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Abstract

Using a form of Galois descent, we construct a family of spectral sequences computing

the homotopy groups of the Picard space Picn whose 0th homotopy group is the Picard

group of the K(n)-local category. For all primes p and heights n, we compute the rank

of π∗Picn ⊗Zp Qp to be zero for ∗ ≥ 2 and 1 for ∗ = 1. Finally, using these methods, we

describe the rank of π0Pic⊗Zp Qp in terms of a limit of module categories and discuss

implications involving the algebraic Picard group.
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Chapter 1

Introduction

The computation of the homotopy groups πiSn of spheres is a key long-standing open

problem in algebraic topology, having driven the development of many of the field’s

modern tools. One easing of this problem comes in the form of the stable homotopy

groups πSi = lim−→πi+nS
n, with the stable homotopy category of spectra being designed

to tackle such questions in a more structured way. In 1951, through the use of spectral

sequences, Serre computed in [Ser51] that πS0 ∼= Z and πSi>0⊗ZQ = 0. Further, he showed

that for fixed i, πSi is finitely-generated. These spectral sequences, new at that time

(having only been introduced in 1946 by Leray), are now ubiquitous in algebraic topology.

Serre was, in effect, studying πS∗ via the Postnikov filtration, having filtration quotients

πSn (see [BB19a, §1]). We will instead be interested in studying stable homotopy groups

via the “chromatic” filtration.

Through the language of complex-oriented cohomology theories, formal groups, and

Morava’s extraordinary K-theories, these computations can be refined further to one

prime and one “chromatic layer” MnX of a spectrum X at a time. The functor Mn and

the Bousfield localization functor LK(n) with respect to the nth Morava K-theory are
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mutually inverse equivalences between the monochromatic and K(n)-local symmetric

monoidal categories of spectra [HS99b, Theorem 6.19]. In general, the K(n)-localizations

of spectra are more amenable to a study via algebraic tools, and an understanding of the

category LK(n)Sp of K(n)-local spectra is of relevance, in particular the structure of its

Picard group and the construction of these invertible objects.

An overview of chromatic homotopy theory in Chapters 2-7. We then discuss the K(n)-

local Picard group and review existing results related to its structure and the construction

of some elements in Chapters 8-9.

Then, in Chapter 10, we construct a family of descent spectral sequences computing

the homotopy groups of the Picard space Picn whose 0th homotopy group is the Picard

group of the K(n)-local category. We then compute the rank of π∗Picn ⊗Zp Qp to be

zero for ∗ ≥ 2 and 1 for ∗ = 1. Finally, using these methods, we describe the rank of Picn

in terms of a limit of module categories and discuss implications involving the algebraic

Picard group, Picalg
n .

Lastly, in Chapter 11 we discuss additional results and indicate possible directions for

future research.

The content of Chapters 1-9 and Sections 11.4-11.6 represents a very slight revision of

the author’s (unpublished) master’s expository paper.
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Chapter 2

Morava K-theories

2.1 Description and basic properties

We begin with a description of Morava’s extraordinary K-theories, often called the “fields”

of homotopy theory, a term justified by (3) and (4) of Proposition 2.1.1.

Proposition 2.1.1 ([JW75], [Rav92]). For each prime p and n ≥ 0, there exist homology

theories K(n)∗ (suppressing p from the notation from this point forward) which have the

following properties:

1. K(0)∗(X) = HQ∗(X) and K̃(0)∗(X) = 0 when H̃Z∗X is torsion.

2. K(1)∗X is one of the p− 1 isomorphic summands of (KU/p)∗(X), where KU/p is

mod p complex K-theory.

3. K(0)∗ = Q and for n > 0, K(n)∗ = Fp[v±n ], with |vn| = 2pn − 2, which are graded

fields, in that every graded module over K(n)∗ is free.
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4. We have a Künneth isomorphism

K(n)∗(X × Y ) ∼= K(n)∗(X)⊗K(n)∗ K(n)∗(Y ).

5. K(n) ∧K(m) ≃ ∗ if n ̸= m.

6. Let X be a finite p-local CW complex. Then,

K̃(n)∗(X) = 0 =⇒ ˜K(n− 1)∗(X) = 0.

7. Let X be a finite p-local CW complex. Then, for 2pn − 2 ≥ dim(X),

K̃(n)∗X
∼= K(n)∗ ⊗ H̃Fp∗X.

We will let K(∞) be the spectrum HFp.

Any module over K(n), 0 ≤ n ≤ ∞ splits as a wedge sum of suspension shifts of K(n),

thus furthering our analogy with the fields of algebra. More generally, any ring spectrum

K ∈ Sp such that every K-module spectrum M is of the form
∨
αΣ

iαK will be called a

field. The following classification result of Hopkins-Smith tells us that not only are the

Morava K-theories fields with exceptionally useful properties, but in a sense, they are

the only such theories we need to consider.

Theorem 2.1.2 (Hopkins-Smith [HS98]). Any field object in Sp(p), the category of

p-local spectra, splits as a wedge of suspension shifts of the Morava K-theories.

The Morava K-theories for 0 < n <∞ can be constructed by localizing and quotienting

the Brown-Peterson spectrum BP , which is an irreducible summand of the p-local complex

cobordism spectrum MU(p), with homotopy groups BP ∗ = Z(p)[v1, v2, . . . ], |vi| = 2pi−2

to achieve the desired homotopy groups, a process which we describe briefly below. We’ll

discuss the spectrum MU a bit more in Chapter 3. See [HS98] for further details.
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2.2 Construction

2.2.1 Quotients in homotopy

Let E be a ring spectrum. Then, given x ∈ π∗E, E/(x) is the cofiber of multiplication

by x map:

Σ|x|E
x·−→ E → E/(x).

More explicitly, this is the map S|x| ∧ E x∧id−→ E ∧ E µ−→ E. The quotient E/(x) is not

necessarily a ring spectrum, but is in good cases, including all of the cases we need in

this dissertation. Further, if x is not a zero-divisor, then quotienting has the expected

result on homotopy:

Proposition 2.2.1. Let E be a ring spectrum, and suppose x ∈ π∗E is not a zero divisor.

Then, π∗(E/(x)) = E∗/(x).

Proof. From the cofiber sequence Σ|x|E → E → E/(x), we get a long exact sequence in

homotopy

· · · → πn+1(E/(x))→ πn−|x|E → πnE → πn(E/(x))→ πn−|x|−1E → · · ·

Because x is not a zero-divisor, the map πn−|x|E → πnE is injective. For the same

reason, the image of πn(E/(x)) in πn−|x|−1E is zero, and the long exact sequence splits

into short exact sequences

0→ πn−|x|E
x·−→ πnE −→ πn(E/(x))→ 0,

and we get πn(E/(x)) ∼= (πnE)/(x).
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2.2.2 Localization with respect to a multiplicative subset

Given a multiplicative subset S ⊆ π∗E (for E a ring spectrum), we can form a localization

S−1E. Since S−1π∗E is flat over π∗E, S−1π∗E ⊗π∗E E∗(−) is a legitimate homology

theory (the only axiom of concern is whether it converts cofiber sequences to exact

sequences, and E∗ being a homology theory and flatness assures this) and is thus

represented by a spectrum S−1E. As with quotients, this procedure does not always

yield a ring spectrum, but will in all the cases we need. By construction, we always have

(S−1E)∗(X) = S−1(E∗(X)).

QuotientingBP∗ by the ideal Jn := (p = v0, v1, . . . , vn−1, v̂n, vn+1, . . . ) and then localizing

with respect to the prime ideal S = (vn) ⊆ Fp[vn] = BP∗/Jn yields Fp[vn, v−1
n ], and the

corresponding operations on the level of spectra give the Morava K-theory K(n). Writing

In := (v0, . . . , vn−1), it is shown in [Wür77][5.1] that the quotients BP/In admit a ring

structure, with homotopy commutative multiplication for p > 2, and by [Wür77][7.2],

K(n) can be given the same type of structure. (That is, a ring structure which is

homotopy commutative for p > 2.)
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Chapter 3

Formal group laws and

complex-oriented cohomology

theories

3.1 Formal group laws

Definition 3.1.1. Let R be a commutative ring with unit. A (one-dimensional, com-

mutative) formal group law over R is a power series f ∈ R[[x, y]] such that each of the

following holds:

(1) f(x, 0) = f(0, x) = x (identity),

(2) f(x, y) = f(y, x) (commutativity), and

(3) f(x, f(y, x)) = f(f(x, y), z) (associativity).

Example 3.1.2. The additive formal group law is given by f(x, y) = x+ y over any ring

R.
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Example 3.1.3. The multiplicative formal group law is given by

f(x, y) = x+ y + xy = (1 + x)(1 + y)− 1.

By a homomorphism of formal group laws f → g, we mean a power series H such that

g(H(x), H(y)) = H(f(x, y)), and isomorphisms will correspond to such series H which

are invertible in the sense that there is another power series G such that G(H(x)) =

H(G(x)) = x. These are precisely those H with H(0) = 0 and H ′(0) ∈ R×, and we’ll

use H−1 to denote this compositional inverse to H. We will use the notation

[n]f (x) = x+f x+f · · ·+f x︸ ︷︷ ︸
n terms

,

where α+f β = f(α, β). This is called the n-series of f . When p = 0 in R, we will be

particularly interested in the p-series of f .

When in characteristic p > 0, the p-series of a non-zero formal group law can be written

as

[p]f (x) = axp
h
+ higher order terms.

We will call h the height of f if a is a unit. Otherwise, we’ll say that f has height at

least h.

Letting FGL(R) denote the set of formal group laws over R, we see that a morphism

R → S of commutative rings gives a map FGL(R) → FGL(S), where we replace the

coefficients of a formal group law over R with their images in S. This functor from

commutative rings to sets is corepresentable, meaning there is some commutative ring L

such that we have a natural isomorphism Homrings(L,R) ∼= FGL(R). We now construct

L more explicitly.

Writing a power series f ∈ R[[x, y]] as f =
∑
ci,jx

iyj , we see that requiring f to be

a formal group law is the same as imposing a collection of relations on the ci,j . For
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instance, to satisfy f(x, 0) = f(0, x) = x, we must have c1,0 = c0,1 = 1 for and ci,0 = c0,i

for i ̸= 1. The commutativity requirement forces the symmetry ci,j = cj,i. The relations

forced by associativity are more complicated, but still polynomial in nature. So, giving a

formal group law over R is equivalent to giving elements ci,j satisfying these polynomial

relations. This leads to the following definition:

Definition 3.1.4. Let L := Z[ci,j ]/I, where I is the ideal generated by the polynomial

relations described above. L is known as the Lazard ring, and is the object whose

existence is asserted above by the corepresentability of FGL(−). Indeed, a map L→ R

is precisely the selection of elements ci,j ∈ R satisfying the relations necessary to form a

formal group law over R. The universal formal group law f ∈ L[[x, y]] is
∑
ci,jx

iyj .

The formal group law f =
∑
ci,jx

iyj is universal in the sense that given a formal group

law g ∈ FGL(R), there is a unique morphism φ : L → R such that g = φ∗f , that

is,

g(x, y) =
∑

φ(ci,j)x
iyj .

Note that for fixed n, the coefficient of xk in the n-series of g is an integer polynomial in

the images of the ci,j which doesn’t depend on g or R. So, φ carries the coefficients of

[n]f (x) to the corresponding coefficients of [n]g(x).

We make L a graded ring by putting |ci,j | = 2(i+ j − 1), so that if x, y have degree −2,

then
∑
ci,jx

iyj has degree −2 as well.

Theorem 3.1.5 (Lazard). [Rav92, 3.2.3] There is an isomorphism of graded rings

L ∼= Z[x1, x2, . . . ], where |xi| = 2i.

The ring L contains a family of distinguished elements vi, which we’ll make use of later

via the Landweber Exact Functor Theorem. They are defined as follows:

Definition 3.1.6. Let vi denote the coefficient of xpi in the p-series for the universal

formal group law on L. These vi for i > 0 are the so-called Araki generators for BP∗,
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and satisfy |vi| = 2(pi − 1).

3.2 Complex-oriented cohomology theories

On the surface, this discussion of formal group laws seems to be purely algebraic and

have no obvious ties to homotopy theory. However, it is a theorem of Quillen ([Qui69])

that L ∼= MU−∗ = MU∗, where MU is the universal complex Thom spectrum. This

spectrum is central to the Nilpotence Theorem:

Theorem 3.2.1 (Devinatz-Hopkins-Smith [DHS88]). Let R be a ring spectrum. The

kernel of the Hurewicz homomorphism

π∗R→MU∗R

consists of nilpotent elements.

An identical theorem holds for p-local ring spectra R and MU replaced with BP .

Alternatively, we have the following theorem of a more “chromatic” flavor:

Theorem 3.2.2 (Hopkins-Smith [HS98]). Let R be a p-local ring spectrum. Then,

α ∈ π∗R is nilpotent if and only if image under the map

π∗R→ K(i)∗R

is nilpotent for all 0 ≤ i ≤ ∞. In particular, the intersection of the kernels of these maps

consists of nilpotent elements.

In addition to its usefulness in the detection of nilpotent elements in stable homotopy,

MU is the universal example of a “complex-oriented cohomology theory.” (This statement

is made exact in Example 3.2.10.) The study of such cohomology theories, especially

via the theory of formal group laws and their heights, lies at the heart of the chromatic

approach to stable homotopy theory. We now describe what it means for a cohomology
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theory to be “complex-oriented,” along with some useful examples, and explain their

close relationship with formal group laws.

Adjoint to the equivalence S1 ≃ K(Z, 1) ∼−→ ΩK(Z, 2) is a map

α : ΣS1 ≃ S2 → K(Z, 2) ≃ BU(1) ≃ CP∞.

Alternatively, α can be viewed as the inclusion CP1 ↪→ CP∞.

Definition 3.2.3. A multiplicative cohomology theory E is called complex-orientiable

if any of the following equivalent conditions hold:

• The map α∗ : E2(CP∞)→ E2(S2) is surjective.

• The map α̃∗ : Ẽ2(CP∞)→ Ẽ2(S2) ∼= π0E is surjective

• The unit 1 ∈ π0E lies in Im(α̃∗).

A complex-orientation is a choice of element cE1 such that α̃∗(cE1 ) = 1.

Given a complex-oriented cohomology theory E, there is an isomorphism of cohomology

rings

E∗(CP∞) ∼= E∗[[cE1 ]],

with |cE1 | = 2 ([Lur10, Lec. 4]). We will prove this in the special case that E is

even-periodic shortly. Now, consider the map

µ : BU(1)×BU(1)→ BU(1)

classifying the tensor product of line bundles. (This is the same as the multiplication

on ΩK(Z, 3) given by concatenation of loops, or alternatively, a twice-delooping of the

addition map Z× Z→ Z, a description we use below.) This then induces a map

E∗[[cE1 ]]
∼= E∗(CP∞)→ E∗(CP∞ × CP∞) = E∗[[cE1 ⊗ 1, 1⊗ cE1 ]].
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Writing cE1 ⊗ 1 = x and 1 ⊗ cE1 = y, the image of cE1 under the above morphism is an

element FE(x, y) ∈ E∗[[x, y]]. The map

µ : CP∞ × CP∞ → CP∞

is the map

K(Z, 2)×K(Z, 2) ≃ K(Z× Z, 2)→ K(Z, 2)

given (up to homotopy) by addition. That is, we have

[K(Z× Z, n),K(Z, n)] = HomAb(Z× Z,Z),

and the homotopy class of µ corresponds to addition. As a result, this gives CP∞

the structure of an H-space with a homotopy associative and homotopy commutative

multiplication. So, FE is a formal group law over E∗, and writing

FE =
∑
i,j>0

ci,jx
iyj ,

we have ci,j ∈ E−2(i+j−1) so that FE(x, y) is in degree 2.

Remark 3.2.4. The notation cE1 is meant to parallel that of the first Chern class, and for

good reason: By our construction using the classification map of the tensor product, we

can describe the association of a formal group law FE to a complex-oriented cohomology

E theory via the relation

cE1 (L1 ⊗ L2) = FE(c
E
1 (L1), c

E
1 (L2)) = cE1 (L1) +FE

cE1 (L2)

for line bundles L1, L2, paralleling the usual relation. Here, we can consider complex

line bundles L over any space X. Such an L is given as the pullback ρ∗O(1) of the

tautological line bundle O(1) on CP∞ by a continuous map ρ : X → CP∞, and take

c1(L) := ρ∗(cE1 ) ∈ E2(X).

Furthermore, E∗(BU(n)) ∼= E∗[[cE1 , . . . , c
E
n ]], and we can think of these cEi as the E-

analogue of higher Chern classes.
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Proposition 3.2.5. Different choices of orientation cE1 yield (strictly) isomorphic formal

group laws.

Proof. Let c1, c′1 be complex orientations for E, with associated formal group laws F, F ′,

respectively. Then, c′1 ∈ E∗(CP∞) = E∗[[c1]], so that c′1 = g(c1) for some power series

g(x) = b0x+ b1x
2 + · · · .

(Reversing the roles of c1 and c′1 shows that the function g has no constant term, as it is

invertible.) Furthermore, as c′1 restricts to 1 ∈ E2(S2), we must have b0 = 1. We then

have for line bundles L1, L2,

c′1(L1 ⊗ L2) = g(c1(L1 ⊗ L2))

= g (F (c1(L1), c1(L2)))

= g
(
F (g−1(c′1(L1)), g

−1(c′1(L2)))
)
,

so that F ′(x, y) = g
(
F (g−1(x), g−1(y))

)
.

Example 3.2.6. For a ring R, the Eilenberg-Mac Lane spectrum HR is complex-

orientable, as restriction gives an isomorphism

R ≃ HR2(CP∞) ∼= H2(CP1, R) ≃ HR2(S0).

In this case, the associated formal group law is the additive one:

FHR(x, y) = x+ y.

Proof. Write

FHR(x, y) =
∑
i,j>0

ci,jx
iyj .

We have |ci,j | ∈ HR−2(i+j−1), meaning that ci,j = 0 unless i+ j = 1. The requirement

FHR(x, 0) = FHR(0, x) = x

forces the remaining two coefficients to be c1,0 = c0,1 = 1 so that FHR(x, y) = x+ y.
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Remark 3.2.7. In the case R = Z, we recover the classical relation for the first Chern

class of a tensor product of line bundles:

cHZ
1 (L1 ⊗ L2) = cHZ

1 (L1) + cHZ
1 (L2) ∈ H2(CP∞,Z).

Example 3.2.8. Let E be an even-periodic cohomology theory. That is, let E2k+1(S0) =

0 for k ∈ Z and let there be a unit u ∈ E2(S0) inducing isomorphisms E2(−)→ E0(−).

Then E is complex-orientable.

Proof. Consider the Atiyah-Hirzebruch spectral sequence with

Ep,q2 = Hp(CPn;Eq(S0)) =⇒ Ep+q(CPn).

For fixed q, we have

H∗(CPn;Eq(S0)) ∼= Eq(S0)[x]/xn+1,

with |x| = (2, 0). Since Eq = 0 for q odd, Hp(CPn;Eq(S0)) is zero if either p or q is

odd, meaning that there are no non-trivial differentials (d2 has bi-degree (2,−1)) and

the spectral sequence collapses with Ep,q2 = Ep,q∞ . Since every object on the E2-page is a

free module and there are no non-trivial extensions of free modules by free modules, we

must have

E∗(CPn) = E∗[x]/xn+1.

The maps

π−∗E[x]/xn+1 → π−∗E[x]/xm+1

are surjective, and thus the inverse system E∗(CPn) satisfies the Mittag-Leffler condition

and we have

E∗(CP∞) = E∗(lim−→
n

CPn) ∼= lim←−
n

E∗(CPn) ∼= E∗[[x]].

Furthermore, via this identification, the map E∗(CP∞) → E∗(CP1) = E∗(S2) is the

quotient by xn and is therefore surjective, meaning that E is complex-orientable. The

choice of generator x is the choice of complex orientation.
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The prototypical example of an even periodic cohomology theory is complex K-theory,

KU , with unit β−1 ∈ KU2(S0), where β is Bott element. Here, we have a canonical

choice

cKU1 (L) = β−1([L]− 1) ∈ KU2(X),

where 1 denotes the trivial rank 1 complex vector bundle on X, and

FKU (x, y) = x+ y + βxy,

which is isomorphic to the multiplicative formal group law.

