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Abstract

In this work we address longstanding gaps in understanding in phase change theories linking

the nucleation rate, growth rate, growth geometry, and transformed fraction of phase. We

take a first principles approach whereby a fundamental understanding of the relationships

between these properties can be derived without obfuscation by previous efforts. This is

carried out by examining a growing region of space with some prescribed geometry which is

transforming from one phase to another, tracking its volume as it grows and intersects with

other transforming regions of space. Using this approach, we derive both ordinary and partial

differential equations linking the nucleation rate, growth rate, fractal dimension, transformed

fraction, phase size distribution, and initial distributions of phase for a system undergoing

phase change. We then show that solutions to these equations under special conditions yield

methods for extracting nucleation and growth rates for heat release curves, as well as more

detailed descriptions of growth geometries. These nucleation and growth rates are impor-

tant for understanding systems hindered by phase change, including cryobiology, metallurgy,

pharmacology, and food science, among others. Extensions to gas phase allow for a deeper

understanding of aerosol science and cavitation dynamics as well.

Ice crystallization is studied in cryoprotectant agents (CPAs) in low concentrations via di-

rect quenching and laser calorimetry. Critical cooling rates were measured by examining the

temperature-time profiles during the direct quenching of droplets of CPA into liquid nitrogen.

Critical warming rates were measured by examining ice crystallization in vitrified droplets

of CPAs and plasmonic gold nanoparticles during high energy laser irradiation. High-speed

imaging allowed for accurate measurements of the temperature rates necessary for avoiding

ice formation on rewarming from a vitrified state. A model linking the critical cooling and

warming rates in mixtures of CPA was also developed and verified. Additionally, the phase

change theory we derived allow for corroboration of the rates necessary for the vitrification

ii



of pure water.

The laser warming process was also studied numerically via Monte Carlo simulations

of light transport in scattering media. The effect of system geometry, absorption coefficient,

scattering coefficient, scattering anisotropy, and domain partitioning were studied for a variety

of systems including the laser warming of spherical and hemispherical droplets laden with

zebrafish embryos and coral nanofragments. Warming uniformity was the main focus of

optimization as it is the driving factor in post-warming survival in laser warmed cryopreserved

specimens. Laser warming in multi-laser systems is also briefly discussed.
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Chapter 0  

Introduction 

 

The original motivation for this work was to better our understanding of cryopreservation 

(the viable freezing and thawing) of biological substances; however, this work has blossomed 

into a broader theory of phase change, clarifying the relationships between nucleation, 

growth, phase geometry, and transformed fraction. This work starts by giving a broad 

overview of the topics covered in this thesis in chapter 1, which includes an overview of 

crystal nucleation, growth, and crystal geometry, as well as an overview of cryopreservation 

and cryoprotectants. This is to provide the reader with sufficient background information to 

understand the derivations, arguments, and analysis throughout the rest of this work. This 

chapter, aptly titled chapter 0, will address the objectives, overview, and significance of the 

work presented, while chapter 1 will address the technical background.  

 This work has two main aims that fall under one broad category: phase change. The 

first aim is to develop a theoretical model to better understand the process of phase change, 

particularly how nucleation, growth, phase geometry, and transformed fraction are linked. 
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This model should be based on first principles and should be so sufficiently clear as to make 

the reader ponder not on how it can be true, but rather on how it must be true. Additionally, 

we seek to test this model against real world and simulated data to further bolster its 

validity. The second aim is to better understand the crystallization tendency in low 

concentration cryoprotective agents (CPAs) so that we may better design cooling and 

warming protocols. This requires the measurement and modeling of critical cooling and 

warming rates and their relationship with concentration, as well as modeling the laser 

warming process itself. Our ultimate aim is to find the ideal concentrations of CPA and gold 

nanoparticles to maximize temperature uniformity and minimize ice formation during the 

cooling and warming of cryopreserved specimens. 

 In chapter 1 we provide a background of the thermodynamics of crystallization and 

vitrification. We discuss what a phase is with regards to phase change, with particular 

importance to the solid crystal and amorphous glass phases of water and aqueous solutions. 

Mathematical descriptions of crystal nucleation and growth are given in terms of 

fundamental parameters. Additionally, we introduce the topics of cryopreservation, 

vitrification, and cryoprotectants, as well as common protocols for cryopreserving biological 

specimens. 

 In chapter 2 we take a first principles approach to describing phase change by first 

considering a singular growing spherical region of space, where the boundary of the sphere 

partitions the space into two separate phases. By prescribing a constant velocity to the 

surface of the growing sphere, we create a simple description of a growing spherical crystal. 

To model nucleation, we consider these spheres being formed uniformly randomly throughout 

the greater space at some constant nucleation rate. We devised a way to compensate for the 

overlap of these growing spheres, ultimately deriving a nonlinear differential equation (we 

call this the GNA equation) linking the nucleation rate, growth rate, and transformed 

fraction. Next, we derived a first order partial differential equation (PDE) describing the 

sphere (phase) population size distribution, and its solution in terms of the nucleation rate 
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and growth rate of the system, as well as the initial distribution of transformed phase. By 

integrating the phase size distribution with respect to the volume of a growing sphere, we 

provided a link between the phase size distribution and transformed fraction, and thus the 

GNA equation, allowing for the derivation of the initial conditions to said differential 

equation. The nucleation and growth rates for water were then calculated based off classical 

nucleation theory and values of fundamental parameters found in the literature. We then 

simulated the phase size distributions for water that was cooled and rewarmed isothermally, 

ultimately accurately predicting the critical cooling rate of pure water. The general behavior 

of the solutions to the PDE and GNA equation are also discussed. The significance of the 

theory derived in this chapter lies in our deconvolution of the classic integral phase change 

relations into a differential equation linking nucleation, growth, and transformed fraction, 

thereby allowing for the determination of one of these variable, provided the other two are 

known. This lays the framework for chapter 3, whereby we build on the theory presented in 

chapter 2 and leverage it to determine growth and nucleation rates from calorimetry curves. 

 In chapter 3, we take what we learned in chapter 2 and apply it to an isothermal 

phase change process. Isothermal phase change processes are well described by the Avrami 

equation and associated Avrami parameters, which describe how the transformed fraction 

changes with time. These Avrami parameters are rarely known in terms of fundamental 

parameters outside of idealized cases, such as perfect isothermal constant spherical growth. 

We use solutions to the PDE presented in chapter 2 to derive the exact values of these 

parameters in terms of the nucleation rate, growth rate, and fractal dimension. Next, we 

showed that the solutions resulting from a step change in temperature could be used to 

estimate the relative change in the growth rate and nucleation rate, as well as the absolute 

change in fractal dimension from the resulting heat release calorimetry curves associated 

with a step change in temperature during an isothermal phase change process. To test our 

new theory, we simulated the growth of diffusion limited aggregation “pseudo-crystals” 

which grew in a fractal manner similar to snowflake growth. When these simulated crystals 
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grew, they released heat according to some arbitrary temperature dependent latent heat 

value. We then used this heat release and treated it as a heat release curve from a differential 

scanning calorimetry experiment. Then, by using the protocol derived from the theory in 

this chapter, we were able to estimate the change in growth and nucleation rate from 

simulated DLA heat release curves with high fidelity. We ultimately showed that we now 

have a protocol to derive nucleation and growth rates from calorimetric curves, radically 

advancing the field in this space. 

 In chapter 4 we shift directions to experiments measuring ice crystallization in 

cryoprotective agents during both cooling and warming. We examine a mixture of several 

common cryoprotectants in microliter-scale droplets, measuring both the critical cooling 

rates and critical warming rates. For the critical cooling rate measurements, droplets of 

variable size in the microliter range were placed on a cryotop fastened with a thermocouple. 

This droplet was quenched directly into liquid nitrogen then subsequently imaged to 

optically assess for ice crystallization. Droplets were categorized as either vitrified or not 

vitrified based on the absence or presence of ice respectively. If ice was present, the droplet 

volume was reduced, thus increasing the cooling rate, until no further ice formed. If there 

was no ice present, the droplet volume was increased, thus decreasing the cooling rate until 

ice was present. The critical cooling rate for that particular CPA was the rate associated 

with the visual detection threshold for ice. This was carried out for a variety of CPA mixtures 

and concentrations. To measure the critical warming rates, droplets were formed in a similar 

fashion with the addition of plasmonic nanoparticles, which readily convert infrared laser 

light into heat. These droplets were then cooled sufficiently above the critical cooling rate 

as to remain ice-free. Next, the vitrified droplets were fired upon with a high-energy infrared 

laser, rapidly warming the droplets. The warming took place over a few milliseconds, 

warming the droplets on the order of a million degrees per minute. High-speed imaging of 

the droplet during warming allowed for the visual detection of ice similar to the critical 

cooling rate experiments. The warming rates were modulated by adjusting the energy of the 
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laser so that the visual detection threshold, and thus the critical warming rate for that 

particular CPA, could be determined. Using the data gathered in the critical cooling and 

warming experiments, a model for determining the critical cooling and warming rates for 

mixtures of CPAs was tested and verified. This model allowed for the prediction of these 

rates in mixtures of CPAs given knowledge about their constituents. Additionally, 

extrapolations of critical cooling and warming rates of the CPAs allowed for the prediction 

of the critical cooling rate and warming rate of pure water, which showed strong agreement 

from the predictions made by the theory outlined in chapter 2. 

 In chapter 5 we take a closer look at the warming of cryopreserved droplets, 

simulating the light transport within various constructs that exhibit scattering and 

absorbative properties. We implemented a Monte Carlo algorithm to track photons as they 

propagate through several different environments. In this type of simulation, many photon 

trajectories were simulated throughout the environment (e.g., a droplet of CPA) which may 

refract through or reflect off a boundary, be absorbed, scatter, or transmit in this simulated 

environment. By averaging tens of thousands of photons trajectories, we were able to 

calculate a specific absorption rate or SAR (the volumetric heat source function associated 

with laser warming). By adjusting various optical properties such as the scattering and 

absorption coefficients or scattering anisotropy, we were able to estimate the ideal values of 

these properties given system constraints such as the index of refraction and domain shape. 

We analyzed laser warming profiles in hemispherical and spherical droplets, as well as 

droplets laden with zebrafish embryos, artemia, and other cells. We determined the ideal 

scattering and absorption coefficients, and thus gold nanoparticle concentrations, for these 

various systems which allowed for the optimization of warming protocols and thus increasing 

post-warming cell survival.  

 The theoretical work presented on phase change throughout this thesis is an 

important advancement in the understanding of phase change, particularly for those 

interested in crystallization, nucleation, and growth dynamics. We present a theory which 
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not only deepens our understanding of the relationship between these phenomena, but also 

provides a framework for their measurement as well, which is of particular importance in 

metallurgy, polymer science, food science, pharmacology, and cryobiology. Additionally, the 

work we present on critical cooling and warming rates fills an important gap in our 

knowledge of these rates in low concentration CPAs, which is important for systems that 

poorly tolerate CPA, such as aquatic embryos and pancreatic islets. Finally, the Monte Carlo 

simulations presented help fine tune the warming protocols used in low concentration 

cryopreservation, which is necessary for increasing cell survival and throughput. We will 

now provide a technical background related to the topics throughout this thesis, covering 

an overview of the thermodynamics of crystallization and vitrification.  

  



     

7 
 

 

 

 

 

Chapter 1  

The Thermodynamics of Crystallization and 

Vitrification 

 

1.1 Introduction 

Changes between thermodynamic states involve abrupt changes in thermodynamic 

properties, loss or gain of molecular degrees of freedom, and the breaking or formation of 

symmetries. These phase changes characterize the transition between liquids, solids, gasses, 

and plasmas, bar the exotic phases of which we need not concern ourselves. Of these 

transitions, the transition between solid and liquid states (vitrification, crystallization, and 

melting) is of particular importance to our studies throughout this work. A crystal is an 

ordered lattice of molecules or atoms with periodic symmetry resulting from the 

thermodynamic phase change from liquid to solid, or even from solid to solid. Crystals and 

crystal-like structures are found throughout nature, ranging in size from nanometers to 

meters and forming over both human and geological timescales. They are important in the 

study of geological processes due to their immense resilience and physical structure. For 
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example, zircon crystals (a tetragonal crystal of zirconia silicate) are so resilient that they 

have survived the Hadean epoch in the Earth’s most early history, with uranium-lead 

radiometric dating showing some crystals found in Western Australia to be over 4.4 billion 

years old.1 Additionally, these crystals have shown evidence of liquid water over 4.4 billion 

years ago and biological life over 4.1 billion years ago on Earth’s surface.2,3 Diamond is an 

additional crystal formed on geological timescales. Aside from its aesthetic beauty, the 

hexoctahedral carbon structure constituting diamond gives it a variety of properties, 

including extreme hardness, high refractive index, high electrical resistance, and the highest 

thermal conductivity of any naturally occurring known substance. These properties can be 

attributed to the dense crystal structure that allows for very efficient phonon (the quanta 

of thermal vibrations) propagation throughout the crystal.4 Both zircons and diamonds are 

examples of crystals that form under extreme thermodynamic conditions over 

incomprehensible lengths of time. On everyday time scales one may notice the crystallization 

of sugar when failing an attempt to make caramel, or those due to supersaturation in cold 

maple syrup. Perhaps the most salient example of crystallization is crystalized water, more 

commonly referred to as water-ice. Due to the unique nature of water, ice crystallization 

exhibits a wide variety of geometries and crystallization types. For example, small changes 

in the humidity and atmospheric pressure can lead to a seemingly endless variety of 

snowflake shapes and sizes (though small nano-snowflakes can in fact be identical). For 

average size snowflakes, it has been estimated that there are over 10150 possible configurations 

of the ice crystals, meaning that no two snowflakes will ever repeat in the lifetime of the 

observable universe.5 It is then no surprise that water has a complex phase diagram for the 

solid state, see Figure 1.1, with many different crystal structures and densities of ice possible 

throughout the temperature and pressure regime. The transition between the liquid state 

and common ice (Ih) is what is typically meant by “freezing”; however, the importance of 

other liquid-ice transitions will be discussed later.  
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The formation of ice in aqueous systems is of particular importance in the 

cryopreservation of biological systems. The cascade of effects associated with ice formation 

including changes in pH, osmotic pressure, available water, and physical changes in cell 

shape and volume all contribute to cell damage and cell death when water crystalizes in 

biological systems.6 For direct physical damage, the shape of the ice crystals is particularly 

important. Dendritic and spicular ice crystals are especially damaging as their high aspect 

ratio draws parallels to needles, easily puncturing cells and causing widespread membrane 

damage.7 Thus, understanding the location and rate of ice formation in cells is important for 

designing current and future cryopreservation protocols; therefore, we will direct our focus 

to the of the crystallization of water. 

 One can think of crystallization as an energy minimizing process whereby the 

molecules, water in the cases we are concerned with, must reorient themselves into a lower 

energy ordered state. Due to the sudden drop in entropy, the water molecules in the new 

crystal lattice give off heat as a byproduct. Although under ordinary conditions we might 

treat this process as happening instantaneously, there is indeed a speed of this process, and 

thus a characteristic time for the molecules to reorient themselves into the newly formed 

crystal lattice. Clearly, under isothermal conditions below the melting point, the formation 

of a complete crystal is inevitable; however, if the temperature is reduced during this 

crystallization process, then the viscosity of the system rises and thus the molecules have a 

more difficult time moving, increasing the crystallization time. If we rapidly reduce the 

temperature of a system starting from its melting point 𝑇𝑇𝑚𝑚, it is possible to outpace the 

reorienting of water molecules entirely and avoid crystallization. Since viscosity rises 

exponentially as temperature decreases, we eventually reach a point where the viscosity is 

so high that molecular motion essentially ceases on time scales relevant to humans. This is 

the so-called glass transition temperature 𝑇𝑇𝑔𝑔. This glass transition is not a thermodynamic 

phase change process in the traditional sense, but rather a consequence of a loss in the major 

degrees of freedom in the liquid.  
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Figure 1.1. The phase diagram for liquid and solid water of various crystal structures and densities.8 

This process is referred to as vitrification, where the substance is simply a supercooled liquid, or an 

amorphous glass, with effectively no molecular motion. This is the ideal state for long term storage 

of biological specimens, as metabolic processes cease to function, with the only damage to cells from 

light, particularly high energy cosmic rays.9 Once in this vitrified state a substance may be stable for 

an immense period of time (decades to thousands or even millions of years given our current 

understanding of the processes involved). Once vitrified, the system can be brought back to the liquid 

state by warming at sufficiently rapid rates such that the water molecules don’t have time to come 

together and form crystals of appreciable scale. The rates required to vitrify a substance and then 

bring it back to the liquid state without crystallization (devitrification) are the critical cooling rate 

(CCR) and critical warming rate (CWR) respectively. Through modulation of viscosity and other 

thermodynamic properties, the CCR and CWR, and thus the glass forming tendency, can be altered. 

Chemicals that have these properties are known as cryoprotective agents (CPAs) and help suppress 

the formation of ice during cryopreservation. To examine these CPAs and their associated CCRs and 

CWRs in more depth we must first review the thermodynamics of crystallization.  
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Table 1.1. A table of some of the most used parameters involving the thermodynamics and kinetics 

of phase change used throughout this chapter. 

PARAMETERS DESCRIPTION UNITS 

𝐽𝐽  Nucleation Rate 𝑚𝑚−3𝑠𝑠−1 

𝑢𝑢 Crystal Growth Rate 𝑚𝑚𝑠𝑠−1 

𝑇𝑇𝑚𝑚 Meting Temperature 𝐾𝐾 

𝑇𝑇𝑔𝑔 Glass Transition Temperature 𝐾𝐾 

𝑇𝑇𝐻𝐻 Homogeneous Nucleation Temperature 𝐾𝐾 

𝛥𝛥𝐻𝐻𝑚𝑚 Melting Enthalpy 𝐽𝐽  

𝛥𝛥ℎ Specific Melting Enthalpy 𝐽𝐽 𝑘𝑘𝑔𝑔−1 

Δ𝜇𝜇 Chemical Potential of the Liquid Phase 𝐽𝐽 𝑘𝑘𝑔𝑔−1 

Δ𝐺𝐺𝑐𝑐𝑐𝑐 
Free Energy of Formation of the 

Crystal Phase 
𝐽𝐽  

Δ𝐺𝐺𝑁𝑁  Free Energy of Formation of a Critical 
Nucleus 

𝐽𝐽  

𝐶𝐶𝑝𝑝
𝑠𝑠 Specific Heat of the Supercooled Liquid 

Phase 
𝐽𝐽 𝑘𝑘𝑔𝑔−1𝐾𝐾−1 

𝐶𝐶𝑝𝑝
𝑐𝑐𝑐𝑐 Specific Heat of the Crystal Phase 𝐽𝐽 𝑘𝑘𝑔𝑔−1𝐾𝐾−1 

𝛾𝛾𝑒𝑒 
Crystal-Liquid Interfacial Surface 

Energy 
𝐽𝐽 𝑚𝑚−2 

𝜂𝜂 Dynamic Viscosity 𝑃𝑃𝑃𝑃 𝑠𝑠 

𝑑𝑑0 Mean Molecular Diameter 𝑚𝑚 

𝜌𝜌𝑠𝑠 
Number Density of Nucleation Sites in 

the Supercooled Liquid Phase 
𝑚𝑚−3 

𝐷𝐷∗ 
Nuclei Diffusion Coefficient Across the 

Free Energy Barrier 
𝑠𝑠−1 

𝑅𝑅∗ Critical Radius of a Crystal Nuclei 𝑚𝑚 

𝑛𝑛∗ 
Number of Molecules in a Critical 

Nuclei 
𝑚𝑚 

𝑖𝑖∗ 
Number of Molecules on the Surface of 

a Critical Nuclei 
𝑚𝑚 

𝑘𝑘𝐵𝐵 Boltzmann Constant 𝐽𝐽 𝐾𝐾−1 
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1.2  Thermodynamics of Crystallization 

The thermodynamics of crystallization can be broken up into two separate processes: 

nucleation and growth. Nucleation is the process by which molecules come together to form 

stable nuclei, while growth describes how the geometry and characteristic length of the nuclei 

changes with time. 

1.2.1 Nucleation 

Nucleation involves the stable formation of small collections of particles (nuclei), from a 

sea of particles, thermodynamically favored to grow, or at the very least, to not shrink. 

Underlying this description are several key assumptions. First, that there is some sea of 

particles in which the nuclei can form. Second, that these particles aggregate to form 

metastable clusters which may grow or disassociate randomly to do intermolecular 

interactions with the surrounding particles as well as intramolecular interactions within the 

cluster itself. These metastable clusters are constantly forming, growing, and disassociating 

within this sea of particles; however, after attaining a certain size, the critical radii, the 

metastable proto-nuclei transform into stable nuclei which can then grow in a more stable 

fashion. The rate that these stable nuclei form from the sea of particles is called the 

nucleation rate, which gives the number of nuclei formed per unit volume per unit time. 

Though the process is simple enough to describe, accurate mathematical descriptions of these 

processes remain a challenge. The main difficulty with describing nucleation is that we would 

like to paint a picture of reality using continuous functions, differential equations, and 

familiar geometry; however, the processes underlying nucleation lend themselves better to 

descriptions by molecular dynamics and stochastic simulations, which ultimately give rise 

to the emergent phenomenon we are seeking to describe. Additionally, it is not clear that a 

critical radius exists differentiating proto-nuclei from stable nuclei, or even that there is a 

clear boundary between the crystal and liquid phases on scales that miniscule. Another 

complicating factor is that thermal fluctuations driving nucleation and sub-nuclei growth 
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occur on length scales of 10-10 meters and time scales of 10-13 seconds, comparable to the 

vibrational frequencies of the atoms constituting the nuclei.10  

Many theories have been developed to understand and predict nucleation, but the 

first and most widely used is classical nucleation theory (CNT). We will focus our discussions 

here mostly to CNT, though the readers should be aware that many other theories exist. 

Density functional theories seeks to express the free energy of formation of the nucleus as a 

functional of molecular number density and intermolecular potentials. Functional theories 

seek to describe systems of many particles using functionals (functions of functions). In 

particular, for theories applied to nucleation, they require intermolecular potentials which 

are in general not known outside of extremely simplified and idealized systems.11 Another 

approach that seeks to eliminate the sharp boundaries between phase is diffuse interface 

theory, a phenomenological theory that inserts an interface thickness into standard CNT to 

modify the underlying equations, to limited success. A nonclassical approach adds an extra 

step to the nucleation process. These two-step nucleation theories suppose the system first 

transitions to a solid-liquid mix, perhaps an amorphous solid, which then transitions into 

the crystalized state.12 These two-step theories have shown a fair bit of success but 

complicate the processes by adding more unknown terms to be either assumed or extracted 

empirically via simulations and fitting. Though these theories have their own merits and 

potential for use, for the purposes of this work we only consider that a nucleation rate exists 

and can be expressed in terms of fundamental parameters that have measured values, making 

CNT the obvious choice.  

1.2.1.1 Homogeneous Nucleation 

Nucleation can be broken down into two categories: heterogeneous nucleation and 

homogeneous nucleation. Homogeneous nucleation is nucleation in the bulk of the substance, 

whereby particles come together to form metastable clusters which grow and dissolve until 

they surpass some critical size threshold. For heterogeneous nucleation, particles can attach 

themselves to preexisting structures such as features in the environment, like scratches, or 
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even to other particles, thus surpassing the free energy of formation barrier that favors small 

clusters of particles to dissolve. The free energy of formation of a nucleus can be thought of 

as the sum of a volume-dependent energy contribution and a surface area dependent energy 

contribution, seen in equation (1.1). The surface term, 4𝜋𝜋𝑟𝑟2𝛾𝛾𝑒𝑒, with interfacial surface energy 

𝛾𝛾𝑒𝑒, corresponds to the energy contribution caused by the formation of the surface, which 

naturally resists an increase in surface area. The volume term, − 4
3 𝜋𝜋𝑟𝑟3∆𝜇𝜇, with chemical 

potential ∆𝜇𝜇, describes the energy released via the formation of new volume, akin to the 

enthalpy of fusion. For small radius nuclei, the surface term dominates, and growth is 

unfavorable, while for large radius nuclei the volume term dominates, and growth is 

favorable. This surface and volume contributory effect is outlined in Figure 1.2.   

 ∆𝐺𝐺 = 4𝜋𝜋𝑟𝑟2𝛾𝛾𝑒𝑒 −
4
3

𝜋𝜋𝑟𝑟3∆𝜇𝜇 (1.1) 

 

 

Figure 1.2. The free energy of formation Δ𝐺𝐺 vs radius of a growing nucleus, showing the peak in 

free energy corresponding to the critical radius.13 

The free energy of formation Δ𝐺𝐺𝑁𝑁  of a critical nucleus of a crystal in a super cooled 

liquid can be defined by equation (1.2)14, where 𝛾𝛾𝑒𝑒 is the interfacial solid-liquid surface energy 
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of the critical nucleus, 𝜌𝜌𝑠𝑠 is the density of the supercooled water, and Δ𝜇𝜇 =  ΔℎΔ𝑇𝑇/𝑇𝑇𝑚𝑚 is 

the chemical potential defined in terms of the specific melting enthalpy and melting 

temperature of water. This can be solved by finding the maximum value ∆𝐺𝐺 takes in 

equation (1.1). 

 Δ𝐺𝐺𝑁𝑁 = 16𝜋𝜋
3

𝛾𝛾𝑒𝑒
3

𝜌𝜌𝑠𝑠
2Δ𝜇𝜇2 (1.2) 

This Δ𝐺𝐺𝑁𝑁  is the energy barrier that must be overcome for a stable nucleus to form. In 

liquids at or above the melting temperature 𝑇𝑇𝑚𝑚, this energy barrier is infinite. As the 

temperature 𝑇𝑇  decreases further and further from 𝑇𝑇𝑚𝑚 this energy barrier decreases until it 

reaches a point where nuclei form on a timescale of seconds to minutes. This is referred to 

as the homogeneous nucleation temperature 𝑇𝑇𝐻𝐻 , however it is not a set thermodynamic 

parameter like 𝑇𝑇𝑚𝑚 since it doesn’t describe a change in state, only a temperature associated 

with a certain timescale for nucleation. This is discussed further later in the chapter.  

