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Abstract

Using a form of Galois descent, we construct a family of spectral sequences computing
the homotopy groups of the Picard space Pic,, whose 0% homotopy group is the Picard
group of the K (n)-local category. For all primes p and heights n, we compute the rank
of m,Pic, ®z, Qp to be zero for * > 2 and 1 for * = 1. Finally, using these methods, we
describe the rank of moPic ®z, Q, in terms of a limit of module categories and discuss

implications involving the algebraic Picard group.
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Chapter 1

Introduction

The computation of the homotopy groups m;S™ of spheres is a key long-standing open
problem in algebraic topology, having driven the development of many of the field’s
modern tools. One easing of this problem comes in the form of the stable homotopy
groups 7TZ$ = ligmurnS”, with the stable homotopy category of spectra being designed
to tackle such questions in a more structured way. In 1951, through the use of spectral
sequences, Serre computed in [Ser51| that 71'(? = 7 and 7Tl$>0 ®zQ = 0. Further, he showed
that for fixed 1, 7rl$ is finitely-generated. These spectral sequences, new at that time
(having only been introduced in 1946 by Leray), are now ubiquitous in algebraic topology.

Serre was, in effect, studying 72 via the Postnikov filtration, having filtration quotients

S

n

7. (see [BB19a, §1]). We will instead be interested in studying stable homotopy groups

via the “chromatic” filtration.

Through the language of complex-oriented cohomology theories, formal groups, and
Morava’s extraordinary K-theories, these computations can be refined further to one
prime and one “chromatic layer” M, X of a spectrum X at a time. The functor M,, and

the Bousfield localization functor Lg/,) with respect to the n™ Morava K-theory are
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mutually inverse equivalences between the monochromatic and K (n)-local symmetric
monoidal categories of spectra [HS99b, Theorem 6.19]. In general, the K (n)-localizations
of spectra are more amenable to a study via algebraic tools, and an understanding of the
category L (,)Sp of K (n)-local spectra is of relevance, in particular the structure of its

Picard group and the construction of these invertible objects.

An overview of chromatic homotopy theory in Chapters 2-7. We then discuss the K (n)-
local Picard group and review existing results related to its structure and the construction

of some elements in Chapters 8-9.

Then, in Chapter 10, we construct a family of descent spectral sequences computing
the homotopy groups of the Picard space Pic,, whose 0*" homotopy group is the Picard
group of the K(n)-local category. We then compute the rank of m,Pic, ®z, Q, to be
zero for * > 2 and 1 for * = 1. Finally, using these methods, we describe the rank of Pic,,
in terms of a limit of module categories and discuss implications involving the algebraic

Picard group, Pic?blg.

Lastly, in Chapter 11 we discuss additional results and indicate possible directions for

future research.

The content of Chapters 1-9 and Sections 11.4-11.6 represents a very slight revision of

the author’s (unpublished) master’s expository paper.



Chapter 2

Morava K-theories

2.1 DESCRIPTION AND BASIC PROPERTIES

We begin with a description of Morava’s extraordinary K-theories, often called the “fields”

of homotopy theory, a term justified by (3) and (4) of Proposition 2.1.1.

Proposition 2.1.1 ([JW75|, [Rav92|). For each prime p and n > 0, there exist homology
theories K(n). (suppressing p from the notation from this point forward) which have the

following properties:
1. K(0)«(X)=HQ(X) and I/(\(a)*(X) = 0 when HZ,X is torsion.

2. K(1).X is one of the p— 1 isomorphic summands of (KU/p).«(X), where KU/p is

mod p complex K -theory.

3. K(0). = Q and for n > 0, K(n). = Fy[vE], with |v,| = 2p"™ — 2, which are graded
fields, in that every graded module over K(n) is free.



4. We have a Kiinneth isomorphism

K(n)«(X xY) Z K(n)«(X) @k (n). K(n)«(Y).

5. K(n) N K(m) ~ % if n # m.

6. Let X be a finite p-local CW complex. Then,

—

K(n) (X)=0 = K(n—1),(X)=0.

7. Let X be a finite p-local CW complex. Then, for 2p™ — 2 > dim(X),

K(n),X = K(n), ® HF, X.

We will let K (oco) be the spectrum HIF,,.

Any module over K(n), 0 < n < oo splits as a wedge sum of suspension shifts of K (n),
thus furthering our analogy with the fields of algebra. More generally, any ring spectrum
K € Sp such that every K-module spectrum M is of the form \/_, X% K will be called a
field. The following classification result of Hopkins-Smith tells us that not only are the
Morava K-theories fields with exceptionally useful properties, but in a sense, they are

the only such theories we need to consider.

Theorem 2.1.2 (Hopkins-Smith [HS98|). Any field object in Sp(y, the category of

p-local spectra, splits as a wedge of suspension shifts of the Morava K -theories.

The Morava K-theories for 0 < n < oo can be constructed by localizing and quotienting
the Brown-Peterson spectrum B P, which is an irreducible summand of the p-local complex
cobordism spectrum MUj,), with homotopy groups BP, = Z,)[v1,v2,...], |vi| = 2pt —2
to achieve the desired homotopy groups, a process which we describe briefly below. We’ll

discuss the spectrum MU a bit more in Chapter 3. See [HS98]| for further details.



2.2 CONSTRUCTION

2.2.1 Quotients in homotopy

Let E be a ring spectrum. Then, given = € m,F, E/(x) is the cofiber of multiplication
by x map:
sPE 2 B E/(x).

More explicitly, this is the map SI*I A E N pAE - E. The quotient E/(z) is not

necessarily a ring spectrum, but is in good cases, including all of the cases we need in
this dissertation. Further, if z is not a zero-divisor, then quotienting has the expected

result on homotopy:

Proposition 2.2.1. Let E be a ring spectrum, and suppose x € wF is not a zero divisor.

Then, m(E/(x)) = E/(x).

Proof. From the cofiber sequence X1*/E — E — E/(z), we get a long exact sequence in

homotopy
v = M1 (B (7)) = Tp_ o B = B — mo(B/ (7)) = Mg B — -+

Because z is not a zero-divisor, the map m,_ ;£ — m,FE is injective. For the same
reason, the image of 7, (FE/(x)) in m,_|;_1 £ is zero, and the long exact sequence splits

into short exact sequences
0= Tz E 2 1, E — mo(E/(x)) — 0,

and we get m,(E/(x)) = (m,E)/(x).



2.2.2 Localization with respect to a multiplicative subset

Given a multiplicative subset S C m, E (for E a ring spectrum), we can form a localization
S~1E. Since S~'n.E is flat over 7. E, S™'n.E Q.5 Ex«(—) is a legitimate homology
theory (the only axiom of concern is whether it converts cofiber sequences to exact
sequences, and FE, being a homology theory and flatness assures this) and is thus
represented by a spectrum ST'E. As with quotients, this procedure does not always
yield a ring spectrum, but will in all the cases we need. By construction, we always have

(STIE).(X) = STHEL(X)).

Quotienting B P, by the ideal J,, := (p = vg,v1,...,Un—-1, Upn, Un+1, - - - ) and then localizing
with respect to the prime ideal S = (v,) C Fplvn] = BP./J,, yields Fylvn, v, 1], and the
corresponding operations on the level of spectra give the Morava K-theory K (n). Writing
I, :== (vo,...,vn—1), it is shown in [Wiir77]|5.1] that the quotients BP/I, admit a ring
structure, with homotopy commutative multiplication for p > 2, and by |[Wir77]|7.2],
K(n) can be given the same type of structure. (That is, a ring structure which is

homotopy commutative for p > 2.)



Chapter 3

Formal group laws and
complex-oriented cohomology

theories

3.1 FORMAL GROUP LAWS

Definition 3.1.1. Let R be a commutative ring with unit. A (one-dimensional, com-
mutative) formal group law over R is a power series f € R[[z,y]] such that each of the

following holds:

(1) f(z,0)=f(0,2) == (identity),
(3) f(=, f(y,2)) = f(f(z,y),2) (associativity).

(commutativity), and

Example 3.1.2. The additive formal group law is given by f(z,y) = x + y over any ring
R.



Example 3.1.3. The multiplicative formal group law is given by

fley)=r+y+ay=0+2z)(1+y) -1

By a homomorphism of formal group laws f — g, we mean a power series H such that
g(H(z),H(y)) = H(f(z,y)), and isomorphisms will correspond to such series H which
are invertible in the sense that there is another power series G' such that G(H (x)) =
H(G(x)) = x. These are precisely those H with H(0) = 0 and H'(0) € R*, and we’ll

use H~! to denote this compositional inverse to H. We will use the notation

[n]p(@) =2 +px+y5- +ym,

n terms

where o +¢ = f(«, ). This is called the n-series of f. When p = 0 in R, we will be

particularly interested in the p-series of f.

When in characteristic p > 0, the p-series of a non-zero formal group law can be written
as

plf(x) = az?" + higher order terms.

We will call h the height of f if a is a unit. Otherwise, we’ll say that f has height at
least h.

Letting FGL(R) denote the set of formal group laws over R, we see that a morphism
R — S of commutative rings gives a map FGL(R) — FGL(S), where we replace the
coeflicients of a formal group law over R with their images in S. This functor from
commutative rings to sets is corepresentable, meaning there is some commutative ring L
such that we have a natural isomorphism Homyings(L, R) =2 FGL(R). We now construct

L more explicitly.

Writing a power series f € R[[z,y]] as f = Y ¢;j2'y’, we see that requiring f to be

a formal group law is the same as imposing a collection of relations on the ¢; ;. For
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instance, to satisfy f(z,0) = f(0,2) = x, we must have c¢1 9 = cp,1 =1 for and ¢; 9 = ¢
for 7 # 1. The commutativity requirement forces the symmetry ¢; ; = ¢;;. The relations
forced by associativity are more complicated, but still polynomial in nature. So, giving a
formal group law over R is equivalent to giving elements c¢; ; satisfying these polynomial

relations. This leads to the following definition:

Definition 3.1.4. Let L := Z|c; j]/1, where I is the ideal generated by the polynomial
relations described above. L is known as the Lazard ring, and is the object whose
existence is asserted above by the corepresentability of FGL(—). Indeed, a map L — R
is precisely the selection of elements ¢; ; € R satisfying the relations necessary to form a

formal group law over R. The universal formal group law f € L{[z,y]] is Y ¢; ja'y’.

The formal group law f =" ci,j:ciyj is universal in the sense that given a formal group
law g € FGL(R), there is a unique morphism ¢ : L — R such that g = ¢.f, that
is,

g(@,y) = eleij)a'y’.
Note that for fixed n, the coefficient of 2* in the n-series of g is an integer polynomial in
the images of the ¢; ; which doesn’t depend on g or R. So, ¢ carries the coefficients of

[n]f(x) to the corresponding coefficients of [n]q(x).

We make L a graded ring by putting |¢; ;| = 2(¢ + j — 1), so that if x,y have degree —2,
then ) cmxiyj has degree —2 as well.

Theorem 3.1.5 (Lazard). |Rav92, 3.2.3] There is an isomorphism of graded rings

L 2 Z[x1,x9,...], where |x;| = 2i.

The ring L contains a family of distinguished elements v;, which we’ll make use of later

via the Landweber Exact Functor Theorem. They are defined as follows:

Definition 3.1.6. Let v; denote the coefficient of 27" in the p-series for the universal

formal group law on L. These v; for ¢ > 0 are the so-called Araki generators for BP;,
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and satisfy |v;| = 2(p’ — 1).

3.2 COMPLEX-ORIENTED COHOMOLOGY THEORIES

On the surface, this discussion of formal group laws seems to be purely algebraic and
have no obvious ties to homotopy theory. However, it is a theorem of Quillen (|Qui69])
that L &2 MU™* = MU,, where MU is the universal complex Thom spectrum. This

spectrum is central to the Nilpotence Theorem:

Theorem 3.2.1 (Devinatz-Hopkins-Smith [DHS88|). Let R be a ring spectrum. The

kernel of the Hurewicz homomorphism
™R — MU.R
consists of nilpotent elements.

An identical theorem holds for p-local ring spectra R and MU replaced with BP.

Alternatively, we have the following theorem of a more “chromatic” flavor:

Theorem 3.2.2 (Hopkins-Smith [HS98|). Let R be a p-local ring spectrum. Then,

a € e R is nilpotent if and only if image under the map
mR — K(i)«R

is nilpotent for all 0 < i < oo. In particular, the intersection of the kernels of these maps

consists of nilpotent elements.

In addition to its usefulness in the detection of nilpotent elements in stable homotopy,
MU is the universal example of a “complex-oriented cohomology theory.” (This statement
is made exact in Example 3.2.10.) The study of such cohomology theories, especially
via the theory of formal group laws and their heights, lies at the heart of the chromatic

approach to stable homotopy theory. We now describe what it means for a cohomology
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theory to be “complex-oriented,” along with some useful examples, and explain their

close relationship with formal group laws.

Adjoint to the equivalence S' ~ K(Z,1) — QK (Z,?2) is a map
a:%8'~ 8% - K(Z,2) ~ BU(1) ~ CP™.

Alternatively, o can be viewed as the inclusion CP! < CP>.

Definition 3.2.3. A multiplicative cohomology theory E is called complex-orientiable

if any of the following equivalent conditions hold:
e The map o : E2(CP>) — E?(S?) is surjective.
e The map &* : E?(CP®) — E?(5?) = 1y is surjective
e The unit 1 € mpF lies in Im(a*).

A complez-orientation is a choice of element ¢’ such that a*(cf) = 1.

Given a complex-oriented cohomology theory E, there is an isomorphism of cohomology
rings

E*(CP®) = E*[[ef]],

with [cf| = 2 ([Lurl0, Lec. 4]). We will prove this in the special case that E is

even-periodic shortly. Now, consider the map
w:BU(1) x BU(1) — BU(1)

classifying the tensor product of line bundles. (This is the same as the multiplication
on QK (Z,3) given by concatenation of loops, or alternatively, a twice-delooping of the

addition map Z x Z — 7Z, a description we use below.) This then induces a map

E*[[cF]] 2 E*(CP®) — E*(CP* x CP®) = E*[[F ® 1,1 ® ]|
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Writing C{? R1l=zand 1® 0115 =y, the image of 0115 under the above morphism is an

element Fg(x,y) € E*[[x,y]]. The map
11 : CP™ x CP™ — CP®
is the map
K(Z,2) x K(Z,2) ~ K(Z x Z,2) — K(Z,2)
given (up to homotopy) by addition. That is, we have

[K(Z x Z,n),K(Z,n)] = Homan(Z x Z,Z),

and the homotopy class of u corresponds to addition. As a result, this gives CP*
the structure of an H-space with a homotopy associative and homotopy commutative
multiplication. So, Fg is a formal group law over E*  and writing
Fp = Z cija'y’,
3,5>0

we have ¢; j € E~2043-1) 5o that Fg(z,y) is in degree 2.

Remark 3.2.4. The notation cf’ is meant to parallel that of the first Chern class, and for
good reason: By our construction using the classification map of the tensor product, we

can describe the association of a formal group law Fg to a complex-oriented cohomology

FE theory via the relation
of (L1 ® Lp) = Fp(ct (L), ¢f (L2)) = of (L) +ry f (L2)

for line bundles Lq, Lo, paralleling the usual relation. Here, we can consider complex
line bundles L over any space X. Such an L is given as the pullback p*O(1) of the
tautological line bundle O(1) on CP*° by a continuous map p : X — CP*>, and take

c1(L) := p*(cF) e E?(X).

Furthermore, E*(BU(n)) = E*[[cF,...,cE]], and we can think of these c” as the F-

analogue of higher Chern classes.
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Proposition 3.2.5. Different choices of orientation c¥ yield (strictly) isomorphic formal

group laws.

Proof. Let ¢1, ¢} be complex orientations for E, with associated formal group laws F, F”,

respectively. Then, ¢j € E*(CP*>) = E*[[c1]], so that ¢} = g(c1) for some power series
9(z) = bow + bra? + - - .

(Reversing the roles of ¢; and ¢} shows that the function ¢ has no constant term, as it is
invertible.) Furthermore, as ¢} restricts to 1 € E%(S?), we must have by = 1. We then

have for line bundles Ly, Lo,

(L1 ® L) = g(e1 (L1 ® La))
(F(c1(Lr), e1(L2)))
g9 (F(g~ (i (L1)), 971 (c1(L2)))) ,

so that F'(z,y) = g (F(g7"(x), 97" (v)))- O

I
Q

Example 3.2.6. For a ring R, the Eilenberg-Mac Lane spectrum HR is complex-

orientable, as restriction gives an isomorphism
R ~ HR?(CP>) = H*(CP', R) ~ HR*(S").
In this case, the associated formal group law is the additive one:

Fyur(z,y) =z +y.

Proof. Write

Frp(z,y) = Z cijaty’.
i.5>0

We have |¢; ;| € HR2(+3-1)  meaning that ¢ij = 0 unless i + j = 1. The requirement

FHR(.CC,O) = FHR(O,l') =T

forces the remaining two coefficients to be ¢ 0 = ¢p1 = 1 so that Fyr(z,y) =z +y. O
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Remark 3.2.7. In the case R = Z, we recover the classical relation for the first Chern

class of a tensor product of line bundles:

(L1 ® Ly) = 2(Ly) + ¢H2(Ly) € H*(CP™, Z).

Example 3.2.8. Let E be an even-periodic cohomology theory. That is, let E2¢+1(S0) =
0 for k € Z and let there be a unit v € E?(S%) inducing isomorphisms E?(—) — E%(—).

Then E is complex-orientable.

Proof. Consider the Atiyah-Hirzebruch spectral sequence with
EY? = gP(CP"; E4(S%)) = EPTY(CP").

For fixed g, we have

H*(CP"; B9(S%)) = E9(S°)[z] /2",

with |z| = (2,0). Since E? = 0 for ¢ odd, HP(CP"; E4(S)) is zero if either p or ¢ is
odd, meaning that there are no non-trivial differentials (dy has bi-degree (2,—1)) and
the spectral sequence collapses with E5? = E&?. Since every object on the Es-page is a
free module and there are no non-trivial extensions of free modules by free modules, we

must have

E*(CP") = E*[z]/z"".

