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Abstract 

Recurrent exposure to genotoxic chemicals and other harmful environmental 

agents is directly related to the development of adverse phenotypes, carcinogenesis, and 

developmental disorders through chemical-mediated toxicity. Systems toxicology aims to 

chemically profile and computationally model the toxicity pathways to gain mechanistic 

insights into the outcomes of environmental exposure and develop modern safety 

guidelines. Analytical methods are being developed to perform broad, unbiased 

characterization of molecular biomarkers of exposure to improve the understanding of the 

molecular consequences and physiological responses following the introduction of 

reactive electrophilic chemicals. There are few computational workflows available to 

support this rapid development of new analytical technology. This thesis introduces novel 

computational resources for the parameterized analysis of discovery-driven, systems 

toxicology results generated by liquid chromatography-coupled mass spectrometry.  

Chapter 1 of this thesis presents a comprehensive review of existing analytical 

technology for the molecular profiling of exposure biomarkers. This review focuses on 

discovering toxicologically relevant compounds using constant ion monitoring, 

fragmentation filtering, in-source collision-induced dissociation, mass defect filtering, or 

isotope pattern filtering. The mechanism of discovery of each analytical method is 

examined and the strengths and limitations of each approach are discussed. 

Chapter 2 of this thesis presents a novel computational workflow for discovering 

molecular biomarkers of exposure using fragmentation filtering. In this study, an original 

module named DFBuilder for the metabolomics data processing software MZmine is 

presented. The application of this software tool for the discovery of covalently modified 



vi 
 

DNA nucleosides is evaluated. In this work, a novel colibactin-derived, E. coli associated 

DNA adduct product discovery is highlighted.  

Chapter 3 of this thesis extends the application of the DFBuilder module to 

discover urinary metabolites produced from detoxifying reactive electrophilic chemicals in 

tobacco cigarette smoke. This work presents the first reported application of a high-

resolution mass spectrometry method for profiling mercapturic acid conjugates in positive 

ion mode. The combination of this novel analytical method and computational workflow 

discovers numerous prospective mercapturic acid signatures never reported in human 

urine. Statistical evaluation of these results demonstrates that many of these products are 

associated with cigarette usage. 

Chapter 4 of this thesis reports a novel mass spectral library of conjugated 

mercapturic acids. Using multiple fragmentation strategies, this library represents 

thousands of mass spectra collected in positive and negative ion polarity. This work serves 

as a foundation of resources necessary for verifying discovery results produced from the 

analytical methods presented in this thesis. Metadata insights from this library that will 

help future efforts to characterize mercapturic acid conjugates are discussed. 

This thesis concludes with a summary and future perspective evaluating the 

remaining computational challenges in exposomics and analytical chemistry-based 

approaches for systems toxicology. The areas that most need support are highlighted, 

and the capacity of emerging computational solutions to improve experimental outcomes 

is discussed. 
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O6-me-dG O6-methyl-2´-deoxyguanosine 

OH-PdG 

(6R/S)-3-(2´-deoxyribos-1´-yl)- 5,6,7,8-tetrahydro-6-

hydroxypyrimido[1,2-a]-purine-10(3H)one 

OPLS-DA orthogonal partial least squares discriminant analysis  

PFAS per- and polyfluoroalkyl substances 

PhMA N-Acetyl-S-(phenyl)-L-cysteine 

PI precursor ion 

pks- pBeloBAC bacterial artificial chromosome 

pks+ BACpks island bacterial artificial chromosome 

Q1 first quadrupole 

Q2 collision cell 

Q3 third quadrupole 

RT retention time 

VOC volatile organic compound 

ε-dA 1, N6-etheno-2´-deoxyadenosine 
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Chapter 1: Systems Toxicology and Small Molecule Analytics 
The following chapter provides background and context for the analytical approaches 

utilized in systems toxicology to discover molecular biomarkers of chemical exposure and 

its effects. The chapter was adapted with permission from the following review article 

published in Chemical Research in Toxicology. The original article was authored by Kevin 

Murray and edited with the assistance of all co-authors. 

Murray, K. J.; Villalta, P. W.; Griffin, T. J.; Balbo, S. Discovery of Modified Metabolites, 

Secondary Metabolites, and Xenobiotics by Structure-Oriented LC–MS/MS. Chem. Res. 

Toxicol. 2023. https://doi.org/10.1021/acs.chemrestox.3c00209. 
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1.1 Overview of Systems Toxicology 

Toxicity assessment has been at the core of modern toxicology sciences for 

decades. Animal experimentation was the primary method to evaluate a substance's 

toxicological hazards and risks to human health. While this form of testing helps develop 

guidelines to protect humans and animals from acute threats, the role of chemical toxins 

in the pathogenesis of complex diseases and developmental disorders is gathering 

attention.1 Exposure to harmful chemical agents can impact numerous biological 

processes directly, in addition to inducing secondary physiological responses, such as 

inflammation or oxidative stress, that confound characterization efforts. An intricate 

combination of genetic, lifestyle, and environmental factors influence the etiology of many 

clinical phenotypes and directly produce or modify the severity of clinical outcomes.2–4 

With advancements in analytical technology for toxicity testing and risk assessment, a 

prevailing paradigm shift emerged in the early 21st century that promotes a mechanistic, 

pathway-oriented approach to evaluate toxicity in the context of multiple biological 

systems.5  

 Systems toxicology is an extension of systems biology that aims to combine 

biological and toxicity data with advanced computational modeling techniques to obtain 

mechanistic insights into toxicological outcomes and understand the relative risks of 

harmful chemical exposure events.1,6 Multiple streams of biological data are required to 

understand the pathway of toxicity, the sequence of molecular events leading to an 

adverse effect, and predict the toxicological outcomes of undescribed toxic materials. 

Physiological responses may occur at the cellular, tissue, organ, or organism level, 

reflecting molecular alterations in the genomic, transcriptomic, proteomic, or metabolomic 

systems.1 Systems toxicology aims to utilize this information-rich, -omics data to elucidate 
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the pathway of toxicity of chemical agents, construct predictive models to improve 

chemical risk assessment, and evaluate potential therapeutic targets to enhance the 

success of clinical intervention and prevention strategies. The power of this approach has 

been demonstrated for the prediction and validation of selective drug targets that inhibit 

cell growth and proliferation for treating several forms of cancer.7,8  

 Application of systems toxicology for the comprehensive exposure assessment 

struggles with many challenges, notably in collecting large omics datasets representative 

of multiple biological systems. The advent of genomics-scale data collection and 

processing revolutionized the biological sciences at the start of the 21st century. In the 

following two decades, parallel efforts to develop and expand “big data” methods in 

analogous biological systems to enable the complete biomonitoring of an organism were 

a top priority. The development of high throughput methodology in these contemporary 

fields of transcriptomics, proteomics, and metabolomics offers unique opportunities to 

characterize chemical exposure events. As dynamic systems, perturbations in transcript, 

protein, or metabolite concentrations may be readily associated with variations in clinical 

phenotypes and interrogated to infer the potential pathway of toxicity.  

The application of RNAseq and contemporary technologies offers quantitative 

profiling of tens of thousands of RNA transcripts that can be functionally annotated and 

associated with biological processes. For example, RNAseq-based toxicogenomics 

discovered that e-cigarette usage induced a transcriptional response associated with lung 

cancer, inflammation, and fibrosis genes but often with reduced expression relative to 

control cigarette smoke models.9–11 Technological advances in mass spectrometry-based 

methodology facilitated the simultaneous detection and quantitation of thousands of 

proteins in tissue or cell extracts. Proteomics assessment provides mechanistic insights 
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into the physiological impact of exposure. Quantitative protein profiling enabled the 

development of toxicology models to describe the reproductive toxicity associated with 

mycotoxin exposure of Fusarium fungi contamination in cereal crops.12–14 Similar to 

advances in proteomics technology, modern metabolic profiling via mass spectrometry-

based platforms provides insights into the chemical characteristics of thousands of 

metabolites and small molecules in biological matrices. Toxicometabolomic evaluation of 

industrial contamination by per- and polyfluoroalkyl substances (PFAS) in municipal water 

supplies suggests these “forever chemicals” impact numerous chemical pathways, 

including the pentose phosphate shunt pathway, endocrine signaling, and lipid 

metabolism.15,16 The application of small molecule profiling analytical technologies 

contends with numerous obstacles preventing the widespread collection of information-

rich chemical data from biological matrices. Despite the limitations of current metabolomic 

technologies, applications of small molecule profiling in toxicology are proliferating, with 

increasing demand for improved analytical workflows.  

 The metabolic response to a chemical challenge is often considered the most 

closely associated response with phenotypic outcomes. Metabolic fluctuations occur 

rapidly and may modulate biochemical pathways and physiological responses in a manner 

not related to transcriptional or translational responses from the host organism. Small 

molecule profiling directly characterizes chemical exposure through xenobiotic screening, 

detoxification profiling, and genotoxicity testing. In contrast to well-defined primary 

metabolites, research into the non-homeostatic aspects of metabolism, physiology, and 

toxicity is in its infancy.17 Few reference materials are available for purchase, and chemical 

database entries are sparse as most of these analytes represent novel and undescribed 

compounds. These modified biomolecules, secondary metabolites, and xenobiotics are 
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crucial for describing the unique characteristics of an organism and understanding its 

interaction with the environment.17  

1.2 Molecular Biomarkers of Exposure and its Effects 

 Many factors influence the direct biomonitoring of xenobiotics and harmful 

chemical agents. The persistence of chemical agents in the body depends on the target 

substances’ unique molecular properties, dosage strength, and route of exposure. Fat-

soluble or protein-binding toxins may accumulate in cells and tissues to be slowly 

metabolized and excreted days or months after an initial exposure event. However, many 

harmful chemical agents encountered daily represent volatile and reactive compounds. 

These toxic agents exhibit a short half-life and rapidly metabolize or transform to impose 

detrimental effects on the surrounding cells and tissues. The brief persistence of these 

toxicants impedes their direct biomonitoring. Molecular biomarkers of exposure represent 

metabolic by-products or chemical outcomes generated by interaction with reactive 

chemical agents that are more readily measured in biofluids or tissue biopsies. In contrast 

to their reactive progenitor compounds, the biomarkers of exposure often persist longer in 

the body and can be readily detected days or weeks after the initial exposure. Measuring 

these molecular targets can provide insights into the type and strength of chemical 

exposure events and offer valuable information on the bodily response to harmful toxins.  

 A multitude of metabolic by-products and reaction adducts are produced by 

exposure to toxic chemical materials. Exposure to 4-(methylnitrosamino)-1-(3-pyridyl)- 1-

butanone (NNK), a tobacco-specific carcinogen, is known to produce numerous unique 

products following metabolic transformation, such as 4-(Methylnitrosamino)-1- (3-pyridyl)-

1-butanol (NNAL), in addition to untold numbers of covalently modified DNA, RNA, and 

protein species (Figure 1.1).18–20 Many environmental and household exposure events 
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involve coexposure to numerous chemical agents simultaneously, increasing the 

complexity and distribution of metabolic by-products and reaction adducts throughout the 

body.21 The combined effects of coexposure are not strictly additive. Increasing reports of 

synergistic and antagonistic effects of coexposure have been reported.22 Developing 

toxicological models for potential chemical interactions represents a substantial challenge 

in modern systems toxicology.  

 

Figure 1.1 - Formation of DNA adduct O6-methyldeoxyguanosine by metabolic transformation of 

tobacco-specific carcinogen NNK. 

 

The simultaneous characterization and quantification of all molecular outcomes 

induced by chemical exposure is beyond the capacity of current metabolomics 
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technologies. To overcome this obstacle, the development of systematic analytical 

workflows focuses characterization efforts on specific classes of metabolic by-products 

and reaction adducts. Adductomics technologies aim to characterize all chemical 

adduction products generated by the reaction of chemical toxins with DNA,23–25 RNA,26,27 

or protein28,29 macromolecules, respectively. The systematic study of metabolic 

transformation and detoxification products has classified multiple sub-metabolomes, the 

complete collection of all metabolites of a particular class, such as the mercapturome30–32 

and sulfatome33,34, the collection of mercapturic acid and sulfate conjugates, respectively. 

These emerging methods represent new frontiers in systems biology, providing valuable 

insights into the biological impacts and responses to exposure to harmful chemical agents. 

The capacity of reactive chemical agents to damage DNA is of primary concern in systems 

toxicology. In contrast to epigenetic modifications that regulate gene expression, covalent 

DNA modifications and the resulting DNA adducts can disrupt normal cellular function. If 

not restored by endogenous DNA repair mechanisms, DNA damage may result in genetic 

mutations that can translate into the development of cancer and other complex disorders. 

How xenobiotics and reactive chemical agents mutate DNA is an active research area. 

DNA adductomics is an emerging analytical approach that aims to identify the complete 

collection of DNA adducts in cells or tissue. Characterization of DNA adducts can provide 

valuable insights into the pathways of genotoxicity of a chemical agent. DNA adduct 

concentration and signatures of mutation may be used to infer the effective exposure dose 

and are increasingly used as biomarkers in cancer research and chemoprevention 

studies.  
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Figure 1.2 - Formation of cyanoethyl mercapturic acid (CEMA) from acrylonitrile transformation. 

Acrylonitrile is conjugated to glutathione by a glutathione s-transferases (GST) enzyme. 

Hydrolytic conversion by γ-glutamyltransferase (GGT) removes the glutamic acid functional 

group, and further modification removes the glycine by a cysteinyl glycine transpeptidase (CGT). 

Acetylation by n-acetyltransferase (NAT) forms the final mercapturic acid conjugate to be 

excreted in urine. 

Neutralizing harmful chemical agents through metabolic transformation and 

detoxification pathways represents an organism's primary mechanism for eliminating toxic 

substances. Metabolic transformations are broadly categorized into Phase I and Phase II 

reactions. Many classes of xenobiotics, particularly lipophilic compounds, require 

biotransformations to expose or introduce polar functional groups. Phase I metabolism 

involves enzymatically-catalyzed reduction, oxidation, or hydrolysis of chemical toxins, 

adding or exposing primary amine (-NH2), hydroxyl (-OH), or thiol (-SH) functional groups 

to increase polarity and water solubility. Phase II metabolism conjugates xenobiotics or 

Phase I metabolic products to polar compounds to further increase polarity for urinary 

secretion. Glucuronidation, sulfation, and acetylation reactions conjugate distinct polar 
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groups onto the molecule that help neutralize reactivity and further improve solubility in 

water. Phase II conjugation with glutathione, a tripeptide of glycine, cysteine, and glutamic 

acid, represents a common detoxification mechanism in biological organisms. Subsequent 

transformation of glutathione-conjugates leads to the formation of mercapturic acid 

conjugate (Figure 1.2), a readily observed urinary metabolite. Multiple methods have been 

developed in recent years for the unbiased detection of metabolic transformation products. 

Characterizing these intermediates and secreted products provides valuable information 

on the metabolic response to harmful chemical exposure.  

1.3 Analytical Technology for Characterizing Molecular Outcomes of Exposure 

 Small molecule discovery analytics faces many obstacles arising from chemical 

heterogeneity, frequent occurrences of structural isomers, high dynamic range, and trace-

level concentrations. Liquid chromatography-coupled mass spectrometry (LC-MS) 

represents a flexible approach for small molecule analytics capable of comprehensively 

characterizing complex chemical matrices and accurately quantitating molecular 

concentrations.35–37 Mass spectrometry (MS) is a powerful tool that detects ionized 

molecules' mass-to-charge ratio (m/z) to obtain chemical composition and infer structural 

arrangements. LC-MS enables specific chemical analyses capable of temporal resolution 

of independent molecular signatures in complex matrices and offers potential 

chromatographic separation of some isomeric and isobaric compounds. Molecular mass 

alone is often not enough to provide confident identification of unknown molecules in the 

absence of standard reference material. Using tandem mass spectrometry (MS/MS), 

characteristic fragmentation patterns may be collected and used for identification 

purposes via spectral library matching or manual annotation. In contrast to contemporary 

analytical platforms, such as nuclear magnetic resonance (NMR), LC-MS represents a 
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highly sensitive analytical technology capable of characterizing molecular concentrations 

over multiple orders of magnitude, down to trace-level detection at nanomolar to picomolar 

concentrations.38  

Applications of LC-MS for the characterization of modified biomolecules, 

secondary metabolites, and natural products span multiple decades.24,37,39–44 In the health 

sciences, LC-MS approaches have been applied to describe chemical exposure and its 

impact at the molecular level. Conjugated glutathione (GSH) adducts, as a measure of 

antioxidant activity, can serve as valuable biomarkers for exposure and provide valuable 

insight into the toxicity of various human activities and occupational hazards.45–47 

Monitoring a specific subset of molecules in a complex biological matrix is challenging 

without a priori knowledge of the target class of interest. The common 

glutamylcysteinylglycine core structure of all GSH adducts enables an intuitive mechanism 

for LC-MS/MS-based screening approaches. Researchers observed that fragmentation of 

various GSH adducts produced repeating product ion patterns that could be monitored 

independently of the intact precursor mass.40,45,48 This discovery became a driving force 

in the characterization of drug detoxification products and other xenobiotic clearance 

mechanisms in human and animal models46,49 expanding our ability to understand the 

molecular mechanisms of chemical exposures and their interaction with physiological 

processes and pathways.  

Structure-oriented monitoring methods are employed for the detection of multiple 

classes of toxicologically or pharmacologically relevant compounds. In contrast to 

unbiased shotgun methodologies, structure-oriented monitoring utilizes prior knowledge 

of the elemental composition, structural moiety, or functional group characteristics to 

develop an analytical pipeline honed for the detection of a subset of compounds.50,51 

Fragmentation-based LC-MS/MS methods are routinely used to characterize phase I and 
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phase II metabolites such as cysteinyl,30,31,42,52,53 sulfate,43,54,55 or glucuronide conjugated 

products. 44,56,57 Additionally, discovery methods have been developed to monitor for 

specific classes of clinically relevant types of molecules by diagnostic fragmentation 

patterns, including: steroid hormones,58–60 covalently modified DNA and  RNA 

nucleosides,24,61–63 and small molecules or peptides exhibiting glycosylated, 

phosphorylated, or other distinct functional groups modifications.64–66 Early-stage drug 

discovery requires extensive characterization of drug metabolism, including descriptions 

of drug-related metabolites, potential reactive intermediaries, and degradation 

products.52,57,67 To characterize this array of metabolically diverse drug intermediates, 

structure-oriented monitoring approaches were developed to screen predictable 

transformations frequently occurring in vivo, such as hydroxylation, dehydrogenation, and 

demethylation, among other typical phase I or II conjugation reactions.68,69 These 

approaches have been used to discover numerous drug bi-products70–74 and nerve agents 

and their degradation products.75,76 

1.4 Innovations in LC-MS/MS Technology for Structure-Oriented Discovery 

The demand for class-specific monitoring approaches drove the development of 

multiple innovations in LC-MS/MS technology. The following sections review the concept 

of structure-oriented LC-MS approaches and the analytical paradigms possible for 

monitoring compounds through elemental, structural moiety, or functional group similarity. 

The five most common approaches are discussed, including (1) constant ion monitoring, 

(2) fragmentation filtering, (3) in-source fragmentation, (4) mass defect filtering, and (5) 

isotope pattern filtering. These approaches represent a combination of instrument-

dependent monitoring techniques and post-hoc computational filtering processes. Only 

some of these methods are universally applicable to all LC-MS/MS instrument platforms; 
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however, the simultaneous application of one or more of these techniques maximizes the 

coverage of complex matrices. Finally, a perspective on the shared challenges of the field 

and prospective areas of development is discussed. 

1.4.1 Structural-Oriented Screening Concept 

The causal relationship between molecular structure and MS/MS fragmentation 

patterns forms a foundational principle of mass spectrometry.39,72 Upon disassociation in 

the collision zone of the instrument, ionized compounds fragment in complex but 

reproducible patterns dependent on the activation technique, such as collision-induced 

dissociation (CID) and higher-energy collision dissociation (HCD). Typically, molecular 

dissociation occurs at labile chemical bonds, cleaving the precursor species along its 

proverbial weak points.77,78 Strong covalent bonds may be dissociated with higher 

energetics to fully fragment the entire precursor structure.78 The observed fragmentation 

patterns are ascribable to the originating compounds and descriptive of their molecular 

moiety. In conventional metabolomics workflow, these acquired MS/MS spectra are 

queried against a reference spectral library to infer chemical identity.79 With limited 

chemical and spectral libraries cataloguing the expanse of modified biomolecules, 

secondary metabolites, and xenobiotics, alternative methods must be used to discriminate 

target molecules of interest from unrelated metabolites.  

Shared patterns in fragmentation are often exhibited among species with related 

structural moiety and functional groups (Table 1.1). A class of compounds typically 

produces common neutral loss and fragment ions based on similarities in their core 

structure,52,63,80,81 as illustrated by the following examples. Glycerophospholipids may be 

reliably distinguished by the neutral loss of a polar head group, such as the loss of a 

phosphocholine (183 Da)82 or phosphoethanolamine (141 Da)83 structural moiety. 
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Modified DNA nucleosides have been historically monitored by the neutral loss of 

deoxyribose (116 Da) structural moiety, regardless of the nucleic acid base.23,61 

Glucuronide-conjugated metabolites excreted in urine are commonly detected using 

multiple fragmentation pattern-based approaches, including the neutral loss of 

glucuronide moiety  (176 Da), dehydrogenated equivalent (194 Da), and the observation 

of various diagnostic fragment ions in either positive  (177 m/z, 159 m/z, 141 m/z) or 

negative (113 m/z, 85 m/z, 75 m/z) ion modes.44,56,84 The combination of multiple 

fragmentation patterns is often used to expand the breadth of coverage of a discovery 

assay or improve the specificity to limit false positive hits.  