 The interfacial solid-liquid surface energy 𝛾𝛾𝑒𝑒 can be thought of as the excess energy 

stored in the interface between the two phases, characterizing the intermolecular forces 

between the liquid and the solid. In the case of water, temperature dependent ice-water 

interfacial surface energy values have been measured previously, showing a power law 

dependence on temperature given by equation (1.3).15 

  𝜆𝜆𝑒𝑒 = 𝜆𝜆0 �
𝑇𝑇

235.8
�

𝑛𝑛
 (1.3) 

We can then define the number of particles in a critical radius as 𝑛𝑛∗, where 𝑑𝑑0 is the effective 

diameter of one of the particles. 

 𝑛𝑛∗ =
128𝜋𝜋3

27
𝑑𝑑0

2𝛾𝛾𝑒𝑒
3

Δ𝜇𝜇3 (1.4) 

Next, we can determine the nucleation rate from a Boltzmann type equation for 𝐽𝐽 , for some 

preexponential factor. 
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  𝐽𝐽 = 𝐴𝐴 exp�
Δ𝐺𝐺𝑁𝑁
𝑘𝑘𝐵𝐵𝑇𝑇

� (1.5) 

Now we just need to derive an expression for the preexponential term 𝐴𝐴. We can think of 𝐴𝐴 

as a product of the number density of nucleation sites 𝜌𝜌𝑠𝑠, the nuclei diffusion coefficient 𝐷𝐷∗ 

(which gives the rate of nuclei moving over the boundary), and the probability 𝑍𝑍 that a 

critical nuclei will grow vs dissolve. The latter is the nonequilibrium Zeldovich factor, which 

derives from approximation of complex integrals regarding the kinetics of growing 

subnuclei.16 For the purposes of these studies we will take these parameters at face value, 

although it should be noted that many other derivations exist for alternate representations 

of these parameters. 

 𝐴𝐴 = 𝜌𝜌𝑠𝑠𝐷𝐷∗𝑍𝑍 (1.6) 

 𝐷𝐷∗ =
𝑖𝑖∗𝑘𝑘𝐵𝐵𝑇𝑇
3𝜋𝜋𝑑𝑑0

3𝜂𝜂
 (1.7) 

  𝑍𝑍 = �Δ𝐺𝐺𝑁𝑁/𝑘𝑘𝐵𝐵𝑇𝑇
3𝜋𝜋𝑛𝑛∗

= 4𝑅𝑅∗
2𝛾𝛾𝑒𝑒

9𝑘𝑘𝐵𝐵𝑇𝑇𝑛𝑛∗
2 (1.8) 

Where 𝑖𝑖∗ is the number of particles on the surface of a critical nucleus and 𝜂𝜂 is the dynamic 

viscosity of the supercooled liquid. Putting equations (1.5-1.8) together yields the nucleation 

rate derived from CNT. 

  𝐽𝐽 = 𝜌𝜌𝑠𝑠𝐷𝐷∗𝑍𝑍 exp �
Δ𝐺𝐺𝑁𝑁
𝑘𝑘𝐵𝐵𝑇𝑇

� (1.9) 

1.2.1.2 Heterogeneous and Surface Nucleation 

 Deriving expressions for heterogeneous nucleation is much more difficult, with 

extensive work done on quantifying its various forms.17 This type of nucleation relies on 

nucleation sites not intrinsic to the pure system. These would occur at boundaries between 

phases, such as surface nucleation; impurities in the solution, such as dust; and at physical 

boundaries, such as cracks in a vessel. Some attempts have been made to quantify 

heterogeneous nucleation, including a sister equation to equation (1.9). 
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  𝐽𝐽ℎ𝑒𝑒𝑒𝑒 = 𝜌𝜌ℎ𝑒𝑒𝑒𝑒𝐷𝐷ℎ𝑒𝑒𝑒𝑒𝑍𝑍ℎ𝑒𝑒𝑒𝑒 exp�
Δ𝐺𝐺𝑁𝑁ℎ𝑒𝑒𝑒𝑒

𝑘𝑘𝐵𝐵𝑇𝑇
� (1.10) 

This equation does little to elucidate the underlying mechanisms governing heterogeneous 

nucleation, as it is merely an application of the homogeneous nucleation equation with a 

simple relabel. Depending on the type of heterogeneous nucleation we may add term to 

equation (1.9) denoting the introduction of a set amount of nucleation sites to the system. 

Then we can express the total nucleation rate as the sum of the homogeneous and 

heterogeneous rates with equation (1.11). 

 
 𝐽𝐽𝑒𝑒𝑡𝑡𝑒𝑒𝑡𝑡𝑡𝑡 = 𝐽𝐽ℎ𝑡𝑡𝑚𝑚 + 𝐽𝐽ℎ𝑒𝑒𝑒𝑒 

 
(1.11) 

If we only consider the introduction of a constant number of nucleation 𝑁𝑁ℎ𝑒𝑒𝑒𝑒 sites to the 

system, we may express the heterogeneous nucleation rate with the Dirac delta function 𝛿𝛿(𝑡𝑡), 

thus: 

  𝐽𝐽ℎ𝑒𝑒𝑒𝑒(𝑡𝑡) = 𝑁𝑁ℎ𝑒𝑒𝑒𝑒𝛿𝛿(𝑡𝑡) (1.12) 

Then when we integrate 𝐽𝐽ℎ𝑒𝑒𝑒𝑒 over time we recover the number of nucleation sites added via 

heterogeneous nucleation. Measuring this value may be possible and is outlined in chapter 

3. Alternate formulations of equation (1.12) are possible, if we allow growth of these 

heterogeneous nucleation sites to occur probabilistically relative to their remaining 

concentration, similar to a Michaelis-Menten-type equation.  

1.2.2 Growth 

Crystal growth dynamics are comprised of an incredibly complicated series of processes 

arising from a combination of diffusion phenomena and attachment-dissolution kinetics. To 

start, the growth rate of a crystal cannot be defined without some sort of length scale 

characteristic of the crystal itself. Oftentimes this may be a simple radius, but depending on 

the geometry of the crystal, some other length scale may be more applicable, such as 

hydrodynamic radius, radius of gyration, effective volume radius, etc. This implies that one 

cannot simply refer to the growth rate of a crystal alone, but it must be taken within some 
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context of its shape. Let us, for ease of arithmetic, take a spherical crystal for example. Using 

the Gibbs relation, we can represent the free energy of formation Δ𝐺𝐺𝑐𝑐𝑐𝑐 of new crystal as 

follows: 

  𝐻𝐻 = 𝐺𝐺 + 𝑆𝑆𝑇𝑇  (1.13) 

Where 𝐻𝐻 is the enthalpy, 𝐺𝐺 is the Gibbs function, 𝑆𝑆 is entropy, and 𝑇𝑇  is temperature. By 

applying differentials to each side, we end up with: 

 Δ𝐺𝐺𝑐𝑐𝑐𝑐 = Δ𝐻𝐻 − Δ𝑆𝑆𝑇𝑇 − 𝑆𝑆Δ𝑇𝑇  (1.14) 

The driving force for crystal growth is the difference in free energy between the liquid and 

crystal phases Δ𝐺𝐺𝑐𝑐𝑐𝑐. By using the definition of entropy, equation (1.14) can be described 

in terms of the specific heats of the crystal and liquid phase, 𝐶𝐶𝑝𝑝
𝑐𝑐𝑐𝑐 and 𝐶𝐶𝑝𝑝

𝑚𝑚, melting enthalpy 

Δ𝐻𝐻𝑚𝑚, melting temperature Tm, and difference between the current temperature 𝑇𝑇  and 

melting temperature, Δ𝑇𝑇 .18 

  𝛥𝛥𝐺𝐺 = 𝛥𝛥𝐻𝐻𝑚𝑚𝛥𝛥𝑇𝑇
𝑇𝑇𝑚𝑚

+ � (𝐶𝐶𝑝𝑝
𝑐𝑐𝑐𝑐 − 𝐶𝐶𝑝𝑝

𝑚𝑚)𝑑𝑑𝑇𝑇 + 𝑇𝑇 � (𝐶𝐶𝑝𝑝
𝑐𝑐𝑐𝑐 − 𝐶𝐶𝑝𝑝

𝑚𝑚) 𝑑𝑑𝑇𝑇
𝑇𝑇

     
𝑇𝑇𝑚𝑚

𝑇𝑇

𝑇𝑇𝑚𝑚

𝑇𝑇
 (1.15) 

Using this free energy of formation, several expressions for the growth velocity has been 

proposed. Under the normal growth (NG) model for of crystallization for ∆𝑇𝑇 < 60, equation 

(1.16), the growth velocity can be described as a function of temperature, melting 

temperature, viscosity 𝜂𝜂, and mean interatomic distance 𝑃𝑃0. For larger supercooling, 90 <

∆𝑇𝑇 < 160, equation (1.17), the screw dislocation growth (SDG) model applies better. 

  𝑢𝑢 =
𝑘𝑘𝐵𝐵𝑇𝑇

3𝜋𝜋𝑃𝑃0
2𝜂𝜂

�1 − exp  �−
𝛥𝛥𝐺𝐺
𝑅𝑅𝑇𝑇

�� (1.16) 

 𝑢𝑢 =
𝑘𝑘𝐵𝐵𝑇𝑇

3𝜋𝜋𝑃𝑃0
2𝜂𝜂

∆𝑇𝑇
2𝜋𝜋𝑇𝑇𝑚𝑚

�1 − exp�−
𝛥𝛥𝐺𝐺
𝑅𝑅𝑇𝑇

�� (1.17) 

The preexponential term in equations (1.16) and (1.17) can be thought of as a velocity time 

scale: the diffusion coefficient, from the classic Stokes-Einstein relation, multiplied by a 

length scale of the system 𝑃𝑃0, the average intermolecular distance. 

1.2.3 Melting and Freezing - The Stefan Problem 
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 Though there are many thermodynamic formulations of the crystal growth velocity, 

it is also helpful to represent the ideal system mathematically. The Stefan problem is a free-

boundary problem which seeks to characterize the moving phase front for diffusion-limited 

growth via the heat equation PDE.19 Consider the problem of phase change from a liquid to 

a solid in one-dimension, shown in Figure 1.3 below. 

 

Figure 1.3. Stefan problem domain 

Several assumptions are made for this problem. First, the domain is a semi-infinite block of 

liquid above the melting temperature 𝑇𝑇 = 0. There is a fixed boundary at 𝑥𝑥 = 0, with 

temperature 𝑇𝑇 (0, 𝑡𝑡) = 0 at this boundary, and a moving boundary 𝑠𝑠(𝑡𝑡) which defines the 

separation between the liquid and solid phases. The solid portion of the boundary is 

considered at the constant temperature 𝑇𝑇 = 0, while the liquid temperature is free. At the 

point 𝑥𝑥 = 𝑠𝑠(𝑡𝑡) we impose a boundary condition having to do with the enthalpy of fusion of 

the material. 

The solid region         0 ≤ 𝑥𝑥 ≤ 𝑠𝑠(𝑡𝑡) 

 𝑇𝑇 (𝑥𝑥, 𝑡𝑡) = 0  (1.18) 

The liquid region       𝑠𝑠(𝑡𝑡) ≤ 𝑥𝑥 ≤ ∞ 
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𝜕𝜕𝑇𝑇
𝜕𝜕𝑡𝑡

=
𝑘𝑘

𝑐𝑐𝑝𝑝𝜌𝜌
𝜕𝜕2𝑇𝑇
𝜕𝜕𝑥𝑥2  (1.19) 

  𝑇𝑇(𝑥𝑥, 0) =  𝑓𝑓(𝑥𝑥) (1.20) 

   

The moving boundary         𝑥𝑥 = 𝑠𝑠(𝑡𝑡) 

 −Δ𝐻𝐻𝑚𝑚𝜌𝜌
𝑑𝑑𝑠𝑠
𝑑𝑑𝑡𝑡

= −𝑘𝑘
𝜕𝜕𝑇𝑇
𝜕𝜕𝑥𝑥

 (1.21) 

  𝑠𝑠(0) =  0 (1.22) 

 𝑇𝑇 (𝑠𝑠(𝑡𝑡), 𝑡𝑡) = 0 (1.23) 

Equation (1.21) relates the heat of fusion given off by the phase change at the solidification 

line to the heat flux into the liquid. In this simplified model all the heat release associated 

with phase change is directed into the liquid region. In reality, it is more complex, with 

conduction through the solid region as well. 

 The general solution methods and general solutions to these types of problems are 

quite interesting, but not of importance here. For our purposes, we only care about the 

functional form of the growth velocity, which in this case would be 𝑢𝑢(𝑡𝑡) = 𝑑𝑑𝑠𝑠
𝑑𝑑𝑒𝑒. In this problem, 

we then have: 

 𝑢𝑢(𝑡𝑡) = 𝜆𝜆�
𝑘𝑘

𝑐𝑐𝑝𝑝𝜌𝜌𝑡𝑡
 (1.18) 

Where lambda is the transcendental number defined as follows: 

  𝜆𝜆𝑒𝑒𝜆𝜆2
erf(𝜆𝜆) =

𝑆𝑆𝑡𝑡𝐿𝐿
√𝜋𝜋

 (1.19) 

The dimensionless parameter 𝑆𝑆𝑡𝑡𝐿𝐿 is the Stefan number and is specific to the setup of the 

problem. In this system, we have swapped the traditional locations of the liquid and solid 

region; however, if we consider the system as time reversed, the subsequent melting becomes 

freezing, and the velocity of the moving phase front remains the same. In general, this cannot 

be done, as there are fundamental differences between freezing and melting, but in this 

simplified picture it makes no difference. 
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 In this picture, considering a simplified model of crystal growth via conduction driven 

phase change, we arrive at a time-dependent growth velocity, which is different than those 

posed in equations (1.16) and (1.17). This is partially due to the consideration of the heat 

released after phase change occurs, and also that this is a bulk velocity associated with non-

isothermal temperature conditions within the substance. We could think about this velocity 

as the collective effects of different growth velocities of small regions of the liquid/solid that 

can be approximated as isothermal, at different temperatures throughout the domain of 

course. 

1.2.4 Shape 

The shapes of growing crystals range from the simple, such as spherical or rod like; to 

complex, such as dendritic or snowflake-like. For instance, Figure 1.4 shows the variety of 

crystal geometries for ice crystallization alone. One common method of characterizing the 

shapes of crystals is by defining their fractal dimension.20 This is a measure of dimensionality 

of the crystal, which along with its hydrodynamic or effective radius, gives the shape 

information necessary to characterize the crystal. The shape of the crystal is intimately 

related to the growth rate, as it is impossible to characterize the growth rate without 

reference to some changing length scale. In the case of a crystal with some fractal dimension 

𝐷𝐷 and some effective radius 𝑟𝑟, we can describe the volume of the crystal with relation to 

these two quantities. 
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Figure 1.4. Formation of ice crystals from condensation of water vapor for various temperatures and 

supersaturations.21 

  𝑉𝑉 = 𝐴𝐴𝑟𝑟𝐷𝐷 (1.20) 

Where 𝐴𝐴 is some prefactor also relating to the crystal geometry. For instance, if we have a 

cubic crystal, then clearly 𝐴𝐴 = 1 and 𝐷𝐷 = 3, if we take 𝑟𝑟 to be the width of the cubic crystal. 

In actual crystal networks, these values exist in some distribution, as crystals form 

stochastically. We can also relate the growth velocity 𝑑𝑑𝑐𝑐
𝑑𝑑𝑒𝑒 to the other parameters by taking 

the derivative with respect to time of equation (1.20). 

1.2.5 Measurement of Nucleation rates, Growth rates, and Crystal Geometry 

In general, measurements of nucleation rates are quite difficult, as they typically rely on 

microscopy of very small volumes and directly counting nuclei, or in direct methods of 

characterization. The latter is almost exclusively used in systems where nucleation happens 

too quickly relative to imaging methods, if the system is sufficiently opaque, or if the new 

phase is difficult to distinguish from the progenitor phase.22 Additional non-direct methods 

for measuring nucleation rates include optical techniques such as optical reflective 

measurements (ORM), laminar flow diffusion chambers, measurements of changes in 

electrical resistance, and calorimetric measurements.23–25 These indirect measurements are 

dependent to varying degrees on models of how nucleation occurs in a system, often using 
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classic CNT predictions. Molecular dynamics simulations also give insight into nucleation 

rates in systems simple enough to accurately model the molecular interactions.26 

Measurement methods for crystal growth rates can also be broken down into direct 

and indirect methods. Direct methods involve imaging the growing crystal vs time and 

directly calculating the growth rate. This is clearly only possible in systems that one can 

isolate crystals in and get a clear image of the moving crystal front. Indirect methods include 

spectroscopic methods relating to changes in opacity or infrared light release, calorimetric 

methods relating heat release to growth, and population density methods tracking the 

changes in the size distribution.27–29 Shape measurements are related to the growth rate 

measurements and can also be inferred from heat release curves and direct measurements. 

In chapter 3, we outline a method for extracting growth rates, dimensionality, and nucleation 

rates of transforming phase from calorimetric curves. 

1.3 Cryopreservation 

Cryopreservation is the storage of biological systems (cells, tissues, embryos, organs, etc.) at 

cryogenic temperatures (less than -100 °C).30 At these temperatures, the metabolic processes 

normally associated with life and death slow down by many orders of magnitude, thus 

allowing for the storage of these systems for extended periods of time.31,32 Proper 

cryopreservation, insofar that the biological sample isn’t destroyed or heavily damaged upon 

rewarming, involves the mitigation of ice formation, ideally to the extracellular space (in the 

case of slow freezing) or altogether (in the case of vitrification). Water alone freezes far too 

rapidly to maintain cell viability during cooling and warming.33 To compensate, special 

chemicals called cryoprotective agents (CPA) help to minimize ice formation by modulating 

the ice growth and nucleation rates, glass transition temperature, melting temperature, and 

viscosity of the system (see Figure 1.5).34 Along with CPAs, engineering cooling and warming 

rates tailored to specific systems is also an integral part of cryopreservation. For example, 

systems that do not tolerate ice formation nor high-concentration CPAs require rapid cooling 

rates and ultrarapid warming rates to avoid ice formation. On the other hand, systems that 
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have high toxicity thresholds may be more suitable for high concentration CPA, slow-

freezing approaches. There exists a variety of cooling and warming techniques used 

throughout the field.  

 

Figure 1.5. A non-equilibrium phase diagram for a hypothetical cryoprotectant. Notice the 

concentration dependence of melting temperature, nucleation rate, and glass transition temperature. 

The “danger zone” can be seen between the homogeneous nucleation temperature and glass transition 

temperature, where ice formation is most rapid.35 

1.3.1 Cryoprotectants 

CPAs are chemicals that aid in the process of cryopreservation through a variety of 

mechanisms. There are several different groups of CPAs that have different mechanisms of 

action, summarized in Table 1.2. These consist of alcohols, glycols, sugars, sulfides, amides, 

polymers, and CPA cocktails. Omitted from this tables are the more exotic forms of 

cryoprotectants, such as ice recrystallization inhibitors, which act to limit size and formation 
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of ice crystals. Examples of these include antifreeze proteins and glycoproteins, which have 

shown promising potential to inhibit ice growth even at miniscule concentrations.36 

Table 1.2. A list of common cryoprotectants.34  

Alcohols and Glycols Sugars Sulfides and Amides Polymers Cocktails37 

Propylene glycol (PG) Sucrose Formamide Polyethylene glycol (PEG) VS55 

Ethylene glycol (EG) Trehalose  Dimethyl sulfoxide (DMSO) Polyvinyl pyrrolidone (PVP) DP6 

Glycerol Glucose Dimethyl  Dextrans M22 

Ethanol Lactose Formamide Serum proteins  

Methanol  Acetamide Milk proteins  

 

 An additional method of characterizing CPAs is methodologically, that is, how they 

work in practice. When considering a system undergoing cryopreservation, the CPAs can be 

classified as either penetrating or nonpenetrating. Nonpenetrating CPAs work by increasing 

the solute concentration outside of the cell, which causes water to leave the cells to the 

minimize the chemical potential gradient. The “pulling” of water out of the cells via 

nonpenetrating cryoprotectants decreases the freezable fraction of the interior of the cell as 

well as raises the concentration of both exogeneous and intrinsic cryoprotectants. Sugars 

typically act as nonpenetrating cryoprotectant as they are too bulky to cross the cell 

membrane. Penetrating cryoprotectants, such as glycols and alcohols, easily pass through a 

variety of cell membranes and cause a characteristic “shrink-swell” effect. When a cell is 

introduced to a penetrating CPA, it first undergoes an abrupt shrinkage due to water 

transport out of the cell. Following this shrinkage, CPA around the cell flows back into the 

cell as the membrane is less permeable to the CPA than water. Ultimately, the final 

concentration of CPA in the cell determines how readily ice will form, with higher 

concentrations of CPA making ice formation more difficult. 

 The formation of ice within a CPA loaded system is a function of CPA concentration, 

temperature, and time. For example, in high concentration CPA loaded systems, ice forms 

slowly enough so that the system may be brought to the glass transition temperature slowly, 
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whereas with low concentration CPAs the system only has a small amount of time to reach 

the glass transition temperature without appreciable ice formation. The rates necessary to 

bring a CPA, or any system, form its melting point to its glass transition temperature is the 

critical cooling rate (CCR). Likewise, the rate required to bring the system from the glass 

transition to the melting temperature without ice formation is the critical warming rate 

(CWR). In reality, there will always be some ice that forms in a system; however, ice 

fractions of less than .002 are considered “effectively vitrified”, though there is debate on 

the significance or relevance of this particular fraction. In other cases, especially those where 

quantitative ice fraction measurements are difficult or impossible, qualitative measurements 

may be used to indicate CCR and CWR, such as opacity or XRD which have limits of 

detection of roughly .01, though this may change based on the uniformity or nonuniformity 

of the ice formation i.e., one large crystal or many microcrystals. Measurement of CCR and 

CWR is addressed further in chapters 4 and 5, with theoretical predictions in chapters 2 and 

3. 

1.3.2 Mechanisms of damage 

Understanding the mechanisms of cell damage and death during the cryopreservation process 

is necessary to engineer better protocols and achieve more favorable outcomes. The death 

mechanisms can be separated into four categories, summarized in Figure 1.6. First is osmotic 

shock, which occurs due to the rapid and extreme changes in cell volume when cells are 

exposed to high osmotic gradients, such as high concentrations of CPA. These large changes 

in volume can cause physical damage to the cell membrane and structures within the cell, 

but also lead to large changes in internal cell constitution. For example, the large decrease 

in intercellular water concentration leads to large changes in pH and disruptions in the 

hydrogen bonding necessary to facilitate normal cell processes. A whole laundry list of other 

proposed death mechanisms of these “solute effects” or “solution effects” have been proposed 

but are difficult to verify quantitatively.  
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The CPAs themselves are also often cytotoxic, that is, they result in toxication of 

the cell, which seems to be cell-specific and is poorly understood. Due to the nature of cell 

behavior in the presence of CPA, along with uncertainties about internal CPA 

concentrations, it is difficult to determine the mechanisms of death, especially solute effects 

vs cytotoxicity, which may share some characteristics. Chilling and cold injury also is 

difficult to quantify but leads to measurable reductions in viability in many systems. For 

example, warm water aquatic species, such as zebrafish, will die if they experience excessive 

cooling while in the embryonic stage. Changes in temperature may lead to changes in 

metabolic activity that leads to injury in the cells. The final mechanism for cell injury and 

death during cryopreservation is intracellular ice formation, where ice forms directly inside 

the cell. This can cause mechanical damage to the cell membrane and internal structures of 

the cell due to the expansion of ice and crystals propagating across important structures. 

Additionally, ice formation is associated with the loss of liquid water in the cell, causing 

increases concentration of internal species, leading to changes in pH among other things 

associated with both osmotic intolerance and CPA cytotoxicity. Interestingly, some of these 

injury mechanisms can be leveraged to minimize the effects of other injury mechanisms. For 

example, the associated changes in metabolic activity following decreases in cell temperature 

are useful when loading a system with CPA, as the CPAs toxic effects take more time to 

propagate throughout the cell than at lower temperatures. Stepwise loading can also be 

implemented to mitigate the damages associated with the volume changes and osmotic 

gradients during CPA loading. 
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Figure 1.6. Shows the various death mechanisms during the cryopreservation process.38 

1.3.3 Cooling and Warming Techniques 

Since many cell and tissue types can only tolerant certain concentrations CPA, or certain 

levels of ice formation, choosing the proper cooling and warming rate for each system is 

important. Ideally, we would like to instantaneously change the temperature of the system 

uniformly throughout the sample; however, we are limited by the speed of conduction on 

cooling, making this a mere pipe dream. The only currently viable method for cooling a 

system is via convective cooling. This means placing the sample in an environment at 

cryogenic temperatures or perfusing cold solution through the sample. Typically for small 

samples, this is achieved via direct quenching into liquid nitrogen or some other cryogenic 

fluid. This can result in cooling rates anywhere from 100-100,000 ℃/min for samples ranging 

from .1 μL to 1 mL samples.39 Placement of samples onto pre-chilled substrates has also been 

shown to be a viable alternative to direct quenching. In this method, a substrate with high 

thermal mass and high thermal conductivity (typically copper) is equilibrated to liquid 

nitrogen temperature. Next, the specimen is placed on the chilled copper and is rapidly 

cooled. This is advantageous for some systems, as certain materials (especially those with 

larger thermal mass) induce boiling of the liquid nitrogen on contact—the so-called 

Leidenfrost Effect. This causes a vapor layer to form between the sample and the liquid 
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nitrogen, rapidly decreasing the cooling rate. For larger samples (>1 μL), thermal gradients 

are so large that they may induce cracking during direct quenching into liquid nitrogen, and 

thus require lower heat transfer coefficient convective cooling such as a controlled-rate 

freezer. One advantage of this is that the system can be cooled in a stepwise fashion, 

minimizing thermal gradients that can lead to damaging crack formation; however, cooling 

rates are quite slow (~1℃/min).  Unfortunately, all these cooling methods ultimately rely 

on convective cooling and are thus cooling from the outside in, necessitating the existence 

of thermal gradients. As of the writing of this thesis, the only known volumetric cooling 

method is magnetic refrigeration, but is limited to small changes in temperature of a degree 

or two. A summary of the current cooling and warming methods used in cryopreservation 

are shown in Table 1.3. 