The maps

7 Elz]/z" T = n_ E[z] /2™

are surjective, and thus the inverse system E*(CP") satisfies the Mittag-Leffler condition

and we have

E*(CP™) = E*(liy CP")  lim E*(CP") = E*[[a].

Furthermore, via this identification, the map E*(CP*) — E*(CP!) = E*(S?) is the
quotient by z™ and is therefore surjective, meaning that F is complex-orientable. The

choice of generator x is the choice of complex orientation. O
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The prototypical example of an even periodic cohomology theory is complex K-theory,
KU, with unit 37! € KU?(S°), where 3 is Bott element. Here, we have a canonical
choice

et U(L) =B7H([L] - 1) € KU*(X),

where 1 denotes the trivial rank 1 complex vector bundle on X, and

Fry(z,y) = v +y + By,

which is isomorphic to the multiplicative formal group law.

Proof. We have for line bundles L, M,

=B7H((L] = 1) + (M) = 1)+ B7H((L] - )([M] - 1)

=B7H((L] = 1) + B (M] = 1) + ()P (L) — 1)1 ((M] - 1)
=B7Y([L] = 1) + B7H([M] = 1) + ([L] - B~ ([M] - 1)

=B7Y([L] = 1) + BH(M] = 1) + B(BH(L) - )BT ([M] - 1))

=cl V(L) + Y ([M]) + BV (L)Y (M)

Example 3.2.9. For n > 1, the Morava K-theories K(n) are complex-oriented, with

the associated formal group law (known as the Honda formal group law) being of height
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exactly n with p-series

(See [Wiir91, 1.3].)

Example 3.2.10. The second space of MU is MUy = MU(1) = CP*. (Warning:
MU (n) is actually the 2n'" space of the spectrum MU, with the odd spaces being
suspensions of the even ones.) The equivalence CP* — MU, gives a degree —2 map
from $°CP>® — MU and thus an element in MU 2((CIP’OO), which Quillen showed in
[Qui71] to be a complex orientation ¢}V for MU. The formal group law coming from
the spectrum MU is the universal one. That is, the (degree-reversing) map L — MU*
classifying the associated formal group law Fjsy is an isomorphism and the induced
map FGL(L) — FGL(MU™) carries the universal formal group law to the formal group
law to Fiyy. Furthermore, the spectrum MU is universal amongst complex-oriented
cohomology theories, in that given a complex-oriented cohomology theory E, there is a

map g : MU — E satisfying g, (V) = cF and ¢*(Fyp) = Fg. (See [Rav03, 4.1.13].)

Remark 3.2.11. In general, a formal group law over E* is equivalent to a map MU* —
E*. The universality of MU implies for F a complex-oriented cohomology theory, this

map lifts to a map of spectra.
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Chapter 4

A geometric viewpoint: The moduli

stack of formal groups

4.1 CONSTRUCTION OF Mpq

For a commutative ring R, a map L — R corresponds to a choice of formal group law
over R. In this sense, the affine scheme Spec L parametrizes formal group laws. However,
we have the notion of an isomorphism of formal groups, as defined in the previous chapter,
and we would like to have a way to study formal group laws taking this into account.

This will require the language of stacks.

One good way to understand the structure of a scheme Y is to study the category of
quasi-coherent sheaves on Y. So, to get started, we consider an example of a quasi-
coherent sheaf on Spec L. As Spec L is affine, such a quasi-coherent sheaf is nothing

more than an L-module, but thinking in these terms will be helpful later on.

For X a spectrum, MU,(X) is a (left) module over the (commutative) Lazard ring
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L=n,MU via
S~SAS—>MUANMUANX - MUANX,

where the last map is given by multiplication on MU. So, we can think of MU, (X)
as a quasi-coherent sheaf on the scheme Spec L, which parametrizes formal group laws.

Furthermore, this sheaf carries an action of the group scheme
G := SpecZ[by,...],
which assigns to a commutative ring R the group
{g € R[[t]| g(t) =t + byt® + baot® + - -- } = Hom(Z[by,...], R),
this action being compatible with the action of G on Spec L by

(9- H)z.y) =9f(g7 (2),97' () € FGL(R),
for g € G(R), f € FGL(R) = Spec L(R).

Two formal group laws over R are called strictly isomorphic if they differ by a change of
variables via an element of G(R). The quotient stack M7, := Spec L /G parametrizes

formal group laws and strict isomorphisms.

Notice that a Z-grading on a ring A corresponds to a homomorphism ¢ : A — A[t*],

with associated decomposition

A=Pe ' (tA).

reZ

Equivalently, we can regard ¢ as a map of affine schemes
Spec A[t¥] = Spec(Z[tT] @z A) = Gy, Xspecz Spec A — Spec A.

That is, a grading on A is equivalent to an action of the multiplicative group G,, on

SpecA.
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The Lazard ring L comes with a equipped with a grading, and the corresponding action

on the R-points of Spec L is given by:

(N f(@,)) = AF(ha, A hy),

where A € G,,,(R) = R*, f(z,y) € FGL(R). Similarly, the natural grading of Z[by, .. .]

corresponds to an action of G,, on G.
Let G denote the group scheme assigning to a ring R the group

GT(R) = {g € R[[t] | g = bot + b1t* + bot® + -+ ,by € R*}
of power series with g(0) =0, ¢’(0) € R*.

Then, Gt can be written as the semi-direct product GT = G,,, x G, so that G acts on

Spec L via this identification. Alternatively, we can write
G = Spec Z[bE, by, ba, . . ..
Definition 4.1.1. The moduli stack of formal groups Mpg is the quotient stack
Spec L/G.
This stack parametrizes formal groups and isomorphisms between them. Specifically,
Mpc(Spec R)
is the groupoid of formal group laws over R and isomorphisms of formal group laws.

Returning to our quasi-coherent sheaf on Spec L corresponding to MU, (X), note that
MU, (X) is a graded L-module. The action of G on MU,(X) is compatible with this
action, meaning that the even graded part of MU, (X), MUeyen(X) is a representation
of G, compatible with the action of G on Spec L. So, MUeyen(X) is a quasi-coherent
sheaf on Spec L/Gt = Mp¢.
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The stack M pg x Spec Q = BG,,, parametrizes formal group laws over (Q-algebras, every
such formal group law being strictly isomorphic to the additive formal group law via
its logarithm, with automorphism group Gy,. Similarly, Mpg X SpecZ,) does so for
Zpy-algebras. For the rest of this chapter, we will fix a prime p and write Mp¢ in the

place of Mpg X SpecZ ).

4.2 STRATIFICATION OF Mps BY HEIGHT

In studying Mpq, it is often useful to restrict our attention to strata corresponding to

the heights of formal groups.

To that end, let v,, denote the coefficient of zP" in the p-series of a formal group law f.
Then, following the definition of height given in Chapter 3, f is of height at least n if
v; = 0 for ¢ < n. By taking f to be the universal formal group law over L, this gives us
a way to identify elements v; € L. In the context of our stack M pg, this allows us to

identify the closed substack
ML, = Spec(Ly/(vo, - -, vn-1))/GT

as the moduli stack of formal group laws of height at least n. For 0 < n < oo, a formal
group law is of height exactly n if v, is invertible and vy, ...,v,—1 are all zero. So, the

substack of formal group laws of height exactly n is
M = Mgt — M7ET = Spec(Ly) (v 1]/ (vo, - -y va1)) /G
The substack of formal groups of infinite height is
MG = Spec(L/(vo,...))/GT.

The locally-closed substacks M%,, 0 < n < oo form a stratification of the stack
Mrpg.
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The existence of a formal group law of height 0 over a Z,)-algebra R forces p € R* so

that R is in fact a Q-algebra, meaning that M%G = BG,,.

Let 1 < n < co. Every formal group law over a Z,)-algebra R is strictly isomorphic
to a p-typical one. So, isomorphism classes of formal group laws of height n over R

correspond to maps
v;lBP*/(p, U1,y Uno1) = Fplvngt, Ungo, . ][vff] — R,
and following [Goe08, §6], this gives us an fpgc presentation
Spec Fylvnt1, Unta, - - - U] = Mg

of the stratum M%. In the next chapter, we will see another description of M.,

involving the Morava stabilizer group.

Any formal group law of infinite height over a Z,-algebra R (which is then necessarily
an [F,-algebra) is isomorphic to the additive formal group law. So, M%, = BAut(f),
where f is additive formal group law over F,,. The group Aut(f) is closely related to the

group schemes Spec AV, where A" is the dual mod p Steenrod algebra.
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Chapter 5

Lubin-Tate theory and Morava

modules

5.1 THE LANDWEBER ExAcT FUNCTOR THEOREM

As we’ve seen, complex-oriented cohomology theories give rise to formal group laws
via their Chern classes. One might ask: Can we reverse this? That is, given a formal
group law over a ring R given by a map MU, — R, can we produce a complex-oriented

cohomology theory carrying this formal group law?

As we'll see, the Landweber Exact Functor Theorem provides a partial answer to this

question.
Let f be a formal group law over a ring R. Begin by defining a functor
E.(X):=MU.(X)®nmu, R,

where X is a space and R is a left MU,-module via the map classifying f. (MU,(X) is
naturally a left M U,-module, as described in Chapter 4. Make it into a right M U,-module
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via the Koszul sign rule.)

To be a homology theory, E, must satisfy the Eilenberg-Steenrod axioms (minus the
dimension axiom). With the exception of converting fiber sequences to long exact
sequences, these follow easily from the fact that MU, is a homology theory. (For example,
E, is clearly homotopy-invariant.) It would suffice to require R to be flat over MU,, but
this is quite strict. For a less-restrictive requirement, we have the following theorem of

Landweber:

Theorem 5.1.1 (Landweber Exact Functor Theorem). Let f: MU, — R be a formal
group law over R. If for every prime p, the images of p = vo,v1,... form a regular
sequence in R, then

E. (=)= MU,(-)®@nu, R

18 a homology theory.
Via Brown Representability, this procedure produces a representing spectrum F.

A variant of this exists for Brown-Peterson homology, BP, where we fix a prime p and

consider p-typical formal group laws given by maps from the ring

BP* = Z(p) [’Ul,’Ug, . .],
and we require that the sequence of the images of p,v1,... be regular for our fixed prime
.

Homology theories arising in this way are called Landweber exact homology theories. Via

the Conner-Floyd isomorphism, complex K-theory is Landweber exact with
KU.(X) =2 MU.(X) @nu, KU,

and this construction of the functor E, from a formal group law on a ring R is sometimes
called the Conner-Floyd construction. One notable non-example is the Morava K-

theories for n > 1. (In K(n). = F,[vf], v1 = 0, and multiplication by 0 is not injective
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on Fp[vE]/(p) = Fplvif].)

In the language of Chapter 4, a formal group law over R determines a Landweber exact

homology theory E if and only if the corresponding map Spec(R) — Mp¢ is flat.

5.2 DEFORMATIONS OF FORMAL GROUPS AND LUBIN-TATE THEORY

A family of spectra produced in this way and of great use in the chromatic approach to
stable homotopy theory is the collection of Lubin-Tate theories (sometimes called Morava
E-theories). We now describe their construction, which will require a discussion of Lubin

and Tate’s theory of deformations of formal groups to complete local rings.
Fix a perfect field k of characteristic p > 0 and a formal group I" of height n over k.

Definition 5.2.1. Let (B, m) be a complete local Noetherian ring. A deformation of T
to B is a pair (G,i), where G € FGL(B), i : k — B/m is a homomorphism, such that

' = .G

as formal group laws on B/m, where ¢ : B — B/m is the quotient map. Let Defp(B)

denote the category of deformations of I' to B, where by a morphism of deformations
(Gl,i) — (Gg,i),

we will mean an isomorphism g : G; — Gy of formal group laws such that ¢.g € Aut(i.I")

is the identity. That is, we require
g(x) =2z mod m.
Such a map g is called a x-isomorphism. We take
Hom((G1,141), (Ga,i2)) =0

for i1 # i2. This makes the category Defp(B) into a groupoid, where myDefr(B) is the

collection of x-isomorphism classes of deformations of I' to B.



25

Example 5.2.2. Let’s examine at least one non-trivial example of a deformation of I'.
For simplicity, consider the case where B/m = k. Any complete local Noetherian ring
with residue field k is uniquely a continuous W(k)-algebra. Since I is a formal group law
of height n over a characteristic p field, the map « : L — k necessarily factors through

Ly /(p,v1,- -, vp—1). So, it is convenient to consider the the local ring
E :=W(k)[[v1,...,vn-1]],

which has maximal ideal (p,v1,...,v,—-1) and residue field k. Take any lift

of a, such that a(v;) = v; for 1 <i < mn — 1. The resulting commutativity of the diagram

Liyy ———— W(k)[[v1, ..., va1]]
L/ (pyv1s oy 0p1) ———— k

implies that & determines a deformation F' € Defp(E).

Theorem 5.2.3 (Lubin-Tate). The functor moDefp(—) takes values in sets and is corep-
resentable by the ring E := W(k)[[v1,...,vn—1]]. That is, up to *-isomorphism, a
deformation of I' to a complete local Noetherian ring B is the the same a continuous
W(k)-algebra map

W(k)[[v1, .-, vn-1]] = B.

Furthermore, the deformation F described above is the universal deformation of I' in the

sense that the x-isomorphism class corresponding to a map
Yv:E— B

18 that of V. F.
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Notice that the sequence p,vq,...,v,-1 € F is trivially regular. As a result, by the

Landweber Exact Functor Theorem, we can produce a 2(p™ — 1)-periodic homology theory
&(n) defined by
E(n)(X) := MUX) @umu. Elvy],

with |v;] = 2(p* — 1), as before.
It is more common to work with a 2-periodic version of £(n), defined as follows:

Take E(k,T), = W(k)[[v1,...,vn_1]][uT] with |u]| = =2 (and |v;| = 2(p’ — 1)). This

element u allows us to write
E(k, Ty = W(k)[[u1, . .., un_1]][u™],

where u; = v;uP' !, so that |u;| = 0 for all i. As with £(n), this defines a Landweber exact
cohomology theory (where the MU,-module structure on the ring E(k,I") is given by
the map classifying the universal deformation T of '), and we’ll denote the representing
spectrum E(k,T). Having coefficients in E(k,T),, I is naturally a degree —2 formal
group law. The unit u allows us to equivalently consider a degree 0 formal group law

ul(u=tz, uly).

When I' is taken to be the Honda formal group law I'j, of height n over k = Fjn
(having p-series [p](z) = 2P"), we’ll write E, instead, and call this spectrum Morava

E-theory.

1

In this case, following [BB19a, §3.1], the universal deformation uly, (u= 2, u=ty) of T\, is

a p-typical formal group law classified by a map BP, — E(k,T'),) determined by

uiul_pi 1<i<n-1

V; — ulfp Z =n

0 1> n.
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5.3 THE MORAVA STABILIZER GROUP

Definition 5.3.1. Let S,, = Aut(I',,) be the automorphism group of the Honda formal

group law I',,. That is, elements of S,, are invertible power series f € Fyn[[z]] such that

This group is acted on by the Galois group Gal(Fy/F), and the semi-direct product
Gpn = Gal(Fpn /Fp) x Aut(Ty,)
is called the Morava stabilizer group.

The semi-direct summand S,, is the group of units O)° of
Op = W(Fpn)(S)/(S™ =p, Sw =w’9),

where w € W(F,») and o is a lift of the Frobenius z — 2P on Fpn to W(F,»). Letting

F,={z€S,|z=1 mod (S)%} gives a filtration by normal subgroups
Sn:FoDFlD"',

and the canonical map

Sn—>¥iTnlSn/E

is an isomorphism, meaning that S,, (and similarly G,,) has the structure of a profinite

topological group (|Henl7]).

Remark 5.3.2. Let I',, denote the Honda formal group law of height n over F, (again
with p-series [p](z) = 2P") considered as a formal group law over F,. Then, by [Laz55,
Thm. IV], as IFTD is algebraically closed and characteristic p, I',, is the unique height n

formal group law over E up to isomorphism.

The map SpecF, — M, classifying T, is faithfully flat. That is, given a formal group

law Spec R — ML, of height n, we can form a pullback diagram
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Spec R —— Spec R

! |

SpecF, —— M%,
where R’ is faithfully flat over R. (As a result of Theorem 1 of [Lurl0, Lec. 14|, we can

write the ring R as the direct limit of finite étale extensions of R ® F,, meaning that R’

is faithfully flat over R.)

Furthermore, writing

Gy, := Gal(F,/F,) x Aut(T,,)
for the automorphism group of the pair (IFT,, T,.), we can identify
M = SpecF,, /G,.
See |Lurl0, Lec. 19] for a more thorough discussion.

This group G, is also sometimes called the Morava stabilizer group, but we will reserve
that terminology for G,. Note that G, is a pro-finite group, and as such can be
regarded as an affine group scheme. Concretely, following [Goe08, §2| we can identify the

automorphism group Aut(T',,) as the affine F,-scheme:
Aut(T,,) = Spec(F, ® @W @1, F)),

where W = Z[b(jf, b1,bo,...], so that Spec W = GT. This description works for any field
k in place of IE‘T, and any map L — k. In the case at hand, there is an isomorphism of

Hopf algebras
F, @ @W @ F, = Fy[bg, b1, ]/ () = bi), >0,

which follows from the computation of the Morava stabilizer algebra carried out in [Rav03,

§6.1).
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For a L/K a finite Galois extension, we can identify Gal(L/K) as the L-group scheme

Gal(L/K) = Spec(L ®k L).
As such, Gal(F,/F,) Z is an affine F,-group scheme via

Gal(F,/F,) = @SPQC(FP" ®r, Fpn) = Spec(lig([[“pn ®r, Fyn)) = Spec(F, F, Fp).

In order to understand how these strata glue together, we want to understand infinitesimal
neighborhoods in M g of a point in M g, which correspond to deformations of a formal

group law over a field k to infinitesimal thickenings of k.

Using the Lubin-Tate theory of lifts of formal group laws, one can define an action of S,

and G,, on (E,). (see [DHI95| and [DHO04]) for details).

Theorem 5.3.3 (Goerss-Hopkins-Miller). The action of G,, on (Ey)« lifts to a coherent
action of Gy, on the spectrum E,, by Es maps. Furthermore, the space Mapg_ (En, Ep)

of Eso self-maps of E, has contractible path-components and

mo(Mapg_ (En, En)) = Gp.

