ISE.

Then, based on these conditions, a version of the exact ISE algorithm was obtained. This

proposed algorithm consists of three QR factorizations for numerical stability, while the upper-

triangular structure of the information factor is maintained throughout the entire process and

fully exploited for efficiency. In addition, complexity analysis of the exact ISE algorithm is

presented. Moreover, to further improve the computational efficiency, we proposed several

approximate algorithms to the exact ISE. One such result is the resource-aware inverse Schmidt

estimator (RISE), which provides a mechanism to trade estimation accuracy for computational

efficiency, by adjusting the size of the window of the states to be updated.

Next, we employ these inverse Schmidt estimators (exact or approximate) to provide an

efficient, accurate, and consistent solution to the problem of visual-inertial simultaneous local-

ization and mapping (SLAM) in large areas.

137

Frontend Thread

Backend Thread

Initialization Recent states
exploration update

Loop
closure?

Recent states
relocalization update

Loop
closure?

Update past
states?

Past states
relocalization update

Recent states
correction

Yes

Yes

No

No

Yes

Exploration

Relocalization

Transition to
relocalization

Transition to
exploration

1

3

4

6 2

5

Figure 4.1: System overview. After initialization, the system starts in exploration mode
(Sec. 4.3.3), and switches to relocalization mode when a set of loop closures is detected
(Sec. 4.3.4). When in relocalization mode, besides the frontend thread (Sec. 4.3.4), the sys-
tem may run a backend thread to perform global adjustment of past states (Sec. 4.3.4), while
the frontend thread employs the backend’s feedback (i.e., updated trajectory) to correct recent
states (Sec. 4.3.4). Once no loop closures are detected, the system switches back to exploration
mode (Sec. 4.3.3).

4.3 RISE-SLAM: A Resource-aware Inverse Schmidt Estimator
for SLAM

4.3.1 System Overview

The proposed visual-inertial SLAM system, whose overview is depicted in Fig. 4.1, employs

an incremental estimator comprising two key modes each addressing the particular needs of

the corresponding phases of SLAM: Exploration and Relocalization. During exploration, the

IMU-camera pair navigates through a new area. Thus, the feature observations available for

processing span only a short window of recent poses. During relocalization, the IMU-camera

pair enters areas it has previously visited, and acquires loop-closure measurements that relate

recent camera poses with past ones, thus enabling to remove pose drift. Such reobservations

138

of past features, however, are typically expensive to process, and for this reason we explicitly

distinguish between these two phases, and treat them differently.

Specifically, after initialization, the system begins in exploration mode. The estimator opti-

mizes over a sliding window of recent states involved in the local feature-track measurements

(1© in Fig. 4.1), with constant cost (determined by the window size). Once loop-closure mea-

surements are detected, the system enters the relocalization mode (2© in Fig. 4.1), and spans

two threads to process local feature-track measurements as well as loop-closure observations.

In the frontend, the system estimates a sliding window of recent states using both types of vi-

sual measurements (3© in Fig. 4.1) with constant cost. This is a key novelty of our work and the

process for accomplishing this in a consistent manner is detailed in Sec. 4.3.4. The optimiza-

tion of other (past) states (5© in Fig. 4.1), which has approximately linear cost in their size, is

assigned to the backend. Note that the two threads run independently so that the frontend can

add new states and provide estimates even if the backend is still running. Once the backend

finishes updating the past states, the frontend employs its feedback to correct the recent states

(4© in Fig. 4.1). Once all the states are globally adjusted, we only need to run the frontend to

update recent states (3© in Fig. 4.1). Though we could enable the backend optimization when-

ever the backend thread is idle, in order to save processing, in our implementation we choose

to run the backend only once during each relocalization phase. Finally, when there are no more

loop-closure measurements available, the system switches back to the exploration mode (6© in

Fig. 4.1).

In what follows, we describe the key algorithmic components necessary for realizing the

proposed estimation scheme. Specifically, we first provide an overview of the optimal square-

root inverse estimator used during exploration, and then discuss its Schmidt-based approxima-

tion (derived in Sec. 4.2) employed later on for reducing the computational cost of relocaliza-

tion.

4.3.2 Square-root Inverse Estimators for SLAM

In this section, we discuss SLAM estimators in the square-root inverse form. We start by denot-

ing the state vector to be estimated as x, which comprises IMU poses and feature positions, and

extends with new states as time goes by. At every step, the estimator maintains a prior cost term

of the current state estimate, ‖R(x− x̂)‖2, where R is the upper-triangular information factor

matrix (i.e., the Cholesky factor of the Hessian) and x̂ is the current estimate of x. As new

139

visual or inertial measurements arrive, they contribute another cost term (after linearization),

‖H(x− x̂)− r‖2, where H and r are the measurement Jacobian and residual, respectively.3

Then, the updated state estimate, x̂⊕, is found by minimizing the cost function:

C = ‖R(x− x̂)‖2 + ‖H(x− x̂)− r‖2 (4.79)

x̂⊕ = arg min
x
C (4.80)

Optimal Estimator

The optimal solution of (4.79) can be computed as:

C =

∥∥∥∥∥
[
R

H

]
(x− x̂)−

[
0

r

]∥∥∥∥∥
2

=

∥∥∥∥∥
[
R⊕

0

]
(x− x̂)−

[
r⊕

e

]∥∥∥∥∥
2

=
∥∥∥R⊕(x− x̂−R⊕

−1
r⊕)
∥∥∥2

+ ‖e‖2 (4.81)

⇒ x̂⊕ = x̂ + R⊕
−1

r⊕ (4.82)

where we have performed the following QR factorization:[
R

H

]
= Q

[
R⊕

0

]
,

[
r⊕

e

]
, QT

[
0

r

]
(4.83)

The main advantage of this estimator is its optimality in minimizing the mean square error.

Additionally, it is very efficient during the exploration phase, if the states in x follow a chrono-

logical order. Specially, when only local feature-track measurements are available, as described

in [52], the QR factorization needs to involve only the bottom-right part of R, which corre-

sponds to recent states. Thus, the cost remains constant, irrespective of the size of the entire

state vector x. In contrast, during relocalization, this estimator becomes very inefficient for pro-

cessing loop-closure measurements, which involve both recent and past states. In this case, the

size of the submatrix of R involved in the QR factorization increases significantly, making the

3We follow [89] for the state parameterization, as well as for the visual-inertial measurement processing and
cost term formulations.

140

cost at least linear in the size of x. Since this becomes prohibitively expensive, especially when

navigating in large areas, in what follows, we consider the inverse Schmidt approximations that

reduce the computational cost, while preserving consistency.

Estimators Based on the Schmidt Approximation

As mentioned earlier, the Schmidt approximation, which was introduced originally for the

Kalman filter [80], is consistent. The key idea behind it is to save processing cost by updat-

ing only a subset of the states while leaving the rest unaltered. In Sec. 4.2, we have derived

its equivalent in the square-root inverse form. In brief, the Schmidt approximation starts by

partitioning the state vector x into two parts: x1 and x2. Now the prior term can be written as

‖R(x− x̂)‖2 =

∥∥∥∥∥
[
R11 R12

R22

][
x1 − x̂1

x2 − x̂2

]∥∥∥∥∥
2

(4.84)

Employing the idea of Schmidt, we use the measurements to update the estimate of x1 to x̂⊕1

but keep x̂2 the same. By doing so, the posterior term should become

∥∥∥∥∥
[
R⊕11 R⊕12

R22

][
x1 − x̂⊕1

x2 − x̂2

]∥∥∥∥∥
2

(4.85)

A property of the Schmidt approximation in this square-root inverse form is that R22 re-

mains the same, which does not hold if we change the state order (update x2 but not x1). For

this reason, it is preferable to put the states to be updated on the upper part of x. In practice, we

typically focus more on recent states than past states, so the states must be organized in reverse

chronological order in order to apply the Schmidt approximation. This is in stark contrast to the

preferred state order for the case of the optimal estimator during exploration. The ramifications

of this order switching will become evident when we discuss them in Sec. 4.3.3-4.3.4.

Exact Inverse Schmidt Estimator (ISE)

Among all Schmidt estimators, the exact Schmidt [80] yields the optimal solution for x1. Sur-

prisingly (and quite unfortunately), its equivalent in the inverse form, which we derived in

Sec. 4.2, called the exact inverse Schmidt estimator (ISE), has no speed advantage over the op-

timal estimator. In SLAM problems, the Cholesky factor of the Hessian matrix typically has a

141

(a) (b) (c)

Figure 4.2: Structures of the information factors: (a) Prior. (b) Posterior after the update using
the optimal estimator. (c) Posterior after the update using the exact ISE with half of the state
vector updated.

dense band on diagonal but is sparse off diagonal. Thus, the cost of the optimal estimator, which

performs a Cholesky factorization on the Hessian matrix, is almost linear in the size of the state

vector. According to our analysis in Sec. 4.2, when the Hessian matrix (or its Cholesky factor)

is sparse, the exact ISE is also of linear cost in the size of the state vector if a major portion of

the state vector is to be unaltered. Therefore, when applied to SLAM, the exact ISE shares the

same order of computational cost as the optimal estimator even if it introduces approximation.

Moreover, the exact ISE introduces more fill-ins in the Cholesky factor of the Hessian matrix

than the optimal estimator, which will significantly increase the processing and memory cost.

As an example, Fig. 4.2(a) shows the Cholesky factor of the prior cost term at a step in a SLAM

problem, and Fig. 4.2(b) depicts the structure of the posterior factor if the optimal estimator is

employed. Instead, if the exact ISE is applied with updating half of the state vector, the structure

becomes what is shown in Fig. 4.2(c), where the posterior Cholesky factor is much denser.

Resource-aware Inverse Schmidt Estimator (RISE)

Since the exact ISE is a consistent estimator in the inverse domain, in Sec. 4.2, we have used

it as a starting point to investigate further approximation to it, which leads us to the resource-

aware inverse Schmidt estimator (RISE). The RISE procedure is briefly summarized hereafter.