Table 1.3. A table summarizing the current methods for cooling and warming used in 

cryopreservation. 

Cooling Warming 

Convective  
(sample size dependent) 

Volumetric 
Convective  
(sample size 
dependent) 

Volumetric 

Liquid nitrogen quenching 
(103-105 C/min) 

Magnetic refrigeration 
(uncharacterized) 

Warm water 
quenching 

(103-105 C/min) 

IR Lamp 
(3,000-20,000℃/min) 

Contact cooling 
(103-105 C/min) 

 
Joule heating 

(104-108 C/min) 
Laser nanowarming 

(104-109 C/min) 

Air/gas cooling 
(<1 C/min) 

 

Laser nanowarming 
(exterior 

nanoparticles) 
(104-107 C/min) 

RF nanowarming 
(1-100 C/min) 

 

Similar to cooling, warming can also be carried out convectively, typically in a bath 

of room temperature to warm liquid that is conducive to sample survival, with warming 

rates similar to cooling rates via direct quenching. Additionally, these warming baths may 

contain solutes so that the newly warmed sample doesn’t experience the damages associated 

with osmotic shock. An additional convective warming method is the joule-heating method, 
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whereby the cryopreserved sample is placed on a substrate and the substrate is warmed via 

electrical-resistive heating. This can achieve rapid warming rates in excess of 1,000,000 

℃/min.40 Unlike cooling, there exists several volumetric warming approaches. The first and 

most simple is simple infrared warming, whereby the sample is placed under a high-powered 

infrared lamp and heating via photon absorption and achieving warming rates of 3,000-

20,000 ℃/min.41 For small systems that require ultra-rapid warming rates due to low CPA 

concentration, laser nanowarming is a viable method for rewarming. Nanoparticles tuned to 

the laser frequency are introduced to the specimen’s environment, either inside or outside of 

the specimen. When the laser fires, the nanoparticles undergo plasmonic heating and rapidly 

rewarm the sample. In the case volumetric warming, when the nanoparticles are inside the 

specimen, warming rates in excess of 10,000,000 ℃/min can be attained. For exterior 

nanoparticles, the size of the specimen dictates the warming rate, with rates typically ranging 

from 10,000-1,000,000 ℃/min. The final volumetric warming method is radio frequency 

(RF) warming. In this method, magnetic nanoparticles within the system are heated by a 

high-powered alternating magnetic field. This allows for uniform and relatively fast warming 

(up to 100 ℃/min) given the size of the system and concentration of nanoparticles.42,43 
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Chapter 2  

The Kinetics of Nonisothermal Phase Change 

 

2.1 Introduction 

A mathematical description of isothermal crystallization kinetics, or kinetics of phase 

transformation more generally, was first derived by Kolmogorov in 193744, then popularized 

by Avrami in a series of papers on the kinetics of phase change several years later.45–47 The 

key equation, the Avrami equation, describes how the fraction of transformed phase changes 

with time given a constant growth and nucleation rate. The use of this equation is ubiquitous 

in the study of phase change; however, it is often misused by being applied to nonisothermal 

systems. Many attempts have been made to arrive at a general equation relating fraction 

transformed, nucleation rate, and growth rate for non-isothermal processes, yet none do so 

in a robust manner, with many efforts fabricating arbitrary constants and parameters.48–51 

Additionally, the question of how to account for initial distributions of the nucleated phase 

remains; this is also lacking in a general nonisothermal picture of phase change.  
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In this chapter, we describe a generalized approach to evaluate nonisothermal phase 

change by relating the nucleation rate, growth rate, and transformed fraction in an ordinary 

differential equation. This equation can be derived from first principles by first taking a 

geometric picture of nucleation and growth, then by examining phase change in Fourier 

space, where we find that a clear description arises between the nucleation rate, growth rate, 

and transformed fraction. We subsequently present an analytic solution to the traditional 

population balance partial differential equation for nucleating systems which describes how 

the size distribution of phase changes with time. By equating the analytic solution to the 

PDE with the differential equation, we are able to derive the ODE initial conditions, which 

capture the effects of the initial distribution of phase, completing the description of 

nonisothermal phase change. We then use this model, along with classical nucleation theory, 

to predict the critical cooling rate of pure water to surprising accuracy. 

2.2 Nonisothermal Phase Transformation 

2.2.1 Transformed Fraction and the Extended Volume 

This derivation relies on some key assumptions about the phase change process, mainly, that 

there exists temperature dependent properties u and J, which represent the crystal growth 

velocity and nucleation rate respectively, and that these are strictly positive and smooth 

functions of temperature. Consider ice crystallization in water, or in any applicable liquid, 

Figure 2.1. A diagram showing the geometry of a symmetrically growing crystal. 
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being cooled from its melting point 𝑇𝑇𝑚𝑚 for some time t at rate  𝑇𝑇̇ = 𝑇𝑇 (𝑡𝑡). Then for a crystal 

nucleated at time 𝑡𝑡0 = 0, its radius R (assuming spherical growth) is:  

 𝑅𝑅(𝑡𝑡) = � 𝑢𝑢(𝑇𝑇 (𝑡𝑡))𝑑𝑑𝑡𝑡
𝑒𝑒

0
 (2.1) 

Equation (2.1) describes the growing radius of a symmetrically growing crystal depicted in 

Figure 2.1. Since crystals can nucleate at any time, we must modify equation (2.1) to include 

the time at nucleation, giving us a crystal radius that is a function of the global time 𝑡𝑡 and 

the time at nucleation 𝑡𝑡𝑖𝑖. Since temperature is ultimately a function of time, we can omit it 

and simply state 𝑢𝑢(𝑇𝑇 (𝑡𝑡)) as 𝑢𝑢(𝑡𝑡). 

 𝑅𝑅(𝑡𝑡, 𝑡𝑡𝑖𝑖) = � 𝑢𝑢(𝑡𝑡)𝑑𝑑𝑡𝑡
𝑒𝑒

𝑒𝑒𝑖𝑖

 (2.2) 

Equation (2.2) now describes the radius of a crystal at time 𝑡𝑡 that was nucleated at time 𝑡𝑡𝑖𝑖, 

given the time dependent growth velocity 𝑢𝑢(𝑡𝑡). We will now consider a small interval around 

time 𝑡𝑡 = 𝑡𝑡𝑖𝑖, expressed as 𝑑𝑑𝑡𝑡𝑖𝑖. Then, given a nucleation rate of 𝐽𝐽(𝑡𝑡𝑖𝑖) and volume of 𝑉𝑉0, we 

can express the number of nuclei formed 𝑁𝑁(𝑑𝑑𝑡𝑡𝑖𝑖) at time 𝑡𝑡𝑖𝑖 in the time interval 𝑑𝑑𝑡𝑡𝑖𝑖, given a 

spatial volume of 𝑉𝑉0 and a nucleation rate of 𝐽𝐽(𝑡𝑡𝑖𝑖) as: 

 𝑁𝑁(𝑑𝑑𝑡𝑡𝑖𝑖) = 𝐽𝐽(𝑡𝑡𝑖𝑖)𝑉𝑉0𝑑𝑑𝑡𝑡𝑖𝑖 (2.3) 

From equation (2.3), we can then express the volume 𝑉𝑉𝑖𝑖 of the crystals formed at time 𝑡𝑡𝑖𝑖 

in the time interval 𝑑𝑑𝑡𝑡𝑖𝑖 as: 

 𝑉𝑉𝑖𝑖(𝑡𝑡𝑖𝑖) =
4
3

𝜋𝜋𝑅𝑅3(𝑡𝑡, 𝑡𝑡𝑖𝑖)𝑁𝑁(𝑑𝑑𝑡𝑡𝑖𝑖) =
4
3

𝜋𝜋𝑅𝑅3(𝑡𝑡, 𝑡𝑡𝑖𝑖)𝐽𝐽(𝑡𝑡𝑖𝑖)𝑉𝑉0𝑑𝑑𝑡𝑡𝑖𝑖 (2.4) 

We now introduce the concept of the extended volume 𝑉𝑉𝑒𝑒, which is the total volume of all 

the crystals formed disregarding overlap.  
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Figure 2.2. Extended volume and overlap of sub-volumes in a large domain. 

We can calculate 𝑉𝑉𝑒𝑒 by integrating equation (2.4) over all start times 𝑡𝑡𝑖𝑖. Thus: 

 𝑉𝑉𝑒𝑒(𝑡𝑡) =
4
3

𝜋𝜋 � 𝑅𝑅3(𝑡𝑡, 𝑡𝑡𝑖𝑖)𝐽𝐽(𝑡𝑡𝑖𝑖)𝑉𝑉0𝑑𝑑𝑡𝑡𝑖𝑖
𝑒𝑒

0
 (2.5) 

We now have an expression for extended volume in terms of the nucleation rate and radii 

distribution of the growing crystals. As we are concerned with nucleation and growth rates 

during phase change, there is a problem with calculating the transformed fraction, i.e., the 

fraction which has undergone phase change. Given perfect knowledge of both nucleation and 

growth rates, we still have to deal with overlap between growing regions of transformed 

phase arising as phase change occurs. To compensate for this overlap, we consider a finite 

but large space 𝑉𝑉0 divided into two sections, a transformed section with volume 𝑉𝑉0𝑓𝑓 and an 

untransformed section with volume 𝑉𝑉0(1 − 𝑓𝑓), where 𝑓𝑓 is the transformed fraction of the 

volume. Inside 𝑉𝑉0 there is a randomly distributed collection of n sub-volumes 𝑉𝑉1, 𝑉𝑉2,… 𝑉𝑉𝑛𝑛 

with 𝑉𝑉𝑖𝑖 ≪ 𝑉𝑉0, ∀𝑖𝑖 ∈ {1,2,…𝑛𝑛}. Given the definition of 𝑓𝑓 , we can then express the probability 
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that a randomly chosen point in 𝑉𝑉0 lies in the untransformed region as 1 − 𝑓𝑓 . This is 

equivalent to the probability of the point not lying in each transformed region, thus: 

 1 − 𝑓𝑓 = �1 −
𝑉𝑉1
𝑉𝑉0

� �1 −
𝑉𝑉2
𝑉𝑉0

� … �1 −
𝑉𝑉𝑛𝑛
𝑉𝑉0

� = � �1 −
𝑉𝑉𝑖𝑖
𝑉𝑉0

�
𝑛𝑛

𝑖𝑖=1
 (2.6) 

We can then take the natural logarithm of each side and get 

 ln(1 − 𝑓𝑓) = � ln �1 −
𝑉𝑉𝑖𝑖
𝑉𝑉0

�
𝑛𝑛

𝑖𝑖=1
 (2.7) 

Since 𝑉𝑉𝑖𝑖 ≪ 𝑉𝑉0 for all 𝑖𝑖, we can use the Taylor expansion of the natural logarithm to arrive 

at 

 ln(1 − 𝑓𝑓) = − �
𝑉𝑉𝑖𝑖
𝑉𝑉0

𝑛𝑛

𝑖𝑖=1
+ 𝑂𝑂 �

𝑉𝑉𝑖𝑖
2

𝑉𝑉0
2� (2.8) 

We then approximate each 𝑉𝑉𝑖𝑖 as 𝑉𝑉𝑒𝑒
𝑛𝑛  in each error term, and note that the extended volume 

is the sum of all the sub volumes, we can write an expression relating the transformed 

fraction to the extended volume: 

 𝑉𝑉𝑒𝑒 = � 𝑉𝑉𝑖𝑖

𝑛𝑛

𝑖𝑖=1
 (2.9) 

 
𝑓𝑓 = 1 − exp�− 𝑉𝑉𝑒𝑒

𝑉𝑉0
+ 𝑂𝑂 �1

𝑛𝑛
𝑉𝑉𝑒𝑒

2

𝑉𝑉0
2�� 

(2.10) 

We can now use this expression to arrive at a length scale 𝐿𝐿0 for validity for the following 

analysis. For isothermal, spherical growth of the transformed phase, defined by the Avrami 

equation, we have: 

 𝑉𝑉𝑒𝑒(𝑡𝑡) =
4𝜋𝜋
3

𝑉𝑉0𝐽𝐽𝑢𝑢3𝑡𝑡4 (2.11) 

 𝑁𝑁 = 𝑉𝑉0𝐽𝐽𝑡𝑡 (2.12) 

where 𝑢𝑢(𝑡𝑡) (𝑚𝑚𝑠𝑠−1) is the growth velocity and 𝐽𝐽(𝑡𝑡) (𝑚𝑚−3𝑠𝑠−1) is the nucleation rate.  We can 

identify instances where the higher order terms of equation (2.10) are negligible. We assume 

this term is negligible if it is less than one part in 𝑋𝑋 the lower order term. 
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𝑉𝑉𝑒𝑒
𝑉𝑉0

∼
1

𝑋𝑋𝑁𝑁
𝑉𝑉𝑒𝑒

2

𝑉𝑉0
2 

 
(2.13) 

 
𝑉𝑉0 ∼

4𝜋𝜋
3𝑋𝑋

𝑢𝑢3𝑡𝑡3 

 
(2.14) 

 𝐿𝐿0 ≈ 𝑉𝑉0

1
3 ∼

1.61

𝑋𝑋
1
3

𝑢𝑢𝑡𝑡 (2.15) 

Using a 1% criterion (𝑋𝑋 = 100) shows that the higher order term is only significant over 

extremely short length scales. 

Now, assuming time (i.e., temperature) dependent growth velocities and nucleation 

rates, but negligible spatial variation in temperature we can relate the extended volume of 

phase 𝑉𝑉𝑒𝑒(𝑡𝑡), that is, the total volume of all the spheres of phase at that time disregarding 

overlap, to the fraction of transformed phase. 

 
𝑓𝑓(𝑡𝑡) = 1 − exp �−

𝑉𝑉𝑒𝑒(𝑡𝑡)
𝑉𝑉0

� 

 
(2.16) 

 

2.2.2 Generalized Non-Isothermal Avrami (GNA) Equation  

Recall, equation (2.5) and combine it with equation (2.16) and we have 

 
ln�1 − 𝑓𝑓(𝑡𝑡)� =

4𝜋𝜋
3

� 𝐽𝐽(𝑡𝑡𝑖𝑖)𝑅𝑅3(𝑡𝑡, 𝑡𝑡𝑖𝑖)𝑑𝑑𝑡𝑡𝑖𝑖
𝑒𝑒

0
 

 
(2.17) 

We can express 𝑅𝑅(𝑡𝑡, 𝑡𝑡𝑖𝑖) in terms of the antiderivative of the velocity 𝑢𝑢(𝑡𝑡), 𝑈𝑈(𝑡𝑡) 

 
𝑅𝑅(𝑡𝑡, 𝑡𝑡𝑖𝑖) = � 𝑢𝑢(𝜏𝜏)𝑑𝑑𝜏𝜏

𝑒𝑒

𝑒𝑒𝑖𝑖

= 𝑈𝑈(𝑡𝑡) − 𝑈𝑈(𝑡𝑡𝑖𝑖) 

 
(2.18) 

Then, by taking the derivative of equation (2.17) with respect to time we get 
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1

𝑓𝑓 − 1 
𝑑𝑑𝑓𝑓
𝑑𝑑𝑡𝑡

=
𝜕𝜕
𝜕𝜕𝑡𝑡

�
4𝜋𝜋
3

� 𝐽𝐽(𝑡𝑡𝑖𝑖)𝑅𝑅(𝑡𝑡, 𝑡𝑡𝑖𝑖)𝑑𝑑𝑡𝑡𝑖𝑖
𝑒𝑒

0
�  (2.19) 

 
1

𝑓𝑓 − 1 
𝑑𝑑𝑓𝑓
𝑑𝑑𝑡𝑡

=
4𝜋𝜋
3

� 𝐽𝐽(𝑡𝑡𝑖𝑖)
𝜕𝜕
𝜕𝜕𝑡𝑡

𝑅𝑅3(𝑡𝑡, 𝑡𝑡𝑖𝑖)𝑑𝑑𝑡𝑡𝑖𝑖 +
4𝜋𝜋
3

𝐽𝐽(𝑡𝑡)𝑅𝑅(𝑡𝑡, 𝑡𝑡)
𝑒𝑒

0
 (2.20) 

Note that 

 𝑅𝑅(𝑡𝑡, 𝑡𝑡) = � 𝑢𝑢(𝜏𝜏)𝑑𝑑𝜏𝜏 = 0
𝑒𝑒

𝑒𝑒
 (2.21) 

Thus, 

 
1

𝑓𝑓 − 1 
𝑑𝑑𝑓𝑓
𝑑𝑑𝑡𝑡

=
4𝜋𝜋
3

� 𝐽𝐽(𝑡𝑡𝑖𝑖)
𝜕𝜕
𝜕𝜕𝑡𝑡

𝑅𝑅3(𝑡𝑡, 𝑡𝑡𝑖𝑖)𝑑𝑑𝑡𝑡𝑖𝑖
𝑒𝑒

0
 (2.22) 

 𝜕𝜕
𝜕𝜕𝑡𝑡

𝑅𝑅3(𝑡𝑡, 𝑡𝑡𝑖𝑖) =
𝜕𝜕
𝜕𝜕𝑡𝑡

�𝑈𝑈(𝑡𝑡) − 𝑈𝑈(𝑡𝑡𝑖𝑖)�
3 = 3�𝑈𝑈(𝑡𝑡) − 𝑈𝑈(𝑡𝑡𝑖𝑖)�

2𝑢𝑢(𝑡𝑡) (2.23) 

 
1

𝑓𝑓 − 1 
𝑑𝑑𝑓𝑓
𝑑𝑑𝑡𝑡

= 4𝜋𝜋 � 𝐽𝐽(𝜏𝜏)�𝑈𝑈(𝑡𝑡) − 𝑈𝑈(𝑡𝑡𝑖𝑖)�
2𝑢𝑢(𝑡𝑡)𝑑𝑑𝑡𝑡𝑖𝑖

𝑒𝑒

0
 (2.24) 

 1
𝑓𝑓 − 1 

𝑑𝑑𝑓𝑓
𝑑𝑑𝑡𝑡

= 4𝜋𝜋 � 𝐽𝐽(𝑡𝑡𝑖𝑖)𝑢𝑢(𝑡𝑡)𝑈𝑈2(𝑡𝑡)𝑑𝑑𝑡𝑡𝑖𝑖 − 8𝜋𝜋 � 𝐽𝐽(𝑡𝑡𝑖𝑖)𝑢𝑢(𝑡𝑡)𝑈𝑈(𝑡𝑡𝑖𝑖)𝑈𝑈(𝑡𝑡)𝑑𝑑𝑡𝑡𝑖𝑖 + 4𝜋𝜋 � 𝐽𝐽(𝑡𝑡𝑖𝑖)𝑢𝑢(𝑡𝑡)𝑈𝑈2(𝑡𝑡𝑖𝑖)𝑑𝑑𝑡𝑡𝑖𝑖

𝑒𝑒

0

𝑒𝑒

0

𝑒𝑒

0
 (2.25) 

 

By denoting the antiderivative of 𝐽𝐽(𝑡𝑡) as 𝐽𝐽𝑖𝑖(𝑡𝑡) we have 

 1
𝑓𝑓 − 1 

𝑑𝑑𝑓𝑓
𝑑𝑑𝑡𝑡

= 4𝜋𝜋𝑢𝑢(𝑡𝑡)𝑈𝑈2(𝑡𝑡)𝐽𝐽𝑖𝑖(𝑡𝑡) − 8𝜋𝜋𝑢𝑢(𝑡𝑡)𝑈𝑈(𝑡𝑡)� 𝐽𝐽(𝑡𝑡𝑖𝑖)𝑈𝑈(𝑡𝑡𝑖𝑖)𝑑𝑑𝑡𝑡𝑖𝑖 + 4𝜋𝜋𝑢𝑢(𝑡𝑡)� 𝐽𝐽(𝑡𝑡𝑖𝑖)𝑈𝑈2(𝑡𝑡𝑖𝑖)𝑑𝑑𝑡𝑡𝑖𝑖
𝑒𝑒

0

𝑒𝑒

0
 (2.26) 

We can then pull out a factor of 4𝜋𝜋𝑢𝑢(𝑡𝑡) yields  

 
1

𝑓𝑓 − 1
𝑑𝑑𝑓𝑓
𝑑𝑑𝑡𝑡

1
4𝜋𝜋𝑢𝑢(𝑡𝑡)

= 𝑈𝑈2(𝑡𝑡)𝐽𝐽𝑖𝑖(𝑡𝑡) − 2𝑈𝑈(𝑡𝑡)� 𝐽𝐽(𝑡𝑡𝑖𝑖)𝑈𝑈(𝑡𝑡𝑖𝑖)𝑑𝑑𝑡𝑡𝑖𝑖 + � 𝐽𝐽(𝑡𝑡𝑖𝑖)𝑈𝑈2(𝑡𝑡𝑖𝑖)𝑑𝑑𝑡𝑡𝑖𝑖
𝑒𝑒

0

𝑒𝑒

0
 

 
(2.27) 

Taking the derivative of both sides with respect to time again yields 

 
𝑑𝑑
𝑑𝑑𝑡𝑡

�
1

4𝜋𝜋𝑢𝑢(𝑡𝑡)
1

𝑓𝑓 − 1
𝑑𝑑𝑓𝑓
𝑑𝑑𝑡𝑡

� =
𝑑𝑑
𝑑𝑑𝑡𝑡

�𝑈𝑈2(𝑡𝑡)𝐽𝐽𝑖𝑖(𝑡𝑡)� −
𝑑𝑑
𝑑𝑑𝑡𝑡

�2𝑈𝑈(𝑡𝑡) � 𝐽𝐽(𝑡𝑡𝑖𝑖)𝑈𝑈(𝑡𝑡𝑖𝑖)𝑑𝑑𝑡𝑡𝑖𝑖
𝑒𝑒

0
� + 𝐽𝐽(𝑡𝑡)𝑈𝑈2(𝑡𝑡) (2.28) 

 
𝑑𝑑
𝑑𝑑𝑡𝑡

� 1
4𝜋𝜋𝑢𝑢(𝑡𝑡)

1
𝑓𝑓 − 1

𝑑𝑑𝑓𝑓
𝑑𝑑𝑡𝑡

� = 2𝑈𝑈(𝑡𝑡)𝑢𝑢(𝑡𝑡)𝐽𝐽𝑖𝑖(𝑡𝑡) + 𝑈𝑈2(𝑡𝑡)𝐽𝐽(𝑡𝑡) − 2𝑈𝑈2(𝑡𝑡)𝐽𝐽(𝑡𝑡) − 2𝑢𝑢(𝑡𝑡)� 𝐽𝐽(𝑡𝑡𝑖𝑖)𝑈𝑈(𝑡𝑡𝑖𝑖)𝑑𝑑𝑡𝑡𝑖𝑖
𝑒𝑒

0
+ 𝐽𝐽(𝑡𝑡)𝑈𝑈2(𝑡𝑡) 

 

(2.29) 

 
𝑑𝑑
𝑑𝑑𝑡𝑡

�
1

4𝜋𝜋𝑢𝑢(𝑡𝑡)
1

𝑓𝑓 − 1
𝑑𝑑𝑓𝑓
𝑑𝑑𝑡𝑡

� = 2𝑈𝑈(𝑡𝑡)𝑢𝑢(𝑡𝑡)𝐽𝐽𝑖𝑖(𝑡𝑡) − 2𝑢𝑢(𝑡𝑡) � 𝐽𝐽(𝑡𝑡𝑖𝑖)𝑈𝑈(𝑡𝑡𝑖𝑖)𝑑𝑑𝑡𝑡𝑖𝑖
𝑒𝑒

0
 (2.30) 



     

38 
 

 

 
1

2𝑢𝑢(𝑡𝑡)
𝑑𝑑
𝑑𝑑𝑡𝑡

�
1

4𝜋𝜋𝑢𝑢(𝑡𝑡)
1

𝑓𝑓 − 1
𝑑𝑑𝑓𝑓
𝑑𝑑𝑡𝑡

� = 𝑈𝑈(𝑡𝑡)𝐽𝐽𝑖𝑖(𝑡𝑡) − � 𝐽𝐽(𝑡𝑡𝑖𝑖)𝑈𝑈(𝑡𝑡𝑖𝑖)𝑑𝑑𝑡𝑡𝑖𝑖
𝑒𝑒

0
 (2.31) 

We can take the derivative with respect to time, yielding  

 
1

2𝑢𝑢(𝑡𝑡)
𝑑𝑑
𝑑𝑑𝑡𝑡

�
1

4𝜋𝜋𝑢𝑢(𝑡𝑡)
1

𝑓𝑓 − 1
𝑑𝑑𝑓𝑓
𝑑𝑑𝑡𝑡

� = 𝑢𝑢(𝑡𝑡)𝐽𝐽1(𝑡𝑡) + 𝑈𝑈(𝑡𝑡)𝐽𝐽(𝑡𝑡) − 𝐽𝐽(𝑡𝑡)𝑈𝑈(𝑡𝑡) = 𝑢𝑢(𝑡𝑡)𝐽𝐽1(𝑡𝑡)  (2.32) 

Finally, we can divide both sides by 𝑢𝑢(𝑡𝑡) and then take the derivative with respect to time 

one last time and get 

 𝐽𝐽(𝑡𝑡) = 1
8𝜋𝜋

𝑑𝑑
𝑑𝑑𝑡𝑡

⎣
⎢⎡

1
𝑢𝑢(𝑡𝑡)

𝑑𝑑
𝑑𝑑𝑡𝑡

� 1
𝑢𝑢(𝑡𝑡)

𝑑𝑑
𝑑𝑑𝑡𝑡

� 1
𝑓𝑓 − 1

𝑑𝑑𝑓𝑓
𝑑𝑑𝑡𝑡

1
𝑢𝑢(𝑡𝑡)

��
⎦
⎥⎤ (2.33) 

Equation (2.33) is a general ordinary differential equation for either the fraction of nucleated 

phase or the growth rate, linked to the nucleation rate. This equation applies for arbitrary 

evolution of temperature with time. We refer to this as the General Nonisothermal Avrami 

Equation (GNA Equation). If we allow for 𝐽𝐽(𝑡𝑡) and 𝑢𝑢(𝑡𝑡) to be constant functions of time, 

in other words isothermal temperature conditions, we have 

 1
8𝜋𝜋𝑢𝑢3

𝑑𝑑4

𝑑𝑑𝑡𝑡4
(−ln(1 − 𝑓𝑓)) = 𝐽𝐽  (2.34) 

Solving this, for initial conditions of zero, we get 

 𝑓𝑓(𝑡𝑡) = 1 − exp �−
𝜋𝜋
3

𝑢𝑢3𝐽𝐽𝑡𝑡4� (2.35) 

Which is precisely the Avrami equation for uniform, constant spherical growth. Now the 

question arises, what are the initial conditions for this system? 

