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ABSTRACT 

 

In the field of pharmacogenomics and precision medicine, gene expression analysis has become a 

crucial tool in predicting patient drug response. My contributions to this field come primarily in the 

development and application of two bioinformatic packages: oncoPredict and scIDUC. oncoPredict 

is a tool based in the R programming language, primarily used to predict the response of various 

cancer samples (cell line, patient, etc.) to different drugs. This is made possible by incorporating 

machine learning to analyze the complex relationships between genomic features and drug response 

from pan-cancer cell lines. These relationships are learned from microarray or bulk RNA 

sequencing (RNA-seq) data and high-throughput drug screens, then applied to patient data to 

generate novel drug discovery hypotheses. In turn, oncoPredict aids in identifying potential drug 

candidates, understanding mechanisms of drug resistance, and predicting the effectiveness of drugs 

on specific cancer types. scIDUC (single-cell Integration and Drug Utility Computation) is a 

computational framework based in python that quickly and accurately generates predictions of drug 

response for cells derived from single-cell RNA sequencing (scRNA-seq) data. It is a transfer 

learning-based approach that learns relationships between drug sensitivities and relevant gene 

expression patterns based on cell line bulk RNA-seq data and high-throughput drug screens, similar 

to oncoPredict. The key difference, however, is that prior to training drug response models, scIDUC 

integrates bulk RNA-seq and target scRNA-seq data to denoise and extract shared gene expression 

patterns between bulk and single-cell data sources. The resulting bulk data is then used to train drug 

response models, whose coefficients are further applied to post-integration single-cell data to infer 

cellular drug sensitivity scores.  
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CHAPTER 1: CONCEPTUAL OVERVIEW OF 

THESIS, BACKGROUND & SIGNIFICANCE 

The Relationship Between Gene Expression and Drug Response Plays a Significant Role in 

Improving Clinical Decision-Making 

Gene expression significantly influences drug response. The expression levels of certain genes can 

determine how a patient’s body will react to a drug, affecting both the efficacy and the potential for 

adverse side effects.1-7  For example, the gene expression levels of drug transporters or proteins that 

help move substances across cell membranes can affect how well a drug is absorbed, distributed, 

metabolized, and excreted from the body.3 Additionally, gene expression levels of drug targets or 

genes involved in pathways that are activated or inhibited by drugs also affect how a patient 

responds to such drugs.1,3 Overall, the genome provides a dynamic view of what’s happening in a 

cell at a given time, reflecting the influence of both genetic factors and environmental conditions.  

Other genomic factors that may contribute to drug response include but are not limited to genetic 

mutations, copy number variations (CNVs), and epigenetic changes.8-11 Mutations in a gene can 

change the structure and function of the resulting protein, which can affect how it interacts with 

other molecules and influences gene expression pathways. The presence of a certain mutation might 

make a tumor particularly susceptible or resistant to a specific drug.9 CNVs refer to changes in the 

number of copies of a particular gene or region of the genome, ranging from deletions to 

duplications or even multiple copies. Duplications or multiple copies of a gene can lead to 

overexpression, while deletions can lead to a decrease in a gene’s expression. If CNVs involve 

regulatory elements (enhancers or promoters), the extent to which disruption occurs in gene 
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expression is heavily broadened. As a result, CNVs can influence drug response, especially if they 

result in the amplification or deletion of genes that are critical for the effectiveness of the drug.10 

Epigenetic changes refer to modifications to the DNA or associated proteins that affect gene activity 

without altering the DNA sequence itself. They include things like DNA methylation, histone 

modification, and RNA associated silencing. These changes can regulate when, how and to what 

extent genes are expressed. These changes can affect drug metabolism and therefore cellular 

response to therapy.8,10 While the informativeness of gene expression toward drug response is 

maximized when considered alongside these other genomic factors, gene expression may in some 

cases, be the most critical predictor. This is potentially the result of gene expression reflecting the 

impact of these genomic factors.10,11  

Large Scale Cell Line and Drug Screening Data is Invaluable For Drug Discovery 

The GDSC (Genomics of Drug Sensitivity in Cancer)10 and CTRP (Cancer Therapeutics Response 

Portal)11 are two significant databases in the field of cancer research, particularly for understanding 

the relationship between cancer genomics (including mutations, CNVs, and gene expression profiles 

for pan-cancer cell lines) and drug response. High-throughput cell line drug screening data like 

these have been used to train machine learning models, aiming to translate in vitro drug response to 

in vivo tumor response predictions.7,12-19 Cell line drug screening data refer to the information 

gathered from experiments where various drugs are tested on different cell lines to assess and 

measure their effects. This data has proven to be an invaluable source in the field of drug 

development, offering insights into drug efficacy, mechanisms of action, and the genetic basis of 

drug response while also reducing the time and cost associated with bringing new drugs to market.  

A Regression Framework Enables Accurate Drug Response Prediction From Sequencing Data 

Predicting patient drug response from bulk sequencing methods such as microarray or bulk RNA 
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sequencing (RNA-seq) data as well as from these large scale cell line drug databases is an important 

application of machine learning and personalized medicine.7,12-19 Bulk sequencing methods average 

gene expression in a sample of cells, making them less granular than single-cell RNA-seq (scRNA-

seq) data but still valuable for predicting how patients will respond to drugs. A number of machine 

learning algorithms have been utilized for drug response prediction, including but not limited to 

regression (linear and logistic), support vector machines (SVMs), random forests, and neural 

networks.7,12-19 However, we have found ridge regression to be effective for predicting drug 

response, and it poses a number of advantages beyond its high accuracy; its architecture is 

transparent, and it’s appropriate for data with high-dimensionality and multicollinearity as in the 

case of gene expression data.20 Specifically, it’s appropriate because it adds a regularization or 

penalty term to the loss function, and this regularization technique helps prevent overfitting.20 

A regression framework also enabled us to predict continuous drug response values instead of 

binary (dichotomous) ones, which offers several advantages. Continuous drug response values are 

preferred because binary categorizations (e.g. responder or sensitive vs. non-responder or resistant) 

can oversimplify complex biological relationships, reducing the granularity of data, potentially 

leading to misclassification and masking important variations, impacting research findings and 

clinical decisions.21 Drug responses often exist on a spectrum rather than as binary outcomes.22 By 

capturing the full spectrum of responses, continuous data captures nuanced differences in drug 

response, supporting the goals of personalized medicine. Additionally, continuous outcomes 

typically provide more statistical power than binary outcomes. This means that studies using 

continuous data may require fewer subjects to detect a given effect size, making research more 

efficient and potentially less costly. More statistical power also means a greater ability to detect real 

differences or associations when they exist.  

oncoPredict and scIDUC Accurately Infer Drug Response from Bulk and Single-Cell 
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Sequencing Data, Respectively 

In this body of work, we compile our own set of tools developed for the primary purpose of drug 

response prediction from bulk patient data into an R package called oncoPredict, presented in 

Chapter 2. oncoPredict utilizes a ridge regression framework applied to gene expression data to 

predict response on a continuous scale.7 We then apply these tools to a rare and aggressive form of 

brain cancer, glioblastoma multiforme (GBM), in Chapter 3, to accomplish two primary goals: to 

identify drug candidates to combat this deadly disease where standard of care treatment falls short 

and to identify biomarkers for these drug candidates, to improve the efficacy of drug discovery by 

selecting the right patient populations for subsequent evaluation. GBM poses significant challenges 

in treatment due to its complexity and heterogeneity. While our approach identified a key 

relationship between MEK (mitogen-activated protein kinase) inhibitors and PHGDH 

(phosphoglycerate dehydrogenase) gene expression, monotherapy generally has limited efficacy in 

treating GBM due to the tumor’s high level of heterogeneity and its ability to rapidly develop 

resistance to drugs.23,24 As such, multimodal approaches may be more effective.25 Therefore, there is 

great need for computational approaches to acknowledge the unique gene expression at the cellular 

level and leverage scRNA-seq data to make cellular level drug response predictions.  

Predicting drug response at the single-cell level is an emerging area in cancer treatment.26 It 

involves the application of machine learning techniques to analyze data at the individual cell level 

to understand how different cells within a patient’s body might respond to a specific drug or 

treatment. Tumors and other disease tissues are often highly heterogeneous. By taking into account 

a tumor’s heterogeneity in this way we can take an even greater step toward a more personalized 

treatment plan.27-29 Every patient’s cellular makeup is unique, and their response to drugs can vary 

widely. In the drug development process, understanding how various cell types respond to a drug at 

a granular level can help in screening and optimizing drug candidates more effectively. Thereby 
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devising personalized treatment plans, helping healthcare providers avoid ineffective treatments, 

reducing the rate of treatment failure as well as associated costs and ultimately improving treatment 

efficacy and patient outcomes. Traditional methods, which average responses from bulk tissue 

samples, can miss important nuances.26 Unlike bulk RNA-seq data, scRNA-seq allows for the 

examination of this heterogeneity, providing a comprehensive view of gene expression with much 

finer granularity and insights into how different cell populations within the same tissue respond to 

treatment. Imputing drug response at the cellular level does pose several major challenges however. 

Firstly, there is a lack of training data to be used to learn the relationships between cellular level 

gene expression and drug response at the single-cell level. Secondly, single-cell data is highly 

sparse due to several inherent characteristics of the technology and biological processes.30 For 

example, each cell contains a relatively small amount of RNA, and this low starting material can 

lead to incomplete representation of the RNA molecules present in the cell in the sequencing data.30 

Given the high dimensionality of single-cell RNA-seq data, it’s statistically likely that only a subset 

of genes will be detected in each cell, leading to sparse data matrices where many entries are zero.30 

Dropout events are also common, which occurs when RNA molecules present in the cell are not 

detected during sequencing. This can lead to inefficiencies in the reverse or amplification steps to 

result in zero or very low read counts for some genes that are actually expressed in the cell. In this 

body of work, we develop and refine methods to address these challenges in a python package 

called scIDUC, presented in Chapter 4, helping to unlock the potential of personalized medicine at 

the single-cell level.26 We have applied scIDUC to various cancer types, supporting its validity, 

versatility, and superiority over competing methods. Chapter 5 provides a systematic review of 

scIDUC along these competing approaches. 
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• Danielle developed the R package and submitted it to CRAN R repository. Developed code to 

overhaul and generalize previous methodologies, namely pRRophetic originally developed by 

Paul Geeleher, initially hard coded to specific datasets. Introduced additional functionality into 

the code, including computing correlation between imputed drug response and gene expression to 

identify expression based biomarkers of drug response, computing regression metrics such as R-

squared for each drug response model, computing principal component regression as an 

alternative to ridge regression, etc. Overall, increasing user customization and generalizability of 

the code so that it can be applied to any dataset based on user defined parameters.  

• Robert pre-processed and cleaned CTRP and GDSC screening data to ensure high quality data. 

This included removing gene duplicates, checking for unreliable drugs, investigating outliers, etc. 

Unreliable drugs in GDSC were defined as those whose IC50 values are consistently over its max 

concentration tested. This suggests that the drug’s efficacy at the tested concentrations is limited.  

• Danielle and Robert compared the performance across different models to reconfirm choice of 

ridge regression using the R package ridge. This included comparing performance across two R 

packages, glmnet and ridge, to determine whether choice of source code impacted downstream 

analysis; in brief, glmnet was observed to result in less variability in imputed drug response, and 

so we selected ridge. Specifically: in the case of glmnet, some drug models were so poor that a 

constant predictor like the null hypothesis of a horizontal line with an intercept equal to the mean 

of the dependent variable would fit the observed data better. In this case, the residual sum of 

squares exceeded the total sum of squares, and the R-squared value is negative. This was not the 

case for ridge. This may be due to a variety of factors. For example, glmnet uses coordinate 

descent for fitting its models, and ridge employs a direct matrix algebra solution for estimating 

the ridge regression coefficients. Our comparison also included comparing performance (e.g. 

mean squared error)  across different choices of the regularization parameter (lambda), which 



12 

 

controls the impact of the penalty term. Therefore, comparing lasso regression, ridge regression, 

and elastic regression through cross-validation. While results were similar across these regression 

techniques, ridge regression performed best. We shared responsibility for application of GLDS, 

calcPhenotype, and IDWAS to the data presented in this paper. 

 

INTRODUCTION 

____________________________________________________________________________ 

 

High-throughput cancer cell line screening datasets are important resources for drug discovery [1]. The 

two largest publicly available screening efforts are the Broad Institute’s Cancer Therapeutics Response 

Portal (CTRP) [2] and Sanger’s Genomics of Drug Sensitivity in Cancer (GDSC) [3]. By providing multi-

omic cell line features as well as summarized drug response information, these screens enable identifying 

associations between a compound’s activity and genomic features. These data have become important 

tools for both biomarker discovery and for developing predictive models of drug response (reviewed in 

[4–9]). We previously published work using cell line screening data for robust biomarker discovery [10], 

drug response imputations [11] and subsequent discovery of novel biomarkers from drug response 

imputations [12]. 

Here, we offer a new R package, oncoPredict, that provides a convenient wrapper for these three separate 

methodologies (Figure 1). oncoPredict enables easy implementation of each of the three methodologies, 

with each pipeline being summarized into a single R function: GLDS, calcPhenotype and IDWAS, 

respectively. calcPhenotype allows for fitting and predicting drug response based on baseline 

transcriptomic cell line data [4]. This functionality is similar to our original pRRophetic package [13] but 

has been overhauled to enable faster implementation, provides updated CTRP and GDSC screening data 

and allows for increased user customization. oncoPredict also integrates two methods of biomarker 
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identification. The first method, imputed drug-wide association study (IDWAS), identifies biomarkers 

directly in clinical data based on associations of predicted drug sensitivity with copy number variation 

(CNV) and other somatic mutation data [12]. The second method performs biomarker discovery directly 

in the cell line dataset and aims at identifying drug-specific biomarkers after accounting for variability in 

general levels of drug sensitivity (GLDS) [10]. 

 

Figure 1. Overview of the oncoPredict R package. Flow diagram showing the inputs (rectangles), the 

functions (lines) and outputs (diamonds) from oncoPredict. This covers the three primary functionalities 

included in the package for drug response and biomarker prediction. Purple and yellow indicate cell line 

and patient input data—these inputs are anticipated to be the most common for the associated function, 

but the functions are flexible and capable of accepting data from other types of biological systems as 

discussed in the text. 
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By integrating these methodologies together into one R package, we enable easy implementation of these 

computational drug discovery tools. While previously described, implementing these methods became 

inaccessible to many potential users due to difficulty of finding the code, inflexibility of the code for 

adapting to new uses as well as R version updates. This R package, however, provides updated and 

convenient implementation of each pipeline. Additionally, integrating these three methods will allow 

users to perform simultaneous biomarker and imputations for drug discovery, similar to that done in [14], 

which could increase the impact of their computational discoveries. 

oncoPredict bridges in vitro and in vivo data by expanding the utility of existing in vitro data to enable in 

vivo discovery. The primary use cases for each function are summarized below. Vignettes are provided in 

our Github repository to cover special use cases. All R source codes are publicly available via GitHub and 

on our website (see Availability section). 

METHODS & RESULTS 

____________________________________________________________________________ 

 

To facilitate usability and robustness of oncoPredict, the transcriptomic and cell line response data from 

CTRP and GDSC have been downloaded, processed and included. For CTRP, drug response data were 

obtained from the Cancer Target Discovery and Development Network established by the National 

Cancer Institute’s Office of Cancer Genomics [15]. The corresponding gene expression data are hosted by 

the Broad Institute’s Cancer Cell Line Encyclopedia (CCLE) data portal [16]. The GDSC gene expression 

and drug response values were downloaded from the GDSC website [17]. GDSC consists of two datasets, 

GDSC1 and GDSC2 dataset, and the data from both are included in oncoPredict. These data are together 

referred to as GDSC in the remainder of this paper. After download, the data were processed and 

formatted into gene expression or drug response data matrices. 
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GENERAL LEVEL OF DRUG SENSITIVITY: GLDS 

Method Principle 

We previously reported on a GLDS phenomenon and its effect on biomarker identification. GLDS is the 

observation that individuals in a population (cell lines or patients) can be, in general, more sensitive, or 

more resistant to a therapy, no matter the treatment. As shown in the original paper, this phenomenon is 

related to, but not necessarily the same as, multi-drug resistance (MDR). Correcting for this variable 

allows for biomarker identification that is more specific to the drug of interest. 

To correct for GLDS, for a given drug, a set of negative control (i.e. completely unrelated) drugs are 

selected. These negative control drugs are unrelated mechanistically and have a measured cellular 

response that is not highly correlated (rs < 0.7) with the drug of interest. GLDS is then estimated as the 

first 10 principal components (PCs) of the set of negative control response values in a panel of cancer cell 

lines. These PCs were then included as covariates in a regression model for drug sensitivity against gene 

mutations with the goal to identify drug-specific biomarker(s). If negative control drugs are not available 

for a compound, a gene signature can also be utilized to correct for GLDS. This gene signature is a way of 

estimating GLDS without dependence on large-scale drug screening datasets. 
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Figure 2. Correcting for GLDS Improves Biomarker Identification in GDSCv2. (A) Dot plot of top 

gene–drug associations with and without correction for GLDS. Also included is the significance of the 

associations after correcting for GLDS using a gene set derived from the data. The direction of the 

triangle indicates the direction of the association: triangle pointing up indicates the drug is more effected 

in the mutated setting. Red dash line represents significance. (B) Similar graph as in (A), but graphed are 

gene–drug associations that were not significant in the original data (blue) but were significant after 

correcting for GLDS. 

Function Utility and Updates 

The GLDS function identifies GLDS uncorrected and corrected associations between drug sensitivity and 

a phenotype of interest, like somatic mutation. We have included the outputs obtained from applying the 

function to several large-scale drug screening datasets (including GDSC and CTRP) in oncoPredict’s 
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Open Science Framework (OSF). Also included in oncoPredict’s OSF are the data required to generate 

these associations, including updated GDSC and CTRP drug relatedness and CNV and coding variant 

data for pan-cancer. This output includes all drug–gene relationships which have been uncorrected and 

corrected for GLDS. The GLDS function has been modified to improve usability when applied to datasets 

beyond GDSC and CTRP. We also modified the function to give the user the ability to adjust the 

relatedness parameter, selecting the threshold for high correlation when filtering negative control drugs. 

This provides a more reliable method of filtering negative controls than what was previously employed in 

GLDS. 

In addition, one can now generate a gene signature as a surrogate of GLDS using the package by 

providing GLDS function with a gene expression profile. The expression of these genes is significantly 

correlated to each of the 10 PCs used to estimate GLDS across a drug screening dataset. In other words, 

they also represent negative controls. The performance of both the PC method and the gene signature 

method is shown in Figure 2 using GDSCv2 data. 

Example Use Case 

We originally showcased this method by correcting for GLDS in Sanger’s GDSC 2014 screening data. 

Here, we applied our package to identify biomarkers of response with and without controlling for GLDS 

in the separate GDSCv2 dataset (Figure 2). In addition, we used the GLDS signature functionality to 

generate a 41-gene signature from this dataset, consisting of genes highly correlated with GLDS. Thus, 

the package enables two ways of conditioning on GLDS; one is through the top 10 PCs, which is 

implemented in the GLDS function, and the other is with a 41-gene signature, which users can use as a 

way to correct for GLDS without the use of additional large-scale drug screening data. Consistent with 

previous results, genes associated with MDR, such as CYR61, were included in this signature. 
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Figure 2A shows the top gene–drug associations with and without correcting for GLDS. The gene–drug 

associations shown here were corrected for GLDS both by directly estimating GLDS from the data and by 

estimating using the 41-gene signature set to show the concordance of the two methods and to provide an 

estimation for GLDS. In other case, significant gene–drug association disappears after being conditioned 

on GLDS. For example, PD173074 (a FGFR inhibitor) was predicted to have a significant association 

with KRAS mutations without GLDS correction; however, this association was insignificant with 

correction for GLDS. These observations support previous findings that controlling for the first 10 PCs or 

gene signature can be used to describe GLDS. In our previous work, we showed that correcting for GLDS 

reduced spurious findings. Similar results are shown here. On the other hand, some meaningful 

associations can only be found when conditioned with GLDS as shown in Figure 2B. For example, KRAS 

is an established biomarker for oxaliplatin [18], but this association was only identified after correcting 

for GLDS. 

PREDICTING DRUG RESPONSE FUNCTION: CALCPHENOTYPE 

Method Principle 

This function implements the pipeline for the prediction of clinical chemotherapeutic response by using 

only baseline tumor gene expression data. A complete technical description of this pipeline is described in 

[11]. Briefly, large-scale gene expression and drug screening data (training dataset) are used to build ridge 

regression models that can then be applied to new gene expression datasets (testing dataset) to yield drug 

sensitivity predictions for the new dataset [19]. These drug models are built following removal or 

summarization of gene duplication, homogenization (batch correction) and filtering of low-varying genes. 

In oncoPredict, users can use preset standards that have been identified depending on the type of data 

presented (microarray, RNA-Sequencing, etc.; see vignettes) or specify summarization, homogenization 

and filtering parameters. Finally, our calcPhenotype function is applied to the processed, standardized and 

filtered clinical tumor expression data, yielding a drug sensitivity prediction for each patient. 
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Function Utility and Updates 

This calcPhenotype function can be used in retrospective studies to predict drug response and compare 

with the observed patient response to investigate model performance. Recently, however, we showed that 

patient-imputed drug response can be used for drug discovery directly in the patient data [14]. That is, by 

looking for differences in the imputed drug response values between two related cancer subsets, we could 

identify compounds showing higher efficacy toward one cancer subtype. Finally, this functionality can 

also be used to quickly turn any patient transcriptome dataset into a dataset for biomarker discovery as 

discussed with the IDWAS function. 