Proof. We have for line bundles L, M ,

cKU1 (L) +FKU
cKU1 (M)

=cKU1 (L⊗M)

=β−1([L⊗M ]− 1)

=β−1([L][M ]− 1)

=β−1([L][M ] + ([L]− 1) + ([M ]− 1)− [L]− [M ] + 1)

=β−1(([L]− 1) + ([M ]− 1) + [L][M ]− [L]− [M ] + 1)

=β−1([L]− 1) + β−1([M ]− 1) + β−1([L]− 1)([M ]− 1)

=β−1([L]− 1) + β−1([M ]− 1) + (−1)|β−1| |[L]−1|([L]− 1)β−1([M ]− 1)

=β−1([L]− 1) + β−1([M ]− 1) + ([L]− 1)β−1([M ]− 1)

=β−1([L]− 1) + β−1([M ]− 1) + β(β−1([L]− 1)β−1([M ]− 1))

=cKU1 (L) + cKU1 ([M ]) + β(cKU1 (L)cKU1 (M))

Example 3.2.9. For n ≥ 1, the Morava K-theories K(n) are complex-oriented, with

the associated formal group law (known as the Honda formal group law) being of height
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exactly n with p-series

[p](x) = vnx
pn .

(See [Wür91, 1.3].)

Example 3.2.10. The second space of MU is MU2 = MU(1) ∼= CP∞. (Warning:

MU(n) is actually the 2nth space of the spectrum MU , with the odd spaces being

suspensions of the even ones.) The equivalence CP∞ → MU2 gives a degree −2 map

from Σ∞CP∞ → MU and thus an element in M̃U
2
(CP∞), which Quillen showed in

[Qui71] to be a complex orientation cMU
1 for MU . The formal group law coming from

the spectrum MU is the universal one. That is, the (degree-reversing) map L→MU∗

classifying the associated formal group law FMU is an isomorphism and the induced

map FGL(L)→ FGL(MU∗) carries the universal formal group law to the formal group

law to FMU . Furthermore, the spectrum MU is universal amongst complex-oriented

cohomology theories, in that given a complex-oriented cohomology theory E, there is a

map g :MU → E satisfying g∗(cMU
1 ) = cE1 and g∗(FMU ) = FE . (See [Rav03, 4.1.13].)

Remark 3.2.11. In general, a formal group law over E∗ is equivalent to a map MU∗ →

E∗. The universality of MU implies for E a complex-oriented cohomology theory, this

map lifts to a map of spectra.
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Chapter 4

A geometric viewpoint: The moduli

stack of formal groups

4.1 Construction of MFG

For a commutative ring R, a map L→ R corresponds to a choice of formal group law

over R. In this sense, the affine scheme SpecL parametrizes formal group laws. However,

we have the notion of an isomorphism of formal groups, as defined in the previous chapter,

and we would like to have a way to study formal group laws taking this into account.

This will require the language of stacks.

One good way to understand the structure of a scheme Y is to study the category of

quasi-coherent sheaves on Y . So, to get started, we consider an example of a quasi-

coherent sheaf on SpecL. As SpecL is affine, such a quasi-coherent sheaf is nothing

more than an L-module, but thinking in these terms will be helpful later on.

For X a spectrum, MU∗(X) is a (left) module over the (commutative) Lazard ring
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L = π∗MU via

S ≃ S ∧ S →MU ∧MU ∧X →MU ∧X,

where the last map is given by multiplication on MU . So, we can think of MU∗(X)

as a quasi-coherent sheaf on the scheme SpecL, which parametrizes formal group laws.

Furthermore, this sheaf carries an action of the group scheme

G := SpecZ[b1, . . . ],

which assigns to a commutative ring R the group

{g ∈ R[[t]] | g(t) = t+ b1t
2 + b2t

3 + · · · } = Hom(Z[b1, . . . ], R),

this action being compatible with the action of G on SpecL by

(g · f)(x, y) = gf(g−1(x), g−1(y)) ∈ FGL(R),

for g ∈ G(R), f ∈ FGL(R) = SpecL(R).

Two formal group laws over R are called strictly isomorphic if they differ by a change of

variables via an element of G(R). The quotient stackMs
FG := SpecL/G parametrizes

formal group laws and strict isomorphisms.

Notice that a Z-grading on a ring A corresponds to a homomorphism φ : A → A[t±],

with associated decomposition

A =
⊕
r∈Z

φ−1(trA).

Equivalently, we can regard φ as a map of affine schemes

SpecA[t±] = Spec(Z[t±]⊗Z A) = Gm ×SpecZ SpecA→ SpecA.

That is, a grading on A is equivalent to an action of the multiplicative group Gm on

SpecA.
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The Lazard ring L comes with a equipped with a grading, and the corresponding action

on the R-points of SpecL is given by:

(λ, f(x, y)) 7→ λf(λ−1x, λ−1y),

where λ ∈ Gm(R) = R×, f(x, y) ∈ FGL(R). Similarly, the natural grading of Z[b1, . . . ]

corresponds to an action of Gm on G.

Let G+ denote the group scheme assigning to a ring R the group

G+(R) = {g ∈ R[[t]] | g = b0t+ b1t
2 + b2t

3 + · · · , b0 ∈ R×}

of power series with g(0) = 0, g′(0) ∈ R×.

Then, G+ can be written as the semi-direct product G+ = Gm ⋉G, so that G+ acts on

SpecL via this identification. Alternatively, we can write

G+ = SpecZ[b±0 , b1, b2, . . . ].

Definition 4.1.1. The moduli stack of formal groups MFG is the quotient stack

SpecL/G+.

This stack parametrizes formal groups and isomorphisms between them. Specifically,

MFG(SpecR)

is the groupoid of formal group laws over R and isomorphisms of formal group laws.

Returning to our quasi-coherent sheaf on SpecL corresponding to MU∗(X), note that

MU∗(X) is a graded L-module. The action of G on MU∗(X) is compatible with this

action, meaning that the even graded part of MU∗(X), MUeven(X) is a representation

of G+, compatible with the action of G+ on SpecL. So, MUeven(X) is a quasi-coherent

sheaf on SpecL/G+ =MFG.
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The stackMFG× SpecQ = BGm parametrizes formal group laws over Q-algebras, every

such formal group law being strictly isomorphic to the additive formal group law via

its logarithm, with automorphism group Gm. Similarly, MFG × SpecZ(p) does so for

Z(p)-algebras. For the rest of this chapter, we will fix a prime p and writeMFG in the

place ofMFG × SpecZ(p).

4.2 Stratification of MFG by height

In studyingMFG, it is often useful to restrict our attention to strata corresponding to

the heights of formal groups.

To that end, let vn denote the coefficient of xpn in the p-series of a formal group law f .

Then, following the definition of height given in Chapter 3, f is of height at least n if

vi = 0 for i < n. By taking f to be the universal formal group law over L, this gives us

a way to identify elements vi ∈ L. In the context of our stack MFG, this allows us to

identify the closed substack

M≥n
FG := Spec(L(p)/(v0, . . . , vn−1))/G

+

as the moduli stack of formal group laws of height at least n. For 0 ≤ n <∞, a formal

group law is of height exactly n if vn is invertible and v0, . . . , vn−1 are all zero. So, the

substack of formal group laws of height exactly n is

Mn
FG :=M≥n

FG −M
≥n+1
FG = Spec(L(p)[v

−1
n ]/(v0, . . . , vn−1))/G

+.

The substack of formal groups of infinite height is

M∞
FG = Spec(L/(v0, . . . ))/G

+.

The locally-closed substacks Mn
FG, 0 ≤ n ≤ ∞ form a stratification of the stack

MFG.
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The existence of a formal group law of height 0 over a Z(p)-algebra R forces p ∈ R× so

that R is in fact a Q-algebra, meaning thatM0
FG = BGm.

Let 1 ≤ n < ∞. Every formal group law over a Z(p)-algebra R is strictly isomorphic

to a p-typical one. So, isomorphism classes of formal group laws of height n over R

correspond to maps

v−1
n BP∗/(p, v1, . . . , vn−1) = Fp[vn+1, vn+2, . . . ][v

±
n ]→ R,

and following [Goe08, §6], this gives us an fpqc presentation

SpecFp[vn+1, vn+2, . . . ][v
±
n ]→Mn

FG

of the stratum Mn
FG. In the next chapter, we will see another description of Mn

FG

involving the Morava stabilizer group.

Any formal group law of infinite height over a Z(p)-algebra R (which is then necessarily

an Fp-algebra) is isomorphic to the additive formal group law. So, M∞
FG = BAut(f),

where f is additive formal group law over Fp. The group Aut(f) is closely related to the

group schemes SpecA∨, where A∨ is the dual mod p Steenrod algebra.
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Chapter 5

Lubin-Tate theory and Morava

modules

5.1 The Landweber Exact Functor Theorem

As we’ve seen, complex-oriented cohomology theories give rise to formal group laws

via their Chern classes. One might ask: Can we reverse this? That is, given a formal

group law over a ring R given by a map MU∗ → R, can we produce a complex-oriented

cohomology theory carrying this formal group law?

As we’ll see, the Landweber Exact Functor Theorem provides a partial answer to this

question.

Let f be a formal group law over a ring R. Begin by defining a functor

E∗(X) :=MU∗(X)⊗MU∗ R,

where X is a space and R is a left MU∗-module via the map classifying f . (MU∗(X) is

naturally a left MU∗-module, as described in Chapter 4. Make it into a right MU∗-module
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via the Koszul sign rule.)

To be a homology theory, E∗ must satisfy the Eilenberg-Steenrod axioms (minus the

dimension axiom). With the exception of converting fiber sequences to long exact

sequences, these follow easily from the fact that MU∗ is a homology theory. (For example,

E∗ is clearly homotopy-invariant.) It would suffice to require R to be flat over MU∗, but

this is quite strict. For a less-restrictive requirement, we have the following theorem of

Landweber:

Theorem 5.1.1 (Landweber Exact Functor Theorem). Let f :MU∗ → R be a formal

group law over R. If for every prime p, the images of p = v0, v1, . . . form a regular

sequence in R, then

E∗(−) =MU∗(−)⊗MU∗ R

is a homology theory.

Via Brown Representability, this procedure produces a representing spectrum E.

A variant of this exists for Brown-Peterson homology, BP , where we fix a prime p and

consider p-typical formal group laws given by maps from the ring

BP∗ = Z(p)[v1, v2, . . . ],

and we require that the sequence of the images of p, v1, . . . be regular for our fixed prime

p.

Homology theories arising in this way are called Landweber exact homology theories. Via

the Conner-Floyd isomorphism, complex K-theory is Landweber exact with

KU∗(X) ∼=MU∗(X)⊗MU∗ KU∗,

and this construction of the functor E∗ from a formal group law on a ring R is sometimes

called the Conner-Floyd construction. One notable non-example is the Morava K-

theories for n > 1. (In K(n)∗ = Fp[v±n ], v1 = 0, and multiplication by 0 is not injective
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on Fp[v±n ]/(p) = Fp[v±n ].)

In the language of Chapter 4, a formal group law over R determines a Landweber exact

homology theory E if and only if the corresponding map Spec(R)→MFG is flat.

5.2 Deformations of formal groups and Lubin-Tate theory

A family of spectra produced in this way and of great use in the chromatic approach to

stable homotopy theory is the collection of Lubin-Tate theories (sometimes called Morava

E-theories). We now describe their construction, which will require a discussion of Lubin

and Tate’s theory of deformations of formal groups to complete local rings.

Fix a perfect field k of characteristic p > 0 and a formal group Γ of height n over k.

Definition 5.2.1. Let (B,m) be a complete local Noetherian ring. A deformation of Γ

to B is a pair (G, i), where G ∈ FGL(B), i : k → B/m is a homomorphism, such that

i∗Γ = φ∗G

as formal group laws on B/m, where φ : B → B/m is the quotient map. Let DefΓ(B)

denote the category of deformations of Γ to B, where by a morphism of deformations

(G1, i)→ (G2, i),

we will mean an isomorphism g : G1 → G2 of formal group laws such that φ∗g ∈ Aut(i∗Γ)

is the identity. That is, we require

g(x) ≡ x mod m.

Such a map g is called a ⋆-isomorphism. We take

Hom((G1, i1), (G2, i2)) = ∅

for i1 ̸= i2. This makes the category DefΓ(B) into a groupoid, where π0DefΓ(B) is the

collection of ⋆-isomorphism classes of deformations of Γ to B.
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Example 5.2.2. Let’s examine at least one non-trivial example of a deformation of Γ.

For simplicity, consider the case where B/m = k. Any complete local Noetherian ring

with residue field k is uniquely a continuous W(k)-algebra. Since Γ is a formal group law

of height n over a characteristic p field, the map α : L→ k necessarily factors through

L(p)/(p, v1, . . . , vn−1). So, it is convenient to consider the the local ring

E := W(k)[[v1, . . . , vn−1]],

which has maximal ideal (p, v1, . . . , vn−1) and residue field k. Take any lift

α̃ : L(p) → E

of α, such that α̃(vi) = vi for 1 ≤ i ≤ n− 1. The resulting commutativity of the diagram

L(p) W(k)[[v1, . . . , vn−1]]

L(p)/(p, v1, . . . , vn−1) k

α̃

α

implies that α̃ determines a deformation F ∈ DefΓ(E).

Theorem 5.2.3 (Lubin-Tate). The functor π0DefΓ(−) takes values in sets and is corep-

resentable by the ring E := W(k)[[v1, . . . , vn−1]]. That is, up to ⋆-isomorphism, a

deformation of Γ to a complete local Noetherian ring B is the the same a continuous

W(k)-algebra map

W(k)[[v1, . . . , vn−1]]→ B.

Furthermore, the deformation F described above is the universal deformation of Γ in the

sense that the ⋆-isomorphism class corresponding to a map

ψ : E → B

is that of ψ∗F .
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Notice that the sequence p, v1, . . . , vn−1 ∈ E is trivially regular. As a result, by the

Landweber Exact Functor Theorem, we can produce a 2(pn−1)-periodic homology theory

E(n) defined by

E(n)(X) :=MU∗(X)⊗MU∗ E[v±n ],

with |vi| = 2(pi − 1), as before.

It is more common to work with a 2-periodic version of E(n), defined as follows:

Take E(k,Γ)∗ = W(k)[[v1, . . . , vn−1]][u
±] with |u| = −2 (and |vi| = 2(pi − 1)). This

element u allows us to write

E(k,Γ)∗ = W(k)[[u1, . . . , un−1]][u
±],

where ui = viu
pi−1, so that |ui| = 0 for all i. As with E(n), this defines a Landweber exact

cohomology theory (where the MU∗-module structure on the ring E(k,Γ) is given by

the map classifying the universal deformation Γ̃ of Γ), and we’ll denote the representing

spectrum E(k,Γ). Having coefficients in E(k,Γ)∗, Γ̃ is naturally a degree −2 formal

group law. The unit u allows us to equivalently consider a degree 0 formal group law

uΓ̃(u−1x, u−1y).

When Γ is taken to be the Honda formal group law Γn of height n over k = Fpn

(having p-series [p](x) = xp
n), we’ll write En instead, and call this spectrum Morava

E-theory.

In this case, following [BB19a, §3.1], the universal deformation uΓ̃n(u−1x, u−1y) of Γn is

a p-typical formal group law classified by a map BP∗ → E(k,Γn) determined by

vi 7→


uiu

1−pi 1 ≤ i ≤ n− 1

u1−p
n

i = n

0 i > n.
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5.3 The Morava stabilizer group

Definition 5.3.1. Let Sn = Aut(Γn) be the automorphism group of the Honda formal

group law Γn. That is, elements of Sn are invertible power series f ∈ Fpn [[x]] such that

Γn(f(x), f(y)) = f(Γn(x, y)).

This group is acted on by the Galois group Gal(Fpn/Fp), and the semi-direct product

Gn = Gal(Fpn/Fp)⋉ Aut(Γn)

is called the Morava stabilizer group.

The semi-direct summand Sn is the group of units O×
n of

On = W(Fpn)⟨S⟩/(Sn = p, Sω = ωσS),

where ω ∈ W(Fpn) and σ is a lift of the Frobenius x 7→ xp on Fpn to W(Fpn). Letting

Fi = {x ∈ Sn |x ≡ 1 mod (S)i} gives a filtration by normal subgroups

Sn = F0 ⊃ F1 ⊃ · · · ,

and the canonical map

Sn → lim←−
i

Sn/Fi

is an isomorphism, meaning that Sn (and similarly Gn) has the structure of a profinite

topological group ([Hen17]).

Remark 5.3.2. Let Γn denote the Honda formal group law of height n over Fp (again

with p-series [p](x) = xp
n) considered as a formal group law over Fp. Then, by [Laz55,

Thm. IV], as Fp is algebraically closed and characteristic p, Γn is the unique height n

formal group law over Fp up to isomorphism.

The map SpecFp →Mn
FG classifying Γn is faithfully flat. That is, given a formal group

law SpecR→Mn
FG of height n, we can form a pullback diagram
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SpecR′ SpecR

SpecFp Mn
FG,

where R′ is faithfully flat over R. (As a result of Theorem 1 of [Lur10, Lec. 14], we can

write the ring R′ as the direct limit of finite étale extensions of R⊗ Fp, meaning that R′

is faithfully flat over R.)

Furthermore, writing

Gn := Gal(Fp/Fp)⋉ Aut(Γn)

for the automorphism group of the pair (Fp,Γn), we can identify

Mn
FG = SpecFp/Gn.

See [Lur10, Lec. 19] for a more thorough discussion.

This group Gn is also sometimes called the Morava stabilizer group, but we will reserve

that terminology for Gn. Note that Gn is a pro-finite group, and as such can be

regarded as an affine group scheme. Concretely, following [Goe08, §2] we can identify the

automorphism group Aut(Γn) as the affine Fp-scheme:

Aut(Γn) = Spec(Fp ⊗L ⊗W ⊗L Fp),

where W = Z[b±0 , b1, b2, . . . ], so that SpecW = G+. This description works for any field

k in place of Fp and any map L→ k. In the case at hand, there is an isomorphism of

Hopf algebras

Fp ⊗L ⊗W ⊗L Fp = Fp[b±0 , b1, . . . ]/(b
pn

i − bi), i ≥ 0,

which follows from the computation of the Morava stabilizer algebra carried out in [Rav03,

§6.1].
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For a L/K a finite Galois extension, we can identify Gal(L/K) as the L-group scheme

Gal(L/K) = Spec(L⊗K L).

As such, Gal(Fp/Fp) ∼= Ẑ is an affine Fp-group scheme via

Gal(Fp/Fp) = lim←− Spec(Fpn ⊗Fp Fpn) = Spec(lim−→(Fpn ⊗Fp Fpn)) = Spec(Fp ⊗Fp Fp).

In order to understand how these strata glue together, we want to understand infinitesimal

neighborhoods inMFG of a point inMFG, which correspond to deformations of a formal

group law over a field k to infinitesimal thickenings of k.

Using the Lubin-Tate theory of lifts of formal group laws, one can define an action of Sn

and Gn on (En)∗ (see [DH95] and [DH04]) for details).

Theorem 5.3.3 (Goerss-Hopkins-Miller). The action of Gn on (En)∗ lifts to a coherent

action of Gn on the spectrum En by E∞ maps. Furthermore, the space MapE∞(En, En)

of E∞ self-maps of En has contractible path-components and

π0(MapE∞(En, En)) ∼= Gn.

For finite group G acting on a spectrum X, we can define the homotopy fixed point

spectrum

XhG = F (Σ∞
+EG,X)G,

where F (−,−) is the function spectrum. There is an associated “Homotopy Fixed Point

Spectral Sequence”

Ep,q2 = H−p(G, πq(X)) =⇒ πp+q(X
hG).

So, for H ≤ Gn finite, we get a fixed point spectrum EhHn (by replacing En with an

equivalent spectrum on which H literally acts). If we are willing to discretize Gn, this

idea can be extended to arbitrary subgroups H ⊆ Gn, but it turns out that we should
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care more about continuous group cohomology of Gn; the K(n)-local En-based Adams

Spectral Sequence is of the form

H∗
cont(Gn; (En)∗) =⇒ π∗LK(n)S

0,

where LK(n)S
0 denotes the K(n)-local sphere spectrum (see Chatper 6 for more details

on localization). In the case of finite (or equivalently, closed and discrete, as Gn is

compact Hausdorff) H, there is no distinction between continuous and ordinary group

cohomology, and EhHn can thus also be regarded as a “continuous” homotopy fixed point

spectrum.

Theorem 5.3.4 (Devinatz-Hopkins [DH04]). For all closed subgroups H ≤ Gn, there

exists a (continuous) homotopy fixed point spectrum (abusively denoted) EhHn with an

associated Homotopy Fixed Point Spectral Sequence

Ep,q2 = H−p
cont(H;πqEn) =⇒ πp+q(E

hH
n ).

In the case that H = Gn, this Homotopy Fixed Point Spectral Sequence corresponds

to the K(n)-local En-based Adams Spectral Sequence mentioned above, and EhGn
n =

LK(n)S
0.

Remark 5.3.5. The usual construction for homotopy fixed points (for H a discrete

group) requires that the action of H be a literal action, and not just a homotopy coherent

action. As such, the spectra EhHn constructed in [DH04] are not literally homotopy fixed

point spectra in the usual sense (at least when H is not finite). However, they have all

of the desired functoriality properties, and agree with the usual homotopy fixed point

construction in the case where H is finite, and are therefore the “correct” notion of

homotopy fixed point spectra in this situation.
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5.4 Movava modules

In practice, a completed version of Morava E-theory is seen to be a more natural choice

of covariant version of E∗
n than the usual (En)∗(X) = π∗(En ∧X).