It is important to acknowledge that not all structural moieties are amenable to LC-MS 

monitoring. The neutral loss of small functional groups such as hydroxyl and amino groups 

is ubiquitous among many chemical species. More extensive moieties that encompass the 

core of the structural backbone may be challenging to fragment reproducibly without 

specialized energetics to prevent further dissociation into smaller fragment ions in the 

collision cell. Finally, when monitoring for the detection of a fragment ion of a characteristic 

moiety, the ion in question must be ionizable. For electrospray ionization, the molecule 

must possess suitable electrophilic or nucleophilic sites to promote efficient ionization. The 

use of chemical derivatization can improve the stability and ionization efficiency of 

selected compounds. Using selective reagents, chemical derivatization may serve an 

additional purpose and enable monitoring of annealed functional groups or protecting 

groups.85,86 Often, no shared fragmentation patterns exist to describe a group of 

chemically-related compounds prohibiting application of fragmentation monitoring 

approaches. Alternative monitoring methods are routinely used to facilitate molecular 

screening using unique characteristics of the target class of compounds. The breakdown 

and degradation products of numerous classes of drugs and metabolites are well-
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described and readily monitorable without explicit fragmentation events. Similarly, isotope 

pattern tracing enables screening for compounds with unique elemental compositions. 

Many essential trace elements exhibit unique natural isotope patterns distinguishing their 

detection from background metabolites.70 

1.4.1 Constant Neutral Loss and Precursor Ion Scan Monitoring 

In quantitative small molecule analytics, multiple reaction monitoring (MRM) using 

triple quadrupole mass spectrometers represents a powerful technique for sensitive 

metabolic profiling (Figure 1.3A). In the first quadrupole (Q1), a select precursor m/z is 

isolated and transmitted to the collision cell (Q2) for fragmentation. The third quadrupole 

(Q3) is set to monitor a defined fragment ion m/z to be detected by the final ion detection 

system. While many analytical applications of triple quadrupole-based platforms utilize 

only targeted MRM applications, alternative acquisition modes enable unbiased ion 

detection over a wide mass range. Configuring the quadrupole to scanning mode enables 

the transmission of the multiple ion masses through Q1 or Q3 providing a survey of 

multiple compounds in a complex mixture. Application of these scanning modes in specific 

configurations enable the discovery of molecules with shared molecular substructures via 

shared neutral loss or product ion formation.  
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Table 1.1 - Common Diagnostic Fragmentation Patterns of Toxicologically Relevant Compounds 

Metabolite Class Neutral 
Loss Moiety Loss Accurate Mass 

of Neutral Loss Product Ion (+/-) Accurate Mass of Product 
Ion 

Glutathione 
Adducts45,87 

C5H7NO3 Pyroglutamic acid 129.0426 C10H13N3O6- 272.0888 

   C10H11N3O5- 254.0782 

Mercapturic Acid 
Conjugates31,42 

C5H7NO3 N-Acetyl-L-Cysteine 129.0426 C5H8NO3S- 162.0225 
   C5H6NO3- 128.0348 
   C4H6NO- 84.0450 
   C2H4NO2- 74.0242 

Glucuronide 
Conjugates44,56 

C6H8O6 Glucuronide 176.0321 C5H6O3- 113.0244 
C6H10O7 Dehydrated Glucuronide 194.0427 C4H6O2- 85.02948 

  C2H3O3- 75.0082 

Sulfate 
Conjugates54 

SO3 Sulfate 79.9568 HSO4- 96.9595 
   HSO3- 80.9646 
   SO3- 79.9568 

Covalently 
Modified 

Nucleosides 61,62,88 

C5H5N5O Guanine 151.0494 C5H5N5O+ 152.0567 
C5H5N5 Adenine 135.0545 C5H5N5+ 136.0618 
C5H8O4 Ribose 132.0423 C5H6N2O2+ 127.0502 

C5H6N2O2 Thymine 126.0429 C4H5N3O+ 112.0506 
C5H8O3 Deoxyribose 116.0473   

C4H5N3O Cytosine 111.0433   
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Constant neutral loss (CNL) monitoring is a popular approach for the 

characterization of unknown compounds that utilizes a precursor-product neutral loss 

offset to scan an m/z range for molecules of interest (Figure 1.3B).26,30,52,62 In this scan 

mode, Q1 scans over a range of m/z values, typically set at 1 Da intervals. Following 

fragmentation, Q3 also scans over a mass range with fixed intervals defined by neutral 

loss offset between the precursor Q1 isolation. Using the CNL scan mode, a diagnostic 

neutral loss may be monitored over a chromatographic gradient in which the detected 

peaks represent ions that potentially exhibit a structural moiety or functional group of 

interest. Precursor ion (PI) monitoring scans a defined precursor m/z range but transmits 

a fixed product ion mass to the detector (Figure 1.3C).54,56,86 Similar to CNL monitoring, 

Q1 scans over a m/z range in 1 Da intervals; however, in PI monitoring, Q3 is set to isolate 

and detect a fixed fragment ion mass. Using the PI scan mode, chromatographic peaks 

represent compounds that possess a distinctive structural fragment descriptive of the 

origin molecule class. Using a triple quadrupole platform, the simultaneous application of 

a CNL or PI experiment for small molecule discovery with product ion scanning for 

structural annotation is challenging. Hybrid triple quadrupole-linear ion trap mass 

spectrometers overcome this limitation by the unique properties of the Q3 linear ion trap 

mass analyzer. At the cost of sensitivity, detected peaks from a CNL or PI experiment may 

be isolated for a full fragment scan to infer chemical identity.42 
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Figure 1.3 - Triple quadrupole scan types for structure-oriented monitoring. (A) Multiple reaction 

monitoring on defined target. Q1 and Q3 isolate a fixed mass for selected ion monitoring. Each 

duty cycle repeats this isolation schema. (B) Constant neutral loss scan. Q1 scans over a mass 

range and Q3 scans over a mass range using neutral loss-derived offset from the precursor 

isolation mass. Each duty cycle the isolation mass of Q1 and Q3 are incremented by 1 Da. (C) 

Precursor ion scan. Q1 scans over a mass range and Q3 isolates a fixed ion mass. Each duty 

cycle the isolation mass of Q1 is incremented 1 Da while Q3 remains fixed. 

There are a multitude of applications of CNL and PI monitoring in the fields of 

toxicology, pharmacology, and drug discovery. Xenobiotics, endogenous chemicals, and 

drug intermediaries are reported to react with DNA, proteins, and host metabolic 

processes in living organisms.89–91 The reactive tendency of these toxins impedes the 

ability to monitor their concentration in biological systems directly but the analysis of the 

adducted and trapped bi-products are commonly employed to monitor for exposures.45,92 

Analysis of GSH-trapped reactive metabolites via CNL monitoring of the pyroglutamic acid 

moiety (129 Da)40,93 and PI monitoring of the γ-glutamyl-dehydroalanyl-glycine fragment 
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in negative ion mode (272 m/z)94,95 has been employed to measure reactive metabolites 

in urine derived from xenobiotics,40 cigarette smoke,96,97 drug-induced toxicity.45,48,93–95,98 

Further transformation of GSH via transpeptidase cleavage and subsequent acetylation 

produce mercapturic acids-conjugates that are commonly assessed via CNL monitoring 

to evaluate reactive metabolite exposure.30,42,52,99 Biomonitoring of phase II metabolites 

produced through glucuronidation56,84,99,100 and sulfation54,55 processes are routinely 

monitored through CNL and PI approaches. Chemical detoxification is finite with non-trivial 

levels of various reactive metabolites interacting with host systems by means of covalent 

modification. Covalently modified RNA and DNA are routinely monitored to assess the 

long-term health burdens of chemical toxicity on biological systems. Monitoring of the 

diagnostic neutral loss of the ribose and deoxyribose moieties in hydrolyzed RNA and 

DNA, respectively, provide a powerful approach for the unbiased characterization of the 

epigenetic and carcinogenic impacts of harmful chemical exposure.26,62 

The development and application of CNL and PI monitoring techniques greatly 

expanded the understanding of the multitude of conjugation and bi-products produced by 

chemical exposure events and their association with clinical phenotypes. While a powerful 

analytical technique, there are several important limitations of CNL and PI-based 

discovery LC-MS/MS approaches. The low-resolution mass detection of quadrupole mass 

analyzers restricts precise elemental composition calculations of putative hits. 

Subsequently, the low mass specificity increases the false discovery potential of CNL and 

PI approaches in comparison to high resolution mass spectrometry-based techniques.47 

The use of multiple diagnostic neutral loss or fragment ions reduces the false discovery 

potential of an assay but the inclusion of multiple monitors limits the effective duty cycle 

of these experiments.101 Despite these limitations, CNL and PI monitoring approaches 

continue to see regular applications in many research settings.  
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1.4.2 Fragmentation Filtering with Data Dependent and Data Independent 

Acquisition 

Improvements in the scan rate and sensitivity of high-resolution mass spectrometry 

(HRMS) have expanded its potential for discovery metabolomics and small molecule 

analytics. Using the data dependent acquisition (DDA) scan mode, independent precursor 

ions are selected for isolation and fragmentation in an intensity-dependent manner over 

the course of an LC-MS/MS experiment. In a classical shotgun metabolomics experiment, 

these observed product ion spectra are queried against a reference library to infer 

chemical identity.79 Library entries for modified biomolecules, secondary metabolites, and 

natural products are limited and require extensive manual curation to obtain structural 

information. Post-acquisition fragmentation filtering can be used to monitor relevant 

precursor-product ion relationships that serve as diagnostic signals for the detection of the 

analyte type of interest. High mass accuracy and full fragment ion scans offer improved 

specificity for structure-oriented monitoring and comprehensive chemical annotation.47 

Fragmentation filtering in DDA-LC-MS/MS experiments serves as an effective 

curation tool to monitor diagnostic fragmentation patterns amongst the thousands of 

detected ions.47,63,72,102,103 Acquired MS/MS spectra are systematically monitored for 

defined relationships between the isolated precursor ion m/z and observed fragmentation 

patterns using stringent mass tolerance filters (Figure 1.4A). Several software tools are 

available for applying fragmentation filtering, including vendor-specific solutions, such as 

Compound Discoverer (Thermo Scientific) and UNIFI (Waters) or open-source 

alternatives like MZmine104 and Neutral Loss MSFinder.81 However, many research 

applications of fragmentation filtering utilize custom in-house software69,105 or strictly 

dependent on manual curation.88 Applications of fragmentation filtering have proven 



20 
 

beneficial in deconvoluting the chemical complexity of many matrices throughout 

toxicology, pharmacology, and drug discovery. Similar to constant ion monitoring 

approaches, exact mass fragmentation filtering approaches are used to monitor for 

glutathione conjugates to monitor phase I metabolites associated with drug metabolism 

and hazardous chemical exposures.47,67,101 Contemporary fragmentation filtering 

approaches for monitoring covalently modified DNA and RNA leverage high mass 

accuracy and multi-stage activation MSn spectra for more specific compound 

annotation.20,24,63 Fragmentation filtering has proven a powerful tool in the discovery of 

many classes of natural products with potential health, environmental, and economic 

benefits. There is increasing interest in characterizing the natural products of traditional 

medicines and multiple methods have been developed to survey the broad spectrum of 

expanse of therapeutically relevant compounds, including: chlorogenic acids,106 

quinochalcone C-glycosides,107 and malonylginsenosides.37 

The scan rate of modern instrumentation is insufficient to simultaneously isolate 

and fragment the hundreds of molecular ions that co-elute during an LC-MS/MS analysis 

of a complex matrix. Development of data independent acquisition (DIA) approaches aim 

to overcome this limitation by incrementally performing wide-window precursor isolation 

scans over an experimental duty cycle, fragmenting all molecular ions in the mass range. 

108 Current computational pipelines aim to extract the numerous intact precursor ion peaks 

from the LC-MS full scan spectra and match them to any co-eluting diagnostic fragment 

ion peaks produced from the corresponding wide-window isolation MS2 spectra to detect 

target analytes of interest (Figure 1.4B).109,110 Application of structure-oriented monitoring 

techniques to DIA acquisition approaches are beginning to emerge with promising 

outcomes for trace-level discovery. Independent experiments have demonstrated its 

applicability for the discovery of covalently modified DNA,111 mercapturic acid 
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conjugates,53 and glucuronide conjugates.44 A thorough comparison of DDA- and DIA-LC-

MS/MS approaches has not been evaluated for clinically-relevant molecular classes. 

Internal evaluations conducted in the authors’ laboratories suggest that these techniques 

are complementary, with DDA- and DIA-based acquisition approaches providing 

comparable results, but each offers a unique subset of putative targets of interest. 

 

Figure 1.4 - LC-MS/MS acquisition paradigms for fragmentation filtering. (A) LC-DDA-MS/MS 

acquisition design. Results are collected using an intensity-dependent selection of precursors over 

the full precursor mass range. Acquired MS/MS are monitored for fragmentation patterns and 

precursor ions of interested are extracted for downstream processing. (B) LC-DIA-MS/MS 

acquisition design. Results are collected over a selected precursor mass range with wide-window 

isolation MS/MS acquisition. Precursor-product ion pairs of interest are detected and monitored 

for chromatographic alignment. 
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Although fragmentation filtering approaches offer strong specificity and flexibility 

for the discovery of novel and undescribed biomolecules in association with chemical 

exposure and drug metabolism, they also come with limitations. Not all chemical species 

exhibit diagnostic fragmentation patterns. In some cases, critical fragment ions formation 

rate is below the instrument’s limit of detection. In high complexity matrices exhibiting large 

dynamic range application of fragmentation filtering can be challenging. For DDA-based 

approaches, the application of fragmentation filtering is dependent on the collection of 

tandem mass spectrum on precursors of interest. Many potential hits may fail to trigger a 

fragmentation event in a high complexity matrix excluding the possibility for fragmentation 

monitoring.112 Contemporary DIA-based methods claim to overcome this obstacle with 

wide-window isolation strategies but face analogous challenges in high complexity 

matrices. Simultaneous fragmentation of large packets of ions in high dynamic range 

samples may distort fragment ion abundance complicating chemical annotation of 

unknown molecules.112 In DIA-based fragmentation filtering approaches, wide window 

fragmentation can also increase the risk of false detection by erroneous misassignment 

of unrelated fragment ions to a precursor of interest.44 

1.4.3 In-Source Collision-Induced Dissociation 

In-source fragmentation is an often-unavoidable aspect of electrospray ionization 

that occurs as ions travel from atmospheric pressure at the ion source to the near vacuum 

of the mass analyzer. Under ideal conditions, electrospray ionization predominantly 

produces intact protonated or deprotonated molecular ions; however, a wide range of ion 

source fragments may form during transmission, largely dependent on the configuration 

and values of the ion optic voltages.113,114 The loss of labile functional groups such as 

hydroxyl- (18 Da) and amine-groups (17 Da) are commonly observed derivatives from 
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electrospray ionization of small molecule metabolites but substantially larger structural 

rearrangements are reported.115 Researchers observed that the compilation of these in-

source fragments resembled CID fragment spectra patterns produced using low activation 

energies (Figure 1.5A).113,116 This front-end fragmentation strategy, commonly referred to 

as in-source collision-induced dissociation (ISCID), provides valuable structural 

information without the requirement of conditional precursor isolation using in 

contemporary LC-MS/MS acquisition paradigms. Labile functional groups and other 

readily observed fragmentation patterns can be monitored directly in the survey scan of a 

discovery experiment to infer chemical identity. Optimizing ion optics energetics enables 

structure-oriented monitoring to discover compound classes that reproducibly produce 

diagnostic in-source fragment ions.45,64,75 In contrast to constant ion monitoring or 

fragmentation filtering approaches, ISCID approaches to structure-oriented monitoring are 

not dependent on collision cell-based fragmentation of precursor molecules. As a front-

end ionization-based discovery strategy, ISCID is an accessible monitoring approach 

compatible with multiple instrument configurations.  

As a non-selective fragmentation strategy, ISCID approaches produce partial 

fragmentation of multiple molecular ions simultaneously following ionization. While the  

observed fragmentation is often less complex than ion trap-type and beam-type CID 

activation,113,116 numerous fragment ions may be generated from a single molecular ion. 

Following source fragmentation, the resulting ion patterns must be deconvoluted to 

distinguish fragment signals produced from independent molecular ions co-eluting during 

an experiment (Figure 1.5B). In structure-oriented monitoring experiments, discovery of 

molecular signatures of interest requires the simultaneous detection of two or more peaks 

corresponding to an intact molecular ion and a diagnostic neutral loss or fragment ion 

species.81 In some vendor software, mass transitions between a molecular ion and in-
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source fragment ion may be specified to conditionally fragment molecular signatures of 

interest. The MS/MS spectra produced from in-source fragment ions are colloquially 

referred to as “pseudo-MS3” because they provide information on the substructure of an 

ion without using multistage activation.117 This isolation strategy is particularly beneficial 

for MS platforms without ion trapping capabilities, such as hybrid quadrupole-time of flight 

platforms, that are otherwise incapable of performing MSn fragmentation strategies. While 

many research applications of ISCID-LC-MS/MS for structural moiety monitoring focus on 

the detection of neutral loss transitions, diagnostic product ions may be monitored in a 

similar manner. Isolation of these fragments enhances the specificity of these assays, 

providing an extra level of discrimination in complex biological matrices.45 

Initial applications of ISCID primarily focused on the characterization of 

macromolecule modifications and forensically-relevant small molecule substances using 

direct analysis in real time (DART) methodology.118 With increasing adoption of HRMS 

technologies, LC-MS-based metabolomic and small molecule applications are increasing, 

notably in fields of clinical and forensic toxicology, environmental sciences, and natural 

products research. Using a constant ISCID ionization approach, researchers developed a 

selection ion monitoring (SIM) approach to trace the exact mass of deprotonated γ-

glutamyl-dehydroalanyl-glycine fragments (272.0888 m/z) of glutathione conjugates 

rivaling the sensitivity of PI monitoring on triple quadrupole-based instruments.45 

Analogous methods have been developed for the detection of glucuronide-conjugates.119 

Development of ISCID methods for the detection of drugs-of-abuse and other illicit 

substances associated with sporting regulations, including polysaccharide-based  plasma  

volume  expanders  dextran  and  hydroxyethyl  starch,120,121 rapid screening of drugs and 

toxicants in forensic toxicology settings,122,123 and many other broad coverage screening 

assays.124 Currently, applications of ISCID methods in toxicology, pharmacology, and drug 



25 
 

discovery are sparse. In plant biology, considerable development efforts are being 

invested for the characterization of therapeutically and commercially relevant natural 

products, such as, glycosylated secondary metabolites,66 ginsenoside-related natural 

products,37,125 and chlorogenic acid derivatives.126  A thorough evaluation of ISCID-based 

methodology to discover novel and undescribed toxicologically or pharmacological 

relevant compounds is needed. 

Structure-oriented monitoring using an ISCID approach offers a comprehensive 

and flexible approach to discover classes of compounds using diagnostic in-source 

fragment patterns. Not all chemical species are compatible with this front-end 

fragmentation approach and require higher CID or HCD collision energies to produce 

 

Figure 1.5 -  Acquisition design for ISCID on LC-ESI-MS platform. (A) Front-end ionization and ion 

optics without ISCID. (B) Front-end ionization and ion optics optimized for in-source fragmentation. 

(C) Reference spectra for modified DNA adduct HNE-dG with HCD activation at 0% collision 

energy, acquired from Mass Bank of North America (https://mona.fiehnlab.ucdavis.edu/). (D) Mass 

spectra of HNE-dG ion in hydrolyzed calf thymus DNA background. (E) Chromatographic alignment 

of intact HNE-dG precursor (m/z 424.2188, purple) and in-source fragment (m/z 308.1716, red). 

 



26 
 

informative patterns. Suitable energetics parameters have been described for several 

classes of compounds127 but optimizing these settings for previously unstudied classes 

represents a considerable undertaking. ISCID approaches risk false negative detection if 

comprehensive source voltages and ion optics parameters are not available for 

dissociation of the target class of molecule upon ionization. Additionally, application of 

source fragmentation approaches is challenging in high dynamic range matrices. 

Dissociation of ions at the source reduces the effective intensity in the acquired spectrum. 

ISCID approaches are less suitable for trace-level signatures observable near the 

detection limits of the instrument.121 These issues are compounded in high complexity 

matrices in which many ions are simultaneously dissociating at the source, potentially 

suppressing the signal of low intensity ions.  

1.4.4 Mass Defect Filtering 

The shared limitation of all fragmentation monitoring approaches is the need for 

reproducible and predictable disassociation patterns to discover unknown compounds of 

interest. Not all members of a chemical class will exhibit such properties and unpredictable 

fragmentation will occur despite a shared common substructure. Monitoring multiple 

fragmentation patterns can improve the breadth of coverage for a class of compounds but 

will decrease the specificity of such approaches. In the fields of pharmacology and drug 

discovery, these constraints limited application of fragmentation monitoring for the 

discovery of novel drug degradation and adduction products which exhibit greater 

fragmentation heterogeneity. With the expansion of HRMS into small molecule analytics, 

mass defect filtering (MDF) emerged as a contemporary method to discover structurally 

similar compounds not dependent on shared fragmentation patterns.68,73 This technique 

employs computational filtering based on a narrow mass range offset from nominal 
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masses observed for compounds of similar molecular formulas to selectively monitor for 

common and predictable structural modifications from a target compound (Figure 1.6A). 

MDF acts as a powerful denoising algorithm to enable sensitive detection of possible 

modifications of a target compound from unrelated background metabolites. As a 

computational method, MDF is not dependent on predefined instrument configurations to 

perform structure-oriented monitoring enabling flexible post-hoc applications and multiple 

MDF applications to expand coverage.69,71,128 

MDF utilizes the concept of fractional mass filtering to remove non-informative, 

background and interfering ions from a discovery LC-MS experiment.129 Modern HRMS 

platforms offer high mass resolution scan modes with many instruments capable of 

elemental composition analysis. With increases in mass accuracy, the fractional mass of 

an ion (the non-integral part of the m/z) became as important as the nominal mass for 

discriminating small molecules. Addition or subtraction of a functional group from a 

compound will not only modify its nominal mass but its fractional mass as well. The 

alteration in fractional mass, the mass defect, is an insightful marker when monitoring a 

target ion. Researchers observed that the mass defect of many common chemical 

modifications coalesced within 50 mDa of the origin compound.68 Hydroxylation, 

methylation, and many other common chemical transformations fall within this fractional 

mass filtering range (Table 2). Utilizing this observation, researchers proposed using a 

mass defect window to filter ions over a discrete m/z range.73,129 Only ions within the mass 

defect window pass through the filter to be utilized in downstream data processing and 

peak detection workflows (Figure 1.6B-E). Using a MDF approach, large volumes of data 

may be quickly curated to putative targets of interest theoretically associated with the 

origin compound of interest. Altered forms, modifications, and degradation products may 

be monitored simultaneously without the need for selected ion dissociation. Mass defect-
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triggered DDA acquisition is implemented in some vendor acquisition software to enable 

the collection of additional structural information in unbiased experiments.  