2.2.3 General relation between transformed fraction, nucleation rate, and growth velocity 

In this section we will extend the differential equation (2.33) into an arbitrary number of 

dimensions and growth geometries by looking at phase change in Fourier space. Recall 

equations (2.17) and (2.18), we then have 

 ln�1 − 𝑓𝑓(𝑡𝑡)� =
4𝜋𝜋
3

� 𝐽𝐽(𝑡𝑡𝑖𝑖)𝑅𝑅3(𝑡𝑡, 𝑡𝑡𝑖𝑖)𝑑𝑑𝑡𝑡𝑖𝑖
𝑒𝑒

0
 (2.36) 
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Now consider the velocity 𝑢𝑢(𝑡𝑡) to have radial dependence. Then 

 𝑢𝑢(𝑡𝑡) =
𝑑𝑑𝑅𝑅
𝑑𝑑𝑡𝑡

=
𝑣𝑣(𝑡𝑡)
𝑅𝑅𝑚𝑚 (2.37) 

Integrating both sides from 𝑡𝑡𝑖𝑖 to 𝑡𝑡 gives us the following, with 𝑉𝑉 as the antiderivative of 𝑣𝑣 

 𝑅𝑅𝑚𝑚+1

𝑚𝑚 + 1
+

𝑅𝑅0
𝑚𝑚+1

𝑚𝑚 + 1
= 𝑉𝑉 (𝑡𝑡) − 𝑉𝑉 (𝑡𝑡𝑖𝑖) (2.38) 

Since 𝑅𝑅0 ≪ 𝑅𝑅 for almost all 𝑡𝑡, then 

 𝑅𝑅(𝑡𝑡, 𝑡𝑡𝑖𝑖) = �(𝑚𝑚 + 1)�𝑉𝑉 (𝑡𝑡) − 𝑉𝑉 (𝑡𝑡𝑖𝑖)��
1

𝑚𝑚+1 (2.39) 

Since the crystal grows uniformly, it grows with the volume of an n-ball. That is, in two 

dimensions it grows with flat-circular growth, in three dimensions with spherical growth, 

and so on. In higher dimensions, the nucleating species may be something more abstract, 

like nucleation and growth through information networks. In this case, equation (2.36) is 

transformed into the following, with 𝑚𝑚 and 𝐷𝐷 as the growth geometry parameter and 

dimensionality of the phase change respectively. 𝜋𝜋𝐷𝐷
2 /Γ�𝐷𝐷

2 + 1� is the volume scaling term for 

an n-ball, and Γ is the gamma function.  

 − ln�1 − 𝑓𝑓(𝑡𝑡)� = 𝜋𝜋
𝐷𝐷
2

Γ �𝐷𝐷
2 + 1�

� 𝐽𝐽(𝑡𝑡𝑖𝑖) �(𝑚𝑚 + 1)�𝑉𝑉 (𝑡𝑡) − 𝑉𝑉 (𝑡𝑡𝑖𝑖)��
𝐷𝐷

𝑚𝑚+1 𝑑𝑑𝑡𝑡𝑖𝑖
𝑒𝑒

0
 (2.40) 

 − ln�1 − 𝑓𝑓(𝑡𝑡)� = 𝛼𝛼 � 𝐽𝐽(𝑡𝑡𝑖𝑖)�𝑉𝑉 (𝑡𝑡) − 𝑉𝑉 (𝑡𝑡𝑖𝑖)�
𝐷𝐷

𝑚𝑚+1𝑑𝑑𝑡𝑡𝑖𝑖
𝑒𝑒

0
 (2.41) 

 𝛼𝛼 =
𝜋𝜋

𝐷𝐷
2 (𝑚𝑚 + 1)

Γ �𝐷𝐷
2 + 1�

 (2.42) 

By applying the substitutions 𝑦𝑦 = 𝑉𝑉 (𝑡𝑡), 𝑧𝑧 = 𝑉𝑉 (𝑡𝑡𝑖𝑖), and 𝑑𝑑𝑧𝑧 = 𝑣𝑣(𝑡𝑡𝑖𝑖)𝑑𝑑𝑡𝑡𝑖𝑖, we transform equation 

(2.41) into 

 − ln�1 − 𝑓𝑓(𝑡𝑡)� = 𝛼𝛼 �
𝐽𝐽�𝑈𝑈−1(𝑧𝑧)�
𝑣𝑣�𝑉𝑉 −1(𝑧𝑧)�

(𝑦𝑦 − 𝑧𝑧)
𝐷𝐷

𝑚𝑚+1𝑑𝑑𝑧𝑧
𝑒𝑒

0
 (2.43) 

Making one further substitution of 𝑤𝑤 = 𝑦𝑦 − 𝑧𝑧, we get 
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 − ln�1 − 𝑓𝑓(𝑡𝑡)� = −𝛼𝛼 � 𝐽𝐽(𝑈𝑈−1(𝑦𝑦 − 𝑤𝑤))
𝑣𝑣(𝑈𝑈−1(𝑦𝑦 − 𝑤𝑤))

𝑤𝑤
𝐷𝐷

𝑚𝑚+1𝑑𝑑𝑤𝑤
𝑦𝑦−𝑈𝑈(𝑒𝑒)

𝑦𝑦
 (2.44) 

 − ln�1 − 𝑓𝑓(𝑡𝑡)� = 𝛼𝛼 �
𝐽𝐽(𝑈𝑈−1(𝑦𝑦 − 𝑤𝑤))
𝑣𝑣(𝑈𝑈−1(𝑦𝑦 − 𝑤𝑤))

𝑤𝑤
𝐷𝐷

𝑚𝑚+1𝑑𝑑𝑤𝑤
𝑦𝑦

0
 (2.45) 

 − ln�1 − 𝑓𝑓(𝑡𝑡)� = 𝛼𝛼 � 𝜃𝜃(𝑦𝑦 − 𝑤𝑤)
𝐽𝐽(𝑈𝑈−1(𝑦𝑦 − 𝑤𝑤))
𝑣𝑣(𝑈𝑈−1(𝑦𝑦 − 𝑤𝑤))

𝑤𝑤
𝐷𝐷

𝑚𝑚+1𝑑𝑑𝑤𝑤
∞ 

0
 (2.46) 

Where 𝜃𝜃 is the Heaviside step function. This may at first seem like a useless complication of 

what we had earlier, but if one makes the following substitutions 

 𝐹𝐹(𝑦𝑦) = − ln �1 − 𝑓𝑓�𝑈𝑈−1(𝑦𝑦)�� (2.47) 

 𝑃𝑃(𝑦𝑦) =
𝐽𝐽�𝑈𝑈−1(𝑦𝑦)�
𝑢𝑢�𝑈𝑈−1(𝑦𝑦)�

 (2.48) 

 

 
𝐺𝐺(𝑦𝑦) = 𝜃𝜃(𝑦𝑦)α𝑦𝑦

𝐷𝐷
𝑚𝑚+1 = 𝜃𝜃(𝑦𝑦) 𝜋𝜋

𝐷𝐷
2 (𝑚𝑚 + 1)

Γ �𝐷𝐷
2 + 1�

𝑦𝑦
𝐷𝐷

𝑚𝑚+1 (2.49) 

Then equation (2.46) can be rewritten as, 

 𝐹𝐹(𝑦𝑦) = � 𝑃𝑃(𝑧𝑧)𝐺𝐺(𝑦𝑦 − 𝑧𝑧)𝑑𝑑𝑧𝑧
∞ 

0
 (2.50) 

Where 𝐹𝐹, 𝑃𝑃 , and 𝐺𝐺 all have values of zero for 𝑦𝑦 < 0.  This permits us to write a relation 

between these three functions with the convolution operator (∗). 

 𝐹𝐹(𝑦𝑦) = (𝑃𝑃 ∗ 𝐺𝐺)(𝑦𝑦) (2.51) 

We see that 𝐺𝐺(𝑦𝑦) is the volume of a growing sphere of the newly transformed phase and 

𝑃𝑃(𝑦𝑦) is the phase size distribution at that radius. As is often the case, relationships involving 

the convolution operator are more easily interpreted in Fourier space. Applying the Fourier 

transform, denoted ℱ(𝐹𝐹) =  𝐹𝐹 ̂, to equation (2.51) yields 

 𝐹𝐹 ̂ = 𝐺𝐺�̂�𝑃̂  (2.52) 

 𝐺𝐺̂ = 𝐹𝐹 ̂

𝑃𝑃̂  
(2.53) 

 𝐺𝐺(𝑦𝑦) = �𝐹𝐹 ∗ ℱ−1 �1
𝑃𝑃̂�� (𝑦𝑦) (2.54) 
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 𝑃𝑃̂  = 𝛼𝛼 � 𝜃𝜃(𝑦𝑦)𝑦𝑦
𝐷𝐷

𝑚𝑚+1 exp(−2𝜋𝜋𝑖𝑖𝑦𝑦𝜋𝜋) 𝑑𝑑𝑦𝑦
∞

−∞

 (2.55) 

Invoking the derivative property of the Fourier transform we get letting 𝐷𝐷
𝑚𝑚+1 = 𝑃𝑃,  

 𝑃𝑃̂ = 𝛼𝛼 � 𝑖𝑖
2𝜋𝜋

�
𝑡𝑡 𝑑𝑑𝑡𝑡

𝑑𝑑𝜋𝜋𝑡𝑡 ℱ{ 𝜃𝜃(𝑦𝑦)} = � 𝑖𝑖
2𝜋𝜋

�
𝑡𝑡 𝑑𝑑𝑡𝑡

𝑑𝑑𝜋𝜋𝑡𝑡
⎝
⎜⎛

1
2

� 1
𝑖𝑖𝜋𝜋𝜋𝜋

+ 𝛿𝛿(𝜋𝜋)�
⎠
⎟⎞ (2.56) 

 𝑃𝑃̂ = 𝛼𝛼 �
𝑖𝑖

2𝜋𝜋
�

𝑡𝑡 𝑑𝑑𝑡𝑡

𝑑𝑑𝜋𝜋𝑡𝑡 ℱ{ 𝜃𝜃(𝑦𝑦)} = �
𝑖𝑖

2𝜋𝜋
�

𝑡𝑡 1
2𝑖𝑖𝜋𝜋

𝑖𝑖2𝑡𝑡 Γ(1 + 𝑃𝑃)
𝜋𝜋1+𝑡𝑡  + �

𝑖𝑖
2𝜋𝜋

�
𝑡𝑡 1
2

𝑑𝑑𝑡𝑡𝛿𝛿(𝜋𝜋)
𝑑𝑑𝜋𝜋𝑡𝑡  (2.57) 

 𝑃𝑃̂ = 𝛼𝛼 𝑖𝑖3(𝑡𝑡+1)

(2𝜋𝜋)1+𝑡𝑡
Γ(1 + 𝑃𝑃)

𝜋𝜋1+𝑡𝑡  + 𝛼𝛼 � 𝑖𝑖
2𝜋𝜋

�
𝑡𝑡 1
2

𝑑𝑑𝑡𝑡𝛿𝛿(𝜋𝜋)
𝑑𝑑𝜋𝜋𝑡𝑡  (2.58) 

 
1
𝑃𝑃̂ =

1
𝛼𝛼

1
𝑖𝑖3(𝑡𝑡+1)

(2𝜋𝜋)1+𝑡𝑡
Γ(1 + 𝑃𝑃)

𝜋𝜋1+𝑡𝑡  + � 𝑖𝑖
2𝜋𝜋�

𝑡𝑡 1
2

𝑑𝑑𝑡𝑡𝛿𝛿(𝜋𝜋)
𝑑𝑑𝜋𝜋𝑡𝑡

 (2.59) 

 
1
𝑃𝑃̂ =

1
𝛼𝛼

(2𝜋𝜋𝑖𝑖𝜋𝜋)1+𝑡𝑡

𝑖𝑖4𝑡𝑡𝛤𝛤(1 + 𝑃𝑃)

1 + (2𝜋𝜋𝑖𝑖𝜋𝜋)1+𝑡𝑡

𝑖𝑖4𝑡𝑡Γ(1 + 𝑃𝑃)  �
𝑖𝑖

2𝜋𝜋�
𝑡𝑡 1
2

𝑑𝑑𝑡𝑡𝛿𝛿(𝜋𝜋)
𝑑𝑑𝜋𝜋𝑡𝑡

 

 

(2.60) 

Then inserting equation (2.60) into equation (2.54) we get 

 𝐺𝐺̂ = 1
𝛼𝛼

𝐹𝐹 ̂
𝑖𝑖4𝑡𝑡Γ(1 + 𝑃𝑃)

(2𝜋𝜋𝑖𝑖𝜋𝜋)1+𝑡𝑡 1

1 + (2𝜋𝜋𝑖𝑖𝜋𝜋)1+𝑡𝑡

𝑖𝑖4𝑡𝑡Γ(1 + 𝑃𝑃)  �
𝑖𝑖

2𝜋𝜋�
𝑡𝑡 1
2

𝑑𝑑𝑡𝑡𝛿𝛿(𝜋𝜋)
𝑑𝑑𝜋𝜋𝑡𝑡

   (2.61) 

 𝐺𝐺(𝑦𝑦) = 1
𝛼𝛼

1
𝑖𝑖4𝑡𝑡Γ(1 + 𝑃𝑃)

𝑑𝑑1+𝑡𝑡

𝑑𝑑𝑦𝑦1+𝑡𝑡 𝐹𝐹(𝑦𝑦) ∗ ℱ−1

⎩�
⎨
�⎧ 1

1 + (2𝜋𝜋𝑖𝑖𝜋𝜋)1+𝑡𝑡

𝑖𝑖4𝑡𝑡Γ(1 + 𝑃𝑃)  �
𝑖𝑖

2𝜋𝜋�
𝑡𝑡 1
2

𝑑𝑑𝑡𝑡𝛿𝛿(𝜋𝜋)
𝑑𝑑𝜋𝜋𝑡𝑡 ⎭�

⎬
�⎫

 (2.62) 

 𝐺𝐺(𝑦𝑦) =
1

𝛼𝛼𝑖𝑖4𝑡𝑡Γ(1 + 𝑃𝑃)
𝑑𝑑1+𝑡𝑡

𝑑𝑑𝑦𝑦1+𝑡𝑡 𝐹𝐹(𝑦𝑦) ∗ 𝛿𝛿(𝑦𝑦) (2.63) 

 
𝐺𝐺(𝑦𝑦) =

1
𝛼𝛼𝑖𝑖4𝑡𝑡Γ(1 + 𝑃𝑃)

𝑑𝑑𝑡𝑡

𝑑𝑑𝑦𝑦𝑡𝑡 �
𝑑𝑑𝐹𝐹(𝑦𝑦)

𝑑𝑑𝑦𝑦
� 

 
(2.64) 

For 𝑁𝑁 ≡ 𝑃𝑃 𝑚𝑚𝑚𝑚𝑑𝑑 1 and for 𝑀𝑀 = ⌊𝑎𝑎⌋ so 𝑃𝑃 = 𝑁𝑁 + 𝑀𝑀 = 𝐷𝐷
𝑚𝑚+1, we have 

 𝐺𝐺(𝑦𝑦) =
1

𝛼𝛼𝑖𝑖4(𝑀𝑀+𝑁𝑁)Γ(1 + 𝑀𝑀 + 𝑁𝑁)
𝑑𝑑𝑁𝑁

𝑑𝑑𝑦𝑦𝑁𝑁 �
𝑑𝑑𝑀𝑀+1𝐹𝐹(𝑦𝑦)

𝑑𝑑𝑦𝑦𝑀𝑀+1 � (2.65) 
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For the simple case of the traditional three dimensions and uniform spherical growth we 

have 𝐷𝐷 = 3 and 𝑚𝑚 = 0, thus 𝑃𝑃 = 3, 𝑀𝑀 = 0, 𝑁𝑁 = 3. Thus, 

 𝐺𝐺(𝑦𝑦) =
1

𝛼𝛼Γ(4)
𝑑𝑑3

𝑑𝑑𝑦𝑦3 �
𝑑𝑑𝐹𝐹(𝑦𝑦)

𝑑𝑑𝑦𝑦
� (2.66) 

 𝛼𝛼Γ(4) = 12𝜋𝜋
𝐷𝐷
2 (𝑚𝑚 + 1)

Γ �𝐷𝐷
2 + 1�

= 8𝜋𝜋 (2.67) 

 
𝐺𝐺(𝑦𝑦) =

1
8𝜋𝜋

𝑑𝑑4𝐹𝐹(𝑦𝑦)
𝑑𝑑𝑦𝑦4  

 
(2.68) 

Since 𝑦𝑦 = 𝑉𝑉 (𝑡𝑡), and since 𝑚𝑚 = 0, we have 𝑢𝑢(𝑡𝑡) = 𝑣𝑣(𝑡𝑡), thus 

 
𝑑𝑑
𝑑𝑑𝑦𝑦

=
1

𝑢𝑢(𝑡𝑡)
𝑑𝑑
𝑑𝑑𝑡𝑡

  (2.69) 

 
𝐽𝐽(𝑡𝑡) = 1

8𝜋𝜋
𝑑𝑑
𝑑𝑑𝑡𝑡

⎣
⎢⎡

1
𝑢𝑢(𝑡𝑡)

𝑑𝑑
𝑑𝑑𝑡𝑡

� 1
𝑢𝑢(𝑡𝑡)

𝑑𝑑
𝑑𝑑𝑡𝑡

� 1
𝑢𝑢(𝑡𝑡)

𝑑𝑑
𝑑𝑑𝑡𝑡

(− ln�1 − 𝑓𝑓(𝑡𝑡)�)��
⎦
⎥⎤ 

  

(2.70) 

Which is precisely equation the general nonisothermal Avrami equation, i.e., equation (2.33)! 

 

 

 

2.2.3 Phase size distribution and the initial conditions to the GNA equation 

The phase size distribution 𝜌𝜌(𝑟𝑟, 𝑡𝑡) can be defined as the number concentration density 

function per unit radii of the transformed phase, i.e., the number of spherulites N per unit 

volume that have radii between 𝑟𝑟1 and 𝑟𝑟2: 

 𝑁𝑁 = � 𝜌𝜌(𝑟𝑟, 𝑡𝑡)𝑑𝑑𝑟𝑟
𝑐𝑐2

𝑐𝑐1

 (2.71) 
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More general solutions to the GNA Equation require either four initial conditions for 𝑓𝑓(𝑡𝑡), 

or three for 𝑢𝑢(𝑡𝑡). To identify these initial conditions, we now consider the population balance 

equation on phase size distribution 𝜌𝜌(𝑟𝑟, 𝑡𝑡), given initial distribution 𝑅𝑅0(𝑟𝑟): 

 𝜕𝜕𝜌𝜌(𝑟𝑟, 𝑡𝑡)
𝜕𝜕𝑡𝑡 +

𝜕𝜕
𝜕𝜕𝑟𝑟 �𝑢𝑢

(𝑟𝑟, 𝑡𝑡)𝜌𝜌(𝑟𝑟, 𝑡𝑡)� = 0 (2.72) 

 𝜌𝜌(𝑟𝑟, 0) = 𝑅𝑅0(𝑟𝑟) (2.73) 

This picture is incomplete without including the new phase entering the system as nuclei. 

We consider the number of nuclei created in a small window of time to be 𝐽𝐽(𝑡𝑡)Δ𝑡𝑡. By the 

definition of 𝜌𝜌(𝑟𝑟, 𝑡𝑡) this is equivalent to:  

 𝐽𝐽(𝑡𝑡)Δ𝑡𝑡 = � 𝜌𝜌(𝑟𝑟, 𝑡𝑡)𝑑𝑑𝑟𝑟 ≈ 𝜌𝜌(𝑡𝑡, 𝑟𝑟0)𝜌𝜌 �𝑟𝑟0 + 𝑢𝑢(𝑡𝑡, 𝑟𝑟0)
2

Δ𝑡𝑡, 𝑡𝑡� Δ𝑡𝑡
𝑐𝑐0+𝑢𝑢(𝑒𝑒,𝑐𝑐0)Δ𝑒𝑒

𝑐𝑐0

 (2.74) 

Where 𝑟𝑟0 is the critical radius. 

Letting Δ𝑡𝑡 approach zero leads to: 

 𝜌𝜌(𝑟𝑟0, 𝑡𝑡) =
𝐽𝐽(𝑡𝑡)

𝑢𝑢(𝑟𝑟0, 𝑡𝑡)
 (2.75) 

Since 𝑟𝑟0 is extremely small, we can shift 𝑟𝑟 by 𝑟𝑟0 and not affect the governing equations. 

 𝜌𝜌(0, 𝑡𝑡) =
𝐽𝐽(𝑡𝑡)

𝑢𝑢(0, 𝑡𝑡)
 (2.76) 

For the radially independent case of growth velocity 𝑢𝑢(𝑡𝑡), using the method of 

characteristics, we note the solution is constant along the line 𝐶𝐶 = 𝑈𝑈(𝑡𝑡) − 𝑟𝑟. By observing 

that any phase nucleated after time zero will never catch up in size to phase due to the 

initial distribution, we can split the solution up into two regimes. The first pertains to the 

initial distribution of radii, 𝑟𝑟 − 𝑈𝑈(𝑡𝑡) > 0; the second pertains to the newly formed nucleated 

crystals, 𝑟𝑟 − 𝑈𝑈(𝑡𝑡) < 0. Using the initial and boundary conditions we then find the full 

solution as follows. 

 𝜌𝜌(𝑟𝑟, 𝑡𝑡) = 𝑔𝑔(𝐶𝐶) = 𝑔𝑔(𝑈𝑈(𝑡𝑡) − 𝑟𝑟) (2.77) 
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𝜌𝜌(𝑟𝑟, 𝑡𝑡) =  𝜃𝜃�𝑟𝑟 − 𝑈𝑈(𝑡𝑡)�𝑅𝑅0�𝑟𝑟 − 𝑈𝑈(𝑡𝑡)� + 𝜃𝜃(𝑈𝑈(𝑡𝑡) − 𝑟𝑟)

𝐽𝐽�𝑈𝑈−1(𝑈𝑈(𝑡𝑡) − 𝑟𝑟)�
𝑢𝑢�𝑈𝑈−1(𝑈𝑈(𝑡𝑡) − 𝑟𝑟)�

 (2.78) 

Where 𝑈𝑈−1�𝑈𝑈(𝑡𝑡)� = 𝑡𝑡, and 𝜃𝜃 is the Heaviside step function. 

We can make the substitution 𝑣𝑣 = 𝑈𝑈−1(𝑡𝑡) to eliminate the inverse function, which can be 

found by can be solving the following differential equation: 

 
𝑑𝑑𝑣𝑣
𝑑𝑑𝑡𝑡

=
1

𝑢𝑢(𝑡𝑡)
 (2.79) 

We can then rewrite equation (2.78) as  

 𝜌𝜌(𝑟𝑟, 𝑡𝑡) = 𝜃𝜃�𝑟𝑟 − 𝑈𝑈(𝑡𝑡)�𝑅𝑅0�𝑟𝑟 − 𝑈𝑈(𝑡𝑡)� + 𝜃𝜃(𝑈𝑈(𝑡𝑡) − 𝑟𝑟)
𝐽𝐽(𝑣𝑣(𝑈𝑈(𝑡𝑡) − 𝑟𝑟))
𝑢𝑢�𝑣𝑣(𝑈𝑈(𝑡𝑡) − 𝑟𝑟)�

 (2.80) 

By integrating ρ(𝑟𝑟, 𝑡𝑡) multiplied by 4
3
π𝑟𝑟3, we arrive at an alternate expression for the 

extended volume of transformed phase. Then by applying equation (2.16) we find: 

 − ln�1 − 𝑓𝑓(𝑡𝑡)� = � 4
3

𝜋𝜋𝑟𝑟3𝜌𝜌(𝑟𝑟, 𝑡𝑡)𝑑𝑑𝑟𝑟
∞

0

 (2.81) 

We can now use this equation to derive initial conditions to the GNA equation (2.33).  