142

First, we rewrite the cost function in (4.79) as

C =

∥∥∥∥∥
[
R11 R12

R22

][
x1 − x̂1

x2 − x̂2

]∥∥∥∥∥
2

+

∥∥∥∥∥[H1 H2

] [x1 − x̂1

x2 − x̂2

]
− r

∥∥∥∥∥
2

=

∥∥∥∥∥
[
R11 R12

H1 H2

][
x1 − x̂1

x2 − x̂2

]
−

[
0

r

]∥∥∥∥∥
2

+ ‖R22(x2 − x̂2)‖2

=

∥∥∥∥∥
[
R⊕11 R⊕12

H⊕2

][
x1 − x̂1

x2 − x̂2

]
−

[
r⊕1

e1

]∥∥∥∥∥
2

+ ‖R22(x2 − x̂2)‖2

=

∥∥∥∥∥∥∥∥


R⊕11 R⊕12

H⊕2

R22


[
x1 − x̂1

x2 − x̂2

]
−


r⊕1

e1

0


∥∥∥∥∥∥∥∥

2

(4.86)

where the following QR factorization was performed:[
R11

H1

]
= Q1

[
R⊕11

0

]
(4.87)

and [
R⊕12

H⊕2

]
, QT

1

[
R12

H2

]
,

[
r⊕1

e1

]
, QT

1

[
0

r

]
(4.88)

Next, instead of minimizing C, we drop the cost term x2, ‖H⊕2 (x2 − x̂2)− e1‖2 in (4.86), and

minimize (see Fig. 4.3):

C̄ =

∥∥∥∥∥
[
R⊕11 R⊕12

R22

][
x1 − x̂1

x2 − x̂2

]
−

[
r⊕1

0

]∥∥∥∥∥
2

(4.89)

Finally, we update the estimate of x1 by setting

x̂⊕1 = arg min
x1

C̄ = x̂1 + R⊕11
−1

r⊕1 (4.90)

143

QR

Figure 4.3: Structure of the information factor when applying RISE. The QR factorization does
not involve R22. We drop the cost term ‖H⊕2 (x2 − x̂2)− e1‖2, and combine R22 with R⊕11 and
R⊕12 to form the new cost function C̄ for updating x1, while x2 remains unchanged. Dropping
this cost term is the key approximation of RISE. And by ignoring the information in it, we
preserve the sparsity of the Cholesky factor.

while x̂2 remains unchanged. As a Schmidt-type estimator, RISE is consistent since it

does not assume any state as perfectly known. Instead, it only drops information (the term

‖H⊕2 (x2 − x̂2)− e1‖2), and correctly updates the cross term R12 between x1 and x2. As com-

pared to the exact ISE, RISE computes an approximate estimate for x1, whose accuracy loss is

negligible when the estimate of x2 is precise. In the extreme case, when the uncertainty of x2

goes to zero, RISE results in the optimal solution for x1 as ISE. For this reason, in practice, we

set x2 to be states with low uncertainty. On the other hand, RISE is significantly more efficient

than the exact ISE since the cost of the QR factorization is cubic in the size of x1 (instead of

x), and introduces no extra fill-ins, thus keeping R sparse. If we select x1 to contain a small

number of states (e.g., a window of recent camera poses and features), the cost is O(1) in the

size of x. Although the column size of R⊕12 is the same as the size of x2 and can be comparable

to that of x, it is sparse in the context of SLAM. As a result, computing R⊕12 is also O(1).

A key advantage of RISE is that it can trade accuracy for speed by adjusting the size of x1.

Specifically, during relocalization, we can set x1 = x to obtain an accurate global adjustment if

it is the first loop-closure event, or we can use RISE with a small-size x1 for an approximate but

efficient solution. Furthermore, this global adjustment can be split into two steps, where we first

employ RISE with a small sized x1, and then we optimize over x2, which can run independently

in the backend. Through this process, detailed in Sec. 4.3.4, the frontend maintains its real-time

localization capability, while the backend allows taking advantage of loop-closure events after

144

long periods of exploration.

Note also that the optimal estimator for exploration in Sec. 4.3.2 can be considered as a

special case of RISE, with x1 = x and a chronological state order. As it will become evident

hereafter, by applying RISE, with different state orders/sizes of x1, in the two phases of SLAM,

we can achieve real-time performance while maintaining consistency.

4.3.3 RISE-SLAM: Exploration

In this section, we describe how RISE-SLAM processes local feature tracks (see 1© in Fig. 4.1)

during exploration. We start with the first exploration, and then discuss the general case, where

the system has just switched back to exploration from relocalization.

First Exploration

During the first exploration, we realize the efficiency of the optimal estimator (Sec. 4.3.2) by

organizing the states in chronological order [52]. Moreover, we apply RISE with x1 = x, which

is equivalent to the optimal estimator. Denote the state vector as
[
xTE1 xTE2

]T
, where xE2

comprises a sliding window of recent states involved in the local feature-track measurements,

while xE1 contains all other (previous) states. The cost function to minimize is (see Fig. 4.4)

CE =

∥∥∥∥∥
[
RE11 RE12

RE22

][
xE1 − x̂E1

xE2 − x̂E2

]∥∥∥∥∥
2

+ ‖HE2(xE2 − x̂E2)− rE‖2 (4.91)

where the first term is the prior from the previous time step, while the second term corresponds

to the new (IMU or feature) measurements. Then, the optimal solution is

x̂⊕E2 = x̂E2 + R⊕E22

−1
r⊕E (4.92)

x̂⊕E1 = x̂E1 −R−1
E11RE12R

⊕
E22

−1
r⊕E (4.93)

145

which results from rewriting (4.91) as

CE =
∥∥∥[RE11 RE12

]
(xE − x̂E)

∥∥∥2

+

∥∥∥∥∥
[
RE22

HE2

]
(xE2 − x̂E2)−

[
0

rE

]∥∥∥∥∥
2

=
∥∥∥[RE11 RE12

]
(xE − x̂E)

∥∥∥2

+

∥∥∥∥∥
[
R⊕E22

0

]
(xE2 − x̂E2)−

[
r⊕E

eE

]∥∥∥∥∥
2

=

∥∥∥∥∥
[
RE11 RE12

R⊕E22

]
(xE − x̂E)−

[
0

r⊕E

]∥∥∥∥∥
2

+ ‖eE‖2 (4.94)

=

∥∥∥∥∥
[
RE11 RE12

R⊕E22

][
xE1 − x̂⊕E1

xE2 − x̂⊕E2

]∥∥∥∥∥
2

+ ‖eE‖2 (4.95)

where R⊕E22 is computed by the following QR factorization:[
RE22

HE2

]
= QE

[
R⊕E22

0

]
,

[
r⊕E

eE

]
= QT

E

[
0

rE

]
(4.96)

The impact of this QR factorization on the terms appearing in the cost functions in (4.91)-

(4.95) is depicted in Fig. 4.4. These steps are actually analogous to those described in [52], and

similarly, the computational complexity is constant and only depends on the size of xE2. As

compared to [52], we improve speed during exploration by limiting both the number of features

processed at every step and the feature tracks’ length (since longer tracks offer more accuracy

yet diminishing returns, while increasing the processing cost cubically) based on a preselected

size of xE2.

Transition from Relocalization to Exploration

Consider the case when the system is in the relocalization mode (Sec. 4.3.4) and is about to

switch to the exploration mode (i.e., it receives no more loop-closure measurements) (see 6© in

Fig. 4.1). Due to the opposite state orderings used in these two modes respectively (Sec. 4.3.2),

we first need to change the order of the recent states from reverse chronological, as required

146

QR

Figure 4.4: Structure of the information factor corresponding to the exploration cost terms
before and after an update. FE does not exist for the first exploration, while in the general case,
it contains the cross information between the new and the old map, where the dense columns on
the left correspond to some last states of the old map.

in relocalization (Sec. 4.3.4), to chronological, as for exploration (Sec. 4.3.3). Specifically, as

what will become evident in Sec. 4.3.4, while in relocalization, the system has a prior term in

the form of

CN =

∥∥∥∥∥
[
R′N11 R′N12

R′N22

][
x′N − x̂′N

x′M − x̂′M

]∥∥∥∥∥
2

(4.97)

where the state vector is divided into two parts:
[
x′TN x′TM

]T
(the superscript ′ denotes reverse

chronological order). x′N contains the recent states where no loop-closure measurements are

received, and they correspond to the beginning of the new exploration phase. Then, we change

the state order of x′N to chronological, by xN , PNx′N (PN is a permutation matrix). Subse-

quently, we perform a QR factorization to make the permuted Cholesky factor upper-triangular

again:

QN

[
RN11 RN12

]
=
[
R′N11P

T
N R′N12

]
(4.98)

147

which is of constant cost regardless of the size of x′M since R′N12 is sparse. After these opera-

tions, CN can be written as

CN =

∥∥∥∥∥
[
RN11 RN12

R′N22

][
xN − x̂N

x′M − x̂′M

]∥∥∥∥∥
2

=

∥∥∥∥∥[RN11 RN12

] [xN − x̂N

x′M − x̂′M

]∥∥∥∥∥
2

+ CM (4.99)

where

RM , R′N22 (4.100)

CM ,
∥∥RM

(
x′M − x̂′M

)∥∥2 (4.101)

Note that the states in x′M are considered as an old map, which we do not update during the new

exploration, so CM will be unchanged.

After this transition step, a new map (comprising new camera poses and features) begins

with xN , while RN11 represents its information factor and RN12 the cross information between

the two maps.

Exploration: General Case

In general, when in exploration mode, past map’s states (from previous exploration and relo-

calization phases) do not need to be updated. Thus, we apply RISE with x2 = x′M being the

past map’s states, while x1 = xN comprises the new map’s states which expand as the current

exploration goes on. When in exploration mode, the system not only estimates the states of the

new map built in the current exploration, but also maintains their correlations with the old map’s

states. Specifically, as compared to the first exploration, instead of (4.91), the cost function in

the general case has the following form:

CE =

∥∥∥∥∥
[
RE11 RE12

RE22

][
xE1 − x̂E1

xE2 − x̂E2

]
+ FE

(
x′M − x̂′M

)∥∥∥∥∥
2

+ ‖HE2(xE2 − x̂E2)− rE‖2 + CM (4.102)

148

In addition to terms in (4.91), (4.102) has a cost term corresponding to the old map from (4.99),

CM , and a matrix FE that keeps the correlation information between the two maps, which is an

extension of RN12 in (4.99). In other words, (4.91) is a special case of (4.102) where the state

vector of the old map, x′M , is empty and FE does not exist. The estimates of the states of the

new map are updated by the same operations as in the first exploration:

CE =

∥∥∥∥∥
[
RE11 RE12

R⊕E22

][
xE1 − x̂⊕E1

xE2 − x̂⊕E2

]
+ F⊕E

(
x′M − x̂′M

)∥∥∥∥∥
2

+
∥∥F⊕E3

(
x′M − x̂′M

)
− eE

∥∥2
+ CM (4.103)

where x̂⊕E2, x̂⊕E1, and R⊕E22 are computed as described in (4.92)-(4.96), and we also need to

update FE to F⊕E accordingly, as

FE =

[
FE1

FE2

]
(4.104)

[
F⊕E2

F⊕E3

]
= QT

E

[
FE2

0

]
(4.105)

F⊕E =

[
FE1

F⊕E2

]
(4.106)

where FE1 and FE2 have the same row size as xE1 and xE2 (see Fig. 4.4), respectively. Next,

we apply RISE with updating the estimate of xE but not xM so as to save processing cost.

Specifically, the term
∥∥F⊕E3 (x′M − x̂′M)− eE

∥∥2 is dropped, and we have

C̄E =

∥∥∥∥∥
[
RE11 RE12

R⊕E22

][
xE1 − x̂⊕E1

xE2 − x̂⊕E2

]
+ F⊕E

(
x′M − x̂′M

)∥∥∥∥∥
2

+ CM (4.107)

instead of CE as the prior term for the next step.

Note that only the lower of part of FE, FE2, which has a bounded number of dense columns,

needs updating. Thus, the computational complexity for the general case of exploration with

RISE is also constant.

149

4.3.4 RISE-SLAM: Relocalization

We now consider the case, where the system switches from exploration to relocalization mode

so as to use loop-closure measurements for global pose and map correction.