Users can either use the GDSC or CTRP data that are prepackaged into the oncoPredict as the training 

datasets or can supply their own training data in order to predict drug response in any gene expression 

matrix provided. Genes that are duplicated in either the training or testing datasets are removed or 

summarized by the mean expression based on user input. Vignettes describe the optimal options for 

preprocessing the training and testing expression data for microarray, RNA-Seq or a mix of both. 

Compared to the method published with the original manuscript, the calcPhenotype function was updated 

to give users more options for model generation and evaluation. The default predictive model provided is 

ridge regression, but principal component regression (PCR) is also available in calcPhenotype as this 

method also performs well in drug response predictions [20]. Regression evaluation metrics (R2) can 

easily be obtained for each model. Lastly, the function was updated to provide an option to calculate the 

correlations between predicted drug response and gene expression as a way of identifying expression-

based biomarkers of drug response. 

Example Use Case 

To assess the model performance of the calcPhenotype function, we imputed drug response in an ovarian 

cancer clinical dataset, which had both patient response to paclitaxel and gene expression microarray data 
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(GSE51373) [21]. We used the CTRP dataset to train a model of paclitaxel drug response. We then 

stratified patients by their observed clinical outcome (defined by the trial as resistant or sensitive to 

paclitaxel treatment) and compared the predicted sensitivity scores (Figure 3). We see that imputed 

paclitaxel sensitivity is able to correctly stratify patients into their responder/non-responder categories 

(P = 0.0075 by t-test). Additionally, the area under the receiver operating characteristic (ROC) curve was 

0.79, which is consistent with the performance of the models of the original paper [11]. 

 

 

 

 

 

Figure 3. Paclitaxel imputed response in ovarian cancer clinical trial (GSE51373). (A) Patient 

expression data were downloaded from GEO, processed and then used as a testing expression data for the 

oncoPredict calcPhenotype function. Actual clinical outcomes for the patient were then plotted against the 

imputed drug response output (y-axis, a continuous response value). (B) ROC curve showing the 

percentage of true positives against the percentage of false positives as the classification threshold is 

varied. 

IDENTIFYING BIOMARKERS FROM PATIENT DATA: IDWAS 

Method Principle 

The IDWAS approach is an extension of the imputing drug response values that readily enables 

biomarkers identification in that population. IDWAS is similar in conception and implementation to 
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GWAS. That is, associations between imputed drug response values and either somatic mutations or CNV 

are determined by using linear models in R in order to estimate drug–gene interactions and identify 

biomarkers of drug response. By taking advantage of the large sample size of clinical datasets, this allows 

for the identification of novel relationships that are not seen in cell line datasets. Additionally, since it 

uses patient genomic data, any biomarkers found are pertinent to that patient population. The full 

methodology for the imputed drug-wide association study (IDWAS) is described in [12]. 

Function Utility and Updates 

To outline the method employed by the IDWAS function, the function takes two inputs: a matrix of 

patient genetic features and a matrix of imputed drug response values (e.g. the output of the 

calcPhenotype function). The genetic features can either be a mutation matrix containing 0/1 to describe 

wild-type/mutated gene status or a CNV matrix containing the CNV levels of the genes in patients. The 

IDWAS function allows flexible usage of either type of data. Additionally, by integrating the IDWAS and 

calcPhenotype functions into a single package, the use of the IDWAS methodology is greatly facilitated. 

Users are able to easily obtain drug response predictions in any clinical dataset by using calcphenotype 

and then search for biomarkers by using IDWAS. Vignettes are provided to demonstrate how to download 

and apply this methodology to the TCGA datasets, as described in the below use case. To aid in usability, 

pan-cancer TCGA mutation and CNV matrices are provided in oncoPredict. However, users could easily 

adapt this application to other datasets like the International Cancer Genome Consortium or cancer-

specific datasets such as METABRIC. 

Example Use Case 

The Cancer Genome Atlas (TCGA) [22] gene expression data were downloaded from firebrowse.org, and 

mutation data were downloaded using the TCGAbiolinks R package [23]. TCGA mutation data were 

summarized on a per-gene basis by calling a gene mutated if the protein had any mutation that would 
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affect the amino acid sequence, which was formatted into a mutation matrix. For the genes assessed in 

this paper, genes mutated with a frequency above 0.5% across all patients were included. 

Using oncoPredict’s calcPhentope function, we built drug response models with the CTRP data. We 

imputed drug response for all 496 drugs across the TCGA samples (n = 8536). Similarly, to our previous 

report [12], the top significant association was that between nutlin-3a (an MDM2 inhibitor) and TP53 

status. As can be seen in Figure 4A, this is a highly significant and specific association. The direction of 

this association (not shown) is consistent with expectations and indicates that TP53 mutations render 

nutlin-3a ineffective. Conversely, for selumetinib (a MEK inhibitor), the association was highly and 

specifically associated with being more effective in the KRAS mutated setting (Figure 4B).  

Figure 4. IDWAS in TCGA patient data. (A, B) Using the oncoPredict calcphenotype function, 

imputed sensitivities were generated for each patient against all the drugs in CTRP. The IDWAS function 

then allowed for testing associations between patient cancer gene mutations and patient imputed drug 

response values. For nutlin-3a (A) and selumetinib (B), histograms that show the significance (P-value) 

frequency across all the gene–drug associations are plotted. 
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ROAD MAP FOR FUTURE UPDATES 

____________________________________________________________________________ 

 

To ease use, we have downloaded and packaged the most up-to-date CTRP and GDSC data, two of the 

largest publicly available drug screening datasets. The package will be updated twice yearly to include 

any major updates to these data. Additionally, we will incorporate new and appropriate screening data 

resources as they become available. 

Further feature requests and ongoing changes to increase usability will continue over the life of the 

package. For example, we have plans to further integrate calcPhenotype, IDWAS and GLDS to make the 

computational discovery of biomarkers and drug response predictions even more seamless based on user 

feedback. By integrating these distinct but separate methodologies, the package will give users a one-stop 

shop instead of the previously dispersed and disaggregated methods linked to individual papers. 

The pipelines implemented in the package are ‘state-of-the-art’ and represent accurate and convenient 

drug response prediction methods. In general, however, the field lacks guidelines for the best use and 

application of drug response prediction methods. Similar to the inclusion of PCR as an option in the 

calcPhenotype function, as we and others in the field identify gold standards for drug response 

predictions, oncoPredict, will continue to update. 

CONCLUSION 

____________________________________________________________________________ 

 

In conclusion, we have presented the R package oncoPredict that bridges the in vitro drug screening with 

in vivo drug and biomarker discovery. One can easily predict patient tumor response to a large number of 
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drugs screened in cancer cell lines and can perform biomarker discovery both with and without GLDS 

condition. 
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ABSTRACT

 ____________________________________________________________________________ 

 

Glioblastoma multiforme (GBM) is the deadliest, most heterogeneous and common brain cancer in adults. 

Despite major advancements in neurosurgery as well as chemotherapy and radiotherapy techniques, 

overall prognosis has improved little over the decades. Not only is there an urgent need to identify 

efficacious therapeutics but there is also a great need to pair these therapeutics with biomarkers that can 

help tailor treatment to the right patient populations given the heterogeneous nature of the disease. We 

implemented machine learning and causal inference pipelines, developed for drug response prediction and 

drug-biomarker prediction. Specifically, we built patient drug response models by integrating patient 

tumor transcriptome data with high-throughput cell line drug screening data as well as Bayesian networks 

to infer relationships between patient gene expression and drug response. Through these discovery 

pipelines, we identified multiple agents of interest for GBM to be effective across five independent 

patient cohorts and in a mouse avatar model (spanning nearly 1,000 GBM samples); among them, a 

number of MEK inhibitors (MEKis). We also predicted phosphoglycerate dehydrogenase enzyme 

(PHGDH) gene expression levels to be causally associated with MEKi efficacy, where knockdown of this 

gene increased tumor sensitivity to MEKi and overexpression led to MEKi resistance. Overall, our work 

demonstrated the power of integrating computational approaches into a drug development pipeline. In 

doing so, we quickly nominated a number of drugs with varying known mechanisms of action that can 

efficaciously target GBM. By simultaneously identifying biomarkers with these candidate drugs, we also 

improve the efficacy of drug discovery by providing tools to select the right patient populations for 

subsequent evaluation.  

 

  



30 

 

INTRODUCTION  

____________________________________________________________________________ 

Glioblastoma multiforme (GBM) is one of the deadliest diseases with only approximately 2% of GBM 

patients surviving three years or more.1,2 Following radiation therapy and surgery, standard of care for 

GBM consists of chemotherapy (carmustine) with temozolomide (TMZ) or transcranial magnetic 

stimulation.3 Unfortunately, a large portion of GBM patients do not respond to these treatment strategies 

and develop resistance to them very quickly. There is an urgent need to develop new therapeutic options 

for GBM patients. Yet, the heterogeneous nature of this disease and the requirement of passing through 

the blood-brain barrier for most of systematic treatment, have significantly limited the progress on 

development of efficacious drug treatment for GBM.  Furthermore, traditional drug development takes on 

average about 12 years and 1 billion dollars to bring a new drug through regulatory approval. At this rate, 

hundreds and thousands of GBM patients will continue to suffer from lack of treatment. To this end, 

computational approaches to nominate drugs and identify biomarkers may offer a new path to 

significantly expedite the drug development process.  

In this study, we apply a computational pipeline, oncoPredict4, to enable drug sensitivity prediction in 

patient tumors.5 When applied to several hard to treat cancer settings (e.g. triple negative breast cancer 

and castration resistant prostate cancer), oncoPredict has successfully nominated and pre-clinically 

validated drugs currently undergoing animal and clinical evaluation.6,7 We are now applying this 

computational tool to the GBM setting in order to nominate efficacious therapy and help combat this 

highly heterogeneous disease. Specifically, the computational pipeline was applied to eight independent 

GBM and non-high grade glioma (non-HGG) patient datasets (spanning nearly 2,000 patients total). In 

addition, we generated drug sensitivity predictions in a novel GBM mouse avatar model to validate 

candidate drugs nominated across the GBM clinical cohorts. Furthermore, we employed causal inference 

framework to identify biomarkers for the candidate drugs of interest with the goal to facilitate selection of 
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the right patients to be treated with the right drug, which is critically important in heterogeneous disease 

like GBM.8 Experimental validation of a selected biomarker was carried out in the mouse avatar model. 

RESULTS 

____________________________________________________________________________ 

 

Identification of GBM Therapeutic Susceptibilities Utilizing Drug Response Prediction 

In our drug discovery pipeline, we first applied oncoPredict to patient tumor transcriptome profiles to 

project patient likelihood of response to hundreds of medications. The patient tumor drug sensitivity 

projection was performed in five independent GBM patient datasets (a total of n=850), a mouse GBM 

avatar model (n=60); as well as two low-grade glioma (LGG) datasets from the Chinese Glioma Genome 

Atlas (CGGA-LGG, n=516)9 and The Cancer Genome Atlas (TCGA-LGG, n=282).10 and avatar neural 

progenitor cells (NPCs, n=6).11 Details of datasets employed are listed in Supplemental Table 1. Our goal 

is to identify which drugs are repeatedly predicted to be more efficacious in GBM samples when 

compared to non-GBM samples across various datasets and modality. Hodges-Lehmann estimate (HLE) 

was performed with predicted drug sensitivity between GBM and non-GBM samples. Consensus across 

the majority (at least 3 of the 5) of the GBM clinical datasets and validation in the mouse GBM avatar 

data relative to NPCs was set to select candidate drugs of interest. After comparing predicted drug 

sensitivity scores between each of the five GBM patient datasets and CGGA-LGG dataset, with these 

filtering criteria, we identified 22 drugs of interest (red * marked in Figure 1A where HLE is also 

indicated in 1B). The difference in these predicted drug response scores, indicated by the HLE, for these 

22 drug candidates between GBM and non-HGG groups are shown in Figure 1B. When a different set of 

non-GBM control, TCGA-LGG, was used, we identified 62 drugs (red * marked in Supplemental Figure 

1A where HLE is also indicated in Supplemental 1B). 



32 

 

Figure 1: Drug candidates identified for GBM relative to non-HGG (CGGA-LGG and NPC). A. 

Upset plot displaying intersections of drugs predicted to be efficacious for GBM relative to non-high 

grade glioma (non-HGG) across six GBM datasets. These drugs had a Hodges-Lehmann estimate (HLE) 

within the top 50% of drugs with a FDR corrected p-value of <= 0.05. The red asterisk indicates 22 drugs 

that were identified as efficacious in more than half of the clinical datasets against CGGA-LGG and 

validated in the avatar dataset. B. The top panel heatmap displays the standardized HLE for all drugs 

identified to have a significantly different drug response across GBM and non-HGG samples. The bottom 

panel heatmap displays the HLE specifically for the 22 drug leads. Drugs predicted to be more efficacious 

for GBM are darker, in red. Those more efficacious for non-HGG are lighter, in blue. 

 

Of the drug candidates predicted to be efficacious in GBM relative to non-HGG, 6 drugs overlapped 

across both CGGA-LGG (Figure 1) and TCGA-LGG (Supplemental Figure 1) non-HGG patient controls. 

These 6 drugs included mitogen-activated protein kinase inhibitors (MEKis) PD318088 and trametinib, as 

well as BRD.K71935468 (inducer of reactive oxygen species), Fumonisin.B1 (inhibitor of ceramide 

synthase), ML203 (activator of muscle pyruvate kinase), and RITA (inhibitor of p53-MDM2 interaction). 

Overall, the drugs identified across the LGG controls fell under a variety of classes including MEKis, 
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EGFR inhibitors (EGFRis), and VEGFR inhibitors (VEGFRis). Other targets include STAT3, BRAF, 

CDKs, etc. (Supplemental Data 2). Many of these drug leads have already been identified as potentially 

efficacious therapeutics in preclinical studies, supporting the validity of our computational projection. A 

few of these candidates have been tested in patients, yet none of them have been tested in patient 

populations guided by biomarker screening. As seen in Figure 1 and Supplemental Figure 1, MEKis were 

repeatedly identified as drug leads across independent patient datasets. For example, higher predicted 

sensitivity towards trametinib was observed across GBM samples relative to non-HGG (regardless the 

control datasets: CGGA-LGG, TCGA-LGG, or NPCs) where the heatmaps display similar effect size and 

directionality measured by HLE with an FDR corrected p-value <0.001. Therefore, we went forward with 

experimentally testing trametinib and additional MEKi selumetinib and PD318088 in the GBM avatar 

models. It is worth noting that while our drug discovery pipeline focused on candidate drugs predicted 

across the majority of clinical datasets with computational validation in avatar data, several other drugs 

were predicted to show higher sensitivity in all GBM clinical datasets without avatar validation. The 

independent nature of these patient datasets made the discovery interesting as well and these drugs 

information can be found in Supplemental Data 3.  

 

The Efficacy of MEKis was Validated in GBM Avatar Model  

 

Fundamentally, we found a number of MEKis showing higher predicted sensitivity in GBM across a 

number of independent datasets. We selected trametinib, selumetinib, and PD318088 for experimental 

testing in our GBM avatar model along standard of care agents: temozolomide (TMZ) and carmustine. 

After exposing to increasing concentrations of TMZ or carmustine, both standard of care agents produced 

a lower area under the dose response curve (AUC) for GBM cells relative to NPCs (p<0.05, Supplemental 

Figure 2), providing validity of our avatar system as an experimental model. Lower AUC values were 

also observed upon treatment of GBM cells with all three MEKis evaluated. In Figure 2, we plotted both 
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imputed and experimentally measured AUC for MEKis across avatar samples. All three MEKis 

performed as predicted across these samples, where GBM samples were significantly (FDR p-

value<0.001) more sensitive to each MEKi tested, producing a lower AUC value relative to the NPC 

control samples.  

 

 

Figure 2: Imputed vs. measured drug response of MEK inhibitors (MEKis) across Glioblastoma 

(GBM)  avatar and control samples. A. Predicted drug sensitivity scores for three MEKi (PD318088, 

selumetinib, trametinib) obtained from oncoPredict. AUC (area under the dose response curve) was 

predicted for neural progenitor cells (NPCs) and GBM samples for three MEKi’s. B. Measured drug 

response by exposing GBM avatar or NPC cells to each MEKi separately with increasing concentrations. 

AUC was calculated using area under the dose-response curve after CellTiter experiments. Each sample 

was tested 6 times. For both imputed and measured scenarios, AUC across GBM and NPC samples were 

compared using a Wilcoxon sum rank test. The asterisk indicates statistical significance. For imputed 

drug response, the p-value was 0.006, 0.01, and 0.02 for PD318088, selumetinib, and trametinib 

respectively. For measured drug response, p<0.001. 
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Application of Causal Inference to Identify Biomarkers Indicative of MEKi Response 

 

We employed a computational pipeline intended for causal inference in large omic data analysis for 

biomarker discovery for our drug of interest. This enabled us to predict drug-gene relationships for the 

MEKi drug candidates identified. Our pipeline contains two steps: 1. Spearman correlation coefficient 

(SCC) analysis, a univariate approach with a goal to filter for the most informative genes and 2. Bayesian-

network learning, a multivariate approach consisting of the min-max parents-child (MMPC) and hybrid-

parent and child (hybrid-PC) algorithms12 to infer and visualize causal biomarkers. As shown in Figure 

3A, through SCC analysis between TCGA-GBM RNA-Sequencing (RNASeq) data and predicted drug 

response for each MEKi, independently, we identified genes whose expression correlated with drug 

sensitivity (FDR p<0.05 with moderately-strongly |r|>=0.60). This substantially reduced the 

dimensionality of the transcriptomic data from tens of thousands to hundreds or less, and enabled reliable 

application of the Bayesian algorithms. Specifically, the data’s dimensionality was reduced to 239, 72 and 

54 informative genes for trametinib, PD318088 and selumetinib, respectively. Using each of these gene 

sets, the MMPC algorithm predicted parent and child (PC) nodes representative of genes that either 

directly influence or are directly impacted by drug response, where 8-12 PCs were identified for each 

drug. The MMPC algorithm also computed a test statistic, indicating the magnitude of the partial 

correlation for each PC, where a larger correlation indicates a stronger causal relationship. The hybrid-PC 

algorithm was also directly applied to the filtered TCGA-GBM RNASeq data to predict 1-2 parental 

nodes for each drug. For both trametinib and PD318088, phosphoglycerate dehydrogenase enzyme 

(PHGDH) was predicted to be a PC by the MMPC algorithm and a parental node by the hybrid-PC 

algorithm. In addition, SH2B adaptor protein algorithm was also predicted to be a PC for selumetinib and 

PD318088 as well as a parental node for selumetinib, directly influencing MEKi response (Supplemental 

Figure 4).  
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PHGDH Expression Levels Help Inform MEKi Response 

 

Our computational pipeline identified PHGDH as a parental node for two MEKis with the largest test 

statistic from conditional independence testing (Supplemental Figure 4). The significant p-value and the 

large test statistic indicates a significantly strong causal relationship between PHGDH expression levels 

and MEKi response relative to the other PC nodes. In addition, in the univariate analysis, we observed 

significant and positive correlation between PHGDH gene expression and predicted or measured 

trametinib response across our six GBM datasets (5 patient cohorts and avatar) (Supplemental Figure 5). 

Taken together, we hypothesized that PHGDH knockdown increases cellular sensitivity to trametinib; and 

overexpression leads to trametinib resistance. To test this hypothesis, experimental testing was carried out 

by manipulating the PHGDH expression levels in a collection of GBM avatar samples (both proneural 

and mesenchymal subtype cells). We had successful knockdown and overexpression of PHGDH in all 

GBM avatar samples (Figure 3B).  The GBM cells with/without PHGDH manipulation were then treated 

with increasing concentrations of trametinib and the surviving percentage was measured and compared to 

controls. Two control samples with unmanipulated PHGDH expression were used, including a parental 

condition. To assess knockdown, control samples also included lentivirus plasmid vector pLKO.1-puro 

control vector. The average of three short hairpin RNA (shRNAs) constructs with PHGDH knockdown 

demonstrated significantly increased sensitivity to trametinib (p-value < 0.0001) relative to both control 

samples (Figure 3C). To assess overexpression, control samples also included plasmid pLV-EF1. The 

PHGDH overexpression led to significantly increased resistance to trametinib (p-value < 0.0001) relative 

to both control samples as well (Figure 3D). 
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Figure 3: PHDGH was identified and validated to be a biomarker that affects MEKi treatment 

effect in GBM. A. Biomarker discovery pipelines and findings for trametinib (red), PD318088 (gold), 

and selumetinib (blue). The pipeline consisted of filtering this data using the Spearman correlation 

coefficient (SCC) to select genes whose significant and absolute SCC was equal to or exceeded 0.60 

(FDR p<0.05). Then applying two Bayesian algorithms (MMPC and Hybrid-PC) to infer correlation and 

causality between gene expression and drug response using this filtered data. From this pipeline, PHGDH 

expression was predicted to directly influence both trametinib and PD318088 responses. B. Western blot 

of PHGDH and house-keeping control GAPDH in two GBM avatar subtype samples (the proneural and 

mesenchymal subtype, each carrying unique genomic modifications). The experiment confirms 

knockdown and overexpression of PHGDH were successful in our GBM avatar (across mesenchymal and 

proneural GBM subtypes). C and D. CellTiter Glo experiments after trametinib exposure for 72 hours in 

GBM avatar cells (of both proneural and mesenchymal subtypes) following PHGDH knockdown (C) and 

PHGDH overexpression (D). Each experimental condition was evaluated in triplicates, and the plots (C 

and D) represent average across all experiments. For knockdown experiments, 3 sets of shRNA were 
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employed and their average effects were plotted as shown in the blue curve in panel C. A 2-way ANOVA 

test was employed to test the statistical differences among conditions. There are statistical differences in 

the cell survival after trametinib treatment between PHGDH knockdown and both controls (p<0.001 for 

both parental and pLKO). There are also statistical differences in the cell survival after trametinib 

treatment between PHGDH overexpression and both controls (p<0.001 for both parental and pLV-EF1). 