 
𝑑𝑑𝑛𝑛

𝑑𝑑𝑡𝑡𝑛𝑛
(− ln�1 − 𝑓𝑓(𝑡𝑡)�)�

𝑒𝑒=0
=

𝑑𝑑𝑛𝑛

𝑑𝑑𝑡𝑡𝑛𝑛
��

4
3

𝜋𝜋𝑟𝑟3𝜌𝜌(𝑟𝑟, 𝑡𝑡)
∞

0
𝑑𝑑𝑟𝑟��

𝑒𝑒=0

𝑛𝑛 ∈ 0,1,2,3 (2.82) 

 𝑓𝑓(0) = 1 − exp �  − �
4
3

𝜋𝜋𝑟𝑟3𝑅𝑅0(𝑟𝑟)𝑑𝑑𝑟𝑟
∞

0
� (2.83) 

 𝑓𝑓(̇0) = �1 − 𝑓𝑓(0)��
4
3

𝜋𝜋𝑟𝑟3𝑢𝑢(0)𝑅𝑅0
′ (𝑟𝑟)𝑑𝑑𝑟𝑟

∞

0
 (2.84) 

 
𝑓𝑓(̈0) = 𝑓𝑓(̇0)2

𝑓𝑓(0) − 1
+ (𝑓𝑓(0) − 1)� 4

3
𝜋𝜋𝑟𝑟3�𝑢𝑢(0)2𝑅𝑅0

′′(𝑟𝑟) − 𝑢𝑢̇(0)𝑅𝑅0
′ (𝑟𝑟)�𝑑𝑑𝑟𝑟

∞

0
 (2.85) 

 
𝑓𝑓(⃛0) = 3𝑓𝑓(̇0)𝑓𝑓(̈0)

𝑓𝑓(0) − 1
− 2𝑓𝑓(̇0)3

(𝑓𝑓(0) − 1)2 + 

(𝑓𝑓(0) − 1) � 4
3

𝜋𝜋𝑟𝑟3�(2𝑢𝑢(0)𝑢𝑢̇(0) + 𝑢𝑢̇(0)2)𝑅𝑅0
′′(𝑟𝑟) − 𝑢𝑢3(0)𝑅𝑅0

′′′(𝑟𝑟) − �̈�𝑢(0)𝑅𝑅0
′ (𝑟𝑟)�𝑑𝑑𝑟𝑟

∞

0
 

(2.86) 

Alternatively, these could be rearranged in terms of initial conditions for 𝑢𝑢(𝑡𝑡), if it is the 

variable of interest. 
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 𝑢𝑢(0) = 𝑓𝑓(̇0)
�1 − 𝑓𝑓(0)�∫ 4

3 𝜋𝜋𝑟𝑟3𝑅𝑅0
′ (𝑟𝑟) 𝑑𝑑𝑟𝑟∞

0

 (2.87) 

 
�̇�𝑢(0) =

𝑓𝑓(̇0)2

𝑓𝑓(0) − 1 − 𝑓𝑓(̈0) + (𝑓𝑓0 − 1) 4
3 𝜋𝜋 ∫ 𝑟𝑟3�𝑢𝑢(0)2𝑅𝑅0

′′(𝑐𝑐) �𝑑𝑑𝑟𝑟∞
0

4
3 𝜋𝜋 ∫ 𝑟𝑟3(𝑅𝑅0

′ (𝑟𝑟) )𝑑𝑑𝑟𝑟∞
0

 
(2.88) 

 
�̈�𝑢(0) =

�3𝑓𝑓(̇0)𝑓𝑓(̈0)
𝑓𝑓(0) − 1 − 𝑓𝑓(⃛0) + 2𝑓𝑓(̇0)3

(𝑓𝑓(0) − 1)2�

∫ 𝑟𝑟3(𝑅𝑅0
′ (𝑟𝑟) )𝑑𝑑𝑟𝑟∞

0
+

4
3𝜋𝜋(𝑓𝑓(0) − 1)∫ 𝑟𝑟3(2𝑢𝑢(0)𝑢𝑢′(0)𝑅𝑅0

′′(𝑟𝑟) + 𝑢𝑢′(0)2𝑅𝑅0
′′(𝑟𝑟) − 𝑢𝑢3(0)𝑅𝑅0

′′′(𝑟𝑟) )𝑑𝑑𝑟𝑟∞
0

∫ 𝑟𝑟3(𝑅𝑅0
′ (𝑟𝑟) )𝑑𝑑𝑟𝑟∞

0

 

 

(2.89) 

2.3 Applications to the Crystallization of Pure Water 

We apply our model to the formation of solid ice in liquid water to test its validity and 

capabilities; this particular instance is relevant to the cryopreservation of biological systems, 

where rapid cooling and warming rates render the isothermal approximation invalid. For 

application, we require the temperature dependent properties for the crystal growth and 

nucleation rates of pure water. 

2.3.1 Temperature dependent growth rate of pure water 

Classical theory yields the growth rate as:  

 𝑢𝑢(𝑇𝑇 ) =
𝑘𝑘𝐵𝐵𝑇𝑇

3πa0
2𝜂𝜂(𝑇𝑇 )

�1 − exp�−
Δ𝐺𝐺(𝑇𝑇 )

𝑅𝑅𝑇𝑇
�� (1.16) 

Where η(𝑇𝑇 ) is the dynamic viscosity, 𝑃𝑃0 is the mean inter-atomic distance between water 

molecules, 𝑅𝑅 is the universal gas constant, and Δ𝐺𝐺 is the free energy difference between the 

crystal and liquid phases. Δ𝐺𝐺 can be found from the relation 𝐺𝐺 = 𝐻𝐻 − 𝑇𝑇𝑆𝑆. For the difference 

in free energy between supercooled water and crystallized water we have: 

 𝛥𝛥𝐺𝐺 = 𝛥𝛥𝐻𝐻𝑚𝑚𝛥𝛥𝑇𝑇
𝑇𝑇𝑚𝑚

+ � (𝐶𝐶𝑝𝑝
𝑐𝑐𝑐𝑐 − 𝐶𝐶𝑝𝑝

𝑚𝑚)𝑑𝑑𝑇𝑇 + 𝑇𝑇 � (𝐶𝐶𝑝𝑝
𝑐𝑐𝑐𝑐 − 𝐶𝐶𝑝𝑝

𝑚𝑚) 𝑑𝑑𝑇𝑇
𝑇𝑇

     
𝑇𝑇𝑚𝑚

𝑇𝑇

𝑇𝑇𝑚𝑚

𝑇𝑇
 (1.15) 
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Where 𝐶𝐶𝑝𝑝
𝑐𝑐𝑐𝑐 − 𝐶𝐶𝑝𝑝

𝑚𝑚  is the difference in specific heats of the crystalline and melted phase, 𝐻𝐻𝑚𝑚 

is the melting enthalpy of water, 𝑇𝑇𝑚𝑚 is the melting temperature of water, and Δ𝑇𝑇 = 𝑇𝑇𝑚𝑚 −

𝑇𝑇 . Figure 2.3 shows the specific heat of super cooled water as a function of temperature 

below.52  

Figure 2.3. Plots shown of theoretical values of 𝐶𝐶𝑝𝑝
𝑐𝑐𝑐𝑐 and 𝐶𝐶𝑝𝑝

𝑚𝑚 as the solid blue and dashed blue lines 

respectively.52 

2.3.2 Temperature dependent nucleation rate of pure water  

The rate at which nuclei are formed per unit time, 𝐽𝐽(𝑇𝑇 ), is defined bellow as a combination 

of the nuclei diffusion coefficient 𝐷𝐷 and the Zeldovich factor 𝑍𝑍.14,16,53,54 

 𝐴𝐴 = 𝜌𝜌𝑠𝑠𝐷𝐷∗𝑍𝑍 (1.6) 

 𝐷𝐷∗ =
𝑖𝑖∗𝑘𝑘𝐵𝐵𝑇𝑇
3𝜋𝜋𝑑𝑑0

3𝜂𝜂
 (1.7) 

  𝑍𝑍 = �Δ𝐺𝐺𝑁𝑁/𝑘𝑘𝐵𝐵𝑇𝑇
3𝜋𝜋𝑛𝑛∗

= 4𝑅𝑅∗
2𝛾𝛾𝑒𝑒

9𝑘𝑘𝐵𝐵𝑇𝑇𝑛𝑛∗
2 (1.8) 

Where 𝑖𝑖∗ is the number of molecules on the surface of a critical nuclei, 𝑛𝑛∗ is the 

number of molecules in a critical nucleus, 𝑅𝑅∗ is the radius of a critical nucleus, 𝜌𝜌𝑠𝑠 is the 

number density of nucleation sites, 𝛾𝛾𝑒𝑒 is the ice-water inter-facial surface energy, and 𝑑𝑑0 is 

the effective diameter of a water molecule. The work of formation of a critical nucleus of 
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crystal is 𝛥𝛥𝐺𝐺𝑁𝑁 , where 𝜌𝜌𝑠𝑠 is the density of supercooled water and Δ𝜇𝜇 =  ΔℎΔ𝑇𝑇/𝑇𝑇𝑚𝑚 is the 

chemical potential defined in terms of the specific melting enthalpy and melting temperature 

of water. 

 𝛥𝛥𝐺𝐺𝑁𝑁 =
16𝜋𝜋
3

𝛾𝛾𝑒𝑒
3

𝜌𝜌𝑠𝑠
2𝛥𝛥𝜇𝜇2 (1.2) 

Putting (1.2, 1.5-1.8) together yields the nucleation rate derived from CNT. 

  𝐽𝐽 = 𝜌𝜌𝑠𝑠𝐷𝐷∗𝑍𝑍 exp �
Δ𝐺𝐺𝑁𝑁
𝑘𝑘𝐵𝐵𝑇𝑇

� (1.90) 

2.3.3 Temperature dependent surface energy and viscosity of pure water 

The interfacial solid-liquid surface energy 𝛾𝛾𝑒𝑒 can be thought of as the excess energy stored 

in the interface between the two phases, characterizing the intermolecular forces between 

the liquid and the solid. In the case of water, temperature dependent ice-water interfacial 

surface energy values have been measured previously, showing a power law dependence on 

temperature.15 Figure 2.4 shows the values of the ice-water interfacial energy, derived from 

nucleation data. 

  𝜆𝜆𝑒𝑒 = 𝜆𝜆0 �
𝑇𝑇

235.8
�

𝑛𝑛
 (1.91) 

 

Figure 2.4. Comparison of the calculated ice–water interfacial energy with the literature.15                                      



     

48 
 

Several models have been proposed for an expression for the temperature dependent 

viscosity of supercooled water.55–58 The power law (2.92) fits the data gathered by Dehaoui 

et al. well at high temperatures but begins to diverge to infinity well before the glass 

transition temperature of water. This divergence will cause problems in the model as the 

nucleation rate and growth rate heavily depend on viscosity. Using viscosity data compiled 

in the supplemental information of Dehaoui et al. we noticed that ln((ln(𝜂𝜂)) displays 

asymptotic linearity as temperature decreases, thus a super-exponential fit (2.93) is 

appropriate. We propose a combined power law and super exponential functional form for 

the temperature dependent viscosity of water (2.94), giving a description much more 

accurately than the power law alone, while also eliminating the divergent behavior of the 

power law near 𝑇𝑇𝑠𝑠, see Figure 2.5. 

 𝜂𝜂(𝑇𝑇 ) = 𝜂𝜂0 �
𝑇𝑇
𝑇𝑇𝑠𝑠

− 1�
𝛾𝛾
 (2.92) 

 𝜂𝜂(𝑇𝑇 ) = exp(exp(−𝑃𝑃𝑇𝑇 + 𝑏𝑏)) (2.93) 

 𝜂𝜂(𝑇𝑇 ) =
1

1 + exp�𝜋𝜋(𝑇𝑇 − 𝑇𝑇0)�
�exp(exp(−𝑃𝑃𝑇𝑇 + 𝑏𝑏)) + 𝜂𝜂0 �

𝑇𝑇
𝑇𝑇𝑠𝑠

− 1�
𝛾𝛾
exp�𝜋𝜋(𝑇𝑇 − 𝑇𝑇0)�� (2.94) 

 

Figure 2.5. Temperature dependent viscosity 𝜂𝜂(𝑇𝑇 ) from the model and experimental data for (a) 

the power law model (2.91) vs super exponential model (2.92), and combined power law and super 

exponential fit (2.93). 
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2.3.4 Simulation results for water crystallization 

The functional forms of the crystal growth rate and the nucleation are taken from classical 

theory and discussed above. By using data from the literature we estimated the ice crystal 

growth rates and homogeneous nucleation rates for supercooled water from CNT, given in 

Figure 2.6, which agree quite well with measurements from the literature. Additionally, the 

model parameters used in calculating the nucleation and growth rates of ice are given in 

Table 2.1. 

Figure 2.6. The temperature dependent growth and nucleation rates from CNT given the properties 

above Table 2.1 below, as well as measurements made in the literature.28,59–64 
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Table 2.1. Table of parameter values used in the crystallization model for pure water. 

 

Figure 2.7 shows how the solution to equation (2.72) the PDE governing phase size 

distribution of ice crystals, behaves.  Specifically, Figure 2.7(a) depicts a hypothetical initial 

distribution of crystals at 135 K (the glass transition temperature, 𝑇𝑇𝑔𝑔) formed via 

homogeneous nucleation at a cooling rate of 106 K/s. Figure 2.7(b) depicts the evolution of 

PARAMETERS DESCRIPTION VALUE 

𝑇𝑇𝑚𝑚 melting temperature 273.15 K 

𝑇𝑇𝑔𝑔 glass transition temperature 135 K 

𝑇𝑇̇ cooling rate/warming rate varies 

Δ𝐻𝐻𝑚𝑚 melting enthalpy 6.01 kJ/mol 

𝑃𝑃0 mean interatomic distance 0.31 nm65 

𝜂𝜂0 power law viscosity fit parameter .13788 mPa-s 

𝑇𝑇𝑠𝑠 power law viscosity fit parameter 225.66 K 

𝛾𝛾 power law viscosity fit parameter 1.6437 

𝑃𝑃 
super exponential viscosity fit 

parameter 
.04121 K-1 

𝑏𝑏 
super exponential viscosity fit 

parameter 
10.82920 

𝜋𝜋 combined viscosity fit parameter 100 K-1 

𝑇𝑇0 combined viscosity fit parameter 257.66 K 

𝜌𝜌𝑖𝑖 number density of water molecules 3.35×1022 cm-3 

𝑖𝑖∗ 
Number of molecules on the surface 

of a critical nucleus 

20 

(Estimated from 𝑛𝑛∗) 

𝑛𝑛∗ 
Number of molecules in a critical 

nucleus 
10066 

𝑑𝑑0 Diameter of water molecule .27 nm67 

𝑅𝑅∗ Radius of critical nucleus 1.20 nm68 
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this size distribution as the system is rewarmed at a rate of 106 K/s at a temperature of 225 

K.  The dashed vertical line 𝑟𝑟 = 𝑈𝑈(𝑡𝑡) separates the portion of the phase size distribution 

due to nucleation and the portion due to the initial distribution present from cooling; both 

are simply calculable using equation (2.78).  Figure 2.8 expands on these results, showing 

how a small initial distribution of ice crystals in water grows with time as the temperature 

is increased from 𝑇𝑇𝑔𝑔 to 𝑇𝑇𝑚𝑚 (273 K) at different rates, as well as the results for the transformed 

fraction for each simulated condition.  

 

Figure 2.7. Solutions to the partial differential equation (2.78) for water given the temperature-

dependent nucleation rate 𝐽𝐽(𝑇𝑇 ) (1.9) and crystal growth rate 𝑢𝑢(𝑇𝑇 ) (1.16) predicted from CNT. (a) 

An initial crystal distribution resulting from cooling at 106 K/s from 273 to 135 K without an initial 

distribution. (b) The evolution of 𝜌𝜌(𝑟𝑟, 𝑡𝑡) from (a) when warmed at 106 K/s at the instant of T = 225 

K. 

Some characteristics of the curves in Figure 2.8 are worth discussing. We observe 

that the peak value of 𝜌𝜌(𝑟𝑟, 𝑡𝑡) does not change with time, but only shifts in position. This is 

a consequence of the definition of 𝜌𝜌(𝑟𝑟, 𝑡𝑡), the assumption of uniform temperature throughout 

the volume, and radially independent growth. This means that all the spherulites throughout 

the domain grow at the same rate, irrespective of size and position. Thus, the number of 

spherulites with radii in the interval [𝑟𝑟1, 𝑟𝑟1 + 𝑢𝑢(𝑡𝑡)] is constant, and the maximum value of 
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𝜌𝜌(𝑟𝑟, 𝑡𝑡) is constant in Figure 2.8. Additionally, the growth rate changes exponentially with 

time, and it is convenient to show 𝜌𝜌(𝑟𝑟, 𝑡𝑡) over a large window of radii. It is this log-scale 

representation of crystal radius in Figure 2.8 that appears to shrink the width of 𝜌𝜌(𝑟𝑟, 𝑡𝑡) as 

time progresses.  

 

Figure 2.8. Solutions to the partial differential equation (2.78) and the GNA equation (2.33) for 

water and an initial crystal distribution formed from cooling 106 K/s from 273 to 135 K. Starting 

with the initial crystal distribution, the system was warmed from 135 to 273 K at (a) 107 K/s, (b) 

106 K/s, and (c) 105 K/s. (d) The resulting fraction crystallized as a function of temperature during 

warming for each of the three cases. 
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To demonstrate the importance of applying the non-isothermal approach, we also 

compare to predictions applying the Avrami equation for the transformed fraction at 

different cooling rates, seen in Figure 2.9(a). The Avrami solution in Figure 2.9 was obtained 

by directly inserting 𝑢𝑢(𝑡𝑡) and 𝐽𝐽(𝑡𝑡) into equations (2.11) and (2.16) for water being cooled 

from 273K to 135K at various cooling rates, with the temperature history 𝑇𝑇 (𝑡𝑡) determining 

𝑢𝑢(𝑡𝑡) and 𝐽𝐽(𝑡𝑡). Examining the temperature difference in Figure 2.9(b) between the Avrami 

and full solution at ice fractions of 𝑓𝑓 = 0.5, we notice that the temperature difference 

increases exponentially with cooling rate, with the two solutions becoming identical as 

cooling rate approaches zero. Not only does this demonstrate that the non-isothermal theory 

recovers the isothermal result, but also that it is particularly important for studying systems 

that undergo crystallization while experiencing rapid changes in temperature, such as 

cryobiological systems, rapid quenching in materials synthesis, and rapid calorimetry.69,70 

 

Figure 2.9. (a) The transformed fraction predicted using the full, non-isothermal solution and the 

Avrami solution for a cooling rate of 5.5 × 104 K/s. (b) Temperature difference at a crystal fraction 

of 0.5 between the Avrami equation applied to nonisothermal systems and the full solution to the 

differential equation for water being cooled from 273 to 135 K at 1–105 K/s. 

Figure 2.10 displays the model results for ice fraction as a function of cooling rate 

considering homogeneous nucleation (zero transformed fraction at 𝑇𝑇𝑚𝑚). Denoted in the 
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Figure 2.10 is the experimentally inferred critical cooling rate of water from capillary tube 

x-ray diffraction (diamond) and capillary tube optical detection (denoted range). Since XRD 

is sensitive to crystal fractions of approximately one part in one hundred, the XRD 

experiments of liquid nitrogen quenched glycerol dilutions suggest that cooling rates of 

approximately 320,000 K/s in pure water correspond to a crystal fraction of 𝑓𝑓 =  .01.69 This 

is almost exactly the model result. Similarly, with optical detection, quartz capillary 

quenching measurements place the critical cooling rate of water between 100,000-1,000,000 

K/s.70 Additionally, the non-isothermal theory predicts that the critical warming rate 

necessary to achieve apparent vitrification, i.e., 𝑓𝑓 = .01, is approximately 100 million K/s. 

 

Figure 2.10. Transformed (ice) fraction as a function of cooling rate, predicted from the non-

isothermal theory, by cooling from the melting temperature to the glass transition temperature of 135 

K of supercooled water. Experimentally inferred vitrification cooling rates are noted near 𝑓𝑓 = .01. 

In developing the theory throughout this chapter, we have specifically assumed 

uniform, though time-varying, temperature in the domain of interest. Problems may arise 

when applications are made to systems with appreciable spatial gradients in temperature. If 
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these gradients are sufficiently small, such that the temperature across the largest phase 

inclusion in 𝜌𝜌(𝑟𝑟, 𝑡𝑡) can be considered constant, then the domain may be partitioned into 

separate regions that do not interact with each other in terms of nucleation and growth, 

with traditional heat transfer equations (including latent heat release) used to monitor 

spatial and temporal temperature evolution. If, however, there are thermal gradients on or 

below the size scale of the largest inclusions of phase, other methods will be needed to resolve 

the phase change in these regions. 

2.4 Critical Cooling Rates and Critical Warming Rates 

Let us now consider the critical cooling rate (or critical warming rate) in light of the GNA 

equation (2.33). Let us now define  𝐾𝐾(𝑡𝑡) = −ln�1 − 𝑓𝑓(𝑡𝑡)�, then by integrating 2.33 four 

times with respect to time we get 

 𝐾𝐾(𝑡𝑡) = 8𝜋𝜋 � 𝑢𝑢(𝑡𝑡1)
𝑒𝑒

0

� 𝑢𝑢(𝑡𝑡2)
𝑒𝑒1

0

� 𝑢𝑢(𝑡𝑡3)
𝑒𝑒2

0

� 𝐽𝐽(𝑡𝑡4)𝑑𝑑𝑡𝑡4𝑑𝑑𝑡𝑡3𝑑𝑑𝑡𝑡2𝑑𝑑𝑡𝑡1

𝑒𝑒3

0

 (2.95) 

We can also consider the case where the temperature decreases at a constant rate 𝑇𝑇̇ between 

the melting point 𝑇𝑇𝑚𝑚 and the glass transition 𝑇𝑇𝑔𝑔. By the chain rule, we have 

 𝑇𝑇 (𝑡𝑡) = 𝑇𝑇𝑚𝑚 − 𝑇𝑇̇𝑡𝑡 ⟹
𝑑𝑑
𝑑𝑑𝑡𝑡

=
𝑑𝑑

𝑑𝑑𝑇𝑇
𝑑𝑑𝑇𝑇
𝑑𝑑𝑡𝑡

= −𝑇𝑇̇ 𝑑𝑑
𝑑𝑑𝑇𝑇

 (2.96) 

Thus, equation (2.33) becomes 

 𝐽𝐽(𝑇𝑇 ) = 𝑇𝑇̇4

8𝜋𝜋
𝑑𝑑

𝑑𝑑𝑇𝑇
⎣
⎢⎡

1
𝑢𝑢(𝑇𝑇 )

𝑑𝑑
𝑑𝑑𝑇𝑇

� 1
𝑢𝑢(𝑇𝑇 )

𝑑𝑑
𝑑𝑑𝑇𝑇

� 1
𝑢𝑢(𝑇𝑇 )

𝑑𝑑𝑓𝑓(𝑇𝑇 )
𝑑𝑑𝑇𝑇

1
𝑓𝑓(𝑇𝑇 ) − 1

��
⎦
⎥⎤  (2.97) 

Integrating equation (2.97) gives us 𝐾𝐾�𝑇𝑇 , 𝑇𝑇 ̇�, a function of both temperature and cooling 

rate 

 𝐾𝐾(𝑇𝑇 , 𝑇𝑇 ̇) = 8𝜋𝜋
𝑇𝑇̇4 � 𝑢𝑢(𝑇𝑇1)

𝑇𝑇

𝑇𝑇𝑚𝑚

� 𝑢𝑢(𝑇𝑇2)
𝑇𝑇1

𝑇𝑇𝑚𝑚

� 𝑢𝑢(𝑇𝑇3)
𝑇𝑇2

𝑇𝑇𝑚𝑚

� 𝐽𝐽(𝑇𝑇4)𝑑𝑑𝑇𝑇4𝑑𝑑𝑇𝑇3𝑑𝑑𝑇𝑇2𝑑𝑑𝑇𝑇1

𝑇𝑇3

𝑇𝑇𝑚𝑚

 (2.98) 

We can now express the transformed fraction as a function of temperature and cooling rate 
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 𝑓𝑓�𝑇𝑇 , 𝑇𝑇 ̇� = 1 − exp (−𝐾𝐾�𝑇𝑇 , 𝑇𝑇 ̇�) (2.99) 

Now suppose we consider the transformed fraction of the substance at the glass transition 

temperature, its final transformed fraction as crystallization ceases at 𝑇𝑇𝑔𝑔. Then we now only 

have the transformed faction as a function of cooling rate. 

 𝑓𝑓�𝑇𝑇 ̇� = 1 − exp�−
𝐴𝐴
𝑇𝑇̇4� (2.100) 

 
𝐴𝐴 = 8𝜋𝜋 � 𝑢𝑢(𝑇𝑇1)

𝑇𝑇𝑔𝑔

𝑇𝑇𝑚𝑚

� 𝑢𝑢(𝑇𝑇2)
𝑇𝑇1

𝑇𝑇𝑚𝑚

� 𝑢𝑢(𝑇𝑇3)
𝑇𝑇2

𝑇𝑇𝑚𝑚

� 𝐽𝐽(𝑇𝑇4)𝑑𝑑𝑇𝑇4𝑑𝑑𝑇𝑇3𝑑𝑑𝑇𝑇2𝑑𝑑𝑇𝑇1

𝑇𝑇3

𝑇𝑇𝑚𝑚

 (2.101) 

Thus, for some critical fraction 𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐 which we consider to be the threshold of the critical 

cooling rate, we have the critical cooling rate 𝑇𝑇�̇�𝑐𝑐𝑐𝑐𝑐 as 

 
𝑇𝑇�̇�𝑐𝑐𝑐𝑐𝑐 = � −8𝜋𝜋𝐴𝐴

ln(1 − 𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐)
�

1
4
 

(2.102) 

For crystallization where the crystals are not spherical, we look to equation (2.65). Thus, 

for a crystal of dimensionality 𝐷𝐷 + 1 = 𝑛𝑛 (Avrami parameter), we have 

 𝑓𝑓�𝑇𝑇 ̇� = 1 − exp �−
𝐴𝐴
𝑇𝑇̇𝑛𝑛� (2.103) 

 
𝑇𝑇�̇�𝑐𝑐𝑐𝑐𝑐 = � −8𝜋𝜋𝐴𝐴

ln(1 − 𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐)
�

1
𝑛𝑛

 
(2.104) 

For these cases, 𝐴𝐴 is not easily determined through the methods shown thus far. We will 

expand on the origins and meaning of the Avrami parameters and their relationship to the 

nucleation rate, growth rate, and fractal dimension of growth in the next chapter. 