Transition from Exploration to Relocalization

Before entering relocalization, we need a transition step (see 2© in Fig. 4.1) to switch the state

order from chronological to reverse chronological. Specifically, during exploration, the state

vector is in the form
[
xTL x′TM

]T
, where xL comprises all states in the current map, while x′M

corresponds to the old map [see (4.99) and Sec. 4.3.3]. We first change the state order of xL

to reverse chronological by defining x′L , PLxL (PL is a permutation matrix). Then, we split

x′L into two parts: x′L1 comprises the recent states to be maintained in the frontend, while the

remaining states x′L2 are combined with the old map x′M so as to be optimized by the backend

(x′B ,
[
x′TL2 x′TM

]T
). Accordingly, the prior term was in the form of

CL =
∥∥RL(xL − x̂L) + FL(x′M − x̂′M)

∥∥2
+ CM (4.108)

and we perform a QR factorization to make the information factor upper-triangular after switch-

ing the state order:

CL =

∥∥∥∥∥
[
RL FL

R′M

][
xL − x̂L

x′M − x̂′M

]∥∥∥∥∥
2

=

∥∥∥∥∥
[
R′L F′L

R′M

][
x′L − x̂′L

x′M − x̂′M

]∥∥∥∥∥
2

=

∥∥∥∥∥
[
R′L11 R′L12

R′L22

][
x′L1 − x̂′L1

x′L2 − x̂′L2

]
+

[
F′L1

F′L2

] (
x′M − x̂′M

)∥∥∥∥∥
2

+
∥∥RM

(
x′M − x̂′M

)∥∥2 (4.109)

where

QL

[
R′L F′L

]
=
[
RLP

T
L FL

]
(4.110)

150

Then, we add the cost term from the new loop-closure measurement to the prior term and

rearrange some of the matrix blocks, resulting in the total cost CT :

CT =

∥∥∥∥∥
[
RT11 RT12

RT22

][
x′L1 − x̂′L1

x′B − x̂′B

]∥∥∥∥∥
2

+

∥∥∥∥∥[HT1 HT2

] [x′L1 − x̂′L1

x′B − x̂′B

]
− rT

∥∥∥∥∥
2

(4.111)

where

RT11 , R′L11, RT12 ,
[
R′L12 F′L1

]
(4.112)

RT22 ,

[
R′L22 F′L2

RM

]
(4.113)

Then, we employ the QR factorization of RISE [see (4.86)-(4.88)] to split CT into two parts:

CT =

∥∥∥∥∥
[
RT11 RT12

RT22

][
x′L1 − x̂′L1

x′B − x̂′B

]∥∥∥∥∥
2

+
∥∥HT1(x

′
L1 − x̂′L1) + HT2(x

′
B − x̂′B)− rT

∥∥2 (4.114)

=

∥∥∥∥∥∥∥∥


R⊕T11 R⊕T12

RT22

H⊕T2


[
x′L1 − x̂′L1

x′B − x̂′B

]
−


r⊕T

0

eT


∥∥∥∥∥∥∥∥

2

= CF + CB (4.115)

where

CF ,
∥∥R⊕T11(x

′
L1 − x̂′⊕L1) + R⊕T12(x

′
B − x̂′B)

∥∥2 (4.116)

x̂′⊕L1 , x̂′L1 + R⊕−1
T11 r⊕T (4.117)

CB ,

∥∥∥∥∥
[
RT22

H⊕T2

]
(x′B − x̂′B)−

[
0

eT

]∥∥∥∥∥
2

(4.118)

and the structure of the information factor is shown in Fig. 4.5.

151

QR

Figure 4.5: Structure of the information factor corresponding to the cost terms before and after
the transition step from exploration to relocalization.

Among the operations required in this transition step, the frontend only needs a small-size

matrix QR factorization to obtain CF with constant cost, while all the (expensive) remaining

work is done in the backend (see [53] for details).

After this transition step, in the frontend CF is extended to include information from new

poses and features and minimized to update a sliding window of recent states (starting from

x′L1). Meanwhile, in the backend, CB is minimized to provide global corrections for the past

states x′B.

Relocalization: Frontend Thread

The relocalization frontend employs RISE to process both local feature tracks and loop-closure

measurements so as to update a sliding window of recent states (see 3© in Fig. 4.1). Specifically,

the cost function CR, to be optimized in the frontend, extends from CF in (4.116) and has the

form

CR =

∥∥∥∥∥
[
RR11 RR12

RR22

][
x′R1 − x̂′R1

x′R2 − x̂′R2

]∥∥∥∥∥
2

+

∥∥∥∥∥[HR1 HR2

] [x′R1 − x̂′R1

x′R2 − x̂′R2

]
− rR

∥∥∥∥∥
2

(4.119)

152

where x′R1 contains the window of recent states to be updated at the current step, while x′R2

represents all previous states (including x′B) whose estimates are kept unchanged in the fron-

tend. The measurement Jacobians HR1 and HR2 are both nonzero (see Fig. 4.6) since here we

consider both local feature tracks and loop-closure measurements. Then, the frontend employs

RISE to update only x′R1 by first performing the QR factorization to transform CR from (4.119)

into

CR =

∥∥∥∥∥
[
RR11 RR12

HR1 HR2

][
x′R1 − x̂′R1

x′R2 − x̂′R2

]
−

[
0

rR

]∥∥∥∥∥
2

+
∥∥RR22(x

′
R2 − x̂′R2)

∥∥2 (4.120)

=

∥∥∥∥∥
[
R⊕R11 R⊕R12

H⊕R2

][
x′R1 − x̂′R1

x′R2 − x̂′R2

]
−

[
r⊕R

eR

]∥∥∥∥∥
2

+
∥∥RR22(x

′
R2 − x̂′R2)

∥∥2 (4.121)

and then dropping the term
∥∥H⊕R2(x

′
R2 − x̂′R2)− eR

∥∥2 (since we are not updating x′R2) to get

C̄R

C̄R =

∥∥∥∥∥
[
R⊕R11 R⊕R12

RR22

][
x′R1 − x̂′⊕R1

x′R2 − x̂′R2

]∥∥∥∥∥
2

(4.122)

x̂′⊕R1 , x̂′R1 + R⊕−1
R11 r⊕R (4.123)

where x̂′⊕R1 is the updated state estimate. The structural changes of the factors appearing

in (4.119)-(4.121) are shown in Fig. 4.6. The processing cost of this update is defined by the QR

factorization, and is constant since the size of x′R1 and the number of dense columns in R⊕R12

are bounded. Due to its low processing cost, the frontend thread is able to update the states at

high frequency in real time.

Relocalization: Backend Thread

The backend performs global adjustment so as to accurately update a large number of past

states, while running in parallel with the frontend to avoid blocking it (see 5© in Fig. 4.1).

Within RISE, the backend can run whenever the thread is idle, to increase accuracy. In our

current design, however, in order to save processing, we choose to run it only once during each

153

QR

Figure 4.6: Structure of the information factor corresponding to the relocalization cost terms
before and after a RISE update in the frontend.

relocalization phase, right after the transition step described in Sec. 4.3.4, and update all the

past states to obtain the optimal solution. Specifically, from (4.118), we compute the optimal

estimate of the past states x′B by minimizing the cost function CB, which is a batch least-squares

problem and can be solved by employing a sparse QR factorization. Once the new estimate x̂′⊕B

is obtained, CB can be rewritten as (after ignoring a constant term)

CB =
∥∥RB(x′B − x̂′⊕B)

∥∥2 (4.124)

The computational cost is approximately linear in the (large) size of x′B, but it does not prevent

the frontend from performing real-time estimation since they run in parallel.

Feedback from Backend to Frontend Thread

After the backend finishes a global update on the past states x′B, the frontend employs this result

to update the recent states so that they benefit from the global correction (see 4© in Fig. 4.1).

Specifically, if we denote all the recent states accumulated in the frontend since the backend

started as x′F , then from (4.122) and Fig. 4.6, the frontend maintains a cost term of the form

‖RF (x′F − x̂′F) + RFB(x′B − x̂′B)‖2, where the information factor RF is upper-triangular and

154

RFB represents the cross information between the states in the frontend and the backend. Com-

bining this frontend’s cost term with that of the backend [CB in (4.124)] yields

CFB =
∥∥RF (x′F − x̂′F) + RFB(x′B − x̂′B)

∥∥2

+
∥∥RB(x′B − x̂′⊕B)

∥∥2

=

∥∥∥∥∥
[
RF RFB

RB

][
x′F − x̂′⊕F

x′B − x̂′⊕B

]∥∥∥∥∥
2

(4.125)

x̂′⊕F , x̂′F + R−1
F RFB

(
x̂′B − x̂′⊕B

)
(4.126)

where x̂′⊕F is the globally corrected estimate for the recent states in the frontend. The operations

required in (4.126) are sparse matrix-vector multiplications and back substitutions, which are

faster than the operations of the frontend in practice.

As a result of this step, all current states in the frontend are immediately corrected using the

globally adjusted estimates from the backend. Note that, this is a key difference between our

algorithm and existing multi-thread SLAM systems. Specifically, [63, 71, 77] solve separate

optimization problems independently in different threads; hence their frontend has to rely on

map reobservations after the backend’s global adjustment finishes in order to obtain corrections.

This is due to the fact that the two sets of states involved in their frontend’s and backend’s (sep-

arate) optimization problems are considered uncorrelated. In contrast, our algorithm always

solves a single optimization problem over two correlated sets of states [see (4.125)], carried

out in two separate threads. Consequently, as soon as the corrections from the backend become

available, they immediately affect the frontend’s states, even if the map is not reobserved.

4.3.5 Experimental Results

To evaluate the performance of the proposed RISE-SLAM, we compared it against state-of-the-

art visual-inertial SLAM estimators, including a visual-inertial odometry (VIO) system without

loop closures (OKVIS [58]), and SLAM systems with loop closures (VINS-Mono [77], ICE-

BA [63]), using the EuRoC [18] datasets. Since our implementation focuses on visual-inertial

SLAM, we did not compare to vision-only systems, such as [71]. The datasets contain stereo

images (only the left-camera images are used) from global shutter cameras (20 Hz) and IMU

155

measurements (200 Hz), along with ground-truth poses from VICON. The code of each com-

pared system is downloaded from their Github repositories and run with the provided configu-

ration files for the EuRoC datasets.

System Setup

In our implementation, we extract 300 ORB [79] features per image and match them based on

their descriptors against previous images to generate feature tracks. Loop-closure measurements

are provided by a vocabulary tree [75], and the system switches to relocalization mode when

detecting features that have not been observed for more than 15 sec. We model the noise of all

visual observations as zero-mean white Gaussian with σ = 1.5 pixels. During both exploration

and relocalization, the frontend updates a sliding window corresponding to 10 recent poses

and their observed features. To improve efficiency, feature tracks longer than 20 are split into

multiple shorter ones while the number of feature tracks being processed per time step is limited

to 40.

Localization Accuracy

We compute the root-mean-square error (RMSE) of the estimated positions as compared to

the ground truth, to evaluate the tracking accuracy of all estimators considered. Each estimated

trajectory is aligned with the ground-truth coordinate frame by a 3D-to-3D matching using [43].