A significant increase in drug resistance occurred following overexpression as well as a significant 

increase in drug efficacy following knockdown.  

 

DISCUSSION  

____________________________________________________________________________ 

Utilizing a computational drug sensitivity prediction tool independently across five GBM patient datasets 

(approximately 1,000 samples), a GBM mouse avatar model and 2 control non-HGG patient datasets, we 

identified a collection of drugs that were predicted to have a higher sensitivity in GBM relative to non-

HGG (the complete list is provided in Supplemental Data 2). While many of our nominated drugs (close 

to 20) have been/are being evaluated in clinical studies against GBM, nearly half (approximately 40) of 

our discoveries have shown efficacy in preclinical experiments reported previously. All of these justify 

the validity of our computational approach. Furthermore, given the heterogeneity among these 

independent clinical studies, the consistency in our discoveries further justify their importance and present 

numerous opportunities for follow up studies. These drugs achieve tumor growth inhibition through a 

variety of mechanisms of actions, namely VEGFRis, EGFRis, and MEKis, which have a rich history of 

study in the context of GBM13-23. Other targets identified that frequently show up in clinical studies 

include mammalian target of rapamycin (MTOR) and cyclin-dependent kinases (CDKs). In addition, 

drugs targeting STAT3, reactive oxygen species (ROS), PAR1, PAK4, apoptosis proteins, ubiquitin-

specific protease 14 (USP14) are also among our top predicted efficacious candidates in treating GBM. 
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All of them present potential new opportunities. The one unique outcome of our approach is that we 

identified agents that are known to act through various mechanisms of actions yet all effective in the 

setting of GBM simultaneously.  

To dive in deeper for the candidate drugs of interest, we found a number of VEGFRis through our 

pipeline, namely avastin, axitinib, and lenvatinib. VEGFRis have a long track record in GBM applications 

and have been identified as providing promising therapeutic opportunity if improvement of biomarkers 

aid in advancing the clinical efficacy of this approach.13 Avastin is an example of such an inhibitor which 

has been investigated in preclinical and clinical studies for its potential to delay GBM tumor growth. It is 

currently approved in adult patients whose cancer has progressed after prior treatment (recurrent or 

rGBM).14  Other VEGFRis include axitinib and lenvatinib, which have shown success in pre-clinical 

studies.15,16 A prospective phase I and II study is currently in place to assess the effectiveness of 

lenvatinib in combination with pembrolizumab for GBM (NCT05973903). 

EGFRis were also repeatedly identified as efficacious for treating GBM across our pipeline. In fact, 

EGFRis have had varying degrees of success against GBM. For example, afatinib, an EGFR inhibitor that 

has shown effect against GBM in preclinical studies.17,18 However, when tested in GBM patients 

(NCT00727506) either alone or in combination with TMZ, only very limited efficacy was observed in 

unselected patients19. Importantly, follow-up study showed that afatinib is only effective in selected 

patients harboring EGFRvIII mutation.20 Given the heterogeneity commonly recognized for a disease like 

GBM, this example highlights the need for biomarker screening as a means to direct patients to their 

appropriate treatment to help clinical trial design in drug development and eventually in the combat 

against GBM.  

In our study, multiple MEKis were repeatedly projected to show higher efficacy in GBM samples 

regardless which control datasets were used. We experimentally validated all three MEKis (trametinib, 
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selumetinib, and PD318088) for their preferential activity in mouse avatar samples when compared to 

NPC. Surveying the literature, we found that preclinical evidence exists to support the efficacy of 

trametinib and selumetinib in treating glioma. For example, trametinib has been reported to exert a strong 

antiproliferative effect on multiple established GBM cell lines, and its inhibitory effect on cell growth was 

observed even after standard of care treatment.21 Selumetinib was reported to stabilize disease progression 

in glioma patients during a phase II clinical trial.22 PD318088 on the other hand, is a more novel MEKi, 

which has not been clinically tested against GBM.23 

Causal inferences have been employed to study disease risks, and they are yet to be widely used in 

identification of drug biomarkers. In this study, we integrated multiple approaches for biomarker 

discovery for our drug of interest. We first apply a commonly used univariate analysis between gene 

expression and drug sensitivity to narrow down the list of informative genes, then two Bayesian based 

causal inference tools were employed to identify causal genes. Through this pipeline, we nominated 

PHGDH as our top MEKi biomarker and was able to experimentally validate its role in MEKi sensitivity. 

Specifically, we found PHGDH expression levels as having a significant and positive correlation and 

causal relationship with trametinib response. Interestingly, PHGDH has previously been proposed as a 

therapeutic target for melanoma in overcoming resistance to MEKis PD0325901 and trametinib,24,25 

where suppression of PHGDH led to sensitivity in MEKi resistant melanoma cells. These findings mirror 

the directionality predicted by our biomarker discovery pipeline, supporting the same biomarker for 

MEKi may be utilized in other cancer settings. Indeed, we envision the same biomarker discovery 

pipeline can be applied to any other drugs and/or phenotypes in the future. In addition, our biomarker 

discovery pipeline identified several other genes which may directly influence MEKi response as well. 

For example, SH2B was predicted to be a PC for both selumetinib and PD318088 as well as a parental 

node for selumetinib, directly influencing MEKi response. It is highly expressed in GBM, promoting 

progression through activating STAT3 signaling.26 It is known to play a critical role in promoting GBM 
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progression and has previously been proposed as a new therapeutic target. Therefore, our discovery also 

warranted studying of this gene as a potential biomarker for MEKis.  

Overall, the findings from this study support the approach to integrate computational and experimental 

models as well as multiple independent cross platform and cross species datasets,  with the goal to speed 

up drug discovery and development for GBM. Our research supports ongoing efforts to improve 

selectivity of treatments applied to patients with GBM through applying discovery pipelines to GBM 

expression data, pairing drug candidates with biomarkers indicative of drug response.  

METHODS 

____________________________________________________________________________ 

GBM Clinical Data Tested in Computational Modeling 

In this study, we applied computational drug and biomarker discovery pipelines to nine publicly available 

primary LGG and adult GBM patient datasets (Supplemental Table 1) to identify compounds of interest 

for specific patient populations defined by the presence of biomarkers. In total, our drug imputation 

model was applied to almost 2,000 LGG and GBM samples, imputing almost 500 drug response scores 

for each sample. The LGG datasets consisted of bulk RNAseq from TCGA (n=516) and the CGGA 

(n=282). TCGA datasets were downloaded using the TCGAbiolinks R package,10 and CGGA datasets 

were downloaded from the CGGA webpage.9 The GBM datasets include microarray data (n=332) and 

bulk RNAseq (n=165) from TCGA, microarray data from CGGA (n=102), microarray data from 

Rembrandt (n=189, GSE108476),27 and a personally combined dataset of published literature (referred to 

as CMDAT) also using affymatrix (n=62). All datasets were normalized and log transformed to yield 

Gaussian expression distributions. 
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GBM Mouse Avatar Model Utilized for Experimental Validation of Drug Candidates and Inferred 

Drug-Biomarker Relationships 

The GBM avatar model11 was created by introducing different genetic driver mutations using CRISPR-

Cas9 into human induced pluripotent stem cells. This was followed by differentiation of GBM-associated 

mutations containing NPC and animal orthotopic engraftment to develop human adult GBM models. The 

NPC samples represent a pre-HGG state. Tumor cells were obtained and cultured to produce spheres, and 

this process was repeated twice to produce primary and secondary sets of tumors and spheres. Secondary 

tumors were obtained following engraftment of primary spheres, and secondary spheres were obtained 

from secondary tumors. This process is reflected in Supplemental Figure 3. This resulted in 66 total 

samples including NPCs, engrafted tumor avatar samples, and spheres with technical replicas. 

Specifically, 6/66 samples were NPCs, and the remaining 60 samples consisted of 28 mesenchymal 

subtype samples and 32 proneural subtype samples. The samples representative of the mesenchymal 

subtype were characterized by PTEN and NF1 deletion, and the proneural subtype was characterized by 

TP53 deletion and PDGFRA mutation. The bulk RNAseq expression profiles for these NPCs, tumors, and 

spheres were obtained, and batch effect correction was performed where appropriate using remove 

unwanted variation (RUV) normalization.28 

Overview of Drug Discovery Pipeline 

To identify drug leads or drugs predicted to elicit a greater response in GBM samples relative to non-

HGG samples, we applied a drug discovery pipeline. This pipeline involved comparing drug response 

scores across different sequencing platforms (microarray and RNAseq) as well as patient and avatar data. 

Cancer cell line screening data has been used to train machine learning models, aiming to translate in 

vitro drug response to in vivo tumor response predictions and generate novel drug discovery hypotheses. 

To date, the Broad Institute’s Cancer Therapeutics Response Portal29 (CTRP) is one of the largest 
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publicly available drug screening efforts, providing drug screening for nearly 1,000 cell lines and 500 

compounds. The most updated dataset from CTRP is CTRP version 2 (CTRP2), representing a variety of 

cancers and molecular targets. CTRP’s cell line transcriptome data is provided through the Broad 

Institute’s Cancer Cell Line Encyclopedia database30 (CCLE). For our purposes, the names across the 

cancer cell lines from CTRP2 and CCLE were harmonized to Cellosaurus accession numbers, indicated 

by the ‘CVCL’ prefix.31 Drugs screened across <40% of all the cancer cell lines were also removed, 

helping to ensure robust predictions. This resulted in 887 cell lines and 493 drugs. Our R package 

oncoPredict’s function calcPhenotype() estimates a gene’s weight in determining a cell’s drug sensitivity 

through applying linear regression with a ridge penalty. This allowed a predictive drug sensitivity score, 

in the form of AUC to be obtained for each sample running through oncoPredict. To compare cross 

platform drug response data, we accounted for technical variation and platform effects by transcriptome 

integration using Rank-In32 prior to running calcPhenotype(). 

The non-parametric Wilcoxon rank sum (WRS) tests were selected for the statistical comparison between 

GBM and non-HGG data. WRS tests were performed, as the assumption of normality did not hold for the 

independent samples T-test in which case the WRS holds power advantages. To reduce the probability of 

making one or more false discoveries or type 1 errors, which are common in multiple hypothesis tests, the 

statistical Benjamini and Hochberg FDR controlling procedure was implemented to adjust p-values. 

Drugs were filtered for statistically significant p-values, which confirmed that differences in predicted 

drug response scores existed between GBM and non-HGG data, and ranked by their effect size. The HLE 

was measured for the magnitude of significance or effect size, known as the location shift.33  It established 

directionality to determine whether a given drug was recommended for GBM over non-HGG, offering a 

robust measure of effect size against outliers and distribution assumptions. Once drugs were ranked, the 

top percentage of significant drugs with the largest location shift were selected. The top 50th percentile of 

compounds with the largest HLE was selected as a conservative choice, as it was large enough to help 
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prevent efficacious drugs from slipping through the pipeline while restrictive enough to help capture 

compounds with the greatest magnitude in response. Due to the high variability of drugs recommended 

for each GBM patient dataset, drugs recommended across the majority of clinical datasets were selected 

for comparison with those recommended across the avatar data. Drug imputation was also performed for 

the avatar dataset, which served as computational verification. Drugs selected in the top 50% of HLE 

across both the majority of clinical data as well as avatar data were brought forward as drug candidates 

for experimental validation. 

Overview of Biomarker Discovery Pipeline  

Our biomarker discovery pipeline was employed to predict biomarkers for drug leads in an effort to 

uncover vulnerable patient populations. This pipeline utilized the SCC as a univariate approach to 

biomarker discovery with Bayesian-network learning (MMPC and hybrid-PC)12 as a multivariate 

approach. Univariate approaches like the SCC are defined as those that evaluate the informativeness of 

each gene individually in isolation from the other genes according to a criterion. MMPC and hybrid-PC 

algorithms depict a more biologically accurate representation of gene interactions by testing for 

conditional independence. They implemented the Fisher Independence Test to measure the partial 

correlation coefficient between predicted drug response scores and the expression of a gene under 

scrutiny while conditioning on a set of the other predictor genes known as the ‘conditioning set.’ The 

TCGA-GBM RNASeq dataset was selected as the primary GBM dataset used in the biomarker discovery 

pipeline because relative to microarray data, RNAseq has higher specificity. It can more accurately detect 

differential expression as well as rare or low expressed genes, and it outperforms microarray in 

determining transcriptomic characteristics of cancer.34,35  The first step in this pipeline was to filter the 

TCGA-GBM RNASeq patient gene expression dataset for genes that were significantly (FDR p-value 

<0.05) and moderately to strongly correlated (|SCC| >= 0.60) with the predicted drug response scores 
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under scrutiny. The SCC was computed by setting ‘cc=TRUE’ in oncoPredict’s calcPhenotype() 

function, adjusted for Spearman correlation. .  

 

After filtering by the SCC, we applied the MMPC algorithm to predict PCs. Filtering the gene expression 

data using SCC reduced the dimensionality of the MMPC algorithm’s input data. This achieved 

reproducibility of its outputs since Bayesian network learning algorithms like MMPC can suffer from 

variable order dependence, which is a problem with high dimensional data like gene expression.36 The 

partial correlation computed for a given gene is equal to the correlation between two sets of residuals 

when linear regression is applied: the first is between the drug under scrutiny and the conditioning set, 

and the second is between the gene under scrutiny and the conditioning set. Hence this test regresses both 

the target and the variable under scrutiny on the conditioning set. Drugs which are predicted to be 

independent have a partial correlation of zero, larger values indicate greater dependency, and smaller 

values indicate limited dependency. MMPC outputs a test statistic, taking into account the directionality 

of the partial correlation, measuring the strength and the directionality of the predicted gene-drug 

associations identified. As the independence tests are performed, they progressively exclude irrelevant 

genes (genes that are independent from the predicted drug response scores). The end result of this 

algorithm are genes that have survived these elimination stages known as PCs. PCs will have significantly 

large test statistics where the sign of the test statistic (whether it is positive or negative) indicates 

directionality. This sign allowed us to determine whether a gene under scrutiny was associated with drug 

sensitivity through up or down regulation. The MMPC algorithm does not distinguish parental and child 

nodes from the PCs identified, so we also applied the Hybrid PC algorithm to the filtered gene expression 

data to infer the structure of the Bayesian network between gene expression and predicted drug response 

in order to determine which PCs were parental nodes. By utilizing these univariate and multivariate 

approaches, we were able to predict correlation, causality, and which genes lead to drug sensitivity and 

how (whether through up or down regulation).  
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Experimental Testing of Drug Candidates GBM Mouse Avatar Model 

The avatar models used to computationally validate drug leads were also used for experimental 

evaluation. Drug leads (PD318088, trametinib, selumetinib) and standard of care agents (TMZ, 

carmustine) were tested in six avatar samples. Two samples were NPCs, two were primary spheres, and 

two were secondary spheres. Mesenchymal and proneural avatar samples were represented equally 

amongst these sample types. To measure efficacy of drug leads, relative ATP was measured on day three 

of treatment. The concentrations used for testing were selected by referencing dose-response curves 

obtained from several published cell line drug screening datasets for GBM cell lines, reported in our 

Simplicity application. Doses selected are provided in Supplemental Data 1. The drug concentrations 

were measured by taking the natural log of the micromolar concentration. For each drug tested, relative 

ATP was captured six times per sample across nine different doses. Drug response or measured AUC was 

obtained by generating dose-response curves. Then measuring AUC using the trapezoidal rule to compute 

the area underneath the relative ATP curve through the R function trapz() from the package pracma.  

Experimental Testing of Inferred Drug-Biomarker Relationships in GBM Mouse Avatar Model 

Through applying our biomarker discovery pipeline to TCGA-GBM RNAseq data, we hypothesized that 

PHGDH knockdown contributes to trametinib sensitivity and overexpression contributes to resistance. To 

experimentally test this relationship in GBM mouse avatar samples, a secondary mesenchymal and 

proneural sphere with PHGDH knockdown and overexpression were treated with trametinib and the 

surviving percentage was measured and compared to negative controls (Figure 3B). Negative controls 

consisted of parental samples and empty vector transduced samples. To assess knockdown, control 

samples also included lentivirus plasmid vector pLKO.1-puro control vector.  
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CODE AND DATA AVAILABILITY 

____________________________________________________________________________ 

https://osf.io/ar9zg/  

 

SUPPLEMENTAL 

____________________________________________________________________________ 

Supplemental Table 1: Overview of the clinical and avatar datasets. Bulk gene expression derived 

from GBM patient and non-high grade glioma (non-HGG) data are used to computationally predict 

efficacious compounds against GBM. Two non-HGG patient datasets, representing low-grade glioma 

(LGG) from The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA), and five 

GBM patient datasets are used to nominate potential drugs of interest against GBM. The GBM patient 

datasets were obtained from TCGA, the Rembrandt study, a personal archive (CMDAT), and CGGA.  

The avatar dataset consists of GBM totaled 60 samples, technical replicates included, as well as 6 neural 

progenitor cells (NPCs). 

https://osf.io/ar9zg/
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Supplemental Figure 1: Drug leads identified for GBM relative to non-HGG (TCGA-LGG and 

NPC). A. Upset plot displaying intersections of drugs predicted to be efficacious for GBM relative to 

non-high grade glioma (non-HGG) across six GBM datasets. These drugs had a Hodges-Lehmann 

estimate (HLE) within the top 50% of drugs with a FDR corrected p-value of <= 0.05. The red asterisk 

indicates 62 drugs that were identified across avatar data and more than half of the clinical datasets. B. 
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The smaller heatmap displays the standardized HLE for all significant drugs identified. The larger 

heatmap displays the HLE specifically for drug leads. Drugs predicted to be more efficacious for GBM 

are in red and include MEK inhibitor trametinib which elicited the greatest response, and those more 

efficacious for non-HGG are blue. 

 

 

Supplemental Figure 2: Standard of care agent’s measured drug response across GBM mouse 

avatar samples. These plots display the drug response captured from experimentally testing standard of 

care agents temozolomide and carmustine, at various drug concentrations, in avatar mouse models. AUC 

(area under the dose response curve) was obtained through measuring the relative ATP scores across nine 

different doses, six times per concentration. Then applying the trapezoidal method to calculate the area 

under the dose response curve. The drug concentrations were measured by taking the natural log of the 

micromolar concentration. GBM samples, including the neural progenitor cell (NPC) samples that 

evolved to specific subtypes, are color coated.  
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Supplemental Figure 3: Generation of the mouse avatar bulk RNAsequencing data. The mouse 

avatar models were created following a series of steps including 1) introduction of different genetic driver 

mutations common in two GBM (glioblastoma) subtypes into human induced pluripotent stem cells 

(iPSCs) using CRISPR-Cas9. 2) differentiation of iPSCs into neural progenitor cells (NPCs), which were 

orthotopically engrafted into mice 3) generation of tumor cells, which were cultured to produce spheres, 

and this process was repeated twice 4) generation of the bulk RNAsequencing gene expression profiles of 

these NPCs, tumors, and spheres. 
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Supplemental Figure 4: Multivariate method for MEK inhibitor (MEKi) biomarker discovery. 

MMPC parental genes were obtained through applying the Min-Max Parents Children (MMPC) 

algorithm to TCGA-GBM RNA sequencing data and imputed MEKi response. MMPC parental genes 

were indicated for each MEKi, where PHGDH was predicted to be a parental gene for both trametinib 

and PD31808 with the largest positive test statistic. The test statistic indicates increased MEKi sensitivity 

may result from PHGDH knockdown. The Bayesian network was obtained from applying the hybrid 

MMPC algorithm to the TCGA-GBM dataset, and PHGDH is confirmed to be a parental node to MEKi 

response.  

 

 

Supplemental Figure 5. Linear plots displaying the relationship between PHGDH gene expression 

across the six GBM datasets and measured or imputed response to trametinib. The Spearman correlation 

coefficient and p-value between gene expression and drug response is provided. In this figure, ‘Avatar’ 

indicates the correlation between the avatar gene expression and the average area under the dose response 

curve measured from experimental testing. 
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Supplemental Data 1-3 are provided in the OSF link. 
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integration, parameter fine tuning (e.g. k, DRGs, number of genes in general), application of 

competing methods, and locating data sources.  

 

ABSTRACT 

____________________________________________________________________________ 

 

Single-cell sequencing techniques have greatly advanced our current understanding of intratumoral 

heterogeneity through identifying tumor subpopulations with distinct biologies and therapeutic responses. 

However, translating biological differences into treatment strategies is challenging, as we still lack tools 

to facilitate efficient drug discovery that tackles heterogeneous tumors. One key step in development of 

such approaches centers around accurate prediction of drug response at the single-cell level to offer 

therapeutic options to specific cell subpopulations. Here, we present a transparent computational 

framework (nicknamed scIDUC) to predict therapeutic efficacies on an individual-cell basis by 

integrating single-cell transcriptomic profiles with large, data-rich pan-cancer cell line screening datasets. 