 

 

Figure 1.6 - Examples of mass defect filtering in LC-MS results. (A) MDF of precursor ion mass of 

unconjugated mercapturic acid in positive ion mode using a 50 mDa tolerance. Detected ions not 

observed in the highlighted window are discarded from the analysis. (B) Unaltered mass spectra 

of conjugated mercapturic acid, 3-HPMA at 222.0795 m/z. (C) Mass defect filtered spectra of 3-

HPMA. (D) Base peak chromatogram of global profiling of urine matrix. (E) Transformed base peak 

chromatogram of urine matrix using MDF on unconjugated mercapturic acid exact mass. 

 
Data mining applications of MDF are routinely practiced in many fields of the 

biological sciences, notably in drug discovery and natural products chemistry. The first 

application of MDF demonstrated the discovery of a novel drug-related species following 

reduction and methylation in a complex matrix73 and was gradually extended to many 

other drug discovery experiments.71,72,128,130–132 Utilizing MDF as a complementary 
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discovery technique has proven an effective tool when the structural modification distorts 

canonical fragmentation pathways. GSH-trapped reactive metabolites are traditionally 

screened using fragmentation-based screening approaches, such as CNL; however, 

distinct adduction species fail to produce diagnostic patterns. Partnering MDF with 

fragmentation-based approaches has demonstrated the ability to detect unique GSH 

adduct species missed using only fragmentation monitoring approaches.67,133,134 In the 

fields of exposomics, application of MDF has proven valuable for monitoring exposure of 

xenobiotics and other foreign chemicals through glucuronidation, cysteinylation, sulfation, 

or other phase I and phase II metabolites transformations.135–137 Application of MDF in 

natural products chemistry has proven impactful for the characterization of therapeutically 

relevant compounds in traditional medicines and flavor compounds in many food and 

beverages.69,138 

Applications of MDF span decades with discovery experiments providing valuable 

insights into drug metabolism, toxin clearance, and chemical composition of complex 

tissues and biofluids. With an expansive body of application reference, the limitations of 

MDF are well described68 and additional curation steps are required to remove unrelated 

chemical species from discovery results. The application of a 50 mDa fractional mass filter 

facilitates the curation of a discovery experiment toward molecules associated with a 

target of interest but many false positives will pass through this filter.68 Subsequent 

elemental composition analysis, MS/MS fragmentation-based curation, or isotope pattern 

analysis are required to disambiguate novel discoveries from the background 

metabolome. Additionally, using a stringent 50 mDa filter will restrict the discovery of many 

larger conjugation and adduction products expected in the metabolism of xenobiotics, 

drugs, or chemical toxins.129 The application of multiple defect filters will expand the 
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breadth of coverage of an MDF approach but will require increasing curation to mitigate 

the consequential increase in false positive detections. 

Table 1.2 - Common Phase I and Phase II Metabolic Transformations and Mass Defect Shifts 

Biotransformation Type Molecular 
Formula Change 

Exact Mass 
Change (Da) 

Mass 
Defect Shift 

(mDa) 
Decarboxylation [M-CO2] -43.9898 10.2 

De-ethylation [M-C2H4] -28.0313 -31.3 

De-methylation [M-CH2] -14.0157 -15.7 

Dehydrogenation [M-H2] -2.0156 -15.6 

Amination [M+NH-O] -0.9840 16 

Deamination [M+O-NH] 0.9840 -16 

Reduction [M+H2] 2.0156 15.6 

Methylation [M+CH2] 14.0157 15.7 

Oxidation [M+O] 15.9949 -5.1 

Dehydration [M-H2O] 18.0106 10.6 

Acetylation [M+C2H2O] 42.0101 10.1 

Glycine Conjugation [M+C2H3NO] 57.0215 21.5 

Sulfation [M+SO3] 79.9568 -43.2 

Taurine Conjugation [M+C2H5NO2S] 107.0041 4.1 

Glutamine Conjugation [M+C5H8N2O2] 128.0586 58.6 

Glucuronidation [M+C6H8O6] 176.0321 32.1 

Glutathione Conjugation [M+C10H15N3O6S] 305.0682 68.2 

1.4.5 Isotope Ratio Mass Spectrometry 

To perform the most thorough investigation into the chemical metabolism of 

xenobiotics the use of isotopically-labeled reference compounds is required. With the 

defined incorporation of stable-labeled isotopes (2H, 13C, 15N) the detection of novel and 

undescribed adduction or conjugation products may be intuitively monitored via isotope 

ratio mass spectrometry. Isotope pattern filtering (IPF) biases a discovery experiment to 

conjugated compounds or bi-products exhibiting distinct isotope patterns between the 
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detected monoisotopic molecular ions (M) and their stable-label incorporated forms (M+1, 

M+2). Application of IPF extends controlled experiments using stable isotope-labeled 

reference materials. Halogens and metal ions naturally possess multiple stable isotopic 

forms. Chlorine, bromine, iron, gallium, and other rare elements found in biomolecules 

exhibit multiple stable isotopic forms that occur in a distinct abundance. Isotope-driven 

discovery methods are routinely utilized to detect incorporation of rare elements chelated 

or conjugated to protein, DNA, RNA, or other metabolic intermediates. Isotope ratio mass 

spectrometry is a widespread approach used in multiple disciplines including food 

sciences,139,140 marine biology,141 toxicology,142 pharmacology,70 and natural products 

chemistry.143 

Utilizing the natural abundance of stable isotopes as a detection criterion forms the 

basis of IPF monitoring approaches. Stable-isotope ratios are highly reproducible 

properties of an element and represent a fundamental measurement of mass 

spectrometry. Common proteomic and metabolomic software monitor ion abundance 

when computing the isotopic envelope of a molecular ion to properly infer charge state 

and discriminate interfering signals. Analysis of biomolecules incorporated with stable-

labeled isotopes, halogens, or other trace elements requires modification of isotope 

detection heuristics to accommodate the impact of variable isotope occurrences. 

Restricting an analysis to ions exhibiting a defined ratio between select isotope pairs 

provides a quick mechanism for filtering shotgun experiments to a subset of putative 

targets. In a discovery context, the chemical formulas of molecules of interest are unknown 

and the observed isotope ratios often deviate from the expected values. Specifying 

suitable ratio tolerances enables isotope-driven discovery of a broader range of chemicals. 

Utilizing HRMS, high resolution mass differentials in isotope transitions, in addition to 

isotopic ratio filtering, may be used to increase specificity of an analysis.70 
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Isotope ratio mass spectrometry and IPF have been used to directly monitor stable 

isotope-labeled and natural stable isotopes for over 50 years. Utilizing isotopically-labeled 

GSH, multiple classes of drugs and reactive xenobiotic bi-products have been classified 

using an IPF strategy to monitor for explicit isotope ratios.144–148 Administration of stable 

isotope-labeled medications enables a more holistic approach for monitoring of drug 

metabolism, allowing for monitoring of multiple phase I and phase II conjugation 

products.70 Many oral medications and chemotherapeutics utilize halogenated or metal-

based functional groups to catalyze specific reactions. Brominated compounds exhibit two 

stable isotope forms (79Br and 81Br) in near equal proportions that may be directly 

monitored for facile detection of bromine-tagged products.149,150 Chelated metal 

complexes serve highly specialized tasks in biological organisms, including catalyzing 

enzymatic reactions, interaction intermediaries, and molecular scavengers. Detection of 

metallo-metabolites, metal complexes, and other metal-chelating metallophores may be 

detected using a stable isotope-driven discovery approach.149,151 

Isotope ratio mass spectrometry and IPF are routinely used throughout the 

analytical sciences to verify molecular signatures, guide the discovery of novel 

compounds, and validate putative ion assignments. Unavoidable barriers inhibit the 

application of isotope ratio-driven discovery approaches and prohibit its usage in many 

experiments. Acquisition and administration of stable-labeled drugs and xenobiotics often 

represent a design obstacle, requiring appropriate clearance and safeguards to ensure 

safe experimentation. Observational studies of occupational or lifestyle chemical 

exposures are often not amenable to isotope-driven discovery. While the analysis of 

natural stable isotopes remains a viable experimental design paradigm in many 
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exposomics experiments, the prevalence of such elements restricts IPF techniques to 

select experimental contexts.  

1.4.6 Combination of Multiple LC-MS/MS Characterization Methods 

Characterizing the overwhelming degree of complexity induced by chemical 

exposure is beyond the capacity of any singular analytical technique. Multiple structure-

oriented monitoring approaches have been developed to expand the discovery 

possibilities in an LC-MS/MS experiment. These approaches represent instrument-driven 

or computational techniques to guide the discovery of compounds exhibiting shared 

structural moiety, functional groups, or chemical composition. Each of these approaches 

possess unique strengths and limitations that restrict their detection capabilities to 

molecules exhibiting explicit characteristics (Table 1.3). To expand the coverage of 

discovery experiments, applying multiple structure-oriented monitoring approaches in 

tandem is becoming increasingly common. Using HRMS, fragmentation filtering, ISCID, 

mass defect filtering, and IPF can simultaneously be accomplished using a DDA or DIA 

discovery strategy. Constant neutral loss and precursor ion scanning approaches can also 

be combined with ISCID approaches for specific structural monitoring in pseudo-MS3 

screening approaches.  

As complementary analytical approaches, applying multiple structure-oriented 

monitoring methods can overcome the limitations of a select methodology.125 For example, 

each technique reviewed in this article has been used to characterize GSH adducts 

unbiasedly.40,45,47,94,133,144 Fragmentation filtering approaches monitoring the pyroglutamic 

moiety or γ-glutamyl-dehydroalanyl-glycine fragment ion are potent tools, but these 

disassociation patterns are not universal for GSH adducts. Simultaneous application of 

mass defect filtering can expand a discovery assay to detect novel products that may not 
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exhibit canonical fragmentation pathways.67 Combination of MDF with DIA-based 

fragmentation filtering can help reduce the burden of data processing an interpretation. 

Curating the total feature list to only precursors within the filtering window narrows the 

discovery space and lessens the time required to validate diagnostic precursor-fragment 

co-elution patterns. The simultaneous application of in-source fragmentation with 

fragmentation filtering-based validation has proven a valuable tool to minimize false 

discoveries by requiring putative targets to pass multiple discovery thresholds.37,45 The 

putative discovery target must exhibit a diagnostic ion pair following ISCID acquisition and 

exhibit the same fragmentation pattern following targeted mass difference acquisition of 

the prospective precursor compound. 

The combination of multiple structure-oriented monitoring approaches is 

unexplored in many fields of toxicology, pharmacology, and drug discovery. While these 

acquisition strategies and computational workflows represent powerful discovery tools, the 

limited resources available for automated data processing are a barrier to widespread 

application. Existing software and algorithms often exhibit poor compatibility to 

accommodate and utilize multiple sources of structural information. Standardization of 

acquisition and data processing workflows will aid the development of new software 

development for flexible data analysis. As with all small molecule analytics, the 

interpretation of discovery results produced from structure-oriented approaches proves a 

bottleneck in the analytical pipeline. Improved integration with emerging chemical 

annotation and structural prediction software is paramount for the continued development 

of these fields.
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Table 1.3 - Summary of Structure-Oriented LC-MS/MS Monitoring Approaches 

Discovery Method Strengths Weakness 

Constant Neutral Loss / 
Precursor Ion Monitoring 

• Sensitive fragmentation monitoring approach 
• Intuitive data interpretation 
• Accessible analytical technology 

• Low mass resolution (limited specificity) 
• Limited duty cycle to monitor multiple patterns 
• Acquisition of complete product ion scan requires additional 
acquisition 

Fragmentation Filtering 

• Highly specific compound discovery by high resolution 
mass filtering and ion isolation.  
• Post-hoc application and optimization of fragment 
detection parameters. 
• Direct collection of structural fragments improves 
downstream structural annotation and identification 

• Reduced performance in high complexity matrices with wide 
dynamic ranges 
• Limited duty cycle to acquire fragmentation spectra on all 
co-eluting ions (DDA only) 
• Complex data processing with considerable manual 
interpretation of results required (DIA only) 

In-Source Collision-
Induced Dissociation 

• Enables fragmentation-based discovery without precursor 
isolation event 
• Fragmentation of in-source fragments provides pseudo-
MS3 structural insights 
• Well-suited to labile moiety and functional groups 

• Optimization of ion optic energetics required 
• In-source fragmentation reduces absolute intensity and 
reduces ability to detect trace-level ions 
• Increases complexity of LC-MS results, increasing chance of 
false discovery detection 

Mass Defect Filtering 

• Discovery of related compounds not dependent on shared 
fragmentation pathways 
 • De-noising of raw LC-MS/MS results that improves manual 
interpretation and downstream processing 
• Selective fragmentation of precursors of interest improves 
information content of experiment 

• Extensive curation of results required 
• Discovery of compounds of interest outside mass defect 
window is impossible 
• Add-on instrument software is required to selectively 
fragment precursor ions in filter window 

Isotope Pattern Filtering 

• Specific compound discovery not dependent on shared 
fragmentation pathways 
• Comprehensive monitoring of exogenous chemicals and bi-
products in complex mixtures 
• Accessible data analysis and interpretation 

• Only compatible with natural molecules incorporated with 
select bioelements or metals 
• Application of stable-labeled isotopes is costly and not 
amenable to all experiment types.  
• Putative compounds of interest may exhibit isotope pattern 
ratios outside parameterized tolerances 
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1.5 Limitations of Current LC-MS/MS Analytical Workflows 

Limited data processing tools represent a critical barrier to the accessibility of 

focused LC-MS workflows. Structure-oriented acquisition and data processing are 

curation techniques for enhancing the detection and discrimination of ions of interest from 

a complex background matrix. Commercial and open-source software solutions are 

emerging to alleviate the burden of manual data processing, but considerable 

development is still required. Integrating these tools with emerging peak detection 

algorithms, downstream spectral library searching, and chemical annotation tools is 

paramount for expanding to any unexplored class of compounds. Ensuring the 

compatibility with multiple structure-oriented acquisition strategies and computational 

curation techniques will broaden the potential scope of these experiments.  

As with all small molecule analytics, chemical identification is a critical bottleneck 

in the focused LC-MS workflow. In contrast to metabolomic analysis of primary 

metabolites, the outcomes of many structure-oriented experiments are not expected to 

populate commercial or open-source spectral libraries. As such, inferring the identity of 

novel drug degradation products, undiscovered metabolite modifications, or rare natural 

products is almost entirely dependent on manual spectral annotation. Additionally, each 

approach discussed in this review is susceptible to false discovery driven by electrical 

noise, background contaminant signals, or unrelated isomeric or isobaric structural moiety 

or functional groups. Improvements to predictive spectra annotation tools152,153 or spectral 

scoring tools that quickly filter poor quality results will greatly improve the outcomes of 

structure-driven experimentation.154 

Development of community-driven data-sharing guidelines represent a paradigm 

shift in the mass spectrometry community. Important data mining technological advances 
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enable spectral annotation of uncommon metabolites and natural products through 

spectral similarity searching and spectral networking approaches. Only select research 

journals and periodicals require disseminating raw results as part of the FAIR (findable, 

accessible, interpretable, and reusable) data management guiding principles.155 Few 

metabolomic studies utilize publicly available repositories to document results, and 

archival of structure-oriented discovery experiments is even rarer. Improving the 

accessibility and reusability of spectral results from structure-oriented LC-MS experiments 

offer a promising mechanism for elucidating structural information of rarely studied 

metabolic signatures.  

  



38 
 

1.6 Conclusion and Thesis Goals 

Development of a universal metabolic profiling technique is beyond the scope of 

current analytical technology.  The tremendous chemical diversity and high dynamic 

abundance range of all molecular species in a complex biological specimen prevent their 

direct analysis. To overcome these limitations, systematic methodologies are continually 

being developed to provide comprehensive characterization of discrete aspects of 

metabolism and molecular physiology. The compartmentalization of metabolomics has 

given rise to new analytical methods that focus on the detection of defined classes of 

chemicals, monitoring specific metabolic processes, or describing outcomes of chemical 

interactions. Structure-oriented LC-MS methodology expands the sensitivity and 

specificity of discovery assays for the characterization of structurally related chemical 

species in complex matrices. Monitoring common fragmentation pathways, predictable 

modifications, or shared elemental composition enables the rapid differentiation of ions of 

interest from the surrounding background matrix. These methods are well suited for the 

characterization of uncommon molecular signatures often overlooked in standard 

metabolomic workflows.  

The development of structure-oriented methods expands the versatility of LC-MS 

analytical platforms for the characterization of the outlying elements of metabolism. Rare 

and trace-level compounds, otherwise missed in shotgun metabolomics approaches, 

require an expanded repertoire of analytical techniques to ensure their detection in 

complex matrices. Continued improvements to LC-MS technologies and computational 

workflows are required to increase the detection rates of trace analytes in complex 

mixtures. In Chapter 2 of this Thesis, a novel computational workflow for the automated 

detection of DNA adducts is presented. The development of the DFBuilder module63 in 
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MZmine provides a parameterized implementation of fragmentation filtering to LC-MS/MS 

experiments. The application of this module for the discovery of undescribed DNA adducts 

is discussed. Chapter 3 of this Thesis introduces a novel analytical workflow for the 

unbiased detection of urinary mercapturic acids. This workflow combines a novel LC-

MS/MS analytical method in conjugation with the combined application of fragmentation 

filtering and MDF. The application of this workflow to characterize mercapturic acids 

associated with cigarette use is discussed. In Chapter 4 of this Thesis discusses current 

computational methods for the characterization and annotation of unknown chemical 

signatures. Using natural product reference material and spectral tree MSn acquisition, 

emerging algorithms to predict chemical structures are reviewed. In the final chapter of 

the thesis provides a perspective on the state of analytical approaches used in systems 

toxicology and the future directions of the field. Emerging computational methods and their 

potential applications for the detection of the molecular biomarkers of exposure are 

discussed.  
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Chapter 2: Extension of Diagnostic Fragmentation Filtering for Automated 
Discovery in DNA Adductomics 

 
The following chapter introduces a novel MZmine module for the automated processing 

of structure-oriented LC-MS/MS results by fragmentation filtering. The original article was 

authored by Kevin Murray and edited with the assistance of all co-authors. 

Murray, K. J.; Carlson, E. S.; Stornetta, A.; Balskus, E. P.; Villalta, P. W.; Balbo, S. 

Extension of Diagnostic Fragmentation Filtering for Automated Discovery in DNA 

Adductomics. Anal. Chem. 2021, 93 (14), 5754–5762. 

https://doi.org/10.1021/acs.analchem.0c04895. 
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2.1 Introduction 

Exposures to most genotoxic chemicals induce covalent modifications of DNA that, 

when not repaired, represent a major risk factor for disease pathogenesis and the 

development of cancer.156–159 A wide array of distinct adduction products result from 

alkylation, oxidation, and deamination reactions involving modifying agents.160 The 

simultaneous identification of multiple DNA adducts in complex biological matrices 

represents a major bottleneck for the comprehensive investigation of the genotoxic effects 

of exposures. The high sensitivity and structural elucidation capability of LC-MS/MS 

enables the rapid characterization of known and unknown modifications.25,159,161 

Application of this technology for the discovery of DNA modifications led to the 

development of DNA adductomics, a systems biology approach designed to identify and 

annotate the multitude of known and novel adduction products induced by the effects of 

the combination of harmful exposures on DNA.23 

A variety of LC-MS/MS techniques may be applied to characterize DNA adducts 

present in common biological samples, including tissues, blood, or cell cultures.23 Prior to 

analysis, DNA is isolated—typically hydrolyzed to nucleosides—enriched, and purified to 

ensure sufficient signal for MS analysis. Often, clean-up steps such as solid phase 

extraction are used to remove unmodified bases and other sample components that 

confound the results.162 The most common LC-MS/MS techniques for DNA adducts 

analysis monitor known adduct precursor-to-product ion transitions using selected 

reaction monitoring or parallel reaction monitoring experiments.163 Although offering high 

sensitivity for quantitation of low abundant ions, these techniques require an a priori 

defined precursor mass, precluding the detection of novel DNA adducts.159,161 

Alternatively, untargeted screening of precursor-product ion transitions is increasingly 
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applied for the unbiased assessment of complex matrices. It has been observed that the 

neutral loss of the 2´-deoxyribose moiety during collision CID is a highly selective 

signature of deoxynucleosides.164 Monitoring this predictable fragmentation pattern via 

CNL scans serves as the foundation of many DNA adductomic strategies, including DIA 

and DDA methodologies. A DIA approach provides near-full coverage of complex matrices 

by simultaneously assessing multiple compound fragmentation patterns using wide-

window precursor isolation.111 These techniques, however, offer limited structural 

information of low abundant ions. Additionally, DIA methods are prone to false discovery 

resulting from the co-fragmentation of multiple ion species in each successive MS/MS 

scan.165 Robust sample-specific spectrum libraries ease the deconvolution and detection 

of putative DNA adducts but the generation of these libraries require considerable time 

and effort. DDA strategies provide more precursor structural information necessary for 

compound identification. However, insufficient scanning speed of complex sample 

matrices limits the ability of this approach to fragment low abundance ions and discovery 

of trace-level adducts.111 

A DDA-CNL-MS3 DNA adductomic approach with high-resolution/accurate mass 

MSn fragmentation has recently been developed.88,161 The structural elucidation potential 

offered by MS2 and MS3 fragmentation provides valuable insight into unknown 

modifications and simultaneously controls for false-positive detection using accurate mass 

monitoring. However, the success of this approach has been limited by the traditional data 

analysis strategy, which uses the appearance of an MS3 event as an indicator of a putative 

DNA adduct. This approach limits the flexibility of the methodology because alternative 

neutral losses and product ions in the MS2 spectra cannot be identified and is dependent 

upon the fidelity of the instrument in the triggering of the MS3 data acquisition upon 

observation of the criteria neutral loss.  
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Diagnostic fragmentation filtering is a computational method that closely 

resembles CNL-MS/MS data acquisition methods.102 The algorithm searches for the 

presence of diagnostic pattern in all MS2 spectra, exporting the corresponding precursors 

of interest. In contrast to instrument CNL methods, diagnostic fragmentation filtering is 

applied post-acquisition and facilitates repeated analysis with new fragmentation patterns 

without the need for sample re-injection. Application of this approach in the field of 

microbial natural products chemistry demonstrated the potential of fragmentation 

monitoring to detect known and novel products in complex biological matrices.102 Similarly, 

diagnostic fragmentation scanning approaches are utilized in LC-MS/MS proteomics to 

characterize peptides and proteins with complex post-translational modifications, such as 

glycopeptides.166,167 To the best of our knowledge, application of diagnostic fragmentation 

filtering for the discovery of DNA adducts is yet to be explored. Instrument-independent 

data analysis for DNA adducts overcomes the limitations of previous screening strategies 

and enhances the application of DNA adductomics to new experiments. 