For fairness, we first run the proposed RISE-SLAM without using any loop-closure mea-

surements [RISE (vio)] so as to compare it with the VIO system OKVIS. Then, we add loop-

closure measurements [RISE (lc)] to compare it with the SLAM systems VINS-Mono and ICE-

BA. The position RMSE results from all EuRoC datasets are shown in Table 4.1. As shown,

our RISE (vio) outperforms OKVIS on all datasets. This is due to the fact that RISE optimally

processes all available measurements during exploration (see Sec. 4.3.3). Among the SLAM

systems, ICE-BA performs the worst. This is probably because loop closure is not implemented

yet in their public code, which makes their system a VIO with a backend that performs global

smoothing. Regardless, ICE-BA does not achieve better accuracy even when compared to RISE

(vio), while requiring more CPU resources for running a backend thread. Meanwhile, our RISE

(lc) is the best on most of the datasets, and outperforms VINS-Mono.

156

Table 4.1: Position RMSE (cm) on EuRoC datasets
Dataset RISE (vio) OKVIS RISE (lc) VINS-Mono ICE-BA

MH 01 easy 16.1 34.6 5.1 8.8 16.4
MH 02 easy 19.3 40.9 12.0 6.3 8.9

MH 03 medium 21.9 22.1 8.4 8.5 17.2
MH 04 difficult 24.1 33.7 16.1 17.5 31.6
MH 05 difficult 30.5 42.5 25.6 14.5 31.4

V1 01 easy 5.1 10.6 4.1 4.5 5.2
V1 02 medium 7.0 11.6 3.3 6.5 11.7
V1 03 difficult 11.6 22.7 6.7 29.9 11.1

V2 01 easy 6.6 16.2 5.5 6.4 9.1
V2 02 medium 10.4 18.1 4.0 13.3 11.5
V2 03 difficult 10.1 28.5 11.7 18.0 12.8

Average 14.8 25.6 9.3 12.2 15.2

Table 4.2: Average running time (msec) of one estimator run
RISE RISE RISE OKVIS VINS-Mono ICE-BA

exploration relocalization overall
10 13 11 26 52 11

Computational Efficiency

We run all algorithms on a laptop with Intel Core i7-6700HQ 2.60GHz x 8 CPU to compare

the efficiency of each estimator. Since we focus on estimation speed, we do not consider the

cost of image processing. Average times of one run are shown in Table 4.2. Note that since

RISE-SLAM has two modes with different costs, we report the averages of exploration and

relocalization (the time of transition steps is also included), respectively, as well as the overall

average across all runs. As expected, the exploration is typically faster than relocalization since

it only processes local feature tracks. As evident from Table 4.2, RISE-SLAM is significantly

faster than VINS-Mono and OKVIS. Only ICE-BA runs as fast as RISE-SLAM, but has lower

tracking accuracy.4

Estimation Consistency

To assess the consistency improvement of RISE as compared to estimators that assume

some past states to be perfectly known, we employ the normalized estimation error squared

4Although we did not compare to ORB-SLAM as they do not use IMU, it is worth noting that as reported in [63]
ORB-SLAM is more than 10 times slower than [63] whose average processing time is almost the same as ours.

157

-4

-2

5

0

5

Trajectory

Exploration(green)/Relocalization(blue)

2

0

0

4

-5
-5

0 50 100 150 200 250

Pose Index

10 0

10 1

10 2

10 3

P
o

s
it
io

n
 N

E
E

S

Position NEES comparison (Average of 100 Monte-Carlo runs)

Process loop-closure measurements w/(a)

Process loop-closure measurements w/(b)

Figure 4.7: NEES comparison in simulation: We run RISE-SLAM exploration mode (i.e., the
optimal estimator) during the first loop, and for the second and third loops where there are loop-
closure measurements, we employ either: (a) RISE-SLAM relocalization mode, or (b) assuming
past poses and features as perfectly known (i.e., zeroing out Jacobians w.r.t. them).

(NEES) [11]. Typically more overconfident (inconsistent) estimates yield larger NEES. To iso-

late the effect of other factors affecting consistency (e.g., local minima, outliers), we first eval-

uate NEES in Monte Carlo simulations where the camera follows a circular path three times

(see Fig. 4.7). In this case, the RISE-SLAM’s NEES fluctuates around 10, while if the map

is assumed perfectly-known the NEES increases to the level of 103. Furthermore, on EuRoC

datasets, VINS-Mono, which assumes perfectly-known keyframe poses, has a median position

NEES of over 100, while that of RISE-SLAM is 38.7. The medians of the NEES are shown in

Table 4.3, while the NEES distribution on each dataset is shown in Fig. 4.8.

4.4 Summary

Motivated by the consistency guarantees and the linear processing cost of the Schmidt-Kalman

filter (SKF), as well as the linear memory requirements of the Hessian’s Cholesky factor of

maps computed online, in this chapter, we derived the exact inverse Schmidt estimator (ISE), as

an equivalent of the SKF but in the information form. When applied to the visual-inertial SLAM

problem, however, no computational saving is achieved by using the exact ISE. Therefore, we

further introduced the resource-aware inverse Schmidt estimator (RISE), as an approximation

to the exact ISE, that maintains the sparsity of the Hessian’s Cholesky factor and improves

158

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k)

Figure 4.8: Histograms of position NEES on EuRoC datasets (VINS-Mono vs. RISE-SLAM)

159

Table 4.3: Medians of position NEES on EuRoC datasets
Dataset RISE-SLAM VINS-Mono

MH 01 easy 4.7 87.0
MH 02 easy 47.9 70.4

MH 03 medium 32.7 25.1
MH 04 difficult 18.2 101.8
MH 05 difficult 115.7 119.4

V1 01 easy 36.6 65.8
V1 02 medium 58.7 4405.8
V1 03 difficult 6.8 420.8

V2 01 easy 128.4 152.8
V2 02 medium 278.4 1323.0
V2 03 difficult 20.4 337.4

Overall 38.7 129.1

computational efficiency. We employed different (in terms of the order and number of states

involved) configurations of the RISE to form the frontend and backend of a visual-inertial sys-

tem, RISE-SLAM, which appropriately treats the exploration versus the relocalization phases of

SLAM to achieve real-time operation. As demonstrated by the experimental evaluation, RISE-

SLAM achieves position accuracy typically better than alternative state-of-the-art visual-inertial

estimators, at lower processing cost while improving estimation consistency.

Chapter 5

Concluding Remarks

5.1 Summary of Contributions

The work presented in this dissertation has focused on resolving key challenges of localization

and mapping using an IMU and a camera. In particular, we focused on improving the efficiency

of short-term VI-SLAM, the accuracy of planar VI-SLAM, and the efficiency and consistency

of long-term VI-SLAM. The main contributions of this work can be summarized as follows:

• Efficient Short-Term VI-SLAM

In Chapter 2, we studied the problem of designing a state estimator for visual-inertial

odometry (VIO), and for the first time ever, presented a VIO estimator in the square-root

information domain, the SR-ISWF, which enables single-precision numerical representa-

tion and arithmetic for implementation. This leads to significant speedups of the program,

especially on mobile devices. Additionally, as a theoretical foundation, we established

the equivalence and correspondence between the filtering-based and optimization-based

methods, especially on their (re-)linearization behaviors. Extensions of the basic filters

were discussed, for performing the same relinearization processes as in the optimization-

based methods. Based on these analysis, we introduced a hybrid visual-information man-

agement and processing scheme, that is suitable for any sparse-feature-based sliding-

window VIO system, for balancing between estimation accuracy and computational ef-

ficiency. Under this information processing scheme, we derived in detail all steps of

our estimation algorithm in the square-root inverse form. In particular, we showed the

160

161

specific problem structures (i.e., the nonzero patterns of the information factor and Jaco-

bian matrices) and exploited them to obtain an efficient implementation of the SR-ISWF

algorithm. Moreover, some of the most important structure findings and our approach

for handling them, to achieve significant computational savings, are applicable to other

popular VIO estimators, such as the MSC-KF and its extensions. Finally, a complete

VIO system with our SR-ISWF algorithm was implemented and tested. Our system

outperforms alternative state-of-the-art VIO systems on public datasets, providing bet-

ter pose tracking accuracy, with significantly reduced processing time. Experiments on

smart phones demonstrate our system’s capability for faster than real-time operations on

resource-constrained mobile devices.

• Accurate Planar VI-SLAM

In Chapter 3, we discovered the fundamental cause of the large localization error of any

visual-inertial navigation system (VINS), when deployed on ground robots moving pri-

marily on a plane. In particular, for the first time ever, we proved that the VINS scale, or

2 additional dof (i.e., roll and pitch) of its global orientation, become unobservable when

the robot moves with constant acceleration, or it is not rotating, respectively. For this

reason, directly employing VINS on a ground robot results in inaccurate pose estimates.

Moreover, as compared to existing observability analysis of VINS under special motion

profiles [67], we considered the most general case of unknown gyroscope biases and de-

termined these unobservable directions analytically. Through experiments, we validated

these key findings of our theoretical analysis, where results showed that special motions,

even approximately as in practice, indeed lead to larger positioning errors when using

VINS on a ground robot.

To address this issue and achieve accurate localization results for wheeled robots, we

extended the VINS algorithm to incorporate two extra sources of information: wheel-

encoder data and planar-motion constraints. Specifically, in order to process the noisy

odometer data in a robust manner, we first integrated them into 2D displacement esti-

mates, and then fused these inferred measurements with the 3D VINS. As a result, these

odometer measurements ensure that the scale is always observable, even under special

motions. Additionally, we introduced the manifold-(m)VINS that properly models the

ground robot’s almost-planar motion (as stochastic constraints) and directly employs this

162

information in the VINS estimator. Finally, built upon our efficient VINS (i.e., the SR-

ISWF presented in Chapter 2), a complete system using our extended VINS algorithm

for localizing wheeled robots was implemented and tested. Experimental results show

that our system achieves significantly-increased localization accuracy when deployed on

a tablet onboard a wheeled robot that navigates within a large-scale building.

• Efficient and Consistent Long-Term VI-SLAM

In Chapter 4, we provided an efficient algorithm for long-term VI-SLAM, that improves

estimation consistency as compared to existing approaches, by leveraging the idea of the

Schmidt-Kalman filter (SKF). Specifically, motivated by the consistency guarantees and

the linear processing cost of the SKF, as well as the linear memory requirements of the

Hessian’s Cholesky factor of maps computed online, for the first time ever, we derived the

exact inverse Schmidt estimator (ISE), as an equivalent of the SKF but in the information

form. We applied the exact ISE to the long-term VI-SLAM problem, and found out its

limitations: The exact ISE provides no computational saving as compared to the optimal

estimator, while introducing a large number of fill-ins to the Hessian’s Cholesky factor.

Therefore, to address this issue, we further derived the resource-aware inverse Schmidt

estimator (RISE), which approximates the exact ISE and has adjustable processing cost,

while preserving sparsity and ensuring consistency. By adjusting the size of the window

of the states to be updated, the RISE provides a mechanism to trade estimation accuracy

for computational efficiency.