2.5 Conclusion 

We developed a theory that clearly established the relationship between the transformed 

fraction, phase size distribution, nucleation rate, and growth rate for arbitrary temperature–

time history and arbitrary initial phase size distribution. This theory can be contrasted with 

the isothermal Avrami equation; at infinitesimal cooling rates, the two approaches converge 

in predictions, and at increasing cooling rates, the Avrami equation predictions for the 

transformed fraction increasingly deviate from the non-isothermal theory prediction. We 
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demonstrate the applicability of the non-isothermal theory by comparing predictions for the 

critical cooling rate of water to measurements, yielding strong agreement between the two. 

We argue for future implementation of this approach in predicting not only phase size 

distributions and transformed fractions in non-isothermal systems, but also to infer 

nucleation rates and growth rates from phase size distribution and transformed fraction 

measurements. 

 

 

ADAPTED FROM  

Kangas, J., Bischof, J. C. & Hogan, C. J. Kinetics of nonisothermal phase change with 

arbitrary temperature-time history and initial transformed phase distributions. J. Chem. 

Phys. 155, (2021) 

 

AKNOWLEDGMENTS   

This work was supported by the National Science Foundation, Grant No. 1941543, NSF 

Engineering Research Center for Advanced Technologies for Preservation of Biological 

Systems (ATP-Bio).



     

58 
 

 

 

 

 

Chapter 3  

Unraveling Avrami—Extracting Nucleation and 

Growth Rates from Calorimetry Curves  

 

3.1 Introduction 

The Avrami equation is a simple relationship describing the time evolution of the fraction 

of transformed phase in a system undergoing phase change, i.e., nucleation and growth of a 

new phase in a pre-existing phase.45–47 It finds application in a diversity of fields, including, 

but not limited to, metallurgy71–74, polymer science75,76, food science, pharmacology77, and 

cryobiology78,79. It is perhaps of greatest utility in analyzing differential scanning calorimetry 

(DSC) measurements; such measurements enable inversion of transformed phase fraction 

versus time. A common data interpretation approach in DSC is to fit the parameters 𝑘𝑘 and 

𝑛𝑛 in the modified Avrami equation, which is given as: 

 𝑓𝑓(𝑡𝑡) = 1 − exp(−𝑘𝑘𝑡𝑡𝑛𝑛) (3.1) 
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Where 𝑓𝑓(𝑡𝑡) is the fraction of transformed phase. The traditional Avrami equation, derived 

for constant spherically symmetric growth under isothermal conditions, yields exactly 𝑛𝑛 = 4 

and 𝑘𝑘 = π𝑢𝑢3𝐽𝐽/3, where 𝑢𝑢 is the growth velocity and 𝐽𝐽  is the nucleation rate. However, a 

variety of measurements in both pure substances and mixtures yield non-integer values of 𝑛𝑛 

and therefore also distinct values of 𝑘𝑘, as it must correspondingly change in dimension.80,81 

Prior studies have identified that the non-integer time-exponents (𝑛𝑛 values) are linked to 

the shape of the growing inclusions of transformed phase, i.e. the growing nuclei.82,83 In this 

chapter, we show that by considering newly formed nuclei as growing fractals with an 

arbitrary shape and dimensionality, we can use this unique growth velocity in the population 

balance equation to recover the Avrami equation, and thus explain 𝑘𝑘 and 𝑛𝑛 for arbitrary 

values. 

 DSC, an important tool in analyzing phase change processes, measures the associated 

heat release during a prescribed temperature-time trajectory imposed on a system. In DSC, 

a small sample is placed in a pan of known mass, which is placed in the DSC device. The 

pan is then altered in temperature according to predefined specifications. Through a series 

of temperature measurement devices connected to the pan, along with an empty pan of 

known mass, the heat released from the sample can be calculated. This allows for 

measurements of specific heat as a function of temperature. Additionally, it provides a heat 

release curve that can be analyzed and converted to the transformed fraction. This also 

requires knowledge of the enthalpy of fusion of the sample material, though this is also easily 

measurable on DSC. We will show later on in this chapter how DSC can be utilized to 

extract the dimensionality (or fractal dimension) of growing phase, and the associated 

changes in the nucleation and growth rate accompanying a change in temperature. 

3.2 Avrami Exponents in Terms of Fundamental Parameters 

The three key fundamental parameters characterizing many phase change processes are the 

nucleation rate 𝐽𝐽 , growth rate 𝑢𝑢, and dimensionality 𝐷𝐷 of the newly formed phase. These 

define the rate of formation of new phase nuclei, their growth rate, and growth geometry, 
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respectively. Under idealized circumstances, when the growing nuclei geometry is easily 

expressible, such as a sphere, rod, or disk, the Avrami parameters 𝑘𝑘 and 𝑛𝑛 have been derived 

from first principles, and for constant nucleation and growth rates, the parameter 𝑛𝑛, is 𝐷𝐷 +

1. However, aside from these idealized cases, such as in most applications, the growing nuclei 

geometries are complex and thus 𝑘𝑘 remains ill-defined. In application, 𝑘𝑘 and 𝑛𝑛 are calculated 

by curve fitting, typically of calorimetry curves, and thus are easily extractable from 

experiments when appropriate. However, the Avrami equation has also been shown to fail 

under a variety of circumstances, but the extent to which it is applicable and under what 

conditions it breaks down remains unclear. This can likely be attributed to the lack of theory 

underpinning its usage aside from the noted idealized circumstances. Throughout this 

chapter we will demonstrate under what conditions equation (3.1) is valid and how 𝑘𝑘 and 𝑛𝑛 

are related to the fundamental parameters 𝐽𝐽 , 𝑢𝑢, and 𝐷𝐷. For the duration of this chapter, we 

will consider crystallization, but the discussed theory holds equally true for many other 

phase change processes involving nucleation and growth. 

In this chapter, we treat the growth of complex geometries, in fact arbitrarily 

complex geometries, as spheres of equal volume. In this fashion, the growth rate of the true 

geometry has a corresponding spherical growth rate, which is radially dependent, that is, it 

changes with the radius of the sphere. The method outlined in Kangas et al. (2021) for 

deriving the set of equations used in this paper stems from probabilistic treatments of 

transformed spaces lying inside a larger untransformed space. Geometry of the growing 

transformed spaces plays no part in the derivation and the only required assumption is that 

the spaces form uniformly within the greater transformed space. 

3.2.1 Radial dependence and equivalent volume 

In this section we examine various crystal geometries and their effect on the growth rate 𝑢𝑢 

discussed in the previous chapters. 
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Rods (𝑛𝑛 = 2) 

For simple geometries some solutions for 𝑛𝑛 and 𝑘𝑘 in terms of the fundamental parameters 

are known. Let us consider the case of where the growing solid is a rod of radius 𝑟𝑟𝑐𝑐𝑡𝑡𝑑𝑑 and 

length 𝐿𝐿 growing at rate 𝑣𝑣0. Instead of treating the rod as a rod, let us treat it as a sphere 

with an equivalent volume to the growing rod, meaning the effective spherical volume will 

grow at a rate 𝑢𝑢 dependent on the radius and not at a constant rate like the rod does. The 

growth rate 𝑢𝑢 is dependent on the radius 𝑟𝑟𝑠𝑠 in the following fashion: 

 𝑢𝑢 =
𝑣𝑣

𝑟𝑟𝑠𝑠
𝑚𝑚 (3.2) 

Where 𝑣𝑣 is some velocity scaling constant that is a function of the shape of the crystal, and 

𝑚𝑚 is related to the fractal dimension of the growing crystal. The origins of this functional 

form will be explained later in this section. Let us now compare the volumes of the equivalent 

sphere of radius 𝑟𝑟𝑠𝑠 and the rod of length 𝐿𝐿.  

 𝑉𝑉𝑐𝑐𝑡𝑡𝑑𝑑 = 𝜋𝜋𝑟𝑟𝑐𝑐𝑡𝑡𝑑𝑑
2 𝐿𝐿 (3.3) 

 𝑉𝑉𝑠𝑠𝑝𝑝ℎ𝑒𝑒𝑐𝑐𝑒𝑒 =
4𝜋𝜋
3

𝑟𝑟𝑠𝑠
3 (3.4) 

 

Setting 𝑉𝑉𝑐𝑐𝑡𝑡𝑑𝑑 = 𝑉𝑉𝑠𝑠𝑝𝑝ℎ𝑒𝑒𝑐𝑐𝑒𝑒 we have 

 

 𝜋𝜋𝑟𝑟𝑐𝑐𝑡𝑡𝑑𝑑
2 𝐿𝐿 =

4𝜋𝜋
3

𝑟𝑟𝑠𝑠
3 (3.5) 

 𝐿𝐿 =
4𝑟𝑟𝑠𝑠

3

3𝑟𝑟𝑐𝑐𝑡𝑡𝑑𝑑
2  (3.6) 

 𝑑𝑑𝐿𝐿
𝑑𝑑𝑡𝑡

=
4𝑟𝑟𝑠𝑠

2

𝑟𝑟𝑐𝑐𝑡𝑡𝑑𝑑
2

𝑑𝑑𝑟𝑟𝑠𝑠
𝑑𝑑𝑡𝑡

 (3.7) 

 𝑣𝑣0 =
4𝑟𝑟𝑠𝑠

2

𝑟𝑟𝑐𝑐𝑡𝑡𝑑𝑑
2 𝑢𝑢(𝑟𝑟𝑠𝑠) (3.8) 

Here we see that the growth rate of the sphere of equivalent volume can be written in the 

form 
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 𝑢𝑢(𝑟𝑟) = 𝑣𝑣
𝑟𝑟𝑚𝑚 (3.9) 

Thus, we can express the denominator 𝑣𝑣 in terms of the other geometrical properties 

 𝑢𝑢(𝑟𝑟𝑠𝑠) =
𝑣𝑣0𝑟𝑟𝑐𝑐𝑡𝑡𝑑𝑑

2 /4
𝑟𝑟𝑠𝑠

2  
 (3.10) 

 𝑣𝑣 =
𝑣𝑣0𝑟𝑟𝑐𝑐𝑡𝑡𝑑𝑑

2

4
 (3.11) 

 𝑚𝑚 = 2 (3.12) 

Discs (𝑛𝑛 = 3)  

We now examine a disc of growing radius 𝑟𝑟𝑑𝑑𝑖𝑖𝑠𝑠𝑐𝑐 and thickness ℎ 

 𝑉𝑉𝑑𝑑𝑖𝑖𝑠𝑠𝑐𝑐 = 𝜋𝜋ℎ𝑟𝑟𝑑𝑑𝑖𝑖𝑠𝑠𝑐𝑐
2  (3.13) 

 𝜋𝜋ℎ𝑟𝑟𝑑𝑑𝑖𝑖𝑠𝑠𝑐𝑐
2 =

4𝜋𝜋
3

𝑟𝑟𝑠𝑠
3 (3.14) 

 𝑟𝑟𝑑𝑑𝑖𝑖𝑠𝑠𝑐𝑐 = � 4
3ℎ

𝑟𝑟𝑠𝑠
3 (3.15) 

 𝑑𝑑𝑟𝑟𝑑𝑑𝑖𝑖𝑠𝑠𝑐𝑐
𝑑𝑑𝑡𝑡

= 𝑑𝑑𝑟𝑟𝑠𝑠
𝑑𝑑𝑡𝑡

�3
ℎ

𝑟𝑟𝑠𝑠 (3.16) 

 𝑢𝑢(𝑟𝑟𝑆𝑆) =
𝑣𝑣0�3

ℎ

𝑟𝑟𝑠𝑠

1
2

 (3.17) 

 𝑣𝑣 = 𝑣𝑣0�
3
ℎ
 (3.18) 

 𝑚𝑚 =
1
2
 (3.19) 

 

Spheres (𝑛𝑛 =  4) 

A growing sphere is a trivial case that is worth mentioning. Since the effective spherical 

volume of a sphere is identical to the volume of the sphere itself, then there is no radial 

dependence of the growth of the effective sphere, thus 

 𝑢𝑢 = 𝑣𝑣 (3.20) 

 𝑚𝑚 = 0 (3.21) 
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Arbitrary Geometry 

We consider a crystal with an arbitrary geometry which grows at a constant velocity 𝑣𝑣0. 

Then the volume 𝑉𝑉  of this crystal with length scale 𝐿𝐿, dimensionality 𝐷𝐷, and scaling term 

𝐴𝐴 is 

 𝑉𝑉 = 𝐴𝐴𝐿𝐿𝐷𝐷 (3.22) 

Comparing this to the effective spherical volume of radius 𝑟𝑟 we get 

 4
3

𝜋𝜋𝑟𝑟3 = 𝐴𝐴𝐿𝐿𝐷𝐷 (3.23) 

Isolating 𝐿𝐿 yields 

 𝐿𝐿 = �3𝐴𝐴𝑟𝑟3

4𝜋𝜋
𝐷𝐷  (3.24) 

We can introduce the volume scaling factor 𝛼𝛼 to relate the velocity of the sphere 𝑢𝑢(𝑟𝑟) to the 

velocity of the crystal 𝑣𝑣0: 

 𝛼𝛼 = 3
𝐷𝐷

�4𝜋𝜋
3𝐴𝐴

�
1
𝐷𝐷

 (3.25) 

 𝑑𝑑𝐿𝐿
𝑑𝑑𝑡𝑡 = 𝛼𝛼𝑟𝑟

3
𝐷𝐷−1 𝑑𝑑𝑟𝑟

𝑑𝑑𝑡𝑡 
(3.26) 

 𝑑𝑑𝑟𝑟
𝑑𝑑𝑡𝑡 = 𝑢𝑢,   

𝑑𝑑𝐿𝐿
𝑑𝑑𝑡𝑡 = 𝑣𝑣0,   𝑣𝑣 =

𝑣𝑣0
𝛼𝛼  (3.27) 

 𝑢𝑢(𝑟𝑟) =
𝑣𝑣

𝑟𝑟
3
𝐷𝐷−1

 (3.28) 

We now see that for an arbitrary geometry with area scaling term 𝐴𝐴, characteristic length 

𝐿𝐿 growing at constant velocity 𝑣𝑣0, and fractal dimension 𝐷𝐷, we recover 

 𝑣𝑣 =
𝑣𝑣0

3
𝐷𝐷 �4𝜋𝜋

3𝐴𝐴�
1
𝐷𝐷
 

(3.29) 

 𝑚𝑚 =
3
𝐷𝐷

− 1 (3.30) 

The relationship between dimensionality 𝐷𝐷, Avrami parameter 𝑛𝑛, and our model parameter 

𝑚𝑚 is summarized in Table 3.1 below. The question now arises on how we define 𝑣𝑣 since its 
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dimensionality is not 𝑚𝑚/𝑠𝑠. Suppose we have disc growth so 𝑛𝑛 = 3, and thus 𝑚𝑚 = 0.5. Then 

we have 𝑢𝑢(𝑟𝑟) = 𝑣𝑣√
𝑐𝑐 ≡ 𝑚𝑚𝑠𝑠−1. Thus [𝑣𝑣] ≡  𝑚𝑚3/2𝑠𝑠−1.  

Table 3.1. Equivalent values for the fractal dimension of the growing solid 𝐷𝐷, the radial growth 

parameter m, and the Avrami parameter n. 

𝑫𝑫 𝒎𝒎 𝒏𝒏 

3 (sphere-like growth) 0 4 

2 (disc-like growth) .5 3 

1 (rod-like growth) 2 2 

 

3.2 Linking the crystal nucleation and growth rates to the Avrami parameters 

To establish a link between 𝑘𝑘 and 𝑛𝑛, we first need to introduce the phase size distribution 

𝜌𝜌(𝑟𝑟, 𝑡𝑡), the number density function per unit radius for the distribution of spherically 

equivalent crystals of radius 𝑟𝑟. Recall that given 𝜌𝜌(𝑟𝑟, 𝑡𝑡), the number of crystals 𝑁𝑁  per unit 

volume that have radii between 𝑟𝑟1 and 𝑟𝑟2 is: 

 𝑁𝑁 = � 𝜌𝜌(𝑟𝑟, 𝑡𝑡)𝑑𝑑𝑟𝑟
𝑐𝑐2

𝑐𝑐1

 (2.71) 

The governing equations for the time evolution of 𝜌𝜌(𝑟𝑟, 𝑡𝑡) given an initial distribution 𝑅𝑅0(𝑟𝑟), 

nucleation rate 𝐽𝐽(𝑡𝑡), and growth rate 𝑢𝑢(𝑡𝑡)are: 

 𝜕𝜕𝜌𝜌(𝑟𝑟, 𝑡𝑡)
𝜕𝜕𝑡𝑡 +

𝜕𝜕
𝜕𝜕𝑟𝑟 �𝑢𝑢

(𝑟𝑟, 𝑡𝑡)𝜌𝜌(𝑟𝑟, 𝑡𝑡)� = 0 (2.72) 

 𝜌𝜌(𝑟𝑟, 0) = 𝑅𝑅0(𝑟𝑟) (2.73) 

 𝜌𝜌(0, 𝑡𝑡) =
𝐽𝐽(𝑡𝑡)

𝑢𝑢(0, 𝑡𝑡)
 (2.76) 

We will now examine the change in 𝜌𝜌(𝑟𝑟, 𝑡𝑡) when the growth velocity has no time-

dependence (under isothermal conditions) and there is no initial distribution of transformed 

phase 𝑅𝑅0(𝑟𝑟) = 0.  In chapter 2, we presented a general solution to equation (3.32), which in 

this isothermal instance, is expressed bellow.59 
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 𝜌𝜌(𝑟𝑟, 𝑡𝑡) =
𝐽𝐽𝜃𝜃�𝑡𝑡 − 𝜋𝜋(𝑟𝑟)�

𝑢𝑢(𝑟𝑟)
 (3.31) 

Where 𝜃𝜃 is the Heaviside step function and 𝜋𝜋 is: 

 𝜋𝜋(𝑟𝑟) = �
𝑑𝑑𝑟𝑟

𝑢𝑢(𝑟𝑟)
 (3.32) 

Linking transformed fraction to 𝜌𝜌(𝑟𝑟, 𝑡𝑡) while accounting for overlap in transformed phase 

yields the equation: 

 − ln�1 − 𝑓𝑓(𝑡𝑡)� = �
4𝜋𝜋𝑟𝑟3

3
𝜌𝜌(𝑟𝑟, 𝑡𝑡)𝑑𝑑𝑟𝑟

∞

0
 (2.81) 

We then equate right hand sides of equations (2.81) and (3.1) with (3.31) to show the link 

between 𝑛𝑛 and 𝑘𝑘 and the fundamental values of 𝑢𝑢, 𝐽𝐽 , and 𝑚𝑚, defining nucleation and growth: 

 𝑘𝑘𝑡𝑡𝑛𝑛 = �
4𝜋𝜋𝐽𝐽𝑟𝑟3+𝑚𝑚

3𝑣𝑣
𝜃𝜃 �𝑡𝑡 −

𝑟𝑟𝑚𝑚+1

(𝑚𝑚 + 1)𝑣𝑣
� 𝑑𝑑𝑟𝑟

∞

0
 (3.33) 

For isothermal conditions, we have 𝑢𝑢(𝑟𝑟) described by equation (3.2). Since temperature is 

constant, we will refer to 𝑣𝑣(𝑇𝑇 ) and 𝑚𝑚(𝑇𝑇) as simply 𝑣𝑣 and 𝑚𝑚. By applying the following 

substitutions 𝑧𝑧 = 𝑐𝑐𝑚𝑚+1

(𝑚𝑚+1)𝑣𝑣 and 𝑑𝑑𝑧𝑧 = 𝑑𝑑𝑟𝑟 𝑐𝑐𝑚𝑚

𝑣𝑣  we arrive at: 

 𝑘𝑘𝑡𝑡𝑛𝑛 =
4𝜋𝜋
3

𝐽𝐽�(𝑚𝑚 + 1)𝑣𝑣�
3

𝑚𝑚+1 � 𝑧𝑧
3

𝑚𝑚+1𝜃𝜃(𝑡𝑡 − 𝑧𝑧)𝑑𝑑𝑧𝑧
∞

0
 (3.34) 

  𝑘𝑘𝑡𝑡𝑛𝑛 =
4π(1 + 𝑚𝑚)
3(4 + 𝑚𝑚)

𝐽𝐽�(𝑚𝑚 + 1)𝑣𝑣�
3

𝑚𝑚+1𝑡𝑡
4+𝑚𝑚
1+𝑚𝑚 (3.35) 

This solution can conveniently be separated into two parts; there is a constant portion 

corresponding to 𝑘𝑘 and time exponential portion corresponding to 𝑡𝑡𝑛𝑛. This yields: 

 𝑘𝑘 =
4𝜋𝜋(1 + 𝑚𝑚)
3(4 + 𝑚𝑚)

𝐽𝐽�(𝑚𝑚 + 1)𝑣𝑣�
3

𝑚𝑚+1 =
4𝜋𝜋𝐽𝐽
3𝑛𝑛

�
3𝑣𝑣

𝑛𝑛 − 1
�

𝑛𝑛−1
  (3.36) 

 𝑡𝑡𝑛𝑛 = 𝑡𝑡
4+𝑚𝑚
1+𝑚𝑚 (3.37) 

   𝑛𝑛 =
4 + 𝑚𝑚
1 + 𝑚𝑚

= 𝐷𝐷 + 1 (3.38) 

Equations (3.36) and (3.37) demonstrate a clear link between the time-exponent in the 

modified Avrami equation and the radial-dependent growth exponent.  
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3.3 Solid-Phase Growth and Nucleation Rates from Calorimetry Curves 

3.3.1 Extracting the Avrami parameters from DSC curves 

Extracting the Avrami parameters from a calorimetric curve is a well-established 

experimental method.84 The transformed fraction 𝑓𝑓(𝑡𝑡) can be found by integrating the 

baseline corrected heat flow per unit mass 𝑞𝑞(𝑡𝑡) between the onset and offset times of 

solidification (𝑡𝑡𝑡𝑡𝑛𝑛 and 𝑡𝑡𝑡𝑡𝑜𝑜𝑜𝑜  respectively) and dividing by the enthalpy of fusion Δ𝐻𝐻𝑜𝑜𝑢𝑢𝑠𝑠
° . 

 𝑓𝑓(𝑡𝑡) =
1

Δ𝐻𝐻𝑜𝑜𝑢𝑢𝑠𝑠
° � 𝑞𝑞(𝑡𝑡)𝑑𝑑𝑡𝑡

𝑒𝑒≤𝑒𝑒𝑜𝑜𝑜𝑜𝑜𝑜

𝑒𝑒𝑜𝑜𝑜𝑜

 (3.39) 

 

 

From equation (3.1) we can see that 

 ln(− ln�1 − 𝑓𝑓(𝑡𝑡)�) = ln(𝑘𝑘) + 𝑛𝑛 ln(𝑡𝑡) (3.40) 

To find 𝑛𝑛 and 𝑘𝑘,  ln(− ln�1 − 𝑓𝑓(𝑡𝑡)�) is plotted against 𝑙𝑙𝑛𝑛(𝑡𝑡). The slope of this line is 𝑛𝑛, while 

ln(𝑘𝑘) is the ln(𝑡𝑡)-intercept.   

3.3.2 Calculating the change in nucleation and growth rates via a step-change in temperature 

We consider a system in the liquid state that is rapidly brought to a temperature 𝑇𝑇1, below 

its melting point, and thus begins to crystallize. Then, after a certain amount of time 𝑡𝑡 =  𝑠𝑠 

passes, the system is rapidly brought to a second temperature 𝑇𝑇2, also below the melting 

point. We assume the temperature transitions are fast compared to the rate of 

crystallization, and thus crystallization during the temperature jumps can be ignored. The 

phase change kinetics of this system are outlined below. Given the PDE (2.72), we can 

rearrange the equation as follows: 

 𝜌𝜌𝑒𝑒 + 𝑢𝑢𝜌𝜌𝑐𝑐 = −𝑢𝑢𝑐𝑐𝜌𝜌 (3.41) 

 𝑢𝑢(𝑟𝑟, 𝑡𝑡) =
𝑣𝑣(𝑡𝑡)
𝑟𝑟𝑚𝑚  (3.42) 
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 𝜌𝜌𝑒𝑒 +
𝑣𝑣(𝑡𝑡)
𝑟𝑟𝑚𝑚 𝜌𝜌𝑐𝑐 = 𝑚𝑚

𝑣𝑣(𝑡𝑡)
𝑟𝑟𝑚𝑚+1 𝜌𝜌 (3.43) 

We notice the following series of differentials are equal to one another. 