In this study, we adapted the diagnostic fragmentation filtering approach to enable 

an automatic data processing workflow for the discovery of DNA adducts using a newly 

developed MZmine module,168 called DFBuilder. The module scans all input LC-MS/MS 

spectra for any number of user-specified fragmentation patterns and exports a feature list 

of targeted-extracted ion chromatograms (EIC) for precursors of interest. The resulting 

feature lists are further processed to ensure only high-quality peaks remain and any 

detected duplicate, isotope, and in-source fragments are removed. The strength of our 

workflow is its capacity for fully automated and reproducible data analysis via batch 

processing relative to manual processing. All workflow components and corresponding 

parameterization are saved in an XML file, which can be easily reprocessed or shared 

between experiments.168 Our approach is only dependent on computer processing 
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resources and enables the scaling up of experimental designs that would otherwise 

require days of manual data processing time. Here, we establish the effectiveness of our 

workflow for the automated discovery of DNA adducts and demonstrate its potential to 

expand screening strategies in future experiments.  

2.2 Experimental Section 

2.2.1 Chemical Standard Mixture 

O6-Methyl-2´-deoxyguanosine (O6-me-dG) (1), 8-oxo-7, 8-dihydro-2´- 

deoxyguanosine (8-oxo-dG) (2), N6-hydroxymethyldeoxyadenosine (N6-Me-dA) (6), 1, N6-

etheno-2´-deoxyadenosine (ε-dA) (7) were purchased from Sigma-Aldrich (St. Louis, MO). 

N2-Ethyl-2´-deoxyguanosine (N2-ethyl-dG) (3), (6R/S)-3-(2´-deoxyribos-1´-yl)- 5,6,7,8-

tetrahydro-6-hydroxypyrimido[1,2-a]-purine-10(3H)one (OH-PdG) (4) and  O2-[4-(3-

pyridyl)-4-oxobut-1-yl]thymidine (O2-POB-dT) (8), D5-ethyl-2´-deoxycytidine (D5-ethyl-dC) 

(9) were prepared as described.169–172 6-(1-Hydroxyhexanyl)-8-hydroxy-1, N2-propano-2´-

deoxyguansine (HNE-dG) (5) was generously donated by Dr. Fung-Lung Chung of 

Georgetown University Medical Center. The nine standards were dissolved in 20% 

methanol and combined at a final concentration of 10 fmol/µL, respectively. The standards 

mixture was prepared in triplicate for LC-MS analysis. All solvents were LC-MS grade and 

were purchased from Sigma-Aldrich. 

2.2.2 DNA from HeLa Cells Exposed to pks+ E. coli 

The previously acquired data was obtained with permission and a complete 

research protocol has been previously described.173 The BACpks island (pks+) and empty 

pBeloBAC (pks-) bacterial artificial chromosomes were used to generate derivative parent 

strains of E. coli harboring colibactin biosynthesis genes. HeLa cells were transiently 
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infected with each strain and genomic DNA was isolated for DDA-CNL-MS3 analysis. 

Results from the DNA adductomics analysis of one replicate of pks+ and pks- were used 

in the DFBuilder workflow. 

2.2.3 LC-MS Parameters 

All analyses were conducted using identical chromatographic conditions and MS 

instrument settings, unless otherwise described. An UltiMate™ 3000 RSLCnano HPLC 

system (Thermo Scientific, Waltham, MA) was interfaced to an Orbitrap Fusion™ Tribrid™ 

MS (Thermo Fisher Scientific, San Jose, CA). One microliter of the authentic DNA 

standard mixture and five microliters of E. Coli DNA extracts were injected onto the 

analytical platform equipped with a 5 µL injection loop. Solvent blanks were analyzed 

before and after acquisition to assess contamination and sample carryover between 

injections. Chromatographic separation was performed using a custom-packed capillary 

column (75 µm ID, 20 cm length, 10 µm orifice) using a commercially available fused-silica 

emitter (New Objective, Woburn MA) containing Luna C18 (Phenomenex Corp. Torrance, 

CA) stationary phase (5 µm, 120 Å). The LC solvents were (A) 0.05% HCO2H in H2O and 

(B) CH3CN solutions. The flow rate was 1000 nL/min for 5.5 min at 2% B, then decreased 

to 300 nL/min with a 25 min linear gradient from 2 to 50% B, an increase to 98% B in 1 

min, with a 4 min hold and a 5 min equilibration at 1000 nL/min to the starting conditions. 

The injection valve was switched at 5.5 min to remove the sample loop from the flow path 

during the gradient.  A Nanospray Flex ion source (Thermo Fisher Scientific) was used 

with a source voltage of 2.2 kV and capillary temperature of 300°C. The S-Lens RF level 

setting was 60%. 

Untargeted DDA-CNL-MS3 analyses were performed with full-scan detection 

followed by MS2 acquisition and constant neutral loss triggering of MS3 fragmentation. 
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Full-scan detection was performed using the Orbitrap detection at a resolution of 60,000, 

automatic gain control (AGC) targeted setting of 2 × 105, and a maximum ion injection time 

setting of 118 ms. Full scan ranges of 300 – 1000 m/z and 150 – 1000 m/z were used for 

the pks+ infected cells and the authentic standards, respectively. MS2 spectra were 

acquired with quadrupole isolation of 1.5 m/z, fragmentation of the top 10 most intense full 

scan ions with Orbitrap detection at a resolution of 15,000, an AGC setting of 5 × 104, and 

a maximum ion injection time of 200 ms.  The analysis of authentic standards utilized CID 

fragmentation with a constant collision energy of 30% and maximum ion injection time of 

75 ms. The analysis of pks+ infected cells utilized a HCD fragmentation with a stepped 

collision energy of 5%, 15%, and 25% and maximum ion injection time of 200 ms. Data-

dependent parameters were as follows: a triggering threshold of 2.0 × 104, repeat count 

of 1, exclusion duration of 15 s. An exclusion mass list of the most intense ions observed 

in calf thymus DNA (ctDNA) were excluded from fragmentation in the analysis of HeLa 

cells treated with pks+ E. coli (±5 ppm). No masses were excluded in the analysis of the 

authentic standards. MS3 HCD fragmentation scans (2.5 m/z isolation width, collision 

energy of 30%) with Orbitrap detection at a resolution of 15,000 was triggered upon 

observation of neutral losses of 116.0474, 151.0494, 135.0545, 126.0429 and 111.0433 

m/z. A minimal product ion signal of 1.0 × 104 was used. All spectra were acquired with 

the EASY-IC lock mass (202.0777 m/z) enabled. 

2.2.4 Data Processing 

Raw data files were converted to mzML format and centroid mode using 

MSConvert (ProteoWizard) and imported into MZmine.168,174 All MZmine data processing 

utilized a mass tolerance of 5 ppm. Automated detection of DNA adducts was performed 

using the DFBuilder module. Data-dependent DFBuilder parameters were matched to the 



47 
 

scan range and chromatographic parameters of each experiment, respectively. Diagnostic 

ion thresholds were matched to the CNL-MS3 triggering threshold, detailed above. 

Extracted ion chromatogram and retention time (RT) tolerance of 1.5 and 0.5 min were 

used for the analysis of authentic standards and pks infected cells, respectively. An 

exclusion list of contaminant and background signals was constructed by analyzing blank 

injections. EICs were deconvoluted using the Local Minimum search algorithm, including 

a chromatographic threshold of 30% and minimum peak top/edge ratio of 5. Duplicate 

peaks and isotopes were grouped with a retention time tolerance of 0.1 min. Putative 

adduct peaks were aligned between raw data files using the Join Aligner algorithm with a 

tolerance of 0.3 min. Compound cation adducts, neutral losses, fragments, and complexes 

were annotated. Missing peak values were estimated using Gap-filling with a retention 

time tolerance of 0.3 min. Features detected in all three DNA adducts standards mixtures 

were retained in the final feature list, and putative adduct features unique to the pks+ 

transiently infected HeLa cells were retained in the feature list. The final feature list was 

exported to a CSV file for manual review. A complete list of processing parameters is 

summarized in Table 2.1. 
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Table 2.14- MZmine2 Processing Parameters for DNA Adduct Detection 

Task (Parameter -> Value) Standard's Experiment pks+ Experiment 
Raw Data Import   

DFBuilder   
Scan Range 6.00-40.00 min 

m/z tolerance 5 ppm 
Diagnostic Feautre List CSV of Nucleobase Transitions 

Mininimum Ion Intensity (Relative Abundance) 25000 10000 
Retention Time Tolerance 1.5 0.5 

Exclusion List (T/F) T F 
Chromatogram deconvolution - Local Minimum   

Chromatographic threshold 30% 
Min relative height 10% 
Min absolute height 1.00E+04 1.00E+05 

Min ratio of peak top/edge 3 5 
Peak duration range (min) 0.40-3.00 0.25-1.00 

Peak filter   
Conditions Keep only features with MS/MS scan 

Duplicate peak filter   
m/z tolerance 5 ppm 

RT tolerance (min) 1.5 0.1 
Isotopic peaks grouper   

RT tolerance (min) 0.1 
Max charge 3 
Join Aligner   

m/z tolerance 5 ppm 
Weight for m/z 2 

RT tolerance (min) 1.5 0.5 
Weight for RT 4 

Peak Finder (gap-filling)   
Intensity tolerance 100% 

m/z tolerance 5 ppm 
RT tolerance 1.5 0.5 

Feature list row filters Detected in 3 replicates  Unique to pks+ 

Adduct/Fragment/Complex Search   

Export   
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2.3 Results and Discussion 

2.3.1 Workflow Overview 

We developed the DFBuilder module to apply the diagnostic fragmentation filtering 

algorithm as part of a fully automated data processing workflow for the analysis of any 

data-dependent MS/MS data set. The workflow components and processing design are 

presented in Figure 2.1. The DFBuilder module monitors for user-defined product ions 

and neutral losses in tandem MS/MS spectra in input raw data files and builds EICs for 

precursors of interest (Table 2.2). To minimize false discovery rates, we designed 

DFBuilder to utilize mass tolerances, signal thresholds, and retention time limits to ensure 

only high-quality spectra and peaks are detected (Figure 2.2, Top Panel). An optional 

exclusion list removes contaminants detected in blank injections or previously defined 

signals (Table 2.3). The DFBuilder module exports the detected precursor targeted-EIC 

as feature lists for further downstream processing in the analytical workflow (Figure 2.2, 

Bottom Panel). Alternatively, the module may be used stand-alone with precursor m/z, 

retention, and tandem MS/MS scan information of interest exported to a CSV file for 

manual review. 
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Figure 2.17- Data analysis workflow using DFBuilder. Using a list of diagnostic fragmentation 

patterns, LC-MSn data files are screened for putative DNA adducts and targeted-EICs are built for 

precursors of interest. Chromatographic features are further processed to produce a peak list of 

high-quality, reproducible putative DNA adducts. The final result of the workflow is a feature list of 

quantitative peak metrics and associated fragment spectra for each input data file that may utilized 

for additional statistical analyses and identification purposes. 

 
 

Table 2.25- Example Diagnostic Feature List CSV File Format 

{Target Name}* {Product Ion (m/z)}* {Neutral Loss (amu)}* 

"Target A - Product Ion" 136.0618  

"Target B - Neutral Loss"  135.0545 

"Target C - Combined Search" 136.0618 135.0545 

"Target D - Multiple Targets" 136.0618; 152.0567 135.0545; 151.0494 

* No headers included in final CSV file. Observed headers are for information purposes only. 
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Figure 2.28- MZmine2 interface of the DFBuilder module; Top Panel: Parameter setup window; 

Bottom Panel: Feature list export of targeted precursor-EIC results. 

 
 
 
 
 

Table 2.36- Example Exclusion Feature List CSV File Format 

{Excluded m/z}* {Start RT (min)}* {End RT (min)}* 

252.1091 0 55 

376.1228 0 55 

485.1878 6 20 

557.1617 30 40 

* No headers included in final CSV file. Observed headers are for information purposes 
only. 
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The DFBuilder module serves as the entrance to a complete analytical workflow 

for DNA adduct discovery and annotation using the MZmine platform. Following diagnostic 

fragmentation filtering, additional processing curates the resultant feature list to remove 

low-quality or redundant peaks. Then, chromatographic deconvolution eliminates non-

reproducible features from downstream analysis and provides more accurate peak 

quantitation. Grouping duplicate hits, in-source fragments, and compound complexes 

simplifies the results to a feature list of monoisotopic precursors. Finally, retention time 

alignment corrects spectral drift commonly observed between repeated injections, and 

feature annotations inadvertently excluded during the previous steps may be estimated 

with Gap-filling. The end product of our DFBuilder workflow is a feature list of high-quality, 

non-redundant putative DNA adducts. Following data analysis, peak quantitation 

estimates may be exported for external statistical review, and compound identities 

assessed manually or with assistance from spectral library searching algorithms. The 

ability to post-hoc update diagnostic patterns and processing parameters for optimized 

analysis is the main strength of our workflow compared to instrument-based approaches. 

Through the use of open-source data formats, our approach is not limited to vendor-

specific raw files and may be utilized with multiple mass detector types, including ion traps, 

quadrupole time-of-flight, and other hybrid instruments. The DFBuilder module and 

workflow are compatible with batch-based analysis to ensure computational repeatability 

in large-scale studies. In the following sections, we demonstrate the capability of 

diagnostic fragmentation filtering to detect DNA adducts in complex mixtures and the 

potential of our workflow to serve as part of an automated pipeline for DNA adductomics 

analysis. Although the following experiments focus on the detection of DNA adducts, 

diagnostic fragmentation filtering and the DFBuilder workflow may be applied to any class 
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of molecule with diagnostic fragmentation, including lipids, glycoproteins, and other 

complex modified compounds. 

2.3.2 Automated Detection of Authentic Standards using the DFBuilder Workflow 

For validation of the DFBuilder workflow, we analyzed a mixture of nine DNA 

adduct standards (Figure 2.3). The authentic standard mixture contains adducts of all four 

nucleobases which possess polarities with enough difference to cover a wide 

chromatographic range. The loss of the 2´-deoxyribose moiety (116.0474 amu) is the most 

selective transition for the detection of DNA nucleoside adducts using CNL screening.175 

Recent studies have demonstrated that neutral loss monitoring of the nucleobases, 

including cytosine (111.0433 amu), thymine (126.0429 amu), adenine (135.0545 amu) 

and guanine (151.0494 amu), expands the coverage to DNA nucleobase adducts.88 The 

application of the DFBuilder module applied here used diagnostic fragmentation filtering 

of the neutral losses of deoxyribose and the four nucleobases to monitor for the presence 

of nucleoside and nucleobase DNA adducts in solution. Prior to the analysis of the 

standard mixture, a solvent blank injection was analyzed to assess the presence of low 

abundant contaminant signals in our system. In total, 54 MS/MS spectra exhibited 

diagnostic fragmentation. These contaminant signals populated an exclusion list for the 

subsequent analysis. 
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Figure 2.39- Structures of the DNA adducts in the authentic standard mixture, dR = 2’-deoxyribose. 

The application of the DFBuilder module to analyze the authentic standard 

mixtures detected 48 tandem MS/MS exhibiting a diagnostic neutral loss. Of these 

spectra, 47 exhibited a neutral loss of 2´-deoxyribose and the final signal displayed a 

neutral thymine nucleobase loss. Empirical evaluation of the resultant targeted-EICs 

revealed many of the detected spectra represented duplicate hits from repeated MS/MS 

fragmentation of a single precursor ion. After filtering poor-quality and duplicate peaks, 18 

putative DNA adduct signals remained. Precursor annotation indicated six of these signals 

characterized in-source fragments or sodium adducts [M+Na]+ formed during ionization. 

At the completion of our workflow, 12 monoisotopic precursors were categorized as 

putative DNA adducts in the untargeted analysis of the authentic standard mixture (Table 

2.4). Diagnostic fragmentation filtering detected all nine authentic standards from the 

characteristic 2´-deoxyribose neutral loss induced during CID fragmentation. The identity 

for each standard was confirmed by manual inspection of the acquired MS2 and MS3 
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spectra. No apparent relationship between the authentic standards and the three 

unidentified signals could be made. Manual evaluation of the acquired spectra confirmed 

the presence of a 2´-deoxyribose neutral loss among these features. The precursor of m/z 

211.1329 [M+H]+ at 27.13 min was determined to be a persistent background contaminant 

that failed to trigger a fragment spectra in the blank injection. The remaining signals of m/z 

296.1353 [M+H]+ and 398.1669 [M+H]+ at 28.51 and 22.32 min, respectively, represent 

potential impurities or contaminants in our standard mixture based on their reproducible 

detection and fragmentation pattern. 

2.3.3 Reproducible Detection of Colibactin-Induced DNA Adducts 

Colibactin is a genotoxic secondary metabolite produced by commensal and extra-

intestinal pathogenic strains of E. coli harboring the pks genomic island (pks+). Infection 

with colibactin-harboring microbes influences tumorigenesis in multiple mouse models of 

colitis-associated colorectal cancer.176,177 Despite its strong relationship with disease, the 

genotoxic mechanism driving pathogenesis has remained uncertain, although recent 

research has revealed colibactin alkylates DNA in vivo, producing large genomic 

crosslinks and DNA adducts.88,173 A DDA-CNL-MS3 adductomics approach identified two 

diastereomeric adducts at m/z 540.1765 [M+H]+ exclusively in cells transiently infected 

with pks+ E. coli compared to negative controls (pks- E. coli).173 Here we have utilized data 

generated in this study to demonstrate the potential of our workflow to detect DNA 

modifications in complex matrices. 
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Table 2.47- Results of Automated DFBuilder Workflow on Mixture of Authentic DNA Adduct Standards 

No. m/z 
Retention time 

(min) 
Compound 

Identity Neutral Loss Neutral Mass 
Neutral Formula 

[Predicted*] 

1 261.1605 9.34 D5-ethyl-dC dR 260.1532 C11H17D5N3O4 

2 266.1247 16.62 N6-Me-dA dR 265.1174 C11H15N5O3 

3 276.1091 12.43 ε-dA dR 275.1018 C12H13N5O3 

4 282.1197 21.5 O6-me-dG dR 281.1124 C11H15N5O4 

5 284.099 15.76 8-oxo-dG dR 283.0917 C10H13N5O5 

6 296.1352 26.08 N2-ethyl-dG dR 295.1279 C12H17N5O4 

7 324.1303 16.96 OH-PdG dR 323.123 C13H17N5O5 

8 390.1659 25.6 O2-POB-dT dR 389.1586 C19H23N3O6 

9 424.2189 37.65 HNE-dG dR 423.2116 C19H29N5O6 

10 211.1329 27.13 Unknown #1 dR 210.1256 C12H18O3* 

11 296.1353 28.51 Unknown #2 dR 295.128 C12H17N5O4* 

12 398.1669 22.32 Unknown #3 dR 397.1596 C16H23N5O7* 

* Neutral formula predicted using natural elemental and heuristic constraints with a 5 ppm mass tolerance.178  



57 
 

We applied the automated DFBuilder workflow for the discovery of colibactin-

induced DNA adducts in HeLa cells transiently infected with pks+ and pks- E. coli. Tandem 

MS/MS fragmentation filtering utilized all previously mentioned DNA-specific neutral 

losses. In total, 212 MS/MS spectra exhibited a diagnostic neutral loss. After removing 

non-reproducible peaks, duplicate hits, isotopes, and ion complexes, 56 features 

remained. Three putative DNA adduct features were unique to pks+ infected cells and 

exhibited no signal among negative controls. In agreement with the original findings, we 

detected the two colibactin-induced DNA adducts of m/z 540.1765 at 16.92 and 17.50 min, 

respectively (Figure 2.4). Our workflow discovered one additional putative adduct at 7.68 

min exhibiting an m/z of 342.1680 [M+H]+ (Figure 2.5). As this putative adduct was not 

reported in the original publication, we further evaluated its properties. The putative adduct 

exhibited a neutral loss of adenine (135.0545 amu) in the acquired MS/MS fragment 

spectra (Figure 2.5B) and triggered a CNL-MS3 spectrum for the resulting product peak 

of m/z 207.1134 (Figure 2.5C). The high-resolution accurate mass measurement of 

342.1680 [M+H]+ yielded a molecular formula of C16H19N7O2 (calculated, 342.1673) with 

11 degrees of unsaturation. Tandem MS/MS fragmentation exhibited one major fragment 

ion of m/z 207.1134 [M+H-Adenine]+. Product ion CNL-MS3 fragmentation displayed three 

additional fragment ions of m/z 179.0825 [M+H-C2H4], 152.0715 [M+H-C3H5N], and 

124.0766 [M+H-C4H5NO]. A mass tolerance of 10 ppm was used for the assignment of 

the fragment ions. 
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Figure 2.410- LC-MS characteristics of m/z 540.1765 colibactin-induced DNA adduct stereoisomers; 

(A) EIC of precursor m/z 540.1765 [M+H]+ at 16.88 min (stereoisomer 1) and 17.50 min 

(stereoisomer 2); (B) MS2 precursor fragmentation of stereoisomer 1 exhibiting the neutral loss of 

adenine; (C) CNL-triggered MS3 on product ion m/z 405.1226 of stereoisomer 1; (D) MS2 precursor 

fragmentation of stereoisomer 2 exhibiting the neutral loss of adenine; (E) CNL-triggered MS3 on 

product ion m/z 405.1223 of stereoisomer 2. 
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Figure 2.511- LC-MS characteristics of novel colibactin-induced DNA adduct; (A) EIC of precursor 

m/z 342.1673 [M+H]+ at 7.71 min; (B) MS2 precursor fragmentation exhibiting the neutral loss of 

adenine; (C) CNL-triggered MS3 on product ion m/z 207.1134. 
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Figure 2.612- Proposed structure of adduct 342 and mechanism for MS2 and MS3 fragmentation. 