By employing the RISE with different configurations, in terms of the order and number

of states involved, we developed an accurate and efficient algorithm for long-term VI-

SLAM, the RISE-SLAM. In particular, when navigating through a new area, the RISE-

SLAM optimally processes visual-inertial measurements to build a 3D map of the scene;

Meanwhile, when revisiting a previously-mapped area, the RISE-SLAM is able to process

loop-closure measurements for relocalizing the pose in a consistent manner with constant

cost. Finally, a complete system using our RISE-SLAM algorithm for long-term VI-

SLAM was implemented and tested. Experimental results show that, as compared to

state-of-the-art approaches, our system performs better in terms of localization accuracy

and processing time, while improving estimation consistency.

163

With this work, we provide theoretical and algorithmic foundations for improving the effi-

ciency, accuracy, and consistency of visual-inertial based 3D localization and mapping systems,

that will benefit a wide range of robotics applications, such as indoor navigation, self-driving

vehicles, and augmented or virtual reality.

5.2 Future Research Directions

In our work of the short-term VI-SLAM, one important problem to be addressed is information

selection. Given the large number of feature observations per image, we need to select a portion

of all available measurements for processing, in order to bound the computational cost of the

VIO algorithm, while ensuring the loss of accuracy is minimal. To obtain the optimal solution

of this selection problem, however, one will end up spending more computations in the selection

algorithm itself than simply processing all available measurements. Therefore, heuristics based

on prior knowledge or assumption of the VIO problem needs to be used. In our current work,

we follow two guidelines when choosing feature measurements: using features with long track

lengths and enforcing a uniform distribution of the features in the image. While these heuristics

are shown to work well in nominal cases, they provide no guarantee on the performance of

the VIO algorithm, and may not generalize for other scenarios. As a future work, it would

be interesting to develop a visual measurement selection algorithm for VIO that has certain

guarantees on the output accuracy, e.g., based on the posterior covariance. Moreover, the system

can be extended to use multiple cameras for increased accuracy and robustness, where these

cameras may point at different directions. In this case, the measurement selection problem

becomes more complicated, as we need allocate the total processing resource among all these

cameras, considering their geometric configurations and scene structures.

In the presented observability analysis of VI-SLAM under special motions, we have made

the assumption that all intrinsic and extrinsic parameters are known as prior knowledge. In

practice, however, due to the lack of precise calibration or to compensate for changes over

time, it is common that some of these parameters are also under estimation. In this case, a

fundamental problem to be answered is that, under which motion profiles are these parameters

observable? In other words, we need to: i) Determine the singular motions that make a certain

parameter unobservable; ii) Be able to detect these singular cases when they occur; iii) Have a

mechanism to deal with such cases to ensure the accuracy and consistency of the estimates.

164

Lastly, as for our work of the long-term VI-SLAM, there are several potential directions

for improving the current RISE-SLAM algorithm. One major drawback of our RISE-SLAM

system is the low speed of the backend thread. Specifically, since we keep all the pose and

feature states in the estimation problem, the size of the entire state vector increases linearly

with time. Although the frontend thread guarantees constant processing time by design, the

backend thread, which optimizes over the entire state history, has an increasing computational

cost at least linearly with time. This may cause a significant delay on the feedback from the

backend thread to the frontend thread, which will lead to degraded accuracy of the system. To

resolve this issue, one potential approach would be to employ keyframing for the backend, i.e.,

to select a subset of poses and features that provide sufficient information for building a map

of the scene, while significantly reducing the number of states to be optimized in the backend.

Another remedy would be to apply the RISE again in the backend, so that it only updates the

states up to some point back in the history (e.g., till the last loop-closure event), instead of all

the states.

References

[1] Apple, ARKit, https://developer.apple.com/augmented-reality/.

[2] Facebook, Oculus VR, https://www.oculus.com/.

[3] GM, Cruise, https://www.getcruise.com/.

[4] Google, ARCore, https://developers.google.com/ar.

[5] Google, Waymo, https://waymo.com/.

[6] Microsoft, HoloLens, https://www.microsoft.com/en-us/hololens.

[7] Project Tango, https://developers.google.com/tango/.

[8] S. Agarwal, K. Mierle, and Others, “Ceres solver,” http://ceres-solver.org.

[9] B. D. O. Anderson and J. B. Moore, Optimal Filtering, ser. Information and System Sci-

ences Series. Englewood Cliffs, NJ: Prentice-Hall Inc., 1979.

[10] T. Bailey and H. Durrant-Whyte, “Simultaneous localization and mapping (slam): part ii,”

IEEE Robotics Automation Magazine, vol. 13, no. 3, pp. 108–117, Sept 2006.

[11] Y. Bar-Shalom, X. R. Li, and T. Kirubarajan, Estimation with applications to tracking and

navigation: theory algorithms and software. John Wiley & Sons, 2004.

[12] D. Bernstein, Matrix Mathematics. Princeton University Press, 2005.

[13] D. P. Bertsekas, Nonlinear Programming, 2nd ed. Athena Scientific, 1999.

[14] G. J. Bierman, Factorization Methods for Discrete Sequential Estimation, ser. Mathemat-

ics in Science and Engineering. New York, NY: Academic Press, 1977, vol. 128.

165

http://ceres-solver.org

166

[15] M. Bloesch, S. Omari, M. Hutter, and R. Siegwart, “Robust visual inertial odometry us-

ing a direct ekf-based approach,” in Proc. of the IEEE/RSJ International Conference on

Intelligent Robots and Systems, Hamburg, Germany, Sep. 28 – Oct. 2 2015, pp. 298–304.

[16] M. Bloesch, M. Burri, S. Omari, M. Hutter, and R. Siegwart, “Iterated extended Kalman

filter based visual-inertial odometry using direct photometric feedback,” The International

Journal of Robotics Research, vol. 36, no. 10, pp. 1053–1072, 2017.

[17] G. Bresson, Z. Alsayed, L. Yu, and S. Glaser, “Simultaneous localization and mapping: A

survey of current trends in autonomous driving,” IEEE Transactions on Intelligent Vehi-

cles, vol. 2, pp. 194–220, 2017.

[18] M. Burri, J. Nikolic, P. Gohl, T. Schneider, J. Rehder, S. Omari, M. W. Achtelik, and

R. Siegwart, “The EuRoC micro aerial vehicle datasets,” The International Journal of

Robotics Research, vol. 35, no. 10, pp. 1157–1163, Sep. 2016.

[19] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira, I. Reid, and J. J.

Leonard, “Past, present, and future of simultaneous localization and mapping: Toward the

robust-perception age,” IEEE Transactions on Robotics, vol. 32, no. 6, pp. 1309–1332,

2016.

[20] F. Capezio, F. Mastrogiovanni, A. Sgorbissa, and R. Zaccaria, “Robot-assisted surveillance

in large environments,” Journal of Computing and Information Technology, vol. 17, no. 1,

pp. 95–108, mar 2009.

[21] J. Casper and R. R. Murphy, “Human-robot interactions during the robot-assisted urban

search and rescue response at the world trade center,” IEEE Transactions on Systems, Man,

and Cybernetics, Part B (Cybernetics), vol. 33, no. 3, pp. 367–385, June 2003.

[22] Z. Chen, K. Jiang, and J. C. Hung, “Local observability matrix and its application to

observability analyses,” in Proc. of 16th Annual Conference IEEE Industrial Electronics

Society, Pacific Grove, CA, Nov. 27–30 1990, pp. 100–103.

[23] J. Civera, A. J. Davison, and J. M. M. Montiel, “Inverse depth parametrization for monoc-

ular slam,” IEEE Transactions on Robotics, vol. 24, no. 5, pp. 932–945, Oct. 2008.

167

[24] F. Dellaert and M. Kaess, “Square Root SAM: Simultaneous localization and mapping via

square root information smoothing,” International Journal of Robotics Research, vol. 25,

no. 12, pp. 1181–1203, Dec. 2006.

[25] T.-C. Dong-Si and A. I. Mourikis, “Motion tracking with fixed-lag smoothing: Algorithm

and consistency analysis,” in Proc. of the IEEE International Conference on Robotics and

Automation, Shanghai, China, May 9 – 13 2011, pp. 5655–5662.

[26] H. Durrant-Whyte and T. Bailey, “Simultaneous localisation and mapping (slam): Part i

the essential algorithms,” IEEE Robotics and Automation Magazine, vol. 13, no. 2, pp.

99–110, june 2006.

[27] R. C. DuToit, J. A. Hesch, E. D. Nerurkar, and S. I. Roumeliotis, “Consistent map-based

3D localization on mobile devices,” in Proc. of the IEEE International Conference on

Robotics and Automation, 2017, pp. 6253–6260.

[28] J. Engel, V. Koltun, and D. Cremers, “Direct sparse odometry,” IEEE Trans. on Pattern

Analysis and Machine Intelligence, vol. 40, no. 3, pp. 611–625, March 2018.

[29] J. Engel, J. Sturm, and D. Cremers, “Semi-dense visual odometry for a monocular cam-

era,” in Proc. of the IEEE International Conference on Computer Vision, Sydney, Aus-

tralia, Dec.1–8 2013, pp. 1449–1456.

[30] J. Engel, T. Schöps, and D. Cremers, “LSD-SLAM: Large-scale direct monocular SLAM,”

in Proc. of the European Conference on Computer Vision, Zurich, Switzerland, Sep.6–12

2014, pp. 834–849.

[31] J. K. Erickson, “Living the dream - an overview of the mars exploration project,” IEEE

Robotics Automation Magazine, vol. 13, no. 2, pp. 12–18, June 2006.

[32] M. Faessler, F. Fontana, C. Forster, E. Mueggler, M. Pizzoli, and D. Scaramuzza, “Au-

tonomous, vision-based flight and live dense 3d mapping with a quadrotor micro aerial

vehicle,” Journal of Field Robotics, vol. 33, no. 4, pp. 431–450, June 2016.

[33] C. Forster, L. Carlone, F. Dellaert, and D. Scaramuzza, “On-manifold preintegration for

real-time visual-inertial odometry,” IEEE Trans. on Robotics, vol. 33, no. 1, pp. 1–21, Feb

2017.

168

[34] C. Forster, L. Carlone, F. Dellaert, and D. Scaramuzza, “Imu preintegration on manifold

for efficient visual-inertial maximum-a-posteriori estimation,” in Proc. of Robotics: Sci-

ence and Systems, Rome, Italy, Jul. 13-17 2015.

[35] C. Forster, Z. Zhang, M. Gassner, M. Werlberger, and D. Scaramuzza, “SVO: Semidi-

rect visual odometry for monocular and multicamera systems,” IEEE Trans. on Robotics,

vol. 33, no. 2, pp. 249–265, April 2017.

[36] P. Geneva, K. Eckenhoff, W. Lee, Y. Yang, and G. Huang, “OpenVINS: A research plat-

form for visual-inertial estimation,” in Proc. of the IEEE/RSJ International Conference on

Intelligent Robots and Systems, Macau, China, Nov. 4–8 2019.