For finite group G acting on a spectrum X, we can define the homotopy fixed point

spectrum

X" = F(SEG, X)°,

where F'(—, —) is the function spectrum. There is an associated “Homotopy Fixed Point
Spectral Sequence”

B3 = HP(G, (X)) = mpiqg(X9).

So, for H < G, finite, we get a fixed point spectrum EffH (by replacing F,, with an
equivalent spectrum on which H literally acts). If we are willing to discretize G,,, this

idea can be extended to arbitrary subgroups H C G, but it turns out that we should
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care more about continuous group cohomology of G, ; the K(n)-local E,-based Adams

Spectral Sequence is of the form
Hgont(Gn; (En)*) = 7T>kLK(n)Sou

where L (p) SY denotes the K (n)-local sphere spectrum (see Chatper 6 for more details
on localization). In the case of finite (or equivalently, closed and discrete, as G,, is
compact Hausdorff) H, there is no distinction between continuous and ordinary group
cohomology, and E can thus also be regarded as a “continuous” homotopy fixed point

spectrum.

Theorem 5.3.4 (Devinatz-Hopkins [DHO4|). For all closed subgroups H < Gy, there
exists a (continuous) homotopy fized point spectrum (abusively denoted) EM with an

associated Homotopy Fized Point Spectral Sequence

EYY = H b (H; 7 Ey) = 7Tp+q(E7}zLH)‘

In the case that H = G,,, this Homotopy Fixed Point Spectral Sequence corresponds
to the K (n)-local E,-based Adams Spectral Sequence mentioned above, and E!¢n =

Remark 5.3.5. The usual construction for homotopy fixed points (for H a discrete
group) requires that the action of H be a literal action, and not just a homotopy coherent
action. As such, the spectra EQH constructed in [DH04| are not literally homotopy fixed
point spectra in the usual sense (at least when H is not finite). However, they have all
of the desired functoriality properties, and agree with the usual homotopy fixed point
construction in the case where H is finite, and are therefore the “correct” notion of

homotopy fixed point spectra in this situation.
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5.4 MOVAVA MODULES

In practice, a completed version of Morava E-theory is seen to be a more natural choice

of covariant version of E than the usual (E,).(X) = m.(Ep A X).
Definition 5.4.1. For X a spectrum, let

(B (X) 1= . Lic(oy (Bn A X)
We will call (E,))(X) the height n Morava module of X.

A description of the Morava module of a spectrum X will be of particular use in
determining whether X is invertible. Furthermore, by [DH04|, the Morava module of the

fixed point spectrum EZ;H for closed subgroup H < G, can be computed as

(En)) (ERT) = Mapseont (Gn/ H, (En)-)-

Remark 5.4.2. In [HMS94], the authors define the Morava module of X to be

KoslX) 1= dm [Ba/(0°,.. v )]u(X).

) n—1
(Z‘()a---vinfl)

Each of these quotients can be realized by smashing with an appropriate generalized Moore
spectrum, as is described explicitly in [HMS94, §7]. Alternatively, we can construct
infl

quotients described in Chapter 2, and as each sequence p®,...,v," 7 is regular, we

have
B/ (0ol = (Bu)s/ (0 0

In nice cases (see Remark 9.2.2), these two definitions coincide. We will continue to use

the term “Morava module of X” to mean in the sense of Definition 5.4.1.
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Chapter 6

Bousfield localization

The stable homotopy category of spectra is difficult to study in its entirety. In this
chapter, we describe the technique of Bousfield Localization, which is often employed to

restrict to smaller, more well-behaved subcategories.

6.1 PRELIMINARIES ON F-LOCAL AND E-ACYCLIC SPECTRA

Definition 6.1.1. A morphism f : X — Y is called an F-equivalence if f Aid : X N E —

Y A E is an equivalence, that is, if E.(f) is an isomorphism.

Definition 6.1.2. Given a spectrum FE, a spectrum X is called F-acyclic if E, X =0
(equivalently, if £ A X ~ x). A spectrum X is called E-local if for every E-acyclic
spectrum A, [A, X], = 0.

Notice that an E-equivalence A — B is a map whose homotopy fiber F' is F-acyclic
(look at the long exact sequence in E-homology), meaning that asking for a spectrum
X to be E-acyclic is the same as requiring that every E-equivalence A — B gives an

isomorphism [B, X], — [A, X]..
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Example 6.1.3. If E is a ring spectrum and M is a module over E (with the action of
E on M denoted p), then M is E-local. To see this, let A be an E-acyclic spectrum and
take any map f: A — M. Then, factoring f as

SAA™ EaAY BAM LM

shows that f = 0, because E A A ~ x.
FE-local spectra satisfy many useful properties, some of which are as follows:
Proposition 6.1.4 ([Rav92| 7.1.2).

1. The homotopy inverse limit of E-local spectra is also E-local.

2. Given a cofiber sequence

X->Y > 7,

if any two of X,Y, Z are E-local, then so is the third.
3. An E-equivalence of E-local spectra is an equivalence.
4. If X VY is E-local, then so are X and Y .

5. If X is E-local, then it is BV F-local for any F.

Proof.

1. Let {X;}icr be an inverse system of E-local spectra and let A be E-acyclic. Letting

F(—, —) denote the mapping spectrum, we have
F(A,holim X;) ~ holim (F(A4, X;)),
There is then a Milnor exact sequence

0 = lim'm 1 F(A, X;) = mholim F(A, X;) — limm, F(A, X;) — 0.
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As each X, is E-local, mF'(A, X;) = [A, Xi]« = 0, so that both &iLnlmHF(A,X,-)

and yinw*F(A, X,;) vanish, and we have
[A, holim X;]. = m. F'(X, holim X;) = m,holim (F'(4, X;)) =0,
so that holim Xj; is E-local.
2. Let A be an E-acyclic spectrum. From the cofiber sequence
X—->Y > 7
we get a long exact sequence
= A X2 [AY = A2 - [A X — -

By hypothesis, two out of every three consecutive terms is zero, meaning that the

third must be also.

3. Let f: X = Y be an E,-equivalence of E-local spectra. Then the homotopy fiber
F of fis E-acyclic. Further, by (2), F'is E-local. Being both E-acyclic and E-local

means that F' ~ %, so that f : X — Y is an equivalence.

4. Let A be E-acyclic. Then,
0=[AXVY].=[AX&[AY],
so that both [A, X], and [A, Y], are zero.

5. Any E V F-acyclic spectrum is F-acyclic and the result follows immediately.

So, if we restrict our attention to E-local spectra, E.-homology is sufficient for detecting
equivalences. If we already know that a map A — B is between E-local spectra, this is
great. Otherwise, we might hope find F-local replacements for A and B and work with

those instead.
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6.2 THE BOUSFIELD LATTICE AND LOCALIZATION

In |[Bou79|, Bousfield showed that given a homology theory E and spectrum X we can
functorially replace X with an E-local spectrum. More specifically, he showed that there

is a homotopy cofiber sequence

functorial in X, where Gg(X) is E-acyclic and Lg(X) is E-local. As the homotopy fiber
of X — Lg(X) is E-acyclic, this means that X — Lg(X) is an E-equivalence. So, the
functor Ly provides a way of replacing a spectrum with an E-local one whose difference
is invisible to the eyes of E. The functor Lg is called a Bousfield localization functor.
Up to homotopy, there is only one choice spectrum Lg(X) which is both E-local and
FE-equivalent to X. On the categorical level, the functor Lg localizes the category of

spectra at the collection of morphisms f for which f A Idg is an equivalence.

Definition 6.2.1. Let (E) denote the class of E-acyclic spectra. Then, two homology
theories ' and F' give the same localization functor if and only if (E) = (F), which we’ll
call Bousfield equivalence. The collection (which is a set) of Bousfield equivalence classes

is partially ordered by reverse inclusion, and is called the Bousfield lattice.

Remark 6.2.2. By [Kra08, 4.9.1], the Bousfield localization functor Lg can be con-
structed as a Verdier quotient Sp — Sp/(E) followed by a fully faithful right adjoint
Sp/(E) — Sp.

6.3 EXAMPLES

Many previously understood constructions can be phrased in terms of Bousfield localiza-

tion:
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Example 6.3.1. Let MZ/pZ be the mod-p Moore spectrum. That is,

MZ/pZ = 5°/p = hocofib(S° & §0).
The functor Lysz,,z is called p-completion, and for connective spectra,

LyzjpeX = @((So/pn) ANX) = X).

For a not-necessarily connective X, we will also denote XZ/)\ = Lyrz/pz X

Example 6.3.2. Let HIF, denote the mod-p Eilenberg-Mac Lane spectrum. For a
connective spectrum X, localization Ly, X coincides with the p-completion L7 /,7 X
of the previous example (see [BB19b, 2.6]). So, this gives an alternative notion of p-
completion of a spectrum. Throughout this dissertation, “p-completion” will continue to

mean localization with respect to the Moore spectrum MZ/pZ.

Example 6.3.3. L MZ, is p-localization, where MZ,) is the Moore spectrum for the

p-local integers.

Example 6.3.4. Localization Lgo does nothing, i.e. LgoX ~ X: A spectrum A is
SY-acyclic if and only if SY A A ~ A ~ %, so [A, X]. = 0 for all X, meaning that any

spectrum X is already S°-local.

Example 6.3.5. On the other end of the Bousfield lattice is the localization Ly, with
respect to pt. = x: Everything is pt.-acyclic, including the sphere spectrum. So, to be

pt.-local is to force m, X = 0.

Example 6.3.6. Localization with respect to Johnson-Wilson theory
E(n) :=v,'BP/(Vps1,Vnt2,---)

can be described quite nicely:

LpmX ~ X A LgS°.
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That is, E(n)-localization is the same thing as smashing with the E(n)-local sphere.

Such a localization is called smashing.

For any E, X € (E) <= LgX ~ %, so that when Lg is a smashing localization, we
have

(E) = (LpS°).

Remark 6.3.7. The Bousfield classes of E(n), E, and K(0) V---V K(n) are the same,

meaning that Lg,) = Lg, = Lio)v...vik(n)- See [Rav84, 2.1] for the equivalence

The equivalence of these with (E,) follows from [Hov93, 1.12]. In [Bak00, 3.4], it is

shown that (E(n)) = (]E(F)), where E(n) = E(n);, is completed Johnson-Wilson theory.

We finish with a useful fact, which we will use later to build the “chromatic fracture

square.”
Proposition 6.3.8 (|[Lawl9| 9.26). Suppose LxLg ~ *. Then, for any spectrum X,
there 1s a homotopy pullback diagram

LE\/KX _— LEX

! |

LKX e LELKX.

Proof. Let P be the homotopy pullback of the diagram

LgX

|

Note that each object in the above diagram is either E-local or K-local, so by Proposition

6.1.4 (5), they are E'V K-local. Note that this means that P is also £V K-local: Looking
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at the Mayer-Vietoris sequence for associated to the homotopy pullback, letting A be

FE Vv K-acyclic, we have a long exact sequence
o+ = [A,LgLgX]ii1 = [A, Pl > [A, Lk X|. ® [A, Lp X — -+,
and by hypothesis, the outside terms vanish, so [A4, P, = 0.

So, it suffices to show that the map X — P is an F'V K equivalence, as we will then have
Lpyg X ~ Lgyg P ~ P. Next, note that any homotopy pullback square is simultaneously
a homotopy pushout square. So, as the smash product commutes with homotopy colimits,

it necessarily commutes with taking homotopy pullbacks. So,

PAN(EVK) —— LEX AN (EVK)

| |

LxkXN(EVK) —— LgLgX AN(EVK)
is a homotopy pullback square and we are reduced to showing that

XANEVK) —— LgX N (EVK)

| |

LxkXN(EVK) —— LgLgX N(EVK)
is also, so that X A (E'V K) — P A (E V K) is an equivalence.

The requirement that Lx Lr ~ * means that Ly X is K-acyclic, asis Lg L X, so splitting

the wedge summand factors apart, we are reduced to showing that

XNE —— s LgXANE

| I

Lk XNE == LgLgX ANE

and

XNK — *

LgXNK — *
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are homotopy pullback squares, which is clear.

For the rest of this dissertation, we’ll be mostly concerned with localization at Morava

K-theory and Morava E-theory.
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Chapter 7

The chromatic tower and chromatic

convergence theorem

7.1 CHROMATIC CONVERGENCE AND MONOCHROMATIC LAYERS

Fix a prime p and let L, = Lg, = Ly (0)v--.vK(n)-
Definition 7.1.1. The chromatic tower for a p-local spectrum X is the system

X — - — I X — 11 X — LyX.

Theorem 7.1.2 (Chromatic convergence). For X a p-local finite CW complex, X ~

lim L, X.

Definition 7.1.3. The homotopy fibers M,, X = hofib(L, X — L,_1X) are called the

monochromatic layers of X.

The monochromatic layers M, X are the “quotients” of our filtration, and they themselves

decompose into periodic spectra with periods multiples of 2p™ — 2 (the same 2p™ — 2 as
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|vp| in K (n),). Explicitly, we can write

hocolimn F,, — M, X,

e(a)

where F,, ~ X" =2"Y E_ for some e(a) > 0. This follows as a result of [HS99b, 7.10(c)]

and the Periodicity Theorem of [HS98].

The functors Ly (,) and M, restrict to an adjunction on L,Sp, and give a symmetric
monoidal equivalence

My, : SpK(n) =M, - LK(n)a

where 91, is the essential image of the functor M,. So, instead of working with the fibers

M, X of the filtration, we can equivalently work with the localizations Lg(,)X.

7.2 'THE CHROMATIC FRACTURE SQUARE

Proposition 7.2.1. Lg () Ln-1X >~ for any X.

Proof. We wish to show that L,,_1 X is K(n)-acyclic. As L,_; is a smashing localization,
we have K (n)AL,_1X ~ K(n)AL,_1S°AX, and it suffices to show that K (n)AL,_15° ~
*. Now,

K(n)AL, 158°~ L, 1K(n),
so this is equivalent to verifying that K (n) is E,_j-acyclic. We have,
(Lp1S%) = (Bp_1) = (K(0)V--- K(n — 1)).

So,

n—1
L, 1K(n) ~%x < K(n)A \/ K(i) ~ *.
=0
But, K(n) A K(i) ~ « for n # i by Proposition 2.1.1 (5), so the right hand side is indeed

trivial and LK(n)Ln,lSO ~ %, as desired.
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Corollary 7.2.2. Combining Propositions 6.3.8 and 7.2.1 we have the chromatic fracture

square:

| l
Ly X —— Lyp—1Lgmn)X.
Here, the left vertical map is the same as the map within the chromatic tower. So,
using the chromatic fracture square and chromatic convergence, one can hope to study a
spectrum X (p-locally) by studying its localizations L,y X, and through this lens, the

importance of understanding the K (n)-local category of spectra is immediate.

Remark 7.2.3. Being a homotopy pullback square, the homotopy fibers of the vertical

maps in the above diagram are equivalent. As L)X >~ Ly L)X, this gives

M, X =~ My Ly X.

Remark 7.2.4. Let X be a complex-oriented cohomology theory with formal group
law of height exactly m. Then, L,X ~ x <= m > n. (See |[LurlO|[Lec. 29].) In
this sense, L, acts on complex-oriented cohomology theories like restriction to the open
substack Mgg Similarly, Ly, acts like completion along the locally-closed substack

re (|[LurlO][Lec. 22]).

Through this guise, the chromatic fracture square can be interpreted as saying that given
a sheaf on M?gil and one on the completion /\//l_’g agreeing on a formal neighborhood

2o N Mgg_l of Mg in M;g_l, we can glue these to get a sheaf on Mgg
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7.3 THE SULLIVAN ARITHMETIC SQUARE

This chromatic fracture square should bring to mind the usual “arithmetic fracture

square”
7 — Hp Ly

|
<£*> Q®z <Hpr)-

In more direct analogy, we have the fracture square for spectra:

Proposition 7.3.1. For any spectrum X, there is a homotopy pullback square

X ——— [, LpX

J |

LoX —— Lg (IT, LX) .

where LoX denotes rationalization LogX = HQ A X and L,X = XpA = Lz pzX s

p-completion.

Proof. This follows from Proposition 6.3.8 by taking K = \/p MZ/pZ and E = HQ. The

equivalence [ [, Ly X ~ L M@, z/pz) X s shown in [Bou79, 2.6], and

M (@ Z/pZ) ~\/ MZ/pZ

by definition of Moore spectra. The condition that L LrpX ~ 0 is equivalent to requiring
that K A B A X =~ %, which holds because K N E ~\/, M(Z/pZ) N HQ ~ *. Finally,
by Serre, there is an equivalence MQ ~ HQ, and by [Rav92, 7.2.5], there is a Bousfield
equivalence

(8% = (MQ) v \/ MZ/pZ,

P
so that LpygX ~ Lgo X ~ X. O
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Remark 7.3.2. This idea of building X from its mod p-localizations and its rationaliza-
tion is originally due to Sullivan [SR05| (in the case where X is a nilpotent space), and
as such the pullback square of Proposition 7.3.1 is often called the “Sullivan arithmetic

square.”

7.4 'THE CHROMATIC FILTRATION ON HOMOTOPY GROUPS

In the introduction, we promised a new filtration to replace the Postnikov filtration of
m.Swith quotient groups m,5. The filtration above, however, is a filtration on the level
of spectra, rather than on their homotopy groups. An alternative chromatic filtration on

the homotopy groups, however, does exist.

Definition 7.4.1. The chromatic filtration on m,S° is the descending filtration
780 2 Fy(mS%) 2 Fi(m8%) 2 -+,

where Fj,(7,8°) = ker(m,5° — m,L,S°).

This construction works equally well with any other spectrum in place of S°.



45

Chapter 8

The K(n)-local Picard group

Definition 8.0.1. Given a symmetric monoidal category (C,®, ), we call an object
X € C invertible if there is some object Y € C such that X ® Y =& I. Should the
collection of isomorphism classes of invertible elements form a set (for instance, when
C is essentially small), then we can define the Picard group of the category C to be the
collection of isomorphism classes of such elements with group operation ® and identity

element I, and we’ll denote it Pic(C).