Our method detects shared expression patterns between the two data sources and utilizes such information 

to project cellular drug response. This method achieves high accuracy, with predicted sensitivities easily 

able to separate cells into their true cellular drug resistance status as measured by effect size (Cohen's d > 

1.0); this holds when using single-cell RNA-seq from both cell line and in vivo models. More importantly, 

we examine our method’s utility with three distinct prospective tests, and in each our predicted results are 

accurate and mirrored biological expectations. In the first two tests, we investigated predicting drugs for 

cell subpopulations that are resistant to standard-of-care (SOC) therapies due to intrinsic resistance or 

effects of tumor microenvironments. In both, our results showed high consistency with experimental 

findings from the original studies. In the third test, we generated SOC therapy resistant cell lines, used 

scIDUC to identify drugs predicted effective on the resistant line, and validated the predictions with in 
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vitro experiments. Together, scIDUC quickly and directly translates scRNA-seq data into meaningful 

cellular drug response for individual cells, displaying the potential to be used by researchers as a first-line 

tool for nuanced and heterogeneity-aware drug discovery.  

 

 

INTRODUCTION 

____________________________________________________________________________ 

 

Heterogeneity within tumors, where distinct cell subpopulations display varying phenotypic features, has 

been causally linked to therapy resistance and disease recurrence in many cancers1–3. Tumor cells 

unresponsive to standard-of-care (SOC) pharmacological interventions continue to proliferate and cascade 

disease progression under the selective pressure. Such phenotypic aberrations often correlate with 

molecular variations in cellular mutational and transcriptional profiles4–6. Thanks to the quickly evolving 

single-cell (SC) sequencing technologies, genomic and transcriptomic landscapes within tumors in many 

patient populations have been continuously characterized7,8. On the other hand, the increasingly available 

single-cell sequencing data confers opportunities for development of new treatment strategies that tackle 

problematic cell groups, address clonal heterogeneity, and eventually help achieve curability in 

cancers9,10.  

 

In addition to traditional pharmaceutical research and development pipelines, computational frameworks 

have emerged as an indispensable tool for drug discovery for their cost-efficient nature and more 

importantly, the ability to screen many drugs for various indications11–13. Current in silico drug discovery 

models are largely constructed based on openly available high-throughput drug screens on pan-cancer cell 

lines (CCLs)14,15, whose transcriptomic profiles are systematically evaluated through bulk RNA 

sequencing (RNA-seq)16. While computational tools utilizing relationships between CCL gene expression 

https://www.zotero.org/google-docs/?MJEwHn
https://www.zotero.org/google-docs/?1H7GjS
https://www.zotero.org/google-docs/?Mct0sb
https://www.zotero.org/google-docs/?TpSfKG
https://www.zotero.org/google-docs/?pYpnab
https://www.zotero.org/google-docs/?dSrqBQ
https://www.zotero.org/google-docs/?7FQcjh
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from RNA-seq and drug response have demonstrated practicality in predicting efficacious treatments13,17–

19, such relationships cannot be directly applied to generate predictions of drug response at the cellular 

level, as  RNA-seq is limited to measuring average expression across a diverse set of cells, which 

obscures cell type and composition, as well as temporal and spatial distributions. Thus, inferring cellular 

drug response requires specialized tools to transfer current bulk-learned drug-gene information to single-

cell RNA sequencing (scRNA-seq) data that encapsulate cell level gene expression patterns20–24.  

 

In recent years, such computational tools have been conceptualized, and a few implementations have also 

been proposed10,20,24. The common crucial functionality among the proposed methods relates to 

overcoming fundamental differences in properties of bulk and SC RNA-seq data to enable predictions of 

drug response at the SC resolution using learned drug-gene information from bulk data. To achieve this, 

Beyondcell, DREEP, and scDr choose to learn a fixed number of drug-specific signature genes from bulk 

CCL data and apply learned signatures independently in scRNA-seq data to calculate signature scores 

which indicate drug response22,25,26. However, considering that genes may harbor varying predictability 

for response to different drugs and scRNA-seq data are notorious for their low detection rates as well as 

stochastic drop-outs14,27, it is not guaranteed that gene signatures always deliver reliable predictions of 

sensitivities to various drugs28. In comparison, SCAD and scDEAL directly tackle differences between 

bulk and SC data and emphasize integration of the two domains via neural network based approaches23,29. 

While data-hungry deep learning (DL) routes could benefit from large scRNA-seq data and model 

complex drug-gene relationships, the availability of CCL bulk data could pose continued limits against 

accurate parameter estimation. Also, it has been shown that DL methods offer comparable performances 

as classical machine learning frameworks in drug response modeling19, while in general consist of more 

parameters and request more computing resources. CaDRReS-Sc also conducts bulk-SC data integration 

but through projecting original data into a fixed-dimensional subspace21. These integration-embedded 

methods by default use dichotomous labels for drug response (sensitive or resistant), and such arbitrary 

https://www.zotero.org/google-docs/?nHmUsK
https://www.zotero.org/google-docs/?nHmUsK
https://www.zotero.org/google-docs/?DYpZ4M
https://www.zotero.org/google-docs/?WSLKga
https://www.zotero.org/google-docs/?iEL5Ib
https://www.zotero.org/google-docs/?YL1Kd9
https://www.zotero.org/google-docs/?ENXit1
https://www.zotero.org/google-docs/?NgEai6
https://www.zotero.org/google-docs/?L2R7u2
https://www.zotero.org/google-docs/?kWYXQN
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cutoffs often may not reflect pharmacological properties and could mask variation of drug response 

among heterogeneous cells. Furthermore, insufficient evidence has been presented thus far to demonstrate 

the translational value of these predictive models in aiding cell-type aware early development for diverse 

biology models.  

 

Therefore, to fill the current gap and to establish an adaptable virtual SC drug screen platform tailored 

toward clinically meaningful predictions, we present scIDUC (single-cell Integration and Drug Utility 

Computation), a novel and transparent transfer learning based framework that quickly and accurately 

generates predictions of drug responses for scRNA-seq data. scIDUC learns relationships between drug 

sensitivities and relevant gene expression patterns based on CCL RNA-seq data and CCL high-throughput 

drug screens. Integration of CCL RNA-seq dataset and target scRNA-seq dataset is performed to denoise 

and extract shared gene expression patterns between bulk and SC data sources; the resulted bulk data is 

then used to train drug response models, whose coefficients are further applied to post-integration SC data 

to infer cellular drug sensitivity scores. We evaluated our method using a variety of scRNA-seq datasets 

with known cellular drug sensitivity status. Through prospective analysis in three distinct scenarios, we 

further demonstrated the versatility of our framework in various biological models addressing research 

questions and generating meaningful therapeutic predictions with potential clinical impact. Validation of 

predictions yielded from scIDUC substantiates its potential as a first-line research tool in the field of 

computational drug discovery for addressing intratumoral heterogeneity and to facilitate hypothesis 

formulation for various oncology research topics.  
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RESULTS 

____________________________________________________________________________ 

 

Overall framework of scIDUC 

An overview of our scIDUC computational pipeline is outlined in Figure 1. Drug screen results from the 

CTRPv2 in normalized area-under-the-dose-response-curve (nAUC) were used as CCL drug response 

(see Methods). Prior to main computation steps, we aimed to identify drug response relevant genes 

(DRGs, see Methods) for each drug (Step 0). Instead of filtering for a certain number of DRGs using an 

arbitrary threshold, a typical DRG list for a drug still consists of all genes, which are ranked from most 

drug response informative to the least. This is to partially address that different drugs may display 

different predictability in different scRNA-seq data. The input bulk and SC RNA-seq datasets were then 

subsetted to retain the same DRGs to facilitate data integration. 

 

Given the distinct properties between bulk RNA-seq and scRNA-seq data, the next step is to integrate the 

CCL bulk RNA-seq dataset and the target scRNA-seq dataset, while preserving shared gene expression 

patterns and parsing out less relevant noise (Step 1). The rationale of imposing DRGs is to maximize the 

likelihood of retaining shared transcriptomic patterns that are associated with drug response. Many data 

integration methods have been proposed to merge multiple scRNA-seq datasets. The scRNA-seq analysis 

R package Seurat has incorporated canonical correlation analysis (CCA) as one of the core algorithms to 

combine multiple SC datasets, based on the rationale that CCA will preserve similarities between data 

sources30. Also, non-negative matrix factorization (NMF) has been used for joining scRNA-seq datasets, 

partially given the interpretation of its inner decomposition factors as “metagenes”31,32. Thus, in Step 1, 

we examined both CCA and NMF algorithms for integrating bulk and SC datasets, which in theory 

contain less commonalities compared with merging SC datasets only. We also designed experiments to 

further evaluate performances of CCA and NMF for accurate drug response predictions. 

https://www.zotero.org/google-docs/?cZj1SX
https://www.zotero.org/google-docs/?Zl8Kg8
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The integration step generates embeddings of the two input RNA-seq datasets and projects them into a 

low dimensional space. Next in Step 2, we utilized regression-based approaches to model drug response. 

We trained models using CCL (bulk) embeddings as predictors and measured drug response as the 

response. Coefficients of the subspace features were then applied to SC embeddings to generate inferred 

cellular drug response. This yields predicted nAUC values for all cells in the scRNA-seq data as inferred 

response to drugs in the CTRPv2.  
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Figure 1. Schematic overview of scIDUC. Drug response relevant genes (DRGs) are generated for use 

in the scIDUC pipeline (Step 0). Step 1 integrates input CCL bulk RNA-seq data (𝑋𝑏𝑘) and scRNA-seq 

data (𝑋𝑠𝑐) to preserve shared expression patterns while reducing noise. The resulting embeddings of bulk 

RNA-seq (𝑍𝑏𝑘) are used with CCL drug response to construct regression models in Step 2. Learned 

coefficients are applied to scRNA-seq embeddings (𝑍𝑠𝑐) to infer cellular drug sensitivity scores. DRG: 

drug response relevant gene. CCL: cancer cell line. SC: single-cell. NMF: nonnegative matrix 

factorization. CCA: canonical correlation analysis. nAUC: normalized area under the dose response 

curve.  
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Selection of parameters and evaluation of pipeline performances 

Based on the overall design of scIDUC, one crucial parameter is the number of DRGs, as it directly 

affects data integration and drug response performances. Since the input bulk RNA-seq data mostly 

remains constant (CCL expression profile) while the target scRNA-seq varies, we sought to determine 

this parameter in a data-dependent way, codifying this parameter as the ratio between number of SCs and 

number of DRGs (or SC-DRG ratio). In addition, the flexible pipeline also allows us to evaluate different 

means of integration (Step 1) and drug response modeling (Step 2). 

  

Thus, to establish an optimal structure of our pipeline, we applied scIDUC with different parameters or 

settings to three independent scRNA-seq datasets with known sensitivity status to specific drugs. To be 

broadly applicable, we chose datasets that represent various diseases and biological origins. In these data, 

drug resistance was established through chronic exposing model system(s) to drugs of interest, followed 

by scRNA-seq of both parent drug-sensitive and derived drug-resistant model(s). Specifically, in the 

Lung-PC9 dataset, Kong et al. chronically exposed PC9 lung cancer cells to Gefitinib33 to establish 

resistance. In the second dataset  (Breast-MCF7)34, Ben-David et al. developed Bortezomib resistant cells 

derived from the MCF7 breast cancer cell line; Bell et al. generated cells resistant to BET inhibitors from 

murine acute myeloid leukemia patient derived xenografts (AML-PDX) models (Supplementary Table 

S1)35,36 .  

We compared predicted cellular drug response from scIDUC with the true sensitive/resistant labels. 

Specifically, we designed two experiments investigating impacts from (1) means of data integration and 

drug response modeling as well as from (2) the SC-DRG ratio parameter.  

 

Predicted cellular drug sensitivities from scIDUC were evaluated via calculating two effect sizes between 

the true resistant and sensitive groups, namely the common-language effect size (Rho statistic) and the 

https://www.zotero.org/google-docs/?hoRsP0
https://www.zotero.org/google-docs/?3oua9v
https://www.zotero.org/google-docs/?Ntn5Wm
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Cohen’s D effect size. Rho statistics indicate the probability of a randomly selected cell from the true 

resistant group having higher predicted nAUC than a randomly selected cell from the true sensitive group 

(see Methods). A value less than 0.5 indicates contradictory predicted drug response status, a value 

around 0.5 implies random chance, and a value above 0.5 is ideal. Similarly, Cohen’s D describes 

differences between predicted nAUCs between the two groups while considering variability (see 

Methods). A Cohen’s D can generally be interpreted as having a small effect size at 0.2, a medium effect 

size at 0.5, and a large effect size at 0.837. Higher values of either criterion therefore signify better 

performances.  

 

(1). Selection of integration methods (CCA or NMF) and drug response modeling strategies 

We first probed different formulae in both data integration (Step 1) as well as in modeling drug response 

(Step 2). Given that one crucial parameter for both methods is the inner dimension 𝑘 (number of latent 

factors for NMF and number of canonical correlation vectors, or CCVs, for CCA), we conducted 

extensive investigations into the robustness of each integration approach with varying 𝑘 values (𝑘 =

{1,2, . . . ,50}). For drug response modeling, we incorporated linear regression (Lm) and non-parametric 

regression models based on a Gaussian kernel (Kernel) to ascertain the optimal pipeline. We used the first 

𝑘 CCVs (for CCA) and the first 𝑘 latent factors (or metagenes, for NMF) respectively and examined 

predicted single-cell drug sensitivities against the truth (Supplementary Figure S2). Two-sample t-tests 

using predicted nAUCs were performed between the true resistant cells and sensitive cells, based on 

which a positive t-statistic indicates correct predicted directions. For Lung-PC9, both methods were able 

to generate correct sensitivity trends towards gefitinib, while CCA based integration shows superiority in 

terms of p-values and t-statistics. For Breast-MCF7 and AML-PDX, CCA consistently predicted correct 

cellular drug response status, whereas volatile test statistics were observed with NMF, especially NMF 

with downstream linear models for drug response prediction. Although NMF coupled with kernelized 

https://www.zotero.org/google-docs/?H4waGX
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regression resulted in more stable results than NMF and linear models, CCA continued to show superior 

results regardless of regression models (Supplementary Figure S2). Taken together, CCA integration 

showed superiority over NMF regarding both accuracy and robustness. We also found that nonparametric 

modeling of drug response seemed to work better for NMF compared with linear models. When coupled 

with CCA, both regression models gave comparable results. Additionally, while the selection of the 

optimal 𝑘 in either CCA or NMF plays a central role in algorithm performance30,38, given that the 

computational goal is to model drug response, we implemented feature selection on post-integration 

embeddings to include subspace features that correlate with drug response (see Methods). Through this, 

scIDUC was able to quickly select only a few meaningful features for model training and prediction 

without screening for optimal inner dimensions in an unsupervised fashion.  

 

(2). Identification of optimal SC-DRG ratios: 

Given results from (1), we further tested varying SC-DRG ratios when using (a) no integration, (b) 

CCA+Lm, and (c) NMF+Kernel. An SC-DRG ratio range spanning from 10 to 0.2 was examined. For 

each SC-DRG, in Step 2, a subset of 95% of available CCLs were randomly selected as a bootstrap 

sample to train prediction models. This process is repeated 50 times, which allowed us to test scIDUC’s 

stability and robustness. Evaluation results were reported at each SC-DRG ratio (Figure 2). When 

integration was performed, median Cohen's D surpassed 0.8 and median Rho statistics surpassed 0.5 for 

the majority of ratios tested, implying that scIDUC can in general recapitulate known cellular response to 

drugs across three scRNA-seq datasets regardless of sc-DRG ratios. No clear trend was observed from 

results without integration. Predicted nAUCs with integration also showed higher robustness, indicated by 

less variability in the results. While with both integration algorithms the prediction accuracy tends to peak 

when sc-DRG ratios fell between 1 and 0.2, NMF showed higher variability compared to CCA and had 

poorer performances outside the ideal sc-DRG ratio range (Figure 2 and Supplementary Table S2). We 

https://www.zotero.org/google-docs/?exRKGU
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observed that a sc-DRG ratio between 1 to 0.2 in general gave good results, supported by stable Rho 

statistics close to 1 and Cohen’s D larger than 1 across all three scRNA-seq data.  

 

Taking results from (1) and (2) together, we prioritize CCA as scIDUC’s core integration method. We 

employ linear regression to model drug response for its simplicity and interpretability. A SC-DRG ratio 

between 0.2 and 1 was recommended for obtaining optimal predictions. However, the final build of 

scIDUC package does allow users to explore NMF and kernel regression as alternative settings.  
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Figure 2 scIDUC recapitulates cellular drug sensitivity status in scRNA-seq data. We applied 

scIDUC with different  data integration settings using varying SC-DRG ratios. 50 bootstrap samples were 

generated within each ratio. Common-language effect Rho (left column) and Cohen’ D (right column) 
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comparing predicted cell response between the true resistant vs. sensitive cell groups across three scRNA-

seq datasets. A larger value indicates a higher separation between the groups. Top row: Lung-PC9; mid 

row: Breast-MCF7; bottom row: AML-PDX. Basic information of these dataset can be found in 

Supplementary Table S1. Summarized numeric results are shown in Supplementary Table S2.  

 

scIDUC outperforms other methods in scRNA-seq data from various sources 

Next, scIDUC was benchmarked against other methods, namely Beyondcell22 and CaDRReS-Sc21, which 

also aim to predict cellular drug response (Supplementary Information 1). Apart from the three datasets 

used to evaluate the scIDUC pipeline, we included three additional scRNA-seq data, representing various 

biology backgrounds as benchmarking datasets (Supplementary Table S1). In CRPC-CCLs, Schnepp et 

al. exposed castration-resistant prostate cancer (CRPC) cell lines PC3 and DU145 to incremental doses of 

docetaxel to acquire resistance39. The PDAC-CFPAC1 dataset describes ductal pancreatic 

adenocarcinoma CFPAC1 cells whose drug response was profoundly altered by tumor microenvironment 

(TME)40. When growing in complete classical organoid media, CFPAC1 cells lost basal properties and 

became responsive to several treatments including SN-38 and paclitaxel. In RMS-oPDX, Patel et al. 

discovered a mesoderm-like cell colony using scRNA-seq on orthotopic patient-derived xenografts 

(oPDX) from pediatric patients with rhabdomyosarcoma (RMS). These cells were shown to be highly 

resistant to the chemotherapy irinotecan (whose active metabolite is SN-38) compared to myoblast cells 

but sensitive to EGFR inhibitors41. These data allowed us to investigate performances of scIDUC and 

competing methods in diverse biology models and indications.  

 

We benchmarked prediction performances of scIDUC, Beyondcell22, and CaDRReS-Sc21 using the same 

evaluation criteria, namely Cohen’s D and Rho statistics. Bootstrapping was implemented for all three 

methods (see Methods). For scIDUC, since a [0.2,1] SC-DRG range generally produced good results 

based on our experiment results from Figure 2, we used two SC-DRG ratios (0.2 and 0.9) within this 

https://www.zotero.org/google-docs/?OTq7u3
https://www.zotero.org/google-docs/?Vhrz3T
https://www.zotero.org/google-docs/?upM1wM
https://www.zotero.org/google-docs/?67ZPxS
https://www.zotero.org/google-docs/?6xdrhJ
https://www.zotero.org/google-docs/?c46zGV
https://www.zotero.org/google-docs/?Pc65f8
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range to demonstrate the minimal parameter tuning needs for scIDUC, while avoiding biased results. 

Across all datasets, our method achieves the highest effect sizes across all three benchmarking datasets 

under both SC-DRG specifications, with median Rho-statistics above 0.8 and median Cohen’s D above 1 

(Figure 3). Beyondcell was able to separate the true resistant and sensitive cells and showed high 

consistency, however its results were less accurate (median Rho-statistics around 0.7 and median Cohen’s 

D less than 1) compared with scIDUC. CaDRReS-Sc did not generate meaningful predictions to recollect 

cellular drug response (median Rho-statistics around 0.5 and median Cohen’s D close to 0). Additionally, 

across datasets Lung-PC9, Breast-MCF7, and AML-PDX, we observed similar results: scIDUC in general 

had the highest Rho statistics and Cohen’s D; Beyondcell provided meaningful predictions though less 

accurate. Interestingly, CaDRReS-Sc showed good performance with the Breast-MCF7 dataset, though 

failed to recapitulate true cellular drug response status in the other two. Notebly, for AML-PDX, neither 

Beyondcell or CaDRReS-Sc was able to recollect true cell drug response status (Supplementary Figure 

S3). The suboptimal performances of the two other methods is not unanticipated given their 

methodological designs. For Beyondcell, though applying bulk-learned signatures to SC data could 

bypass integrating bulk and SC datasets and to some extent reflect cellular response to drugs, these 

signatures are swayed by quality of scRNA-seq data. Signature score calculating can be subordinate to 

random factors such as drop-outs and low expression values, resulting in less ideal predictions. 

CaDRReS-Sc centers its modeling strategies around IC50 instead of AUC, which has been demonstrated 

to be more reliable for response prediction42. Here, our benchmarking results could suggest that modeling 

strategies used by CaDRReS-Sc lack adaptivity to account for AUCs as drug response. Furthermore, a 

fixed set of drug response essential genes were used by CaDRReS-Sc for all drugs43. Since different drugs 

might correlate with different genes, an invariant gene set might be insufficient to capture drug-gene 

relationships. In comparison, scIDUC and Beyondcell are both sensitive to drug-specific genes and 

showed superior results.  