[37] G. Golub and C. Van Loan, Matrix Computations, 4th ed. Johns Hopkins University

Press, 2013.

[38] J. E. Guivant and E. M. Nebot, “Optimization of the simultaneous localization and map-

building algorithm for real-time implementation,” IEEE Trans. on Robotics and Automa-

tion, vol. 17, no. 3, pp. 242–257, 2001.

[39] C. Guo, D. G. Kottas, R. DuToit, A. Ahmed, R. Li, and S. I. Roumeliotis, “Efficient visual-

inertial navigation using a rolling-shutter camera with inaccurate timestamps,” in Proc. of

Robotics: Science and Systems, Berkeley, CA, July 12 – 16 2014.

[40] C. X. Guo, F. M. Mirzaei, and S. I. Roumeliotis, “An analytical least-squares solution to

the odometer-camera extrinsic calibration problem,” in Proc. of the IEEE International

Conference on Robotics and Automation, Saint Paul, Minnesota, May 14–18 2012, pp.

3962–3968.

[41] R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision, 2nd ed. Cam-

bridge University Press, March 2004.

[42] J. A. Hesch, D. G. Kottas, S. L. Bowman, and S. I. Roumeliotis, “Consistency analysis

and improvement of vision-aided inertial navigation,” IEEE Trans. on Robotics, vol. 30,

no. 1, pp. 158–176, Feb. 2014.

[43] B. K. Horn, “Closed-form solution of absolute orientation using unit quaternions,” JOSA

A, vol. 4, no. 4, pp. 629–642, 1987.

169

[44] Z. Huai and G. Huang, “Robocentric visual-inertial odometry,” in Proc. of the IEEE/RSJ

International Conference on Intelligent Robots and Systems, Madrid, Spain, Oct. 1–5

2018, pp. 6319–6326.

[45] G. Huang, “Visual-inertial navigation: A concise review,” in Proc. of the IEEE Interna-

tional Conference on Robotics and Automation, Montreal, Canada, May 20–24 2019, pp.

9572–9582.

[46] G. P. Huang, A. I. Mourikis, and S. I. Roumeliotis, “An observability-constrained sliding

window filter for slam,” in Proc. of the IEEE/RSJ International Conference on Intelligent

Robots and Systems, San Francisco, CA, Sep. 25–30 2011, pp. 65 – 72.

[47] ——, “Observability-based rules for designing consistent ekf slam estimators,” Interna-

tional Journal of Robotics Research, vol. 29, no. 5, pp. 502–528, Apr. 2010.

[48] A. H. Jazwinski, Stochastic Processes and Filtering Theory. New York, NY: Academic

Press, 1970.

[49] S. J. Julier and J. K. Uhlmann, “A non-divergent estimation algorithm in the presence of

unknown correlations,” in Proc. of the American Control Conference, vol. 4, Albuquerque,

NM, Jun. 4–6 1997, pp. 2369–2373.

[50] S. J. Julier, “A sparse weight Kalman filter approach to simultaneous localisation and map

building,” in Proc. of the IEEE/RSJ International Conference on Intelligent Robots and

Systems, vol. 3, Maui, HI, Oct. 29 – Nov. 3 2001, pp. 1251–1256.

[51] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. Leonard, and F. Dellaert, “iSAM2: Incre-

mental smoothing and mapping using the bayes tree,” International Journal of Robotics

Research, vol. 31, no. 2, pp. 216–235, February 2012.

[52] M. Kaess, A. Ranganathan, and F. Dellaert, “iSAM: Incremental smoothing and mapping,”

IEEE Trans. on Robotics, vol. 24, no. 6, pp. 1365–1378, December 2008.

[53] T. Ke, K. J. Wu, and S. I. Roumeliotis, “Visual-inertial SLAM with inverse Schmidt esti-

mators,” http://mars.cs.umn.edu/tr/risetechreport.pdf.

http://mars.cs.umn.edu/tr/risetechreport.pdf

170

[54] G. Klein and D. Murray, “Parallel tracking and mapping for small AR workspaces,” in

Proc. of the IEEE International Symposium on Mixed and Augmented Reality, Nara, Japan,

Nov.11–16 2007, pp. 225–234.

[55] L. Kneip, M. Chli, and R. Siegwart, “Robust real-time visual odometry with a single cam-

era and an IMU,” in Proc. of The British Machine Vision Conference, Dundee, Scotland,

August 29 - September 2 2011, pp. 1–11.

[56] K. Konolige and M. Agrawal, “Frameslam: From bundle adjustment to real-time visual

mapping,” IEEE Trans. on Robotics, vol. 24, no. 5, pp. 1066–1077, Oct 2008.

[57] D. G. Kottas and S. I. Roumeliotis, “An iterative Kalman smoother for robust 3D localiza-

tion on mobile and wearable devices,” in Proc. of the IEEE International Conference on

Robotics and Automation, Seattle, Washington, May 26 – 30 2015, pp. 6336–6343.

[58] S. Leutenegger, S. Lynen, M. Bosse, R. Siegwart, and P. Furgale, “Keyframe-based visual-

inertial odometry using nonlinear optimization,” International Journal of Robotics Re-

search, vol. 34, no. 3, pp. 314–334, Mar. 2015.

[59] M. Li, B. H. Kim, and A. I. Mourikis, “Real-time motion tracking on a cellphone using in-

ertial sensing and a rolling-shutter camera,” in Proc. of the IEEE International Conference

on Robotics and Automation, Karlsruhe, Germany, May 6-10 2013, pp. 4697–4704.

[60] M. Li and A. I. Mourikis, “Optimization-based estimator design for vision-aided inertial

navigation,” in Proc. of Robotics: Science and Systems, Sydney, Australia, July 9 –13

2012, pp. 241–248.

[61] ——, “High-precision, consistent EKF-based visual-inertial odometry,” International

Journal of Robotics Research, vol. 32, no. 6, pp. 690–711, June 2013.

[62] M. Li, H. Yu, X. Zheng, and A. I. Mourikis, “High-fidelity sensor modeling and calibra-

tion in vision-aided inertial navigation,” in Proc. of the IEEE International Conference on

Robotics and Automation, Hong Kong, China, May 31 - June 7 2014, pp. 409–416.

[63] H. Liu, M. Chen, G. Zhang, H. Bao, and Y. Bao, “ICE-BA: Incremental, consistent and

efficient bundle adjustment for visual-inertial SLAM,” in Proc. of the IEEE Conference

171

on Computer Vision and Pattern Recognition, Salt Lake City, UT, Jun.18-22 2018, pp.

1974–1982.

[64] B. D. Lucas and T. Kanade, “An iterative image registration technique with an application

to stereo vision,” in Proc. of the International Joint Conference on Artificial Intelligence,

Vancouver, British Columbia, Aug. 24–28 1981, pp. 674–679.

[65] S. Lynen, T. Sattler, M. Bosse, J. Hesch, M. Pollefeys, and R. Siegwart, “Get out of my

lab: Large-scale, real-time visual-inertial localization,” in Proc. of Robotics: Science and

Systems, Rome, Italy, Jul. 13-17 2015.

[66] A. Martinelli, “Vision and imu data fusion: Closed-form solutions for attitude, speed,

absolute scale, and bias determination,” IEEE Trans. on Robotics, vol. 28, no. 1, pp. 44–

60, Feb. 2012.

[67] ——, “Closed-form solution of visual-inertial structure from motion,” International Jour-

nal of Computer Vision, vol. 106, no. 2, pp. 138–152, 2013.

[68] P. S. Maybeck, Stochastic Models, Estimation and Control. New York, NY: Academic

Press, 1979, vol. 1.

[69] A. I. Mourikis and S. I. Roumeliotis, “A multi-state constraint Kalman filter for vision-

aided inertial navigation,” in Proc. of the IEEE International Conference on Robotics and

Automation, Rome, Italy, Apr. 10–14 2007, pp. 3482–3489.

[70] A. I. Mourikis, N. Trawny, S. I. Roumeliotis, A. E. Johson, A. Ansar, and L. Matthies,

“Vision-aided inertial navigation for spacecraft entry, descent, and landing,” IEEE Trans.

on Robotics, vol. 25, no. 2, pp. 264–280, Apr. 2009.

[71] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos, “ORB-SLAM: A versatile and accurate

monocular slam system,” IEEE Trans. on Robotics, vol. 31, no. 5, pp. 1147–1163, 2015.

[72] R. Mur-Artal and J. D. Tardós, “Visual-inertial monocular SLAM with map reuse,” IEEE

Robotics and Automation Letters, vol. 2, no. 2, pp. 796–803, 2017.

[73] E. D. Nerurkar and S. I. Roumeliotis, “Power-SLAM: A linear-complexity, anytime al-

gorithm for SLAM,” The International Journal of Robotics Research, vol. 30, no. 6, pp.

772–788, 2011.

172

[74] E. D. Nerurkar, K. J. Wu, and S. I. Roumeliotis, “C-KLAM: Constrained keyframe-based

localization and mapping for long-term navigation,” in Proc. of the IEEE International

Conference on Robotics and Automation, Hong Kong, China, May 31 – Jun. 7 2014, pp.

3638–3643.

[75] D. Nister and H. Stewenius, “Scalable recognition with a vocabulary tree,” in Proc. of the

IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, New York, NY,

Jun.17–22 2006, pp. 2161–2168.

[76] J. Nocedal and S. J. Wright, Numerical Optimization, 2nd ed. Springer, 2006.

[77] T. Qin, P. Li, and S. Shen, “Vins-mono: A robust and versatile monocular visual-inertial

state estimator,” IEEE Trans. on Robotics, vol. 34, no. 99, pp. 1–17, 2018.

[78] E. Rosten and T. Drummond, “Machine learning for high-speed corner detection,” in Proc.

of the 9th European Conference on Computer Vision, vol. 3951, Graz, Austria, May 7–13

2006, pp. 430–443.

[79] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “ORB: An efficient alternative to SIFT

or SURF,” in Proc. of the IEEE International Conference on Computer Vision, Barcelona,

Spain, Nov. 6–13 2011, pp. 2564–2571.

[80] S. F. Schmidt, “Application of state-space methods to navigation problems,” in Advances

in control systems. Elsevier, 1966, vol. 3, pp. 293–340.

[81] S. Shen, N. Michael, and V. Kumar, “Autonomous multi-floor indoor navigation with a

computationally constrained mav,” in 2011 IEEE International Conference on Robotics

and Automation, Shanghai, China, May 2011, pp. 20–25.

[82] G. Sibley, L. Matthies, and G. Sukhatme, “Sliding window filter with application to plan-

etary landing,” Journal of Field Robotics, vol. 27, no. 5, pp. 587–608, Aug. 2010.

[83] S. Thrun, Y. Liu, D. Koller, A. Y. Ng, Z. Ghahramani, and H. Durrant-Whyte, “Simul-

taneous localization and mapping with sparse extended information filters,” International

Journal of Robotics Research, vol. 23, no. 7-8, pp. 693–716, August 2004.

173

[84] S. Thrun and M. Montemerlo, “The graph SLAM algorithm with applications to large-

scale mapping of urban structures,” The International Journal of Robotics Research,

vol. 25, no. 5-6, pp. 403–429, 2006.