8.1 INVERTIBILITY IN Sp

Example 8.1.1. The only invertible objects in the stable homotopy category Sp =
(Sp, A, S?) are the spheres, so we have Pic(Sp) = Z, with cyclic generator S*.

Proof. By the Kiinneth isomorphism for homology with coefficients in a field k, for
ZNZ' ~ 89,
Hk.Z @ Hk, Z' =~ HE,S° = k,
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so that Hk.Z = HZ.Z ®z k = k generated in some degree i. Since this is true for all

fields k, we must have HZ,Z ~ Z. (First, as Z is invertible, it is strongly dualizable. By
[MLC*96, XVI.7.4] this means that Z is the retract of a finite spectrum F. In particular,
the homology groups HZ.Z are finitely generated, being a direct summand of HZ,F'.

Taking k = Q shows that for some fixed i, we have

7T, *x=1
1; J# 1

where the T; consist entirely of torsion. So, for taking k = I, for any prime ¢, we see that

HZ.Z =

T; and T}, j # i have no ¢-torsion. As ¢ was arbitrary, these torsion groups are all 0.)

Now, consider the Postnikov tower for S°.

Y7 —— HZ =755° «+— S°

The 0" truncation of the Postnikov tower of ¥7%Z is T7<0X"'Z = HZ, giving the bottom
map. We have

hocofib(7<;,S° — T<;n—18%) = " Hr,, SO

So, obstructions to lifting to a map £7°Z — 7<,,S live in

[Z_iZ, Zm+1H7TmSO]0 — H’H—m—i—l(Z; ﬂ'mSO)

>~ Hom(H;ymi1(Z; Z), 7 S®) @ Exty(Hiwm(Z; Z), 7,S°)
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by the Universal Coefficients Theorem. For m > 1,

Hiymi1(Z;2) = Hipn(Z;Z) = 0,

so that the obstructions vanish and we get a map £ 7'Z — SY, which is evidently an
isomorphism on HZ,(—). Similarly, we get a map ¥¢Z’ — S°, which after smashing with
Z gives a map S° — ¥ 7'Z which is also an isomorphism on HZ,(—), inverse to the map

induced by ¥7*Z — S°. In total, this gives a composite
R A

which is an isomorphism on HZ,S%. As S is connective, by the Hurewicz theorem, this

composite is a homotopy equivalence 7,5° — 7,S°, so that we get a splitting
Yz ~8%Vv A
for some A.

Identically, we can write
27z~ S0V A
for some A’. In all, this gives
SO~ (SOVAYA(SPVA)Y~SOVAVA VANA,

so that A ~ A’ ~ % and

8.2 INVERTIBILITY IN Lg,)Sp

Definition 8.2.1. In [HMS94]|, Hopkins, Mahowald, and Sadofsky show that for C =
L g (n)Sp (with monoidal product X ®Y = L (,)(XAY') and unit LK(n)SO), the collection



48

of isomorphism classes of invertible elements is indeed a set, so we may therefore define
the K(n)-local Picard group, Picy, := Pic(Lg,)Sp). Furthermore, for X € Pic,, finding
its inverse is straightforward: It is given by the function spectrum F'(X, LK(n)SO), ie.,

the K(n)-local Spanier-Whitehead dual of X.

8.3 THE ALGEBRAIC PICARD GROUP

Definition 8.3.1. By Morava module, we’ll mean a complete (E),).-module M with a

continuous action of G,, which is compatible with the action of (E, ). in the sense that

for g € G, e € (Ey)«, and m € M. This is compatible with Definition 5.4.1 in that for

a spectrum X, (E,)YX is a Morava module.

Definition 8.3.2. By algebraic Picard group, we’ll mean the Picard group of the category

of Morava modules, and we’ll denote it Pic¥8. A Morava module M is in Pic¥® if and

alg

only if it is free of rank 1 over (E,,).. There is a natural map Pic,, — Pic}

given by

X — (E,)YX. An element in £, := ker(Pic,, — Pic?#) is called ezotic.

Theorem 8.3.3 (Pstragowski). [Pst18] For 2p — 2 > n? +n, the map

alg

Pic,, — Pic?

18 an isomorphism.

Remark 8.3.4. Injectivity of the map Pic,, — Pic® when 2p —2 >n? and (p—1) fn
follows from [HMS94][7.5]. For the same range, 2p — 2 > n? + n, as Theorem 8.3.3,
Hovey and Sadofsky [HS99a| show that the Picard group of the E(n)-local category is

isomorphic to Z, with generator L, S!.
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alg,0 to

As E, is even-periodic, Pic?® is endowed with a Z/27 grading, and we define Pic?

be the index 2 subgroup of Pic® concentrated in even degrees. Hy [HMS94, 8.4], this

subgroup can be described via continuous group cohomology as

Piczlg’ 0 = Hclont(Gn7 (En)g)
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Chapter 9

Existing results

9.1 PRELIMINARIES ON THOM SPECTRA AND ORIENTATIONS

Critical to an understanding of known constructions of invertible K (n)-local spectra is

the theory of (reduced) Thom spectra. We review the pertinent material now.

Definition 9.1.1. Let f : X — BU be a complex vector bundle over a space X. For X
compact, the image is contained in some finite BU(n). In this case, we define the Thom

spectrum M (f) as the desuspension
- dim fZOOTh(f)

of the reduced suspension spectrum of the Thom space of f by the dimension of the
bundle. For non-compact X, define M(f) as
lim  M(flc),

CCX
compact

taking the limit of the Thom spectra over the compact subspaces of X.
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Definition 9.1.2. For a vector bundle of dimension n, the Thom space has a spherical
cell in dimension n. Let Th(f) be the cofiber of the inclusion S™ < Th(f). This will
be called the reduced Thom space. Similarly, by desuspending by the dimension of the
bundle in the construction of the Thom spectrum, we guarantee a unique spherical 0-cell

S%in M(f). The reduced Thom spectrum X/ will be the cofiber

SO M(f) = X/,

We wish to extend this construction to give Thom spectra M f associated to a spherical
fibration f : X — BG = BGL1S°. Classical (HZ—)orientability of such a fibration gives
us Thom isomorphisms

HZ.Mf = HZ, YT X,
and

HZ*S®X = HZ*M f

If we instead seek such an equivalence on R-(co)homology for some ring spectrum R, we
can modify the requirement of orientability to the notion of an R-orientation, which we

discuss in what follows.

The theory of R-orientations of Thom spectra for an Fo, ring spectrum R was developed
in [May77]. We review that material, as well as an extension to A, spectra from the

point of view of [ABGT08].

Definition 9.1.3. Let A be an associative ring spectrum. We then define GL1 A, the

space of units of A to be the pullback in the diagram of unpointed spaces

GL1A —— QA

! l

(7TOA) X 7T0A.

Here (for A a sequential spectrum), the map 2% — myA is determined by taking the
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natural maps

O"A, — 1, A, — hgﬂnAn =TmyA

and applying the universal property of QA = hgl Q"A,. If Ais an A, ring spectrum,
then we have a delooping

If A further happens to be an Eo, ring spectrum, then we get an infinite delooping
GLlA ~ QoogllA

Let R be an E, ring spectrum, and let b be a spectrum with amap f : b — bgli R = gl R.
Now, let p be the homotopy pullback of the diagram

b— bgli R +— egli R ~ x.

We can then form the diagram

gllR — gllR

| |

p — eghi R

| |

b — . bgliR.

Given an F,, map R — A gives through composition and functoriality

ghR —— ghA

| |

p — egliA ~ %

| |

b—— bgli A

Theorem 9.1.4. [ABG08, 3.2| The functors XQ and gly participate in an adjunction

X0 :ho((—1) — connected spectra) = ho(Ey ring spectra) : gly.
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Definition 9.1.5. The Thom spectrum M f associated to the map f : b — bgli R is the

homotopy pushout in the following diagram of F., spectra:

S0%gh R — R

| |

XOQ®p —— Mf.
Here, the map
Y2EO%gLR — R

is the counit of the adjunction in Theorem 9.1.4

The spectrum underlying M f is the derived smash product
L
Mf — Eiop /\E_o,:’GL1R R,
where P = Q.

Remark 9.1.6. For R an Ay ring spectrum (but not necessarily Fo,) we can form a
Thom spectrum associated to a map of spaces f : B — BGLR. In this case, we can

still form a pullback diagram
P —— EGILWR

| |

B — BGIL4R,

and we define M f = ¥°P /\éfGLlR R, just as in the E, case.

Using this construction, we can form a Thom spectrum for any map B — BGL1 R (where
R is As). Specializing to R = SY, we arrive at the standard case of the Thom spectrum
associated to a spherical fibration. We will primarily be concerned with (a p-completion

of) this case.

In the classical case of the Thom space of a vector bundle f : U — V of rank n, there is

a Thom isomorphism

H*(V;Z/27) — H**"(Th(f); Z/27),
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where Th(f) is the Thom space of f, where the isomorphism is given by cupping with a

Thom class ¢ € H"(Th(f); Z/27Z).

The space G, of homotopy equivalences of S"~! is an associative H-space under com-
position, and its delooping BG,, is the classifying space for spherical fibrations with
fiber S"~! (see [Sta63]). Furthermore, G,, admits an inclusion O,, < G,,. This allows
us to consider such the vector bundle f : U — V as a spherical fibration V" — BG,
with fiber S”~!, and an orientation of such a map upgrades this to an isomorphism on
integral homology, and working stably, this gives the integral Thom isomorphism for
a spherical fibration X — BG = BGL1SY previously discussed (with G = hﬂGn, the
maps Gy, — G411 given by suspension). We now generalize this to define R-orientations
for a cohomology theory R, which will give us an R-(co)homological Thom isomorphisms,

with classical orientability corresponding to HZ-orientability.

Definition 9.1.7. Let R be an A, ring spectrum and f : B — BGL1 R a map of spaces.
For x € B, let M f, be the Thom spectrum associated to

{z} = B L5 BGLR.
A map M f — R (or, equivalently, an element of R(M f)) is an orientation if and only if
Mf,—>Mf—R
is a weak equivalence for every = € B.
By [ABG108, 2.20], if f factors as
f:B % BGL, S "M BaLyR,

then the set of lifts
P —— B(S°,R) —— EGL\R

l //\[ i l

B~ BGLS° —— BGLR



55
is in bijection with the set of orientations u : M f — R, where B(S°, R) is defined so

that the right hand square is a homotopy pullback square. In this situation, we will also

call an orientation u : M f — R an R-orientation for g.

Remark 9.1.8. When R is E-local, the analogous statement holds if we replace BG'L1(S?)
with BGL1(LgS®) and consider lifts B — B(LgSY, R), where B(LgS°, R) is defined in
the obvious way. See [May77, §3] or [Wes17, §4] for this.

Given a map u : M f — R, we can form the composite

& seop A Mf Y $XB AR,

p(u): MgANR~Mf
where Th(A) is the Thom diagonal.

Theorem 9.1.9 (Thom isomorphism, homological version, [ABGT08|). Let f : B —
BGL1R be a map let u: M f — R be an orientation. Then, the map

p(u) : Mf - EFBAR
15 a weak equivalence. In particular, we get an isomorphism
Theorem 9.1.10 (Thom isomorphism, cohomological version). Let u: M f — R be an
orientation, with f = (BGLyin)og, as before. Then, cupping with u gives an isomorphism

R*(S°B) = R*(Myg).

9.2 REsuULTS OF HOPKINS-M AHOWALD-SADOFSKY

When discussing the Picard group of the K (n)-local category, there are three main things

we would like to do:
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1. Find computable invariants to determine whether a given spectrum lies in Pic,,
2. Compute the group structure of Pic,.
3. Construct explicit elements of Pic,,.

It is usually helpful to restrict ourselves to looking at a specific height and a specific
prime at a time. Hopkins-Mahowald-Sadofsky ([HMS94|) provide an answer to (1) at all

heights and all primes:
Theorem 9.2.1 (Hopkins-Mahowald-Sadofsky). The following are equivalent:
1. Lgn)(Z) € Picy.
2. dimg ), K(n)«(Z) =1.
3. (B, (Z) is a free Ex-module of rank 1.
Proof. (1)= (2): The localization map Z — L ;,)Z is a K(n).-equivalence, so it suffices

to suppose Ly ()4 = Z € Picy,. Suppose that Z A 7' = LK(n)SO. Then, by the Kiinneth

isomorphism for Morava K-theory,
K(n)(Z A Z') = K(0).Z © gy, K(n).Z' = K(n).(LiggS") = K (n).5° = F v,

As K(n). = F,[v] is a graded field, each K (n).Z and K(n).Z’ are free modules over

K (n), whose ranks multiply to 1. Hence, dimg ), K(n)«Z = 1.
(2)=(1): Suppose dim ), K(n)«(Z) =1 and let Z" := F(Z, L ,)S°).

Claim: The evaluation map

ZNZ" = LymS°

is a K (n)-equivalence.
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Proof of claim: Let C,, denote the collection of all spectra X for which
qx : ZNF(Z, LgmyX) = LgmX
is a K (n)-equivalence. Here, gx is adjoint to the identity in
[F(Z, Ly X), F(Z, L (n)X)]-
Then, C,, is closed under taking coproducts and cofibers. Furthermore, for X = K(n),
UKy ZNF(Z,K(n)) — K(n)
is a K (n)-equivalence. To see this, note that
mF(Z,K(n)) = K(n)""(Z) = Homg ), (K(n)-«(Z), K(n).).
Also, adjoint to the map

INGK (n)
—

K(n)ANZAF(Z,K(n)) K(n) A K(n) -5 K(n)

is a map
K(n)ANF(Z,K(n)) — F(Z,K(n))

which makes F(Z, K(n)) into a K(n)-module, and thus a wedge of suspensions of K (n).
So, if K(n)+Z = K(n)stm, then m, F(Z, K(n)) = K(n)s—m, so that

F(Z,K(n)) ~X"K(n),

and
K(n).(F(Z,K(n))) = K(n)«mK(n),
and the equivalence follows.
Now, for X finite and type n (i.e., K(n),X # 0 and K (i).X =0 for i < n), it is a fact,

shown by Hopkins and Ravenel in unpublished work (and which follows non-trivially

from [Rav92, §8.3]) that Ly (,)X possesses a finite filtration wherein each cofiber is a
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wedge of K(n)’s, so X € C,. But, for finite spectra, Lk (n) 1s a smashing localization, so
that our map

is equivalent to
ZNZ'NX =ZNF(Z, LgnyS") N X = L S° A X.
As X is type n, K(n).X # 0, so that this is a K (n)-equivalence if an only if
ZNZ' = Lin)S°
is, meaning that S° € C,, and we’re done.

(3)=(2): Suppose (E,)Y(Z) = (E,)Y(5%). Then, (E,)Y(Z) is pro-free, so that by [HS99b,
84|,
K(n)«(X) = (En)J (X)/In,

where I, = (p,v1,...,v,-1). Thus, reducing modulo I,, gives
K(n)«Z = K(n).S* = K(n),_p.

For (2)=(3), see [HMS94, §7|. Alternatively, for a proof of (1)< (3), see [Dev17, 5.3]. O

Remark 9.2.2. In [HMS94], in place of (3), the authors include the condition that
Kn.« be a free (E,)«-module of rank 1. Following [HS99b, 8.4], there is a Milnor exact
sequence
0 — W' (En /D)1 X — (En)y X — Im(E,/1).X — 0,
I I

|
:’Cn,*(X)

where I ranges over ideals of (E,). of the form (p, .. .,v;"_‘ll). In [BF15, 6.2], it is

shown that the l'&nl—term vanishes if (E,)Y X is pro-free or if X is strongly dualizable in
L (n)Sp. In particular, when X € Picy, (Ep)) X = K, « as E.-modules.
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9.3 CALCULATION OF Pic; AT ODD PRIMES FOLLOWING [HMS94]|

For p # 2, the p-adic units, Z;, are topologically cyclic. Let g be any topological

generator, for example (1 + p)¢, where ( is a primitive (p — 1) root of unity. Then,
specializing Definition 5.4.1 to the case n = 1 (and identifying (E,)Y (X) = K, (X) per
Remark 9.2.2), we have for X € Picy,

(£1))(X) = lim[B1/(p")]«(X) = Lm(KUp).(X A M(p)),

where K U;\ is complex K-theory completed at p and M (p?) is the Z/p’Z Moore spectrum.
This identification allows us to act on (E1))(X) by Adams operations 1* for any a € Z.
Alternatively, this action of Z; can be described via the action the Morava stabilizer

group Gy =S; ZZ on Ey ~ KUpA.
Theorem 9.3.1. Pic; sits in an exact sequence
0 — M — Picy — Z/2Z — 0.

By Theorem 9.2.1, for X € Picy, K(1).X is generated by a single element over K(1),.
The map Pic; — Z /27 takes X to the dimension of that generator mod 2, and M is the

kernel of that map. Furthermore, we have an isomorphism ev : M — 7 taking X to the

eigenvalue of 9 on (E1)y(X) = Zy.
We begin by outlining the proof of the equivalence M = Z.

Proposition 9.3.2. The map ev : M — Z; is a homomorphism.

Proof. By Theorem 9.2.1, for X € M, (E1)Y(X) = (F1)Y(S*) for some k = 0 mod 2.
By Bott Periodicity, we can take £k = 0. For X,Y € M, we then have a Kiinneth

isomorphism of (KU}').-modules

() (X AY) = (B! (X) @xup). (B1){(Y),
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which extends to an isomorphism of modules over the Adams operations ¥® by multi-

plicativity of the Adams operations. O
Proposition 9.3.3. ev: M — Z; is injective.

Proof. (Sketch) Suppose X € kerev, i.e., that ev(X) = 1. We then have a diagram whose

top row is a fiber sequence:

x M (kU A X KT A X))

T/

where s is a generator of mo(KU)' A X) = (KU, )oX. The fact that the top row is a fiber
sequence follows from [Bou79| Theorem 4.3 and Proposition 2.11, and the full proof is
detailed in Lemma 2.3 of [HMS94]. As the composition [¢)9 — 1] A 1o s is null-homotopic
(by our assumption on X), we can lift s to a map 5 : S° — X. Further, as X is K (1)-local,
this gives us a map

f : LK(l)SO — X.