Definition 5.4.1. For X a spectrum, let

(En)
∨
∗ (X) := π∗LK(n)(En ∧X)

We will call (En)∨∗ (X) the height n Morava module of X.

A description of the Morava module of a spectrum X will be of particular use in

determining whether X is invertible. Furthermore, by [DH04], the Morava module of the

fixed point spectrum EhHn for closed subgroup H ≤ Gn can be computed as

(En)
∨
∗ (E

hH
n ) = Mapscont(Gn/H, (En)∗).

Remark 5.4.2. In [HMS94], the authors define the Morava module of X to be

Kn,∗(X) := lim←−
(i0,...,in−1)

[En/(p
i0 , . . . , v

in−1

n−1 )]∗(X).

Each of these quotients can be realized by smashing with an appropriate generalized Moore

spectrum, as is described explicitly in [HMS94, §7]. Alternatively, we can construct

quotients described in Chapter 2, and as each sequence pi0 , . . . , vin−1

n−1 is regular, we

have

[En/(p
i0 , . . . , v

in−1

n−1 )]∗ = (En)∗/(p
i0 , . . . , v

in−1

n−1 )

In nice cases (see Remark 9.2.2), these two definitions coincide. We will continue to use

the term “Morava module of X” to mean in the sense of Definition 5.4.1.
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Chapter 6

Bousfield localization

The stable homotopy category of spectra is difficult to study in its entirety. In this

chapter, we describe the technique of Bousfield Localization, which is often employed to

restrict to smaller, more well-behaved subcategories.

6.1 Preliminaries on E-local and E-acyclic spectra

Definition 6.1.1. A morphism f : X → Y is called an E-equivalence if f ∧ id : X ∧E →

Y ∧ E is an equivalence, that is, if E∗(f) is an isomorphism.

Definition 6.1.2. Given a spectrum E, a spectrum X is called E-acyclic if E∗X = 0

(equivalently, if E ∧ X ≃ ∗). A spectrum X is called E-local if for every E-acyclic

spectrum A, [A,X]∗ = 0.

Notice that an E-equivalence A → B is a map whose homotopy fiber F is E-acyclic

(look at the long exact sequence in E-homology), meaning that asking for a spectrum

X to be E-acyclic is the same as requiring that every E-equivalence A → B gives an

isomorphism [B,X]∗
∼−→ [A,X]∗.
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Example 6.1.3. If E is a ring spectrum and M is a module over E (with the action of

E on M denoted ρ), then M is E-local. To see this, let A be an E-acyclic spectrum and

take any map f : A→M . Then, factoring f as

S ∧A η∧1−→ E ∧A 1∧f−→ E ∧M ρ−→M

shows that f = 0, because E ∧A ≃ ∗.

E-local spectra satisfy many useful properties, some of which are as follows:

Proposition 6.1.4 ([Rav92] 7.1.2).

1. The homotopy inverse limit of E-local spectra is also E-local.

2. Given a cofiber sequence

X → Y → Z,

if any two of X,Y, Z are E-local, then so is the third.

3. An E-equivalence of E-local spectra is an equivalence.

4. If X ∨ Y is E-local, then so are X and Y .

5. If X is E-local, then it is E ∨ F -local for any F .

Proof.

1. Let {Xi}i∈I be an inverse system of E-local spectra and let A be E-acyclic. Letting

F (−,−) denote the mapping spectrum, we have

F (A, holimXi) ≃ holim (F (A,Xi)),

There is then a Milnor exact sequence

0→ lim←−
1π∗+1F (A,Xi)→ π∗holimF (A,Xi)→ lim←−π∗F (A,Xi)→ 0.
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As each Xi is E-local, π∗F (A,Xi) = [A,Xi]∗ = 0, so that both lim←−
1π∗+1F (A,Xi)

and lim←−π∗F (A,Xi) vanish, and we have

[A, holimXi]∗ = π∗F (X, holimXi) = π∗holim (F (A,Xi)) = 0,

so that holim Xi is E-local.

2. Let A be an E-acyclic spectrum. From the cofiber sequence

X → Y → Z,

we get a long exact sequence

· · · → [A,X]∗ → [A, Y ]∗ → [A,Z]∗ → [A,X]∗−1 → · · · .

By hypothesis, two out of every three consecutive terms is zero, meaning that the

third must be also.

3. Let f : X → Y be an E∗-equivalence of E-local spectra. Then the homotopy fiber

F of f is E-acyclic. Further, by (2), F is E-local. Being both E-acyclic and E-local

means that F ≃ ∗, so that f : X → Y is an equivalence.

4. Let A be E-acyclic. Then,

0 = [A,X ∨ Y ]∗ = [A,X]∗ ⊕ [A, Y ]∗,

so that both [A,X]∗ and [A, Y ]∗ are zero.

5. Any E ∨ F -acyclic spectrum is E-acyclic and the result follows immediately.

So, if we restrict our attention to E-local spectra, E∗-homology is sufficient for detecting

equivalences. If we already know that a map A→ B is between E-local spectra, this is

great. Otherwise, we might hope find E-local replacements for A and B and work with

those instead.
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6.2 The Bousfield lattice and localization

In [Bou79], Bousfield showed that given a homology theory E and spectrum X we can

functorially replace X with an E-local spectrum. More specifically, he showed that there

is a homotopy cofiber sequence

GE(X)→ X → LE(X),

functorial in X, where GE(X) is E-acyclic and LE(X) is E-local. As the homotopy fiber

of X → LE(X) is E-acyclic, this means that X → LE(X) is an E-equivalence. So, the

functor LE provides a way of replacing a spectrum with an E-local one whose difference

is invisible to the eyes of E. The functor LE is called a Bousfield localization functor.

Up to homotopy, there is only one choice spectrum LE(X) which is both E-local and

E-equivalent to X. On the categorical level, the functor LE localizes the category of

spectra at the collection of morphisms f for which f ∧ IdE is an equivalence.

Definition 6.2.1. Let ⟨E⟩ denote the class of E-acyclic spectra. Then, two homology

theories E and F give the same localization functor if and only if ⟨E⟩ = ⟨F ⟩, which we’ll

call Bousfield equivalence. The collection (which is a set) of Bousfield equivalence classes

is partially ordered by reverse inclusion, and is called the Bousfield lattice.

Remark 6.2.2. By [Kra08, 4.9.1], the Bousfield localization functor LE can be con-

structed as a Verdier quotient Sp → Sp/⟨E⟩ followed by a fully faithful right adjoint

Sp/⟨E⟩ → Sp.

6.3 Examples

Many previously understood constructions can be phrased in terms of Bousfield localiza-

tion:
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Example 6.3.1. Let MZ/pZ be the mod-p Moore spectrum. That is,

MZ/pZ = S0/p = hocofib(S0 p→ S0).

The functor LMZ/pZ is called p-completion, and for connective spectra,

LMZ/pZX = lim←−((S
0/pn) ∧X) = X∧

p .

For a not-necessarily connective X, we will also denote X∧
p := LMZ/pZX.

Example 6.3.2. Let HFp denote the mod-p Eilenberg-Mac Lane spectrum. For a

connective spectrum X, localization LHFpX coincides with the p-completion LMZ/pZX

of the previous example (see [BB19b, 2.6]). So, this gives an alternative notion of p-

completion of a spectrum. Throughout this dissertation, “p-completion” will continue to

mean localization with respect to the Moore spectrum MZ/pZ.

Example 6.3.3. LMZ(p)
is p-localization, where MZ(p) is the Moore spectrum for the

p-local integers.

Example 6.3.4. Localization LS0 does nothing, i.e. LS0X ≃ X: A spectrum A is

S0-acyclic if and only if S0 ∧ A ≃ A ≃ ∗, so [A,X]∗ = 0 for all X, meaning that any

spectrum X is already S0-local.

Example 6.3.5. On the other end of the Bousfield lattice is the localization Lpt. with

respect to pt. = ∗: Everything is pt.-acyclic, including the sphere spectrum. So, to be

pt.-local is to force π∗X = 0.

Example 6.3.6. Localization with respect to Johnson-Wilson theory

E(n) := v−1
n BP/(vn+1, vn+2, . . . )

can be described quite nicely:

LE(n)X ≃ X ∧ LE(n)S
0.



37

That is, E(n)-localization is the same thing as smashing with the E(n)-local sphere.

Such a localization is called smashing.

For any E, X ∈ ⟨E⟩ ⇐⇒ LEX ≃ ∗, so that when LE is a smashing localization, we

have

⟨E⟩ = ⟨LES0⟩.

Remark 6.3.7. The Bousfield classes of E(n), En and K(0) ∨ · · · ∨K(n) are the same,

meaning that LE(n) = LEn = LK(0)∨···∨K(n). See [Rav84, 2.1] for the equivalence

⟨E(n)⟩ = ⟨K(0)⟩ ∨ · · · ∨ ⟨K(n)⟩.

The equivalence of these with ⟨En⟩ follows from [Hov93, 1.12]. In [Bak00, 3.4], it is

shown that ⟨E(n)⟩ = ⟨Ê(n)⟩, where Ê(n) = E(n)∧In is completed Johnson-Wilson theory.

We finish with a useful fact, which we will use later to build the “chromatic fracture

square.”

Proposition 6.3.8 ([Law19] 9.26). Suppose LKLE ≃ ∗. Then, for any spectrum X,

there is a homotopy pullback diagram

LE∨KX LEX

LKX LELKX.

Proof. Let P be the homotopy pullback of the diagram

LEX

LKX LELKX.

Note that each object in the above diagram is either E-local or K-local, so by Proposition

6.1.4 (5), they are E ∨K-local. Note that this means that P is also E ∨K-local: Looking
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at the Mayer-Vietoris sequence for associated to the homotopy pullback, letting A be

E ∨K-acyclic, we have a long exact sequence

· · · → [A,LELKX]∗+1 → [A,P ]∗ → [A,LKX]∗ ⊕ [A,LEX]∗ → · · · ,

and by hypothesis, the outside terms vanish, so [A,P ]∗ = 0.

So, it suffices to show that the map X → P is an E ∨K equivalence, as we will then have

LE∨KX ≃ LE∨KP ≃ P . Next, note that any homotopy pullback square is simultaneously

a homotopy pushout square. So, as the smash product commutes with homotopy colimits,

it necessarily commutes with taking homotopy pullbacks. So,

P ∧ (E ∨K) LEX ∧ (E ∨K)

LKX ∧ (E ∨K) LELKX ∧ (E ∨K)

is a homotopy pullback square and we are reduced to showing that

X ∧ (E ∨K) LEX ∧ (E ∨K)

LKX ∧ (E ∨K) LELKX ∧ (E ∨K)

is also, so that X ∧ (E ∨K)→ P ∧ (E ∨K) is an equivalence.

The requirement that LKLE ≃ ∗ means that LEX is K-acyclic, as is LELKX, so splitting

the wedge summand factors apart, we are reduced to showing that

X ∧ E LEX ∧ E

LKX ∧ E LELKX ∧ E

∼

∼

and

X ∧K ∗

LKX ∧K ∗

∼
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are homotopy pullback squares, which is clear.

For the rest of this dissertation, we’ll be mostly concerned with localization at Morava

K-theory and Morava E-theory.
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Chapter 7

The chromatic tower and chromatic

convergence theorem

7.1 Chromatic convergence and monochromatic layers

Fix a prime p and let Ln = LEn = LK(0)∨···∨K(n).

Definition 7.1.1. The chromatic tower for a p-local spectrum X is the system

X −→ · · · −→ L2X −→ L1X −→ L0X.

Theorem 7.1.2 (Chromatic convergence). For X a p-local finite CW complex, X ≃

lim←−LnX.

Definition 7.1.3. The homotopy fibers MnX = hofib(LnX → Ln−1X) are called the

monochromatic layers of X.

The monochromatic layers MnX are the “quotients” of our filtration, and they themselves

decompose into periodic spectra with periods multiples of 2pn − 2 (the same 2pn − 2 as
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|vn| in K(n)∗). Explicitly, we can write

hocolimαFα
∼−→MnX,

where Fα ≃ Σ(2pn−2)pe(α)
Fα for some e(α) ≥ 0. This follows as a result of [HS99b, 7.10(c)]

and the Periodicity Theorem of [HS98].

The functors LK(n) and Mn restrict to an adjunction on LnSp, and give a symmetric

monoidal equivalence

Mn : SpK(n) ⇄ Mn : LK(n),

where Mn is the essential image of the functor Mn. So, instead of working with the fibers

MnX of the filtration, we can equivalently work with the localizations LK(n)X.

7.2 The chromatic fracture square

Proposition 7.2.1. LK(n)Ln−1X ≃ ∗ for any X.

Proof. We wish to show that Ln−1X is K(n)-acyclic. As Ln−1 is a smashing localization,

we haveK(n)∧Ln−1X ≃ K(n)∧Ln−1S
0∧X, and it suffices to show thatK(n)∧Ln−1S

0 ≃

∗. Now,

K(n) ∧ Ln−1S
0 ≃ Ln−1K(n),

so this is equivalent to verifying that K(n) is En−1-acyclic. We have,

⟨Ln−1S
0⟩ = ⟨En−1⟩ = ⟨K(0) ∨ · · ·K(n− 1)⟩.

So,

Ln−1K(n) ≃ ∗ ⇐⇒ K(n) ∧
n−1∨
i=0

K(i) ≃ ∗.

But, K(n) ∧K(i) ≃ ∗ for n ̸= i by Proposition 2.1.1 (5), so the right hand side is indeed

trivial and LK(n)Ln−1S
0 ≃ ∗, as desired.
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Corollary 7.2.2. Combining Propositions 6.3.8 and 7.2.1 we have the chromatic fracture

square:
LnX LK(n)X

Ln−1X Ln−1LK(n)X.

Here, the left vertical map is the same as the map within the chromatic tower. So,

using the chromatic fracture square and chromatic convergence, one can hope to study a

spectrum X (p-locally) by studying its localizations LK(n)X, and through this lens, the

importance of understanding the K(n)-local category of spectra is immediate.

Remark 7.2.3. Being a homotopy pullback square, the homotopy fibers of the vertical

maps in the above diagram are equivalent. As LK(n)X ≃ LnLK(n)X, this gives

MnX ≃MnLK(n)X.

Remark 7.2.4. Let X be a complex-oriented cohomology theory with formal group

law of height exactly m. Then, LnX ≃ ∗ ⇐⇒ m > n. (See [Lur10][Lec. 29].) In

this sense, Ln acts on complex-oriented cohomology theories like restriction to the open

substackM≤n
FG. Similarly, LK(n) acts like completion along the locally-closed substack

Mn
FG ([Lur10][Lec. 22]).

Through this guise, the chromatic fracture square can be interpreted as saying that given

a sheaf onM≤n−1
FG and one on the completion M̂n

FG agreeing on a formal neighborhood

M̂n
FG ∩M

≤n−1
FG ofMn

FG inM≤n−1
FG , we can glue these to get a sheaf onM≤n

FG.
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7.3 The Sullivan arithmetic square

This chromatic fracture square should bring to mind the usual “arithmetic fracture

square”
Z

∏
p Zp

Q Q⊗Z

(∏
p Zp

)
.

In more direct analogy, we have the fracture square for spectra:

Proposition 7.3.1. For any spectrum X, there is a homotopy pullback square

X
∏
p LpX

LQX LQ

(∏
p LpX

)
,

where LQX denotes rationalization LQX ∼= HQ ∧ X and LpX = X∧
p = LMZ/pZX is

p-completion.

Proof. This follows from Proposition 6.3.8 by taking K =
∨
pMZ/pZ and E = HQ. The

equivalence
∏
p LpX ≃ LM(

⊕
p Z/pZ)X is shown in [Bou79, 2.6], and

M

(⊕
p

Z/pZ

)
≃
∨
p

MZ/pZ

by definition of Moore spectra. The condition that LKLEX ≃ 0 is equivalent to requiring

that K ∧ E ∧X ≃ ∗, which holds because K ∧ E ≃
∨
pM(Z/pZ) ∧HQ ≃ ∗. Finally,

by Serre, there is an equivalence MQ ≃ HQ, and by [Rav92, 7.2.5], there is a Bousfield

equivalence

⟨S0⟩ = ⟨MQ⟩ ∨
∨
p

MZ/pZ,

so that LE∨KX ≃ LS0X ≃ X.
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Remark 7.3.2. This idea of building X from its mod p-localizations and its rationaliza-

tion is originally due to Sullivan [SR05] (in the case where X is a nilpotent space), and

as such the pullback square of Proposition 7.3.1 is often called the “Sullivan arithmetic

square.”

7.4 The chromatic filtration on homotopy groups

In the introduction, we promised a new filtration to replace the Postnikov filtration of

π∗Swith quotient groups πnS. The filtration above, however, is a filtration on the level

of spectra, rather than on their homotopy groups. An alternative chromatic filtration on

the homotopy groups, however, does exist.

Definition 7.4.1. The chromatic filtration on π∗S
0 is the descending filtration

π∗S
0 ⊇ F0(π∗S

0) ⊇ F1(π∗S
0) ⊇ · · · ,

where Fn(π∗S0) = ker(π∗S
0 → π∗LnS

0).

This construction works equally well with any other spectrum in place of S0.
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Chapter 8

The K(n)-local Picard group

Definition 8.0.1. Given a symmetric monoidal category (C,⊗, I), we call an object

X ∈ C invertible if there is some object Y ∈ C such that X ⊗ Y ∼= I. Should the

collection of isomorphism classes of invertible elements form a set (for instance, when

C is essentially small), then we can define the Picard group of the category C to be the

collection of isomorphism classes of such elements with group operation ⊗ and identity

element I, and we’ll denote it Pic(C).

8.1 Invertibility in Sp

Example 8.1.1. The only invertible objects in the stable homotopy category Sp =

(Sp,∧, S0) are the spheres, so we have Pic(Sp) ∼= Z, with cyclic generator S1.

Proof. By the Künneth isomorphism for homology with coefficients in a field k, for

Z ∧ Z ′ ≃ S0,

Hk∗Z ⊗k Hk∗Z ′ ∼= Hk∗S
0 = k,
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so that Hk∗Z = HZ∗Z ⊗Z k = k generated in some degree i. Since this is true for all

fields k, we must have HZ∗Z ≃ Z. (First, as Z is invertible, it is strongly dualizable. By

[MLC+96, XVI.7.4] this means that Z is the retract of a finite spectrum F . In particular,

the homology groups HZ∗Z are finitely generated, being a direct summand of HZ∗F .

Taking k = Q shows that for some fixed i, we have

HZ∗Z =


Z⊕ Ti ∗ = i

Tj j ̸= i,

where the Ti consist entirely of torsion. So, for taking k = Fℓ for any prime ℓ, we see that

Ti and Tj , j ̸= i have no ℓ-torsion. As ℓ was arbitrary, these torsion groups are all 0.)

Now, consider the Postnikov tower for S0.

...

τ≤2S
0

τ≤1S
0

Σ−iZ HZ = τ≤0S
0 S0

The 0th truncation of the Postnikov tower of Σ−iZ is τ≤0Σ
−iZ = HZ, giving the bottom

map. We have

hocofib(τ≤mS0 → τ≤m−1S
0) = Σm+1HπmS

0.

So, obstructions to lifting to a map Σ−iZ → τ≤mS
0 live in

[Σ−iZ,Σm+1HπmS
0]0 = H i+m+1(Z;πmS

0)

∼= Hom(Hi+m+1(Z;Z), πmS0)⊕ Ext1Z(Hi+m(Z;Z), πmS0)
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by the Universal Coefficients Theorem. For m > 1,

Hi+m+1(Z;Z) = Hi+m(Z;Z) = 0,

so that the obstructions vanish and we get a map Σ−iZ → S0, which is evidently an

isomorphism on HZ∗(−). Similarly, we get a map ΣiZ ′ → S0, which after smashing with

Z gives a map S0 → Σ−iZ which is also an isomorphism on HZ∗(−), inverse to the map

induced by Σ−iZ → S0. In total, this gives a composite

S0 → Σ−iZ → S0,

which is an isomorphism on HZ∗S
0. As S0 is connective, by the Hurewicz theorem, this

composite is a homotopy equivalence π∗S0 ∼−→ π∗S
0, so that we get a splitting

Σ−iZ ≃ S0 ∨A

for some A.