[85] S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron, J. Diebel, P. Fong, J. Gale,

M. Halpenny, G. Hoffmann, K. Lau, C. Oakley, M. Palatucci, V. Pratt, P. Stang, S. Stro-

hband, C. Dupont, L.-E. Jendrossek, C. Koelen, C. Markey, C. Rummel, J. van Niekerk,

E. Jensen, P. Alessandrini, G. Bradski, B. Davies, S. Ettinger, A. Kaehler, A. Nefian, and

P. Mahoney, “Stanley: The robot that won the darpa grand challenge,” Journal of Field

Robotics, vol. 23, no. 9, pp. 661–692, 2006.

[86] N. Trawny and S. I. Roumeliotis, “Indirect kalman filter for 3d attitude estimation,” Uni-

versity of Minnesota, Dept. of Comp. Sci. & Eng., Tech. Rep., March 2005.

[87] B. Triggs, P. F. McLauchlan, R. I. Hartley, and A. W. Fitzgibbon, “Bundle adjustment - a

modern synthesis,” in Proc. of the International Workshop on Vision Algorithms, Springer,

Verlag, 1999, pp. 298–372.

[88] M. R. Walter, R. M. Eustice, and J. J. Leonard, “Exactly sparse extended information filters

for feature-based SLAM,” International Journal of Robotics Research, vol. 26, no. 4, pp.

335–359, April 2007.

[89] K. J. Wu, A. Ahmed, G. Georgiou, and S. I. Roumeliotis, “A square root inverse filter for

efficient vision-aided inertial navigation on mobile devices,” in Proc. of Robotics: Science

and Systems, Rome, Italy, Jul. 13-17 2015.

[90] K. J. Wu and S. I. Roumeliotis, “Inverse Schmidt estimators,” http://mars.cs.umn.edu/tr/

inverseschmidt.pdf.

http://mars.cs.umn.edu/tr/inverseschmidt.pdf
http://mars.cs.umn.edu/tr/inverseschmidt.pdf

Appendix A

Appendices for Chapter 3

A.1 Proof of Theorem 1

In this section, we prove that the scale in (3.6) is an unobservable direction of the VINS model,

if and only if the platform is moving with constant local linear acceleration [see (3.5)]. We

follow the approach presented in [42], that examines the right null space of the observability

matrix of the corresponding linearized VINS model. As is the case in [42], and for clarity of

presentation, we include only one feature in the state vector (the extension to multiple features

is straightforward).

As previously shown (see (51) in [42]), any block row, Mk, of the observability matrix has

the following structure:

Mk = HkΦk,1 = Γ1

[
Γ2 Γ3 − δtkI3 Γ4 − I3 I3

]
(A.1)

for any time tk ≥ t0, with the matrices Γi, i = 1, . . . , 4, defined by (52)-(55) in [42]. From

the property of the observability matrix, the scale direction, Ns, is unobservable, if and only

if, MkNs = 0 [22]. From (A.1) and (3.6), together with the definition of the matrices Γi, we

174

175

obtain:

MkNs = Γ1(−GvI0δtk − Γ4
Ia− GpI0 + Gf) (A.2)

with Γ4
Ia =

∫ tk

t0

∫ s

t0

G
Iτ

C dτds · Ia (A.3)

=

∫ tk

t0

∫ s

t0

G
Iτ

CIa dτds (A.4)

=

∫ tk

t0

∫ s

t0

G
Iτ

CIτa(τ) dτds (A.5)

=

∫ tk

t0

∫ s

t0

Ga(τ) dτds (A.6)

=

∫ tk

t0

(GvIs − GvI0) ds (A.7)

= GpIk −
GpI0 − GvI0δtk (A.8)

where the equality from (A.4) to (A.5) holds if and only if the constant acceleration assumption

in (3.5) is satisfied. Substituting (A.8) into (A.2) yields:

MkNs = Γ1(Gf − GpIk) = Hc,k
Ik
G C(Gf − GpIk)

= Hc,k
Ikf = 0 (A.9)

where the last equality holds since the camera perspective-projection Jacobian matrix, Hc,k, has

as its right null space the feature position in the IMU frame (see (30) in [42]).

Lastly, this new unobservable direction is in addition to the four directions corresponding to

global translation and yaw, i.e., Ns and N1 in (57) of [42] are independent, since the 4th block

element of N1 is zero while that of Ns is not.

A.2 Proof of Theorem 2

In this section, we prove that the 3-dof global orientation in (3.8) is an unobservable direction

of the VINS model, if and only if the platform does not rotate [see (3.7)]. Similarly to the

proof presented in Appendix A.1, in this case, we need to show that MkNo = 0. From (A.1)

176

and (3.8), together with the definition of the matrices Γi, i = 1, . . . , 4, we obtain:

MkNo= Γ1(Γ4
I0
G C− 1

2
δt2k I3)bGgc (A.10)

= Γ1(

∫ tk

t0

∫ s

t0

G
Iτ

C dτds · I0G C− 1

2
δt2k I3)bGgc (A.11)

= Γ1(

∫ tk

t0

∫ s

t0

G
I0

C dτds · I0G C− 1

2
δt2k I3)bGgc (A.12)

= Γ1(

∫ tk

t0

∫ s

t0

1 dτds · GI0C
I0
G C− 1

2
δt2k I3)bGgc

= Γ1(
1

2
δt2k I3 −

1

2
δt2k I3)bGgc = 0 (A.13)

where the equality from (A.11) to (A.12) holds if and only if the no rotation (i.e., constant

orientation) assumption in (3.7) is satisfied.

Lastly, these new unobservable directions are in addition to the three directions correspond-

ing to global translation, i.e., No and Nt,1 in (57) of [42] are independent, since the first block

element of Nt,1 is zero while that of No is a (full-rank) rotational matrix.

A.3 Proof of Theorem 3

In this section, we prove that the scale in (3.6) is observable for the VINS model when an

odometer is present. Specifically, the odometer provides measurements of the 2-dof planar

component of the robot’s linear velocity:

vk = ΛOkvOk = ΛO
I C(IkG CGvIk + bωm(tk)− bg(tk)cIpO)

from which we obtain the following measurement Jacobians with respect to the states involved:

HO
δθ = ΛO

I CbIkG CGvIkc , HO
bg = ΛO

I CbIpOc

HO
v = ΛO

I CIk
G C (A.14)

The odometry measurements provide extra block rows in the observability matrix, in addition to

the ones corresponding to the camera observations [see (A.1)]. From (A.14) and the analytical

form of the state transition matrix, Φk,1 (see (44) in [42]), it can be verified that these extra

177

block rows have the following structure:

MO
k = HO

kΦk,1

= ΓO
1

[
ΓO

2 ΓO
3

Ik
G C Ik

G CΦ
(3,4)
k,1 03×3 03×3

]
with ΓO

1 = ΛO
I C

ΓO
2 = bIkG CGvIkcΦ

(1,1)
k,1 + Ik

G CΦ
(3,1)
k,1

ΓO
3 = bIkG CGvIkcΦ

(1,2)
k,1 + bIpOc+ Ik

G CΦ
(3,2)
k,1 (A.15)

for any time tk ≥ t0, with Φ
(i,j)
k,1 denoting the (i, j)-th block element of the state transition

matrix Φk,1. From Thm. 1, the scale becomes unobservable if and only if the acceleration is

constant. Therefore, it suffices to show that MO
kNs 6= 0 when (3.5) is satisfied. Specifically:

MO
kNs = ΓO

1 (IkG CGvI0 −
Ik
G CΦ

(3,4)
k,1

Ia) (A.16)

= ΛO
I CIk

G C(GvI0 +

∫ tk

t0

G
Iτ

C dτ · Ia) (A.17)

= ΛO
I CIk

G CGvIk = ΛOkvIk (A.18)

where we have followed the same reasoning as in (A.3)-(A.7). The quantity in (A.18) is non-

zero, if the velocity of the IMU frame, expressed in the odometer frame, does not vanish along

the x − y directions, i.e., if the platform has translational motion along the horizontal plane.

Under this condition, which is satisfied in practice as long as the vehicle does not stay static

forever, the odometer measurements make the scale observable.

A.4 The Unobservable Direction of Scale

In this section, we show that the unobservable direction in (3.6) corresponds to the scale. As-

sume that there exists a VINS state vector x and the corresponding measurements from the IMU

[see (3.2)] and the camera [see (3.4)]. Consider the case where both the entire trajectory of the

platform and the scene are “scaled up” by a factor of α, or equivalently, the global coordinate

system {G} is “shrunken down” by the factor α. This corresponds to a change of the original

state x into a new state x′. Specifically, as for the IMU’s position, pI , and the feature’s position,

178

fj , with respect to {G}, the scale change can be written as:1

Gp′I = αGpI (A.19)
Gf ′j = αGfj , j = 1, . . . , N (A.20)

where Gp′I and Gf ′j are the new positions after the scaling. By taking the first and second-order

time derivative on both sides of (A.19), we obtain the scaled velocity and body acceleration of

the IMU as:

Gv′I = αGvI (A.21)
Ga′I = αGaI (A.22)

Note that, on the other hand, the scale change does not affect the IMU’s orientation with

respect to the global frame (as the “scale” referred here is with respect to translation only), i.e.:

I
GC′ = I

GC (A.23)

and hence the rotational velocity remains the same as well:

Iω′ = Iω (A.24)

Moreover, to ensure that this scale change is unobservable, the measurements from the

IMU and the camera need to be unchanged. As for the camera observations, for each feature j,

1Note that the presented analysis holds true for any time t ≥ t0. Hence we omit the time index for the clarity of
presentation.