Now, s is injective on K (1)-homology, meaning that K(1).(f) is an injective homo-
morphism between objects both isomorphic to K (1).. So, f is a K(1).-equivalence of
K (1)-local spectra and is thus a homotopy equivalence, meaning that X ~ L K(l)SO and

ev is injective. O
Proposition 9.3.4. ev is surjective.
Proof. This is Corollary 2.6 of [HMS94|, whose proof we omit. O]

Corollary 9.3.5. We identify M = Z;, and thus have an extension

0 — Z, — Pici — Z/2Z — 0.
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Proposition 9.3.6. This extension is not split, so
Picy 2 Z, ® Z/qZ,

where ¢ = 2p — 2.

Proof. For p € Z;, let X, be the fiber of KUpA i KUPA. Then, by Lemma 2.5 of
[HMS94],
Xgn ~ LK(l)SQn.

It follows from the proof of [HMS94, 2.6] that X, € M for all u € Z; and that 99 acts
by multiplication by p~! on Ey(X,), so that u — X u—1 determines an isomorphism

Z; — M inverse to ev.

Now, suppose a section Z/27Z — Pic; exists. The image of 1 € Z/27 under this section
must be of the form S~' A X for some X = X, € M and be of order 2. So, we find that
after K (n)-localizing,

S0~ S22 A XMQ.
So,

XM2:S2:X9 — =y

But, g = (14 p)¢ has no square root in Z,, meaning that there is no section Z/2Z — Pic;

and the extension is not split. Furthermore, we for p odd, Z, splits as
Z) =7/)(p—1)Z® Lyp.
So we have

Exty(Z/2Z,7)) = Exty(Z/2Z,Z/(p — 1)Z) ® Exty(Z/2Z, Z,)

= (Z/(p~ 1)Z) [2] & Z,[2) = Z/2Z &0,

so that Zj, & Z/qZ is the only non-split extension.



62

In particular, there is an element of order ¢ = 2p — 2 in Picy. As in the proof of the

previous proposition, any such element must be of the form
Z~S"'AX,,
with (again, omitting the localizations)
S~ ZM ~ STUN X,

so that p? = gP~!. This u? is then a generator of the summand Zy C Z, of units

congruent to 1 modulo p.

The existence of such a root u € Z, is guaranteed by Hensel’s lemma: Let
fa) =2 — "™t € Zy[a].
Then, f(1) =1 — &~ =0 mod pZ,, and f'(1) = ¢ # 0 mod pZ, (because p # 2).

Hensel’s lemma then gives a unique root of f(x) in Z, congruent to 1 mod pZ,.

Explicitly, letting Z = X, for this p, we have an isomorphism
Ly & L/qZ — Picy

given by
(An) = Xagpp A Z™

This construction, however, is not terribly geometric. We use the theory of Thom spectra
of complex vector bundles to construct particular elements of Picy. For now, by Thom

spectrum, we will mean in the sense of Definition 9.1.2.

Let 3, denote the symmetric group on p letters and £ = p — [p] be the virtual complex
vector bundle over BY,, where p is the permutation bundle (with p : BX, — BU(p)
being the delooping of the inclusion ¥, < U(p)) and [p] is the trivial bundle of dimension
p. Then,

(KUD)’((Bp) ) = Zy
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is topologically cyclic with topological generator £. A sketch of much of this computation
occurs below. Alternatively, this follows from the computation of the (unreduced) Morava

E-theory of BY; for arbitrary k found in [Str98, 3.2].

Remark 9.3.7. We will want to define Thom spectra (BX.,)*¢ for A € Z,. For A € Z an
ordinary integer, the classical Definition 9.1.2 will suffice. However, for arbitrary A\, we
need a bit of a modification. Using Definition 9.1.5, and writing S := S° for the sphere

spectrum, we can form a Thom spectrum X/ if we have a map

X := (B%,) () = BGLi(S)).

P

Alternatively, we can regard this map as an element of BGLl(SZ/,\)O(X ). The product

A - € naturally lives as an element

12

A€ (KUMY((B(3)) () = Zp.

A delooping BJ of the J-homomorphism gives us a map KU — BGL1(S), and p-
completing then gives

KUpA — BGLl(S;,\),

so that we get
=0 B} AND
(KU, )" (X) — BGL1(S,)"(X)

By X* we will mean the Thom spectrum associated to the composite BJpA o (AE).
Definition 9.3.8. For A € Z,, let

Ry = ([BE,]™) ),
where the subscript (p) denotes p-localization.

Atiyah [Ati61] showed that the complex K-theory of the classifying space BG of a finite

group G is given by the completion R(G) of the representation ring at the augmentation
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ideal. In [Kuh87a, Kuh87b|, Kuhn uses these results to show that for G a finite group

with abelian Sylow p-subgroup,
dimg 1y, K(1)«(BG) = ##{conjugacy classes of elements of G of order a power of p}.

In the case G = ¥, G contains Z/pZ as a Sylow p-subgroup, and has a single conjugacy
class of order p elements (as well as a single conjugacy class of order p® = 1 corresponding
to the use here of unreduced K(1)-homology). Furthermore, it follows as a result
of Atiyah’s work that for n = 1, K(1).(BG) is concentrated in even degrees. So,
Lg1)X¥BY, € M and by the Thom isomorphism for complex K-theory and Proposition
2.1.1(2), we also have Ly )Ry € M.

As it turns out, these spectra are sufficient to generate all of Picy at odd primes:
Theorem 9.3.9 (Hopkins-Mahowald-Sadofsky).

Pic; = {Ly1)(RAAS") | A € Zy,0 < i < g}

Proof. (Sketch.) The proof of this theorem involves some rather grotesque manipulations
with quotients of CW-skeleta of R) involving the p-adic expansion of A € Z,. We lay out

a few of the ideas here, and direct the curious reader to [HMS94] for the full details.

Define
R = ((BEp) )™/ ((BSp) () T2,

where superscript n denotes taking the n-skeleton.
By [HMS94, 2.9], we can write Ry as

Ry = hg (Rg,l N Z—aonggq-l-?q SN E—alqRZiq-l-i‘lq N E_alqRZ§q+4q N ) ,

D m
where \ € Z,, is written as A = Z /\ipi, with 0 < \; <p-—1and a,, = Z is the mth
i=0 =0

partial sum so that A = lim a,,. Write a_; = 0.
m—r0o0
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For A € Z, this sequence is constant by [HMS94, 2.9|, and we have

Ry = S7M((BX,) )/ (BE,) (5,

and after K (1)-localization,

LK(I)RA ~ LK(l)S_q)\
This last relation can be checked by noting that
LK(I)RA S M,

and

ev(Ry) = ev(S™9).

(Recall that by Proposition 9.3.3, ev is injective.) Taking inverse limits (modulo p’ for

all all ), it follows that for arbitrary A € Z,, we have
LRy~ Xpaa-p)-

For g a topological generator of Z;, ¢' 7P is a topological generator of the summand
Zp C Z,, and as a result, the collection of all P for X\ e Z,, is precisely this

Zyp-summand, and the result follows. O

Remark 9.3.10. p = 2 case. When p = 2, ZJ is not topologically cyclic, and
Ly =79 ®7Z)2Z,

which differs from the odd prime case. Furthermore, localizations L K(n)S2m of even-
dimensional spheres have square roots Ly (,)(Z A Z) >~ L K(n)52m which are not topolog-
ically close to localizations of spheres. As a result, the analog of Theorem 9.3.9 does not

hold when p = 2. We instead have

Pic; 2725 ®ZJAL = Lo ® Z)27 & L /AL
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In a similar fashion to the p > 2 case, [HMS94]| constructs a (Za & Z/2Z)-family of spectra

in Picy via quotients of skeleta of RP*® = BY.,, though spheres and elements constructed
in this way do not account for the whole of Pic;, and examples of more “interesting”

elements of Pic; are given in [HMS94, §5].

9.4 SUMMARY OF RESULTS AT LOW HEIGHTS
en=1p=2

By [HMS94],
Pic; & 7, & 7,/27 & 7,/A7.

Following [GHMR14, 2.10],
Pict'® = Z, ® Z/22 ® 7./22Z,

and k1 = Z/27.

en=1p>3:

By Theorem 8.3.3 and Proposition 9.3.6, we have
Pic; & Pic?® =~ 7, & 7,/ (2p — 2)Z,

and k1 = 0.

en=2p=2

By |[BBG'22, Theorem 12.29],

ko = (Z/8Z)* @ (Z/27)* .
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en=2p=3:

9.5

|[GHMR14| compute
Picy & Zs @ Zs & Z/16Z & Z/3Z & Z/3Z,

Pic3® = 7, & Z, ® Z/16Z,

and ko = Z/3Z & Z/3Z.

n=2mp2>b>s:

In this range,

Picy = Pic}® ~ 7, & Z, ® 7./ (2p° — 2)Z.

The computation of Pic, is due to Hopkins (see [Lad13]). Alternatively, Pic2!8
is computed in [Karl0] and [GHMRI14|, and agrees with the result at p = 3.

Equivalence of Pic,, and Pic® follows from [Pst18], as we have

2p—2>8>n%+n=06.

SOME ADDITIONAL IMPORTANT EXAMPLES

Following [GHMRO5] and [Wes17]: Let p be an odd prime. Recall that the Morava
stablilizer group G,, = Gal(Fp» /F,) x Aut(I',) acts on the spectrum E,, compatibly
with its action on the homotopy groups (E,,)«, where again, I';, denotes the Honda

formal group law. Per Devinatz and Hopkins [DHO04|, we can define continuous



68
homotopy fixed point spectra EﬁH with respect to closed subgroups H < G,,. For

H =G, we have E"én ~ LK(H)SO.

Recall from Chapter 5 that the non-Galois part Aut(T',) of G,,, sometimes referred
to as the small Morava stabilizer group is the group of units S,, = O, of the left
W(F,n)-module

O = W(F,n)(S)/(S" = p, Sw = w?S).
This O,, is a rank n module over W(F,»). Thus, right multiplication gives a

homomorphism

Sp = GLp(W(Fpn)),
and taking the determinant of the action defined by left multiplication gives a map
det : Aut(Ty,) — W(Fpn)™.

This image of det is known to lie in Z (see [Rav76, 2.9]). We can extend this to a
map

det+ : G,, — Z;
by sending the Frobenius map in Gal(F,»/F,) to (=1)""1. Let SGi = kerdet..
The group Z,; = G, /SG* acts on the homotopy fixed point spectrum EQSG’% .
Write the action as 1% € Aut(E,};SG’le ) for k € Z in analogy with the usual Adams

operations.

As p is odd, Z,; is topologically cyclic. Letting g be the topological generator, set
for v € Z)
+ +
F, := hofib(y)? — v : EM5Cn — EISGm),

F, is an invertible K (n)-local spectrum and thus defines an element of Pic,,. Further,

the association v — F), gives a homomorphism Z; — Picy,.

Example 9.5.1. When v =1, we get the spectrum

+ X
Fr = (A5 195 o B0 o Ly,
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the K (n)-local sphere spectrum.

Example 9.5.2. When v = g, the resulting spectrum F} is known as the determi-

nantal sphere spectrum, S(det).

For primes p > 2, Westerland [Wes17| constructs an invertible spectrum Z € Pic,

as a summand of the K (n)-localization of the suspension spectrum

where K (Z/p,n) denotes the Eilenberg-Mac Lane space having a single non-trivial

homotopy group Z/p in degree n. We give an overview of this construction.

Let ¢ be a primitive (p — 1) root of unity. The group pp,—1 = (¢) of (p — 1) roots
of unity is isomorphic to F and thus acts on Z/p by multiplication. Delooping
this action n times gives an action of y, 1 on K(Z/p,n). Denote the action of ¢*

given in this way by wck.

We can define another action of ju,—1 on Ly ) K(Z/pZ,n). K(n)-local spectra are
p-complete, and any p-complete spectrum X admits an action of Z; such that

a € Z; acts on m, X by multiplication. Under the identification
pip—1 € Zyy = pip—1 ® (1 + pZp),

this gives another action of i, 1 on L) K(Z/p,n). Denote the action of ¢k
defined in this way by ¢*.

One then can define an endomorphism e on LK(n)EfK(Z/p, n) by
pm LSy
T .
k=0
This e acts as a homotopy idempotent, that is, m.(e?) = m.(e), and as a result, we

get a splitting
L)X K(Z/pL,n)~Z N Z'.
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To see this, write X 1= L)X K(Z/pZ,n) and let

e !X =hocolim(X -5 X 5 X 5 X — 1),

Then, the natural map

X —elXv(1-e X

is an equivalence. e acts as the identity on e !X and as 0 on (1 —e)"1X. We take

7 = 1X.

By [Wesl7, 3.7], dimg(y,), K(n)+Z = 1, so that by Theorem 9.2.1, Z € Pic,. This
Z satisfies
LK(n)Ei—OK(ZPa n+ 1)7

and we get a splitting

p—2
LmSTK(Z/pZ,n) ~ \/ Lgw)(Z").
k=0

Note: By Proposition 6.1.4(4), there is no need to re-localize the smash powers

Z™* in this splitting.

e A number of other interesting examples are listed in [BB19a, 6.16].

9.6 CONSTRUCTION OF INVERTIBLE SPECTRA VIA DETERMINANTAL

K-THEORY

In [Wes17], using maps from the determinantal sphere S(det), Westerland defines the
notion of an n-oriented K (n)-local ring spectrum in analogy with the definition of a
complex orientation given in Chapter 3, and constructs the universal multiplicative
n-oriented spectrum, R,,. He then constructs invertible spectra as the homotopy fibers of

endomorphisms of R,,, much in the same way as the first example of the previous section.
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We present now the construction of these R, and describe their use in constructing

invertible spectra.

We continue to let p > 2. Earlier, we defined for f : S — E the localization f~'E.
We now extend this notion to define localization with respect to maps A — X for

A € Pic,.

Definition 9.6.1. Let A € Pic, and X € Lk,)Sp be a ring spectrum. Then, for a map
f:+A— X, define
X
as the K(n)-localization of the homotopy colimit of
1 191
XAl x Y Al At ex) B L
Here, — ® — = Lg,)(— A —), and my is the map

I e X e X 5 A e X,

X~A'®AX

where the last map is given by the K(n)-localization of the multiplication X A X — X.
Let Z be the spectrum defined earlier as e ™! L (,) X K (Z/pZ,n) and let

i:Z = LgmyXTK(Z/pZ,n)
be the inclusion of this summand. From the exact sequence

Z, 27, %7 7/p2,

we get a Bockstein map Z/pZ — BZ,, giving a map

K(Z/pZ,n) = K(Zp,n+1).
Taking suspension spectra and K (n)-localizing results in a map

B LgmyXT K(Z/pZ,n) — Lgmy X K(Zp,n + 1).
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Define the determinantal K-theory spectrum R, to be the localization
O‘_lLK(n)EioK(Zpa n -+ 1)7
where a = f0i:Z — Ly X K(Zp,n +1).

Remark 9.6.2. The “K-theory” part of the name determinantal K-theory comes from

the analogy with equivalence
BISYK(Z,2) — KU.
due to Snaith, where 3 : S? — K(Z,2) is the Bott class.
Westerland shows that, for v € (moRy,)*, the homotopy fiber
F, = hofib(1? — )

belongs to Pic,. Here, the maps 19 and + are defined similarly to how ¢* and wck were

defined in the case of Ly (,)XF K(Z/pZ,n) earlier.

In particular, ¥9 is defined as localization of the natural action of the topological generator
g = (1+p)¢ €2y (for ¢ aprimitive (p — 1)%* root of unity) on Lgm) X K(Zp,n+ 1)

via its action on Z, by multiplication, and v : R,, — R,, is the composite
R, ~S°AR, — Ry AR, = Ry,

with the last map being the multiplication map for the ring spectrum R,,. When v =1
(ie., v =7n:5"— R,), we get the K(n)-local sphere spectrum

Fy = Ly n)S°.
The determinantal sphere spectrum S(det) can be produced in this manner:

S(det) = Fy.
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Theorem 9.6.3. [Wesl7, 3.17| The association v+ F, determines a group homomor-
phism

(WoRn)X — PiCn.

The similarity between these results and the results given in the first example in the
previous section hint at a relationship between R,, and the homotopy fixed point spectrum
EQSG’% , and it can be shown (see [Wes17, 3.25]) that there is a weak equivalence of Foo-
spectra

hSGE
Ry, — E;°7"

which is Z;-equivariant.

Remark 9.6.4. As SG} = ker(det+ : G, — ZX), this gives a reason for the “de-
terminantal” part of “determinantal K-theory.” Additionally, we can present R, as a
localization

p;lLK(n)EiOK(Zp, n+ 1)7

where py, : S(det) = Ly XK (Zp,n + 1) is a map from the determinantal sphere

spectrum.



74

Chapter 10

A descent spectral sequence

computing Pic,, and applications

In this chapter, we construct a family of descent spectral sequences which for ¢ > 1 take

the form

H*(Gy /U, m Pic(ElY)) = m_sPic(L(n)SP),

computing the homotopy groups of the Picard space Pic,, := Pic(L K(n)Sp). In particular,

taking t — s = 0, these spectral sequences compute the K (n)-local Picard group
Pic,, = myPic,,.

Further, making use of Davis’ discrete G,,-spectra F,, := hg(%oéim EM (see [Dav06]), we
OT)enn

investigate the colimit of these spectral sequences, which we then use to compute the

rational homotopy groups of Pic,,.

Throughout, we’ll fix a prime p and will let U < G,, range over open (and therefore

finite-index) normal subgroups of the Morava stabilizer group G,,.
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10.1 ADDITIONAL BACKGROUND

The spectral sequences we construct which compute m,Pic,, take the form of Bousfield-
Kan Spectral Sequences, and in order to make computations using them, we will make
heavy use of the Lyndon-Hochschild-Serre Spectral Sequence. We now provide a review

of both.

We begin by introducing the idea of the totalization of a cosimplicial object, which is
central to the construction of the Bousfield-Kan Spectral Sequence. For the original
treatment of both the totalization functor and the Boufield-Kan Spectral Sequence, see

[BK72, Part II]. See also [Bou03] and [McCO01, 8%%].

10.1.1 Totalization of a cosimplicial object

Let A denote the finite ordinal category whose objects are finite totally ordered sets

n ={0,1,...,n} and morphisms are order-preserving maps.
Definition 10.1.1. Given a category C, a cosimpicial object in C is a functor A — C.