Identically, we can write

ΣiZ ′ ≃ S0 ∨A′

for some A′. In all, this gives

S0 ≃ (S0 ∨A) ∧ (S0 ∨A′) ≃ S0 ∨A ∨A′ ∨A ∧A′,

so that A ≃ A′ ≃ ∗ and

Z ≃ Si

8.2 Invertibility in LK(n)Sp

Definition 8.2.1. In [HMS94], Hopkins, Mahowald, and Sadofsky show that for C =

LK(n)Sp (with monoidal productX⊗Y = LK(n)(X∧Y ) and unit LK(n)S
0), the collection



48

of isomorphism classes of invertible elements is indeed a set, so we may therefore define

the K(n)-local Picard group, Picn := Pic(LK(n)Sp). Furthermore, for X ∈ Picn, finding

its inverse is straightforward: It is given by the function spectrum F (X,LK(n)S
0), i.e.,

the K(n)-local Spanier-Whitehead dual of X.

8.3 The algebraic Picard group

Definition 8.3.1. By Morava module, we’ll mean a complete (En)∗-module M with a

continuous action of Gn which is compatible with the action of (En)∗ in the sense that

g(e(m)) = g(e)g(m)

for g ∈ Gn, e ∈ (En)∗, and m ∈M . This is compatible with Definition 5.4.1 in that for

a spectrum X, (En)∨∗X is a Morava module.

Definition 8.3.2. By algebraic Picard group, we’ll mean the Picard group of the category

of Morava modules, and we’ll denote it Picalg
n . A Morava module M is in Picalg

n if and

only if it is free of rank 1 over (En)∗. There is a natural map Picn → Picalg
n given by

X 7→ (En)
∨
∗X. An element in κn := ker(Picn → Picalg

n ) is called exotic.

Theorem 8.3.3 (Pstrągowski). [Pst18] For 2p− 2 > n2 + n, the map

Picn → Picalg
n

is an isomorphism.

Remark 8.3.4. Injectivity of the map Picn → Picalg
n when 2p− 2 > n2 and (p− 1) ̸ | n

follows from [HMS94][7.5]. For the same range, 2p − 2 > n2 + n, as Theorem 8.3.3,

Hovey and Sadofsky [HS99a] show that the Picard group of the E(n)-local category is

isomorphic to Z, with generator LnS1.
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As En is even-periodic, Picalg
n is endowed with a Z/2Z grading, and we define Picalg,0

n to

be the index 2 subgroup of Picalg
n concentrated in even degrees. Hy [HMS94, 8.4], this

subgroup can be described via continuous group cohomology as

Picalg, 0
n = H1

cont(Gn, (En)
×
0 ).
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Chapter 9

Existing results

9.1 Preliminaries on Thom spectra and orientations

Critical to an understanding of known constructions of invertible K(n)-local spectra is

the theory of (reduced) Thom spectra. We review the pertinent material now.

Definition 9.1.1. Let f : X → BU be a complex vector bundle over a space X. For X

compact, the image is contained in some finite BU(n). In this case, we define the Thom

spectrum M(f) as the desuspension

Σ− dim fΣ∞Th(f)

of the reduced suspension spectrum of the Thom space of f by the dimension of the

bundle. For non-compact X, define M(f) as

lim−→
C⊆X

compact

M(f |C),

taking the limit of the Thom spectra over the compact subspaces of X.
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Definition 9.1.2. For a vector bundle of dimension n, the Thom space has a spherical

cell in dimension n. Let Th(f) be the cofiber of the inclusion Sn ↪→ Th(f). This will

be called the reduced Thom space. Similarly, by desuspending by the dimension of the

bundle in the construction of the Thom spectrum, we guarantee a unique spherical 0-cell

S0 in M(f). The reduced Thom spectrum Xf will be the cofiber

S0 ↪→M(f)→ Xf .

We wish to extend this construction to give Thom spectra Mf associated to a spherical

fibration f : X → BG = BGL1S
0. Classical (HZ−)orientability of such a fibration gives

us Thom isomorphisms

HZ∗Mf
∼−→ HZ∗Σ

∞
+X,

and

HZ∗Σ∞
+X

∼−→ HZ∗Mf

If we instead seek such an equivalence on R-(co)homology for some ring spectrum R, we

can modify the requirement of orientability to the notion of an R-orientation, which we

discuss in what follows.

The theory of R-orientations of Thom spectra for an E∞ ring spectrum R was developed

in [May77]. We review that material, as well as an extension to A∞ spectra from the

point of view of [ABG+08].

Definition 9.1.3. Let A be an associative ring spectrum. We then define GL1A, the

space of units of A to be the pullback in the diagram of unpointed spaces

GL1A Ω∞A

(π0A)
× π0A.

Here (for A a sequential spectrum), the map Ω∞ → π0A is determined by taking the
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natural maps

ΩnAn → πnAn → lim−→πnAn = π0A

and applying the universal property of Ω∞A = lim−→ΩnAn. If A is an A∞ ring spectrum,

then we have a delooping

GL1A ≃ ΩBGL1A.

If A further happens to be an E∞ ring spectrum, then we get an infinite delooping

GL1A ≃ Ω∞gl1A.

LetR be an E∞ ring spectrum, and let b be a spectrum with a map f : b→ bgl1R = Σgl1R.

Now, let p be the homotopy pullback of the diagram

b −→ bgl1R←− egl1R ≃ ∗.

We can then form the diagram

gl1R gl1R

p egl1R

b bgl1R.

=

f

Given an E∞ map R→ A gives through composition and functoriality

gl1R gl1A

p egl1A ≃ ∗

b bgl1A.

Theorem 9.1.4. [ABG+08, 3.2] The functors Σ∞
+ Ω∞ and gl1 participate in an adjunction

Σ∞
+ Ω∞ : ho((−1)− connected spectra) ⇄ ho(E∞ ring spectra) : gl1.
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Definition 9.1.5. The Thom spectrum Mf associated to the map f : b→ bgl1R is the

homotopy pushout in the following diagram of E∞ spectra:

Σ∞
+ Ω∞gl1R R

Σ∞
+ Ω∞p Mf.

Here, the map

Σ∞
+ Ω∞gl1R −→ R

is the counit of the adjunction in Theorem 9.1.4

The spectrum underlying Mf is the derived smash product

Mf = Σ∞
+ P ∧LΣ∞

+ GL1R R,

where P = Ω∞p.

Remark 9.1.6. For R an A∞ ring spectrum (but not necessarily E∞) we can form a

Thom spectrum associated to a map of spaces f : B → BGL1R. In this case, we can

still form a pullback diagram
P EGL1R

B BGL1R,

and we define Mf = Σ∞
+ P ∧LΣ∞

+ GL1R
R, just as in the E∞ case.

Using this construction, we can form a Thom spectrum for any map B → BGL1R (where

R is A∞). Specializing to R = S0, we arrive at the standard case of the Thom spectrum

associated to a spherical fibration. We will primarily be concerned with (a p-completion

of) this case.

In the classical case of the Thom space of a vector bundle f : U → V of rank n, there is

a Thom isomorphism

H∗(V ;Z/2Z)→ H̃∗+n(Th(f);Z/2Z),
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where Th(f) is the Thom space of f , where the isomorphism is given by cupping with a

Thom class c ∈ H̃n(Th(f);Z/2Z).

The space Gn of homotopy equivalences of Sn−1 is an associative H-space under com-

position, and its delooping BGn is the classifying space for spherical fibrations with

fiber Sn−1 (see [Sta63]). Furthermore, Gn admits an inclusion On ↪→ Gn. This allows

us to consider such the vector bundle f : U → V as a spherical fibration V → BGn

with fiber Sn−1, and an orientation of such a map upgrades this to an isomorphism on

integral homology, and working stably, this gives the integral Thom isomorphism for

a spherical fibration X → BG = BGL1S
0 previously discussed (with G = lim−→Gn, the

maps Gn → Gn+1 given by suspension). We now generalize this to define R-orientations

for a cohomology theory R, which will give us an R-(co)homological Thom isomorphisms,

with classical orientability corresponding to HZ-orientability.

Definition 9.1.7. Let R be an A∞ ring spectrum and f : B → BGL1R a map of spaces.

For x ∈ B, let Mfx be the Thom spectrum associated to

{x} ↪→ B
f−→ BGL1R.

A map Mf → R (or, equivalently, an element of R0(Mf)) is an orientation if and only if

Mfx →Mf → R

is a weak equivalence for every x ∈ B.

By [ABG+08, 2.20], if f factors as

f : B
g−→ BGL1S

0 BGL1η−→ BGL1R,

then the set of lifts
P B(S0, R) EGL1R

B BGL1S
0 BGL1Rg
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is in bijection with the set of orientations u : Mf → R, where B(S0, R) is defined so

that the right hand square is a homotopy pullback square. In this situation, we will also

call an orientation u :Mf → R an R-orientation for g.

Remark 9.1.8. WhenR is E-local, the analogous statement holds if we replaceBGL1(S
0)

with BGL1(LES
0) and consider lifts B → B(LES

0, R), where B(LES
0, R) is defined in

the obvious way. See [May77, §3] or [Wes17, §4] for this.

Given a map u :Mf → R, we can form the composite

ρ(u) :Mg ∧R ≃Mf
Th(∆)−→ Σ∞

+B ∧Mf
1∧u−→ Σ∞

+B ∧R,

where Th(∆) is the Thom diagonal.

Theorem 9.1.9 (Thom isomorphism, homological version, [ABG+08]). Let f : B →

BGL1R be a map let u :Mf → R be an orientation. Then, the map

ρ(u) :Mf → Σ∞
+B ∧R

is a weak equivalence. In particular, we get an isomorphism

R∗(Mg) ∼= R∗(Σ
∞
+B)

Theorem 9.1.10 (Thom isomorphism, cohomological version). Let u :Mf → R be an

orientation, with f = (BGL1η)◦g, as before. Then, cupping with u gives an isomorphism

R∗(Σ∞
+B) ∼= R∗(Mg).

9.2 Results of Hopkins-Mahowald-Sadofsky

When discussing the Picard group of the K(n)-local category, there are three main things

we would like to do:
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1. Find computable invariants to determine whether a given spectrum lies in Picn

2. Compute the group structure of Picn.

3. Construct explicit elements of Picn.

It is usually helpful to restrict ourselves to looking at a specific height and a specific

prime at a time. Hopkins-Mahowald-Sadofsky ([HMS94]) provide an answer to (1) at all

heights and all primes:

Theorem 9.2.1 (Hopkins-Mahowald-Sadofsky). The following are equivalent:

1. LK(n)(Z) ∈ Picn.

2. dimK(n)∗ K(n)∗(Z) = 1.

3. (En)
∨
∗ (Z) is a free E∗-module of rank 1.

Proof. (1)⇒ (2): The localization map Z → LK(n)Z is a K(n)∗-equivalence, so it suffices

to suppose LK(n)Z = Z ∈ Picn. Suppose that Z ∧Z ′ = LK(n)S
0. Then, by the Künneth

isomorphism for Morava K-theory,

K(n)∗(Z ∧ Z ′) = K(n)∗Z ⊗K(n)∗ K(n)∗Z
′ = K(n)∗(LK(n)S

0) = K(n)∗S
0 = Fp[v±n ].

As K(n)∗ = Fp[v±n ] is a graded field, each K(n)∗Z and K(n)∗Z
′ are free modules over

K(n)∗ whose ranks multiply to 1. Hence, dimK(n)∗ K(n)∗Z = 1.

(2)⇒(1): Suppose dimK(n)∗ K(n)∗(Z) = 1 and let Z ′ := F (Z,LK(n)S
0).

Claim: The evaluation map

Z ∧ Z ′ → LK(n)S
0

is a K(n)-equivalence.
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Proof of claim: Let Cn denote the collection of all spectra X for which

qX : Z ∧ F (Z,LK(n)X)→ LK(n)X

is a K(n)-equivalence. Here, qX is adjoint to the identity in

[F (Z,LK(n)X), F (Z,LK(n)X)].

Then, Cn is closed under taking coproducts and cofibers. Furthermore, for X = K(n),

qK(n) : Z ∧ F (Z,K(n))→ K(n)

is a K(n)-equivalence. To see this, note that

π∗F (Z,K(n)) = K(n)−∗(Z) = HomK(n)∗(K(n)−∗(Z),K(n)∗).

Also, adjoint to the map

K(n) ∧ Z ∧ F (Z,K(n))
1∧qK(n)−→ K(n) ∧K(n)

µ−→ K(n)

is a map

K(n) ∧ F (Z,K(n))→ F (Z,K(n))

which makes F (Z,K(n)) into a K(n)-module, and thus a wedge of suspensions of K(n).

So, if K(n)∗Z = K(n)∗+m, then π∗F (Z,K(n)) = K(n)∗−m, so that

F (Z,K(n)) ≃ ΣmK(n),

and

K(n)∗(F (Z,K(n))) = K(n)∗−mK(n),

and the equivalence follows.

Now, for X finite and type n (i.e., K(n)∗X ̸= 0 and K(i)∗X = 0 for i < n), it is a fact,

shown by Hopkins and Ravenel in unpublished work (and which follows non-trivially

from [Rav92, §8.3]) that LK(n)X possesses a finite filtration wherein each cofiber is a
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wedge of K(n)’s, so X ∈ Cn. But, for finite spectra, LK(n) is a smashing localization, so

that our map

Z ∧ F (Z,LK(n)X)→ LK(n)X.

is equivalent to

Z ∧ Z ′ ∧X = Z ∧ F (Z,LK(n)S
0) ∧X → LK(n)S

0 ∧X.

As X is type n, K(n)∗X ̸= 0, so that this is a K(n)-equivalence if an only if

Z ∧ Z ′ → LK(n)S
0

is, meaning that S0 ∈ Cn and we’re done.

(3)⇒(2): Suppose (En)∨∗ (Z) = (En)
∨
∗ (S

k). Then, (En)∨∗ (Z) is pro-free, so that by [HS99b,

8.4],

K(n)∗(X) = (En)
∨
∗ (X)/In,

where In = (p, v1, . . . , vn−1). Thus, reducing modulo In gives

K(n)∗Z = K(n)∗S
k = K(n)∗−k.

For (2)⇒(3), see [HMS94, §7]. Alternatively, for a proof of (1)⇔(3), see [Dev17, 5.3].

Remark 9.2.2. In [HMS94], in place of (3), the authors include the condition that

Kn,∗ be a free (En)∗-module of rank 1. Following [HS99b, 8.4], there is a Milnor exact

sequence

0→ lim←−
I

1(En/I)∗+1X → (En)
∨
∗X → lim←−

I

(En/I)∗X︸ ︷︷ ︸
=Kn,∗(X)

→ 0,

where I ranges over ideals of (En)∗ of the form (pi0 , . . . , v
in−1

n−1 ). In [BF15, 6.2], it is

shown that the lim←−
1-term vanishes if (En)∨∗X is pro-free or if X is strongly dualizable in

LK(n)Sp. In particular, when X ∈ Picn, (En)∨∗X ∼= Kn,∗ as E∗-modules.
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9.3 Calculation of Pic1 at odd primes following [HMS94]

For p ̸= 2, the p-adic units, Z×
p , are topologically cyclic. Let g be any topological

generator, for example (1 + p)ζ, where ζ is a primitive (p − 1)st root of unity. Then,

specializing Definition 5.4.1 to the case n = 1 (and identifying (En)
∨
∗ (X) ∼= Kn,∗(X) per

Remark 9.2.2), we have for X ∈ Pic1,

(E1)
∨
∗ (X) = lim←−[E1/(p

j)]∗(X) = lim←−(KU
∧
p )∗(X ∧M(pj)),

where KU∧
p is complex K-theory completed at p and M(pj) is the Z/pjZ Moore spectrum.

This identification allows us to act on (E1)
∨
∗ (X) by Adams operations ψa for any a ∈ Z×

p .

Alternatively, this action of Z×
p can be described via the action the Morava stabilizer

group G1 = S1 ∼= Z×
p on E1 ≃ KU∧

p .

Theorem 9.3.1. Pic1 sits in an exact sequence

0→M → Pic1 → Z/2Z→ 0.

By Theorem 9.2.1, for X ∈ Pic1, K(1)∗X is generated by a single element over K(1)∗.

The map Pic1 → Z/2Z takes X to the dimension of that generator mod 2, and M is the

kernel of that map. Furthermore, we have an isomorphism ev :M → Z×
p taking X to the

eigenvalue of ψg on (E1)
∨
0 (X) ∼= Zp.

We begin by outlining the proof of the equivalence M ∼= Z×
p .

Proposition 9.3.2. The map ev :M → Z×
p is a homomorphism.

Proof. By Theorem 9.2.1, for X ∈ M , (E1)
∨
∗ (X) = (E1)

∨
∗ (S

k) for some k ≡ 0 mod 2.

By Bott Periodicity, we can take k = 0. For X,Y ∈ M , we then have a Künneth

isomorphism of (KU∧
p )∗-modules

(E1)
∨
∗ (X ∧ Y ) ∼= (E1)

∨
∗ (X)⊗(KU∧

p )∗ (E1)
∨
∗ (Y ),
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which extends to an isomorphism of modules over the Adams operations ψa by multi-

plicativity of the Adams operations.

Proposition 9.3.3. ev :M → Z×
p is injective.

Proof. (Sketch) Suppose X ∈ ker ev, i.e., that ev(X) = 1. We then have a diagram whose

top row is a fiber sequence:

X (KU∧
p ∧X)∧p (KU∧

p ∧X)∧p

S0,

η∧1 [ψg−1]∧1

s̃
s 0

where s is a generator of π0(KU∧
p ∧X) = (KU∧

p )0X. The fact that the top row is a fiber

sequence follows from [Bou79] Theorem 4.3 and Proposition 2.11, and the full proof is

detailed in Lemma 2.3 of [HMS94]. As the composition [ψg − 1] ∧ 1 ◦ s is null-homotopic

(by our assumption on X), we can lift s to a map s̃ : S0 → X. Further, as X is K(1)-local,

this gives us a map

f : LK(1)S
0 → X.

Now, s is injective on K(1)-homology, meaning that K(1)∗(f) is an injective homo-

morphism between objects both isomorphic to K(1)∗. So, f is a K(1)∗-equivalence of

K(1)-local spectra and is thus a homotopy equivalence, meaning that X ≃ LK(1)S
0 and

ev is injective.

Proposition 9.3.4. ev is surjective.

Proof. This is Corollary 2.6 of [HMS94], whose proof we omit.

Corollary 9.3.5. We identify M ∼= Z×
p , and thus have an extension

0→ Z×
p → Pic1 → Z/2Z→ 0.
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Proposition 9.3.6. This extension is not split, so

Pic1 ∼= Zp ⊕ Z/qZ,

where q = 2p− 2.

Proof. For µ ∈ Z×
p , let Xµ be the fiber of KU∧

p KU∧
p .

ψg−µ Then, by Lemma 2.5 of

[HMS94],

Xgn ≃ LK(1)S
2n.

It follows from the proof of [HMS94, 2.6] that Xµ ∈M for all µ ∈ Z×
p and that ψg acts

by multiplication by µ−1 on E∨
0 (Xµ), so that µ 7→ Xµ−1 determines an isomorphism

Z×
p →M inverse to ev.

Now, suppose a section Z/2Z→ Pic1 exists. The image of 1 ∈ Z/2Z under this section

must be of the form S−1 ∧X for some X = Xµ ∈M and be of order 2. So, we find that

after K(n)-localizing,

S0 ≃ S−2 ∧Xµ2 .

So,

Xµ2 ≃ S2 ≃ Xg =⇒ µ2 = g.

But, g = (1+p)ξ has no square root in Zp, meaning that there is no section Z/2Z→ Pic1

and the extension is not split. Furthermore, we for p odd, Zp splits as

Z×
p
∼= Z/(p− 1)Z⊕ Zp.

So we have

Ext1Z(Z/2Z,Z×
p )
∼= Ext1Z(Z/2Z,Z/(p− 1)Z)⊕ Ext1Z(Z/2Z,Zp)

∼= (Z/(p− 1)Z) [2]⊕ Zp[2] ∼= Z/2Z⊕ 0,

so that Zp ⊕ Z/qZ is the only non-split extension.
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In particular, there is an element of order q = 2p − 2 in Pic1. As in the proof of the

previous proposition, any such element must be of the form

Z ≃ S−1 ∧Xµ,

with (again, omitting the localizations)

S0 ≃ Z∧q ≃ S−q ∧Xµq ,

so that µq = gp−1. This µq is then a generator of the summand Zp ⊂ Z×
p of units

congruent to 1 modulo p.

The existence of such a root µ ∈ Zp is guaranteed by Hensel’s lemma: Let

f(x) = xq − gp−1 ∈ Zp[x].

Then, f(1) ≡ 1 − ξp−1 ≡ 0 mod pZp, and f ′(1) = q ̸≡ 0 mod pZp (because p ≠ 2).

Hensel’s lemma then gives a unique root of f(x) in Zp congruent to 1 mod pZp.

Explicitly, letting Z = Xµ for this µ, we have an isomorphism

Zp ⊕ Z/qZ→ Pic1

given by

(λ, n) 7→ X(1+p)λ ∧ Zn.