 

https://www.zotero.org/google-docs/?yHFtzD
https://www.zotero.org/google-docs/?rXVzRW
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Figure 3 scIDUC outperforms other methods across three scRNA-seq datasets. For each method, 50 

bootstrap samples were generated (see Methods). In all three datasets, scIDUC shows higher Common-

language effect Rho (A) and Cohen’ D (B) comparing predicted cell response between the true resistant 

vs. sensitive cell groups than that of other methods (CaDRReS-Sc or Beyondcell). Summarized numeric 

results are shown in Supplementary Table S3.  

 

scIDUC enables clinically meaningful drug discovery 

We next showcase the utility of our scIDUC framework as a trailblazer in aiding hypothesis development 

for clinically meaningful drug discovery. We conducted prospective analyses for three different scenarios 

utilizing the RMS-oPDX, PDAC-CFPAC1, and CRPC-CCLs datasets, representing diverse biology 

models including patient-derived xenografts (PDX), tumor microenvironments (TME), and acquired drug 

resistance in vitro. In RMS-oPDX, we applied scIDUC to screen efficacious drugs targeting the SOC 

(SN-38) resistant mesoderm-like cells. Our nominated drugs showed high consistency with findings from 
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the original study. In PDAC-CFPAC1, scIDUC was used to predict sensitivities of CFPAC1 cells grown 

in different TMEs to various drugs. The resulting drug differential efficacy profile between the two TMEs 

were highly comparable to drug panel results reported by Raghavan et al. Finally, in CRPC-CCLs, we 

utilized scIDUC to screen drugs showing efficacies in docetaxel-resistant CRPC cells and successfully 

validated our nomination through in vitro experiments. 

 

Nominating drugs targeting mesoderm cells in RMS patients 

In RMS-oPDX, Patel et al. delineated that mesoderm-like cells in pediatric RMS tumors bore profound 

resistance to SOC chemotherapy irinotecan (SN-38)41. Therefore, targeting therapy-resistant mesoderm 

cells constitutes a cornerstone for curbing the current high rates of disease recurrence. To this end, we 

applied scIDUC to RMS-oPDX, aiming to discover drugs showing high efficacy in mesoderm cells. To 

increase likelihood of finding actionable therapeutics, we expanded the pool of candidate drugs by 

predicting cellular sensitivities to various compounds from not only the CTRPv2 but in addition the 

Genomics of Drug Sensitivity in Cancer 2 (GDSC2)44 databases. Two-sample testing was performed 

between mesoderm (SOC resistant) cells and myoblast (SOC sensitive) cells, through which drugs 

displaying lower predicted nAUC (suggesting higher sensitivity) in mesoderm cells were included as 

candidates. To ensure prediction robustness, this pipeline was applied independently to oPDX from each 

patient (11 in total) in the dataset, and frequency of each nominated drug was summarized over all 

patients. We considered drugs with a frequency higher than 50%, or nominated from at least  6 out of 11 

patients independently as robust candidates. We identified drugs with diverse mechanisms and ranked 

their target pathways by the number of drugs belonging to the same class (Figure 4A). In both CTRPv2 

and GDSC2, epidermal growth factor receptor (EGFR) is among the most frequent targets (Figure 4A). 

Furthermore, 16 drugs were simultaneously proposed to be efficacious against mesoderm cells by 

comparing prediction results from both databases. The top five target pathways of the 16 identified 

compounds were presented in Figure 4B, in which EGFR is ranked the first, targeted by three drugs 

https://www.zotero.org/google-docs/?sI8hRs
https://www.zotero.org/google-docs/?E9owDw
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(Afatinib, Gefitinib, and Erlotinib). Our drug nomination is strongly supported by the original study, 

where EGFR was validated as an actionable drug target for chemo-resistant mesoderm cells. The 

application of scIDUC recapitulates such a finding through independent, data-driven analysis. In addition, 

scIDUC has proposed other drugs and target pathways as potential strategies for inhibiting mesoderm 

cells in RMS patients, such as MEK inhibitors (Trametinib and Selumetinib). MEK inhibitors were 

previously shown to induce tumor differentiation in RMS and potently inhibit RMS in both cell line 

models and xenograft models45,46. These findings warranted the further evaluation of these newly 

nominated drugs in SOC resistant RMS patients. 

 

Depicting therapeutic susceptibility in PDAC cells affected by different TMEs 

Raghavan et al. showed that TME dramatically altered sensitivities to various therapeutics in the PDAC 

cell line model CFPAC1 as well as in PDAC organoids40. For example, as previously recapitulated by 

scIDUC, CFPAC1 cells grown in classical complete organoid media (scClassical) were re-sensitized to 

SN-38 and Paclitaxel compared to their counterparts grown in the basal cell line media (scBasal). An 

additional measured drug screen panel was performed by the authors to obtain a broader differential drug 

response profile between scBasal and scClassical states induced by different TMEs (Supplementary 

Figure S3A or originally Figure 6G from Raghavan et al.). To study predictability of scIDUC in this 

situation, we predicted sensitivities of scBasal and scClassical cells to the same treatments tested in the 

original drug panel. Based on the drug panel, treatments with demonstrated differential efficacy (i.e., 

treatments whose mean differential efficacy deviated from zero and confidence interval did not contain 

zero) were kept, among which seven drugs were found in the CTRPv2 database and used by scIDUC to 

generate cellular response predictions. Two-sample t-tests were conducted to examine differences in 

predicted nAUCs between scBasal and scClassical cells (Supplementary Figure S3B). Cohen’s D was 

calculated to demonstrate differences in predicted drug response between scBasal and scClassical cells; a 

positive Cohen’s D indicates more resistance in scBasal cells, whereas a negative value implies the 

https://www.zotero.org/google-docs/?LIfEAf
https://www.zotero.org/google-docs/?hKUdz2
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contrary. We plotted Cohen’s D of each treatment by its actual value to illustrate the extent of predicted 

differential efficacy between the two cell states (Figure 4C, Left). Corresponding drug panel results from 

Raghavan et al. were shown in their original ranking for comparison (Figure 4C, Right). Our results 

achieved high consistency with drug panel data by Raghavan et al. Gemcitabine, SN-38, and Paclitaxel 

had the highest Cohen’s D, indicating profound discrepancies between resistant scBasal cells and 

sensitive scClassical cells. MK 1775 and 5-Fluorouracil showed modest and slight differences, whereas 

Trametinib and Afatinib were predicted to be more sensitive in scBasal cells. Our results were strongly 

supported by the original experimentally measured drug response in different TMEs, which highlights the 

capability of scIDUC at capturing TME-shaped drug response at the single-cell level. Furthermore, 

scIDUC can be applied to hundreds of drugs screened in CCL drug screenings to decipher potential 

differential drug response in different TMEs, which is extremely expensive if not impossible to carry out 

at this scale experimentally. 

 

Discovering and validating drugs for docetaxel-resistance in CRPC 

Though docetaxel was approved for CRPC, resistance among patients is prevalent39, highlighting a need 

to identify new therapeutics targeting the non-responsive cells. We utilized the CRPC-CCLs dataset 

where docetaxel sensitive and resistant cells have been experimentally defined and supported by our 

scIDUC prediction. Here we employed scIDUC again to predict cellular sensitivities to hundred other 

treatments in the CTRPv2 and the GDSC2 databases and prospectively identified drugs showing 

predicted efficacy in docetaxel resistant cells. We conducted two-sample t-tests comparing docetaxel 

resistant and sensitive cell groups, through which we selected drugs showing higher effects (lower 

nAUCs) in the resistant group using an adjusted p-value threshold of less than 0.05. Resulting drugs from 

each database were ranked based on their adjusted p-values from the lowest to the highest.  We selected 

the top five drugs with the smallest adjusted p-values from each data source and listed their molecular 

targets (Figure 4D). A number of BRAF inhibitors were identified from the CTRPv2 (vemurafenib and 

https://www.zotero.org/google-docs/?NuSMHs
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PLX-4720) and the GDSC2 (PLX-4720 and dabrafenib). In CTRPv2, vemurafenib showed the highest 

differential efficacy between the two CRPC cell groups, with docetaxel resistant cells having significantly 

predicted sensitivity than docetaxel resistant cells (Figure 4E, adjusted p-value=5.34 × 10−14). To 

experimentally validate this prediction, we chose to test vemurafenib using a previously developed in 

vitro cell line model system containing docetaxel sensitive and resistant DU145 cells.  We first exposed 

these established cells to docetaxel to ensure presence of differential response to the drug (Supplementary 

Figure S5). To evaluate our candidate drug, we treated cells with increasing concentrations of 

vemurafenib and generated dose-response curves for both cell groups (Figure 4F). Vemurafenib showed 

significantly higher inhibitory activity among docetaxel resistant DU145 cells with a mean half maximal 

inhibitory concentration (IC50) of 12.9 µM/L compared to its IC50 of 27.9 µM/L in sensitive cells 

(Figure 4G, two-way ANOVA p<0.0001). Taken together, our in vitro experiment results matched our 

computational predictions, further supporting the reliability of prospective results generated by scIDUC.  

Overall, through applying scIDUC in three different scenarios fulfilling varying research needs, we 

demonstrate its ability to enable drug development targeting heterogeneous tumors. Further examination 

and experimental validation of our prediction results underscore the potential clinical impact of identified 

drugs. The diverse biological backgrounds in these cases, including PDX, TMEs, and in vitro cell models, 

support broad adaptations of scIDUC to enable clinically meaningful drug discovery.  
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Figure 4 scIDUC facilitates drug discovery in various models by identifying cell-type-specific drug 

candidates. A. Top drug targets predicted by scIDUC for SOC-resistant mesoderm cells in RMS-oPDX. 

B. Efficacious drugs for mesoderm cells in RMS-oPDX concurrently identified from the CTRPv2 and the 

GDSC2 and their targets. C. ScIDUC recapitulates differential efficacies shaped by tumor 

microenvironments (TME) in the PDAC model CFPAC1 cells. D. Top candidate drugs predicted to be 

efficacious against docetaxel resistant cells from each high-throughput drug screen E. BRAF inhibitor 

vemurafenib is predicted to be effective against docetaxel-resistant DU145 cells (adjusted p<0.0001). For 

each cell group, the box shows the median, the first, and the third quartiles of predicted nAUCs. F. 

Docetaxel-resistant DU145 cells show higher sensitivity to vemurafenib compared to their docetaxel-

sensitive counterparts in vitro (two-way ANOVA p<0.0001). At each concentration, mean percent 

viability ± standard deviation is plotted. SOC: Standard-of-Care. CTRPv2: Cancer Therapeutic Response 

Portal Version 2. GDSC: Genomics of Drug Sensitivity in Cancer. PDAC: Pancreatic Ductal 

Adenocarcinoma.  

 

DISCUSSION 

____________________________________________________________________________ 

 

Assessment of gene expression at the SC level offers detailed mappings of cell compositions and 

substantially advances understanding of complex diseases such as cancer that involves heterogeneous cell 

types. Origins of therapy resistance and disease recurrence have been linked to such heterogeneity in 

many malignancies, often attributed to existence of insusceptible cells thriving under selective pressures1–

3. Accordingly, cell-type-aware drug discovery using scRNA-seq data has demonstrated potentials to curb 

resistance and improve treatment outcomes47–49. Though computational drug discovery tools have been 

proposed for this goal amid increasing public access to scRNA-seq datasets, most pipelines still focus on 

target identification and validation, a procedure often involves generation of scRNA-seq data, or 

https://www.zotero.org/google-docs/?dEgbTj
https://www.zotero.org/google-docs/?dEgbTj
https://www.zotero.org/google-docs/?sJGV7L
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inference of cellular changes under therapeutic perturbations (instead of cellular response to a potential 

treatment given its expression profile)10,50. These methods so far have not been demonstrated to be able to 

utilize existing scRNA-seq data to conduct virtual drug screens, facilitate hypothesis formulation, and 

propose drug candidates addressing tumor heterogeneity. To fill this research need, we have developed 

scIDUC, which integrates the pan-cancer CCL bulk RNA-seq and scRNA-seq data and infers cellular 

response to various drugs. By coercing both datasets to have the same DRGs, the CCA-based integration 

preserves the similarities between bulk and scRNA-seq data in a drug response relevant context, allowing 

accurate predictions to be made at the single cell level without the need for scRNA-seq drug screen 

training data, which is difficult to acquire. More importantly, through prospective analysis and validation 

in three distinct scenarios, we demonstrated the versatility of scIDUC for quickly generating cell-type-

specific predictions. The resulting predictions showed high concordance with previous findings and 

experiment results, further bolstering the utility of scIDUC for providing therapeutic opportunities with 

clinical impact. 

 

To configure the scIDUC pipeline for optimal results, we evaluated its performances with varying factors 

including SC-DRG ratios, integration methods, and drug response models against known cell drug 

response status in independent scRNA-seq datasets. Our results spotlighted an SC-DRG ratio range 

between 0.2 to 1, data integration via CCA, and linear regression models for accurate predictions. Since 

this data consisted of parental and resistant cell populations receiving different treatment, we gathered 

additional evidence showing that scIDUC predictions were not confounded by potential batch effects. 

First, we compared predicted sensitivities to a variety of drugs between true resistant and true sensitive 

cell groups in AML-PDX (Supplementary Figure S5). Considering the established resistance against I-

BET-151, predicted cellular response toward another BET inhibitor, I-BET-762, also showed significant 

differential sensitivity. However, predicted response to other drugs such as histone deacetylase inhibitors 

(entinostat and vorinostat), NAMPT inhibitor (daporinad), and EGFR/HER2 inhibitor (Lapatinib) showed 

https://www.zotero.org/google-docs/?1iFFin
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minimal to no separation between the two groups. Moreover, in the RMS-oPDX dataset, cells from an 

oPDX sample underwent sequencing altogether and therefore precluded batch effects. In this scenario, 

scIDUC not only recapitulated resistance to the SOC therapy SN-38 but provided drug nomination highly 

in line with the original findings. Collectively, our results show that scIDUC predictions are not hindered 

by potential existence of batch effects.  

 

To date, a few other methods have been proposed to computationally predict single cell drug response 

using drug screen data on CCLs, such as Beyondcell, CaDRRes-sc, scDR, and scDEAL21–23,26. Each of 

these methods employ a unique transfer learning based approach, utilizing relationships between CCL 

expression data and drug response to predict single cell level drug sensitivity. However, there are several 

differences in the actual methodology among these methods, which is reviewed in Supplementary 

Information 1. We compared scIDUC with CaDRRes-sc and Beyondcell and demonstrated its superiority 

in prediction accuracy. Across the six scRNA-seq datasets with known cellular drug response labels (gold 

standards), cellular drug sensitivities predicted by scIDUC not only reiterated true drug response but also 

had highest precision (evidenced by highest rho statistics and Cohen’s D). In comparison, results by 

Beyondcell echoed true cellular drug sensitivities but lacked accuracy, whereas CaDRRes-sc in general 

failed to provide meaningful predictions. Notably, CaDRRes-sc utilizes an invariant set of essential genes 

generated from CRISPR screens in its data integration process43, while both scIDUC and Beyondcell 

derive drug-specific marker genes. Our benchmarking results support the rationale of using genes whose 

expression correlates with measured drug response. Since CRISPR screens detect genes altered by 

therapeutic perturbations, they may not reflect drug-gene relationships at the baseline level. On the other 

hand, using signatures alone is susceptible to varying quality of scRNA-seq data which are known to have 

low detection rates. Meanwhile, calculated scores based on these signatures reflect only relative 

sensitivities within a scRNA-seq data and lack pharmacological meanings. Taken together, scIDUC 

achieves desirable results through incorporating both drug-specific features and bulk-SC integration. In 

https://www.zotero.org/google-docs/?HDaaV4
https://www.zotero.org/google-docs/?kzfsSA
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addition, scDR and scDEAL both employ DL methodologies to perform bulk-SC integration and drug 

response prediction. Both methods embody binarized labels as drug response and train corresponding 

models as classification problems. Given that drug response across CCLs is better described by spectrum 

values such as AUCs51, it is unclear if binary cellular drug labels can capture varying degrees of 

sensitivity in a heterogeneous tumor. Furthermore, insufficient evidence was given by either method to 

demonstrate how resulting SC drug response will benefit hypothesis generation and drug discovery. It is 

also noteworthy that compared with other methods, scIDUC requires minimal parameter tuning, enabling 

adaptations to a broad user base for various oncology therapy research topics.  

 

Successful characterization of drug response profiles at the SC level plays a fundamental role in 

advancing precision medicine in cancers52,53. Learned cellular sensitivity to various drugs can greatly 

benefit studies tackling topics such as heterogeneity and cancer drug resistance by providing cell type 

specific therapy vulnerability information. Aided by the robust prediction results from scIDUC, we 

spearheaded hypothesis generation and drug candidate identification in three distinct scenarios. For RMS-

oPDX, we applied scIDUC independently in 11 oPDX samples to identify drugs showing efficacy against 

the SOC therapy resistant mesoderm cells. In the majority of the samples EGFR inhibitors were 

nominated as one of the potential drug classes, reiterating original findings from Patel et al41. Moreover, 

we also discovered a number of other drug classes as potential targets. For example, MEK inhibitors 

showed high occurrences combating mesoderm-like cells. Previous studies have established evidence that 

MEK inhibitors effectively inhibit RMS both in vitro and in vivo45,46. Moreover, inhibition of the 

MAPK/ERK pathway by MEK inhibitors have been shown to downregulate mesodermal genes in 

embryonic stem cells54. Given these findings, further evaluation of MEK inhibitors in RMS patients with 

disease recurrences is warranted. In the second scenario, we showcased that scIDUC was able to capture 

TME-shaped differential drug response in CFPAC1 cells, a PDAC cell line model. Tumor 

microenvironmental niche factors have been shown to drive aggressive PDAC progression from a 

https://www.zotero.org/google-docs/?Lcll7M
https://www.zotero.org/google-docs/?4BOKPh
https://www.zotero.org/google-docs/?m8bNCk
https://www.zotero.org/google-docs/?EaqPV5
https://www.zotero.org/google-docs/?MVZMKB
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therapy-responsive “classical” state to a less differentiated “basal” state40,55. Thus, characterizing PDAC 

cellular drug response in different TME-driven states is a crucial first step to develop treatments to curb 

the current high mortality rate (five-year survival ~9%). Differential cellular drug efficacies between 

scBasal and scClassical cells resulted from scIDUC accurately recapitulate drug panel testing results 

reported by Raghavan et al. (Figure 4C). In addition, Shinkawa et al. also reported similar findings where 

basal-like, poorly progressed PDAC organoids showed higher resistance to Gemcitabine compared to 

classical-like organoids 55. These discoveries substantially support usage of scIDUC to streamline drug 

discovery under different TMEs without the need to conduct large scale drug screens. Finally, we utilized 

scIDUC again to screen for alternative therapeutics against docetaxel resistance in CRPC CCLs including 

DU145 and PC3. Our top candidate, namely the BRAF inhibitor vemurafenib, showed consistent higher 

efficacy in docetaxel resistant DU145 cells than sensitive ones when evaluated in vitro (Figure 4F). A 

previous trial of vemurafenib has reported an average maximum serum concentration (Cmax) of 61.4 

µg/mL, or equivalent to 125.3 µM/L, was well tolerated by patients56. Our in vitro experiments exposing 

vemurafenib in docetaxel resistant cells estimated an IC50 of 12.9 µM/L, which sits well below the safety 

dose, highlighting its clinical potential to be used in combination with docetaxel to control CRPC 

progression. Furthermore, two EGFR inhibitors have been proposed to combat docetaxel resistance by 

our computational pipeline (Figure 4D), consistent with previous studies suggesting that EGFR inhibitors 

mediate docetaxel resistance in CRPC57,58. To sum up, our scIDUC powered computational pipelines 

were able to quickly propose drug candidates with clinical impact. Our method was able to pinpoint a 

selective collection of actionable drugs that are ready to be evaluated for different purposes. Serving as an 

alternative to traditional drug screens and target identification, scIDUC was able to provide rationalized 

and streamlined drug nomination for therapeutic development. When combined with experimental testing, 

it can speed up development of efficacious treatments.  

 

https://www.zotero.org/google-docs/?Dg3gxZ
https://www.zotero.org/google-docs/?4QSWD6
https://www.zotero.org/google-docs/?px7tEu
https://www.zotero.org/google-docs/?RQeT7M
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In addition, knowledge of intratumoral therapy vulnerability has been explored to inform formulation of 

drug combinations that target multiple cell groups to help eliminate heterogeneous tumors20,59. Given the 

vast number of potential combination therapies, computational frameworks have been proposed to 

conduct virtual systematic screens for specific indications60,61. To this end, cellular drug response scores 

are key components for modeling combination efficacies. For example, nAUC might be perceived as the 

probability of an organism surviving a certain drug treatment; under such an assumption, cellular nAUCs 

can be used to infer potential drug synergy under the various statisical models62. Cellular drug response 

scores from scIDUC provide key variables for drug combination modeling strategies; our future work will 

incorporate scIDUC and computational drug combination discovery pipelines to establish a virtual screen 

platform for various complex cancers.  

 

In sum, we showcase a computational method to depict SC vulnerability to various drugs, establishing a 

foundation for cell-type-aware drug discovery combating the prevailing issue of treatment failure due to 

tumor heterogeneity. Our case studies not only provide therapeutic options for various diseases but also 

substantiate the necessity of our proposed method in aiding efficient sdevelopment of clinical meaningful 

treatments. 