 𝑑𝑑𝑡𝑡
1

=
𝑟𝑟𝑚𝑚𝑑𝑑𝑟𝑟
𝑣𝑣(𝑡𝑡)

=
𝑟𝑟𝑚𝑚+1𝑑𝑑𝜌𝜌
𝑚𝑚𝑣𝑣(𝑡𝑡)𝜌𝜌

 (3.44) 

The first characteristic gives us 

 𝑣𝑣(𝑡𝑡)𝑑𝑑𝑡𝑡 = 𝑟𝑟𝑚𝑚𝑑𝑑𝑟𝑟 (3.45) 

 𝐴𝐴 =
𝑟𝑟𝑚𝑚+1

𝑚𝑚 + 1
− 𝑉𝑉 (𝑡𝑡) (3.46) 

Where 𝑉𝑉 (𝑡𝑡) is the antiderivative of 𝑣𝑣 with respect to time. 

The second characteristic gives us 

 𝑚𝑚
𝑑𝑑𝑟𝑟
𝑟𝑟

=
𝑑𝑑𝜌𝜌
𝜌𝜌

 (3.47) 

 𝜌𝜌 = 𝐵𝐵𝑟𝑟 = 𝑓𝑓(𝐴𝐴)𝑟𝑟 (3.48) 

Thus, 𝜌𝜌(𝑟𝑟, 𝑡𝑡) has the form 

 𝜌𝜌(𝑟𝑟, 𝑡𝑡) = 𝑟𝑟𝑚𝑚𝑓𝑓 � 𝑟𝑟𝑚𝑚

𝑚𝑚 + 1
− 𝑉𝑉 (𝑡𝑡)� (3.49) 

Via the method of characteristics, the solution to equation (3.49) has the form ρ(𝑟𝑟, 𝑡𝑡) =

𝑟𝑟𝑚𝑚𝑔𝑔(𝑟𝑟𝑚𝑚+1 − (𝑚𝑚 + 1)𝑣𝑣𝑡𝑡) for constant 𝑣𝑣, for some function 𝑔𝑔. Applying the initial and 

boundary conditions (2.73) and (2.76), along with the growth velocity from equation (3.2), 

we get: 

 𝜌𝜌(𝑟𝑟, 𝑡𝑡) = 𝜃𝜃(𝑟𝑟𝑚𝑚+1(𝑚𝑚 + 1)𝑣𝑣𝑡𝑡)
𝑟𝑟𝑚𝑚𝑅𝑅0 �(𝑟𝑟𝑚𝑚+1 − (𝑚𝑚 + 1)𝑣𝑣𝑡𝑡)

1
𝑚𝑚+1�

(𝑟𝑟𝑚𝑚+1 − (𝑚𝑚 + 1)𝑣𝑣𝑡𝑡)
𝑚𝑚

𝑚𝑚+1
+ 𝜃𝜃 �𝑣𝑣𝑡𝑡 − 𝑟𝑟𝑚𝑚+1

𝑚𝑚 + 1
�𝐽𝐽

𝑣𝑣
𝑟𝑟𝑚𝑚 (3.50) 

We then consider equation (3.2) at two different temperatures 𝑇𝑇1 and 𝑇𝑇2. 

 𝑢𝑢1(𝑟𝑟) =
𝑣𝑣1

𝑟𝑟𝑚𝑚1
, 𝑢𝑢2(𝑟𝑟) =

𝑣𝑣2
𝑟𝑟𝑚𝑚2

 (3.51) 

At time 𝑡𝑡 =  𝑠𝑠, the system transitions from temperature 𝑇𝑇1 to 𝑇𝑇2 instantaneously, thus we 

can use equation (3.50) to see what happens to the solution. We will use the previous solution 
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for 𝑇𝑇1 as the initial condition for the 𝑇𝑇2 problem. For the 𝑇𝑇1 case, we have no initial 

crystallization, so the solution is: 

 𝜌𝜌1(𝑟𝑟, 𝑡𝑡) = 𝜃𝜃 �𝑣𝑣1𝑡𝑡 −
𝑟𝑟𝑚𝑚1+1

𝑚𝑚1 + 1
�

𝐽𝐽1
𝑣𝑣1

𝑟𝑟𝑚𝑚1 (3.52) 

At time 𝑡𝑡 =  𝑠𝑠, we change the temperature from 𝑇𝑇1 to 𝑇𝑇2, so 𝜌𝜌1(𝑟𝑟, 𝑠𝑠) = 𝑅𝑅0(𝑟𝑟) is used as the 

initial condition for the 𝑇𝑇2 case, with the new time 𝑡𝑡 − 𝑠𝑠. We can ignore the term equating 

to the nucleation of new solids at the new temperature for small times after the temperature 

jump. 

 
𝜌𝜌2(𝑟𝑟, 𝑡𝑡) = 

𝐽𝐽1

𝑣𝑣1
𝑟𝑟𝑚𝑚2θ�𝑟𝑟𝑚𝑚2+1 − (𝑚𝑚2 + 1)𝑣𝑣2(𝑡𝑡 − 𝑠𝑠)�θ�𝑣𝑣1𝑠𝑠 −

�𝑟𝑟𝑚𝑚2+1 − (𝑚𝑚2 + 1)𝑣𝑣2(𝑡𝑡 − 𝑠𝑠)� 
𝑚𝑚1+1
𝑚𝑚2+1

𝑚𝑚1 + 1 ��𝑟𝑟𝑚𝑚2+1 − (𝑚𝑚2 + 1)𝑣𝑣2(𝑡𝑡 − 𝑠𝑠)� 
𝑚𝑚1−𝑚𝑚2
𝑚𝑚2+1  

(3.53) 

In what follows, we will show how the difference in the solution before and after the 

temperature jump can be used to extract information about the change in growth velocity 

and nucleation rate. Recall equation (2.81), the transformed fraction is 

 − ln�1 − 𝑓𝑓(𝑡𝑡)� = �
4𝜋𝜋𝑟𝑟3

3
𝜌𝜌(𝑟𝑟, 𝑡𝑡)𝑑𝑑𝑟𝑟

∞

0
 (3.54) 

Now we will consider how the system solidifies shortly after the temperature jump. Since 

there has not been sufficient time for phase change due to the growth of newly nucleated 

solids after the temperature jump, then we can focus solely on the growth of the previously 

formed solids. We compare the time derivative of the transformed fraction immediately 

before the temperature jump at 𝑡𝑡 =  𝑠𝑠, 𝑓𝑓1, to immediately after the temperature jump, 𝑓𝑓2. 

Since 

 
𝜕𝜕
𝜕𝜕𝑡𝑡

(− ln�1 − 𝑓𝑓1(𝑡𝑡)�) =
∂
∂𝑡𝑡

�
4
3

𝜋𝜋𝑟𝑟3𝜌𝜌1(𝑟𝑟, 𝑡𝑡)𝑑𝑑𝑟𝑟
∞

0
 (3.55) 

Given a velocity of 𝑢𝑢1(𝑟𝑟), we know that at time 𝑡𝑡 =  𝑠𝑠 we arrive at a maximum crystal 

radius 𝑅𝑅𝑚𝑚𝑡𝑡𝑚𝑚 of: 

 𝑅𝑅𝑚𝑚𝑡𝑡𝑚𝑚 = �𝑣𝑣1𝑠𝑠(𝑚𝑚1 + 1)�
1

𝑚𝑚1+1 (3.56) 
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We can thus ignore all values of 𝑟𝑟 > 𝑅𝑅𝑚𝑚𝑡𝑡𝑚𝑚. Next, by combining equations (3.53) and (3.54) 

we have 

 𝜕𝜕
𝜕𝜕𝑡𝑡 �− ln �1 − 𝑓𝑓1(𝑠𝑠)�� =

4
3 𝜋𝜋� 𝑟𝑟3 𝜕𝜕𝜌𝜌1(𝑟𝑟, 𝑠𝑠)

𝜕𝜕𝑡𝑡 𝑑𝑑𝑟𝑟
𝑅𝑅𝑚𝑚𝑃𝑃𝑥𝑥

0
 (3.57) 

From equation (3.57) we have 

 𝑑𝑑𝜌𝜌2(𝑟𝑟, 𝑠𝑠)
𝑑𝑑𝑡𝑡

= 𝑣𝑣2
𝐽𝐽1
𝑣𝑣1

�𝛿𝛿 �𝑠𝑠 𝑣𝑣1 − 𝑟𝑟𝑚𝑚1+1

𝑚𝑚1 + 1
�𝑟𝑟2𝑚𝑚1−𝑚𝑚2 + 𝜃𝜃 �𝑠𝑠 𝑣𝑣1 − 𝑟𝑟𝑚𝑚1+1

𝑚𝑚1 + 1
� (𝑚𝑚2 − 𝑚𝑚1)𝑟𝑟𝑚𝑚1−𝑚𝑚2−1� (3.58) 

 
𝑓𝑓2̇(𝑠𝑠)

𝑓𝑓2(𝑠𝑠) − 1 =
4𝜋𝜋
3 � 𝑟𝑟3 𝜕𝜕𝜌𝜌(𝑟𝑟, 𝑠𝑠)

𝜕𝜕𝑡𝑡 𝑑𝑑𝑟𝑟
∞

0
 (3.59) 

 𝑓𝑓2
̇ (𝑠𝑠)

𝑓𝑓2(𝑠𝑠) − 1 =
4π𝑣𝑣2

3
𝐽𝐽1
𝑣𝑣1
�  δ�𝑠𝑠𝑣𝑣1 −

𝑟𝑟𝑚𝑚1+1

𝑚𝑚1 + 1� 𝑟𝑟3+2𝑚𝑚1−𝑚𝑚2 + θ�𝑠𝑠𝑣𝑣1 −
𝑟𝑟𝑚𝑚1+1

𝑚𝑚1 + 1�
(𝑚𝑚2 − 𝑚𝑚1)𝑟𝑟2+𝑚𝑚1−𝑚𝑚2𝑑𝑑𝑟𝑟

∞

0
 (3.60) 

 
𝑓𝑓2̇(𝑠𝑠)

𝑓𝑓2(𝑠𝑠) − 1 = 𝐼𝐼1 + 𝐼𝐼2 (3.61) 

First integral  

 𝐼𝐼1 =
4π𝑣𝑣2

3
𝐽𝐽1
𝑣𝑣1

�  δ �𝑠𝑠𝑣𝑣1 −
𝑟𝑟𝑚𝑚1+1

𝑚𝑚1 + 1
� 𝑟𝑟3+2𝑚𝑚1−𝑚𝑚2𝑑𝑑𝑟𝑟

∞

0
 (3.62) 

 𝑦𝑦 =  𝑣𝑣1 −
𝑟𝑟𝑚𝑚1+1

𝑚𝑚1 + 1
 (3.63) 

 𝑟𝑟 = �(𝑣𝑣1𝑠𝑠 − 𝑦𝑦)(𝑚𝑚1 + 1)�
1

𝑚𝑚1+1 (3.64) 

 𝑑𝑑𝑦𝑦 =   − 𝑟𝑟𝑚𝑚1 (3.65) 

 𝐼𝐼1 =
4π𝑣𝑣2

3
𝐽𝐽1
𝑣𝑣1

� δ (𝑦𝑦)�(𝑣𝑣1𝑠𝑠 − 𝑦𝑦)(𝑚𝑚1 + 1)�
3+𝑚𝑚1−𝑚𝑚2

𝑚𝑚1+1 𝑑𝑑𝑦𝑦
𝑠𝑠𝑣𝑣1

0
 (3.66) 

 𝐼𝐼1 =
4π𝑣𝑣2

3
𝐽𝐽1
𝑣𝑣1

𝑅𝑅𝑚𝑚𝑡𝑡𝑚𝑚
3+𝑚𝑚1−𝑚𝑚2 (3.67) 

Second integral 

 𝐼𝐼2 =
4π𝑣𝑣2

3
𝐽𝐽1
𝑣𝑣1

�  θ�𝑠𝑠𝑣𝑣1 −
𝑟𝑟𝑚𝑚1+1

𝑚𝑚1 + 1
� (𝑚𝑚2 − 𝑚𝑚1)𝑟𝑟2+𝑚𝑚1−𝑚𝑚2𝑑𝑑𝑟𝑟

∞

0
 (3.68) 

 𝐼𝐼2 = 4π𝑣𝑣2
3

𝐽𝐽1
𝑣𝑣1

�  (𝑚𝑚2 − 𝑚𝑚1)𝑟𝑟2+𝑚𝑚1−𝑚𝑚2𝑑𝑑𝑟𝑟
𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚

0
 (3.69) 

Taking the sum of 𝐼𝐼1 and 𝐼𝐼2 we get 
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𝑓𝑓2̇(𝑠𝑠)

𝑓𝑓2(𝑠𝑠) − 1 =
4π𝑣𝑣2

3
𝐽𝐽1
𝑣𝑣1

𝑅𝑅𝑚𝑚𝑃𝑃𝑥𝑥
3+𝑚𝑚1−𝑚𝑚2 �

3
3 + 𝑚𝑚1 − 𝑚𝑚2

� (3.70) 

We can substitute 𝑚𝑚1 = 𝑚𝑚2 and 𝑣𝑣1 = 𝑣𝑣2 to get 𝑓𝑓1̇ at 𝑡𝑡 =  𝑠𝑠: 

 
𝑓𝑓1̇(𝑠𝑠)

𝑓𝑓1(𝑠𝑠) − 1 =
4π𝑣𝑣1

3
𝐽𝐽1
𝑣𝑣1

𝑅𝑅𝑚𝑚𝑃𝑃𝑥𝑥
3  (3.71) 

Next, we can take the ratio of 𝑓𝑓2̇ and 𝑓𝑓1̇, noting that 𝑓𝑓1 = 𝑓𝑓2 at 𝑡𝑡 = 𝑠𝑠: 

 
𝑓𝑓2̇(𝑠𝑠)
𝑓𝑓1̇(𝑠𝑠)

=
𝑣𝑣2
𝑣𝑣1

𝑅𝑅𝑚𝑚𝑃𝑃𝑥𝑥
𝑚𝑚1−𝑚𝑚2 �

3
3 + 𝑚𝑚1 − 𝑚𝑚2

� (3.72) 

 
𝑓𝑓2̇(𝑠𝑠)
𝑓𝑓1̇(𝑠𝑠)

=
𝑣𝑣2
𝑣𝑣1

𝑣𝑣1

𝑚𝑚1−𝑚𝑚2
𝑚𝑚1+1 �𝑠𝑠(𝑚𝑚1 + 1)�

𝑚𝑚1−𝑚𝑚2
𝑚𝑚1+1 �

3
3 + 𝑚𝑚1 − 𝑚𝑚2

� (3.73) 

 
𝑓𝑓2̇(𝑠𝑠)
𝑓𝑓1̇(𝑠𝑠)

= 𝛽𝛽
𝑣𝑣2

𝑣𝑣1
𝑀𝑀 (3.74) 

Where 

 𝛽𝛽 = �𝑠𝑠(𝑚𝑚1 + 1)�
𝑚𝑚1−𝑚𝑚2
𝑚𝑚1+1 �

3
3 + 𝑚𝑚1 − 𝑚𝑚2

� (3.75) 

 𝑀𝑀 =  
𝑚𝑚2 + 1
𝑚𝑚1 + 1

 (3.76) 

Differentiating equation (3.39) with respect to time relates 𝑓𝑓(̇𝑡𝑡) in terms of the heat flow 

𝑞𝑞(𝑡𝑡) from DSC, the heat of fusion at temperature 𝑇𝑇 , Δ𝐻𝐻𝑜𝑜𝑢𝑢𝑠𝑠
° (𝑇𝑇 ). 

 𝑓𝑓(̇𝑡𝑡) =
𝑞𝑞(𝑡𝑡)

Δ𝐻𝐻𝑜𝑜𝑢𝑢𝑠𝑠
° (𝑇𝑇 )

 (3.77) 

Since Δ𝐻𝐻𝑜𝑜𝑢𝑢𝑠𝑠
°  is a function of temperature we can now represent equation (3.74) in terms of 

the heat flow and heat of fusion at temperature 𝑇𝑇1, just before the temperature jump (𝑞𝑞1(𝑠𝑠) 

and Δ𝐻𝐻𝑜𝑜𝑢𝑢𝑠𝑠
° (𝑇𝑇1)) and the heat flow and heat of fusion at temperature 𝑇𝑇2, just after the 

temperature jump, (𝑞𝑞2(𝑠𝑠) and Δ𝐻𝐻𝑜𝑜𝑢𝑢𝑠𝑠
° (𝑇𝑇2)). 

 
𝑣𝑣2

𝑣𝑣1
𝑀𝑀 =

𝑞𝑞2(𝑠𝑠)Δ𝐻𝐻𝑓𝑓𝑢𝑢𝑠𝑠
° (𝑇𝑇1)

β𝑞𝑞1(𝑠𝑠)Δ𝐻𝐻𝑓𝑓𝑢𝑢𝑠𝑠
° (𝑇𝑇2)

 (3.78) 

Now we need the value for 𝑘𝑘 and 𝑛𝑛, and thus 𝑚𝑚, for the system at 𝑇𝑇2. This leaves us with 

a system of one unknown. 
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 𝑣𝑣2 =
𝑣𝑣1

𝑀𝑀𝑞𝑞2(𝑠𝑠)Δ𝐻𝐻𝑜𝑜𝑢𝑢𝑠𝑠
° (𝑇𝑇1)

β𝑞𝑞1(𝑠𝑠)Δ𝐻𝐻𝑜𝑜𝑢𝑢𝑠𝑠
° (𝑇𝑇2)

 (3.79) 

Continuing in this fashion from 𝑇𝑇2 to 𝑇𝑇3, or even 𝑇𝑇1 to 𝑇𝑇3, we can get 𝑣𝑣(𝑇𝑇𝑖𝑖) in terms of 

𝑣𝑣(𝑇𝑇1). Finally, from equation (3.36), the nucleation rate 𝐽𝐽(𝑇𝑇 ) can be determined in terms 

of 𝑘𝑘(𝑇𝑇 ), 𝑣𝑣(𝑇𝑇 ), and 𝑛𝑛(𝑇𝑇 ) 

 𝐽𝐽(𝑇𝑇 ) = 3𝑘𝑘(𝑇𝑇 )𝑛𝑛(𝑇𝑇 )
4𝜋𝜋

� 3𝑣𝑣(𝑇𝑇 )
𝑛𝑛(𝑇𝑇 ) − 1

�
1−𝑛𝑛(𝑇𝑇)

 (3.80) 

3.3.3 Two-dimensional analogue 

The following analysis consists of simulating crystal nucleation and growth, as well as the 

resulting heat release, in two dimensions. The equations in section 3.3.2 apply to three 

dimensions and should be applied in applications, the following was just for testing and 

verification of the new theory. 

 𝐴𝐴𝑟𝑟𝐷𝐷 = 𝜋𝜋𝑅𝑅2 (3.81) 

 𝑟𝑟 = �π
𝐴𝐴

𝑅𝑅2�
1
𝐷𝐷 (3.82) 

 α = 2
𝐷𝐷

�π
𝐴𝐴

�
1
𝐷𝐷 (3.83) 

 𝑑𝑑𝑟𝑟
𝑑𝑑𝑡𝑡 = α𝑅𝑅

2
𝐷𝐷−1 𝑑𝑑𝑅𝑅

𝑑𝑑𝑡𝑡  
(3.84) 

 𝑢𝑢(𝑅𝑅) =
𝑣𝑣/α

𝑅𝑅
2
𝐷𝐷−1

=
𝑣𝑣

𝑅𝑅
2
𝐷𝐷−1

 (3.85) 

Where 𝑣𝑣 = 𝑣𝑣0/α  

Following the same methods for deriving the three-dimensional case, we can derive the two 

dimensional case for the ratio of 𝑓𝑓1̇ and 𝑓𝑓2̇ at 𝑡𝑡 =  𝑠𝑠: 

 β2𝐷𝐷 = �𝑠𝑠(𝑚𝑚1 + 1)�
𝑚𝑚1−𝑚𝑚2
𝑚𝑚1+1 �

2
2 + 𝑚𝑚1 − 𝑚𝑚2

� (3.86) 

 𝑀𝑀2𝐷𝐷 =  
𝑚𝑚2 + 1
𝑚𝑚1 + 1

 (3.87) 

 
𝑓𝑓2̇(𝑠𝑠)
𝑓𝑓1̇(𝑠𝑠)

= 𝛽𝛽2𝐷𝐷
𝑣𝑣2

𝑣𝑣1
𝑀𝑀2𝐷𝐷

 (3.88) 
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Additionally, the two-dimensional Avrami parameters 𝑘𝑘 and 𝑛𝑛 can be re-scaled from the 

three dimensional version, equation (3.35) 

 𝑛𝑛 =
𝑚𝑚 + 3
𝑚𝑚 + 1

 (3.89) 

 𝑘𝑘 = π �
1 + 𝑚𝑚
3 + 𝑚𝑚

� 𝐽𝐽�(𝑚𝑚 + 1)𝑣𝑣�
2

𝑚𝑚+1 (3.90) 

Thus, the two-dimensional analogue of equation (3.80) is  

 𝐽𝐽(𝑇𝑇 ) = 𝑘𝑘(𝑇𝑇 )𝑛𝑛(𝑇𝑇 )
π

� 2𝑣𝑣(𝑇𝑇 )
𝑛𝑛(𝑇𝑇 ) − 1

�
1−𝑛𝑛(𝑇𝑇)

 (3.91) 

 

3.4 Method for Extracting the Relative (and Non-Relative) Growth and 

Nucleation Rates from Calorimetry Curves 

Below we outline a method that can be used to extract the temperature dependent growth 

rates, nucleation rates, and fractal dimensions during applicable phase change processes 

involving these phenomena such as crystallization. 

3.4.1 Interpreting and processing Calorimetry Curves 

Suppose we desire to know the temperature dependent growth and nucleation rates for a 

substance in some temperature interval �𝑇𝑇0, 𝑇𝑇𝑜𝑜�. First partition this interval into 𝑁𝑁  

temperature points 𝑇𝑇1, 𝑇𝑇2, … , 𝑇𝑇𝑁𝑁 . Next, for each temperature, start the DSC run at some 

initial temperature above the melting temperature of the substance. From this temperature 

we rapidly (as fast as possible) decrease the temperature to 𝑇𝑇1 and hold it until the substance 

solidifies and reaches equilibrium. Next, analyze this curve to calculate 𝑛𝑛1 and 𝑘𝑘1, also noting 

the time 𝑡𝑡1 when half of the available sample solidifies, corresponding roughly to the peak 

location for the heat release 𝑞𝑞1(𝑡𝑡). Repeat this for 𝑇𝑇2 through 𝑇𝑇𝑁𝑁  and ensure that the mass 

of each sample is identical. Next, run a series of jumps between these temperature points. 

For the first jump, run the sample at 𝑇𝑇1 just as in the first trial, but now run this trial for 

𝑡𝑡1 seconds and then rapidly change the temperature to 𝑇𝑇2. Continue this same method from 
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𝑇𝑇2 to 𝑇𝑇3 and so on all the way through to 𝑇𝑇𝑁𝑁 . Using the curves 𝑞𝑞𝑖𝑖(𝑡𝑡) generated from the 

DSC trials, apply equations (3.79) and (3.80) to get 𝑣𝑣(𝑇𝑇 ) and 𝐽𝐽(𝑇𝑇 ) in terms of 𝑣𝑣(𝑇𝑇1). These 

temperature dependent velocities and nucleation rates can then be normalized to 𝑣𝑣(𝑇𝑇1) and 

𝐽𝐽(𝑇𝑇𝑖𝑖). If desired, one can measure the velocity 𝑢𝑢(𝑇𝑇1) of a single growing crystal at 𝑇𝑇1 (or 

one of the other temperature points), then, using its radius 𝑟𝑟 and fractal dimension 𝐷𝐷 

(measured from DSC), can solve for 𝑣𝑣(𝑇𝑇𝑖𝑖), and thus know the temperature dependent (and 

radially dependent) velocities and temperature dependent nucleation rates in the 

temperature range from 𝑇𝑇1 to 𝑇𝑇𝑁𝑁 . We have now described a protocol to extract the 

temperature dependent solid phase growth and nucleation rates from a simple set of DSC 

curves. Next, we will demonstrate the validity of this protocol via crystal growth simulations. 

3.4.2 Interpreting and processing Calorimetry Curves 

Special care must be given to the DSC curves in experiments, especially near the temperature 

jump. In practice, one cannot jump infinitely quickly between two temperature points, so 

the analysis outlined in this chapter is limited to systems where negligible levels of phase 

change occur during the temperature jump process. This will depend on the sample material 

at hand, the achievable temperature rates of the DSC device, and the fidelity of the 

measurements. There will be a heat flow spike during the temperature jump that will need 

to be trimmed out in post processing by those familiar with the DSC device carrying out 

the measurements. Once this post processing has been completed, then the analysis from 

this work may be applied. Additionally, the start time of the entire process starts at the 

onset of crystallization, and not necessarily the start time the moment the sample reaches 

𝑇𝑇1. This onset time can be calculated by curve fitting of the DSC curves. Once time zero 

has been calculated, then proper measurements of 𝑠𝑠, the time between the onset of 

crystallization and the temperature jump, can be carried out. Finally, it should be noted 

that the nucleation rates 𝐽𝐽  in this study are in fact homogeneous nucleation rates. Special 

care must be taken during the DSC process to ensure minimal contamination from the 

environment, including the pan itself, to limit heterogeneous nucleation. Additionally, the 
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theory can be used to estimate the number of nucleation sites, and thus heterogeneous 

nucleation, by considering a step-change in 𝐽𝐽  but not 𝑣𝑣, and then using equation (3.80), 

along with the associated change in 𝑘𝑘 to solve for the change in 𝐽𝐽 . 

 

3.5 Time-Dependent Diffusion Limited Aggregation 

To test the validity of the mathematical model developed for extracting nucleation rates and 

growth rates from calorimetric curves, we simulated an environment of growing diffusion 

limited aggregates to represent a system with complex growth geometry. For computational 

simplicity we have limited the simulation to two dimensions; however, the simulation may 

be extended easily into three dimensions. Additionally, the mathematics of the theory is 

easily generalized into any number of dimensions. An outline of the algorithms used can be 

found below. 