The proposed structures of all observed ions are enclosed and accompanied by their chemical 

formula, exact mass, and the m/z experimentally observed by LC-MS analysis. 

 

 

Figure 2.713- Proposed mechanism for the production of adduct 342. After initial tautomerization 

of 1 to compound 2, water attacks into the electrophilic, unsaturated carbonyl system to produce 

3. This intermediate then decomposes by either a retro-aldol or retro-Mannich type reaction, 

releasing compounds 4 or 5, respectively. Final aromatization of either compound yields the 

proposed structure of adduct 342. 
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Based on these mass spectra, we propose the m/z 342.1680 parent ion structure 

(adduct 342; Figure 2.6) to be a 4-hydroxy-pyrrolidin-2-one, which closely resembles the 

structures of the m/z 540.1765 adducts and other precolibactin metabolites.173,179 In Figure 

4, we provide a fragmentation mechanism that not only rationalizes the appearance of all 

detected MS2 and MS3 ions but also predicts their structures, which all support our 

proposal for adduct 342. The most striking feature of adduct 342 is the enol hydroxyl group 

located where a carbon side chain normally resides. We posit the hydroxyl group is 

introduced through formal hydrolysis either via a retro-aldol or retro-Mannich type 

mechanism (Figure 2.7). Importantly, this mechanism suggests adduct 342 is a novel 

decomposition product of colibactin and its DNA crosslinks and offers another explanation 

for colibactin’s notorious instability. However, in the absence of internal standards and 

additional experimentation, we are currently unable to unambiguously confirm the 

structures of adduct 342 and its fragment ions. Additionally, lack of standards limits our 

ability to quantify adduct 342 and understand its relative contribution to colibactin DNA 

adduct decomposition and its potential as a biomarker. 

2.3.4 Expanding the Detection of Putative DNA Adducts 

The strength of diagnostic fragmentation filtering is the ability to alter analysis 

parameters post-acquisition and probe any diagnostic fragmentation patterns 

characteristic of the compound class of interest.102 The DDA-CNL-MS3 screening 

approach used to date biases adduct discovery to low molecular weight, singly-charged 

ions and is limited to previously described neutral loss fragmentation pathways.111 It has 

been recently observed that the ionization of DNA cross-links (two or more nucleosides 

connected through a covalent modification) and other bulky covalent modifications can be 

dominated by double-charge ionization and can exhibit more complex fragmentation 

https://www.zotero.org/google-docs/?9L680u
https://www.zotero.org/google-docs/?e3lLac
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patterns not predictably characterized by single neutral loss transitions (e.g. the 2´-

deoxyribose moiety).180 In addition, the fragmentation of depurination DNA adducts 

lacking basic sites will result in the production of the charged nucleic acid (e.g. N7-

ethylguanine). To demonstrate the potential of our DFBuilder workflow to evaluate new 

fragmentation patterns, we re-analyzed the previous HeLa cell colibactin-pks experiment 

with updated monitoring criteria. We supplemented our list of fragmentation patterns to 

include product ions of each nucleobase: cytosine (112.0506 m/z), thymine (127.0502 

m/z), adenine (136.0618 m/z), and guanine (152.0567 m/z). 

 

Figure 2.814- EICs of putative colibactin-induced DNA adducts detected by adenine fragment 

monitoring exhibiting an m/z of; (A) 333.5243 [M+3H]3+ at 14.91, (B) 423.6687 [M+2H]2+ at 24.33 

min, (C) 499.7857 [M+2H]2+ at 15.09 min, and (D) 535.2576 [M+3H]3+ at 15.67 min. 

 

https://www.zotero.org/google-docs/?CAeHmL
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Using the modified pattern list, a total of 1,069 MS/MS spectra exhibited diagnostic 

fragmentation. After removing non-reproducible peaks, duplicate hits, isotopes, and ion 

complexes, our workflow detected 343 putative DNA adducts in the pks+ and pks- infected 

HeLa cell DNA. The inclusion of nucleobase product ions resulted in a six times increase 

in the number of detected spectra relative to a CNL search. Over one-third of these signals 

represented doubly [M+2H]2+ or triply charged [M+3H]3+ ion species. In contrast, only 2 

features detected via CNL monitoring were multiply charged. A total of seven putative 

DNA adduct features were found to be unique to pks+ infected cells. In addition to the 

three CNL-detected features, four novel putative adducts were detected via the presence 

of an adenine product ion upon fragmentation, exhibiting an m/z of 333.5243 [M+3H]3+ at 

14.91 min, 499.7857 [M+2H]2+ at 15.09 min, 535.2576 [M+3H]3+ at 15.67 min, and 

423.6687 [M+2H]2+ at 24.33 min (Figure 2.8 A-D). In contrast to the neutral loss-derived 

putative adducts, all of the newly detected putative DNA adducts were multiply charged. 

Two of these features, m/z of 499.7857 [M+2H]2+ and 333.5254 [M+3H]3+, likely represent 

multiply charged variations of the same compound due to their identical neutral mass of 

997.5568 amu and overlapping elution patterns (Figure 2.8 A and C). With only tandem 

MS/MS fragmentation, elucidating chemical structures for these signals is challenging. 

Hundreds of molecular formulae are possible for each precursor, even with high-resolution 

accurate mass measurement. These bulky putative adducts could represent DNA 

interstrand cross-links missed though CNL monitoring alone. However, these features do 

not correspond with any proposed colibactin-associated DNA crosslink structures.180,181 

Unlike the near-universal loss of deoxyribose for singly charged DNA adducts, the 

propensity of multiply charged cross-linked DNA adducts to fragment to protonated 

nucleobases has not been established. Therefore, it is possible these signals are false 

positive signals from background contamination. In the absence of a comprehensive 



64 
 

evaluation of the sensitivity and specificity of the nucleobase product ions, we are unable 

to assess the false discovery rate of this method. However, it should be noted that the ion 

signals attributed to the putative multiply charged cross-linked DNA adducts were not 

present in the negative control sample. With a quadrupole isolation window of 1.5 m/z, co-

fragmentation of independent precursors may inadvertently occur during an analysis. A 

thorough evaluation will be required to fully assess the diagnostic potential of product ions 

for the discovery of DNA adducts. 

The strength of post-acquisition monitoring of characteristic neutral loss and 

product ions is the expedient evaluation of any fragmentation pattern for class-specific 

small molecule discovery. Although the results presented here focus on the detection of 

DNA adducts using a hybrid Orbitrap mass analyzer, this approach may be applied to any 

other compound class with diagnostic fragmentation using any mass analyzer capable of 

generating MS/MS fragmentation in either positive or negative ion polarity. We foresee 

this approach being especially useful for the detection of other conjugated and covalently 

modified compounds indicative of chemical exposure, such as the cleavage of the 

thioether bond that is characteristic of mercapturic acids conjugates in negative ion mode 

LC-MS/MS (129.0426 amu).53 Additionally, the DFBuilder approach may be used to 

discriminate specific moieties of diverse compound classes, such as saturated or 

unsaturated fatty acids. Using complex diagnostic pattern combinations, users may 

simultaneously discriminate chain length neutral losses and head group fragment ions for 

selective detection and characterization of glycerophospholipids and other complexes. 
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2.4 Conclusion 

We developed the DFBuilder MZmine module and automated workflow for the 

detection of DNA adducts using diagnostic fragmentation filtering. Our method screens 

any data-dependent MS/MS spectra for fragmentation patterns (neutral losses and 

product ions) and builds targeted precursor EICs in the corresponding chromatographic 

region. Using the suite of characterization, filtering, and alignment tools available in 

MZmine, the resulting peak list is automatically reduced to a list of high-confidence, 

reproducible putative DNA adduct signals. In contrast to existing techniques, our method 

can be used with any tandem mass spectrometer and may be applied post-acquisition for 

repeated evaluation of experimental results. Using a mixture of authentic standards, we 

validated our workflow for the automated detection of DNA adducts with minimal false 

detection. We demonstrated the ability of our approach to reproduce results and discover 

novel putative adducts in complex mixtures. Using the DFBuilder workflow, data analysis 

of LC-MS/MS DNA adductomics experiments is simplified and enables further 

development of fragmentation filtering for the detection of DNA adducts and other 

compounds. 

The source code repository for the DFBuilder module and our executable MZmine 

2.54 forked repository is freely available on Github (https://github.com/Kevin-

Murray/mzmine2). The DFBuilder module will be incorporated into main branch of MZmine 

in the next available update. The DNA adduct standards data used in this project are 

available for public download from the Metabolomics Workbench.  

 

 

https://github.com/Kevin-Murray/mzmine2
https://github.com/Kevin-Murray/mzmine2
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Chapter 3: Development of a UHPLC-MS/MS Method for Profiling of Mercapturic 

Acids in Positive Ion Mode 

The following chapter introduces a novel analytical method for discovering and profiling 

mercapturic acid conjugates. This method employs a UHPLC-MS/MS method using 

positive ion mode detection to global profile urine metabolites. A combination of 

fragmentation filtering and mass defect filtering is applied to detect known and novel 

mercapturic acids. Computational chemical prediction assists in result curation and 

proposes candidate structures for biomarkers associated with tobacco cigarette usage. 

The following chapter is planned to be submitted to Analytical Chemistry as an original 

research article.  
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3.1 Introduction 

 Recurrent exposure to hazardous chemical agents is directly related to adverse 

health consequences, including neurological disorders182,183, metabolic aberrations184,185, 

and cancer186. The reactivity of volatile organic compounds (VOC) and endogenously 

produced electrophiles is of particular concern when categorizing the health risk 

associated with the exposures. Non-canonical covalent modifications of nucleophilic 

biomolecules, such as DNA, RNA, and proteins, are associated with adverse clinical 

phenotypes183 and are an acknowledged source of genetic mutations162. Understanding 

the strength and toxicity of chemical exposures is essential to regulatory and occupation 

agencies for defining safety recommendations and remedial guidelines.187,188  

Chemical exposure events are often characterized by the formation of 

detoxification products In the case of VOC or endogenous electrophiles, these processes 

tend to neutralize these reactive compounds by turning them into conjugates readily 

excreted in urine.43,92,119,189,190 Mercapturic acids are one such class of detoxification 

products commonly detected in urine in the hours or days following exposure.31,52,53,189 

Their formation is mediated by Phase I metabolic modification of reactive electrophiles, 

Phase II conjugation to glutathione, and transformation into a water-soluble urinary 

metabolite for elimination.191 Monitoring of mercapturic acids using targeted LC-MS/MS 

platforms is a common approach for characterizing exposure to explicit chemical agents 

and identify susceptibility to associated health risk.190 Acrolein, acrylonitrile, and 

crotonaldehyde exposure from tobacco cigarettes are measured through the urinary 

concentration of 3HPMA, 2CyEMA, and 3HMPMA, respectively.192 Classifying the total 

electrophilic burden imparted by exogenous and endogenous chemicals is far more 

challenging. Tobacco cigarette smoke is reported to contain over 7,000 chemicals,193 
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many of which are eliminated through glutathione-mediated detoxification. The most 

common technique for discovering novel and undescribed mercapturic acids utilizes a 

CNL detection approach that monitors the neutral loss of the N-Acetyl-L-Cysteine moiety 

(-129 Da) in LC-MS/MS experiments.52 Chromatographic peaks exhibiting this diagnostic 

fragmentation pattern may be further interrogated to obtain structural configuration and 

quantitative insights for characterizing an exposure event or discriminating experimental 

populations. 

However, the application of unbiased analytical methods for characterizing novel 

and undescribed mercapturic acids faces many obstacles. The unit mass resolution of 

triple quadrupole-based platforms limits the specificity of the analysis, increasing 

erroneous false detections. Additionally, annotating and identifying putative mercapturic 

acid signatures is more challenging without accurate mass product spectra. The increased 

popularity of HRMS has driven the development of new analytical approaches to 

characterize global mercapturic acid profiles. High-resolution mass measurements enable 

more specific monitoring of the N-Acetyl-L-Cysteine moiety (-129.0426 Da).53 Emerging 

applications utilize multiple fragmentation patterns and chemical library-driven detection 

techniques to increase the discovery capabilities of unbiased methodology.31 At present, 

all reported discovery methodologies use negative ion mode detection. Early reports in 

this field suggested that positive ion mode is less sensitive than negative ion mode,52 and 

few documented applications using positive ion mode are available for review. While 

sensitivity is undoubtedly an important consideration when selecting an analytical 

approach, the availability of spectral library resources and structural annotation tools is 

worth considering. Commercially and publicly available mass spectral libraries are heavily 

populated with positive ion mode submissions. As such, the success of structural 

prediction algorithms underperform in negative ion mode submissions relative to positive 
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ion mode equivalents.152 Consequently, it is worthwhile to revisit the application of positive 

ion mode for detecting and annotating known and unknown mercapturic acid conjugates.  

 We developed a UHPLC-MS/MS analytical workflow using positive ion mode 

detection to characterize urinary mercapturic acids. This method utilizes nanoflow 

chromatography to maximize the sensitivity of positive ion mode profiling of known and 

unknown mercapturic acids. We employed a DDA approach with a conditional neutral 

loss-triggered MS3 acquisition to obtain further confidence in our detections and gain 

further structural insights. To expand the detection scope, we utilized MDF to discover 

mercapturic acids that fail to exhibit characteristic fragmentation patterns.68 We applied 

our approach to classify mercapturic acid signatures associated with tobacco cigarette 

usage in a proof-of-principle evaluation. With the assistance of structural prediction 

software, we demonstrate that our approach can distinguish known and undescribed 

mercapturic acids from the background urinary metabolome.  

3.2 Experimental Section 

3.2.1 Chemicals and Reagents 

 D5-N-acetyl-S-(phenyl)-L-Cysteine (D5-PhMA), D3-N-Acetyl-S-(2-carbamoyl- 

ethyl)-L-cysteine (D3-2CaEMA), D3-N-Acetyl-S-(2-cyanoethyl)-L-cysteine (D3-2CyEMA), 

D3-N-Acetyl-S-(2-hydroxypropyl)-L-cysteine (D3-2HPMA), D3-N-Acetyl-S-(3-hydroxy- 

propyl)-L-cysteine (D3-3HPMA), D3-N-Acetyl-S-(3-hydroxypropyl-1-methyl)-L-cysteine 

(D3-3HMPMA) were purchased from Toronto Research Chemicals (Toronto ON, Canada). 

UHPLC-grade acetonitrile, methanol, and hydrogen chloride were purchased from Fisher 

Scientific (Hampton, NH, USA). UHPLC-grade formic acid was purchased from Sigma-

Aldrich (St. Louis, MO, USA).  
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3.2.2 Study Participants and Urine Samples 

 Study participants were recruited as part of an ongoing study conducted at the 

University of Minnesota. Urine samples were collected throughout a 24-hour period and 

stored at -80 °C until the UHPLC-MS/MS analysis. Urine samples were normalized by total 

collection volume prior to sample preparation. This study was approved by the University 

of Minnesota Institutional Review Board. 

3.2.3 Sample Preparation 

Urine samples were prepared as previously described.192 Urine samples (200 μL) 

were acidified using 40 μL of a 30% aqueous HCL solution and vortexed gently. A mixture 

of 10 ng D5-PhMA, 20 ng D3-2CaEMA, 20 ng D3-2CyEMA, 10 ng D3-2HPMA, 50 ng D3-

3HPMA, and 50 ng D3-3HMPMA was added to each sample. Oasis MAX mixed mode 

reverse phase anion exchange solid phase extraction cartridges (60 mg, 60 u, 2 mL 

reservoir size) were obtained from Waters Corp. (Milford, MA, USA). Before sample 

introduction, the plate was preconditioned with MeOH, water, and 2% aqueous NH4OH 

solutions. The samples were applied and washed with 0.7 mL 2% aqueous NH4OH and 

0.7 mL MeOH, then dried with nitrogen gas for 20 min. The plate was washed with 0.7 mL 

2% aqueous formic acid before sample collection. Finally, the unfractionated urine extracts 

were collected using 0.7 mL 90% MeOH in 2% formic acid wash. The samples were 

transferred from the 96-well collection plate to fresh 1.2 mL silanized vials and dried to 

completeness in a SpeedVac without heat. The dried samples were stored at -80 °C until 

ready for LC-MS/MS analysis.  
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3.2.4 UHPLC LC-MS/MS Analysis 

Analytical separation and detection were performed on an UltiMate 3000 

RSLCnano UHPLC system (Thermo Scientific, Waltham, MA) interfaced to an Orbitrap 

Fusion Tribrid mass spectrometer (Thermo Fisher Scientific, San Jose, CA). All dried urine 

extracts were reconstituted using a load solvent mixture of 0.1% aqueous formic acid. 

Samples were spiked with a mixture Pierce™ Peptide Retention Time Calibration Mixture 

(Rockford, IL, USA) at a final 100 fmol/μL concentration to monitor chromatographic and 

retention time performance throughout the experiment. A 1% sample equivalent load in 1 

μL was injected on the analytical platform equipped with a 10 µL injection loop. 

Chromatographic separation was performed using a self-packed C18 column (Dr. Maisch 

GmbH ReproSil-PUR 1.9 µm 120 Å C18aq, 100 µm ID x 45 cm length) maintained at 55 

°C for the duration of the experiment. The mobile phases were (A) 0.1% aqueous formic 

acid and (B) 0.1% formic acid in ACN solutions. Chromatographic separation was 

performed using a linear gradient starting at 0% B and increased to 50% B at 40 min, 90% 

B at 60 min, and held for 8 min followed by a return to starting conditions. The analysis 

was operated at a constant flow rate of 325 nL/min. A Nanospray Flex ion source (Thermo 

Fisher Scientific) was used with a source voltage of 2.1 kV and an ion transfer tube 

temperature of 250 °C.  

Discovery DDA-CNL-MS3 analyses of experimental samples were performed 

using full-scan detection followed by data-dependent MS2 acquisition and a conditional 

neutral loss-triggered MS3 acquisition. All analyses were performed in positive ion mode. 

Full-scan detection was performed using Orbitrap detection at a resolution of 120,000, 

AGC targeted setting of 4 × 105, a maximum ion injection time of 50 ms, and an S-Lens 

RF setting of 40%. Scan ranges of 170 m/z – 600 m/z were used for full-scan detection. 
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MS2 spectra were collected using a DDA design with a 2 sec cycle time in centroid mode 

with a 15 sec dynamic exclusion list. Fragment spectra were acquired with quadrupole 

isolation of 0.8 m/z, Orbitrap detection at a resolution of 30,000, an AGC setting of 1 × 

105, and a 100 ms maximum injection time. The analysis utilized HCD fragmentation at a 

fixed collision energy of 30%. MS3 spectra were collected using a conditional neutral loss 

design that acquired an additional fragmentation scan on ions exhibiting a neutral loss of 

131.0582 Da or 105.0426 Da from the selected precursor. MS3 spectra were acquired with 

a full-scan MS isolation of 1.5 m/z and MS2 isolation of 2.0 m/z, Orbitrap detection at a 

resolution of 30,000, AGC setting of 2 × 105, and a 200 ms maximum injection time. The 

MS3 analysis utilized HCD fragmentation at a fixed collision energy of 50%. 

3.2.5 Data Processing 

 Raw instrument files were converted to mzML format and centroid using 

MSConvert.174 Discovery of putative mercapturic acids was performed using a 

combination of fragmentation filtering and MDF68 using the open-source software 

MZmine.168 Fragmentation filtering was performed using the DFBuilder module63 to 

monitor diagnostic neutral loss and fragment ions characteristic of mercapturic acid 

conjugates. Putative mercapturic acid detection required the observation of a neutral loss 

of 131.0582 Da (C5H9NO3) or 105.0426 Da (C3H7NO3) in acquired MS/MS spectrum. To 

conduct the MDF analysis, a mass defect range was defined using a 50 mDa window 

based on the fractional mass of protonated N-Acetyl-L-Cysteine (164.0376 m/z). The MDF 

analysis only retained features exhibiting a fractional mass between 987.6 mDa and 87.6 

mDa. 

A complete list of the processing parameters is summarized in Table 3.1. 

Fragmentation filtering using the DFBuilder module was performed for the specified 
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neutral loss using a 5 ppm mass tolerance and minimum fragment ion intensity of 1 x 104 

with a 1% base peak threshold. A targeted chromatogram was drawn around detected 

precursor masses using a 1.0 min retention time window. To conduct an MDF analysis, a 

classical metabolomics data processing workflow was employed. Masses of interest were 

detected using the centroid detector and noise threshold of 1 x 105. Chromatogram traces 

were computed using the ADAP chromatogram builder module with a mass tolerance of 

5 ppm.194 For both fragmentation filtering and MDF analyses, chromatographic peaks were 

detected using the Local Minimum search algorithm using a 30% chromatographic 

threshold, 0.1 min retention time minimum search range, a minimum peak height of 1 x 

105, a minimum peak top/edge ratio of 10, and minimum peak width tolerance of 0.1 min. 

Duplicate peaks were removed using a 0.1 min retention time tolerance. Feature lists were 

deisotoped using the 13C isotope filter module. All samples and pooled replicate feature 

lists were aligned using the Join Aligner module with a mass tolerance of 5 ppm and 

retention time tolerance of 0.4 min. Commonly observed in-source fragments, adducts, 

and multimer complexes were detected and removed from consideration. Missing peak 

annotations were replaced using the Gap-Filling algorithm. Acquired MS/MS spectra were 

matched against the NIST mass spectral library (version 2020) to remove unrelated 

metabolic signatures. Finally, the remaining features were exported as CSV files for 

downstream analysis. For the MDF analysis, the resultant feature list was filtered to retain 

features in the detailed fractional mass filtering range. 