This construction, however, is not terribly geometric. We use the theory of Thom spectra

of complex vector bundles to construct particular elements of Pic1. For now, by Thom

spectrum, we will mean in the sense of Definition 9.1.2.

Let Σp denote the symmetric group on p letters and ξ = ρ− [p] be the virtual complex

vector bundle over BΣp, where ρ is the permutation bundle (with ρ : BΣp → BU(p)

being the delooping of the inclusion Σp ↪→ U(p)) and [p] is the trivial bundle of dimension

p. Then,

(K̃U∧
p )

0((BΣp)(p)) = Zp
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is topologically cyclic with topological generator ξ. A sketch of much of this computation

occurs below. Alternatively, this follows from the computation of the (unreduced) Morava

E-theory of BΣk for arbitrary k found in [Str98, 3.2].

Remark 9.3.7. We will want to define Thom spectra (BΣp)
λξ for λ ∈ Zp. For λ ∈ Z an

ordinary integer, the classical Definition 9.1.2 will suffice. However, for arbitrary λ, we

need a bit of a modification. Using Definition 9.1.5, and writing S := S0 for the sphere

spectrum, we can form a Thom spectrum Xf if we have a map

X := (BΣp)(p)
f−→ BGL1(S

∧
p ).

Alternatively, we can regard this map as an element of ˜BGL1(S∧
p )

0(X). The product

λ · ξ naturally lives as an element

λ · ξ ∈ (K̃U∧
p )

0((B(Σp)(p)) ∼= Zp.

A delooping BJ of the J-homomorphism gives us a map KU → BGL1(S), and p-

completing then gives

KU∧
p → BGL1(S

∧
p ),

so that we get

(K̃U
∧
p )

0(X)
BJ∧

p−→ BGL1(S
∧
p )

0(X)

By Xλξ, we will mean the Thom spectrum associated to the composite BJ∧
p ◦ (λξ).

Definition 9.3.8. For λ ∈ Zp, let

Rλ = ([BΣp]
λξ)(p),

where the subscript (p) denotes p-localization.

Atiyah [Ati61] showed that the complex K-theory of the classifying space BG of a finite

group G is given by the completion R̂(G) of the representation ring at the augmentation
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ideal. In [Kuh87a, Kuh87b], Kuhn uses these results to show that for G a finite group

with abelian Sylow p-subgroup,

dimK(1)∗ K(1)∗(BG) = #{conjugacy classes of elements of G of order a power of p}.

In the case G = Σp, G contains Z/pZ as a Sylow p-subgroup, and has a single conjugacy

class of order p elements (as well as a single conjugacy class of order p0 = 1 corresponding

to the use here of unreduced K(1)-homology). Furthermore, it follows as a result

of Atiyah’s work that for n = 1, K(1)∗(BG) is concentrated in even degrees. So,

LK(1)Σ
∞
+BΣp ∈M and by the Thom isomorphism for complex K-theory and Proposition

2.1.1(2), we also have LK(1)Rλ ∈M .

As it turns out, these spectra are sufficient to generate all of Pic1 at odd primes:

Theorem 9.3.9 (Hopkins-Mahowald-Sadofsky).

Pic1 = {LK(1)(Rλ ∧ Si) |λ ∈ Zp, 0 ≤ i < q}.

Proof. (Sketch.) The proof of this theorem involves some rather grotesque manipulations

with quotients of CW-skeleta of Rλ involving the p-adic expansion of λ ∈ Zp. We lay out

a few of the ideas here, and direct the curious reader to [HMS94] for the full details.

Define

Rmα := ((BΣp)(p))
m/((BΣp)(p))

qα+q−2,

where superscript n denotes taking the n-skeleton.

By [HMS94, 2.9], we can write Rλ as

Rλ = lim−→
(
Rqa−1

↪→ Σ−a0qRa0q+2q
a0 ↪→ Σ−a1qRa1q+3q

a1 ↪→ Σ−a1qRa2q+4q
a2 ↪→ · · ·

)
,

where λ ∈ Zp is written as λ =
∞∑
i=0

λip
i, with 0 ≤ λi ≤ p− 1 and am =

m∑
i=0

is the mth

partial sum so that λ = lim
m→∞

am. Write a−1 = 0.
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For λ ∈ Z, this sequence is constant by [HMS94, 2.9], and we have

Rλ = Σ−λq[(BΣp)(p)/(BΣp)
λq
(p)],

and after K(1)-localization,

LK(1)Rλ ≃ LK(1)S
−qλ

This last relation can be checked by noting that

LK(1)Rλ ∈M,

and

ev(Rλ) = ev(S−qλ).

(Recall that by Proposition 9.3.3, ev is injective.) Taking inverse limits (modulo pi for

all all i), it follows that for arbitrary λ ∈ Zp, we have

LK(1)Rλ ≃ Xgλ(1−p) .

For g a topological generator of Z×
p , g1−p is a topological generator of the summand

Zp ⊂ Z×
p , and as a result, the collection of all gλ(1−p) for λ ∈ Zp is precisely this

Zp-summand, and the result follows.

Remark 9.3.10. p = 2 case. When p = 2, Z×
2 is not topologically cyclic, and

Z×
2
∼= Z2 ⊕ Z/2Z,

which differs from the odd prime case. Furthermore, localizations LK(n)S
2m of even-

dimensional spheres have square roots LK(n)(Z ∧ Z) ≃ LK(n)S
2m which are not topolog-

ically close to localizations of spheres. As a result, the analog of Theorem 9.3.9 does not

hold when p = 2. We instead have

Pic1 ∼= Z×
2 ⊕ Z/4Z ∼= Z2 ⊕ Z/2Z⊕ Z/4Z.
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In a similar fashion to the p > 2 case, [HMS94] constructs a (Z2⊕Z/2Z)-family of spectra

in Pic1 via quotients of skeleta of RP∞ = BΣ2, though spheres and elements constructed

in this way do not account for the whole of Pic1, and examples of more “interesting”

elements of Pic1 are given in [HMS94, §5].

9.4 Summary of results at low heights

• n = 1, p = 2:

By [HMS94],

Pic1 ∼= Z2 ⊕ Z/2Z⊕ Z/4Z.

Following [GHMR14, 2.10],

Picalg
1
∼= Z2 ⊕ Z/2Z⊕ Z/2Z,

and κ1 ∼= Z/2Z.

• n = 1, p ≥ 3:

By Theorem 8.3.3 and Proposition 9.3.6, we have

Pic1 ∼= Picalg
1
∼= Zp ⊕ Z/(2p− 2)Z,

and κ1 = 0.

• n = 2, p = 2

By [BBG+22, Theorem 12.29],

κ2 = (Z/8Z)2 ⊕ (Z/2Z)3 .
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• n = 2, p = 3:

[GHMR14] compute

Pic2 ∼= Z3 ⊕ Z3 ⊕ Z/16Z⊕ Z/3Z⊕ Z/3Z,

Picalg
2
∼= Zp ⊕ Zp ⊕ Z/16Z,

and κ2 = Z/3Z⊕ Z/3Z.

• n = 2, p ≥ 5:

In this range,

Pic2 ∼= Picalg
2
∼= Zp ⊕ Zp ⊕ Z/(2p2 − 2)Z.

The computation of Picn is due to Hopkins (see [Lad13]). Alternatively, Picalg
n

is computed in [Kar10] and [GHMR14], and agrees with the result at p = 3.

Equivalence of Picn and Picalg
n follows from [Pst18], as we have

2p− 2 ≥ 8 > n2 + n = 6.

9.5 Some additional important examples

• Following [GHMR05] and [Wes17]: Let p be an odd prime. Recall that the Morava

stablilizer group Gn = Gal(Fpn/Fp)⋉Aut(Γn) acts on the spectrum En compatibly

with its action on the homotopy groups (En)∗, where again, Γn denotes the Honda

formal group law. Per Devinatz and Hopkins [DH04], we can define continuous
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homotopy fixed point spectra EhHn with respect to closed subgroups H ≤ Gn. For

H = Gn, we have EhGn
n ≃ LK(n)S

0.

Recall from Chapter 5 that the non-Galois part Aut(Γn) of Gn, sometimes referred

to as the small Morava stabilizer group is the group of units Sn = O×
n of the left

W(Fpn)-module

On = W(Fpn)⟨S⟩/(Sn = p, Sω = ωσS).

This On is a rank n module over W(Fpn). Thus, right multiplication gives a

homomorphism

Sn → GLn(W(Fpn)),

and taking the determinant of the action defined by left multiplication gives a map

det : Aut(Γn)→W(Fpn)×.

This image of det is known to lie in Z×
p (see [Rav76, 2.9]). We can extend this to a

map

det± : Gn → Z×
p

by sending the Frobenius map in Gal(Fpn/Fp) to (−1)n−1. Let SG±
n = ker det±.

The group Z×
p = Gn/SG±

n acts on the homotopy fixed point spectrum EhSG
±
n

n .

Write the action as ψk ∈ Aut(EhSG
±
n

n ) for k ∈ Z×
p in analogy with the usual Adams

operations.

As p is odd, Z×
p is topologically cyclic. Letting g be the topological generator, set

for γ ∈ Z×
p

Fγ := hofib(ψg − γ : EhSG
±
n

n → EhSG
±
n

n ).

Fγ is an invertibleK(n)-local spectrum and thus defines an element of Picn. Further,

the association γ 7→ Fγ gives a homomorphism Z×
p → Picn.

Example 9.5.1. When γ = 1, we get the spectrum

F1 =
(
EhSG

±
n

n

)
hZ×

p ≃ EhGn
n ≃ LK(n)S

0,



69

the K(n)-local sphere spectrum.

Example 9.5.2. When γ = g, the resulting spectrum Fg is known as the determi-

nantal sphere spectrum, S⟨det⟩.

• For primes p > 2, Westerland [Wes17] constructs an invertible spectrum Z ∈ Picn

as a summand of the K(n)-localization of the suspension spectrum

LK(n)Σ
∞
+K(Z/p, n),

where K(Z/p, n) denotes the Eilenberg-Mac Lane space having a single non-trivial

homotopy group Z/p in degree n. We give an overview of this construction.

Let ζ be a primitive (p− 1)st root of unity. The group µp−1 = ⟨ζ⟩ of (p− 1)st roots

of unity is isomorphic to F×
p and thus acts on Z/p by multiplication. Delooping

this action n times gives an action of µp−1 on K(Z/p, n). Denote the action of ζk

given in this way by ψζk .

We can define another action of µp−1 on LK(n)K(Z/pZ, n). K(n)-local spectra are

p-complete, and any p-complete spectrum X admits an action of Z×
p such that

α ∈ Z×
p acts on π∗X by multiplication. Under the identification

µp−1 ⊆ Z×
p = µp−1 ⊕ (1 + pZp),

this gives another action of µp−1 on LK(n)K(Z/p, n). Denote the action of ζk

defined in this way by ζk.

One then can define an endomorphism e on LK(n)Σ
∞
+K(Z/p, n) by

e :=
1

p− 1

p−2∑
k=0

ζ−kψζ
k
.

This e acts as a homotopy idempotent, that is, π∗(e2) = π∗(e), and as a result, we

get a splitting

LK(n)Σ
∞
+K(Z/pZ, n) ≃ Z ∨ Z ′.
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To see this, write X := LK(n)Σ
∞
+K(Z/pZ, n) and let

e−1X = hocolim(X
e−→ X

e−→ X
e−→ X −→ · · · ).

Then, the natural map

X −→ e−1X ∨ (1− e)−1X

is an equivalence. e acts as the identity on e−1X and as 0 on (1− e)−1X. We take

Z := e−1X.

By [Wes17, 3.7], dimK(n)∗ K(n)∗Z = 1, so that by Theorem 9.2.1, Z ∈ Picn. This

Z satisfies

LK(n)Σ
∞
+K(Zp, n+ 1),

and we get a splitting

LK(n)Σ
∞
+K(Z/pZ, n) ≃

p−2∨
k=0

LK(n)(Z
∧k).

Note: By Proposition 6.1.4(4), there is no need to re-localize the smash powers

Z∧k in this splitting.

• A number of other interesting examples are listed in [BB19a, 6.16].

9.6 Construction of invertible spectra via determinantal

K-theory

In [Wes17], using maps from the determinantal sphere S⟨det⟩, Westerland defines the

notion of an n-oriented K(n)-local ring spectrum in analogy with the definition of a

complex orientation given in Chapter 3, and constructs the universal multiplicative

n-oriented spectrum, Rn. He then constructs invertible spectra as the homotopy fibers of

endomorphisms of Rn, much in the same way as the first example of the previous section.
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We present now the construction of these Rn and describe their use in constructing

invertible spectra.

We continue to let p > 2. Earlier, we defined for f : S0 → E the localization f−1E.

We now extend this notion to define localization with respect to maps A → X for

A ∈ Picn.

Definition 9.6.1. Let A ∈ Picn and X ∈ LK(n)Sp be a ring spectrum. Then, for a map

f : A→ X, define

f−1X

as the K(n)-localization of the homotopy colimit of

X
mf−→ A−1 ⊗X

1⊗mf−→ A−1 ⊗ (A−1 ⊗X)
1⊗1⊗mf−→ · · · .

Here, −⊗− = LK(n)(− ∧−), and mf is the map

X ≃ A−1 ⊗A⊗X 1⊗f⊗1−→ A−1 ⊗X ⊗X → A−1 ⊗X,

where the last map is given by the K(n)-localization of the multiplication X ∧X → X.

Let Z be the spectrum defined earlier as e−1LK(n)Σ
∞
+K(Z/pZ, n) and let

i : Z → LK(n)Σ
∞
+K(Z/pZ, n)

be the inclusion of this summand. From the exact sequence

Zp
p−→ Zp

mod p−→ Z/pZ,

we get a Bockstein map Z/pZ→ BZp, giving a map

K(Z/pZ, n)→ K(Zp, n+ 1).

Taking suspension spectra and K(n)-localizing results in a map

β : LK(n)Σ
∞
+K(Z/pZ, n)→ LK(n)Σ

∞
+K(Zp, n+ 1).
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Define the determinantal K-theory spectrum Rn to be the localization

α−1LK(n)Σ
∞
+K(Zp, n+ 1),

where α = β ◦ i : Z → LK(n)Σ
∞
+K(Zp, n+ 1).

Remark 9.6.2. The “K-theory” part of the name determinantal K-theory comes from

the analogy with equivalence

β−1Σ∞
+K(Z, 2)→ KU.

due to Snaith, where β : S2 → K(Z, 2) is the Bott class.

Westerland shows that, for γ ∈ (π0Rn)
×, the homotopy fiber

Fγ := hofib(ψg − γ)

belongs to Picn. Here, the maps ψg and γ are defined similarly to how ζk and ψζk were

defined in the case of LK(n)Σ
∞
+K(Z/pZ, n) earlier.

In particular, ψg is defined as localization of the natural action of the topological generator

g = (1 + p)ζ ∈ Z×
p (for ζ a primitive (p − 1)st root of unity) on LK(n)Σ

∞
+K(Zp, n+ 1)

via its action on Zp by multiplication, and γ : Rn → Rn is the composite

Rn ≃ S0 ∧Rn → Rn ∧Rn → Rn,

with the last map being the multiplication map for the ring spectrum Rn. When γ = 1

(i.e., γ = η : S0 → Rn), we get the K(n)-local sphere spectrum

Fγ = LK(n)S
0.

The determinantal sphere spectrum S⟨det⟩ can be produced in this manner:

S⟨det⟩ = Fg.
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Theorem 9.6.3. [Wes17, 3.17] The association γ 7→ Fγ determines a group homomor-

phism

(π0Rn)
× → Picn.

The similarity between these results and the results given in the first example in the

previous section hint at a relationship between Rn and the homotopy fixed point spectrum

EhSG
±
n

n , and it can be shown (see [Wes17, 3.25]) that there is a weak equivalence of E∞-

spectra

Rn → EhSG
±
n

n

which is Z×
p -equivariant.

Remark 9.6.4. As SG±
n = ker(det± : Gn → Z×

p ), this gives a reason for the “de-

terminantal” part of “determinantal K-theory.” Additionally, we can present Rn as a

localization

ρ−1
n LK(n)Σ

∞
+K(Zp, n+ 1),

where ρn : S⟨det⟩ → LK(n)Σ
∞
+K(Zp, n + 1) is a map from the determinantal sphere

spectrum.
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Chapter 10

A descent spectral sequence

computing Picn and applications

In this chapter, we construct a family of descent spectral sequences which for t ≥ 1 take

the form

Hs(Gn/U, πt Pic(EhUn )) =⇒ πt−sPic(LK(n)Sp),

computing the homotopy groups of the Picard space Picn := Pic(LK(n)Sp). In particular,

taking t− s = 0, these spectral sequences compute the K(n)-local Picard group

Picn = π0Picn.

Further, making use of Davis’ discrete Gn-spectra Fn := hocolim
U⊴Gn
open

EhUn (see [Dav06]), we

investigate the colimit of these spectral sequences, which we then use to compute the

rational homotopy groups of Picn.

Throughout, we’ll fix a prime p and will let U ⊴ Gn range over open (and therefore

finite-index) normal subgroups of the Morava stabilizer group Gn.
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10.1 Additional Background

The spectral sequences we construct which compute π∗Picn take the form of Bousfield-

Kan Spectral Sequences, and in order to make computations using them, we will make

heavy use of the Lyndon-Hochschild-Serre Spectral Sequence. We now provide a review

of both.

We begin by introducing the idea of the totalization of a cosimplicial object, which is

central to the construction of the Bousfield-Kan Spectral Sequence. For the original

treatment of both the totalization functor and the Boufield-Kan Spectral Sequence, see

[BK72, Part II]. See also [Bou03] and [McC01, 8bis].

10.1.1 Totalization of a cosimplicial object

Let ∆ denote the finite ordinal category whose objects are finite totally ordered sets

n = {0, 1, . . . , n} and morphisms are order-preserving maps.

Definition 10.1.1. Given a category C, a cosimpicial object in C is a functor ∆→ C.

In order to define the totalization of cosimplicial object, we will need to utilize the

cosimplicial space ∆• ∈ Fun(∆,Top) of standard n-simplices ∆n ∈ Top for n ≥ 1.

Totalization of a cosimplicial object should be though of as dual to the construction

of the geometric realization of a simplicial object, and will be a key ingredient in the

Bousfield-Kan Spectral Sequence used in Section 10.2.

Definition 10.1.2. Let C be pointed bicomplete (that is, all small limits and all small

colimits exits) simplicial model category. Give the functor category Fun(∆•, C) the Reedy

model structure and let X• be fibrant. Let

TotsX• = Hom(sks∆•, X•) ∈ C,
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where sks∆• is the cosimplicial space which termwise is the s-skeleton of ∆•. Then, there

is a tower of fibrations

· · · → Totn(X•)→ Totn−1(X
•)→ · · · → Tot0(X•) ∼= X0,

with the totalization of X• being the limit

Tot(X•) ∼= lim←−
n

Totn(X•).

10.1.2 Some useful spectral sequences

Such a tower of fibrations leads to an exact couple based on the long exact sequences

of homotopy groups, and we therefore get a spectral sequence whose E1-term is the

homotopy groups of the fibers FibsX• = Fiber(Tots(X•)→ Tots−1(X
•)):

Theorem 10.1.3 (Bousfield-Kan Spectral Sequence). [BK72]

Given a fibrant, pointed, cosimplicial space X•, there is a spectral sequence associated to

the tower of fibrations {Totn(X•)→ Totn−1(X
•)} with

Es,t1 (X•) ∼= πt−s(FibsX•), t ≥ s ≥ 0 and differential

dr :E
s,t
r → Es+r,t+r−1

r ,

converging under favorable conditions to π∗(Tot(X•)).

Under ideal conditions, the Bousfield-Kan Spectral Sequence admits a multiplicative

structure:

Theorem 10.1.4. [BK73] When X• and Y • are cosimplicial simplicial pointed sets,

there is a multiplicative pairing

Es,tr (X•)⊗ Es′,t′r (Y •)→ Es+s
′,t+t′

r (X• ⊗ Y •).
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Theorem 10.1.5 (Lyndon-Hochschild-Serre Spectral Sequence). Let G be a group with

N ⊴ G and let M be a G-module. Then, there is a spectral sequence

Hs(G/N,Ht(N,M)) =⇒ Hs+t(G,M).

If G is a profinite group and N ⊴ G is closed, then we further have a spectral sequence

Hs
cont(G/N,H

t
cont(N,M)) =⇒ Hs+t

cont(G,M),

where H∗
cont denotes continuous cohomology.