In order to define the totalization of cosimplicial object, we will need to utilize the

cosimplicial space A® € Fun(A, Top) of standard n-simplices A™ € Top for n > 1.

Totalization of a cosimplicial object should be though of as dual to the construction
of the geometric realization of a simplicial object, and will be a key ingredient in the

Bousfield-Kan Spectral Sequence used in Section 10.2.

Definition 10.1.2. Let C be pointed bicomplete (that is, all small limits and all small
colimits exits) simplicial model category. Give the functor category Fun(A®,C) the Reedy
model structure and let X*® be fibrant. Let

Tots X* = Hom(sksA®, X*®) € C,
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where skyA® is the cosimplicial space which termwise is the s-skeleton of A®. Then, there

is a tower of fibrations
.o — Tot, (X*) — Tot,_1(X®) — --- = Tote(X*®) = XY,
with the totalization of X*® being the limit

Tot(X*) = lim Tot,, (X*).

10.1.2 Some useful spectral sequences

Such a tower of fibrations leads to an exact couple based on the long exact sequences
of homotopy groups, and we therefore get a spectral sequence whose Ej-term is the

homotopy groups of the fibers Fibs X*® = Fiber(Tots(X*®) — Tots_1(X*®)):
Theorem 10.1.3 (Bousfield-Kan Spectral Sequence). [BK72]

Given a fibrant, pointed, cosimplicial space X°®, there is a spectral sequence associated to

the tower of fibrations {Tot, (X®) — Tot,—1(X*)} with

EYN(X®) = m_(Fib, X*), t>s>0 and differential

dr ,Es,t N Es—l—r,t—l—r—l
- r )
converging under favorable conditions to m.(Tot(X?®)).

Under ideal conditions, the Bousfield-Kan Spectral Sequence admits a multiplicative

structure:

Theorem 10.1.4. [BK73] When X*® and Y* are cosimplicial simplicial pointed sets,

there is a multiplicative pairing

B X))@ BV (V) - ESFO(XC oY),
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Theorem 10.1.5 (Lyndon-Hochschild-Serre Spectral Sequence). Let G be a group with

N < G and let M be a G-module. Then, there is a spectral sequence
H*(G/N,H'(N,M)) = H*"'(G,M).
If G is a profinite group and N < G 1is closed, then we further have a spectral sequence

Hgoi(G/N, Hegne (N, M) = Hig (G, M),

ont cont

where H*

ot denotes continuous cohomology.

10.1.3 Galois extensions of commutative ring spectra

Definition 10.1.6. [Rog08, 4.1.3] Let K be a spectrum, A — B be a map of K-local
commutative ring spectra and G be a finite discrete group acting continuously on B on

the left through A-algebra maps, such that the canonical maps
A — B"¢ = Map(EG,, B)“
and
B®a B — Map(G4, B)

(formed in the K-local category) are weak equivalences. We will then say that A — B
is a K-local G-Galois extension. Further, we will call the extension faithful if for N an

A-module, NAgy B~% — N ~x%

10.2 CONSTRUCTION OF THE SPECTRAL SEQUENCE

10.2.1 Descendability

For a traditional finite Galois extension of fields L/K with Galois group G = Gal(L/K),
we have Galois descent. That is, the functor

-®rL
Vectg —— Vectp g
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from vector spaces over K to vector spaces over L with semilinear G-action is an
equivalence of categories, with weak inverse functor

Vectr ¢ i Vectg,
where (—)% denote the G-invariants. In order to produce the promised family of spectral
sequences computing m,Pic,, we will need to extend this notion of Galois descent to the

broader context of Galois extensions of commutative ring spectra. A good reference is

[Mat16].

Definition 10.2.1. [Matl6, 2.1] A stable homotopy theory is a presentable, symmetric
monoidal stable oo-category (C,®,1) (in the sense of [Lurl7, Ch. 1]), where ® commutes

with all colimits.

Remark 10.2.2. Under this definition, the category Sp of spectra as well as the Bousfield
localizations Lg Sp are stable homotopy theories (see [Mat16, Ex. 2.28]).

Remark 10.2.3. Following [Lurl7, Ch. 3|, given a symmetric monoidal oco-category
C, there is a natural oo-category CAlg(C) of commutative algebra objects. In the case
C = Sp, this is the category of E, ring spectra (see [Matl6, Def. 2.18]). Further,
following [Lurl7, Ch. 4], given an object A € CAlg(C), there is a natural co-category
Mod¢(A) of A-modules in C. Mod¢(A) is itself a stable homotopy theory (see [Mat16,
Def. 2.19]).

Remark 10.2.4. It is a consequence of the Goerss-Hopkins-Miller Theorem [GHO5| that
E, € CAlg(Sp) (and therefore E, € CAlg(Lk,)Sp) as well). Further, by construction
(see [DHO4, Def. 1.5]), for U C G,, closed, E'"Y ¢ CAlg(Sp) (and therefore EMV ¢

CAlg(Lg(n)SP))-

Definition 10.2.5. [Mat16, 3.19] Given A € CAlg(C), we say that A admits descent or
is descendable if the thick ®-ideal generated by A is all of C.
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Proposition 10.2.6. [Mat16, 3.22] Let C be a stable homotopy theory. Let A € CAlg(C)

admit descent. Then the adjunction
C = Mod¢(A)
given by tensoring with A and forgetting, is comonadic. In particular, the natural functor
¢ — Tot (Modc(A) = Mode(4® A) 3 - )

18 an equivalence.

DESCENT FOR E"

Theorem 10.2.7. Let U C Gy, be an open normal subgroup. Then EQU admits descent

m LK(n)Sp.

Proof. By [Mat16, 4.18], E,, admits descent over L,,S°. By [Mat16, 3.21], we can further
localize to find that Ly (,)En ~ E, is descendable over LK(H)SO. Finally, by [Mat16,

3.24], since the composite

LinS® = E}V — E,

admits descent, so does

LK(n)SO — EZ'U

Corollary 10.2.8. The adjunction
_ RU
LK(n)Sp — MOdLK(n)Sp(En )

is comonadic and therefore there is an equivalence of categories

%
L (n)SP = Tot(Modp, sp(EnY) 3 Modr, . sp(ERY @ ERY) = ---).
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Proof. [Mat16, 3.22] 0

Proposition 10.2.9. [MS16, 2.2.3] Pic commutes with limits and filtered colimits. In

particular, Pic commutes with the totalization functor Tot.

Corollary 10.2.10. There is an equivalence

Picy, = Pic(Lg(n)Sp) — Tot (Pic (ModLK(n)sp (EQU» = ) :
In the case of a “global” (that is, S°-local) finite Galois extension, we have the following
result:

Proposition 10.2.11. [MS16, 3.3.1] Let G be a finite group and A — B be a faithful G-
Galois extension of Ex-rings. Then there is a natural equivalence of symmetric monoidal
0o-categories

Mod A 5 (Mod B)"¢.

We can extend this to our context:

Proposition 10.2.12. Let U C G, be an open normal subgroup. Write A = LK(n)SO
and B = EM'" and G = G,,/U. There is an equivalence

N hG
Modr,.,5p A~ (Mod 50 B)

where ModLK(n)spA denotes the category of K(n)-local A-modules and similarly for

MOdLK(n> B.
Applying Pic, we find

Pic(Mody,,, sp A) = Pic(Mody,, , sp B)"".



81
Proof. By Theorem 10.2.7, B admits descent in Mody,,, sp A. So, by [Mat16, 3.22]

there’s an equivalence
~ o1
Mody,., sp A = Tot (Mody, sp (257 B)) .

where — @4 — = L) (— Aa —). By [Rog08, 5.44, 5.49(b)], LK(n)SO — EM is a finite

faithful K(n)-local G,,/U-Galois extension, so we have an equivalence
B ®a B ~Map(Gy, B),

where Map(—, —) denotes the mapping spectrum constructed in the K(n)-local category,

so that we level-wise have @%' B ~ Map(GZ*®, B). This means that

MOdLK<n>SpA ~ Tot (MOdLK(n)Sp (Map(Gji', B)))
~ Tot (Map(G*, Mody,., spB) )

hG
= (MOdLK<n)SpB> .

Theorem 10.2.13. For a fized open normal subgroup U C G,, we have a spectral

sequence

B3l = H* (Go/Us mPic(Mody,, sp (ELY)) ) = mi-sPie(Lic(r)Sp).

Proof. By Corollary 10.2.10, we have an equivalence

Picn, = Pic(L(n)Sp) = Tot <Pic (MOdLK(n)Sp (EQU» = ) :
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By Proposition 10.2.12,

Finally, the claimed spectral sequence is the associated Homotopy Fixed Point Spectral

Sequence (Bousfield-Kan Spectral Sequence) associated to the equivalence

Pic,, ~ (Pic (ModLK(n)spEgU))hGn/U .

10.2.2 Direct limits of spectral sequences

Theorem 10.2.13 establishes a family of spectral sequences indexed by open normal
subgroups U < G, all with the same target. It is natural to ask whether we can then
take a direct limit of these spectral sequences to get a new one also converging to

7 Pic(L g (n)SP)-

Given U C V C Gy, we have a resulting quotient map ¢y vy : G,/U — G, /V. Further,

on homotopy fixed points, inclusion U < V induces a map
B B,
and we therefore have an induction map

Ind} : Mod gnv (L g (ySP) — Mod gno (L ()SP)
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given by
X = X @pw BNV,

so that we have a composite
¥ POV s (md¥).
H*(G,/V,My) = H*(G,/U My) " H*G,/U, My).
In our case, we are considering
Ind : My = mPic(Mody, ., sp(Er")) = My = mPic(Mody, ., sp(Er)).

Note that in general, the direct limit of spectral sequences is indeed a spectral sequence,
as filtered direct limits preserve exactness, so we can take the direct limit of our spectral

sequences along these (Indg)* o @*Uy to get a new spectral sequence with Es-term
Eyt = lim By, = ling (G /U, mPic(Modp,, sp(ER")))-
U U

Denote the abutment of this spectral sequence as P;_;. This abutment need not be the
direct limit of the abutments of the spectral sequences with Es-terms EgtU Two possible

issues may arise, quoted here from [Les95, §4]:

1. Non-detection: It could be that an element of the direct limit of the abutments moves
into higher and higher filtration as it moves through the direct limit of spectral

sequences, in which case it would not be detected in the direct limit spectral sequence.

2. Fake cycles: If an element supports longer and longer differentials as it goes through
the direct limit, it will be an infinite cycle in the direct limit spectral sequence even

though it does not represent a class in the abutment at any finite stage.

Showing that these hold is in general difficult, and is for the moment an open question

in our case. (See [Mit97, Section 3.1.3] for a more thorough discussion.)

However, rationally, we can do better: By [Ser79, Prop. 8, Cor. 3],

Ey'©Q=0
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for s > 1. So, by [Mit97, Proposition 3.3],

Ey'®Q = m_sPic(LgmSp) ® Q.
We would now like to describe Eg’t and P,_s more conveniently.

Proposition 10.2.14. [Ser79, Proposition 8| Let (G;) be a projective system of profinite

groups, and let (A;) be an inductive system of discrete G;-modules. Then one has
He (Jim G, lim A;) = limy HE,,, (G, A7)
for each q > 0.

Theorem 10.2.15. There is a spectral sequence

1
Hlowe | Gns (Wt,PiC (hg MOdLK(n)Sp(ELLU)>> = B,
U
where & means to take the discrete topology. Furthermore,

hGn
P_, = m_,Pic (hg MOdLK(n)Sp(Ev}LLU)>
U

and

P s@Q= Wt—SPiC(LK(n) Sp) ® Q.
Proof. By Proposition 10.2.14, we can identify

0
hﬂEg’fj =H: | Gpn; (W,ﬂ?ic <hg MOdLK(n)Sp(EZU)>>
U

We earlier defined P;_g to be the abutment of the colimit spectral sequence with Es-term
being hﬂE;Z To see that the abutment P;_, is identified as claimed, note that for a

fixed V, there is a map of Homotopy Fixed Point Spectral Sequences which on Es-terms
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is
ES’I‘; =HZons (Gn/V; WtPiC(ModLK(n)Sp (EZU))>

1)
— Hgont Gn’ (thic <hg MOdLK(n)Sp(EZU)>> )
U

the latter being the Homotopy Fixed Point Spectral Sequence for the discrete G,-space

hgﬂ Modr,(,,sp (EZU)7
U
converging to

hGyp,
mi_sPic (h_ng ModLK(n)sp(E,}L‘U)> .
U

This map is induced by the natural maps
Gn — G,/V

and

MOdLK(n)Sp (EQV) - hﬂ MOdLK(n)Sp (EZU)
U

As a result, in the limit, we have a map of spectral sequences which is an isomorphism

on Fs-terms, so that we have an isomorphism of abutments

hGn
P, = w4 Pic (hg MOdLK(n)Sp(EZU)> :
U

Finally, the identification of P;_;®Q follows from the above discussion on the rationalized
spectral sequence

Ey'®Q = m_,Pic(LgmSp) ® Q.

When t — s = 0, the right hand side is moPic(L g (,)Sp) ® Q = Pic, ® Q. For the rest of

the chapter, our goal will be to use this spectral sequence to examine the torsion-free
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rank of Pic,. As Pic takes values in spaces, we’ll be interested in the case s =t > 0.

Further, for ¢ > 1, we can identify
. . hU _ : hUY _
7 Pic (%MOdLK(n)sp(En )) = m—1GLy (lim B ) = 71 GLy (Fp),
U U

as by [ABG'13| §2.4 Proposition 2.9, GL;(C,®,1) = GL1(1) for a symmetric monoidal

category (C,®,1). Finally, we have

(ﬂ'QFn)X ; * = 0
W*GLl(Fn) =
T Fn; * > 1,

so that our inquiry now turns to computing the torsion-free part of m, F,.

10.3 COMPUTATION OF 7.F, @ Q

10.3.1 Higher homotopy is torsion

Proposition 10.3.1. 7. F,, is torsion for x > 0.

Proof. Recall that G,, = O* x Gal(Fyn /Fy,) where O = W(F,;n)(S)/(S™ = p, Sw = w?S),
where W(F,») is the ring of Witt vectors over F,» and o is the Frobenius. Fix an open
normal subgroup U C G,,. Then, since the collection of subgroups {(1 + p'Z,)* }i>2 form
a fundamental system of neighborhoods of 1 € (1 + p?Z,)* C Z(Gy,), there exists some i
such that Z; = (1 +p'Z,)* C Z(G,) NU. (Here, we use the notation (—)* to indicate
that the group structure is multiplication.) Since this Z; is then normal in U, we have a

Lyndon-Hochschild-Serre Spectral Sequence:

Hiont(U)Zis Heony(Zi; 1 B)) = Hogy(Us 1, E)

ont cont

for a fixed r.
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This, in turn, is the Es-page of the Homotopy Fixed Point Spectral Sequence

HIY U mE) = mp_s (EM.

cont

Next, we find that the cohomology group Hl, .(Z;; 7 E) is torsion if r # 0:

The cohomological dimension of Z; is 1, so that the only potentially non-zero groups are

0
H, cont

(Zi;m E) and Hclont(Zi;mE)

By |Heal5| [1.3.1], for g € Z;, gsu; = u; and gsut = g-uf and the action is W(F,n)-linear,

so that
Hfont(Zi; T E) = (W*E)Zi = W(Fpn)[[u1, ..., un—1]] = Eo.
Next,
T« E
Hclont(Zi;ﬂ—*E) = (W*E>Zi = N = x’

where v = 1 + p’ is a topological generator of Z;. We have 7|, = id and in non-zero

m

even degrees, we have the relation ™ - u™ = v™, and since »" is not a zero divisor, this

gives v = 1. In summary,

Heoni(Zi; 7 E) = (7. E) 7, = Eom /(1 +p)™ —1) ifx=2m >0
0 else.

So, for * > 0, we conclude that H! (Z;;m E) is indeed torsion. Finally, it is of note
that &,,; := val,((1 4+ p*)™ — 1) > i, where val,, denotes p-adic valuation. (We'll leverage

this fact in §10.5 to compute 1 F}.)

Without loss of generality, assume that cd(U/Z;) < oo (if not, replace U with a finite
index open subgroup of U so that cd(U) = ved(U), which can be chosen to be normal
in G,, by [Wil98, Lemma 0.3.2]). Then for a fixed r # 0, HS, . (U/Z;; H'(Z;; 7,E)) is a

finite sum of torsion modules and is therefore torsion, and as a result, so is HEH (U; 7, ).
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Next, via the Homotopy Fixed Point Spectral Sequence, we see that the associated graded

of mgEM"V is a subquotient of

P H(U;TE).

d=r—s—t

So,ifd=r—s—t>0, then r > 0 and 7gE"V is torsion, since — ® Q and @ commute,
ma(Fpn) = Wd(hoc_olim Ehiy = @wdEhU

is also torsion. O

10.3.2 Computation of myF, ® Q

While the group mg F;, does not appear as a coefficient group for any value of £ in Theorem
10.2.15 (only its group of units does), we include a computation of its rationalization for

completeness, and an application of this computation is presented in Section 11.2.

In order to understand moF;,, = hglﬂ'thU, we would like to first understand the fixed
points (moE,)Y for U C S,. The action of S,, on myE, is provided by Devinatz and

Hopkins in [DH95|. However, it is in a bit of a roundabout way:

They construct first a graded W(F,n)-algebra W(Fyn)[[w1, ..., w,—1]][w,w™!] (with
|lwi| = 0 and |w| = —2) on which S,, acts and then show that there is an injective

Sp-equivariant graded W([F»)-algebra homomorphism
i By — W(Fpn) (w1, .. . wp—1)) w, w™],

where W(F,n)((ws, ..., wp—1)) denotes the divided power envelope of the W([F,»)-algebra
W(Fyn)[[ws,. .., wn—1]]. Finally, they describe the action of S, on

W(Fp”)[[wlv s 7wn*1]”wa w_l]a

noting that it extends to an action on W(Fpn)({w1, ..., w,—1))[w,w™1], the restriction

which to W(Fyn){((w,...,wp—1)) is by P.D. W(F,n)-algebra maps.