  



74 
 

Table 3.18- MZmine processing parameters for the detection of mercapturic acid conjugates 

Task (Parameter -> Value) Fragmentation Filtering MDF Analysis 

Mass Detection   

Feature Detection   

Chromatogram Builder Algorithm DFBuilder ADAP 

m/z tolerance 5 ppm 

Min Ion Intensity 1.00E+04 and 1% Basepeak 1.00E+05 

Neutral Loss Monitor (Da) -131.0582 or -105.0426 - 

Chromatogram building range (min) 1.0 60.0 

Chromatogram deconvolution - Local Minimum   

Chromatographic threshold 30% 

Min absolute height 1.00E+05 

Min ratio of peak top/edge 10 

Peak duration range (min) 0.1 - 2.0 

Duplicate peak filter   

RT tolerance (min) 0.05 

Isotopic peaks grouper   

RT tolerance (min) 0.1 

Max charge 3 

Join Aligner   

m/z tolerance 5 ppm 

Weight for m/z 2 

RT tolerance (min) 0.4 

Weight for RT 4 

Adduct / Neutral Loss / Complex Search   

RT tolerance (min) 0.02 min 

NIST Spectral Library Search   

Min Dot Product 700 

Peak Finder (gap-filling)   

Intensity tolerance 1% 

RT tolerance 0.4 

Export   



75 
 

3.2.6 Post-processing and Statistics 

 Post-processing of the discovery results was conducted to remove non-

reproducible features and curate false discoveries from the list of putative mercapturic 

acid signatures. All post-processing and statistics were conducted using the R 

programming language.195 Feature abundances were Log2-transformed to improve the 

normality assumption of the statistical models. Features not detected in at least 80% of 

the sample cohort were removed from downstream analyses. Missing abundance values 

were imputed using a k-nearest neighbors (k = 10) approach using the impute R 

package.196 Using the pooled quality control samples run periodically throughout the 

experiment, analytical variation was normalized using a linear mixed-effects model 

approach with an `injection order` fixed effect and `batch number` random effect using the 

lme4 R package.197 A quadratic injection order variable accounted for the non-linearity 

observed in the iRT peptide standards (Figure 3.1). Following normalization, features that 

failed to exhibit a coefficient of variation of less than 20% among the pooled urine samples 

were excluded from the analysis. Elemental formulas were calculated using the 

MassTools R package.198 Formula were predicted using elemental heuristics adhering to 

the Seven Golden Rules paradigm199 with a minimal elemental composition of N-Acetyl-

L-Cysteine (5C 9H 1N 3O 1S) and 2 degrees of unsaturation with mass tolerance of 5 

ppm. Features were excluded from the analysis if no formula could be predicted under 

these constraints.  

 Unsupervised clustering of mercapturic acid profiles was conducted using principal 

components analysis. Variables were scaled for the assessment. Variable loading and 

score plots were interrogated to evaluate the unbiased stratification of the results. 

Multivariate differences in putative mercapturic acid profiles between smoker and non-
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smoker populations were assessed using an orthogonal partial least squares discriminant 

analysis (OPLS-DA) approach using MetaboAnalyst 5.0.200,201 The model fit was assessed 

using 1,000 permutations. Variable importance scores were computed for the top ten 

features of the correlated component only. Univariate associations of mercapturic acid 

profiles and smoking status were estimated using the Welch’s T-test and a Benjamini-

Hochberg multiple testing correction.202  

3.2.7 Structural Annotation and Chemical Prediction 

 Molecular formulas of putative mercapturic acid signatures were assessed using 

in silico fragmentation performed in SIRIUS (v 5.8.3).152 Chemical classification was 

assessed using CANOPUS to evaluate the probability discovered features could be 

predicted as an N-acyl-alpha amino acid.203,204 Fragmentation fingerprints and structural 

predictions were computed using the CSI:FingerID.205,206 Putative structural assignments 

were made considering [M + H]1+ only to all available databases using a 5-ppm mass 

tolerance. Many previously reported mercapturic acid structures are not reported in the 

available databases queried in SIRIUS.31 A custom database was created for the missing 

queries using the SMILES notation for these chemicals.  
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Figure 3.115- Performance of the Pierce iRT peptides external standards in pooled quality control 

samples. (Top) Standardized Log2 peak area of iRT peptides mapped by injection order. (Bottom) 

Standardized Log2 peak area following linear mixed-effects modeling using a quadratic injection 

order fixed effect and batch random effect. Horizontal lines indicate one (green), two (yellow), and 

three (red) deviations from the standardized mean of zero. 
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3.3 Results and Discussion 

3.3.1 Research Strategy 

 Historically, the discovery of mercapturic acid conjugates utilized a CNL approach 

monitoring for the neutral loss of 129.0426 Da (C5H7NO3) representative of the N-Acetyl-

L-Cysteine moiety in negative ion mode.52 Emerging methods using HRMS monitor this 

neutral loss using a DIA-based acquisition approach to discover unexpected 

conjugates.31,53 Multiple reports suggest the sensitivity of this class of molecules is higher 

in negative mode,52 and there are few reported examples of the detection of mercapturic 

acid conjugates using positive ion mode. To overcome this limitation, we developed a 

UHPLC-MS/MS approach to increase the detection limits of a positive ion experiment and 

evaluated the discovery potential of our methodology. To establish an unbiased method, 

we employed a combination of fragmentation filtering and MDF to discover mercapturic 

acid conjugates in urine matrices and associated their quantitative profiles with smoking 

status (Figure 3.2).  

We used a mixture of internal standards to test and optimize our methodology. 

Evaluation of reference material did not indicate the previously reported neutral loss of the 

N-Acetyl-L-Cysteine moiety (129.0426 Da) as being a prominent fragmentation pattern of 

mercapturic acid conjugates in positive ion mode. A repeated neutral loss of 131.0582 Da 

(C5H9NO3) was observed among multiple evaluated compounds (Figure 3.3). This mass 

shift reflects an additional H2 loss in the fragment ion following the disassociation of the 

N-Acetyl-L-Cysteine moiety. This structural rearrangement has yet to be reported as a 

common observation for mercapturic acid conjugates in negative mode. Compounds such 

as 2CyEMA did not produce this characteristic neutral loss with HCD activation but 

exhibited a related loss of 105.0426 Da (C3H7NO3) derived from the loss of the N-Acetyl 
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and carboxyl function groups (Figure 3.3). These two fragmentation patterns were 

monitored in a neutral loss-triggered MS3 analysis to obtain greater insights into the 

fragmentation patterns of the conjugated group in positive ion mode. We observed a few 

repeating fragmentation patterns from the analysis of the multistage activation MS3 

spectra for these compounds. The formation of a fragment ion of m/z 58.9950, 

representative of a protonated C2H2S functional group, was the most common pattern 

observed using both neutral loss-triggered MS3 acquisition schemas. The formation of this 

fragment ion was not universally reproduced among the analyzed internal standards. 

 

 

Figure 3.216- Analytical pipeline for the detection of mercapturic acid conjugates in human urine. 

Samples are prepared using mixed-mode SPE and analyzed using a UHPLC-MS/MS platform 

generated in positive ion mode. Putative mercapturic acids are detected using a combination of 

fragmentation filtering and MDF. Following association testing, unknown statistically significant 

features are interrogated for potential structures. 
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Figure 3.317- Fragmentation spectra of mercapturic acid reference standards: (A) 3HMPMA, (B) 

2CaEMA, (C) 2CyEMA, and (D) 3HPMA. Notable fragment ions and neutral loss of N-Acetyl-L-

Cysteine moiety (-131.0426 Da) and combined N-Acetyl and Carboxyl functional group losses (-

105.0426 Da) are indicated.   
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Multiple reports suggest that the neutral loss descriptive of the N-Acetyl-L-Cysteine 

moiety is not universal among all mercapturic acid conjugates.30,31,53 To overcome this 

obstacle, an alternative approach using MDF was employed. In contrast to fragmentation-

based approaches, MDF enables the discovery of unknown mercapturic acid conjugates 

by restricting the fractional mass range of the full-scan to a narrow 50 mDa window around 

the protonated mass of N-Acetyl-L-Cysteine (164.0376 m/z). MDF denoises and curates 

the resultant feature list of a global profiling experiment to discover mercapturic acid 

conjugates that exhibit a predictable transformation from this base structure. A primary 

limitation of an MDF-based discovery approach is the elevated false discovery from 

unrelated metabolite signatures observed in the mass defect filtering window. To control 

false detection, we restricted the discovery criterion to molecules that could be assigned 

an accurate mass molecular formula of a putative mercapturic acid conjugate.  

3.3.2 Discovery of Mercapturic Acid Conjugates 

 An average of 100 unique chromatographic features exhibited a diagnostic neutral 

loss detected through our fragmentation filtering approach, ranging between 48 and 146 

over the complete sample cohort. Cumulatively, this represented 1,043 unique 

chromatographic features representing 618 distinct mass values. The NIST MS Search 

software determined that the two neutral losses utilized in this experiment are commonly 

observed in peptide species found in urine. A small collection of these features 

represented independent chemical signatures putatively identified as attributable to 

acetylated amino acids, such as N-Acetyl-L-Tyrosine, or small di- and tripeptide species. 

These features were removed from consideration when possible. Following elemental 

formula prediction and filtering, only 230 unique putative mercapturic acid signatures were 

considered from the fragmentation filtering analysis. Of these features, 58 signatures were 
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detected using the neutral loss of N-Acetyl-L-Cysteine, 107 were detected using the loss 

of N-Acetyl and Carboxyl functional groups, and 65 exhibited both neutral losses in the 

acquired fragmentation spectrum.  

 To expand the discovery potential of our UHPLC-MS/MS approach, we employed 

MDF to detect mercapturic acid signatures as an alternative to fragmentation filtering. 

Using a discovery metabolomics-based workflow, 2,724 chromatographic features were 

reproducibly detected in at least 50% of the sample cohort. Applying an MDF approach, 

only 313 features exhibited a fractional mass within the specified filtering window. 

Following elemental formula prediction and spectral library-based filtering, only 117 

putative mercapturic acid signatures remained in consideration. Roughly 25% of these 

masses overlapped with the results produced from the fragmentation filtering analysis. 

Evaluation of the non-overlapping component revealed that many of the putative 

mercapturic acid signatures failed to trigger an MS/MS spectrum during the experiment. 

In some cases, fragmentation spectra were acquired, but no diagnostic neutral loss was 

observed with the applied collision energies. Using MDF, we were able to discover this 

mercapturic acid that was missing because of the strict filtering thresholds. 

 The fragmentation filtering and MDF approaches discovered 316 unique putative 

mercapturic signatures. These features exhibited a broad mass range and elution profile 

over the UHPLC gradient (Figure 3.4). A collection of these features could be annotated 

as previously described mercapturic acids using accurate mass. Four of these features 

were validated using the internal standard spike-in mixture, including 2CyEMA, 2CaEMA, 

3HPMA, and 3HMPMA (Figure 3.5). As previously reported,207 multiple isomers were 

observed near the 3HMPMA peak, indicating that our method has potential to resolve 

isomeric mercapturic acid species. Continued gradient optimization will be required to 

achieve reproducible baseline separation of these compounds. Few fragmentation spectra 
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for mercapturic acid conjugates are available in positive ion mode, and structural validation 

is dependent on manual annotation. We prioritized our annotation efforts using the 

statistical results of the biomarker evaluation comparing smokers with nonsmokers. 

 

 

Figure 3.418- Distribution of putative mercapturic acid discoveries (N = 316) across the UHPLC-

MS/MS gradient. Feature points are colored by the observed median Log2 abundance.  
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Figure 3.519- UHPLC extracted ion chromatograms for internally validated mercapturic acids. All 

detected features exhibited a strong signal current and chromatographic performance. 

 

3.3.3 Biomarkers of Tobacco Cigarette Smoke 

 The UHPLC-MS/MS method was validated on a proof-of-principle application 

using urine samples from a cohort of 20 smokers and 20 non-smoking individuals. 

Additional filtering was performed prior to statistical modeling to remove non-reproducible 

features. A minimum 80% detection rate was implemented to remove non-repeatable 

features, and missing values were imputed. A set of pooled quality control samples were 

analyzed intermittently throughout the experiment. After data normalization, putative 

mercapturic acid signatures were required to exhibit a coefficient of variation (CV) of less 
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than 20% among the pooled quality control samples following data normalization. In total, 

214 putative mercapturic acid signatures (68%) satisfied these criteria.  

 Principal component analysis was performed to assess the unsupervised 

clustering of the cohort profiles (Figure 3.6A). The smoking populations formed sparse 

but distinct clusters. The first principal component (PC1) explained 25% of the variance 

but did not associate with smoking status. The second principal component (PC2) 

explained a lesser 9% of the total variation but drove the partitioning between the 

unsupervised clusters. A sizeable degree of within-group variation was observed from the 

unsupervised clustering, suggesting many additional cofactors beyond smoking status 

attributed to the variation in mercapturic acid profiles. Evaluation of the loadings suggested 

multiple signals were influential in the observed clustering results (Figure 3.6B).  

 

 

Figure 3.620- Unsupervised clustering of mercapturic acids profiles by PCA. (A) Principal 

components score plots. Variables scaled before calculation. Convex hull computed for each group 

based on smoking status. (B) Principal components loadings plot. The four validated mercapturic 

acid loadings are highlighted in red.  
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Figure 3.721- Multivariate assessment of mercapturic acid profiles with smoking status. (A) OPLS-

DA scores plot for the classification of smoker and non-smoker groups. Quantitative abundances 

derived from putative mercapturic acid peak heights (B) Variable importance plot ranking the most 

impactful features for categorizing smoker profiles. (C) Quantitative distributions of the topmost 

important features. Error bars represent 95% confidence intervals. 

Supervised clustering using OPLS-DA demonstrated a strong classification 

potential (R2Y = 0.878, Q2 = 0.731) using the mercapturic acid profiles to discriminate 

smoking groups (Figure 3.7A).  Evaluation of the variable importance plots and 

quantitative profiles (Figure 3.7B-C) indicated many putative mercapturic acids served as 

informative classifiers, including the validated and previously reported 2CyEMA, 2CaEMA, 

and 3HMPMA results.192 A univariate evaluation of the mercapturic acid profiles indicated 
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these features are strongly associated with smoking status, with many exhibiting high fold 

changes with confident outcomes (Figure 3.8). The evaluation detected 38 putative 

mercapturic acid signatures with a significant association with smoking status following a 

multiple testing correction (α = 0.05). These features were selected for spectral annotation 

and chemical prediction to assess the likelihood of a mercapturic acid assignment and 

elucidation of any candidate structures.  

 

Figure 3.822- Volcano plot of hypothesis testing of mercapturic acid profiles by smoking status. 

Statistical significance assessed using Welch’s T-test with Benjamini-Hochberg multiple testing 

correction (α = 0.05). Results with statistically significantly increased abundances are highlighted 

in the red region and decreased abundances in the blue region.  
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3.3.4 Structural Annotation of Unknown Mercapturic Acid Conjugates 

 There are few mercapturic acid entries in available commercial or open-source 

mass spectral libraries, limiting the confident Level-2 identification (putative identity) of this 

class of molecules in discovery experiments.208 Current annotation efforts suggest using 

the detection of multiple characteristic fragment ions to increase the discovery confidence 

to Level-4 (valid formula) or Level-3 (tentative structure) identification confidence,31 but 

this approach has limitations. Many characteristic fragment ions observed for mercapturic 

acid conjugates are produced by other metabolites, notably peptide species that are 

abundant in urine matrices. While the observation of characteristic fragment ions may 

serve as a useful filter, it does little to assist annotation efforts of novel or undescribed 

targets detected in a discovery experiment. As such, we propose using SIRIUS with the 

CSI:FingerID and CANOPUS modules to assist with the curation of the putative 

mercapturic acid signatures. We evaluated discovery results by molecular formula 

assignment and summarized the proportion of explained peaks and total explained 

intensity predicted from in silico fragmentation. For classification assignment we used 

CANOPUS to evaluate probability that putative mercapturic acids could be characterized 

as N-acyl-alpha amino acids. Finally, we summarized the CSI:FingerID confidence and 

substructure scores of the top mercapturic acid assignment for each discovery. 

We first evaluated the three validated and statistically significant mercapturic acids 

detected in this study: 2CyEMA, 2CaEMA, and 3HMPMA (Table 3.2). For each molecule 

the correct molecular formula was predicted, the majority of the observed peaks were 

annotated, and 75% of fragment ion intensity explained from the in silico fragmentation 

model. All fragmentation spectra exhibited patterns typically associated with N-acyl-alpha 

amino acids, with all probabilities greater than 80%. Interpretation of the structural 
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predictions required more careful consideration. The CSI:FingerID confidence score was 

low for all validated discoveries due to the common occurrence of structural isomers for 

these masses (results not shown). As such, we elected to focus on substructure coverage 

in combination with the estimated prediction scores to select the top candidate structure. 

For each reference standard, the correct structural prediction was not the most confident 

suggestion. However, the correct match was among the top suggestions. For example, 

2CaEMA was predicted as N-Acetyl-S-(2-aminopropanoyl)-L-Cysteine and the correct 

assignment was the fifth suggested compound in the list. From these results, we 

established guidelines for interpreting the assignments of unknown mercapturic acids.  

 Evaluation of the 38 statistically significant findings of the univariate analysis 

suggested multiple discoveries could be mercapturic acids (Table 3.2). All findings could 

be assigned a plausible formula of an N-Acetyl-L-Cysteine conjugate with a high 

proportion of observed fragments ion annotated following in silico fragmentation. Using 

the CANOPUS module, many of the findings exhibited fragmentation patterns associated 

with the N-acyl-alpha amino acid classification. As noted in the evaluation of the validated 

mercapturic acid findings, the common occurrence of structural isomers with the reported 

formula limited the confidence of an unambiguous CSI:FingerID structural prediction. 

Regardless, 32 of 38 significant findings displayed a high substructure annotation rate with 

at least one mercapturic acid candidate structure. To avoid biasing the results, we only 

reported the most confident finding but determining the true structure will require further 

experimentation. The candidate structure represents Level-3 identifications supported by 

machine learning-based formula, classification, and structural predictions. It is important 

to note that the presented annotation by SIRUIS chemical prediction does not preclude 

the possibility of false detection. The proposed method provided evidence that some of 

the reported discoveries were less likely to be mercapturic acid conjugates. For example, 
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despite its strong association with smoking status, the feature of 214.0528 m/z did not 

exhibit fragmentation patterns associated with an N-acyl-alpha amino acid and could not 

be annotated to any previously reported mercapturic acid structure. This observation 

supports the use of a chemical prediction-based annotation approach to assist the curation 

of discovery results.  

 The experimental results were generated using a DDA-CNL-MS3 approach to 

provide structural insights into conjugation group of putative mercapturic acids. Currently, 

the annotation of multistage activation spectra is not supported by SIRIUS; however, these 

MS3 spectra can be manually imported and annotated as independent chemical structure. 

We first focused on the annotation of the unknown mercapturic acid of m/z 269.0949 which 

exhibited the strongest association with smoking status and a predicted formula of 

C12H16N2O3S. This formula is shared with the dipeptide phenylalanylcysteine but there was 

poor spectral similarity between these compounds. Numerous putative mercapturic acid 

structures exhibited a pyridine or phenylamine-based conjugation moiety for this feature 

with high substructure annotation. A neutral loss-triggered MS3 from disassociation of the 

N-Acetyl-L-Cysteine moiety at m/z 138.0370 was collected for this molecule. The 

annotation of acquired spectra suggested a molecular formula of C7H7NS with 78% of the 

total fragment ion intensity explained by an in silico fragmentation. Many pyridine-based 

compounds were suggested from the structural prediction but a 3-pyridineethyl moiety 

exhibited strong substructure annotation of 77.0%. Using this observation we update the 

top candidate structure for this putative smoking biomarker to N-Acetyl-S-(3-pyridine-2-

ethyl)-L-cysteine (Figure 3.9). However, the observed multistage fragmentation spectra 

lack the specificity to unambiguously annotate this structure. Alternative candidates for 

this discovery exhibited a phenylamine moiety. Numerous chemicals in tobacco cigarette 



91 
 

smoke exhibit pyridine or phenylamine moiety. As such, classifying the chemical source 

of this putative mercapturic acid compound will require further characterization efforts.  