10.1.3 Galois extensions of commutative ring spectra

Definition 10.1.6. [Rog08, 4.1.3] Let K be a spectrum, A→ B be a map of K-local

commutative ring spectra and G be a finite discrete group acting continuously on B on

the left through A-algebra maps, such that the canonical maps

A→ BhG = Map(EG+, B)G

and

B ⊗A B → Map(G+, B)

(formed in the K-local category) are weak equivalences. We will then say that A→ B

is a K-local G-Galois extension. Further, we will call the extension faithful if for N an

A-module, N ∧A B ≃ ∗ =⇒ N ≃ ∗

10.2 Construction of the spectral sequence

10.2.1 Descendability

For a traditional finite Galois extension of fields L/K with Galois group G = Gal(L/K),

we have Galois descent. That is, the functor

VectK
−⊗KL
−−−−→ VectL,G
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from vector spaces over K to vector spaces over L with semilinear G-action is an

equivalence of categories, with weak inverse functor

VectL,G
(−)G

−−−−→ VectK ,

where (−)G denote the G-invariants. In order to produce the promised family of spectral

sequences computing π∗Picn, we will need to extend this notion of Galois descent to the

broader context of Galois extensions of commutative ring spectra. A good reference is

[Mat16].

Definition 10.2.1. [Mat16, 2.1] A stable homotopy theory is a presentable, symmetric

monoidal stable∞-category (C,⊗, 1) (in the sense of [Lur17, Ch. 1]), where ⊗ commutes

with all colimits.

Remark 10.2.2. Under this definition, the category Sp of spectra as well as the Bousfield

localizations LE Sp are stable homotopy theories (see [Mat16, Ex. 2.28]).

Remark 10.2.3. Following [Lur17, Ch. 3], given a symmetric monoidal ∞-category

C, there is a natural ∞-category CAlg(C) of commutative algebra objects. In the case

C = Sp, this is the category of E∞ ring spectra (see [Mat16, Def. 2.18]). Further,

following [Lur17, Ch. 4], given an object A ∈ CAlg(C), there is a natural ∞-category

ModC(A) of A-modules in C. ModC(A) is itself a stable homotopy theory (see [Mat16,

Def. 2.19]).

Remark 10.2.4. It is a consequence of the Goerss-Hopkins-Miller Theorem [GH05] that

En ∈ CAlg(Sp) (and therefore En ∈ CAlg(LK(n)Sp) as well). Further, by construction

(see [DH04, Def. 1.5]), for U ⊆ Gn closed, EhUn ∈ CAlg(Sp) (and therefore EhUn ∈

CAlg(LK(n)Sp)).

Definition 10.2.5. [Mat16, 3.19] Given A ∈ CAlg(C), we say that A admits descent or

is descendable if the thick ⊗-ideal generated by A is all of C.
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Proposition 10.2.6. [Mat16, 3.22] Let C be a stable homotopy theory. Let A ∈ CAlg(C)

admit descent. Then the adjunction

C ⇄ ModC(A)

given by tensoring with A and forgetting, is comonadic. In particular, the natural functor

C → Tot

(
ModC(A)

−→−→ ModC(A⊗A)
−→−→−→ · · ·

)
is an equivalence.

Descent for EhU
n

Theorem 10.2.7. Let U ⊆ Gn be an open normal subgroup. Then EhUn admits descent

in LK(n)Sp.

Proof. By [Mat16, 4.18], En admits descent over LnS0. By [Mat16, 3.21], we can further

localize to find that LK(n)En ≃ En is descendable over LK(n)S
0. Finally, by [Mat16,

3.24], since the composite

LK(n)S
0 → EhUn → En

admits descent, so does

LK(n)S
0 → EhUn .

Corollary 10.2.8. The adjunction

LK(n)Sp ⇄ ModLK(n)Sp(E
hU
n )

is comonadic and therefore there is an equivalence of categories

LK(n)Sp ≃ Tot(ModLK(n)Sp(E
hU
n ) −→−→ModLK(n)Sp(E

hU
n ⊗ EhUn )

−→−→−→ · · · ).
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Proof. [Mat16, 3.22]

Proposition 10.2.9. [MS16, 2.2.3] Pic commutes with limits and filtered colimits. In

particular, Pic commutes with the totalization functor Tot.

Corollary 10.2.10. There is an equivalence

Picn = Pic(LK(n)Sp)→ Tot
(
Pic

(
ModLK(n)Sp

(
EhUn

))
−→−→ · · ·

)
.

In the case of a “global” (that is, S0-local) finite Galois extension, we have the following

result:

Proposition 10.2.11. [MS16, 3.3.1] Let G be a finite group and A→ B be a faithful G-

Galois extension of E∞-rings. Then there is a natural equivalence of symmetric monoidal

∞-categories

ModA ∼→ (ModB)hG.

We can extend this to our context:

Proposition 10.2.12. Let U ⊆ Gn be an open normal subgroup. Write A = LK(n)S
0

and B = EhUn and G = Gn/U . There is an equivalence

ModLK(n)SpA
∼→
(
ModLK(n)SpB

)hG
,

where ModLK(n)SpA denotes the category of K(n)-local A-modules and similarly for

ModLK(n)
B.

Applying Pic, we find

Pic(ModLK(n)SpA)→ Pic(ModLK(n)SpB)hG.
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Proof. By Theorem 10.2.7, B admits descent in ModLK(n)SpA. So, by [Mat16, 3.22]

there’s an equivalence

ModLK(n)SpA
∼→ Tot

(
ModLK(n)Sp

(
⊗•+1
A B

))
,

where −⊗A − = LK(n)(− ∧A −). By [Rog08, 5.44, 5.49(b)], LK(n)S
0 → EhUn is a finite

faithful K(n)-local Gn/U -Galois extension, so we have an equivalence

B ⊗A B ≃ Map(G+, B),

where Map(−,−) denotes the mapping spectrum constructed in the K(n)-local category,

so that we level-wise have ⊗s+1
A B ≃ Map(G×s

+ , B). This means that

ModLK(n)SpA ≃ Tot
(
ModLK(n)Sp

(
Map(G×•

+ , B)
))

≃ Tot
(
Map(G×•

+ ,ModLK(n)SpB)
)

=
(
ModLK(n)SpB

)hG
.

Theorem 10.2.13. For a fixed open normal subgroup U ⊆ Gn, we have a spectral

sequence

Es,t2,U = Hs
(
Gn/U ;πtPic(ModLK(n)Sp

(
EhUn )

))
=⇒ πt−sPic(LK(n)Sp).

Proof. By Corollary 10.2.10, we have an equivalence

Picn = Pic(LK(n)Sp) ∼→ Tot
(
Pic

(
ModLK(n)Sp

(
EhUn

))
−→−→ · · ·

)
.
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By Proposition 10.2.12,(
Pic

(
ModLK(n)SpE

hU
n

))hGn/U ∼= Pic
((

ModLK(n)Sp

(
EhUn

))hGn/U
)

∼= Pic
(
ModLK(n)Sp

((
EhUn

)hGn/U
))

∼= Pic
(
ModLK(n)Sp

(
EhGn
n

))
∼= Pic

(
ModLK(n)Sp

(
LK(n)S

0
))

= Picn

Finally, the claimed spectral sequence is the associated Homotopy Fixed Point Spectral

Sequence (Bousfield-Kan Spectral Sequence) associated to the equivalence

Picn ≃
(
Pic

(
ModLK(n)SpE

hU
n

))hGn/U
.

10.2.2 Direct limits of spectral sequences

Theorem 10.2.13 establishes a family of spectral sequences indexed by open normal

subgroups U ⊴ Gn all with the same target. It is natural to ask whether we can then

take a direct limit of these spectral sequences to get a new one also converging to

π∗Pic(LK(n)Sp).

Given U ⊆ V ⊆ Gn, we have a resulting quotient map φU,V : Gn/U ↠ Gn/V . Further,

on homotopy fixed points, inclusion U ↪→ V induces a map

EhVn → EhUn ,

and we therefore have an induction map

IndUV : ModEhV
n

(LK(n)Sp)→ ModEhU
n

(LK(n)Sp)
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given by

X 7→ X ⊗EhV
n
EhUn ,

so that we have a composite

H∗(Gn/V,MV )
φ∗
U,V→ H∗(Gn/U,MV )

(IndU
V )∗→ H∗(Gn/U,MU ).

In our case, we are considering

Ind :MV = π∗Pic(ModLK(n)Sp(E
hV
n ))→MU = π∗Pic(ModLK(n)Sp(E

hU
n )).

Note that in general, the direct limit of spectral sequences is indeed a spectral sequence,

as filtered direct limits preserve exactness, so we can take the direct limit of our spectral

sequences along these (IndUV )∗ ◦ φ∗
U,V to get a new spectral sequence with E2-term

Es,t2 = lim−→
U

Es,t2,U = lim−→
U

Hs(Gn/U, πtPic(ModLK(n)Sp(E
hU
n ))).

Denote the abutment of this spectral sequence as Pt−s. This abutment need not be the

direct limit of the abutments of the spectral sequences with E2-terms Es,t2,U . Two possible

issues may arise, quoted here from [Les95, §4]:

1. Non-detection: It could be that an element of the direct limit of the abutments moves

into higher and higher filtration as it moves through the direct limit of spectral

sequences, in which case it would not be detected in the direct limit spectral sequence.

2. Fake cycles: If an element supports longer and longer differentials as it goes through

the direct limit, it will be an infinite cycle in the direct limit spectral sequence even

though it does not represent a class in the abutment at any finite stage.

Showing that these hold is in general difficult, and is for the moment an open question

in our case. (See [Mit97, Section 3.1.3] for a more thorough discussion.)

However, rationally, we can do better: By [Ser79, Prop. 8, Cor. 3],

Es,t2 ⊗Q ∼= 0
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for s ≥ 1. So, by [Mit97, Proposition 3.3],

Es,t2 ⊗Q =⇒ πt−sPic(LK(n)Sp)⊗Q.

We would now like to describe Es,t2 and Pt−s more conveniently.

Proposition 10.2.14. [Ser79, Proposition 8] Let (Gi) be a projective system of profinite

groups, and let (Ai) be an inductive system of discrete Gi-modules. Then one has

Hq
cont(lim←−Gi, lim−→Ai) = lim−→Hq

cont(Gi, Ai)

for each q ≥ 0.

Theorem 10.2.15. There is a spectral sequence

Hs
cont

Gn;

(
πtPic

(
lim−→
U

ModLK(n)Sp(E
hU
n )

))δ =⇒ Pt−s,

where δ means to take the discrete topology. Furthermore,

Pt−s ∼= πt−sPic

(
lim−→
U

ModLK(n)Sp(E
hU
n )

)hGn

and

Pt−s ⊗Q ∼= πt−sPic(LK(n)Sp)⊗Q.

Proof. By Proposition 10.2.14, we can identify

lim−→Es,t2,U = Hs
cont

Gn;

(
πtPic

(
lim−→
U

ModLK(n)Sp(E
hU
n )

))δ .

We earlier defined Pt−s to be the abutment of the colimit spectral sequence with E2-term

being lim−→Es,t2,U . To see that the abutment Pt−s is identified as claimed, note that for a

fixed V , there is a map of Homotopy Fixed Point Spectral Sequences which on E2-terms
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is

Es,t2,V =Hs
cont

(
Gn/V ;πtPic(ModLK(n)Sp

(
EhUn )

))
−→ Hs

cont

Gn;

(
πtPic

(
lim−→
U

ModLK(n)Sp(E
hU
n )

))δ ,

the latter being the Homotopy Fixed Point Spectral Sequence for the discrete Gn-space

lim−→
U

ModLK(n)Sp(E
hU
n ),

converging to

πt−sPic

(
lim−→
U

ModLK(n)Sp(E
hU
n )

)hGn

.

This map is induced by the natural maps

Gn → Gn/V

and

ModLK(n)Sp(E
hV
n )→ lim−→

U

ModLK(n)Sp(E
hU
n ).

As a result, in the limit, we have a map of spectral sequences which is an isomorphism

on E2-terms, so that we have an isomorphism of abutments

Pt−s ∼= πt−sPic

(
lim−→
U

ModLK(n)Sp(E
hU
n )

)hGn

.

Finally, the identification of Pt−s⊗Q follows from the above discussion on the rationalized

spectral sequence

Es,t2 ⊗Q =⇒ πt−sPic(LK(n)Sp)⊗Q.

When t− s = 0, the right hand side is π0Pic(LK(n)Sp)⊗Q = Picn ⊗Q. For the rest of

the chapter, our goal will be to use this spectral sequence to examine the torsion-free
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rank of Picn. As Pic takes values in spaces, we’ll be interested in the case s = t ≥ 0.

Further, for t ≥ 1, we can identify

πt Pic

(
lim−→
U

ModLK(n)Sp(E
hU
n )

)
= πt−1GL1(lim−→

U

EhUn ) = πt−1GL1(Fn),

as by [ABG+13] §2.4 Proposition 2.9, GL1(C,⊗, 1) = GL1(1) for a symmetric monoidal

category (C,⊗,1). Finally, we have

π∗GL1(Fn) =


(π0Fn)

× ; ∗ = 0

π∗Fn; ∗ ≥ 1,

so that our inquiry now turns to computing the torsion-free part of π∗Fn.

10.3 Computation of π∗Fn ⊗Q

10.3.1 Higher homotopy is torsion

Proposition 10.3.1. π∗Fn is torsion for ∗ > 0.

Proof. Recall that Gn
∼= O×⋊Gal(Fpn/Fn) where O = W(Fpn)⟨S⟩/(Sn = p, Sw = wσS),

where W(Fpn) is the ring of Witt vectors over Fpn and σ is the Frobenius. Fix an open

normal subgroup U ⊆ Gn. Then, since the collection of subgroups {(1+ piZp)×}i≥2 form

a fundamental system of neighborhoods of 1 ∈ (1 + p2Zp)× ⊆ Z(Gn), there exists some i

such that Zi = (1 + piZp)× ⊆ Z(Gn) ∩ U . (Here, we use the notation (−)× to indicate

that the group structure is multiplication.) Since this Zi is then normal in U , we have a

Lyndon-Hochschild-Serre Spectral Sequence:

Hs
cont(U/Zi;H

t
cont(Zi;πrE)) =⇒ Hs+t

cont(U ;πrE)

for a fixed r.
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This, in turn, is the E2-page of the Homotopy Fixed Point Spectral Sequence

Hs+t
cont(U ;πrE) =⇒ πr−s−tE

hU
n .

Next, we find that the cohomology group Ht
cont(Zi;πrE) is torsion if r ̸= 0:

The cohomological dimension of Zi is 1, so that the only potentially non-zero groups are

H0
cont(Zi;πrE) and H1

cont(Zi;πrE)

By [Hea15] [1.3.1], for g ∈ Zi, g∗uj = uj and g∗uℓ = gℓ ·uℓ and the action is W(Fpn)-linear,

so that

H0
cont(Zi;π∗E) = (π∗E)Zi = W(Fpn)[[u1, . . . , un−1]] = E0.

Next,

H1
cont(Zi;π∗E) = (π∗E)Zi =

π∗E

γx = x
,

where γ = 1 + pi is a topological generator of Zi. We have γ|E0 = id and in non-zero

even degrees, we have the relation γm · um = um, and since um is not a zero divisor, this

gives γm = 1. In summary,

H1
cont(Zi;π∗E) = (π∗E)Zi =


E0 if ∗ = 0

E2m/((1 + pi)m − 1) if ∗ = 2m > 0

0 else.

So, for ∗ > 0, we conclude that Ht
cont(Zi;πrE) is indeed torsion. Finally, it is of note

that εm,i := valp((1 + pi)m − 1) ≥ i, where valp denotes p-adic valuation. (We’ll leverage

this fact in §10.5 to compute π1F1.)

Without loss of generality, assume that cd(U/Zi) < ∞ (if not, replace U with a finite

index open subgroup of U so that cd(U) = vcd(U), which can be chosen to be normal

in Gn by [Wil98, Lemma 0.3.2]). Then for a fixed r ̸= 0, Hs
cont(U/Zi;H

t(Zi;πrE)) is a

finite sum of torsion modules and is therefore torsion, and as a result, so is Hs+t
cont(U ;πrE).
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Next, via the Homotopy Fixed Point Spectral Sequence, we see that the associated graded

of πdEhU is a subquotient of ⊕
d=r−s−t

Hs+t
cont(U ;πrE).

So, if d = r− s− t > 0, then r > 0 and πdEhU is torsion, since −⊗Q and lim−→ commute,

πd(Fn) = πd(hocolim
−→

EhUi) = lim−→πdE
hU

is also torsion.

10.3.2 Computation of π0Fn ⊗Q

While the group π0Fn does not appear as a coefficient group for any value of t in Theorem

10.2.15 (only its group of units does), we include a computation of its rationalization for

completeness, and an application of this computation is presented in Section 11.2.

In order to understand π0Fn = lim−→π0E
hU , we would like to first understand the fixed

points (π0En)
U for U ⊆ Sn. The action of Sn on π0En is provided by Devinatz and

Hopkins in [DH95]. However, it is in a bit of a roundabout way:

They construct first a graded W(Fpn)-algebra W(Fpn)[[w1, . . . , wn−1]][w,w
−1] (with

|wi| = 0 and |w| = −2) on which Sn acts and then show that there is an injective

Sn-equivariant graded W(Fpn)-algebra homomorphism

i : π∗En →W(Fpn)⟨⟨w1, . . . , wn−1⟩⟩[w,w−1],

where W(Fpn)⟨⟨w1, . . . , wn−1⟩⟩ denotes the divided power envelope of the W(Fpn)-algebra

W(Fpn)[[w1, . . . , wn−1]]. Finally, they describe the action of Sn on

W(Fpn)[[w1, . . . , wn−1]][w,w
−1],

noting that it extends to an action on W(Fpn)⟨⟨w1, . . . , wn−1⟩⟩[w,w−1], the restriction

which to W(Fpn)⟨⟨w1, . . . , wn−1⟩⟩ is by P.D. W(Fpn)-algebra maps.
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Letting

i0 : π0En →W(Fpn)⟨⟨w1, . . . , wn−1⟩⟩

denote the restriction i|π0En , we then conclude that for U ⊆ Sn,

(π0En)
U = i−1

0

(
(i0(π0En))

U
)

Further, Gn acts trivially on W(Fpn) ⊆ π0En, so that

W(Fpn) ⊆ (π0En)
U = i−1

0

(
(i0(π0En))

U
)
.

We’ll show that this containment is in fact equality.

Theorem 10.3.2. [DH95, 3.3] The right action of Sn on W(Fpn)[[w1, . . . , wn−1]][w,w
−1]

is W(Fpn)-linear on the coordinates ww1, . . . , wwn−1, w and for

g = a0 + a1S + · · ·+ an−1S
n−1 ∈ U ⊆ Sn,

we have

g(w) = a0w +

n−1∑
j=1

aσ
j

n−jwwj

and

g(wwi) = paiw + paσ
n−1

i+1 wwn−1 + · · ·+ paσ
i+1

n−1wwi+1 + aσ
i

0 wwi + · · ·+ aσi−1ww1,

where σ denotes the Frobenius.

Proposition 10.3.3. Let

g = a0 + a1S + · · ·+ an−1S
n−1 ∈ U ⊆ Sn

and

X =
∑ xi1,...,in−1

(i1 + · · ·+ in−1)!
wi11 · · ·w

in−1

n−1 ∈ i0(π0En),

where xi1,...,in−1 ∈W(Fpn). Then, if g(X) = X, we have

∑
(i1,...,in−1 )̸=(0,...,0)

(
p

a0

)i1+···+in−1 xi1,...,in−1

(i1 + · · ·+ in−1)!
ai11 · · · a

in−1

n−1 = 0.
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Proof. We first prove this at heights 1, 2, and 3 as it is illuminating to see these smaller

cases worked out in detail and then include the general case at arbitrary height n.

We want to figure out for g ∈ Gn which elements of π0En are fixed by g. It suf-

fices to consider g ∈ U ⊆ Sn.

Height 1:

Let g = a0, with a0 ∈W(Fp)× = Z×
p . Then, a generic element of π0E1 is of the form x

for x ∈W(Fp), and since S1 acts by W(Fp)-algebra homomorphisms, g(x) = x · g(1) = x

so that x is fixed and g fixes all of π0E1. So,

(π0E1)
U = π0E1

for all U ⊆ S1 = Z×
p .

Height 2:

We do this via the action of Sn on W(Fpn)⟨⟨w1, . . . , wn⟩⟩[w,w−1] through W(Fpn)-algebra

maps as described in [DH95].

We want

g(x0 + x1w1 +
x2
2!
w2
1 + · · · ) = x0 + x1w1 +

x2
2!
w2
1 + · · ·

for g = a0 + a1S, where a0 is invertible and xi ∈W(Fp2). Expansion gives

g(x0 + x1w1 + · · · ) = g(x0) + g(x1w1 + · · · ) = x0 + g(x1w1 + · · · ),
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so that we are left with

x1g(w1) +
x2
2!
g(w1)

2 + · · · = x1w1 +
x2
2!
w2
1 + · · · .