 

METHODS 

____________________________________________________________________________ 

 

Data acquisition 

The pan-cancer cell line (CCL) transcriptomic data (bulk RNA-seq) was downloaded from the Cancer 

Dependency Map (DepMap, https://depmap.org/portal/)63 and originally from the Cancer Cell Line 

Encyclopedia (CCLE)16. CCLE expression data were downloaded in raw count and log2(TMP+1) 

formats. CCL drug response data was downloaded from DepMap, originally from the Cancer 

https://www.zotero.org/google-docs/?YjtW9F
https://www.zotero.org/google-docs/?IJP3il
https://www.zotero.org/google-docs/?S7d7wl
https://depmap.org/portal/
https://www.zotero.org/google-docs/?fPMu9I
https://www.zotero.org/google-docs/?kLjXBb
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Therapeutics Response Portal (CTRPv2) generated at the Broad Institute15,63,64. We utilized raw drug 

screen data to refit dose-response curves and retain robust drug sensitivity profiles65. For each drug-CCL 

pair, area-under-the-dose-response-curve (AUC) was divided by its tested dose range to generate 

normalized AUC (nAUC), which was then used as the drug response in scIDUC; nAUC is continuous and 

ranges between 0 to 1 with 0 implying complete cell kill and 1 implying no cell kill.  

 

The single-cell RNA-seq datasets used in this study were downloaded from various sources, depending on 

the availability of original data provided by the authors. A detailed description of each data source and its 

properties can be found in Supplementary Table S1.  

 

Preprocessing 

CCL names in downloaded CCLE transcriptome and CTRPv2 drug response data were harmonized to 

Cellosaurus accession numbers, which make use of the prefix “CVCL”14,66. Given that a drug was only 

screened in a subset of CCLs, we calculated percentages of missing values for each drug and excluded 

those screened in less than 40 percent of all CCLs in the database. This results in a total of 493 treatments 

(and 887 CCLs) in the CTRPv2 dataset.  

For scRNA-seq data with raw counts, each dataset was pre-processed using the Scanpy Python module67. 

A threshold was imposed on all datasets to filter for cells with at least 200 genes detected and genes 

detected in at least 3 cells. Each cell was then normalized to have the same total counts of 1 million 

(counts per million, CPM) and log-transformed with a pseudo-count of 1, i.e., log2(CPM+1). 

 

Drug response relevant genes generation 

We used the R package limma to detect drug response relevant genes (DRGs) given the continuous nature 

of nAUC. As recommended by the package, for each drug, CCLE raw expression counts were used to 

https://www.zotero.org/google-docs/?YrMpl5
https://www.zotero.org/google-docs/?73jwhN
https://www.zotero.org/google-docs/?7gi74s
https://www.zotero.org/google-docs/?hu8WGr
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construct linear models. Resulting genes were ranked by B-statistics which indicates probabilities of 

differentially expressed from most significantly associated with drug response to least.  

 

Integration of bulk and sc data  

We implemented two different approaches to integrate bulk and SC RNA-seq data, namely canonical 

correlation analysis (CCA) and non-negative matrix factorization (NMF). Let 𝑋𝑏𝑘 ∈ ℝ𝑛1×𝑝 be the CCL 

bulk RNA-seq matrix with 𝑛1 samples and 𝑝 genes; let 𝑋𝑠𝑐 ∈ ℝ𝑛2×𝑝 be a scRNA-seq matrix with 𝑛2 cells 

and 𝑝 genes. The bulk- and SC-matrices have the same DRGs. 

Integration via CCA 

We expanded the CCA integration pipeline proposed in the Seurat package30. Briefly, we conducted 

singular value decomposition (SVD) on the matrix derived based on the multiplication of 𝑋𝑏𝑘𝑋𝑠𝑐
𝑇 ∙

𝑋𝑏𝑘𝑋𝑠𝑐
𝑇 captures similarities between CCLs from bulk RNA-seq and cells from scRNA-seq based on the 

shared DRGs. Therefore, resulting singular vectors through SVD, i.e., 

SVD(𝑋𝑏𝑘𝑋𝑠𝑐
𝑇) = USV𝑇 = ∑ 𝑢𝑖𝑠𝑖𝑣𝑖

𝑇 ,𝑘
𝑖=1  

can be viewed as canonical correlation vectors (CCVs). The left singular vectors 𝑈 =

𝑢1, 𝑢2, … , 𝑢𝑛1
correspond to CCVs for bulk data; the right singular vectors 𝑉 = 𝑣1, 𝑣2, … , 𝑣𝑛1

correspond 

to CCVs for SC data.  

Accordingly, 𝑍𝑏𝑘 = 𝑈√𝑆 ∈ ℝ𝑛1×𝑘 and 𝑍𝑠𝑐 = 𝑉√𝑆 ∈ ℝ𝑛2×𝑘  provides embeddings of 𝑋𝑏𝑘 and 𝑋𝑠𝑐to a 

subscape where similarities between bulk and single-cell data are preserved. A visualization of this 

process is provided in Supplementary Figure S1. 

Integration via NMF 

Since several studies have reported NMF-based methods to capture common gene expression patterns and 

adjust for discrepancies between batches31,32, we included NMF as an alternative means to integrate bulk 

https://www.zotero.org/google-docs/?bEYY5L
https://www.zotero.org/google-docs/?AqHThH
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and single-cell data. Let 𝑌 = [𝑋𝑏𝑘
𝑇, 𝑋𝑠𝑐

𝑇] ∈ ℝ𝑝×(𝑛1+𝑛2) be a concatenated matrix containing both data 

sources, then 

𝑁𝑀𝐹(𝑌) = 𝑊𝐻, 

Where 𝑊 ∈ ℝ𝑝×𝑘is a common factor matrix whose columns can be viewed as metagenes; 𝐻 ∈

ℝ𝑘×(𝑛1+𝑛2) describes metagene expression profiles for bulk samples and single cells. Within 𝐻, 𝐻𝑏𝑘 ∈

ℝ𝑘×𝑛1 and 𝐻𝑠𝑐 ∈ ℝ𝑘×𝑛2  are metagene expression matrices for bulk data and SC data, respectively.   

 

Drug-response relevant feature extraction 

We performed ad hoc feature extraction to select a pharmacogenomic subspace (if CCA) or 

pharmacogenomic metagenes (if NMF) for accurately inferring single-cell drug response without the need 

to determine the inner dimensionality within the matrix decomposition tasks. For embeddings resulted 

from CCA integration, we correlate each dimension (feature) in 𝑍𝑏𝑘 (bulk embeddings) with measured 

drug response. Resulting p-values are adjusted via the Benjamini–Hochberg procedure to control false 

discovery rates (FDRs)68. Dimensions that have FDRs less than a threshold 𝛿 are retained. In other words, 

such pharmacogenomic subspace comprises dimensions 𝑟 = {𝑟1, 𝑟2, . . . , 𝑟𝑗}  ⊂ {1, 2, . . . , 𝑘}, where 

 𝐹𝐷𝑅(𝑟𝑗)  < 𝛿 and 𝛿 ∈ {0.05, 0.1} by default. Training data is then defined as 𝑋𝑡𝑟𝑎𝑖𝑛 = 𝑍𝑏𝑘
𝑛1×𝑟, and 

predictions of cellular drug response will be made on 𝑋𝑡𝑒𝑠𝑡 = 𝑍𝑠𝑐
𝑛2×𝑟. 

For NMF, we select metagenes by correlating each metagene in 𝐻𝑏𝑘 with measured drug response. 

Metagenes that have FDRs less than a threshold 𝜋 are kept. We retain a set of metagenes 𝑚 =

{𝑚1, 𝑚2, . . . , 𝑚𝑙}  ⊂ {1, 2, . . . , 𝑘}, where  𝐹𝐷𝑅(𝑚𝑙)  < 𝜋 . Training data is then defined as 𝑋𝑡𝑟𝑎𝑖𝑛 =

(𝐻𝑏𝑘
𝑚×𝑛1)𝑇, and predictions of cellular drug response will be made on 𝑋𝑡𝑒𝑠𝑡 = (𝐻𝑠𝑐

𝑚×𝑛2)𝑇 . 

 

 

 

https://www.zotero.org/google-docs/?zbBdf1
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Prediction 

To predict single-cell drug response, we formulate a linear regression model using 𝑋𝑡𝑟𝑎𝑖𝑛 as predictors 

and measured drug response as the dependent variable. Learned coefficients are then applied to 𝑋𝑡𝑒𝑠𝑡 to 

generate nAUCs for cells. We also included an alternative non-parametric regression model based upon 

the radial basis function (RBF) kernel. 

 

Evaluation metrics 

To evaluate the performances of algorithms, we compared predicted cellular nAUCs against true drug 

sensitivity status (resistant or sensitive) via two-sample t-tests. To better illustrate, we incorporated two 

additional metrics showing the effect sizes of predicted drug response differences between resistant and 

sensitive cell groups.  

Let the predicted nAUCs of resistant cells be 𝐿𝑟 = (𝑙𝑟1, 𝑙𝑟2, . . . , 𝑙𝑟𝑝) and that of sensitive cells be 𝐿𝑠 =

(𝑙𝑠1, 𝑙𝑠2, . . . , 𝑙𝑠𝑞). The common language effect size Rho (𝜌) is a non-parametric statistic describing the 

probability that a randomly selected cell from 𝐿𝑟 will have a greater nAUC than a randomly sampled cell 

from the 𝐿𝑠
69. Thus, 𝜌 can be directly calculated via the Mann-Whitney U-statistic: 

𝜌 =
𝑈

𝑝 × 𝑞
 

This is also equivalent to the area-under-the-receiver-operating-characteristic-curve (AUC-ROC). 

Therefore a larger 𝜌 indicates a more accurate prediction result. 

 

We also calculate Cohen’s D as a parametric effect size which provides a measure of robustness and 

variation in addition to differences between two cell groups: 

𝐶𝑜ℎ𝑒𝑛′𝑠 𝐷 =
𝐿𝑟̄ − 𝐿𝑠̄

𝑠
 

https://www.zotero.org/google-docs/?xaOHnS
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where 𝑠 is the pooled standard deviation from the two groups, i.e., 𝑠 = √
(𝑝−1)𝑠2

𝐿𝑟+(𝑞−1)𝑠2
𝐿𝑠

𝑝+𝑞−2
. A value of 

0.8 or higher is typically viewed as a large effect size and above37. 

 

Cellular drug response prediction via CaDDReS-Sc and Beyondcell 

CaDDReS-Sc by default supports only the GDSC drug screen. While the CaDRReS-Sc github repository 

suggests flexibility to train a new model based on other drug response datasets like CTRP, this pipeline 

was not applied to CTRP in neither the original manuscript nor github. To allow for comparison between 

other similar methods, we used CTRPv2. To calculate the weight for each sample-drug pair that is 

determined by the logistic weight function, we used max concentrations and AUC as the original pipeline 

learned weights from max concentrations and IC50s. To generate predictions on the single cell samples, 

we defined the kernel features as the correlations between CCLs and single cell samples. For Beyondcell, 

we utilized gene signatures generated from only the CTRPv2 database to infer cellular drug sensitivity 

scores (Beyondcell Scores or BCS, Supplementary Information 1). Since a higher BCS indicates higher 

sensitivity, we compared sensitive cells against resistant cells to ensure consistent directions with the rest 

of the methods. Bootstrap aggregation was performed, and performance was summarized across 50 

applications of scIDUC and CaDRReS-Sc where 95% of bulk samples were randomly selected for each 

application. Given that Beyondcell provides pre-trained signatures, we sampled 95% of up- and down-

regulated genes without replacement as a bootstrap experiment.  

 

Cell Culture and Reagents 

The DU145 prostate cancer cell line was obtained from American Type Culture Center (ATCC) and 

cultured in RPMI 1640 medium (Thermo Fisher Scientific), supplemented with 10% fetal bovine serum 

(FBS) (Gibco, Thermo Fisher Scientific) and maintained at 37 °C with 5% CO2. A docetaxel-resistant cell 

line model for DU145 was established by chronically exposing the parent cell line to stepwise increasing 

https://www.zotero.org/google-docs/?haTDEY
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concentrations of docetaxel as previously described70,71. Both cell lines were periodically monitored for 

mycoplasma using the Universal Mycoplasma Detection Kit following the manufacturer’s protocol 

(ATCC). In vitro drug screening in both the docetaxel-resistant and control DU145 models was 

performed using either vemurafenib (PLX4032; CAS No. 918504-65-1) or docetaxel (RP-56976; CAS 

No. 114977-28-5) obtained from MedChem Express (Monmouth Junction, NJ, USA) dissolved in 

dimethylsulfoxide (DMSO) to obtain stock concentrations of 100mM for vemurafenib or 5mM for 

docetaxel.  

 

Drug Screening in Docetaxel-Resistant and Control DU145 Cell Lines 

Docetaxel-resistant and control DU145 cells were trypsinized, harvested, counterstained with Hoechst 

33342 Fluorescent Stain (Thermo Scientific, Pierce Biotechnology, Rockford, IL) and resuspended in full 

growth media to 5x104 cells per mL prior to plating in 96-well microplates (Thermo Scientific) using a 

seeding density of 5x103 cells per well and allowed to attach for 24 hours. Following incubation, cells 

were treated with different concentrations of either docetaxel ranging from 0.92nM to 6uM, or 

vemurafenib ranging from 2.5uM to 50uM. Cell viability for each well was measured following a 72-hour 

drug exposure using the WST-1 assay [(Roche Applied. Science, Penzberg, Upper Bavaria, Germany) 

following the manufacturer’s protocol. Absorbance at the 450 nm wavelength was assessed using the 

Synergy HTX Multi-Mode Plate Reader (BioTek, Winooski, VT)]. Absorbance values for each well were 

used to calculate percent viability relative to the no drug condition. Results are reported as a mean and 

standard deviation of three independent biological experiments, each containing three technical replicates 

for each experimental condition. 

 

 

 

 

https://www.zotero.org/google-docs/?o1nqEX
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SUPPLEMENTARY INFORMATION 

____________________________________________________________________________ 

 

1. Brief overview of other single-cell drug response prediction algorithms 

We briefly introduce the methodologies of current competing methods. We compared performances of 

scIDUC against that of Beyondcell and CaDRReS-Sc in our study using a variety of single-cell (SC) 

datasets with known drug sensitivity information1,2. Additionally, Chen et al. have developed a deep 

learning (DL) approach–scDEAL based on a variational autoencoder–to infer sensitivities to drugs in 

scRNA-seq data3. Similarly, Zheng et al. used an adversarial learning approach and developed SCAD4. 

These DL approaches utilize strictly binarized drug response (sensitive vs. resistant) instead of a 

continuous value, which better reflects drug response propertities5. ASGARD imputes SC drug 

sensitivities by scanning for drugs that associate with reversed gene expression from disease samples to 

normal samples6. As a result, it requires both disease and normal scRNA-seq data from the same subjects, 

which is a limiting factor for its utility.  

 

In scIDUC, the CCA integration process involves singular value decomposition (SVD) on the similarity 

matrix between SC: 

 

https://www.zotero.org/google-docs/?JhVTOH
https://www.zotero.org/google-docs/?KJIPSw
https://www.zotero.org/google-docs/?ruGGRP
https://www.zotero.org/google-docs/?MWgnzg
https://www.zotero.org/google-docs/?Z9sEMz
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Figure S1 Integration of CCL RNA-seq and single-cell RNA-seq datasets via CCA.  

 

CaDRReS-Sc: CaDRReS-Sc is a machine learning framework used for cancer drug response prediction 

based on single-cell RNA-sequencing data. It extends a previously established method, CaDRReS, 

calibrated for higher accuracy of drug response prediction based on single cell data. In brief, it is a matrix 

factorization model, learning a latent pharmacogenomic space that captures the relationship between drug 

response profiles and transcriptomic data derived from cells, cell clusters, cell lines, or patients. Cell line 

data screened across a panel of drugs are used for model training to obtain a more robust drug response 

prediction through sharing information across drugs. The objective function learns the pharmacogenomic 

space, incorporating a logistic weight function (𝐶𝑖𝑢) to assign a weight for each sample-drug pair, 

reducing noise from extrapolation errors in IC50 values from the dose-response curve fitting step. The 

objective function that is minimized is defined below. 
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Beyondcell: Beyondcell requires a scRNAseq expression matrix and a collection of drug signatures to 

compute a scaled Beyondcell enrichment score (BCS), ranging from 0-1. This score indicates the activity 

of a signature in the expression matrix or how susceptible each cell is based on the analyzed gene 

signature where a high and low BCS indicates concordance and discordance between the signature and 

the analyzed cell, respectively. The BCS is defined in Additional file 1 of the original publication. 

Alternatively, it is included below. 

 

A signature is obtained from a differential expression analysis and consists of drug perturbation, 

containing transcriptional changes induced by a drug, or drug sensitivity, reflecting the transcriptional 

status of sensitivity or resistance prior to drug treatment. Alternatively, the user can provide a GMT 

file/ranked matrix. If functional signatures are applied, the BCS can be used to evaluate the cell’s 

functional status. Therefore, depending on what collection is used, the BCS can measure the cell 
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perturbation susceptibility or the predicted sensitivity to a given drug. If a gene signature has separate sets 

of upregulated and downregulated genes and is therefore bidirectional, the BCS is calculated for each 

signature mode. The individual sum of the expression is calculated and divided by the number of genes in 

the given signature that are present in the scRNAseq expression matrix.  

 

The BCS is calculated for each drug-cell pair, resulting in a BCS matrix used to determine the presence of 

therapeutic clusters within the scRNAseq data, visualized using a UMAP. These clusters represent tumor 

cell subpopulations with distinct shared drug behavior, and the therapeutic differences among the cell 

populations guide drug selection to nominate cancer-specific treatments. Drug selection is performed 

using a sensitivity-based ranking, which prioritizes the best drug hits.  

 

For each signature analyzed, a switch point (SP) is calculated, which represents the value in the 0-1 scale 

where cells switch from down-regulated to up-regulated status. Tumors which are the most 

therapeutically homogenous will either have a SP of 0, indicating all cells are sensitive to a drug, or 1, 

indicating all cells are resistant to a drug. A heterogeneous response toward a drug is indicated by a SP 

between 0-1.  
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scDEAL: scDEAL integrates a bulk RNA-seq dataset (typically pan-cancer cell line profiles) and a 

scRNA-seq dataset by minimizing a loss function of maximum mean discrepancy (MMD): 
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𝐿𝑜𝑠𝑠𝑀𝑀𝐷(𝐸𝑏(𝑋𝑏), 𝐸𝑠(𝑋𝑠)) = |
1

𝑛
∑𝑛

𝑖=1 𝜙(𝑥𝑖
𝑏) −

1

𝑚
∑𝑚

𝑗=1 𝜙(𝑥𝑠
𝑗)|𝐻, where 𝑋𝑏 = {𝑥𝑏

𝑖}𝑖∈{1,2,...,𝑛} is the 

bulk RNA-seq with 𝑛 samples and 𝑋𝑠 = {𝑥𝑠
𝑗}𝑗∈{1,2,...,𝑚} is the scRNA-seq with 𝑚 cells. 𝜙 maps original 

data into a universal reproducing kernel Hilbert space (RKHS) and |. |𝐻indicates the RKHS norm 

measuring distances between two vectors. Such a loss function pursues similar distributions between the 

two data sources. By incorporating the additional MMD loss into the optimization of an encoder model 

for predicting drug response, continuous probability scores 𝑌𝑠 are produced for scRNA-seq data. scDEAL 

then binarizes cellular drug response using a 0.5 probability threshold. The available scDEAL Python 

package currently only supports the five scRNA-seq experiment datasets appeared in Chen et al. 

 

2. Information of scRNA-seq data used in the paper 

Basic properties of the scRNA-seq used in this manuscript is shown in Table S1. We have preprocessed 

each dataset using the scanpy package. For each one we included cells with at least 200 RNAs detected 

and genes detected in at least 3 cells. Cells with high percentages of mitochondria genes were filtered out. 

We did not select any high variability genes as scIDUC utilizes drug response relevant genes (DRGs) in 

the input datasets. 
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Table S1 Information of the scRNA-seq datasets 

 

Data Name Authors No. 

of 

Cells 

Sample 

Source 

Disease Drug Name Availability 

Lung-PC9 Kong et al. 507 PC9 cell line Lung cancer Gefitinib GSE112274 

AML-PDX Bell et al. 1472 MLL-AF9 Acute Myeloid 

Leukemia 

I-BET-151 GSE110894 

Breast-MCF7 Ben-David 

et al.a 

2899 MCF7 cell 

line 

Breast cancer Bortezomib GSE114462 

RMS-oPDX Patel et al. 5643 Patient-

derived 

xenografts 

Rhabdomyosar

coma (RMS) 

SN-38 and 

EGFRis 

GSE174376b 

CRPC-CCLs Schnepp et 

al. 

324 PC3 and 

DU145 cell 

lines 

Castration-

resistant 

prostate cancer 

(CRPC) 

Docetaxel GSE140440 

PDAC-

CFPAC1 

Raghavan 

et al. 

2042 CFPAC1 cell 

line 

Pancreatic 

ductal 

adenocarcinom

a (PDAC) 

SN-38 and 

Paclitaxel 

Single Cell 

Portal 

#1644c 

 

a For the Ben-David dataset, we treated t0 cells as Bortezomib sensitive cells and t96 cells as resistant 

cells.  
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b The RMS data in our study was obtained directly from Dr. Anand G. Patel. 

c CFPAC1 cell line data presented in Figure 4 in Raghavan et al. (2021) was used in our paper.  

 

3. Performances of scIDUC and other competing methods
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Table S2 scIDUC performance with different integration algorithms and different cell-to-DRG ratios. 