 

 

Figure 3.923- Structural annotation of putative mercapturic acid: N-Acetyl-S-(3-pyridine-2-ethyl)-L-

cysteine. (A) Annotation of MS2 fragmentation spectra collected with HCD activation at fixed 30% 

collision energy. (B) Annotation of MS3 spectra of product ion at m/z 138.0372 with HCD activation 

at fixed 50% collision energy. Substructure annotation predicted by SIRIUS v. 5.8.3.152 
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Table 3.29- Structural Annotation of Mercapturic Acid Biomarkers using SIRIUS, CSI:FingerID, and CANOPUS 

m/z RT Adj. P-
Value Ratio Predicted 

Formula 

Annotated 
Peaks 

(Explained 
Intensity) 

Class 
Probability Top Candidate Mercapturic Acid Structure Substructure 

Coverage 
PubChem 

ID 

269.0949 18.1 2.6E-13 69.85 C12H16N2O3S 28/42 (97%) 68% N-Acetyl-S-(6-methylpyridin-2-yl)-L-cysteine 67.03% 79267016 

214.0528 26.0 1.6E-10 12.17 C9H11NO3S 15/25 (92%) NA NA NA NA 

217.0638 21.7 4.7E-09 11.00 C8H12N2O3S 27/30 (98%) 83% N-Acetyl-S-(2-cyanoethyl)-L-cysteine* 76.56% 114812 
272.0946 28.9 1.7E-08 6.65 C12H17NO4S 45/58 (90%) 96% N-Acetyl-S-[(4-methoxyphenyl)methyl]-L-cysteine 41.52% 68736566 

276.0895 30.8 5.8E-07 8.85 C11H17NO5S 49/58 (97%) 100% N-Acetyl-S-(4-hydroxy-2-oxocyclopentyl)-L-
cysteine 

66.53% 18738720 

301.1211 29.7 2.4E-05 6.22 C13H20N2O4S 27/45 (87%) 82% N-Acetyl-S-[2-[bis(prop-2-enyl)amino]-2-
oxoethyl]-L-cysteine 

61.81% 64141856 

230.0841 31.3 5.7E-05 9.21 C10H15NO3S 29/58 (83%) 98% N-Acetyl-S-(pent-3-ynyl)-L-cysteine 92.05% 107774782 

232.0997 35.2 5.7E-05 5.29 C10H17NO3S 45/58 (96%) 98% N-Acetyl-S-(3,3-dimethylallyl)-L-cysteine 96.15% 107774496 
276.0895 31.3 5.7E-05 8.09 C11H17NO5S 46/57 (97%) 100% N-Acetyl-S-(4-hydroxy-2-oxocyclopentyl)-L-

cysteine 
65.59% 18738720 

307.1316 25.2 1.5E-04 6.98 C12H22N2O5S 40/58 (81%) 93% N-Acetyl-S-[1-(3-methoxypropylamino)-1-
oxopropan-2-yl]-L-cysteine 

68.57% 64139861 

235.0742 17.8 4.9E-04 3.31 C8H14N2O4S 29/58 (77%) 98% N-Acetyl-S-(2-carbamoylethyl)-L-cysteine* 84.70% 157849 

244.0633 23.1 9.8E-04 2.44 C10H13NO4S 29/42 (77%) NA NA NA NA 

234.0790 24.2 1.1E-03 4.18 C9H15NO4S 39/58 (89%) 100% N-Acetyl-S-(3-oxobutyl)-L-cysteine 85.34% 185147 

270.0459 20.3 1.1E-03 2.49 C8H15NO5S2 16/58 (80%) 99% N-Acetyl-S-[2-(methylsulfonyl)ethyl)-L-cysteine 82.23% 107774368 
293.0796 18.3 1.1E-03 3.13 C10H16N2O6S 31/59 (70%) 100% N-Acetyl-S-(2-acetamido-2-carboxyethyl)-L-

cysteine 
85.71% 22572358 

204.0685 20.9 1.2E-03 3.11 C8H13NO3S 15/32 (89%) NA NA NA NA 

270.0901 26.3 1.2E-03 3.26 C11H15N3O3S 27/58 (73%) NA NA NA NA 

297.0897 19.1 1.2E-03 3.85 C13H16N2O4S 14/25 (92%) 89% N-Acetyl-S-(4-acetamidophenyl)-L-cysteine 84.11% 71380584 

190.0529 20.8 2.0E-03 2.92 C7H11NO3S 20/58 (69%) 69% N-Acetyl-S-(ethenyl)-L-cysteine 59.24% 71371885 
236.0582 20.8 2.0E-03 2.98 C8H13NO5S 34/59 (83%) 99% N-Acetyl-S-(2-carboxyethyl)-L-cysteine 90.34% 108073 
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218.0841 24.2 2.0E-03 3.57 C9H15NO3S 46/58 (96%) 98% N-Acetyl-S-(but-2-enyl)-L-cysteine 89.89% 77021037 
290.1051 35.9 2.4E-03 4.06 C12H19NO5S 44/58 (94%) 99% N-Acetyl-S-[[1-(2-methoxy-2-

oxoethyl)cyclopropyl]methyl]-L-Cysteine 
67.51% 114000172 

264.0895 18.4 2.4E-03 2.35 C10H17NO5S 49/57 (98%) 100% N-Acetyl-S-(2-methyl-2-carboxypropyl)-L-cysteine 86.56% 79623390 

264.0895 20.1 2.4E-03 2.83 C10H17NO5S 29/35 (56%) 100% N-Acetyl-S-(1-carboxybutyl)-L-cysteine 83.16% 83041993 

204.0685 26.7 2.9E-03 4.12 C8H13NO3S 32/58 (80%) 99% N-Acetyl-S-(2-propen-1-yl)-L-cysteine 91.95% 152467 

208.0634 26.7 3.0E-03 4.42 C7H13NO4S 9/25 (89%) 97% N-Acetyl-S-(2-hydroxyethyl)-L-cysteine 56.77% 108009 
278.1051 35.2 3.1E-03 3.65 C11H19NO5S 42/50 (98%) 99% N-Acetyl-S-[1-(carboxymethyl)butyl]-L-cysteine 79.41% NA 

188.0372 25.0 5.2E-03 1.99 C7H9NO3S 17/33 (88%) NA N-Acetyl-S-(ethynyl)-L-cysteine 58.29% 88654551 

278.1051 22.7 6.1E-03 2.56 C11H19NO5S 53/58 (98%) 100% N-Acetyl-S-[1-(carboxymethyl)butyl]-L-cysteine 80.86% NA 

264.0895 31.3 6.8E-03 2.82 C10H17NO5S 46/58 (97%) 100% N-Acetyl-S-(2-methyl-2-carboxypropyl)-L-cysteine 86.10% 79623390 
286.0737 31.2 1.5E-02 2.37 C12H15NO5S 32/51 (93%) 98% NA NA NA 

235.0201 31.2 1.6E-02 2.44 C7H10N2O3S2 15/42 (84%) 61% NA NA NA 

275.0691 22.5 1.7E-02 2.89 C10H14N2O5S 32/44 (95%) 100% N-Acetyl-S-(1-methyl-2,5-dioxopyrrolidin-3-yl)-L-
cysteine 

71.30% 113999095 

278.1051 21.9 2.3E-02 2.29 C11H19NO5S 41/58 (90%) 100% N-Acetyl-S-[1-(carboxymethyl)butyl]-L-cysteine 77.36% NA 
264.0895 30.9 3.0E-02 2.55 C10H17NO5S 46/58 (96%) 100% N-Acetyl-S-(2-methyl-2-carboxypropyl)-L-cysteine 86.10% 79623390 

236.0947 24.3 3.9E-02 1.96 C9H17NO4S 43/58 (86%) 87% N-Acetyl-S-(3-hydroxypropyl-1-methyl)-L-
cysteine* 

83.77% 46780019 

278.1051 35.9 4.1E-02 2.40 C11H19NO5S 41/58 (95%) 100% N-Acetyl-S-[1-(carboxymethyl)butyl]-L-cysteine 77.10% NA 

298.0771 28.4 4.3E-02 0.31 C10H19NO5S2 23/32 (97%) NA N-Acetyl-S-[(3-ethylsulfonyl)propyl]-L-cysteine 66.50% 65092758 

* Validated by internal reference 
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3.4 Conclusion 

 We developed a UHPLC-MS/MS method to profile urinary mercapturic acid 

conjugates. In contrast to contemporary methodology, our novel approach utilizes 

nanoflow chromatography and positive ionization for the unbiased detection of 

detoxification products. Using a combination of fragmentation filtering and MDF, we 

detected hundreds of putative mercapturic acid signatures from the analysis of 40 urine 

samples collected from smoking and non-smoking study participants. Using multivariate 

and univariate statistical modeling, 38 of these discoveries were revealed to be 

significantly associated with tobacco cigarette use. Molecular annotation and chemical 

prediction of these results using SIRIUS and contemporary prediction software 

demonstrated many of these findings could putatively be annotated as mercapturic acid 

conjugates. Here, we propose many previously unknown detoxification products including 

the discovery of novel putative biomarkers of tobacco cigarette exposure.  
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Chapter 4:  A Mass Spectral Database for Mercapturic Acid Conjugates 

 
The following chapter introduces a mass spectral library for mercapturic acid conjugates 

developed to improve the annotation and characterization of these biomarkers of exposure 

in analytical studies. The library is comprised of mass spectra generated from authentic 

reference material of 20 mercapturic acid conjugates using multiple mass spectrometry 

platforms. This work was conducted in collaboration with the University of Minnesota 

Center for Metabolomics and Proteomics (CMSP) and Masonic Cancer Center 

Bioanalytical Services Center. This will be submitted as an original technical note or 

supplement to the research article to be derived from the efforts outlined in Chapter 3.  
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4.1 Introduction  

Humans are repeatedly exposed to foreign xenobiotics through their local 

environment, occupation, and lifestyle choices.209 These foreign materials represent 

various chemicals, including plant constituents,18,37 cosmetics,210,211 food and beverage 

additives,212,213 pharmaceuticals,2,214 industrial chemicals,215,216 and environmental 

pollutants.186,217 It is difficult to predict the number of foreign chemicals encountered daily, 

but it is estimated that humans are exposed to upwards of three million xenobiotics in their 

lifetime.218 Following absorption, many of these chemicals undergo metabolic 

transformation to remove reactive functional groups and increase their hydrophilicity for 

excretion. In rare instances, toxic xenobiotic precursors or their by-products may react and 

modify essential biomolecules, such as DNA, RNA, or proteins.1 Recurrent exposure to 

these toxic chemicals may produce adverse clinical phenotypes184 and contribute to 

disease pathogenesis.156 Molecular characterization of toxic foreign chemical entities and 

their physiological consequences provides valuable insights into the environmental 

contribution to human health.  

Mercapturic acid conjugates represent one detoxification product commonly used 

to characterize chemical exposure. Mercapturic acid conjugates are produced through 

glutathione-mediated conjugation of reactive electrophiles. These intermediate products 

are further transformed into an N-Acetyl-L-Cysteine S-conjugate form that increases water 

solubility and are ultimately disposed of through urinary excretion.191 Analytical detection 

and quantitation of urinary mercapturic acid conjugates using LC-MS/MS has been the 

method of choice for characterizing the molecular outcomes of many exposure 

types.19,22,31,219 Most of these methods represent targeted methodology, characterizing 

one or more defined mercapturic acid conjugates associated with a known chemical 
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exposure. For example, acrolein exposure is monitored through 3HPMA formation,220 

acrylonitrile through 2CyEMA formation,221 and acrylamide through 2CaEMA formation.222 

Applications of an untargeted methodology for characterizing global profiles of urinary 

mercapturic acid conjugates are sparse. For many years, these methods depended on 

unit mass resolution CNL methods that monitored for a neutral loss of N-acetylcysteine (-

129 Da), a characteristic of mercapturic acid conjugate compounds.30,52 While capable of 

detecting unknown and undescribed mercapturic acid conjugates in complex matrices, the 

limited mass accuracy of triple quadrupole-based LC-MS/MS platforms limited the 

annotation of these discoveries.30 Methodologies that utilize HRMS are being actively 

developed and have been demonstrated to characterize vast arrays of mercapturic acid 

conjugates associated with common exposure types.31,53  

In Chapter 3 of this thesis, a novel HRMS method for characterizing urinary 

mercapturic acid conjugates was proposed. In contrast to existing techniques, this method 

utilized nanoflow chromatography to maximize instrument sensitivity and positive ion 

mode detection to obtain richer fragmentation of unknown mercapturic acid conjugates. 

The proposed method was demonstrated to detect previously described mercapturic acid 

conjugates associated with tobacco cigarette exposure and discovered many previously 

undescribed products. However, we could not provide confident identifications of these 

novel discoveries. With limited reference libraries, we were forced to rely on accurate 

mass assignments and computationally predicted spectral annotations. The lack of a mass 

spectral library represents a deficiency in this field of study and a significant obstacle in 

applying any discovery-based methodology. 

  Entries for mercapturic acid conjugates in existing mass spectral libraries are rare, 

despite decades of research. Chemical entries are available for mercapturic acid 

conjugates in the Human Metabolome Database (HMDB)223, but almost none possess 
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spectral information. This issue is observed for the MassBank of North America (MoNA - 

https://mona.fiehnlab.ucdavis.edu/) and the Global Natural Product Social Molecular 

Networking (GNPS) repositories as well.224 The NIST mass spectral library 

(https://chemdata.nist.gov/) has only eight tandem MS entries for mercapturic acid 

conjugates in its 2023 release. Without suitable reference spectra to evaluate discovery 

results against, the development of global profiling techniques will be impeded, and the 

greater toxicology community will be unable to appreciate the true impact of these 

emerging methods.  

This chapter outlines the creation and annotation of a high-resolution tandem mass 

spectrometry library of mercapturic acid conjugates. To ensure the generalizability of this 

library, we collected results using both positive and negative ion mode detection, CID and 

HCD activation using multiple collision energies. We acquired both MS2 and MS3 spectra 

of fragment ions carrying the adducted chemical moiety. Each mass spectral library entry 

represents a composite spectrum generated from dozens of individual measurements to 

minimize noise and unstable signal influence. We attempted to annotate all observed ions 

with their corresponding chemical formula. Following result annotation and curation, we 

evaluated common patterns among the mercapturic acid conjugate spectra to detect 

diagnostic fragmentation patterns that could assist in future discovery experiments. 

Finally, we evaluated the detection of mercapturic acid conjugates in a human urine matrix 

with a DIA-based LC-MS/MS approach with our spectral results serving as an analytical 

reference. 
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4.2 Experimental Section 

4.2.1 Chemicals and Reagents 

A collection of 20 mercapturic acid conjugate standards, including N-Acetyl-S-

(methyl)-L-cysteine (MMA) (1), N-Acetyl-S-(ethyl)-L-cysteine (EMA) (2), N-Acetyl-S-(2-

propen-1-yl)-L-cysteine (2PeMA) (3), N-Acetyl-S-(n-propyl)-L-cysteine (1PMA) (4), N-

Acetyl-S-(2- hydroxyethyl)-L-cysteine (2HEMA) (5), N-Acetyl-S-(2-cyanoethyl)-L-cysteine 

(2CyEMA) (6), N-Acetyl-S-(2-hydroxypropyl)-L-cysteine (2HPMA) (7), N-Acetyl-S-(3-

hydroxypropyl)-L-cysteine (3HPMA) (8), N-Acetyl-S-(2-carboxyethyl)-L-cysteine 

(2CoEMA) (9), N-Acetyl-S-(3-hydroxy-1-methyl- propyl)-L-cysteine (3HMPMA) (10), N-

Acetyl-S-(2,3-dihydroxypropyl)-L-cysteine (23HPMA) (11), N-Acetyl-S-(2-

carbamoylethyl)-L-cysteine (2CaEMA) (12), N-Acetyl-S-(phenyl)-L-cysteine (PhMA) (13), 

N-Acetyl-S-(2-carboxy-1-methylethyl)-L-cysteine (2CoMEMA) (14), N-Acetyl-S-(2-

carboxypropyl)-L-cysteine (2CoPMA) (15), N-Acetyl-S-(3,4-dihydroxybutyl)-L-cysteine 

(34HBMA) (16), N-Acetyl-S-(benzyl)-L-cysteine (BzMA) (17), N-Acetyl-S-(4-nitrophenyl)-

L-cysteine (4NPhMA) (18), N-Acetyl-S-[5-(acetylamino)-2-hydroxyphenyl]-L-cysteine 

(5AcAHPhMA) (19), and N-Acetyl-S-(2,4-dinitrophenyl)-L-cysteine (24NPhMA) (20) were 

purchased from Toronto Research Chemicals (Toronto, ON, CA). UHPLC-grade 

acetonitrile and LC-MS grade formic acid were purchased from Fisher Scientific (Waltham, 

MA, USA).  

4.2.2 Mass Spectral Library Generation 

 All analytical standards were solubilized in MeOH to achieve 10 mg/mL 

concentrations. Prior to analytical characterization, the solutions were diluted to a final 

concentration of 50 pmol/µL in a solution of 50:50 water and acetonitrile with 0.1% formic 
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acid. A blank reference was analyzed for each monitored mass to assist in noise peak 

categorization. Analytical characterization and detection were performed on an Orbitrap 

Eclipse Tribrid mass spectrometer (Thermo Scientific, Waltham, MA). The analysis was 

operated at a constant flow rate of 3 µL/min using a 50 µL syringe and an integrated 

syringe pump. A heated electrospray ionization (HESI) source was used with a source 

voltage of 3.5 kV and 2.5 kV for positive and negative ion detection, respectively. The ion 

transfer tube temperature was 275 °C. 

 Mass spectral library spectra were collected using full-scan detection followed by 

targeted multistage activation MSn acquisition on each reference standard independently. 

All data collection was performed using Orbitrap detection at a resolution of 120,000 in 

both positive and negative ion modes. Full-scan detection was performed over a mass 

range of 70 – 300 m/z using an AGC targeted setting of 4 × 105, a maximum ion injection 

time of 50 ms, and an S-Lens RF setting of 30%. Targeted MS2 collection was performed 

using each reference standard’s charged monoisotopic mass with a quadrupole isolation 

of 1.0 m/z, an AGC setting of 5.0 × 104, and a maximum injection time of 250 ms. 

Multistage activation MS3 collection was performed if a fragment ion produced from the 

neutral loss of 131.0582 Da (C5H9NO3) or 105.0426 Da (C3H7NO3) in positive ion mode 

detection or 129.0426 Da (C5H7NO3) in negative ion mode was detected for the respective 

reference standard. Targeted MS3 acquisition was performed using a full scan quadrupole 

isolation of 1.0 m/z and MS2 quadrupole isolation of 2.0 m/z, an AGC setting of 5 × 104, 

and a maximum injection time of 250 ms. For both MS2 and MS3 acquisitions, both CID 

and HCD activation spectra were collected using a normalized fixed collision energy of 

0%, 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 60%, 75%, and 90%. For 

MS3 acquisition, the initial MS2 fragmentation was performed using HCD activation at 30% 

or 50% fixed collision energy dependent on which energy produced more intense 



101 
 

detection for the fragment ions of interest. Data collection was performed continuously for 

5 min using the following settings to acquire approximately 20 fragmentation spectra 

replicates at each activation-collision energy setting, in positive and negative ion modes, 

respectively. 

4.2.3 UHPLC LC-MS/MS Analysis 

Analytical characterization of mercapturic acid conjugate references in human 

urine matrices utilized identical UHPLC methods as described in Chapter 3. Analytical 

separation and detection were performed on an UltiMate 3000 RSLCnano UHPLC system 

(Thermo Scientific, Waltham, MA) interfaced to an Orbitrap Fusion Tribrid mass 

spectrometer (Thermo Fisher Scientific, San Jose, CA). All dried urine extracts were 

reconstituted using a load solvent mixture of 0.1% aqueous formic acid. Samples were 

spiked with a mixture Pierce™ Peptide Retention Time Calibration Mixture (Rockford, IL, 

USA) at a final 100 fmol/μL concentration to monitor chromatographic and retention time 

performance throughout the experiment. A 1% sample equivalent load in 1 μL was injected 

on the analytical platform equipped with a 10 µL injection loop. Chromatographic 

separation was performed using a self-packed C18 column (Dr. Maisch GmbH ReproSil-

PUR 1.9 µm 120 Å C18aq, 100 µm ID x 45 cm length) maintained at 55 °C for the duration 

of the experiment. The mobile phases were (A) 0.1% aqueous formic acid and (B) 0.1% 

formic acid in ACN solutions. Chromatographic separation was performed using a linear 

gradient starting at 0% B and increased to 50% B at 40 min, 90% B at 60 min, and held 

for 8 min followed by a return to starting conditions. The analysis was operated at a 

constant flow rate of 325 nL/min. A Nanospray Flex ion source (Thermo Fisher Scientific) 

was used with a source voltage of 2.1 kV and an ion transfer tube temperature of 250 °C.  
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Discovery analyses of experimental samples were performed using full-scan 

detection followed by data-independent MS2 acquisition. All analyses were performed in 

positive ion mode. Full-scan detection was performed using Orbitrap detection at a 

resolution of 120,000, AGC targeted setting of 4 × 105, a maximum ion injection time of 50 

ms, and an S-Lens RF setting of 40%. Scan ranges of 170 m/z – 600 m/z were used for 

full-scan detection. Fragmentation spectra were collected using a DIA design with 20.0 

m/z staggered-isolation window schema. Fragment spectra was performed using Orbitrap 

detection at a resolution of 30,000, normalized AGC target setting of 4 × 105 with a 60 ms 

maximum ion injection time, HCD activation with a 30% fixed collision energy.  

4.2.4 Mass Spectral Library Assembly 

 A mass spectral library of mercapturic acid conjugates was compiled from 

consensus spectra computed from each reference standard for each activation type and 

collision energy in positive and negative ion mode, respectively. All library operations and 

statistics were conducted using the R programming language.195 Raw mass spectral data 

was converted to mzML format using MSConvert and centroid using the continuous 

wavelet transformation algorithm.174 Mass spectra formatting was conducted using the 

mzR R package.174 Fragment ions between spectra were aligned using a mass tolerance 

of 10 ppm in positive ion mode and 15 ppm in negative ion mode. To compute consensus 

spectra, only fragment ions detected in at least 75% of the collected spectra at a minimum 

0.1% base peak intensity were considered. Consensus spectra fragment ion intensity was 

calculated from mean abundance of all collected spectra. Noise ions detected in the blank 

references were excluded unless they exhibited a 10:1 signal-to-noise ratio in the 

standards reference relative to the blank. A NIST compatible mass spectral library entry 

was created for each consensus spectra that included relevant molecule and 
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instrumentation meta data where necessary. All fragment ions and neutral losses were 

annotated with assistance of the MassTools and rcdk R packages.198,225    

4.2.5 Data Processing and Mercapturic Acid Verification 

 Human urine analyses generated from the DIA analysis were analyzed using the 

open-source software Skyline.226 The processing document was optimized for small 

molecule detection. Six mercapturic acid transitions were selected from the generated 

mass spectral library using HCD activation at 30% normalized collision energy. Precursor 

and transition ion traces were detected using a resolution setting of 120,000 and 30,000, 

respectively. Putative mercapturic acid detection was determined from cosine dot product 

similarity. A minimum 70% similarity, the community standard, was selected as the 

discovery threshold. All discoveries were analyzed manually, and transition alignments 

were exported directly from Skyline.  

4.3 Results and Discussion 

4.3.1 Overview of Mercapturic Acid Mass Spectral Library 

  To build the basis of a comprehensive mercapturic acid conjugate mass spectral 

library, a collection of 20 commercially available compounds was analyzed using HRMS 

(Figure 4.1). These compounds represent a diverse collection of mercapturic acids 

associated with commonly encountered reactive electrophiles and other toxic substances. 

Of these compounds, only two (PhMA and BzMA) possess HRMS tandem mass spectra 

entries in the NIST mass spectra library. One compound, 5AcAHPhMA, possesses only 

an electron ionization spectrum in the NIST mass spectra library. Otherwise, there is no 

evidence that the spectra of the remaining compounds are curated in any open-source 
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mass spectral library. Additionally, none of these spectra possess multistage activation 

MSn spectra of any kind.  