Letting
i() : 7T()En — W(Fpn)<<w1, A ,wn_1)>

denote the restriction i|r,g,, we then conclude that for U C S,,,
()" =i ((io(moEn))")
Further, G,, acts trivially on W(F,») C moE,,, so that
W(E,) € (roBn)" = ig* ((io(moEa)")
We’ll show that this containment is in fact equality.

Theorem 10.3.2. [DH95, 3.3| The right action of Sy, on W(Fyn)[[wy, . ..

is W(Fpn)-linear on the coordinates wwy, ..., wwy—1,w and for

g=ag+a1S+---+a, 1S"eUCS,,

we have
n—1 )
g(w) = apw + Z aflijww]
j=1
and
n—1 gtitl
g(ww;) = pa;w + pag, | wwp_1 + -+ + pay _; wwit1 + ao wwl + -
where o denotes the Frobenius.
Proposition 10.3.3. Let
g=ap+ar1S+ - +a,1S"eUCS,
and
X = ot wit - w" L € ig(moEy),
Z“Jr +zn1) 1 ne1 € do(moEn)
where iy, i, € W(Fyn). Then, if g(X) = X, we have
Z £ 11+ +in—1 Liy,in_1 ail . ain_l
ao (i1 4+ ip_1)! 1 n-l

(ilv-n,infl)?é(ov“"o)

7w7l—1“[w7w71]

+ aj_wwy,
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Proof. We first prove this at heights 1, 2, and 3 as it is illuminating to see these smaller

cases worked out in detail and then include the general case at arbitrary height n.

We want to figure out for ¢ € G, which elements of myFE, are fixed by g. It suf-

fices to consider g € U C S,,.
Height 1:

Let g = ag, with ag € W(F,)* = Z). Then, a generic element of 7 F} is of the form z
for z € W(FF,), and since S; acts by W([F,)-algebra homomorphisms, g(z) =z -g(1) ==

so that x is fixed and ¢ fixes all of myF;. So,
(moB1)Y = moE)

forall U C §; :Z;.

Height 2:

We do this via the action of S, on W(Fyn){(w1, ..., wy))[w,w!] through W(F,»)-algebra
maps as described in [DH95|.

We want

T T
g(xo+$1w1+??wf+'--):$0+$1w1+£w%+---

for g = ag + a1 S, where ag is invertible and z; € W(FF,2). Expansion gives

g(zo + zqwr + ) = g(xo) + g(zrwr + -+ ) = 2o + glxr1ws + -+ +),



so that we are left with

z19(w1) + %9(“&)2 + - =zw + %wf 4+
Here,
g(wwi) = pajw + ajww;
g(w) = apw + afwwy,
so that

paiw + adwwy

g(wr) =

a1 ag
_Pay T g™

apw + af wwy

af
1 + anlUl

a al a¥ ad 2 a¥
() (- () ()
agp agp ag ag ag

So, collecting all terms of degree zero in wy, we find

> % (v2) -0
1! agn

=1

Height 3:

Set

with z; ; € W(Fpn).
We have

— 0'2 ag
g(wwi) = pajw + pag wws + ajwwy,
2
g(wws) = pasw + af wwg + ajww;, and

2
g(w) = apw + a§wwy + af wws,



So,
o2 g
pajw + pag wwo + agwwq

2
agw + ajwwi + af wws

g(wr) =

2
 par + pag’ws + afwy
— 2
ag + a§wi + af we

o2
pao +P 2 wy + Owl

2
ag af”
1+ ag W1 + a5 W2
o g
ay ag a
=|p— +p—~=ws+ *Owl
ag agp ap

Similarly,
o2 g
pasw + ag wws + aj wwy

g(wz) =

2
__pag + af wz + afwy

2
apw + agwwy + af wws

2
ap + ajwi + af ws

2
pao + g W2 Tt *’LUI
o2

1+Z—f}w1+h

a' O’
aQ
= — + 71112 + 7w1
ao agp ao
o
x | 1— —2w1 + sz

Then, we find that

. ai agz QS
glwiud) = pSh +p 2wy + Swy
agp ap ap
2
a3 g
x | 1— —2w1 + ng

92
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Equating the degree zero terms (as a power series in w; and ws), we find

( J
:L'ij al a9
—= — — | =0.
2 (i +7)! <pao> (pa(])

(i-5)7#(0,0)

Generally, for arbitrary height n, we have

g(ww;)
g(w)
o.nfl a.i+l o.i o
_ Paiw + pa;Ly WWp—1 + -+ Pay, g WWi41 + g WW; + 00+ G wwy

n—1 gJj
apw + 3575 ap’

g(wi) =

wwj

. o.n_l IR o.i+1 . U,L . .. g
1 pa; + pPa; 1 Wn-1 + + pa,_1 Wi+1 + ag w; + + a;_jw

ap n—1 a5’
1 + Z]:l ag w]
]. O.n—l o.i+l a.i o
= o P4 T PAiyy Wnot o+ Pl Wil G Wi G W
0
) . 2
n—1 _oJ ) n—1 _oJ
3 TR i R [T el
ag ag
Jj=1 Jj=1

is A ‘
a ag

g=ay+a S+ - +a, 15"t es,

So, we find for

and
X = L Y w ---wi"_‘f € ig(moEn),
(i1 4 +ip_q)! "
that setting g(X) = 9,0+ xl’ol’!'“’og(wﬂ + .- = X and equating the degree zero terms
that
agp (il +"'+in_1)! 1 n—1

(7:17"'71'”71)#(07“'70)
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Proposition 10.3.4. Let U C S,, C G,, be an open subgroup. Then

(WOEH)U = W(Fpn).

Proof. We begin by illustrating at height 2 and then prove the general case. Let n = 2.
Fix an open subgroup U C S,,. From the above, we find that for g = ag + a15 € U and
T =x0+ %wl + %’U}% +--- € io(ﬂoEg) that if x € ig (ﬂ'oEg)U, then

i ( pay '
> %) =°
i>1 0
Furthermore, for sufficiently large j, 1 +p/~1S € U so that letting ag = 1 and a1 = p'~1,
we have

Z %pij =0.

i>1

Now, suppose that ig(moE2)Y properly contains W(IF,2). Then, there is some minimal

Iy > 1 such that z, # 0, so that

2

i>1y
For j >> 1,
) 7 7
i) = [ + ] + |55 +
<i/(p—1)

for all @ > 1. In particular, val,(i!) <i— 1.
As a result, we can regard this as an equality in W([F,2).

Since this holds in W([F,2), it also holds in W([F,2)/p" for all » > 1 and for j >> 1, so
that



Epl] = %pIOj + MP(IO'F]-)]' + .4+ Epsj +...= 0 mod pr
Z:ﬂ Io! (Io + 1) 5! ’
1> 1o,
ig<r
Letting
SJ
Ioj —valy(Io!) < Ioj <7 < 5j — s+ 1 < val, (1;)

for all s > Iy (which is possible for large enough j5), this gives

xIO ploj =

7! 0 mod p".

CE[O

To! ploi € W(IF,2), we can rewrite this as

Since for large j,

LIy Ioj Toj—valy (Io!
T.'pO]:n.xIOpO] Vap(o)

=0 mod p"
for some unit n € W(IF,2)*. In particular,

:njop[(’j =0 mod p"

and therefore

z7, =0 mod p" 107,

Finally, letting j grow, and selecting
r=Up+1)j—1Ip—1,

we find that

27, =0 mod p/ oL

for arbitrarily large j, so that 7, = 0 and
(io(m0F2))” = W(F,2),
and as ig is a W(IF)2)-linear, S,-equivariant inclusion,

(moBa)V = W(F,z2).

95
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For the general case, let
g=ap+a1S+-+a,_ 18"t €U

and

X = Tty wi i € ig(mo B
Z Zl+ +Zn 1) 1 n—1 0( 0 n)

with g(X) = X, where again x;, i, , € W(F,n). For j >> 0, we can let a9 = 1 and for
i>1, a; = pP~!. Then, from Proposition 10.3.3, we have

E 11+ +in—1 U150 in—1 tn—1
p - 1 .. 'anfl

o 11 + - + Tn—1)!

(i1,0yin—1)#(0,...,0) ( n-1)!

_ Z p(il“!‘"“‘!‘infl)j . xil,...,inil —0.
(i1s0nesin—1)7(0,...,0)

Assuming that there is some X ¢ W(F,») in i (0B )Y, let I = iy + -+ 4+ ip_1 #0

be minimal such that x;,4..44, , # 0. Then, we find that

Z plirt+in-1)j . fiu..infl = 0.
Z .. Z _ !
i1+ Fin—12>10 ! n-l

As before, for j large enough, this can be regarded as an equation in W(F,») rather than
in Frac(W(FF,n)). and taking residues modulo p” for r = (Ip +1)j — Iy — 1, we find
Z nilv"win—l ’ xil:-":in—l = O mOd pj_IO_l
i1+ t+in—1=Io
for some units 7;, i, , € W(Fyn))*. Letting j grow,

E Nit,oin—1Li1,sin_1 — 0.

P14 Fin—1=1Io

For n > 3, this alone is insufficient to force each x;, ;. , = 0. However, we have
significant flexibility with our choice of the a;. Let £, € W(F,») be arbitrary for
k=1,...,n— 1. Repeating the above with ag =1, a, = {pp’ ' for k=1,...n — 1, we
find

S 80 My Tirin ) = 0. (10.1)
i1+ Fin—1=Io
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Letting V' = Spang{xi,, i, 1 }ir+-in_1=1, Where K = Frac(W(F,»)), we find that the
vectors with entries [] 52’“ corresponding to each partition
14+ 4+t i :[0

. . . —94]

(extracted as the coefficients in Equation 10.1) span the (" 23°)-

V.

dimensional dual space

(As an example, let n = 4, Iy = 2. Then, the collection of z;, _;, , withi;+---+ip_1 = I

ordered lexicographically are
20,0,2,20,1,1, £0,2,05, £1,0,1, £1,1,0, £2,0,0,
with corresponding vectors of the form
(03, 0als, 03, 0105, €102, 03).)

Since the (”;2_210) monomials of the form Hﬁ;’“ are K-linear independent, they indeed

span V* so that letting the ¢; vary and noting that

i1 pia in—1, L =
E , Pl - L Minig— 1 T in 1 = 0,
i14-Fin_1=Io

for every choice of the /j, we find that each x;, ; , with iy + -+ 4,1 = I is zero

and X € W(Fpn).
So, Ziy,...in_, = 0 forall 41 + -+ 4+ i1 = Iy and therefore X € W(F,») and
(io (10.En))"” = W (Fpn)

so that
(7o) = W(Fpn).

Theorem 10.3.5. mof}, ® Q = W(Fyn) @ Q = Qy.
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Proof. Taking the direct limit of Homotopy Fixed Point Spectral Sequences, we have

hﬂHﬁont(U;mEn) - liglm,sEZU = T,_sF},.
U U

Since the U’s with finite cohomological dimension form a cofinal family, we can without
loss of generality let each U have cd(U) = n? = ved(G,,). As such, we need not worry
about non-detection of a class in the direct limit nor fake cycles (as discussed in Subsection

10.2.2) and the direct limit of the spectral sequences does indeed converge to m,_sF),.
Since — ® Q is exact, we also have
ligl’—fgont([]; WTEn) ®Q = hﬂﬂr—sEgU ®Q =m_sF, ®Q.
U U

By [Ser79, Prop. 8, Cor. 3|, HS,(U;n,Ey) is torsion for s > 1, meaning that the

differential d, ® Q = 0 for all a so that we have
ling Hopny (U3 m0Ep) © Q = im W(Fyn) © Q = W(Fyn) ® Q = moFy © Q.
U U

So, moFy, ® Q = W(F,n) ® Q, which is rank n over Q,.

We can also compute the units in myF},:

Theorem 10.3.6. moGL1(F,) = (moF,)”" = W(Fn)*.

Proof. Again, taking the subgroups U C S,, C G, to be of finite cohomological dimension,

we have a spectral sequence of algebras
ligH‘font(U; mEy) = m_sFy.
U
When s =t =0, fixing U, we have

Eyt = HY

cont

(U;smoEy) = (WOEn)U = W(Fp")
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by Proposition 10.3.4.

This gives
- = vy Py
EO 0
Furthermore, EXY accepts no non-zero differentials. Also, for x,y € E? ’0, we have via

the Leibniz formula that
dy(zy) = dr(z) -y + (1) Vad, (y).

So, ker(dy™") is closed under multiplication and contains 1 and therefore all of Z. (seen

by letting z =y = 1).

Further, d, is continuous: We have

d, = l‘&ndr,b
I

where d,.; denotes the differential of the homotopy fixed point spectral sequence
— ITS([T- hU
EQJ—H (U,ﬂ'tEn’[) — Wt—sEn,I

Here, {E,, 1} is the inverse system of discrete Gy,-spectra E,, = E,, A My, where M is
the generalized Moore spectrum satisfying BP,M; = BP,/I for I = (p% ”1 ,...,v;"_‘ll),
so that mEy, 1 = (m«Ey) /1. Then @I En 1 = E,, and the spectral sequence E3' is the
inverse limit of the spectral sequences E>F. (See [BD10| [4.6, Proof of 8.25].) Each d,;

is continuous because each ET’I is ﬁmte. This gives the continuity of d,.

So, ker(dg’o) is closed, and contains all of Z,, since Z is dense in Z,. Further, if 2™ =1,

then

s}
I
S
3
—~
—_
~—
I
S
3
—
I\
3
~
I

mz" ", (2) = d.(2) =0,

so that ker(d®) contains all roots of unity in W(F,n). As a result,

EY) = ker(d20) = W(F,n),
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and we conclude that

E% = W(F,n) @ N,
where N is nilpotent and contained in positive filtration degree.
'I’L2
W(Fpn) & N 2= (P @i/ i,
1=0

where WOEQU =P 2O2P; DD P2 DO P2,y =0 is the filtration on 7T0E7}LLU with @,

representing elements coming from cohomological degree < i. Further, we have
®;d; C &4,
and since 1 € ®g, any unit a € ®;~¢ would have an inverse a~! € ®_; ¢, so that
(roBAY)" = (@o/1)* = W)™,

and in the limit, we have

(moFy)™ = W(Fpn).

10.4 ON THE TORSION-FREE RANK OF 7,Pic,

By Theorem 10.2.15, we can compute the rationalization of 7. Pic(L K(n)Sp) via a spectral

sequence

é
E;i ®Q=H:, | Gn; <7rt73ic (hﬂ MOdLK(n)Sp(E,’},LLU)>> ®Q
U

I
TI't_SPiC(LK(n) Sp) & Q
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When t > 2, by Proposition 10.3.1,

™ Pic (hg Modyp,, ., sp(ErY )) = 11 GLi (lim B}Y) = m1 GLy(F) = w1 Fy
U U

is torsion.

Furthermore, for s > 1, E5" is torsion by [Ser79][Prop. 8, Cor. 3| since G,, is profinite.

As a result, the differentials
dr ® Q . Ef’t ® Q N Eﬁ—i—r,t—l—r—l ® @

are zero for all » > 2.

Putting this all together, we have
PE'ee=5"00
t

so that since Fy ® Q = F, ® Q, the torsion-free rank of Pic,, matches that of

0
ES’O = Hgont Gn; Pic <hﬂ MOdLK(n)Sp(EZU)>
U

Gn
= (h_n)qPic (MOdLK(n)Sp(EZU))> :
U
That is to say:

Theorem 10.4.1.
Gn
Pic,, ® Q = myPic,, @ Q = <h%m Pic (ModLK(n)sp(EZUD) ® Q,
U

or equivalently,

Gn
Picy, ®z, Qp = moPicy @z, Qp = (hg Pic (ModLK(msp(E!;U))) ®z, Qp.
U
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For n > 2, we know that the rank of Picy, is at least 2, with families generated by Ly, S0

and the determinantal sphere S{det), and it is conjectured that this is also an upper

bound:
Conjecture 10.4.2 (Hopkins). For n > 1, the rank of Pic,, over Z,, is 2.

Remark 10.4.3. There is a well-defined map

Gn
v : Pic, — (hﬂ Pic (MOdLKw)Sp(EgU)))
U
given by
X = limg (X OLic(n)S° E’ZLU>
U

which, by Theorem 10.4.1, is a rational isomorphism. The action of G,,/U on
Pic(ModLK(n)Sp(EgU)) is by sending an E"Y-module M with E"Y-action p to a module

M9 whose underlying spectrum is M, with action p9 defined by

EMW 2 End(M)
d

i

EM.
To see that ¢ is indeed a map to the G,-fixed points, we need that
(X @L (50 BN > X L g () SO EM.
We have
(X L () SO EZU)g =X L (n)S° (EQU)Q’
so it suffices to show that E"V = (Ef{U)g as E"Y-modules. This isomorphism is evidently

given by g € G,,/U C End(E!) with inverse g~

In particular, each module category ModLKWsp(Efl’U) includes the invertible EQU—
modules

Li(m)S® @L,cs0 En’
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for a € Z,, (with inverse Ly (,)S™" ®, K () SO EM). These are fixed at every stage by G,

and evidently correspond to the Z,-family in Pic,, generated by L K(n)SO. Similarly,
S(det)®a ®LK(n)SO EQU

is fixed as an element of Pic (MOdLmn)Sp (EQU)> by G, /U, so that it represents an

element in
Gn
<hg Pic (MOdLK(mSp(EZU))) .
U

Further investigation into the right hand side of the equalities in Theorem 10.4.1 may be

useful in resolving Conjecture 10.4.2.

Theorem 10.4.4. 7, Pic, is torsion for x > 2.

Proof. As before, since G, is profinite,

1
Egyt ®@Q=H: | Gn; (ﬂﬂ?ic <h%m MOdLK(n)Sp(EZU)>> ®Q
U

is torsion for s > 1 by [Ser79, Proposition 8, Corollary 3|. By Proposition 10.3.1, for
t>2,

7 Pic (hg ModLK(msp(EﬁU)) = m—1GL1 (ling EMY = 1, 1GLy(F,) = w1 F),
U U

is torsion. So, E;’t ® Q = 0 except possibly s = 0,t =0, and s = 0,t = 1, and since
d, ® Q =0 for all r,
BT 2Q=0

for all s +t > 2, giving the result. O

By the same line of reasoning, we have the following result:

Theorem 10.4.5. m;Pic, ® Q = Q,.
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Proof. We have

7Tl,PlCn ® Q cont (GTL? ((WOFn)X)é) ® @

g(mF )" ©Q

= (W(EFpm)) ™" ©Q
= (Z ) ®Q

= 7X®Q

=Q

10.5 EXAMPLE: HEIGHT n =1

We now run this entire program at height n = 1, showing that m;Pic; ® Q = Q,, at all

primes, in agreement with the result of Theorem 10.4.5.