Here,

g(ww1) = pa1w + aσ0ww1

g(w) = a0w + aσ1ww1,

so that

g(w1) =
pa1w + aσ0ww1

a0w + aσ1ww1

=
pa1a0 +

aσ0
a0
w1

1 +
aσ1
a0
w1

=

(
p
a1
a0

+
aσ0
a0
w1

)(
1−

(
aσ1
a0
w1

)
+

(
aσ1
a0
w1

)2

−
(
aσ1
a0
w1

)3

+ · · ·

)
.

So, collecting all terms of degree zero in w1, we find

∞∑
i=1

xi
i!

(
p
a1
a0

)i
= 0.

Height 3:

Set

X =
∑ xi,j

(i+ j)!
wi1w

j
2,

with xi,j ∈W(Fpn).

We have

g(ww1) = pa1w + paσ
2

2 ww2 + aσ0ww1,

g(ww2) = pa2w + aσ
2

0 ww2 + aσ1ww1, and

g(w) = a0w + aσ2ww1 + aσ
2

1 ww2,



92

So,

g(w1) =
pa1w + paσ

2

2 ww2 + aσ0ww1

a0w + aσ2ww1 + aσ
2

1 ww2

=
pa1 + paσ

2

2 w2 + aσ0w1

a0 + aσ2w1 + aσ
2

1 w2

=
pa1a0 + p

aσ
2

2
a0
w2 +

aσ0
a0
w1

1 +
aσ2
a0
w1 +

aσ
2

1
a0
w2

=

(
p
a1
a0

+ p
aσ

2

2

a0
w2 +

aσ0
a0
w1

)

×

1−

(
aσ2
a0
w1 +

aσ
2

1

a0
w2

)
+

(
aσ2
a0
w1 +

aσ
2

1

a0
w2

)2

− · · ·

 .

Similarly,

g(w2) =
pa2w + aσ

2

0 ww2 + aσ1ww1

a0w + aσ2ww1 + aσ
2

1 ww2

=
pa2 + aσ

2

0 w2 + aσ1w1

a0 + aσ2w1 + aσ
2

1 w2

=
pa2a0 +

aσ
2

0
a0
w2 +

aσ1
a0
w1

1 +
aσ2
a0
w1 +

aσ
2

1
a0
w2

=

(
p
a2
a0

+
aσ

2

0

a0
w2 +

aσ1
a0
w1

)

×

1−

(
aσ2
a0
w1 +

aσ
2

1

a0
w2

)
+

(
aσ2
a0
w1 +

aσ
2

1

a0
w2

)2

− · · ·

 .

Let g(X) = x0,0 +
x1,0
1! g(w1) +

x0,1
1! g(w2) + · · · = X.

Then, we find that

g(wi1w
j
2) =

(
p
a1
a0

+ p
aσ

2

2

a0
w2 +

aσ0
a0
w1

)i(
p
a2
a0

+
aσ

2

0

a0
w2 +

aσ1
a0
w1

)j

×

1−

(
aσ2
a0
w1 +

aσ
2

1

a0
w2

)
+

(
aσ2
a0
w1 +

aσ
2

1

a0
w2

)2

− · · ·

i+j

.
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Equating the degree zero terms (as a power series in w1 and w2), we find

∑
(i.j)̸=(0,0)

xi,j
(i+ j)!

(
p
a1
a0

)i(
p
a2
a0

)j
= 0.

Generally, for arbitrary height n, we have

g(wi) =
g(wwi)

g(w)

=
paiw + paσ

n−1

i+1 wwn−1 + · · ·+ paσ
i+1

n−1wwi+1 + aσ
i

0 wwi + · · ·+ aσi−1ww1

a0w +
∑n−1

j=1 a
σj

n−jwwj

=
1

a0
·
pai + paσ

n−1

i+1 wn−1 + · · ·+ paσ
i+1

n−1wi+1 + aσ
i

0 wi + · · ·+ aσi−1w1

1 +
∑n−1

j=1

aσ
j

n−j

a0
wj

=
1

a0
·
(
pai + paσ

n−1

i+1 wn−1 + · · ·+ paσ
i+1

n−1wi+1 + aσ
i

0 wi + · · ·+ aσi−1w1

)
×

1−

n−1∑
j=1

aσ
j

n−j
a0

wj

+

n−1∑
j=1

aσ
j

n−j
a0

wj

2

− · · ·

 .

So that degree zero term (as a power series in the wi) of

g(xi11 · · ·x
in−1

n−1 )

is (
pa1
a0

)i1
· · ·
(
pan−1

a0

)in−1

So, we find for

g = a0 + a1S + · · ·+ an−1S
n−1 ∈ Sn

and

X =
∑ xi1,...,in−1

(i1 + · · ·+ in−1)!
wi11 · · ·w

in−1

n−1 ∈ i0(π0En),

that setting g(X) = x0,...,0 +
x1,0,...,0

1! g(w1) + · · · = X and equating the degree zero terms

that ∑
(i1,...,in−1 )̸=(0,...,0)

(
p

a0

)i1+···+in−1 xi1,...,in−1

(i1 + · · ·+ in−1)!
ai11 · · · a

in−1

n−1 = 0.
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Proposition 10.3.4. Let U ⊆ Sn ⊆ Gn be an open subgroup. Then

(π0En)
U = W(Fpn).

Proof. We begin by illustrating at height 2 and then prove the general case. Let n = 2.

Fix an open subgroup U ⊆ Sn. From the above, we find that for g = a0 + a1S ∈ U and

x = x0 +
x1
1! w1 +

x2
2! w

2
1 + · · · ∈ i0(π0E2) that if x ∈ i0 (π0E2)

U , then

∑
i≥1

xi
i!

(
pa1
a0

)i
= 0.

Furthermore, for sufficiently large j, 1 + pj−1S ∈ U so that letting a0 = 1 and a1 = pj−1,

we have ∑
i≥1

xi
i!
pij = 0.

Now, suppose that i0(π0E2)
U properly contains W(Fp2). Then, there is some minimal

I0 ≥ 1 such that xI0 ̸= 0, so that

∑
i≥I0

xi
i!
pij = 0.

For j >> 1,

valp(i!) =
⌊
i

p

⌋
+

⌊
i

p2

⌋
+

⌊
i

p3

⌋
+ · · ·

≤ i/(p− 1)

< ij = valp(pij)

for all i ≥ 1. In particular, valp(i!) ≤ i− 1.

As a result, we can regard this as an equality in W(Fp2).

Since this holds in W(Fp2), it also holds in W(Fp2)/pr for all r ≥ 1 and for j >> 1, so

that
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∑
i≥I0,
ij<r

xi
i!
pij =

xI0
I0!

pI0j +
xI0+1

(I0 + 1)!
p(I0+1)j + · · ·+ xs

s!
psj + · · · ≡ 0 mod pr,

Letting

I0j − valp(I0!) ≤ I0j ≤ r < sj − s+ 1 ≤ valp
(
psj

s!

)
for all s > I0 (which is possible for large enough j), this gives

xI0
I0!

pI0j ≡ 0 mod pr.

Since for large j, xI0
I0!
pI0j ∈W(Fp2), we can rewrite this as

xI0
I0!

pI0j = η · xI0pI0j−valp(I0!) ≡ 0 mod pr

for some unit η ∈W(Fp2)×. In particular,

xI0p
I0j ≡ 0 mod pr

and therefore

xI0 ≡ 0 mod pr−I0j .

Finally, letting j grow, and selecting

r = (I0 + 1)j − I0 − 1,

we find that

xI0 ≡ 0 mod pj−I0−1.

for arbitrarily large j, so that xI0 = 0 and

(i0(π0E2))
U = W(Fp2),

and as i0 is a W(Fp2)-linear, Sn-equivariant inclusion,

(π0E2)
U = W(Fp2).
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For the general case, let

g = a0 + a1S + · · ·+ an−1S
n−1 ∈ U

and

X =
∑ xi1,...,in−1

(i1 + · · ·+ in−1)!
wi11 · · ·w

in−1
n−1 ∈ i0(π0En)

with g(X) = X, where again xi1,...,in−1 ∈W(Fpn). For j >> 0, we can let a0 = 1 and for

i > 1, ai = pj−1. Then, from Proposition 10.3.3, we have∑
(i1,...,in−1 )̸=(0,...,0)

pi1+···+in−1
xi1,...,in−1

(i1 + · · ·+ in−1)!
ai11 · · · a

in−1

n−1

=
∑

(i1,...,in−1 )̸=(0,...,0)

p(i1+···+in−1)j
xi1,...,in−1

(i1 + · · ·+ in−1)!
= 0.

Assuming that there is some X /∈W(Fpn) in i0 ((π0En))
U , let I0 = i1 + · · ·+ in−1 ̸= 0

be minimal such that xi1+···+in−1 ̸= 0. Then, we find that∑
i1+···+in−1≥I0

p(i1+···+in−1)j
xi1,...,in−1

(i1 + · · ·+ in−1)!
= 0.

As before, for j large enough, this can be regarded as an equation in W(Fpn) rather than

in Frac(W(Fpn)). and taking residues modulo pr for r = (I0 + 1)j − I0 − 1, we find∑
i1+···+in−1=I0

ηi1,...,in−1 · xi1,...,in−1 ≡ 0 mod pj−I0−1

for some units ηi1,...,in−1 ∈W(Fpn))×. Letting j grow,∑
i1+···+in−1=I0

ηi1,...,in−1xi1,...,in−1 = 0.

For n ≥ 3, this alone is insufficient to force each xi1,...,in−1 = 0. However, we have

significant flexibility with our choice of the ai. Let ℓk ∈ W(Fpn) be arbitrary for

k = 1, . . . , n− 1. Repeating the above with a0 = 1, ak = ℓkp
j−1 for k = 1, . . . n− 1, we

find ∑
i1+···+in−1=I0

ℓi11 ℓ
i2
2 · · · ℓ

in−1

n−1

(
ηi1,...,in−1xi1,...,in−1

)
= 0. (10.1)
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Letting V = SpanK{xi1,...,in−1}i1+···in−1=I0 where K = Frac(W(Fpn)), we find that the

vectors with entries
∏
ℓikk corresponding to each partition

i1 + · · ·+ ik + · · ·+ in−1 = I0

(extracted as the coefficients in Equation 10.1) span the
(
n−2+I0
n−2

)
-dimensional dual space

V ∗.

(As an example, let n = 4, I0 = 2. Then, the collection of xi1,...,in−1 with i1+· · ·+in−1 = I0

ordered lexicographically are

x0,0,2, x0,1,1, x0,2,0, x1,0,1, x1,1,0, x2,0,0,

with corresponding vectors of the form

(ℓ23, ℓ2ℓ3, ℓ
2
2, ℓ1ℓ3, ℓ1ℓ2, ℓ

2
1).)

Since the
(
n−2+I0
n−2

)
monomials of the form

∏
ℓikk are K-linear independent, they indeed

span V ∗, so that letting the ℓk vary and noting that∑
i1+···+in−1=I0

ℓi11 ℓ
i2
2 · · · ℓ

in−1

n−1 ηi1,...,in−1xi1,...,in−1 = 0,

for every choice of the ℓk, we find that each xi1,...,in−1 with i1 + · · ·+ in−1 = I0 is zero

and X ∈W(Fpn).

So, xi1,...,in−1 = 0 for all i1 + · · ·+ in−1 = I0 and therefore X ∈W(Fpn) and

(i0 (π0En))
U = W(Fpn)

so that

(π0En)
U = W(Fpn).

Theorem 10.3.5. π0Fn ⊗Q = W(Fpn)⊗Q ∼= Qn
p .



98

Proof. Taking the direct limit of Homotopy Fixed Point Spectral Sequences, we have

lim−→
U

Hs
cont(U ;πrEn) =⇒ lim−→

U

πr−sE
hU
n = πr−sFn.

Since the U ’s with finite cohomological dimension form a cofinal family, we can without

loss of generality let each U have cd(U) = n2 = vcd(Gn). As such, we need not worry

about non-detection of a class in the direct limit nor fake cycles (as discussed in Subsection

10.2.2) and the direct limit of the spectral sequences does indeed converge to πr−sFn.

Since −⊗Q is exact, we also have

lim−→
U

Hs
cont(U ;πrEn)⊗Q =⇒ lim−→

U

πr−sE
hU
n ⊗Q = πr−sFn ⊗Q.

By [Ser79, Prop. 8, Cor. 3], Hs
cont(U ;πrEn) is torsion for s ≥ 1, meaning that the

differential da ⊗Q = 0 for all a so that we have

lim−→
U

H0
cont(U ;π0En)⊗Q = lim−→

U

W(Fpn)⊗Q = W(Fpn)⊗Q =⇒ π0Fn ⊗Q.

So, π0Fn ⊗Q = W(Fpn)⊗Q, which is rank n over Qp.

We can also compute the units in π0Fn:

Theorem 10.3.6. π0GL1(Fn) = (π0Fn)
× ∼= W(Fpn)×.

Proof. Again, taking the subgroups U ⊆ Sn ⊆ Gn to be of finite cohomological dimension,

we have a spectral sequence of algebras

lim−→
U

Hs
cont(U ;πtEn) =⇒ πt−sFn.

When s = t = 0, fixing U , we have

Es,t2 = H0
cont(U ;π0En) = (π0En)

U = W(Fpn)
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by Proposition 10.3.4.

This gives

E0
2 =

n2⊕
s=0

Es,s2 = W(Fpn)︸ ︷︷ ︸
E0,0

2

⊕
n2⊕
s=1

Es,s2 ,

Furthermore, E0,0
r accepts no non-zero differentials. Also, for x, y ∈ E0,0

r , we have via

the Leibniz formula that

dr(xy) = dr(x) · y + (−1)(0−0)xdr(y).

So, ker(d0,0r ) is closed under multiplication and contains 1 and therefore all of Z. (seen

by letting x = y = 1).

Further, dr is continuous: We have

dr = lim←−
I

dr,I ,

where dr,I denotes the differential of the homotopy fixed point spectral sequence

E2,I = Hs(U ;πtEn,I) =⇒ πt−sE
hU
n,I .

Here, {En,I}I is the inverse system of discrete Gn-spectra En,I = En ∧MI , where MI is

the generalized Moore spectrum satisfying BP∗MI = BP∗/I for I = (pi0 , vi11 , . . . , v
in−1

n−1 ),

so that π∗En,I = (π∗En)/I. Then lim←−I En,I
∼= En, and the spectral sequence Es,tr is the

inverse limit of the spectral sequences Es,tr,I . (See [BD10] [4.6, Proof of 8.25].) Each dr,I

is continuous because each Es,tr,I is finite. This gives the continuity of dr.

So, ker(d0,0r ) is closed, and contains all of Zp since Z is dense in Zp. Further, if zm = 1,

then

0 = dr(1) = dr(z
m) = mzm−1dr(z) =⇒ dr(z) = 0,

so that ker(d0,0r ) contains all roots of unity in W(Fpn). As a result,

E0,0
r+1 = ker(d0,0r ) ∼= W(Fpn),
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and we conclude that

E0
∞ = W(Fpn)⊕N,

where N is nilpotent and contained in positive filtration degree.

W(Fpn)⊕N ∼=
n2⊕
i=0

Φi/Φi+1,

where π0EhUn = Φ0 ⊇ Φ1 ⊇ · · · ⊇ Φn2 ⊇ Φn2+1 = 0 is the filtration on π0E
hU
n with Φi

representing elements coming from cohomological degree ≤ i. Further, we have

ΦiΦj ⊆ Φi+j ,

and since 1 ∈ Φ0, any unit α ∈ Φi>0 would have an inverse α−1 ∈ Φ−i<0, so that(
π0E

hU
n

)× ∼= (Φ0/Φ1)
× ∼= W(Fpn)×,

and in the limit, we have

(π0Fn)
× ∼= W(Fpn).

10.4 On the torsion-free rank of π∗P icn

By Theorem 10.2.15, we can compute the rationalization of π∗Pic(LK(n)Sp) via a spectral

sequence

Es,t2 ⊗Q =Hs
cont

Gn;

(
πtPic

(
lim−→
U

ModLK(n)Sp(E
hU
n )

))δ⊗Q

⇓

πt−sPic(LK(n)Sp)⊗Q.
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When t ≥ 2, by Proposition 10.3.1,

πtPic

(
lim−→
U

ModLK(n)Sp(E
hU
n )

)
= πt−1GL1(lim−→

U

EhUn ) = πt−1GL1(Fn) = πt−1Fn

is torsion.

Furthermore, for s ≥ 1, Es,t2 is torsion by [Ser79][Prop. 8, Cor. 3] since Gn is profinite.

As a result, the differentials

dr ⊗Q : Es,tr ⊗Q→ Es+r,t+r−1
r ⊗Q

are zero for all r ≥ 2.

Putting this all together, we have

⊕
t

Et,t2 ⊗Q = E0,0
2 ⊗Q,

so that since E2 ⊗Q = E∞ ⊗Q, the torsion-free rank of Picn matches that of

E0,0
2 = H0

cont

Gn;Pic

(
lim−→
U

ModLK(n)Sp(E
hU
n )

)δ
=

(
lim−→
U

Pic
(
ModLK(n)Sp(E

hU
n )
))Gn

.

That is to say:

Theorem 10.4.1.

Picn ⊗Q = π0Picn ⊗Q ∼=

(
lim−→
U

Pic
(
ModLK(n)Sp(E

hU
n )
))Gn

⊗Q,

or equivalently,

Picn ⊗Zp Qp = π0Picn ⊗Zp Qp
∼=

(
lim−→
U

Pic
(
ModLK(n)Sp(E

hU
n )
))Gn

⊗Zp Qp.
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For n ≥ 2, we know that the rank of Picn is at least 2, with families generated by LK(n)S
0

and the determinantal sphere S⟨det⟩, and it is conjectured that this is also an upper

bound:

Conjecture 10.4.2 (Hopkins). For n ≥ 1, the rank of Picn over Zp is 2.

Remark 10.4.3. There is a well-defined map

φ : Picn →

(
lim−→
U

Pic
(
ModLK(n)Sp(E

hU
n )
))Gn

given by

X 7→ lim−→
U

(
X ⊗LK(n)S

0 EhUn

)
which, by Theorem 10.4.1, is a rational isomorphism. The action of Gn/U on

Pic(ModLK(n)Sp(E
hU
n )) is by sending an EhUn -module M with EhUn -action µ to a module

Mg whose underlying spectrum is M , with action µg defined by

EhUn End(M)

EhUn .

µ

g
µg

To see that φ is indeed a map to the Gn-fixed points, we need that

(X ⊗LK(n)S
0 EhUn )g ∼= X ⊗LK(n)S

0 EhUn .

We have

(X ⊗LK(n)S
0 EhUn )g ∼= X ⊗LK(n)S

0

(
EhUn

)g
,

so it suffices to show that EhUn ∼=
(
EhUn

)g as EhUn -modules. This isomorphism is evidently

given by g ∈ Gn/U ⊆ End(EhUn ) with inverse g−1.

In particular, each module category ModLK(n)Sp(E
hU
n ) includes the invertible EhUn -

modules

LK(n)S
α ⊗LK(n)S

0 EhUn
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for α ∈ Zp (with inverse LK(n)S
−α ⊗LK(n)S

0 EhUn ). These are fixed at every stage by Gn

and evidently correspond to the Zp-family in Picn generated by LK(n)S
0. Similarly,

S⟨det⟩⊗α ⊗LK(n)S
0 EhUn

is fixed as an element of Pic
(
ModLK(n)Sp

(
EhUn

))
by Gn/U , so that it represents an

element in (
lim−→
U

Pic
(
ModLK(n)Sp(E

hU
n )
))Gn

.

Further investigation into the right hand side of the equalities in Theorem 10.4.1 may be

useful in resolving Conjecture 10.4.2.

Theorem 10.4.4. π∗Picn is torsion for ∗ ≥ 2.

Proof. As before, since Gn is profinite,

Es,t2 ⊗Q = Hs
cont

Gn;

(
πtPic

(
lim−→
U

ModLK(n)Sp(E
hU
n )

))δ⊗Q

is torsion for s ≥ 1 by [Ser79, Proposition 8, Corollary 3]. By Proposition 10.3.1, for

t ≥ 2,

πtPic

(
lim−→
U

ModLK(n)Sp(E
hU
n )

)
= πt−1GL1(lim−→

U

EhUn ) = πt−1GL1(Fn) = πt−1Fn

is torsion. So, Es,t2 ⊗ Q = 0 except possibly s = 0, t = 0, and s = 0, t = 1, and since

dr ⊗Q = 0 for all r,

Es+t∞ ⊗Q = 0

for all s+ t ≥ 2, giving the result.

By the same line of reasoning, we have the following result:

Theorem 10.4.5. π1Picn ⊗Q ∼= Qp.
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Proof. We have

π1Picn ⊗Q ∼= H0
cont

(
Gn;

(
(π0Fn)

×)δ)⊗Q

∼=
(
(π0Fn)

×)Gn ⊗Q

∼=
(
W(Fpn)×

)Gn ⊗Q

∼=
(
Z×
p

)Sn ⊗Q

∼= Z×
p ⊗Q

∼= Qp

10.5 Example: Height n = 1

We now run this entire program at height n = 1, showing that π1Pic1 ⊗Q ∼= Qp at all

primes, in agreement with the result of Theorem 10.4.5.