  We collected tandem MS2 spectra and multistage activation MSn for all the listed 

compounds in positive and negative ionization, using both CID and HCD activation with 

14 distinct collision energies. We aimed to collect MSn spectra on fragment ions that 

exhibited a diagnostic neutral loss of the N-acetylcysteine moiety in positive ion mode (-

131.0582 Da), the N-acetylcysteine moiety in negative mode (-129.0426 Da), or the 

combined loss of the N-acetyl and carboxyl functional groups in positive mode (-105.0426 

Da), respectively; however, not all the analyzed compounds exhibited these neutral 

losses. Cumulatively, we collected 2,548 unique spectra for the 20 compounds, of which 

1,120 consisted of positive and negative MS2 spectra and 1,428 positive and negative MS3 

spectra. These spectra were diligently curated using a parameterized algorithm to remove 

non-reproducible ions not repeatably detected in replicate spectra collection and noise 

ions detected at a notable intensity in the blank background reference. Following this 

curation, 203 spectra were excluded because no ions satisfied our detection criteria 

following filtering. All these were multistage MS3 spectra, of which 72% were acquired in 

negative ion mode, with a mean collision energy of 60%. In general, we observed that 

fewer reliable fragment ion species were detectable for many of the compounds at high 

collision energies, particularly in negative mode.   
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Figure 4.124- Chemical structures and abbreviations of the mercapturic acid conjugate references. 
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          To maximize the information content of our mass spectral library, we annotated all 

observed fragment ions to ensure that most detected masses were ascribed to a valid 

chemical formula. We aimed for 95% of the total ion intensity to be annotated following 

the formula assignment. The average explained intensity for the acquired MS2 spectra 

was 99.45% for positive ion mode and 99.50% for negative ion mode. Generally, the 

observed fragments that could not be annotated were low-intensity ions measured at less 

than 10% of the base peak intensity. All positive mode MS2 spectra satisfied the 95% 

explained intensity threshold. Two negative ion mode spectra failed to meet this threshold 

for 2CyEMA at 75% and 90% collision energy, respectively. These spectra were 

dominated by two annotated ions of m/z 154.9456 and 192.9575 that could not be 

assigned a chemical formula and were not removed by any noise detection filters. To test 

the fidelity of our spectral library, we compared the similarity of PhMA and BzMA of our 

spectra to that of the NIST mass spectral library (Figure 4.2). For our spectral results, we 

observed a mean cosine dot product similarity of 99.3% and 99.4% for PhMA and BzMA 

in positive ion mode, respectively, and 99.9% and 99.9% similarity in negative ion mode, 

respectively, among all 14 collision energies. Our proposed chemical annotations matched 

the NIST assignments precisely. We failed to annotate one ion NIST assigned at m/z 

105.0445 for PhMA. This ion was annotated as a C6H5N2 produced from a structural 

rearrangement with the N2 collision gas that our annotation approach did not consider. 

These results affirm that our spectral library generation and structural assignments are 

accurate and can be trusted for the remaining undescribed mercapturic acid conjugates.  
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Figure 4.225- Comparison of generated mass spectral library results (red) to NIST reference spectra 

(blue) using HCD activation with 30% normalized collision energy. (A) Comparison of PhMA. (B) 

Comparison of BzMA.  
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Annotation of the MS3 spectra proved more challenging. The average explained 

intensity for the acquired MS3 spectra was 90.21% for positive ion mode and 98.97% for 

negative ion mode. While almost all (96%) of the negative ion mode MS3 spectra satisfied 

the 95% annotation threshold, only 75% of the MS3 collected in positive ion mode passed 

this threshold. Evaluation of these poorly annotated results suggested the occurrence of 

chimera spectra, in which more than one unique ion species is isolated for fragmentation 

simultaneously. Using pure, authentic reference material, observing chimeric MS2 spectra 

is nearly impossible. However, the fragmentation of these compounds produced a wide 

variety of fragment ions of varying masses. Using 2HPMA as an example (Figure 4.3), 

the diagnostic neutral loss of C3H7NO3 produces a fragment ion at m/z 117.0369 

(C5H9OS+). With an instrument default MSn precursor isolation width of 2 Da, the 

neighboring ion at m/z 116.0161 (C4H6NOS+) is co-isolated for multistage activation. Many 

of the fragment ions cannot be properly annotated as they correspond to this co-isolating 

ion. While the isolation width can be lowered below the instrument vendor recommended 

setting to minimize this phenomenon, this will not entirely remove the chance of co-

isolation and will limit the transmission of low abundant ions. As negative ion mode 

produced fewer fragment ions overall, the occurrence of chimeric spectra was not an 

issue. As multistage MSn spectra represent a small proportion of common mass spectral 

libraries, there are few guidelines on how best to annotate chimeric annotation. As 

chimeric spectra are often unavoidable, the community will need to develop clear 

annotation guidelines to account for these fringe cases. 
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Figure 4.326- Evaluation of positive ion mode chimeric multistage activation MSn of 2HPMA. (A) Full 

MS2 spectra of 2HPMA using HCD activation at 50% normalized collision energy. The highlighted 

region represents the 2 Da isolation window for the diagnostic fragment at m/z 117.0369 following 

the neutral loss of C3H7NO3. (B) Zoom-in on the fragment ions in the isolation window. The star 

marks the diagnostic fragment ion. (C) The multistage activation MSn of 2HPMA. The red arrows 

indicate chimeric fragments that cannot be annotated to the intended source ion.  

  



110 
 

4.3.2 Common Fragmentation Pathways of Mercapturic Acids 

  Using the assembled mercapturic acid mass spectral library, we evaluated 

common fragmentation pathways descriptive of this class of molecule. As HCD-based 

activation is the more common HRMS fragmentation method for small molecule discovery 

experiments, we elected to focus our analysis on only HCD MS2 and MS3 spectra in 

positive and negative ion mode. The most immediate observation was the stark difference 

in the information content between positive and negative ion mode MS2 spectra (Figure 

4.4). As expected, positive ion mode produces more fragmentation patterns than negative 

ion mode. This phenomenon improves the performance of the spectral matching algorithm 

and would increase the annotation rate of unknown mercapturic acids encountered during 

a discovery experiment.  

           We evaluated reproducible patterns observed between the 20 independent 

mercapturic acid compounds to identify common fragmentation pathways. For this 

assessment, we identified fragment ions or neutral losses detected in at least 80% (N = 

16) of the standards in at least one collision energy using HCD activation. We then 

monitored the average intensity of these signals over the acquired collision energies to 

categorize fragmentation pathway patterns. For MS2 spectra collected in positive ion 

mode, ten unique fragment ions (Figure 4.5) and seven unique neutral losses (Figure 

4.6) were shared between the mercapturic acid references. These patterns exhibited a 

wide range of masses and intensities, supporting our empirical observations on the rich 

fragmentation potential of positive ion mode acquisition. We found that expected neutral 

losses of functional groups and structural moiety were the prominent elements of 

mercapturic acids in positive ion mode. Importantly, we reaffirmed that the neutral losses 

of C5H9NO3 (-131.0582 Da) and C3H7NO3 (-105.0426 Da) were diagnostic fragmentation  
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Figure 4.427- Comparison of mercapturic acid conjugate fragmentation pathways in positive and 

negative ion mode. All spectra were generated using HCD activation and 50% normalized collusion 

energy. (A) Comparison of 2CyEMA spectra. (B) Comparison of 3HPMA spectra.  
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Figure 4.528- Intensity profiles of shared fragment ions of mercapturic acid conjugates in positive ion 

mode over multiple collision energies. Shared fragmentation patterns are defined as detectable in 

at least 80% of the reference standards in at least one nominal collision energy.   

 

 

Figure 4.629- Intensity profiles of shared neutral loss patterns of mercapturic acid conjugates in 

positive ion mode over multiple collision energies. Shared fragmentation patterns are defined as 

detectable in at least 80% of the reference standards in at least one nominal collision energy.  

  



113 
 

patterns of this compound class. Evaluation of the MS3 spectra produced from the 

multistage activation of their corresponding fragment ions indicated few shared 

fragmentation pathways. Only one product ion was shared among these spectra over the 

multiple collision energies at m/z 44.9794 (CHS+). As expected, the MS3 spectra were 

descriptive of the adducted electrophile moiety, and there was little shared between these 

spectra.  

 

 

Figure 4.730- Intensity profiles of shared fragment ion (left) and neutral loss (right) patterns of 

mercapturic acid conjugates in negative ion mode over multiple collision energies. Shared 

fragmentation patterns are defined as detectable in at least 80% of the reference standards in at 

least one nominal collision energy. 

 
           Evaluation of the shared fragmentation pathways in negative ion mode further 

highlighted the difference in information potential between positive and negative modes. 

We only observed one product ion at m/z 84.0450 (C4H6NO-) and one neutral loss of 

129.0426 Da (C5H7NO3) shared between 80% of the mercapturic acid references at any 

collision energy (Figure 4.7). The neutral loss of the N-acetylcysteine moiety is the only 

neutral loss commonly reported for mercapturic acid conjugates in negative mode.30,31,52,53 

The common occurrence of a fragment ion at m/z 84.0455 has been previously reported;31 

however, other losses were reported for mercapturic acid conjugates in negative mode, 
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including fragment ions at m/z 162.0225 (C5H8NO3S-), 128.0348 (C5H6NO3
-), and 74.0242 

(C2H4NO2
-). These patterns were only individually observed for a select few reference 

standards. There were no shared fragmentation pathways for the multistage activation 

MS3 spectra following the neutral loss of the N-acetylcysteine moiety. In general, very few 

fragment ions were observed in any of the MS3 spectra in negative ion mode. Acquiring 

these spectra would provide minimal additional structural insights in a discovery 

experiment.  

  As a final evaluation, we re-evaluated the optimal collision energy for the unbiased 

detection of mercapturic acids in positive ion mode using these new spectral insights. 

Using the common fragmentation profiles, we determined that the neutral loss of the N-

acetylcysteine moiety (-131.0582 Da) was most formed at 40% fixed collision energy, and 

the joint loss of the N-acetyl and carboxyl functional groups (-105.0426 Da) occurred at 

35% fixed collision energies. For an unbiased discovery analysis, detecting one of these 

neutral losses at a minimum of 10% base peak intensity and an instrument-specific 

absolute noise threshold would provide adequate specificity to ensure a novel discovery 

is not dependent on a potential noise peak. Examining the mercapturic acid reference 

spectra at a 40% fixed collision energy with HCD activation, we observed that 85% of 

compounds (N = 17) satisfied this detection threshold (Figure 4.8). While many of the 

compounds could be detected using only the neutral loss of N-acetylcysteine moiety, 

supplementing this approach with the combined N-acetyl and carboxyl neutral loss will 

improve the breadth of discovery. 
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Figure 4.831- Evaluation of diagnostic neutral loss coverage for the reference mercapturic acid 

conjugates in positive ion mode. All spectra collected with HCD activation with 40% normalized 

collision energy. 

 
Only three compounds failed to exhibit one of these neutral losses at the desired 

minimum intensity: MMA, BzMA and 2HPMA. In contrast to the other standards evaluated 

in this study, the spectra for BzMA were dominated by a fragment produced by the neutral 

loss of 163.0303 Da (C5H9NO3S) (Figure 4.2B). This loss represents the complete N-

acetylcysteine moiety loss, including the sulfur atom. This fragmentation pattern was 

observed for a subset of the other mercapturic acids but was not as commonly formed as 

the 131.0582 Da (C5H9NO3) loss. This pattern could be included as a diagnostic neutral 

loss of mercapturic acid conjugates in positive ion mode. However, more compounds will 

need to be analyzed to determine the prevalence of this neutral loss. Evaluation of the 

MMA and 2HPMA spectra indicated that this compound was dominated by the fragment 

ions descriptive of the N-Acetyl-L-Cysteine moiety of the conjugate structure (Figure 4.9). 

This included prominent ions at m/z 162.0220 (C5H8NO3S+), 130.0499 (C5H8NO3
+), and 
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84.0444 (C4H6NO+), the positive ion mode equivalents of the characteristic fragment ions 

reported for mercapturic acid conjugates in negative ion mode. While the work presented 

in Chapter 3 of this thesis focused on detecting mercapturic acid conjugates by neutral 

loss screening, subsidizing these discovery efforts with fragment ion-based detection 

screening could prove beneficial for these fringe cases.   

 

 

Figure 4.932- Fragmentation spectra of 2HPMA in positive ion mode using HCD activation with 40% 

normalized collision energy. 

 

4.3.3 Detection of Mercapturic Acids in Human Urine 

  In Chapter 3 of this thesis, we presented an LC-DDA-MS/MS method for 

discovering mercapturic acids using nanoflow chromatography and positive ion mode 

detection. While our method discovered hundreds of putative mercapturic acid signatures 

and a small collection of potential biomarkers of tobacco cigarette usage, we could not 

confidently identify most of our discoveries. We could only verify a small collection of our 
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discoveries using a set of heavy-labeled mercapturic acids standards of previously 

reported cigarette exposure biomarkers. To evaluate the longitudinal performance of our 

LC-DDA-MS/MS experiment, we analyzed pooled quality control samples periodically 

throughout the experiment. These samples were analyzed using a DIA-based acquisition 

approach to subsidize the discovery efforts post hoc if we obtained new spectral 

information to corroborate any of our discoveries. Here, we aimed to evaluate if any of the 

mercapturic acid conjugates compiled in our mass spectral library could be detected in a 

human urine matrix. 

           The ten pooled quality control samples were analyzed using the open-source 

software Skyline and a DIA-based workflow. We queried these results using spectra for 

all 20 mercapturic acid standards in positive ion mode generated using HCD activation 

with 30% fixed collision energy. We monitored the alignment of the extracted ion 

chromatogram of the precursor ion trace with its respective fragment ion patterns. We 

verified the detection of 11 of 20 mercapturic acid references among pooled quality control 

samples with a minimum cosine dot product of 700, i.e., 70% similarity (Figure 4.10). Five 

of these identifications are supported by the co-elution of the heavy-labeled mercapturic 

acid spike-in analyzed in the experiment, namely, 2CyEMA, 2HPMA, 3HPMA, 2CaEMA, 

and 3HMPMA. The additional six spectral library-driven identifications support the capacity 

of our LC-MS/MS workflow to perform an unbiased characterization of mercapturic acids 

in positive ion mode. Using these results, we supported the identification of 2CoEMA as a 

putative biomarker of cigarette usage. Strangely, while a putative mercapturic acid 

signature at m/z 204.0689 was detected as a biomarker of cigarette usage, this compound 

was not identified as 2PeMA. This unknown molecule eluted three minutes before the 

2PeMA chromatographic peak, and its fragments did not align with the reference mass 

spectra for this compound. 2PeMA was the top candidate for this molecule following 
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Figure 4.1033- DIA analysis of precursor and fragment ion traces in positive ion mode of 

detected mercapturic acid conjugates in human urine. The top trace is the precursor ion 

trace, ie. Extracted ion chromatogram. The bottom traces are the corresponding fragment 

ions from the generated mass spectral library. 
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SIRIUS structural prediction. However, other mercapturic acid structures were computed, 

including N-Acetyl-S-[(E/Z)-propen-1-yl)]-L-Cysteine and N-Acetyl-S-cyclopropyl-L-

Cysteine. This observation shows the limitation of structural prediction-based annotation, 

and all assignments, regardless of confidence score and substructure coverage, represent 

equally plausible candidate identities. 
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4.4 Conclusion 

 We generated and curated a mass spectral library of 20 mercapturic acid 

conjugates using positive and negative ion modes, with HCD and CID activation, over 

multiple normalized collision energies. This library consisted of over 2,000 independent 

mass spectra and included both tandem MS2 and multistage activation MSn spectra. To 

ensure the integrity of this library, we performed a robust chemical formula annotation of 

all detected fragment ions. All acquired MS2 spectra could explain 95% of the total ion 

intensity in positive and negative ion modes. We were able to explain the majority of ion 

intensity in the acquired MS3 spectra, but the frequent occurrence of chimeric spectra 

limited complete annotation. The analyzed mercapturic acid conjugates shared many 

fragmentation patterns. There were 17 combined product ion and neutral losses shared 

between at least 80% of these compounds in positive ion mode and 2 in negative ion 

mode. We determined that 17 of the 20 analyzed compounds exhibited one of the 

diagnostic neutral losses proposed to monitor mercapturic acids in conjugates in positive 

ion mode, and there are many other supplementary patterns available to detect fringe non-

conforming molecules. As a final examination, we determined which mercapturic acids 

were detectable in human urine using our proposed LC-MS/MS monitoring approach. We 

identified 11 of the 20 standards in our global profiling experiment and corroborated that 

2CoEMA is a putative biomarker of tobacco cigarette use. This mass spectral library 

represents only the beginning of our efforts to improve resources available to the field of 

exposomics and systems toxicology. We aim to continue growing this library and develop 

new methods to assist in annotating unknown mercapturic acid signatures. We plan to 

submit this library to NIST and open-source mass spectral library repositories.   
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Chapter 5: Conclusion and Future Directions 

 With a paradigm shift towards a mechanistic, pathway-oriented understanding of 

chemical exposure, new methods for toxicology profiling are being developed rapidly. 

Nowhere are these expansions more pronounced than in the development of unbiased, 

global profiling methodology. To better understand the molecular mechanisms of exposure 

and develop sophisticated computational models, the toxicology community aims to 

generate universal datasets representative of all xenobiotics and their by-products in a 

biological system. While there are no all-encompassing systems toxicology profiling 

methods, numerous analytical approaches have been developed to characterize discreet 

classes of molecular biomarkers of exposure. Critical advancements in LC-MS/MS 

analytical technology have enabled the simultaneous characterization of hundreds of 

covalently modified DNA, RNA, and protein species in a single experiment. However, rapid 

developments in experimental technology have revealed new obstacles impeding the 

application of system toxicology approaches to emerging problems. The computational 

workflows to support these emerging methods have yet to be developed. Many 

researchers are generating experimental results that need more resources to get 

processed in a timely and reproducible manner. The simultaneous development of new 

computational workflows and software is paramount to the continued growth of these 

branches of systems biology. The work presented in this thesis aims to address these 

limitations and provide much-needed computational support to researchers throughout the 

toxicology sciences. 

In Chapter 1, multiple contemporary LC-MS/MS methods for the unbiased 

discovery of molecular biomarkers of exposure are reviewed. These methods capitalize 

on the shared structural similarity between discreet compound classes to facilitate global 
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discovery methods in complex matrices. While each reviewed method has distinct 

strengths and limitations, hundreds of toxicologically relevant compounds may be 

discovered in a singular experiment. A critical insight from this review was the lack of 

computational resources for processing and interpreting these structure-oriented LC-

MS/MS methods. Many research applications depended on manual interpretation or 

utilized private, in-house software solutions. The few open-source software available were 

discordant and offered limited integration with emerging chemical annotation software. 

These observations highlighted the pressing need for new computational resources in this 

field of analytical science.  

Chapter 2 of this thesis presents a novel MZmine module to process LC-MS/MS 

results by fragmentation filtering. This module enables users to input masses of diagnostic 

neutral loss, fragment ions, or both to detect characteristic patterns of a discreet class of 

chemical compounds. As part of a complete computational workflow, the DFBuilder 

module may be used to distinguish prospective chemical ions of interest, detect and 

integrate their corresponding chromatographic peaks, and perform retention alignment 

between multiple runs. Users of the MZmine software ecosystem can access various 

spectral library searching algorithms, molecular networking functionality, and other 

emerging chemical annotation tools. The capacity of these tools to detect covalently 

modified DNA nucleosides is presented, and a novel colibactin-derived DNA adduct is 

discovered. Continued application of this workflow has demonstrated its strengths but also 

revealed some weaknesses. MZmine is a popular metabolomics software, but optimizing 

processing parameters requires time and experience. In the future, robust documentation 

and tutorials will need to be developed to increase the accessibility of this computational 

workflow to a general toxicology audience.  
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Chapter 3 of this thesis extends the application of the DFBuilder module and 

structure-oriented LC-MS/MS profiling to a new class of molecule. Mercapturic acid 

conjugates represent an informative and accessible biomarker of exposure commonly 

detected in urine matrices. Historically, this compound class has been characterized by 

low-resolution targeted approaches or CNL-based methods that offer limited capacity to 

annotate unexpected mercapturic acid signatures. A novel HRMS LC-MS/MS method 

using nanoflow chromatography and positive ion mode detection was developed to 

expand the characterization efforts for this class of compound. This work demonstrates 

the potential of positive ion mode to unbiasedly detect known and undescribed 

mercapturic acids associated with tobacco cigarette exposure. As a complex chemical 

matrix, additional filtering stringency is applied to minimize the risk of false detection. In 

addition to elemental formula restrictions, chemical structural annotation software is 

explored for classifying compounds an N-acyl alpha amino acids and predicting candidate 

mercapturic acid structures. While this work exhibited solid results for detecting 

mercapturic acids, there were key limitations. The available resources for identifying and 

verifying mercapturic acid signatures need to be improved. Most of our results could not 

be identified to existing commercial and open-source reference libraries. Additionally, 

evaluating our results against contemporary methods using positive ion mode is difficult 

as no published reports were immediately available for review.  

Chapter 4 of this thesis aimed to expand the available resources for identifying 

mercapturic acid conjugates. Twenty authentic mercapturic acid conjugate standards 

were obtained, and a mass spectral library was constructed. To maximize the information 

content of this library and ensure its generalizability, the results were generated with 

positive and negative ion polarity using multiple fragmentation strategies. In parallel with 

the tandem MS2 spectra library, a multistage activation MSn library was generated to 
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expand prospective structural annotation efforts on unknown conjugate structures. In total, 

2,458 spectra were annotated and collected into the final mass spectral library. Using the 

collected spectra, multiple insights regarding reproducible fragmentation patterns could 

improve future discovery efforts. This library highlighted the discrepancy in fragmentation 

pathways between positive and negative ion modes for mercapturic acids. Analysis of 

reproducible fragmentation patterns indicated ten reproducible fragment ions and eight 

reproducible neutral losses in positive ion mode. At the same time, in negative ion mode, 

there was only one fragment ion and neutral loss, respectively. These results were used 

to verify the detection of 11 mercapturic acid conjugates in a human urine matrix analyzed 

using a DIA variant of our approach presented in Chapter 3. This work represents the 

basis for improving the resources available to analytical researchers in the toxicology 

sciences. However, considerable developments will be required to ensure the 

community’s needs are adequately met. Hundreds of mercapturic acid conjugates are 

reported in the PubChem repository, and almost none possess meaningful background 

summaries or spectral results. Enhanced efforts will be required to grow and expand 

existing chemical libraries.  

In conclusion, this thesis aims to expand the computational workflows and 

resources available for the unbiased detection of molecular biomarkers of exposure. 

Developing new computational solutions enhances the application of systems toxicology 

methods, and improved experimental insights can be obtained. Continuing resources and 

innovations will be required to ensure that the computational needs of future research 

efforts are met. 
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