 

 

Data Method Metric SC-DRG Ratio 

10 5 2 1 0.5 0.3 0.2 

AML-PDX 

CCA 

Integration 

-LOG10(P-

Value) 

15.11 

(13.23) 

23.23 

(19.39) 

49.56 

(46.08) 

53.23 

(43.31) 46.6 (40.16) 

41.86 

(38.96) 

58.24 

(56.72) 

AML-PDX 

CCA 

Integration 

Cohen's D 

0.61 (0) 0.75 (0) 1.17 (0) 1.17 (0.01) 1.11 (0) 1.06 (0.02) 1.31 (0.02) 

AML-PDX 

CCA 

Integration 

Rho 

0.66 (0) 0.69 (0) 0.8 (0) 0.8 (0) 0.79 (0) 0.78 (0) 0.83 (0) 

AML-PDX 

NMF 

Integration 

-LOG10(P-

Value) 0.55 (0) 1.6 (0) 0.33 (0) 0.96 (1.34) 4.58 (4.72) 6.93 (7.77) 6.72 (5.96) 

AML-PDX 

NMF 

Integration 

Cohen's D 

0.27 (0) 0.06 (0) 0.26 (0) 0.37 (0.02) 1.14 (0.02) 1.11 (0.02) 0.87 (0.05) 

AML-PDX NMF Rho 0.6 (0) 0.52 (0) 0.58 (0) 0.64 (0.01) 0.8 (0) 0.8 (0) 0.74 (0.01) 
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Integration 

AML-PDX 

No 

Integration 

-LOG10(P-

Value) 

15.11 

(13.23) 

23.23 

(19.39) 

49.56 

(46.08) 

53.23 

(43.31) 46.6 (40.16) 

41.86 

(38.96) 

58.24 

(56.72) 

AML-PDX 

No 

Integration 

Cohen's D 

0.12 (0.06) -0.2 (0.06) 0.12 (0.16) 0.34 (0.06) 0.26 (0.06) -0.16 (0.06) -0.1 (0.07) 

AML-PDX 

No 

Integration 

Rho 

0.54 (0.02) 0.45 (0.02) 0.53 (0.05) 0.59 (0.02) 0.57 (0.02) 0.46 (0.02) 0.48 (0.02) 

Breast-

MCF7 

CCA 

Integration 

-LOG10(P-

Value) 6.98 (3.75) 

26.78 

(15.94) 55 (56.14) 41.5 (33.58) 

72.17 

(54.36) 

106.57 

(103.98) 

50.39 

(100.46) 

Breast-

MCF7 

CCA 

Integration 

Cohen's D 

0.24 (0.01) 0.39 (0.01) 0.11 (0.01) 0.71 (0.04) 0.93 (0.05) 1.24 (0.2) 1.79 (0.14) 

Breast-

MCF7 

CCA 

Integration 

Rho 

0.58 (0) 0.62 (0) 0.53 (0) 0.7 (0.01) 0.76 (0.01) 0.82 (0.04) 0.9 (0.02) 

Breast-

MCF7 

NMF 

Integration 

-LOG10(P-

Value) 3.33 (0) 0.28 (0) 9.61 (12.26) 5.99 (6.41) 12.65 (13.8) 

11.72 

(13.09) 

16.16 

(19.22) 

Breast- NMF Cohen's D 0.06 (0) 0.25 (0) -0.41 (0.04) 0.05 (0.05) 0.88 (0.16) 0.58 (0.21) 1.27 (0.31) 
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MCF7 Integration 

Breast-

MCF7 

NMF 

Integration 

Rho 

0.52 (0) 0.57 (0) 0.39 (0.01) 0.51 (0.02) 0.74 (0.04) 0.68 (0.06) 0.86 (0.05) 

Breast-

MCF7 

No 

Integration 

-LOG10(P-

Value) 6.98 (3.75) 

26.78 

(15.94) 55 (56.14) 41.5 (33.58) 

72.17 

(54.36) 

106.57 

(103.98) 

50.39 

(100.46) 

Breast-

MCF7 

No 

Integration 

Cohen's D 

0.13 (0.09) -0.4 (0.2) -0.87 (0.12) -0.21 (0.1) -0.34 (0.1) -0.23 (0.12) -0.23 (0.12) 

Breast-

MCF7 

No 

Integration 

Rho 

0.54 (0.02) 0.39 (0.05) 0.27 (0.03) 0.44 (0.03) 0.41 (0.03) 0.43 (0.03) 0.44 (0.03) 

Lung-PC9 

CCA 

Integration 

-LOG10(P-

Value) 

13.58 

(12.84) 

14.62 

(13.19) 

22.71 

(14.62) 21.9 (18.97) 14.26 (8.64) 

22.27 

(11.38) 

28.71 

(14.94) 

Lung-PC9 

CCA 

Integration 

Cohen's D 

2.02 (0) 2.15 (0.18) 2.75 (0) 2.89 (0.01) 2.06 (0.09) 2.58 (0.05) 3.01 (0.11) 

Lung-PC9 

CCA 

Integration 

Rho 

0.92 (0) 0.93 (0.01) 0.96 (0) 0.96 (0) 0.91 (0.01) 0.95 (0) 0.97 (0) 

Lung-PC9 NMF -LOG10(P- 1.68 (0) 2.92 (0) 24.71 (0) 3.88 (0) 0.81 (0.89) 0.96 (1.03) 0.74 (0.59) 
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Integration Value) 

Lung-PC9 

NMF 

Integration 

Cohen's D 

0.96 (0) 1.68 (0) 1.26 (0) 1.28 (0) 1.61 (0.09) 1.71 (0.1) 2.01 (0.08) 

Lung-PC9 

NMF 

Integration 

Rho 

0.85 (0) 0.89 (0) 0.82 (0) 0.83 (0) 0.9 (0.01) 0.9 (0.01) 0.93 (0.01) 

Lung-PC9 

No 

Integration 

-LOG10(P-

Value) 

13.58 

(12.84) 

14.62 

(13.19) 

22.71 

(14.62) 21.9 (18.97) 14.26 (8.64) 

22.27 

(11.38) 

28.71 

(14.94) 

Lung-PC9 

No 

Integration 

Cohen's D 

-0.19 (0.13) -0.34 (0.1) -0.97 (0.1) -0.52 (0.22) -0.86 (0.16) -1.09 (0.12) -1.2 (0.16) 

Lung-PC9 

No 

Integration 

Rho 

0.43 (0.04) 0.37 (0.03) 0.25 (0.02) 0.36 (0.06) 0.27 (0.04) 0.22 (0.02) 0.2 (0.03) 

 

a values are presented as mean (SD). 
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Figure S2 Robustness of CCA and NMF based integration for single-cell drug response prediction. 

Combinations of integration methods (CCA or NMF) and drug response models (Lm: linear model; 
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Kernel: kernelized nonparametric regression) were tested. Inner dimensions of CCA or NMF ranging 

from 1 to 50 were tested for robustness. T-tests results comparing predicted nAUC between true resistant 

and sensitive groups are shown; a t-statistic larger than 0 indicates correct direction. 
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Table S3 Benchmarking scIDUC against other competing methodsa. 

 

Data 

Method Cohen's D 

-LOG10(P-

Value) Rho 

CRPC-CCLs Beyondcell 0.94 (0.02) 14.32 (0.6) 0.74 (0) 

CRPC-CCLs CaDRReS-Sc 0.29 (0.02) 2.01 (0.17) 0.57 (0) 

CRPC-CCLs 

scIDUC (SC-

DRG=0.2) 1.52 (0.07) 33.25 (2.28) 0.87 (0.01) 

CRPC-CCLs 

scIDUC (SC-

DRG=0.9) 1.78 (0.12) 42.11 (4.07) 0.89 (0.02) 

PDAC-CFPAC1 Beyondcell 0.55 (0) 33.37 (0) 0.65 (0) 

PDAC-CFPAC1 CaDRReS-Sc 0.39 (0.01) 17.36 (0.71) 0.39 (0) 

PDAC-CFPAC1 

scIDUC (SC-

DRG=0.2) 1.2 (0.11) 138.46 (22.31) 0.81 (0.02) 

PDAC-CFPAC1 

scIDUC (SC-

DRG=0.9) 1.22 (0.25) 143.98 (44.6) 0.8 (0.05) 

RMS-oPDX Beyondcell 0.94 (0.02) 14.32 (0.6) 0.74 (0) 

RMS-oPDX CaDRReS-Sc 0.12 (0.01) 2.66 (0.21) 0.47 (0) 

RMS-oPDX 

scIDUC (SC-

DRG=0.2) 1.65 (0.17) 300 (0) 0.88 (0.02) 
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RMS-oPDX 

scIDUC (SC-

DRG=0.9) 2.07 (0.16) 300 (0) 0.93 (0.01) 

AML-PDX Beyondcell 0.55 (0) 33.37 (0) 0.65 (0) 

AML-PDX CaDRReS-Sc 0.39 (0.01) 17.36 (0.71) 0.39 (0) 

AML-PDX 

scIDUC (SC-

DRG=0.2) 1.2 (0.11) 138.46 (22.31) 0.81 (0.02) 

AML-PDX 

scIDUC (SC-

DRG=0.9) 1.22 (0.25) 143.98 (44.6) 0.8 (0.05) 

Breast-MCF7 Beyondcell 1.37 (0.07) 238.46 (19.84) 0.83 (0.01) 

Breast-MCF7 CaDRReS-Sc 1.66 (0.01) Inf (NaN) 0.88 (0) 

Breast-MCF7 

scIDUC (SC-

DRG=0.2) 1.77 (0.15) 300 (0) 0.9 (0.02) 

Breast-MCF7 

scIDUC (SC-

DRG=0.9) 0.77 (0.04) 300 (0) 0.72 (0.01) 

Lung-PC9 Beyondcell 2.05 (0.05) 15.33 (0.48) 0.92 (0) 

Lung-PC9 CaDRReS-Sc 0.46 (0.06) 23.04 (10.79) 0.36 (0.03) 

Lung-PC9 

scIDUC (SC-

DRG=0.2) 2.94 (0) 41.47 (0) 0.97 (0) 

Lung-PC9 

scIDUC (SC-

DRG=0.9) 2.94 (0) 41.47 (0) 0.97 (0) 

a The values are presented as mean (SD). 
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Figure S3 scIDUC outperforms other methods across three additional scRNA-seq datasets. For each 

method, 50 bootstrap samples were generated (see Methods). In all three datasets, scIDUC shows higher 

Common-language effect Rho (A) and Cohen’ D (B) comparing predicted cell response between the true 

resistant vs. sensitive cell groups than that of other methods (CaDRReS-Sc or Beyondcell).  

 

4. Prospective analysis to capture therapeutic vulnerabilities in PDAC-CFPAC1 cells shaped by TMEs 
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Figure S4 A. Drug panel screens showing differential efficacy in a pancreatic ductal carcinoma patient-

derived xenograft model with two different subtypes due to different TMEs. This figure was originally 

generated by Raghavan et al. (Figure 6G in DOI:https://doi.org/10.1016/j.cell.2021.11.017). B. Predicted 

cellular response to various drugs using scIDUC. T-tests results comparing predicted nAUCs between 

scBasal and scClassical cells are shown.  

 



108 

 

Figure S5 WST assay showing differential sensitivity to docetaxel among DU145 cells. Docetaxel-

resistant DU145 cells show higher resistance to docetaxel compared to their docetaxel-sensitive 

counterparts in vitro (two-way ANOVA p<0.0001). At each concentration, mean percent viability ± 

standard deviation is plotted. 

 

 

Figure S6 scIDUC predicts accurate results in the presence of potential bath effects. Left: Rho 

statistics comparing predicted nAUCs between I-BET sensitive cells and resistant cells over seven drugs. 

Right: Cohen’s D comparing predicted nAUCs between I-BET sensitive cells and resistant cells over 

seven drugs.
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ABSTRACT 

____________________________________________________________________________ 

 

Cancer treatment failure is often attributed to tumor heterogeneity, where diverse malignant cell clones 

exist within a patient. Despite a growing understanding of heterogeneous tumor cells depicted by single-

cell RNA sequencing (scRNA-seq), there is still a gap in the translation of such knowledge into treatment 

strategies tackling the pervasive issue of therapy resistance. In this review, we survey methods leveraging 

large-scale drug screens to generate cellular sensitivities to various therapeutics. These methods enable 

efficient drug screens in scRNA-seq data and serve as the bedrock of drug discovery for specific cancer 

cell groups. We envision that they will become an indispensable tool for tailoring patient care in the era of 

heterogeneity-aware precision medicine.  

 

INTRODUCTION 

____________________________________________________________________________ 

 

In an ongoing effort to curb cancer morbidity and mortality, computational methods have shown great 

potential at aiding drug discovery.1,2 Based on artificial intelligence (AI) principles including both 

classical machine learning (ML) and deep learning (DL) frameworks, many computational approaches 

leverage high-throughput drug screens (HTS) on cancer cell lines (CCLs) to infer sensitivities to various 

drugs in a target dataset.1 These HTS data, in combination with CCL molecular profilings, offer insights 
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into connections between CCL expression profiles and drug response phenotypes. Models trained on 

these data can be applied to target expression datasets (e.g., patient tumors) to predict vulnerabilities to 

various anti-cancer drugs and further lead off drug selection in specific settings.   

 

In recent years, an increasing volume of studies through single cell RNA-seq (scRNA-seq) analysis 

suggest heterogeneous tumors, in which cancer cells display temporal and spatial diversity, are causally 

related to a critical challenge in cancer treatment: disease progression through drug resistance.3 Within a 

heterogeneous tumor, various subpopulations of cells, each with distinct genetic and phenotypic traits, can 

coexist. When exposed to therapeutic interventions, these diverse cell subclones may respond differently, 

with some intrinsically resistant to treatment. The selective pressure exerted by the therapy can lead to the 

proliferation of these therapy-resistant cell subclones, ultimately contributing to treatment failure.4 

Recognizing the pivotal role of tumor heterogeneity, this necessitates cell-type aware drug discovery to 

target problematic cell groups within patient tumors and provide treatment opportunities with clinical 

impact. In this context, computational frameworks are expected to enable efficient early development by 

generating drug response profiles at the single-cell (SC) level.5 Meanwhile, given that 1) large-scale CCL 

expression profiles are systematically surveyed by bulk RNA-seq which captures an averaged estimation 

across within-tumor cell subtypes and 2) the fundamental differences in RNA-seq and scRNA-seq 

techniques, specialized methods are needed to utilize large-scale drug screens of CCLs to infer drug 

activity at the SC level.  

 

One key embodiment of such methods relates to the successful application of bulk-learned drug-gene 

relationships to SC datasets.6 The construct of such methods involves an essential process that converts 

learned relationships between CCL molecular profiles and drug response into references for scRNA-seq 

to generate cellular drug sensitivity status. Several transfer learning approaches have been proposed to 
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facilitate such a process, including data integration through matrix factorization, variational autoencoder 

networks, and biomarker/signature based frameworks. 

 

Successful prediction of cellular response is the keystone of cell type-aware drug discovery. It will 

facilitate development of therapeutics for targeting therapy-resistant cells. Furthermore, speciality 

treatments can be used with standard-of-care (SOC) therapies as a combination to reach all malignant 

cells and help eliminate heterogeneous tumors. In this review, we present computational methods that are 

designed to infer drug activity at the SC level. We focus on how inferring cellular drug response 

facilitates pre-clinical research through enabling hypothesis generation and providing actionable drug 

candidates. Moreover, we also reason that predicted cellular drug response can be used to design 

combination therapies to target heterogeneous tumors and help achieve curability.  

LITERATURE DATA COLLECTION 

____________________________________________________________________________ 

 

Harzing’s Publish or Perish software was used to query work with Google Scholar between the years 

2020-2023, pulling the first 200 entries whose title contained the keyword ‘single cell drug’ or ‘single cell 

therapeutic.7 In Figure 1, a total of 374 entries were identified and subsequently filtered to remove review 

articles, abstracts, and preprint archives. Duplicate papers were removed as well as papers whose title or 

abstract did not contain the keyword ‘drug response’. From the 20 papers obtained at the end of filtering, 

we zoomed in and focused on eight publications that described computational drug response prediction at 

the single-cell level through integration with bulk RNAseq data. A summary of these works is depicted in 

Figure 2 and include neural network/deep-learning methods (scDEAL8, SCAD9), biomarker or signature 

based methods (DREEP10,11, Beyondcell12, ASGARD13, and scDr14), and traditional machine learning 

based approaches (CaDRReS-Sc15, scDRUG16). 
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Figure 1. Literature selection workflow 
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Figure 2. Overview of single-cell drug sensitivity prediction methods 

HTS drug screens and CCL molecular data sources 

All eight published works reviewed have been developed to infer drug response at the single-cell level 

using a collection of CCL HTS databases. To date, the largest publicly available HTS screening efforts 

are the Sanger’s Genomics of Drug Sensitivity in Cancer (GDSC)17, the Broad Institute’s Cancer 

Therapeutics Response Portal (CTRP),18 and the PRISM Repurposing dataset (PRISM).19 In addition, the 

Library of Integrated Network-Based Cellular Signatures (LINCS) consortium has generated 

encyclopedic profiles of cellular response (termed cellular signatures) under drug perturbations.20 The cell 

lines and compounds included in these datasets represent a variety of cancers and molecular targets.21 The 

CTRP evaluates 481 drugs on 860 CCLs; the GDSC tests roughly 300 to 400 drugs across two initiatives; 

the PRISM expands screened drugs to include various non-oncology molecules and covers thousands of 

treatments.The LINCS data contains CCL perturbation profiles under tens of thousands small molecules.  
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For CCL transcriptomic data, the Broad Institute’s Cancer Cell Line Encyclopedia database (CCLE) 

provides a comprehensive RNA-seq on approximately 1000 CCLs.22 In addition, the GDSC platform 

measures CCL gene expression through microarray probes. CCL molecular features and drug response 

phenotypes together provide a gateway for unearthing drug-gene relationships and constructing predictive 

models. To describe drug sensitivity, HTS data include summary statistics in the form of half-maximal 

inhibitory concentration (IC50) values in GDSC and area-under-the-dose-response-curve (AUC) values for 

CTRP and PRISM.  

SC DRUG RESPONSE PREDICTION METHODS 

_________________________________________________________________ 

The aforementioned HTS and CCL data constitutes the majority of data sources used by computational 

methods to derive drug-gene relationships. A breakdown of specific data used by each SC drug response 

prediction method is provided in Table 1. Since the CCL transcriptomic profiles were analyzed at the bulk 

level, where expression of a gene is aggregated over the entire sample, learned drug-gene information 

cannot be directly applied to scRNA-seq data for meaningful drug response projection. To overcome this, 

several methods attempt to unify bulk and SC data to maximize similarities between the two sources. On 

the other hand, some methods seek to identify informative markers from bulk CCL and subsequently 

apply such markers in SC data to infer cellular drug response. An overview of the key methodologies 

used in these works are listed in Table 1 and further discussed in details.  
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Table 1. Key aspects of SC drug response prediction methods.  

Original 

Method 

HTS 

Implemented 

Feature and 

Biomarker 

Selection 

Data 

Integration 

Approach 

Drug 

Response 

Statistics 

Drugs Used 

for 

Benchmarking 

scDEAL 

 

https://githu

b.com/OSU-

BMBL/scD

EAL 

GDSC Selects 

variable genes. 

Detects critical 

genes for drug 

response.  

Neural 

Networks 

Converts 

AUC to 

binary labels 

of sensitive 

and resistant 

Cisplatin 

Docetaxel 

Erlotinib 

Gefitinib 

I-BET-762 

SCAD GDSC Extracts 

invariant 

features 

between bulk 

and SC 

domains 

Neural 

Networks 

Converts 

IC50 to 

binary labels 

Afatinib 

AR-42 

Cetuximab 

Gefitinib 

NVP-TAE684 

PLX4720 

Sorafenib 

Vorinostat 

CaDDReSS-

Sc 

 

GDSC Adopts a 

predefined 

essential gene 

set 

Matrix 

Factorization 

Uses IC50 

derived 

binary labels 

and refits 

Docetaxel 

Doxorubicin 

Epothilone B 

Gefitinib 
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https://githu

b.com/CSB5

/CaDRReS-

Sc  

drug 

response 

curves  

Obatoclax 

Mesylate 

PHA-793887 

PI-103 

Vorinostat 

Beyondcell 

 

https://githu

b.com/cnio-

bu/beyondce

ll  

GDSC, CTRP, 

LINCS 

Identifies drug 

response 

biomarkers 

from bulk data  

Relies on bulk-

based 

biomarkers.  

Calculates a 

unit-free 

signature 

score 

321 anticancer 

drugs from 

Ben-David et 

al.23 

scDR 

 

 

CTRP Identifies drug 

response 

biomarkers 

from bulk data  

Relies on bulk-

based 

biomarkers  

Calculates a 

unit-free 

signature 

score 

77 FDA-

approved drugs. 

DREEP 

 

https://githu

b.com/gamb

alab/DREEP 

CTRP Identifies drug 

response 

biomarkers 

from bulk data  

Relies on bulk-

based 

biomarkers  

Calculates 

enrichment 

scores via 

GSEA  

450 drugs from 

the CTRP (bulk 

level). 

ASGARD 

 

LINCS Identifies 

genes altered 

Relies on bulk-

based 

Calculates a 

customized 

150 drugs from 

different 

https://github.com/CSB5/CaDRReS-Sc
https://github.com/CSB5/CaDRReS-Sc
https://github.com/CSB5/CaDRReS-Sc
https://github.com/CSB5/CaDRReS-Sc
https://github.com/cnio-bu/beyondcell
https://github.com/cnio-bu/beyondcell
https://github.com/cnio-bu/beyondcell
https://github.com/cnio-bu/beyondcell
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https://githu

b.com/lanag

armire/Asga

rd 

by drug 

perturbations 

in bulk data  

perturbation 

biomarkers  

score based 

on signature 

reversion  

diseases. 