When n = 1, since G1 = Z,;, we can take our family of open subgroups U C G; to be
the linearly ordered set {U;};>2 with U; = 1 + p'Z,. Then, following the conventions of
§10.3, Z; = U; so that U;/Z; = 1 and the Lyndon-Hochschild-Serre Spectral Sequence
associated with the inclusion Z; — Uj; is of no computational value, and we are reduced

to computing 7. [F; via the Homotopy Fixed Point Spectral Sequence
S . hU;
Hcont(Uia 7TTE1) — 7T7«75E1 ,

and then taking the limit over ¢. Since the cohomological dimension of U; is 1, we need

only consider the cases of s = 0 and s = 1, so that we have

(roE)Y @ (m E1)y, = moEY
=0
and
(m BV @(maEy)y, = Zp)p°2 = L)pite — mEM:,
=0
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Taking limits over the U;, we find that

7TOF1 = hﬂ(ﬂ'oEl)Ui = hﬂﬂ‘oEl = 7T0El = Zp

and
mFy =1mZ/p™ = Qy/Zy

since e2,; = val,((1 + p')? — 1) = val,(2p’ + p*) > i. (For p odd, this is equality.) So,

w1} is torsion as expected.

We then have

H([:)ont(Gl; (WOle)(s) = ((TF()El)X)Gl = (7T0E1)X = Z;

and
Hclont (G1; (ﬂ'lFl)é) = Homeont (G, 771F15)
= Homeont (Z;;v (Qp/Zp)a)'
For odd p,
25 ® Q= (jip1 ® (1+92,)) ©Q=Q,
torsion 27p
and for p = 2,

75 @Q=(Z/2Z®(1+4Z2)*) @ Q = Qs.
—_—— —
torsion 7o
Finally, since Z; is compact, its image under a continuous map into (Qp/ Zp)5 must be

finite and therefore Homeont (Z,), (Qp/ Zp)5) is torsion and we conclude that 7 Pic;i @ Q =

Qp is of rank 1.
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Chapter 11

Further results and directions for

future research

11.1 UNDERSTANDING OF Pic?® AND THE EXOTIC PICARD GROUP

alg
n

11.1.1 The algebraic Picard group Pic
The algebraic Picard group Piczlg contains an index 2 subgroup Pic?}g’o which can be

computed as

Piczlg70 = Hclont(Gn; (WOEH)X)'
The E%’l term in our main spectral (Theorem 10.2.15) sequence computing

hGn,
P, = m,Pic <hg ModLK(n)sp(EQU)>
U

is

Hclont(Gn; ((TFOFH)X )6>7
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contributing to Py and being entirely torsion. We then have the following commutative

diagram, where the horizontal arrows are given by localization
F, — LK(n)Fn ~F,

and the vertical arrows are given by the natural continuous maps on the coefficients:

H o (G (m0Fn)*)°) ——— Hiont (G (Mo ) *)°)

l l (11.1)

H(}ont(Gn; (ﬂ-OFn)X) _— Hclont (Gnv (WOEn)X) = PiC?{lg’O.

The vertical arrows are inclusions. To see this, write

continuous crossed homomorphisms G — M

Il

HY W (Gy M
cont ) continuous principal crossed homomorphisms G — M

and let ¢ be a continuous principal crossed homomorphism G — M so that
(] = 0 € Hogn (G M).
That is, ¢ = f, for some m € M, where
fm(g) = gm —m.

Then, the preimage of [¢] in HL . (G; M?) is either empty (when ¢ : G — M? is not

cont
continuous) or [¢] = [f], now regarded as a continuous principal crossed homomorphism
G — M?, and therefore is zero in HL ,(G; M?).

At height n = 1, diagram (11.1) is

H(}ont(Z;; (Z;)()(S) B H(}ont(Z;; (Z;)(S)
l l (11.2)
HY (235 2) —— HL W (255 2)) = Pict'®”.
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For p odd, H} (25, 2%) = 1.5 = 7, ® Z/(p — 1)Z. Further,
O\~
Hln(ZX,(2))°) 2 Homeon (Zy, Z9)
D Homcont(/lpflv ,upfl)

Spp-1

@ Homeon (Mp—l s Zg)

=0

2] Homcont (Zp7 ,Ufp—l) .
0

Since Z,, is compact, its image under any continuous homomorphism to Zg must be finite.

Since there are no non-trivial finite subgroups of Z,, we conclude that
Homeont (Zp, Z3) = 0,

and diagram (11.1) becomes

Z/(p—1)Z » Z/(p—1)Z

l l (11.3)

Zy®L)(p— )2 — L, ® L) (p — 1)Z = Pic™'8°.

The vertical maps are inclusion of the Z/(p — 1)Z-summand. For a fixed U, we have the

following commutative diagram:

TF[)E{LU — 7TOF1

x iLKw

mok,

where the top map is given by the universal property of moF} as the colimit
moF1 = hﬂTFDE{LU,
U

and the natural map moEpV = (7T0E1)U — mok1 is an equivalence by Proposition 10.3.4.
As a result, the map (moF,,)* — (moFEy,)* is an equivalence. So, we have a commutative

square
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Heon (2355 (Z)°) ——— Hoon(Z555 (2)°)

j [ (11.4)

~ . alg,0
HY (2525 —— HL (252 = Pic}®?,

where both compositions
By = Hipny(Gu, (moFy)*)°) = Pic}®’
represent the inclusion of the torsion subgroup
Tor(Pic?'80) — Picie?.
Similarly, at n =1, p = 2, we have
HL W (25,25 225 ©7)27 = 7y © /27 © 7./27Z,

and

J
Hclont(Z;; (Z;) ) = Homcont (Z% Zg)
=0
® Homeont (Z /27, 7./ 27)

g
7./27.

@ Homeont (Z/27, 73)

=0
® Homeont (Z2,7Z/27) .
~7. /27
So, we have
Hclont(GU ((TFOFH)X)é) = Z/2Z @ Z/2Z — Z/2Z D Z/2Z
j j (11.5)
Zo® 722 ®7)27 =~ s Zo @ Z)2L & 7.)27 = Pic™'®°,

and again, both composites represent the inclusion of the torsion subgroup

Tor(Pic?lg’O) — Pic?lg’o.
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However, when n > 1, we have by Theorem 10.3.6
(mo )™ = W(Fpn)*,
so that the map
(m0Fn) ™ = (m0En)* = (W(Fpn)[[u, - ., un—1]])"

will not be an isomorphism. Nevertheless, it does induce injections HX . (G,;—), so that

every map in

Hl

cont

(G (M0 Fn)*)°) > Hont(Gns ((10En)*)°)

j £ (11.6)

Hclont(Gm (moFn)*) —— Hlont (G (moEn)*) = PiC?fg’O

cont

is an injection and we can still ask whether

Ey' = H,

6 Y .
cont <G7’l7 ((TFOFn)X) > = TOI‘ (Plczlg’ O) ,
or if this relationship breaks down for n > 1. In any case, we have an injection

Ey' < Tor(Picte?).

Explicitly, we have

Hclont (Gnv (T(OFH)X) = H(}ont(Gn; W(FP")X)
= H(}ont (Sn7 Z;;)

= Homeont (Sna Z;)
= Homeont (S5°, Z)Y).
The first equality is by Proposition 10.3.6, the second is from the equality
(W(Fpn ) X )Gal(]Fpn /Fp) — Z; ,

and the third is by recognizing that the action of S,, on Z; is trivial. The last equality
holds because because homomorphisms S, — Z; factor through the abelianization Sab

because sz is abelian.



Similarly,
Ey' = H,

cont

(G ((Wan)X>6) = Homcont(Szba (Z;)é)

At height n =1, §,, = Z) is abelian. By [Henl7, Props. 5.2, 5.3], we have

Zp& (Z/pZ)";  p=3
S22 Hy(SusZp) 2%

n

Z,® (Z/22)"; p=2.
As a result, we can compute

0; p=>3
Eyt =

(2222 p=2.
Similarly,

L, p>3
(G; (m0Fn)) =4

Zy & (Z/22)" %% p=2,

III

cont

so that diagram (11.1) is

0 ———— HE (G ((moEy)*)?)

| I

Ly > Hlon(Gns (Mo Bn)*) = Picy®”

forp>3,n>1, and

(Z/22)"? > Heon(Gn; (m0En)*)°)

/ !

Zy @ (Z)2Z)"* —— Hl(Gp; (moEn)*) = Picie?

cont

forp=2n>1.

11.1.2 The exotic Picard group k,

Define Pic) via the pullback diagram

fin — Pic) —— Picale0

ol

Kk, — Pic, —— Piczlg,

111

(11.7)

(11.8)

(11.9)

(11.10)
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alg

where k,, = ker(Pic,, — Pic5®) denotes the subgroup of exotic elements. The above

means that Fa' C Eé’l is contributing (via ¢! of Remark 10.4.3) to the non-erotic

torsion in Pic). As a result, contributions to , must be from E3’ for s # 1.

By [Heal5, Theorem 4.4.1], for p > 2, k,, is torsion. (When p = 2, k,, is shown via
explicit computations to be torsion at heights 1 and 2. See §9.4.) This in turn shows
that

rankz, Pic, < rankZpPicf;lg,
We can show that this is indeed an equality: In [Hea21|, Heard constructs a spectral
sequence (for all primes p) with
7/27; s=t=0
Eg’t = q Picl&?; s=t=1,
Heont(Grsm—1Ep); t>2

with differential d, of bidegree (r,r — 1) computing Pic, in the case s = t. By the proof

of Proposition 10.3.1, HS ((G,; m—1Ey,) is torsion for ¢t > 2. So, rationally, this is

0; s=t=0

7n8:t .
Ey" ®z,Q, = Pic2le0 ®z, Qp; s=t=1,

0; t>2,
so that
Pic, ®z, Qp = Pic280 @7 Q, (11.11)
and
rankz, Pic, = rankZpPic?ng. (11.12)

This also shows that x,, is torsion for all primes p at all heights n. This does not, however,

imply that ,, is finite.
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11.1.3 An alternate notion of exoticness
Consider the map ¢ of Remark 10.4.3. The kernel (which is torsion) is given by
kerp = {X € Pic,, | X DL g () S0 EM Sphu EMY for sufficiently small U},

where = denotes equivalence as EZU—modules, and U is taken to be an open nor-
n

vh

mal subgroup of G,,. We can therefore filter ker ¢ over such U < G,, by “U-ezotic
elements:

kv = ker(Pic, — Pic(Mody, ., sp(En")))
When U = G,
kG, ={X[X ®r 50 Lim)so = Lic(nyS°} = {Li(n)S°}
is trivial, and for U D V, ky C ky, with
ker o = hﬂ/{U.
U

One might ask what relation (if any) there is between the ky and the traditional group

tn = ker(Pic,, — Pic¥®) of exotic elements of Pic,,.

11.2 COMPARISON WITH RESULTS OF [BSSW23]

In [BSSW23|, the authors compute

7T>i<-LK'(n)‘S'0 ®Zp Qp = AQP(CD C27 ey C’I’L)

to be an exterior Q, algebra on generators ¢; in degree 1 — 2i. For a fixed open subgroup

U <G, we have a homotopy fixed point spectral sequence
hG /U
H*(G,/U;m EMV) = (wt_sE,’;U ) > JEMn e LSO

The limit of these spectral sequences is a spectral sequence with

Egt = H; (Gna (WtFn)a)a

cont
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and by an identical arguement to that made in Subsection 10.2.2 about the limit of these
spectral sequences, Eg’t ®z, Qp converges to mi—sLx(n) S0 ®z, Qp:

E;t ®Zp @p = Hcsom(GnQ (7['75Fn)(S ®Zp Qp) — 7"'t—sLK(n)SO ®Zp Qp;

(This result actually holds pre-rationalization by [DL14, Theorem 1.1].) By Theorem
10.3.1,
Tes0bn ®z, Qp =0,
and by Theorem 10.3.5,
ol ®z, Qp = W(Fpn) ®z, Qp.
The methods of this dissertation thus allow us to identify
u20Lic(n)S° @z, Qp = Hopt (Gs (moFn)°) @7, Qp

= (W(Fp))®" ®2, Qp

= Ly Oz, Qp

= Qp,

which is in agreement with the results of [BSSW23|. It might be possible to further adapt

the methods used here to compute the negative homotopy groups of the rationalization

Of LK(n)SO

11.3 BETTER IDENTIFICATION OF THE ABUTMENT OF THE COLIMIT

SPECTRAL SEQUENCE

In Theorem 10.2.15, we identified the abutment of the colimit spectral sequence

*ok s *, %
ET _@ET,U
U
as

hGn
P, = 1, Pic <hg Mod,,,sp(EnY )) :
U
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with
P, ® Q & mPic(Lg(n)Sp) ® Q.

We now state a conjecture which if true would help simplify the statement of Theorem

10.2.15:

Conjecture 11.3.1. The abutment P, of EX = liglU E:;} of Theorem 10.2.15 is the
direct limit of the abutments of the E: ; That is,

P, = W*PiC(LK(n) Sp).

Remark 11.3.2. We have good reason to believe that Conjecture 11.3.1 holds. In [DL14,
Theorem 1.1], Davis and Lawson prove the existence of a very similar spectral sequence
with

ESt = H?, (G (M F,)°) = li?mHs(Gn JUsmFy) = m—sLgcmS°,

and for t > 2, we have

E;vt — HS

cont

(Gpym—1Fp) = /E\S’tfl.

Further, for fixed U, there is a spectral sequence

)hGn/U

Byt = H (G, /UimELY) = (Wt—sEgU 2 s EpO" 2 m_s Lig(n) S,

so that in that very similar situation, the colimit of the abutments is the abutment of

the colimit of the spectral sequences.

11.4 EXTENDING RESULTS OF WESTERLAND TO p = 2 CASE

In the construction of an invertible spectrum Z € Pic,, of [Wesl7], a restriction to odd
primes (p > 3) was made. Can this construction, as well as other results from [Wes17]

be extended to the case of p = 27 Many of the necessary inputs involving the Morava
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K-theory of Eilenberg-Mac Lane spaces from [RW80] extend to the case of p = 2 by

[JW85], with the exception of the global Hopf ring structure on K(n).K(Z/p’,*), and
the results of Hopkins-Lurie in [HL13| on the Morava K-theory of Eilenberg-Mac Lane
spaces via Dieudonné theory seems likely to help answer in the affirmative the question

of whether G,, acts on the Morava Modules of [Wes17, 3.21] via the determinant.

11.5 QUESTIONS RELATED TO GENERALIZATIONS OF [HMS94|

Suppose we have an A, spectrum E and a space X with E, X = E,(X9°X) = E, along
with a map

¢€:X — BGL(S°).

We can form the associated Thom spectrum M¢. If this is E-orientable (in the sense

that the Thom spectrum associated to the composite
X - BGL1(S%) — BGLy(E)

is orientable), then we find via the Thom isomorphism that E.(M¢) is an invertible

E,-module. By [BRO05|, when F is E, there is an injective map
® : Pic(E,) — Pic(E)

from invertible E,-modules to invertible E-module spectra. Pic(FE) is called algebraic
if @ is an isomorphism. [MS16, 2.4.7] provides conditions for an F, ring F to have an
algebraic Picard group. Following [ABG™13, 2.9], this construction for arbitrary X gives
elements of the Picard oo-groupoid Pic(E) of invertible E-modules and equivalences
between them, with

moPic(E) = Pic(E)

being the Picard group. A few questions arise:

e When Pic(F) is algebraic, can we construct all elements of Pic(E) in this way?
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e For £ = K(n), this construction, combined with an orientation M¢ — K(n)
realizes K (n).(M¢) as an invertible K (n),-module, which by Theorem 9.2.1 means
that M¢ € Pic,. Can we find explicit families of such (X, &) to give a lower bound
on the rank of Pic,, over Z, which is greater than 27 (We already have the families

topologically generated by LK(n)Sl and L y)S{det).) By [RW80, 11.1], for p > 2,
K(n).K(Z/p'Z,q) = K(n).

for ¢ > n, 7 > 0. In particular, K(Z/pZ,n+ 1) is a good candidate as a base space.
By [JW85], the same holds at p = 2.

Remark 11.5.1. Modifying this approach, for R, = ESG’jLE , being R,-orientable
guarantees that

Ry NME~ R, NETX
so that
K(n)«Ry, @K (n), K(n)«(M¢) =2 K(n).Ry, @K (n). K(n)*(ZfX)

By [Wesl7, 3.12], K(n).R, is non-zero. It is therefore faithfully flat over K(n),

(as all K(n).-modules are free), and we find
K(n)(ME) = K(n)o(S¥X) = K(n).,
so that M¢ € Picy,.

e If this method fails to increase this lower bound on the rank of Pic,,, can we describe
conveniently the spectra M¢ in terms of S! and S(det)? Can we place an upper

bound on the rank of Pic,,?

e For other fixed-point spectra F = EQG, can we produce Thom spectra whose

Morava K-theory is readily computable? When do these give elements of Pic,?
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11.6 (QUESTIONS ABOUT DESCENT

For E = K(n) and E = E,, we know that the collection of isomorphism classes of
invertible E-local spectra forms a set. Can we compare the groups Pic(LgSp) and
Pic(LgS®)? For E = K(n), this amounts to asking whether there is a relationship
between Pic, and Pic(Lg(n,)S°) = Pic(E!®»). By [MS16, §3.3], we do have Galois
descent: For G finite and A — B a faithful G-Galois extension of F rings (in the sense
of [Rog08]),

Pic(A) ~ Pic(B"Y) ~ Pic(B)",

and by Proposition 10.2.12, we have a localized version:

. 0 . WU hGn /U
Pic (Mody,.., sp Lic(n)S° ) = Pic ( (Mody,, sp E2)

for U < G, a finite index normal subgroup.
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