179

from (3.4) (A.19) (A.20) (A.23) we have:
x′

y′

z′

 , If ′j = I
GC′(Gf ′j − Gp′I) = I

GC(αGfj − αGpI) = αIGC(Gfj − GpI)

= αIfj = α


x

y

z

 (A.25)

⇒ z′j =
1

z′

[
x′

y′

]
=

1

αz

[
αx

αy

]
=

1

z

[
x

y

]
= zj (A.26)

Hence, after scaling, the camera measurements do not change due to the perspective projection

model. This result is to be expected, since a camera’s observation is scale invariant, therefore it’s

insensitive to any scale change. As for the IMU measurements, we first examine the rotational

velocity measured by the gyroscope. Since the gyroscope measurements [see (3.2)] need to stay

the same before and after the scaling, i.e.:

ωm = Iω + bg = Iω′ + b′g (A.27)

by substituting (A.24), we obtain:

b′g = bg (A.28)

Similarly, for the linear acceleration measurements from the accelerometer, from (3.2)

and (A.22) (A.23), we obtain:

am = I
GC(GaI − Gg) + ba = I

GC′(Ga′I − Gg) + b′a = I
GC(αGaI − Gg) + b′a (A.29)

⇒ b′a = ba − (α− 1)IGCGaI = ba − (α− 1)Ia (A.30)

Collecting the equations (A.23) (A.28) (A.21) (A.30) (A.19) (A.20), we put together the

180

VINS state element changes due to the scaling, by a factor of α, as:

I
GC′ = I

GC

b′g = bg

Gv′I = αGvI = GvI + (α− 1)GvI

b′a = ba − (α− 1)Ia

Gp′I = αGpI = GpI + (α− 1)GpI

Gf ′j = αGfj = Gfj + (α− 1)Gfj , j = 1, . . . , N (A.31)

If we define the original and the new error state as x̃ and x̃′, corresponding to the original and

the new VINS state x and x′ (see [42] for the definition of the VINS error state), respectively,

then (A.31) can be rewritten in the error-state form as:

Iδθ′G

b̃′g
Gṽ′I

b̃′a
Gp̃′I
Gf̃ ′1

...
Gf̃ ′N


=



IδθG

b̃g
GṽI + (α− 1)GvI

b̃a − (α− 1)Ia

Gp̃I + (α− 1)GpI
Gf̃1 + (α− 1)Gf1

...
Gf̃N + (α− 1)GfN


=



IδθG

b̃g
GṽI

b̃a
Gp̃I
Gf̃1

...
Gf̃N


+ (α− 1)



03×1

03×1

GvI

−Ia
GpI
Gf1

...
GfN


(A.32)

where we see that the right-most vector is exactly the same as in (3.6), hence

x̃′ = x̃ + (α− 1)Ns (A.33)

To summarize, if the entire trajectory of the platform and the scene are scaled by a factor

of α (as the starting point of this analysis), then the VINS error state (and hence the state) will

be changed along the direction of Ns by a factor of α − 1 [see (A.33)], without changing the

measurements from the camera [see (A.26)] or the IMU [see (A.27) and (A.29)]. Moreover, it is

obvious that the reverse statement holds true as well. Therefore, we conclude that the direction

Ns in (3.6) is unobservable, and it corresponds to the scale change in terms of its physical

181

meaning.

A.5 The Unobservable Directions of Orientation

In this section, we show that the unobservable directions in (3.8) correspond to the 3-dof global

orientation. Assume that there exists a VINS state vector x and the corresponding measurements

from the IMU [see (3.2)] and the camera [see (3.4)]. Consider the case where the global frame

{G} is rotated by a small angle δφ into a new global frame {G′}, where δφ is a 3 × 1 vector

whose direction and magnitude represent the axis and angle of the rotation, respectively. Hence,

G
G′C = C(δφ) ' I3 − bδφc (A.34)

by the small-angle approximation of the rotational matrix based on the assumption that the

amount of rotation is small. Due to this change of the global frame (from {G} to {G′}), the

original VINS state, x, which is expressed with respect to {G}, is now changed to a new state,

x′, which is expressed with respect to {G′}. Specifically, as for the orientation of the IMU:2

I
G′C = I

GC G
G′C = I

GC(I3 − bδφc) = (I3 − bIGC δφc)IGC (A.35)

Since the transformation involves only rotation, the new position state of the IMU can be ob-

tained as:

G′pI = G′
G C GpI = G

G′C
TGpI = (I3 − bδφc)TGpI = (I3 + bδφc)GpI

= GpI + bδφcGpI = GpI − bGpIcδφ (A.36)

and similarly for the feature’s position:

G′fj = G′
G C Gfj = Gfj − bGfjcδφ, j = 1, . . . , N (A.37)

By taking the first-order time derivative on both sides of (A.36), we obtain the new velocity

state of the IMU:
G′vI = GvI − bGvIcδφ (A.38)

2Note that the presented analysis holds true for any time t ≥ t0. Hence we omit the time index for the clarity of
presentation.

182

Note that, on the other hand, the transformation of the global frame does not affect the

trajectory, and hence the motion, of the IMU when expressed in the IMU’s local frame of

reference {I}. Therefore, the local rotational velocity and linear acceleration of the IMU are

the same before and after the transformation of the global frame, i.e.:

Iω′ = Iω (A.39)
Ia′ = Ia (A.40)

Moreover, to ensure that the change of the global frame’s orientation is unobservable, the

measurements from the IMU and the camera need to be unchanged. As for the camera observa-

tions, for each feature j, from (3.4) (A.35) (A.36) (A.37) we have:
x′

y′

z′

 , If ′j = I
G′C(G

′
fj − G′pI) = I

GC G
G′C(G

′
G C Gfj − G′

G C GpI)

= I
GC(Gfj − GpI) = Ifj =


x

y

z

 (A.41)

⇒ z′j =
1

z′

[
x′

y′

]
=

1

z

[
x

y

]
= zj (A.42)

Hence, after the transformation of the global frame, the camera measurements do not change.

This result is to be expected, since a camera’s observation depends only on the relative position

of the feature with respect to the camera’s frame, therefore it’s insensitive to any change in

the global frame itself. As for the IMU measurements, we first examine the rotational velocity

measured by the gyroscope. Since the gyroscope measurements [see (3.2)] need to stay the

same before and after the transformation of the global frame, i.e.:

ωm = Iω + bg = Iω′ + b′g (A.43)

by substituting (A.39), we obtain:

b′g = bg (A.44)

183

Similarly, for the linear acceleration measurements from the accelerometer, from (3.2) and the

definition that Ia = I
GC GaI , we obtain:

am = I
GC(GaI − Gg) + ba = Ia− I

GC Gg + ba = Ia′ − I
G′C

G′g′ + b′a (A.45)

Substituting (A.40) yields:

b′a = ba + I
G′C

G′g′ − I
GC Gg (A.46)

Note that according to the definition, the gravity vector, g, is a known constant in the corre-

sponding global frame, i.e., g is fixed with respect to the global frame. Hence, as the global

frame rotates from {G} to {G′}, the gravity vector rotates simultaneously from g to g′, such

that:
G′g′ = Gg (A.47)

Substituting (A.47) and (A.35) into (A.46), we obtain:

b′a = ba + I
G′C

G′g′ − I
GC Gg = ba + I

G′C
Gg − I

GC Gg = ba + (IG′C− I
GC)Gg

= ba + (IGC− I
GCbδφc − I

GC)Gg = ba − I
GCbδφcGg = ba + I

GCbGgcδφ (A.48)

Collecting the equations (A.35) (A.44) (A.38) (A.48) (A.36) (A.37), we put together the

VINS state element changes due to the rotation of the global frame, by a small angle δφ, as:

I
G′C = (I3 − bIGC δφc)IGC

b′g = bg

G′vI = GvI − bGvIcδφ

b′a = ba + I
GCbGgcδφ

G′pI = GpI − bGpIcδφ
G′fj = Gfj − bGfjcδφ, j = 1, . . . , N (A.49)

If we define the original and the new error state as x̃ and x̃′, corresponding to the original and

the new VINS state x and x′ (see [42] for the definition of the VINS error state), respectively,

184

then (A.49) can be rewritten in the error-state form as:

IδθG′

b̃′g
G′ ṽI

b̃′a
G′p̃I
G′ f̃1

...
G′ f̃N


=



IδθG + I
GC δφ

b̃g
GṽI − bGvIcδφ
b̃a + I

GCbGgcδφ
Gp̃I − bGpIcδφ
Gf̃1 − bGf1cδφ

...
Gf̃N − bGfNcδφ


=



IδθG

b̃g
GṽI

b̃a
Gp̃I
Gf̃1

...
Gf̃N


+



I
GC

03×3

−bGvIc
I
GCbGgc
−bGpIc
−bGf1c

...

−bGfNc


δφ (A.50)

where we see that the matrix multiplied with δφ on the right-hand side is exactly the same as

in (3.8), hence

x̃′ = x̃ + Noδφ (A.51)

To summarize, if the global frame is rotated by a small angle δφ (as the starting point of

this analysis), or equivalently, the entire trajectory of the platform and the scene are rotated by

−δφ with respect to the global frame, then the VINS error state (and hence the state) will be

changed along the direction as a linear combination of the columns of No [see (A.51)], without

changing the measurements from the camera [see (A.42)] or the IMU [see (A.43) and (A.45)].

Moreover, it is obvious that the reverse statement holds true as well. Therefore, we conclude

that the directions No in (3.8) are unobservable, and they correspond to the change of the 3-

dof global orientation in terms of the physical meaning. In particular, if δφ = ||δφ||e1, it

would correspond to a rotation about the global frame’s x-axis, i.e., a change in the roll angle.

Similarly for the pitch and yaw angles. Hence, the three columns of No correspond to the roll,

pitch, and yaw angle change, respectively, of the orientation of the IMU’s frame with respect to

the global frame.

	Acknowledgements
	Abstract
	List of Tables
	List of Figures
	Introduction
	Visual-Inertial Localization and Mapping
	Challenges of Visual-Inertial Localization and Mapping on Mobile Devices
	Research Objectives
	Efficient Short-Term VI-SLAM
	Planar VI-SLAM: Observability Analysis and Model Extensions
	Efficient and Consistent Long-Term VI-SLAM

	Structure of the Manuscript

	Efficient Short-Term Visual-Inertial Localization and Mapping
	Introduction and Related Work
	VIO-SLAM Estimators
	Problem Formulation
	Filtering-based Methods
	Optimization-based Methods
	Applications to VIO-SLAM
	Our Proposed VIO Estimator

	SR-ISWF: VIO Problem Formulation and Information Management
	State Vector
	Inertial Measurement Model and Cost Terms
	Visual Measurement Model and Cost Terms
	Visual-Inertial Information Management

	SR-ISWF: Estimation Algorithm
	Cloned State Augmentation
	SLAM Feature Propagation
	Marginalization
	Covariance Factor Recovery
	SI Update: Current SLAM Feature Reobservations
	Left-Nullspace Transformation
	SI Update: New SLAM Feature Initialization
	SI Update: New SLAM and SI-MSCKF Pose Constraints
	SO Update: SO-MSCKF Pose Constraints
	Computing New State Estimate
	Computing New Prior Term

	Experimental Results
	System Setup
	Performance on the EuRoC Datasets
	Performance on Cell-Phone Datasets

	Summary

	Planar Visual-Inertial Localization and Mapping: Observability Analysis and Model Extensions
	Introduction and Related Work
	Preliminaries on Vision-aided Inertial Navigation System (VINS)
	VINS: Observability Analysis Under Specific Motion Profiles
	Constant Acceleration
	No Rotation

	VINS: Incorporating Extra Information
	VINS with Odometer
	mVINS: VINS within a Manifold

	Experimental Results
	Assessment of the Motion's Impact
	System Performance Test

	Summary

	Efficient and Consistent Long-Term Visual-Inertial Localization and Mapping
	Introduction and Related Work
	Inverse Schmidt Estimators
	Background: Estimation Consistency
	Problem Formulation
	Exact Inverse Schmidt Estimator (ISE)
	Approximate Inverse Schmidt Estimators

	RISE-SLAM: A Resource-aware Inverse Schmidt Estimator for SLAM
	System Overview
	Square-root Inverse Estimators for SLAM
	RISE-SLAM: Exploration
	RISE-SLAM: Relocalization
	Experimental Results

	Summary

	Concluding Remarks
	Summary of Contributions
	Future Research Directions

	References
	 Appendix A. Appendices for Chapter 3
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	The Unobservable Direction of Scale
	The Unobservable Directions of Orientation