Regards a drug 

as positive if it 

is: 1) FDA-

approved, 2) 

used in 

advanced 

clinical trials, 

or 3) proven 

effective in 

animal models 

ascDrug adopted the entirety of CaDDReSS-Sc and thus not listed here as an original approach. 

 

Neural Network/ DL methods 

A number of deep learning (DL) methods based on neural networks have been proposed to calibrate drug 

response modeling for more precise predictions.24-26 Adaptations of these methods for predicting SC drug 

sensitivities have been discussed and implemented in recent years.6 Such computational pipelines 

leverage the abundance of scRNA-seq data as DL algorithms often include many parameters and consume 

a lot of data for adequate training of these parameters. Aided by flexibility in finding latent space and 

features, specialized neural networks are designed to minimize distributional discrepancies between the 

input bulk RNA-seq and scRNA-seq sources, such that drug-gene relationships learned solely from bulk 

RNA-seq can be meaningfully applied to the target scRNA-seq dataset. 
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To this end, SCAD adopted an adversarial learning approach9 training a domain discriminator to counter 

cross-domain bias between the two data sources. This forces invariant feature extraction across bulk and 

SC RNA-seq domains in order to integrate the two sources. For drug response learning, bulk sample 

labels from GDSC were binarized and used to supervise a prediction network which minimizes a binary 

cross-entropy (BCE) loss and generates predicted labels in scRNA-seq data.9 While possessing similar 

functional compartments, scDEAL, on the other hand, employs denoising autoencoders for feature 

selection from bulk and SC RNA-seq data.8 Given the nature of generative models, the input dataset is 

compressed into a “bottleneck” on which data integration is performed. To facilitate transfer learning, a 

loss function incorporating the probability measurement, maximum mean discrepancy (MMD), is 

minimized to retain similarity between bulk and SC data. ScDEAL also utilizes binary bulk sample drug 

response to train a prediction network by minimizing the BCE. Ultimately, both methods assemble 

multiple specialized DL networks to fulfill the bulk-to-SC drug label prediction. DL models have the 

potential to concurrently account for heterogeneous scRNA-seq and provide fine-grained cellular drug 

sensitivity labels thanks to their elasticity and capability at learning complex relationships. However, it is 

unclear if dichotomization of continuous drug response measurements can always render pharmacological 

meanings, as response is better characterized as a spectrum.27 Also, optimal model structures can be drug 

dependent, and learning such structures often involves intensive computation, which can sometimes mask 

their practicality among the pharmacological research community for hypothesis generation and early 

development. Both methods require neural network parameter tuning for each drug to calibrate an optimal 

structure for transfer learning using measured drug sensitivity. This may consequently limit their 

feasibility to evaluate against many drugs or conduct large-scale drug screens.  

 

Biomarkers or signatures based methods 

While most methods involve recognition of molecules whose activities associate closely with sensitivities 

to drugs, a few methods center around identification and application of these biomarkers to maximize 
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their predictability for drug response.28-30 Genes or gene signature sets are learned from the paired data of 

CCL bulk RNA-seq and drug response from HTS, frequently through correlation analysis.31,32 Next, 

instead of relying on detection of shared expression patterns between bulk and SC data, the same markers 

are directly selected from the scRNA-seq data and their normalized expression values are coalesced into a 

scalar describing relative likelihood of a cell having the desired phenotype (e.g., high sensitivity to a 

drug). As discovery of biomarkers depends only on bulk RNA-seq and bulk sample labels, generating 

cellular drug response predictions can be done ad hoc in a separate manner.  

To predict drug response in breast cancer cells, Gambardella et al. developed DREEP, which learns drug 

specific biomarkers correlated with either sensitive or resistant phenotype from the CTRP and GDSC. At 

the SC level, the top 250 most expressed genes are compared against a drug’s biomarker profile through 

the Gene Set Enrichment Analysis (GSEA), through which an enrichment score (ES) was calculated for 

each cell-drug pair. A cell is classified to be sensitive to the drug with the extreme ES.10,11 Beyondcell 

derives sensitivity signature sets (SS) using the differential expression (DE) analysis R package limma 

from the CTRP and GDSC. Additionally, it compares expression levels before and after a drug 

perturbation from the LINCS dataset to offer perturbation signature sets (PS). With PS, drug response can 

be inferred based on the “signature reversion” principle, which prioritizes drugs that induce reverse-to-

normal expression changes in disease models.12 A drug’s signature is divided to up- or down-regulated 

sets, each having 250 most significant genes, and applied to the target SC data to calculate a cell specific 

“Beyondcell Score” (BCS) indicating relative sensitivity to the drug.12 In scDr, CCLs in CTRP are 

dichotomized into sensitive and resistant ones. Differential expression analysis is then carried out between 

the two CCL groups, through which top 200 biomarkers based on their log2 fold change (log2FC) in 

either up- or down-direction are identified. The log2FC of the marker genes are used in conjunction with 

gene expression Z-scores in the SC data to generate drug response scores.14 Also demonstrated in breast 

cancer scRNA-seq, ASGARD requires the input of both disease samples and normal tissue samples and 

pairs cell identity clusters between the two types. To identify drugs for a specific cell cluster, DE analysis 
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is first carried out between normal and disease clusters. DE genes are then used to screen for drugs that 

significantly reverse expression patterns in the disease cluster to that of normal in the LINCS dataset.13 

  

Unlike the deep learning methods discussed, no training data or intense computation is required, as 

learned gene signatures can be applied to any SC data independently. However, due to low and sparse 

expression levels in a single cell and the stochastic nature of drop-outs, predictive power of a pre-defined 

gene set is not always guaranteed. Beyondcell addresses this potential pitfall by penalizing cells with high 

sparsity in their corresponding signature genes. Depending on the availability of paired disease-normal 

scRNA-seq from the same cohort, applications of ASGARD can be limited. Furthermore, compared to 

normal tissues, expression changes in certain advanced cancers are not unidirectional, which will greatly 

convolute the signature reversion principle.33  

 

Machine learning methods 

Traditional machine learning approaches have a rich history in the area of drug discovery.34,35 They have 

commonly been used to integrate various genomic spaces, including drug-gene interactions, disease-gene 

interactions, and gene-gene interactions.34,36,37  Great effort has been taken toward applying these 

approaches to drug response prediction.33,38,39 CaDDReSS-Sc is a machine learning framework used for 

cellular level cancer drug response prediction.14 It incorporates a set of 1856 essential genes41 identified 

through CRISPR screens as encoding components of fundamental pathways. CaDDReSS-Sc is an 

extension of CaDDReS,40 calibrated for single-cell transcriptomic profiles. The purpose of the 

factorization is to learn a latent pharmacogenomic space of 10 dimensions, projecting relationships 

between cell line gene expression with known drug response information. The dot product between the 

latent space’s cell-line vector and drug vector indicate specific cell-line drug responses and is then used to 

impute drug response of unseen samples (e.g. patients or cell-lines). Thus, the factorization allows for 

model training. Unlike CaDDReS, CaDDReSS-Sc computes kernel features using both bulk and single-
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cell RNA seq data prior to the model training, as essentially the Pearson correlation coefficient between 

their per-sample gene expression. scDrug is another cellular level drug response prediction technique 

based on unsupervised machine learning, leveraging CaDDReSS-Sc coupled with an automated pipeline 

to cluster scRNAseq data.16 The resolution selected is associated with the optimal silhouette coefficient or 

distance between clusters. For each cluster, differentially expressed genes are ranked and cell types are 

annotated using scMatch.42 This data is then used together with bulk RNA profiles to predict how each 

cluster will affect patient survival using CaDRReS-Sc. Unlike the biomarker based methods discussed, 

the essential genes comprising the signature used for CaDDReSS-Sc and scDrug were originally 

identified for their essential roles in cellular livelihood and are not compound specific.41 However, drug-

gene associations can encompass a wide variety of genes; therefore, using only essential genes does not 

guarantee adequate gene-drug relationship information that can be used to infer drug response in an 

unseen data.  

 

Combination of biomarker/signature and machine learning based methods 

scIDUC leverages drug-gene signatures in a machine learning based method to infer cellular level drug 

response.43 Prior to integrating bulk and single-cell data, the R package limma is used to identify drug 

response relevant genes (DRGs) from the known bulk sample phenotype. Then the datasets are integrated 

utilizing canonical correlation analysis to capture common gene expression patterns across the two 

datasets, adjusting for discrepancies. Non-negative matrix factorization can also be used to find 

correlations between these datasets as an alternative approach to integration. Lastly, linear regression is 

formulated using the integrated training and single-cell datasets. Due to the ease of parameter tuning, 

scIDUC lacks the intensive computation potentially associated with deep learning methods discussed 

previously; these methods are highly dependent on the existence of scRNAseq data with measured drug 

sensitivity to allow for parameter fine-tuning whereas scIDUC can more easily be applied to a large 

collection of drugs. Unlike the signature based methods, scIDUC does not also require corresponding 
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normal tissue samples, which are not always readily available, or dichotomizing CCL training data into 

resistant or sensitive labels, which do not capture the nuances and spectrum of drug response. 

Additionally, traditional machine learning approaches do not consider drug specific genes and instead 

utilize an essential gene set that may not be specific enough to accurately project each drug sensitivity. 

scIDUC’s DRGs, on the other hand, are learned directly from the bulk data used to train the model, and 

the gene sets identified for each drug are most significantly associated with drug response.  

 

PROMISING TRENDS AND POTENTIAL PITFALLS 

____________________________________________________________________________ 

 

Facilitating heterogeneity-aware drug discovery 

Most of the 8 reviewed works enable projection of cell specific vulnerability to therapeutics, which can be 

associated with cell identities to facilitate drug nomination for certain cell types. For example, Fustero-

Torre et al. used Beyondcell to generate sensitivities of 451HLu human melanoma cells to various drugs. 

They screened for drugs showing high predicted efficacy among BRAF inhibitor (BRAFi) resistant cell 

clusters as candidate therapeutics to combat BRAFi resistance in melanoma.12 With increasing availability 

of scRNA-seq data from varying diseases, such a strategy can be adapted to facilitate drug discovery 

targeting specific cell clones in many indications. However, most examples provided by the current works 

only referenced existing studies to justify reliability of prediction results. To truly evaluate the utility of 

these methods, experimental analysis of the proposed therapeutics should be carried out in vitro or in 

vivo.  

 

These methods also model drug response through using either resistant or sensitive labels or a continuous 

spectrum; they do not attempt to predict drug dosage, which plays a role in improving our understanding 

of cancer tumor heterogeneity. Specifically, tumor heterogeneity is linked to the emergence of therapy 
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resistant cell subclones. By predicting and adjusting drug dosages, it may be possible to more effectively 

target and inhibit these therapy resistant subclones, reducing the likelihood of resistance development. 

Methods are actively developing now.44 

 

In addition, scRNAseq allows for a detailed distinction between normal and malignant cell sub-

populations.45-48 This distinction, in turn, greatly facilitates heterogeneity aware drug discovery and 

avoids inhibition of normal populations, minimizing toxicity. It is imperative for future research to 

harness these full capabilities of scRNAseq to optimize treatment outcomes.  

 

Spearheading drug combination efficacy prediction 

At an individual level, therapeutic vulnerability profiles within a patient may enable modeling of drug 

combinations as tailored treatments to combat heterogeneous tumors. First, identified drugs for therapy-

resistant cell groups can be used with SOC treatments to form drug combinations to help eliminate a 

tumor. This is a direct extension of cell specific drug discovery. Moreover, predictions of drug 

combination efficacy may be achieved using cellular drug response. Combination efficacy can be inferred 

probabilistically by assuming predicted cellular drug response indicates likelihood of cell kill.49 In this 

case, methods including continuous variables for drug response show advantages over those using only 

binary labels. For example, AUCs can be scaled to indicate percentages of cell death under a treatment or 

probabilities of cell kill; for a combination with multiple agents, their cell kill probabilities can be 

aggregated to generate a probability of cell kill for the whole population. This can be done at the cellular 

level or at the cell cluster level. An averaged combination probability therefore estimates efficacy over the 

whole heterogeneous population. However, it is unclear if current drug combination prediction rationales 

grant desirable predictive powers, especially given the discrepancy between complex intratumoral 

structures and information reflected by current scRNA-seq techniques.  
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Data availability as a limiting factor 

The key limiting factor against predicting drug response at the single-cell level is insufficient training 

power due to the lack of public benchmarked data. Understanding how to appropriately integrate bulk and 

scRNA-seq data alleviates this limitation. Ultimately, it will enable the design of more precise therapeutic 

regimens, taking into account a patient’s specific microenvironment and tumor heterogeneity. A pitfall of 

this approach, however, is the ability to impute cellular level drug response is contingent on the type and 

quality of bulk CCL data used in the integration. Specifically, the techniques covered in this review 

largely leverage response across chemotherapeutics, and both chemotherapy and immunotherapy may be 

used alone, together (‘chemoimmunotherapy’), or in combination with other treatments (e.g. radiation 

therapy or surgery), which these approaches can’t generate predictions for yet. 

Conclusion 

We carefully review eight latest existing methods that leverage HTS data to project cell-level drug 

sensitivity in given scRNA-seq data. They employ a variety of computational principles including deep 

learning frameworks, more traditional machine learning based approaches, as well as biomarkers. These 

methods center around techniques for transferring bulk-learned information into SC prediction anchors, 

directly or indirectly. Applications of these methods demonstrate their utility at generating and testing 

hypotheses for heterogeneity-aware drug discovery. Depending on specific research questions and 

biological models, different methods might be preferred for hypothesis generation. Eventually, 

application of these methods will help reduce occurrence of drug resistance, cancer relapse, and 

potentially lead to complete tumor regression. 
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CHAPTER 6: CONCLUSION 

 

SUMMARY 

____________________________________________________________________________ 

 

Overall, the pharmacogenomic methods described in this body of work aim to help improve our ability to 

achieve personalized cancer treatment; to tailor treatments to the individual, to increase the efficacy of 

therapies, and to reduce the likelihood of adverse drug reactions. In turn, this may help empower patients 

with more information to make informed decisions about their health, reduce the burden of healthcare 

costs, and give patients the quality of life they deserve. While oncoPredict has demonstrated its ability to 

identify a range of promising drugs with diverse mechanisms in the context of GBM, its capabilities can 

be enhanced through utilizing Bayesian networks. Through inferring connections between patient gene 

expression and drug response we can pinpoint biomarkers. In turn, these biomarkers can help select 

appropriate patient populations for further evaluations and tailor treatment. When applied to five 

independent patient cohorts and a mouse avatar model, encompassing nearly 1,000 GBM samples, a 

causal relationship between the expression levels of PHGDH gene and the efficacy of MEKis were 

observed and experimentally confirmed. Specifically, reduced expression of this gene increased tumor 

sensitivity to MEKis while increased expression led to resistance. While oncoPredict and Bayesian 

networks are one means of combating the heterogeneity of GBM to identify a more personalized 

treatment approach, scIDUC has also demonstrated its superior ability to enable drug development 

targeting heterogeneous tumors. Not only did scIDUC recapitulate resistance to the standard of care 

therapy (SN-38) typically ascribed to RMS (rhabdomyosarcoma), it provided drug nomination highly in 

line with drugs that have shown potential in previous studies. Additionally, because cells from each RMS 

sample underwent sequencing altogether and therefore precluded batch effects, scIDUC  predictions are 
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not hindered by potential existence of these technical effects. When scIDUC was applied to drugs 

included in a drug screen panel that compared drug responses between pancreatic cancer cells grown 

across differing media conditions, scIDUC was highly consistent with the original drug screen panel, 

which means scIDUC can capture tumor microenvironment influences on drug response. scIDUC was 

also able to identify experimentally supported drug nominations against CRPC (castration resistant 

prostate cancer) docetaxel resistant cells. Therefore, scIDUC is potentially eligible for helping to identify 

new therapeutic targets and improve drug discovery for GBM patients as well as other challenging cancer 

types. 

 

FUTURE DIRECTIONS 

____________________________________________________________________________ 

 

Our future work can be focused on several key areas. First, application of scIDUC to GBM data. 

Ultimately, the goal is to predict drug combinations to be tested against GBM. While scIDUC does not 

directly predict combination therapy yet, its ability to infer cellular level drug response can enable drug 

combination nomination, and this is currently a work in progress. Monotherapy or the use of a single drug 

or therapeutic method, has generally not been sufficient for the effective treatment of GBM due to several 

reasons such as its aggressive and heterogenous nature, and complex microenvironment (its blood supply, 

immune evasion mechanisms, and interaction with normal brain tissue).1-3 This makes them less likely to 

respond to monotherapy and more likely to respond to combination therapy. While the methodology 

described in Chapter 3 aims to counter these challenges through predicting therapy for specific patient 

populations who are particularly susceptible to that therapy, additional investigation through application 

of scIDUC is warranted. Both potential new monotherapies guided by biomarker screening and an 

understanding of cellular level drug sensitivity for eventual combination therapy prediction is important 

for future investigation. In an effort to extend the GBM project, we have explored databases including the 
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Human Tumor Atlas (HTAN)4 for prospective GBM scRNA-seq and cellular level drug response data 

without success. We have, however, come across a unique opportunity to apply scIDUC to small cell lung 

cancer (SCLC) data from HTAN, with known vitality status outcomes and pre-treatment scRNA-seq data.  

 

Like GBM, SCLC is also known for its aggressiveness, heterogeneity, and poor prognosis.5 Therefore, 

this presents an exciting opportunity to dive deeper into tumor heterogeneity, expanding scIDUC to other 

cancer types and data to validate and enhance the generalizability of our method, and continuously 

improve the algorithm such that it can directly infer drug combinations. To explore potential application 

of scIDUC to this data, we imputed cisplatin and etoposide response and compared response across the 

known vitality status of five patients. Both therapies are commonly used in combination and serve as a 

common treatment regimen for SCLC.6 For comparison purposes, we also imputed response to EGFR 

inhibitors, gefitinib and afatinib, which are not the primary choice for SCLC due to the rarity of EGFR 

mutation, as SCLC rarely harbors the types of mutations that would respond well to these inhibitors. We 

can hypothesize that scIDUC can detect these relationships, and Figure 1 shows this to be true. Not only 

do both cisplatin and etoposide imputed drug response scores differ significantly between vitality status 

(p-value<0.001), but the effect size as measured by Cohen's D ranges from 0.53-0.61 and the Rho ranges 

from 62-63%. This suggests a difference in drug response between the two groups is noticeable where the 

samples in the ‘Alive’ group were predicted to have a greater sensitivity to treatment. This was not the 

case for the EGFR inhibitors, whose Cohen’s D was reversed and Rho<50%, indicating the samples in the 

‘Alive’ group would not have responded well to standard treatment. Since the same trends are not seen 

across drug imputations, this helps confirm that the probability of batch effect influencing the differences 

in drug response is low. 
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Figure 1. Application of scIDUC to Lung Cancer Data to Impute Cisplatin and 

Etoposide Drug Response. scRNA-seq data was collected from 5 SCLC patients 

previously untreated where vitality status is known. Cellular level drug response was 

imputed using scIDUC for treatment (cisplatin and etoposide) hypothesized to show 

efficacy in the ‘Alive’ vitality group and for treatment (EGFR inhibitors) hypothesized to 

show reverse trends. These hypotheses were confirmed, where p-value<0.001, Rho>60%, 

and Cohen’s D>0.5 for both cisplatin and etoposide, indicating the samples in the ‘Alive’ 

group would respond well to standard of care treatment but not to EGFR inhibitors. 

These metrics derive from the Mann-Whitney U test.  

 

Another future direction we are currently pursuing is enabling scIDUC to fulfill its intended purpose: to 

predict drug combinations using its cellular level drug response prediction data. Tumors can consist of a 

diverse mix of cancer cell types, each with its unique genetic and molecular profile, and differences in 

vulnerabilities. By analyzing tumor samples, we can identify distinct subpopulations of cancer cells 

within a tumor and infer drugs that will best target those populations. Based on a comprehensive analysis, 
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a combination of drugs can be chosen that targets the major subpopulations. Unfortunately, there are 

several challenges with this approach. Firstly, a given tumor sample may, depending on the resolution, 

consist of 2 or 10 cell types, for example. Obviously, identifying more than 2 or 3 drugs in a combination 

is not practical, in which case, we may likely have to cluster the 10 or so cell types into 2 or 3 broad yet 

similar clusters. Secondly, comparing the area under the dose response curve (AUC score) for multiple 

drugs is not possible, as these values may likely derive from tests using different dosing ranges for each 

drug. As such, a number of challenges must be addressed before direct combination imputation from 

scRNA-seq data alone is possible. Additionally, the concept behind the approach described here is more 

based on independent drug action, where the effects of multiple drugs in a combination are independent 

of each other.7 In this model, each drug in the combination exerts its effects without influencing or being 

influenced by the action of the other drugs in the mixture. This approach simplifies the analysis by 

assuming no interaction between the drugs. That being said, it is not always applicable. The interactions 

between different drugs and cancer cell types can be complex, and unexpected resistance, toxicity, or 

synergistic effects may occur, which independent drug action doesn’t take into account. Fortunately, we 

were recently presented with a pediatric acute myeloid leukemia (AML) scRNA-seq dataset, where 

cellular level drug response is known as well as cell phenotype (normal or tumor) and cell type. This 

provides us with an exciting opportunity to leverage this dataset for testing scIDUC’s ability to directly 

infer drug combinations and help pave the way to a transparent, efficient, and accurate computational 

method for directly predicting combination drugs and personalized treatment plans. 
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