When n = 1, since G1
∼= Z×

p , we can take our family of open subgroups U ⊆ G1 to be

the linearly ordered set {Ui}i≥2 with Ui = 1 + piZp. Then, following the conventions of

§10.3, Zi = Ui so that Ui/Zi = 1 and the Lyndon-Hochschild-Serre Spectral Sequence

associated with the inclusion Zi → Ui is of no computational value, and we are reduced

to computing π∗F1 via the Homotopy Fixed Point Spectral Sequence

Hs
cont(Ui;πrE1) =⇒ πr−sE

hUi
1 ,

and then taking the limit over i. Since the cohomological dimension of Ui is 1, we need

only consider the cases of s = 0 and s = 1, so that we have

(π0E1)
Ui ⊕ (π1E1)Ui︸ ︷︷ ︸

=0

=⇒ π0E
hUi
1

and

(π1E1)
Ui︸ ︷︷ ︸

=0

⊕(π2E1)Ui = Zp/pε2,i ∼= Z/pi+ϵ =⇒ π1E
hUi
1 .
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Taking limits over the Ui, we find that

π0F1 = lim−→(π0E1)
Ui = lim−→π0E1 = π0E1 = Zp

and

π1F1 = lim−→Z/pε2,i = Qp/Zp

since ε2,i = valp((1 + pi)2 − 1) = valp(2pi + p2i) ≥ i. (For p odd, this is equality.) So,

π1F1 is torsion as expected.

We then have

H0
cont(G1;

(
π0F

×
1

)δ
) =

(
(π0E1)

×)G1
= (π0E1)

× = Z×
p

and

H1
cont(G1; (π1F1)

δ) ∼= Homcont(G1, π1F
δ
1 )

∼= Homcont(Z×
p , (Qp/Zp)δ).

For odd p,

Z×
p ⊗Q = (µp−1︸︷︷︸

torsion

⊕ (1 + pZp)×︸ ︷︷ ︸
∼=Zp

)⊗Q ∼= Qp

and for p = 2,

Z×
2 ⊗Q = (Z/2Z︸ ︷︷ ︸

torsion

⊕ (1 + 4Z2)
×︸ ︷︷ ︸

∼=Z2

)⊗Q ∼= Q2.

Finally, since Z×
p is compact, its image under a continuous map into (Qp/Zp)δ must be

finite and therefore Homcont(Z×
p , (Qp/Zp)δ) is torsion and we conclude that π1Pic1⊗Q ∼=

Qp is of rank 1.
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Chapter 11

Further results and directions for

future research

11.1 Understanding of Picalg
n and the exotic Picard group

11.1.1 The algebraic Picard group Picalg
n

The algebraic Picard group Picalg
n contains an index 2 subgroup Picalg,0

n which can be

computed as

Picalg,0
n
∼= H1

cont(Gn; (π0En)
×).

The E1,1
2 term in our main spectral (Theorem 10.2.15) sequence computing

P∗ = π∗Pic

(
lim−→
U

ModLK(n)Sp(E
hU
n )

)hGn

is

H1
cont(Gn; ((π0Fn)

×)δ),
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contributing to P0 and being entirely torsion. We then have the following commutative

diagram, where the horizontal arrows are given by localization

Fn → LK(n)Fn ≃ En

and the vertical arrows are given by the natural continuous maps on the coefficients:

H1
cont(Gn; ((π0Fn)

×)δ) H1
cont(Gn; ((π0En)

×)δ)

H1
cont(Gn; (π0Fn)

×) H1
cont(Gn; (π0En)

×) = Picalg,0
n .

(11.1)

The vertical arrows are inclusions. To see this, write

H1
cont(G;M) ∼=

continuous crossed homomorphisms G→M

continuous principal crossed homomorphisms G→M

and let φ be a continuous principal crossed homomorphism G→M so that

[φ] = 0 ∈ H1
cont(G;M).

That is, φ = fm for some m ∈M , where

fm(g) = gm−m.

Then, the preimage of [φ] in H1
cont(G;M

δ) is either empty (when φ : G → M δ is not

continuous) or [φ] = [fm], now regarded as a continuous principal crossed homomorphism

G→M δ, and therefore is zero in H1
cont(G;M

δ).

At height n = 1, diagram (11.1) is

H1
cont(Z×

p ; (Z×
p )

δ) H1
cont(Z×

p ; (Z×
p )

δ)

H1
cont(Z×

p ;Z×
p ) H1

cont(Z×
p ;Z×

p ) = Picalg,0
1 .

(11.2)
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For p odd, H1
cont(Z×

p ,Z×
p )
∼= Z×

p
∼= Zp ⊕ Z/(p− 1)Z. Further,

H1
cont(Z×

p ,
(
Z×
p

)δ
) ∼=Homcont(Zp,Zδp)

⊕ Homcont(µp−1, µp−1)︸ ︷︷ ︸
∼=µp−1

⊕ Homcont(µp−1,Zδp)︸ ︷︷ ︸
=0

⊕ Homcont(Zp, µp−1)︸ ︷︷ ︸
0

.

Since Zp is compact, its image under any continuous homomorphism to Zδp must be finite.

Since there are no non-trivial finite subgroups of Zp, we conclude that

Homcont(Zp,Zδp) = 0,

and diagram (11.1) becomes

Z/(p− 1)Z Z/(p− 1)Z

Zp ⊕ Z/(p− 1)Z Zp ⊕ Z/(p− 1)Z = Picalg,0
1 .

(11.3)

The vertical maps are inclusion of the Z/(p− 1)Z-summand. For a fixed U , we have the

following commutative diagram:

π0E
hU
1 π0F1

π0E1,

∼

∼ LK(n)

where the top map is given by the universal property of π0F1 as the colimit

π0F1 = lim−→
U

π0E
hU
1 ,

and the natural map π0EhU1 = (π0E1)
U → π0E1 is an equivalence by Proposition 10.3.4.

As a result, the map (π0Fn)
× → (π0En)

× is an equivalence. So, we have a commutative

square
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H1
cont(Z×

p ; (Z×
p )

δ) H1
cont(Z×

p ; (Z×
p )

δ)

H1
cont(Z×

p ;Z×
p ) H1

cont(Z×
p ;Z×

p ) = Picalg,0
1 ,

∼

∼

(11.4)

where both compositions

E1,1
2 = H1

cont(G1, ((π0Fn)
×)δ)→ Picalg,0

1

represent the inclusion of the torsion subgroup

Tor(Picalg,0
1 ) ↪→ Picalg,0

1 .

Similarly, at n = 1, p = 2, we have

H1
cont(Z×

2 ,Z
×
2 )
∼= Z×

2 ⊕ Z/2Z ∼= Z2 ⊕ Z/2Z⊕ Z/2Z,

and

H1
cont(Z×

2 ;
(
Z×
2

)δ
) ∼= Homcont(Z2,Zδ2)︸ ︷︷ ︸

=0

⊕Homcont(Z/2Z,Z/2Z)︸ ︷︷ ︸
Z/2Z

⊕Homcont(Z/2Z,Zδ2)︸ ︷︷ ︸
=0

⊕Homcont(Z2,Z/2Z)︸ ︷︷ ︸
∼=Z/2Z

.

So, we have

H1
cont(G1;

(
(π0Fn)

×)δ
)
= Z/2Z⊕ Z/2Z Z/2Z⊕ Z/2Z

Z2 ⊕ Z/2Z⊕ Z/2Z Z2 ⊕ Z/2Z⊕ Z/2Z = Picalg,0
1 ,

∼

∼

(11.5)

and again, both composites represent the inclusion of the torsion subgroup

Tor(Picalg,0
1 ) ↪→ Picalg,0

1 .
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However, when n > 1, we have by Theorem 10.3.6

(π0Fn)
× ∼= W(Fpn)×,

so that the map

(π0Fn)
× ↪→ (π0En)

× = (W(Fpn)[[u1, . . . , un−1]])
×

will not be an isomorphism. Nevertheless, it does induce injections H1
cont(Gn;−), so that

every map in

H1
cont(Gn; ((π0Fn)

×)δ) H1
cont(Gn; ((π0En)

×)δ)

H1
cont(Gn; (π0Fn)

×) H1
cont(Gn; (π0En)

×) = Picalg,0
n

(11.6)

is an injection and we can still ask whether

E1,1
2 = H1

cont

(
Gn;

(
(π0Fn)

×)δ) ∼= Tor
(
Picalg, 0

n

)
,

or if this relationship breaks down for n > 1. In any case, we have an injection

E1,1
2 ↪→ Tor(Picalg,0

n ).

Explicitly, we have

H1
cont(Gn; (π0Fn)

×) ∼= H1
cont(Gn;W(Fpn)×)

∼= H1
cont(Sn;Z×

p )

∼= Homcont(Sn,Z×
p )

∼= Homcont(Sab
n ,Z×

p ).

The first equality is by Proposition 10.3.6, the second is from the equality

(W(Fpn)×)Gal(Fpn/Fp) = Z×
p ,

and the third is by recognizing that the action of Sn on Z×
p is trivial. The last equality

holds because because homomorphisms Sn → Z×
p factor through the abelianization Sab

n

because Z×
p is abelian.
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Similarly,

E1,1
2 = H1

cont(Gn; ((π0Fn)
×)δ) ∼= Homcont(Sab

n , (Z×
p )

δ).

At height n = 1, Sn = Z×
p is abelian. By [Hen17, Props. 5.2, 5.3], we have

Sab
n
∼= H1(Sn;Zp) ∼=


Zp ⊕ (Z/pZ)n; p ≥ 3

Z2 ⊕ (Z/2Z)n+1; p = 2.

As a result, we can compute

E1,1
2
∼=


0; p ≥ 3

(Z/2Z)n+2; p = 2.

(11.7)

Similarly,

H1
cont(Gn; (π0Fn)

×) =


Zp; p ≥ 3

Z2 ⊕ (Z/2Z)n+2; p = 2,

(11.8)

so that diagram (11.1) is

0 H1
cont(Gn; ((π0En)

×)δ)

Zp H1
cont(Gn; (π0En)

×) = Picalg,0
n

(11.9)

for p ≥ 3, n > 1, and

(Z/2Z)n+2 H1
cont(Gn; ((π0En)

×)δ)

Z2 ⊕ (Z/2Z)n+2 H1
cont(Gn; (π0En)

×) = Picalg,0
n

(11.10)

for p = 2, n > 1.

11.1.2 The exotic Picard group κn

Define Pic0n via the pullback diagram

κn Pic0n Picalg,0
n

κn Picn Picalg
n ,

=
⌟
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where κn = ker(Picn → Picalg
n ) denotes the subgroup of exotic elements. The above

means that E1,1
∞ ⊆ E1,1

2 is contributing (via φ−1 of Remark 10.4.3) to the non-exotic

torsion in Pic0n. As a result, contributions to κn must be from Es,s∞ for s ̸= 1.

By [Hea15, Theorem 4.4.1], for p > 2, κn is torsion. (When p = 2, κn is shown via

explicit computations to be torsion at heights 1 and 2. See §9.4.) This in turn shows

that

rankZpPicn ≤ rankZpPicalg
n ,

We can show that this is indeed an equality: In [Hea21], Heard constructs a spectral

sequence (for all primes p) with

Ẽs,t2 =


Z/2Z; s = t = 0

Picalg,0
n ; s = t = 1,

Hs
cont(Gn;πt−1En); t ≥ 2

with differential dr of bidegree (r, r − 1) computing Picn in the case s = t. By the proof

of Proposition 10.3.1, Hs
cont(Gn;πt−1En) is torsion for t ≥ 2. So, rationally, this is

Ẽs,t2 ⊗Zp Qp =


0; s = t = 0

Picalg,0
n ⊗Zp Qp; s = t = 1,

0; t ≥ 2,

so that

Picn ⊗Zp Qp
∼= Picalg,0

n ⊗Zp Qp (11.11)

and

rankZpPicn = rankZpPicalg
n . (11.12)

This also shows that κn is torsion for all primes p at all heights n. This does not, however,

imply that κn is finite.
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11.1.3 An alternate notion of exoticness

Consider the map φ of Remark 10.4.3. The kernel (which is torsion) is given by

kerφ = {X ∈ Picn | X ⊗LK(n)S
0 EhUn

∼=EhU
n

EhUn for sufficiently small U},

where ∼=EhU
n

denotes equivalence as EhUn -modules, and U is taken to be an open nor-

mal subgroup of Gn. We can therefore filter kerφ over such U ⊴ Gn by “U -exotic”

elements:

κU := ker(Picn → Pic(ModLK(n)Sp(E
hU
n )))

When U = Gn,

κGn = {X |X ⊗LK(n)S
0 LK(n)S0

∼= LK(n)S
0} = {LK(n)S

0}

is trivial, and for U ⊇ V , κU ⊆ κV , with

kerφ = lim−→
U

κU .

One might ask what relation (if any) there is between the κU and the traditional group

κn = ker(Picn → Picalg
n ) of exotic elements of Picn.

11.2 Comparison with results of [BSSW23]

In [BSSW23], the authors compute

π∗LK(n)S
0 ⊗Zp Qp

∼= ΛQp(ζ1, ζ2, . . . , ζn)

to be an exterior Qp algebra on generators ζi in degree 1− 2i. For a fixed open subgroup

U ⊴Gn, we have a homotopy fixed point spectral sequence

Hs(Gn/U ;π∗E
hU
n ) =⇒

(
πt−sE

hU
n

)hGn/U ∼= πt−sE
hGn
n
∼= πt−sLK(n)S

0.

The limit of these spectral sequences is a spectral sequence with

Es,t2 = Hs
cont(Gn; (πtFn)

δ),
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and by an identical arguement to that made in Subsection 10.2.2 about the limit of these

spectral sequences, Es,t2 ⊗Zp Qp converges to πt−sLK(n)S
0 ⊗Zp Qp:

Es,t2 ⊗Zp Qp = Hs
cont(Gn; (πtFn)

δ ⊗Zp Qp) =⇒ πt−sLK(n)S
0 ⊗Zp Qp,

(This result actually holds pre-rationalization by [DL14, Theorem 1.1].) By Theorem

10.3.1,

π∗>0Fn ⊗Zp Qp
∼= 0,

and by Theorem 10.3.5,

π0Fn ⊗Zp Qp
∼= W(Fpn)⊗Zp Qp.

The methods of this dissertation thus allow us to identify

π∗≥0LK(n)S
0 ⊗Zp Qp

∼= H0
cont(Gn; (π0Fn)

δ)⊗Zp Qp

∼= (W(Fpn))Gn ⊗Zp Qp

∼= Zp ⊗Zp Qp

∼= Qp,

which is in agreement with the results of [BSSW23]. It might be possible to further adapt

the methods used here to compute the negative homotopy groups of the rationalization

of LK(n)S
0.

11.3 Better identification of the abutment of the colimit

spectral sequence

In Theorem 10.2.15, we identified the abutment of the colimit spectral sequence

E∗,∗
r = lim−→

U

E∗,∗
r,U

as

P∗ = π∗Pic

(
lim−→
U

ModLK(n)Sp(E
hU
n )

)hGn

,
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with

P∗ ⊗Q ∼= π∗Pic(LK(n)Sp)⊗Q.

We now state a conjecture which if true would help simplify the statement of Theorem

10.2.15:

Conjecture 11.3.1. The abutment P∗ of E∗,∗
r = lim−→U

E∗,∗
r,U of Theorem 10.2.15 is the

direct limit of the abutments of the E∗,∗
r,U . That is,

P∗ ∼= π∗Pic(LK(n)Sp).

Remark 11.3.2. We have good reason to believe that Conjecture 11.3.1 holds. In [DL14,

Theorem 1.1], Davis and Lawson prove the existence of a very similar spectral sequence

with

Ês,t2 = Hs
cont(Gn; (πtFn)

δ) = lim−→
U

Hs(Gn/U ;πtFn) =⇒ πt−sLK(n)S
0,

and for t ≥ 2, we have

Es,t2 = Hs
cont(Gn;πt−1Fn) = Ês,t−1

2 .

Further, for fixed U , there is a spectral sequence

Ês,t−1
2,U = Hs(Gn/U ;πtE

hU
n ) =⇒

(
πt−sE

hU
n

)hGn/U ∼= πt−sE
hGn
n
∼= πt−sLK(n)S

0,

so that in that very similar situation, the colimit of the abutments is the abutment of

the colimit of the spectral sequences.

11.4 Extending results of Westerland to p = 2 case

In the construction of an invertible spectrum Z ∈ Picn of [Wes17], a restriction to odd

primes (p ≥ 3) was made. Can this construction, as well as other results from [Wes17]

be extended to the case of p = 2? Many of the necessary inputs involving the Morava
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K-theory of Eilenberg-Mac Lane spaces from [RW80] extend to the case of p = 2 by

[JW85], with the exception of the global Hopf ring structure on K(n)∗K(Z/pj , ∗), and

the results of Hopkins-Lurie in [HL13] on the Morava K-theory of Eilenberg-Mac Lane

spaces via Dieudonné theory seems likely to help answer in the affirmative the question

of whether Gn acts on the Morava Modules of [Wes17, 3.21] via the determinant.

11.5 Questions related to generalizations of [HMS94]

Suppose we have an A∞ spectrum E and a space X with E∗X = E∗(Σ
∞
+X) = E∗ along

with a map

ξ : X → BGL1(S
0).

We can form the associated Thom spectrum Mξ. If this is E-orientable (in the sense

that the Thom spectrum associated to the composite

X
ξ−→ BGL1(S

0)→ BGL1(E)

is orientable), then we find via the Thom isomorphism that E∗(Mξ) is an invertible

E∗-module. By [BR05], when E is E∞, there is an injective map

Φ : Pic(E∗)→ Pic(E)

from invertible E∗-modules to invertible E-module spectra. Pic(E) is called algebraic

if Φ is an isomorphism. [MS16, 2.4.7] provides conditions for an E∞ ring E to have an

algebraic Picard group. Following [ABG+13, 2.9], this construction for arbitrary X gives

elements of the Picard ∞-groupoid Pic(E) of invertible E-modules and equivalences

between them, with

π0Pic(E) = Pic(E)

being the Picard group. A few questions arise:

• When Pic(E) is algebraic, can we construct all elements of Pic(E) in this way?
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• For E = K(n), this construction, combined with an orientation Mξ → K(n)

realizes K(n)∗(Mξ) as an invertible K(n)∗-module, which by Theorem 9.2.1 means

that Mξ ∈ Picn. Can we find explicit families of such (X, ξ) to give a lower bound

on the rank of Picn over Zp which is greater than 2? (We already have the families

topologically generated by LK(n)S
1 and LK(n)S⟨det⟩.) By [RW80, 11.1], for p > 2,

K(n)∗K(Z/pjZ, q) ∼= K(n)∗

for q > n, j > 0. In particular, K(Z/pZ, n+1) is a good candidate as a base space.

By [JW85], the same holds at p = 2.

Remark 11.5.1. Modifying this approach, for Rn = ESG
±
n

n , being Rn-orientable

guarantees that

Rn ∧Mξ ≃ Rn ∧ Σ∞
+X

so that

K(n)∗Rn ⊗K(n)∗ K(n)∗(Mξ) ∼= K(n)∗Rn ⊗K(n)∗ K(n)∗(Σ
∞
+X).

By [Wes17, 3.12], K(n)∗Rn is non-zero. It is therefore faithfully flat over K(n)∗

(as all K(n)∗-modules are free), and we find

K(n)∗(Mξ) ∼= K(n)∗(Σ
∞
+X) ∼= K(n)∗,

so that Mξ ∈ Picn.

• If this method fails to increase this lower bound on the rank of Picn, can we describe

conveniently the spectra Mξ in terms of S1 and S⟨det⟩? Can we place an upper

bound on the rank of Picn?

• For other fixed-point spectra E = EhGn , can we produce Thom spectra whose

Morava K-theory is readily computable? When do these give elements of Picn?
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11.6 Questions about descent

For E = K(n) and E = En, we know that the collection of isomorphism classes of

invertible E-local spectra forms a set. Can we compare the groups Pic(LESp) and

Pic(LES0)? For E = K(n), this amounts to asking whether there is a relationship

between Picn and Pic(LK(n)S
0) = Pic(EhGn

n ). By [MS16, §3.3], we do have Galois

descent: For G finite and A→ B a faithful G-Galois extension of E∞ rings (in the sense

of [Rog08]),

Pic(A) ≃ Pic(BhG) ≃ Pic(B)hG,

and by Proposition 10.2.12, we have a localized version:

Pic
(
ModLK(n)Sp LK(n)S

0
)
≃ Pic

((
ModLK(n)SpE

hU
n

)hGn/U
)

for U ⊴Gn a finite index normal subgroup.
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