 

To test the newly derived theory, we simulated the nucleation and growth of a 

system of "pseudo-crystals" via a novel time-dependent diffusion limited aggregation (TD-

DLA) algorithm, outlined above, based on the classic algorithm and its more 
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computationally efficient derivative from the 1980s.85,86 First, a series TD-DLA structures 

were generated which would grow by a specified number of particles at each simulation time 

step. For each generated aggregate, at each simulation time step, the number of particles 

added to each aggregate increased the radius of gyration by 𝑣𝑣0Δ𝑡𝑡. The aggregates were 

placed randomly on a grid and allowed to grow according to this new time scaling at a 

constant rate of 𝑣𝑣0. Additionally, at each time step, new aggregate nuclei were added, 

corresponding to a predefined nucleation rate 𝐽𝐽  and time step Δ𝑡𝑡. For each new particle 

added to the growing crystal, heat was released according to a prescribed heat of fusion 

Δ𝐻𝐻𝑜𝑜𝑢𝑢𝑠𝑠
°  at the simulation temperature. Intersection between pseudo-crystals was ignored and 

boundary crossing was handled with periodic boundary conditions. For this simulation, 10 

diffusion limited aggregates were grown, each consisting of 50,000 particles. A step size of 5 

grid spaces and a stickiness value of 1.0 were chosen to maintain fractal growth but remain 

spatially dense. Figure 3.1 shows the pseudo-crystals at two time points, demonstrating 

nuclei formation and how they exhibit fractal, crystal-like growth. The fractal dimension 𝐷𝐷 

of the pseudo-crystals increased as the number of particles was added to them, falling 

between 1.69-1.81. When comparing the simulated transformed fraction to theoretical 

predictions using equations (3.1) and (3.35), it was determined that the best fit was to take 

the root-mean-square of the 𝐷𝐷 and apply it to equation (3.35), since there was a distribution 

of fractal dimensions for the pseudo-crystals composing the transformed phase. We found a 

near perfect agreement between the predicted and actual transformed fraction, with an 𝑅𝑅2 =

.999, shown in Figure 3.2. 
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Figure 3.1. An image of the crystallization process for the simulation of nucleating and growing 

diffusion limited aggregates at 𝑡𝑡∗ = .12 (a) and 𝑡𝑡∗ = .48 (b) 

 

Figure 3.2. Transformed fraction 𝑓𝑓 vs time 𝑡𝑡∗ for isothermal crystallization from the diffusion limited 

aggregate simulation and the model of phase change from equation (3.35). 
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Figure 3.3. TD-DLA nucleation and growth simulation results from both an isothermal 

crystallization process (constant properties) as well as a crystallization process resulting from a 

temperature jump (step change in properties) at 𝑡𝑡∗  =  0.5 between 𝑇𝑇1 and 𝑇𝑇2. (a) Temperature 𝑇𝑇  vs 

time 𝑡𝑡∗ for simulations of crystal growth for the isothermal case and the temperature jump case. (b) 

Heat release 𝑞𝑞 vs time 𝑡𝑡∗ for both the isothermal and temperature jump TD-DLA growth simulations. 

The change in heat release from 𝑞𝑞1 to 𝑞𝑞2 is related to the change in the following temperature 

dependent properties: growth rate, nucleation rate, heat of fusion, fractal dimension, and pre-

exponential factor. The values for these properties at temperatures 𝑇𝑇1 and 𝑇𝑇2 are given in Table 3.3. 

(c) Transformed fraction 𝑓𝑓 vs time 𝑡𝑡∗ for the isothermal and temperature jump TD-DLA growth 

simulations. (d) Figure 3.3(c) is shown with the time derivatives 𝑓𝑓1̇ (Isothermal case) and 𝑓𝑓2̇ 

(Temperature jump case) at the jump time 𝑡𝑡∗ = 0.5. This shows how the time derivative of 

transformed fraction changes from before and after a temperature jump between isothermal holds. 

The ratio between 𝑓𝑓1̇ and 𝑓𝑓2̇ infers information about the ratio between the growth velocities, and 

thus nucleation rates, at the two temperatures 𝑇𝑇1 and 𝑇𝑇2.  
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Table 3.1. Values of the actual vs predicted growth rate 𝑣𝑣, nucleation rate 𝐽𝐽 , and fractal dimension 

𝐷𝐷 at temperatures 𝑇𝑇1 and 𝑇𝑇2. The values of the parameters are given in dimensionless units. 

𝐏𝐏𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚 𝑇𝑇1 𝑇𝑇1(𝑝𝑝𝑟𝑟𝑒𝑒𝑑𝑑𝑖𝑖𝑐𝑐𝑡𝑡𝑒𝑒𝑑𝑑) 𝑇𝑇2 𝑇𝑇2(𝑝𝑝𝑟𝑟𝑒𝑒𝑑𝑑𝑖𝑖𝑐𝑐𝑡𝑡𝑒𝑒𝑑𝑑) 

𝑣𝑣 156.5 N/A 313 316.4 

𝐽𝐽  .000250 .000267 .0025 .0026 

𝐷𝐷 1.69-1.81 1.734 1.69-1.81 1.734 

 

Table 3.2. The extracted Avrami parameters 𝑘𝑘 and 𝑛𝑛, heat flow 𝑞𝑞𝑠𝑠 immediately before and after the 

temperature jump, and the heat of fusion Δ𝐻𝐻𝑜𝑜𝑢𝑢𝑠𝑠
°  at 𝑇𝑇1 and 𝑇𝑇2. The uncertainty shown represents 

95% confidence bounds on the parameters. The values of the parameters are given in dimensionless 

units. 

𝐏𝐏𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚 𝑇𝑇1 𝑇𝑇2 

𝑘𝑘 4.842 ± .022 161.6 ± 1.700 

𝑛𝑛 2.734 ± .007 2.734 ± .006 

𝑞𝑞𝑠𝑠 4.120 1.854 

Δ𝐻𝐻𝑓𝑓𝑢𝑢𝑠𝑠
°  1.0 1.1 

 

We then sought to test the validity and applicability of equations (3.74) and (3.79), 

which relate the change in the temperature dependent fractal dimension, growth velocity, 

and nucleation rate to the change in heat released by the system. This required us to simulate 

the growth of TD-DLA pseudo-crystals under conditions emulating a step-change in 

temperature. To accomplish this, we defined the system at two temperatures, 𝑇𝑇1 and 𝑇𝑇2, 

with associated temperature dependent growth rates 𝑢𝑢1 and 𝑢𝑢2 (thus 𝑣𝑣1 and 𝑣𝑣2), nucleation 

rates 𝐽𝐽1 and 𝐽𝐽2, and heat of fusions Δ𝐻𝐻𝑜𝑜𝑢𝑢𝑠𝑠,1
°  and Δ𝐻𝐻𝑜𝑜𝑢𝑢𝑠𝑠,2

° . The values for these parameters 

are given in Table 3.1 and Table 3.2. During the simulation, the transformed fraction was 

calculated so that when half of the system was transformed, the temperature was changed 

from 𝑇𝑇1 to 𝑇𝑇2, changing the growth velocity by a factor of two and the nucleation rate by 
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an order of magnitude. The temperature profiles and associated heat release curves are shown 

in Figure 3.3(a) and (b) respectively, showing the difference between the case with a 

temperature jump, and one simply held isothermally. Integrating these heat release curves 

yielded the transformed fraction, shown in Figure 3.3(c) and (d). The analysis of these heat 

release curves yielded nearly identical velocities and nucleation rates to those used in the 

simulation, shown in Table 3.1. It is important to note that the values of the calculated 

nucleation and growth rates are in terms of 𝑣𝑣1, which means we know the relative change in 

these values and not their absolute value. To determine the absolute values, one needs only 

one data point, 𝑣𝑣1 or 𝐽𝐽1 will suffice, to determine the values of these parameters at all 

temperatures 𝑇𝑇𝑖𝑖, given a series of heat curves resulting from jumps between 𝑇𝑇1 and 𝑇𝑇2, 𝑇𝑇2 

and 𝑇𝑇3, etc. After testing the new theory on simulated TD-DLA pseudo-crystals, we have 

confidence that implementation of this method for extracting relative growth rates and 

nucleation rates from a system undergoing liquid-solid phase change will quantitatively yield 

the true growth velocities, nucleation rates, and growth geometries in that system relative 

to some baseline. This is only contingent on the accuracy of the measurements in the first 

place, and that the DSC instrument can maintain temperature rates sufficiently faster than 

the phase change at hand.  

3.5 Gas phase PDE and the Rayleigh–Plesset Equation 

We can extend the theory presented in earlier sections to the gas phase, that is, considering 

gas nucleating and growing from a liquid. This complicates the previous problem by allowing 

the density of the nucleated phase to vary, since the gas is compressible. We start by 

considering Figure 3.4 below alongside the introduction of the classic Rayleigh-Plesset 

equation, (3.92) and (3.93), which is an ordinary differential equation that governs the 

growth dynamics of bubbles in an incompressible fluid.87,88  
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             Figure 3.4. Schematic of a bubble subject to pressure and surface tension. 
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(3.92) 

 
𝑃𝑃(𝑡𝑡, 𝑟𝑟) = 𝑃𝑃∞(𝑡𝑡) − 𝑃𝑃𝐵𝐵(𝑡𝑡, 𝑟𝑟) 

 
(3.93) 

 

Where 𝜌𝜌𝐿𝐿 is the surrounding liquid density, 𝑃𝑃∞ 𝑃𝑃𝑛𝑛𝑑𝑑 𝑃𝑃𝐵𝐵 are the exterior and interior bubble 
pressures. 𝛾𝛾 is the liquid surface tension, 𝜇𝜇𝐿𝐿 is the liquid dynamic viscosity. 

 Now let us consider the PDE described by equations (2.72) and (2.73) but extended 
into an additional dimension described by 𝑃𝑃  in equation (5.93). We now have a phase size 
distribution that is a function of both the pressure difference across the local gas bubble, as 
well as the size of the bubble itself. We must have two dimensions here as two bubbles may 
have identical radii but different pressure differences across their boundaries, which will lead 
to different growth dynamics. Extending equation (2.72) into this new two dimensional 
domain gives: 

 
𝜕𝜕𝜌𝜌
𝜕𝜕𝑡𝑡

+
𝜕𝜕
𝜕𝜕𝑟𝑟

(𝑢𝑢𝜌𝜌) +
𝜕𝜕

𝜕𝜕𝑃𝑃
(𝑣𝑣𝜌𝜌) = 0 

 
(3.94) 

 𝑣𝑣 =
𝑑𝑑𝑃𝑃
𝑑𝑑𝑡𝑡

  (3.95) 

 𝑢𝑢 =
𝑑𝑑𝑟𝑟
𝑑𝑑𝑡𝑡

 (3.96) 

 

Where 𝜌𝜌, 𝑢𝑢, 𝑣𝑣  are functions of 𝑟𝑟, 𝑡𝑡, 𝑃𝑃 (𝑡𝑡, 𝑟𝑟) and 𝑁𝑁  is the number of bubble spheres per unit 
volume that have radii between 𝑟𝑟1 and 𝑟𝑟2 and pressures between 𝑃𝑃1 and 𝑃𝑃2. 
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𝑁𝑁 = � � 𝜌𝜌(𝑟𝑟, 𝑡𝑡, 𝑃𝑃 )𝑑𝑑𝑃𝑃𝑑𝑑𝑟𝑟

𝑃𝑃2

𝑃𝑃1

𝑐𝑐2

𝑐𝑐1

 

 

(3.97) 

Now the initial condition is the essentially the same as before, with 𝐷𝐷0 is the initial 
distribution of phase as a function of 𝑟𝑟 and 𝑃𝑃 : 

 
𝜌𝜌�𝑟𝑟, 0, 𝑃𝑃0(𝑟𝑟)�   = 𝐷𝐷0�𝑟𝑟, 𝑃𝑃0(𝑟𝑟)� 

 (3.98) 

To determine the boundary conditions for this PDE we consider that 𝐼𝐼(𝑟𝑟, 𝑡𝑡) gives us the 
density distribution of radii of the bubbles disregarding pressure. This is key, because at the 
moment of nucleation, there should only be one 𝑃𝑃  values for all the bubbles at that given 
time. Thus, at the point 𝑟𝑟 =  𝑟𝑟0 we have 

 
𝐼𝐼(𝑟𝑟0, 𝑡𝑡) = � 𝜌𝜌(𝑟𝑟0, 𝑡𝑡, 𝑃𝑃 )𝑑𝑑𝑃𝑃
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(3.99) 

 
𝐼𝐼(𝑟𝑟0, 𝑡𝑡) = � 𝑔𝑔(𝑟𝑟0, 𝑡𝑡, 𝑃𝑃 )𝛿𝛿�𝑃𝑃(𝑡𝑡)�𝑑𝑑𝑃𝑃

∞
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(3.100) 

 𝐼𝐼(𝑟𝑟0, 𝑡𝑡) = 𝐽𝐽(𝑡𝑡)
𝑢𝑢(𝑡𝑡)

 (3.101) 

 
𝐽𝐽(𝑡𝑡, 𝑃𝑃 )
𝑢𝑢(𝑡𝑡)
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(3.102) 

 
𝑔𝑔(𝑟𝑟0, 𝑡𝑡, 𝑃𝑃 ) =

𝐽𝐽(𝑡𝑡, 𝑃𝑃 )
𝑢𝑢(𝑡𝑡)

 

 
(3.103) 

 
𝜌𝜌(𝑟𝑟0, 𝑡𝑡, 𝑃𝑃 ) =

𝐽𝐽(𝑡𝑡, 𝑃𝑃 )
𝑢𝑢(𝑡𝑡)

𝛿𝛿�𝑃𝑃 (𝑡𝑡)� 

 
(3.104) 

So, the compete equations are 
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𝜕𝜕𝑟𝑟

(𝑢𝑢𝜌𝜌) +
𝜕𝜕

𝜕𝜕𝑃𝑃
(𝑣𝑣𝜌𝜌) = 0 

 
(3.94) 

 
𝜌𝜌(𝑟𝑟0, 𝑡𝑡, 𝑃𝑃 ) =

𝐽𝐽(𝑡𝑡, 𝑃𝑃 )
𝑢𝑢(𝑡𝑡)

𝛿𝛿�𝑃𝑃(𝑡𝑡, 𝑟𝑟0)� 

 
(3.105) 

 𝜌𝜌(𝑟𝑟, 0, 𝑃𝑃 )   = 𝐷𝐷0(𝑟𝑟, 𝑃𝑃 ) (3.98) 
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(3.92) 

 𝑃𝑃(𝑡𝑡, 𝑟𝑟) = 𝑃𝑃∞(𝑡𝑡) − 𝑃𝑃𝐵𝐵(𝑡𝑡, 𝑟𝑟) (3.93) 
 

In the case of driven growth due to mass transfer across the bubble boundary we have, where 
𝑚𝑚 is the mass of gas inside the bubble.  

 
𝑃𝑃𝐵𝐵(𝑡𝑡, 𝑟𝑟) =

𝑚𝑚
𝑉𝑉

𝑅𝑅�����𝑇𝑇   

 
(3.106) 

 𝑃𝑃𝐵𝐵(𝑡𝑡, 𝑟𝑟) =
4𝑚𝑚
3𝜋𝜋𝑟𝑟3 𝑅𝑅�����𝑇𝑇  (3.107) 

  

If we consider mass flux from the liquid to the bubble, we have. 

 𝑑𝑑𝑚𝑚
𝑑𝑑𝑡𝑡

= 𝑓𝑓�𝑃𝑃𝑔𝑔, 𝑃𝑃𝐵𝐵� (3.108) 

Where 𝑃𝑃𝑔𝑔 is the partial pressure of gas in the liquid and 𝑓𝑓 is some flux function determining 

the flux of gas across the bubble boundary. We outline a general solution procedure for this 

problem but leave the in depth analysis of these equations to future research, as it is beyond 

the scope of this thesis in its current form. 

 A rough solution can be determined by first solving the bubble radius as a function 

of time and pressure by solving the Rayleigh-Plesset. This will give closed loop curves on 

the 𝑟𝑟𝑃𝑃  plane for different initial conditions. Then, equation (3.94) can be converted into a 

one dimensional problem by considering it only on a single closed curve solution to the 

Rayleigh-Plesset equation. This PDE can then be solved in the same fashion as in chapter 

2, for each closed curve. The superposition of these solutions across all closed curves will 

give the phase size-density distribution 𝜌𝜌(𝑡𝑡, 𝑟𝑟, 𝑃𝑃 ). 

3.6 Conclusion 

In this chapter we described the theory linking a system undergoing phase change, its 

nucleation rate, growth rate, and growth geometry for arbitrary geometries. Next, we 

described a method whereby utilizing the theory presented, we were able to devise a protocol 
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for extracting relative growth rates, nucleation rates, and growth geometries from 

calorimetric curves. We then simulated an arbitrary crystallization event by simulating time-

dependent diffusion limited aggregates nucleating and growing in a periodic system. We then 

showed that applying our devised protocol we were able to recover the nucleation rate, 

growth rate, and geometry. We will expand on applications in the next chapter by analyzing 

rapid crystallization in low concentration cryoprotective agents (CPAs) to determine the 

critical cooling and critical warming rates of various CPAs. 
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Chapter 4  

Analyzing Glass Forming Tendency of 

Cryoprotectant Solutions Via Laser Calorimetry 

 

4.1 Introduction 

Cryopreservation allows for long-term storage because the chemical activity normally 

associated with functioning cells effectively ceases at low cryogenic storage temperatures 

such as liquid nitrogen boiling point, or -196 ºC. In fact, the only source of damage to 

biological material at this temperature is from direct ionization from background radiation, 

making storage durations on the order of millennia possible.9 Under normal circumstances, 

cooling biological materials to these temperatures leads to widespread cell death due to the 

damaging effects of ice crystallization; however, cryoprotective agents (CPAs) can be 

introduced to mitigate some of these effects. These CPAs work to preserve biomaterials by 

modulating the viscosity, glass and melting transition temperatures, and other physical 

properties to limit the scale and scope of ice formation.34,89,90 Ice formation, both intracellular 

and extracellular, can lead to cellular damage and death, with intracellular ice formation 
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linked directly to cell membrane damage.91–94 However, many CPAs are not well tolerated 

by cells, and so proper cryopreservation requires achieving a delicate balance between the 

CPA toxicity and the damage caused by ice formation. Toxic effects have been shown to 

occur at different concentrations for different CPAs, and these effects also vary widely 

between cell and tissue types.95 In general, high-concentration CPAs exhibit strong ice-

suppressing properties but unfortunately have been shown to be more cytotoxic than low-

concentration CPAs and are capable of damaging or destroying cells via osmotic affects.96,97  

This limitation suggests that it is important to use the lowest possible concentration of CPA 

to prevent toxicity to the biological system, which thereby necessitates high rates of cooling 

and warming. For microliter systems, one common approach is to bring the system to a 

vitrified state, transforming the biomaterial into an amorphous glass while eliminating the 

damage caused by ice crystal formation and its accompanying osmotic shock. Slow freezing 

is an alternative approach to systems at this scale, where by cooling slowly, ice is restricted 

to the extracellular space; however, this is often accompanied by larger osmotic gradients 

and volume changes vs vitrification and will not be further pursued here.98  

The successful vitrification of biological systems in microliter-sized droplets is 

dependent on the concentration of CPA used, with each concentration having a 

corresponding critical cooling rate (CCR) needed to achieve vitrification on cooling and 

critical warming rate (CWR) to avoid devitrification on warming. To limit the toxic effects 

of CPAs while also mitigating ice formation at the cooling rates (~104 °C/min) experienced 

at this scale, microliter-scale cryopreservation requires CPA concentrations of roughly 30 

wt%, which can vary by as much as 10 wt% depending on the CPA used. The CWRs at 

these low concentrations can be several orders of magnitude larger than the CCRs, requiring 

warming rates in excess of 106 °C/min. This difference largely occurs because the temperature 

at which peak crystal growth occurs is near the melting temperature, whereas the 

temperature of peak nucleation occurs well below the melting point. This means that during 

cooling, one passes through the temperature window in which crystal growth is maximal 
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before much nucleation has occurred, whereas during warming, the majority of nuclei form 

prior to the period of maximal crystal growth, causing much more ice to form relative to 

during cooling at the same rate. Additionally, to measure the CWR, one must first cool the 

sample down. This inherently leads to some crystallization and nucleation, effectively seeding 

and boosting ice growth once warming commences and thereby inflating the CWR 

measurement. Current practice is to minimize this affect by cooling at rates far above the 

CCR, but this practice works in only the high-concentration regime. Note that the 

elimination of all ice crystallization during cooling or warming is impossible without infinite 

temperature rates or infinite time, and in the absence of either of these, some fraction of the 

sample will crystalize regardless of the cooling or warming rate.45–47,99 Thus, instead of using 

ideal vitrification as a marker for success, it is often more practical to use “apparent 

vitrification”. An ice fraction threshold commonly used to define apparent vitrification is 

less than 0.2% ice by mass.35 Throughout the remainder of this paper, use of the word 

vitrification implies apparent vitrification. Understanding the relationship between the 

cryoprotectant concentration and ice formation is paramount for successful cryopreservation 

and rewarming. 

Currently, determining the necessary CCRs and CWRs of CPAs, especially in the 

low-concentration regime, remains a challenge, with a summary of the current techniques in 

Table 4.1. For instance, conventional CCR and CWR measurements have relied on 

differential scanning calorimetry (DSC), but conventional machines can only attain rates up 

to roughly 100 °C/min in the cryogenic range, though DSC has the advantage of quantitative 

ice detection.100–102 A promising new technology, termed nanocalorimetry, being developed at 

several institutions including the National Institute of Standards and Technology may allow 

DSC to be carried out at millions of degrees per minute for extremely small samples.103,104  

Unfortunately, to get rates of millions of degrees per minute requires samples on the order 

of a picolitre, which without special care, will quickly evaporate (especially for CPAs 
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containing volatiles like alcohols), necessitating precise environmental control to measure 

CWR of CPAs with nanocalorimetry above 106 °C/min.105,106 

Table 4.1. Current methods for analyzing CWR with rates, benefits, and drawbacks 

 

The volume dependence of nucleation in water droplets near the homogeneous 

nucleation temperature, primarily due to surface nucleation effects on the droplet, has been 

shown to become significant for droplet diameters less than 50 microns and to dominate for 

diameters of less than 10 microns.107  This means even if the barriers to evaporation are 

overcome for nanocalorimetry, droplets of less than 100 pL will experience appreciable 

surface nucleation, thus any CWR measurements will not be meaningful when applied to 

larger systems. It remains unclear the total contribution to crystallization surface nucleation 

has when cooling over a large temperature regime, as well as in CPAs.  

An additional method used to measure CCR and CWR is by directly quenching a 

droplet with a thermocouple inside it into liquid nitrogen for cooling or hot oil for warming, 

then imaging the subsequent process to determine if ice formation occurred. CWRs of up to 

106 °C/min have been measured via direct quenching into hot oil.33 CCR on the other hand 

 
CONVENTIONAL 

DSC 
CONVECTIVE 

WARMING 
NANO-DSC LASER 

CALORIMETRY 

Cooling Rates 
(C/min) 

0.1-50  103-105 103-107 103-105 

Warming 
Rates (C/min) 

0.1-100 103-106 103-107 102-108+ 

Sample Size 1 - 10 µL 1 nL - 100 µL 1 pL - 1 nL 1 nL - 100 µL 

Benefits 
Highly sensitive. 

Quantitative phase 
change detection. 

Low cost. Simple 
implementation. 

Highly sensitive. 
Quantitative phase 
change detection. 
Large rate regime. 

Large rate regime and 
arbitrarily large 
warming rates. 

Volumetric warming. 

Drawbacks 

Slow rates, especially 
on cooling. Difficult 
to maintain cooling 

rates in the cryogenic 
temperature range. 

Volume limited 
rates. Qualitative 

ice detection. 

Expensive. 
Evaporation. 
Appreciable 

surface nucleation.  

Qualitative ice 
detection. Limited by 

achievable cooling 
rate. 
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have not been directly measured much above 105 °C/min due to a combination of factors 

making the achievable rates lower than convective warming. First, convective cooling 

involves quenching into a cold fluid, typically liquid nitrogen, so the maximum temperature 

difference between the bath and sample is about 200°C whereas convective warming can 

have temperature differences of 400°C or larger using hot oil. Additionally, quenching into 

liquid nitrogen introduces the Leidenfrost effect, where upon quenching a thin layer of liquid 

nitrogen vapor blankets the sample and reduces heat transfer, and thus cooling rate.108 

Depending on the size and temperature of the sample being plunged heat transfer coefficients 

for liquid nitrogen vary from less than 1000 W/(m2 °C) up to 106 W/(m2 °C).109,110 Measuring 

CWRs above 105 °C/min requires nanoliter-scale droplet volumes, which in turn require 

extremely fine-gauge thermocouples to measure the warming rate without introducing 

uncertainty due to the thermal mass of the thermocouple. Due to these problems, CWRs in 

excess of 106 °C/min have yet to be measured; however, with the advent of the laser 

nanowarming of small specimens (cells, embryos, and larvae) in dilute CPAs, calorimetric 

data in this regime are becoming increasingly important.111,112 The use of a high-power laser 

and highly absorbent nanoparticles has been demonstrated to attain uniform warming rates 

in excess of 107 °C/min in microliter-scale droplets, providing an excellent framework upon 

which an ultra-rapid laser calorimeter can be used to detect the CWRs of cryoprotectants 

in regimes previously unattainable, thereby allowing for the decoupling of cooling rate and 

CWR measurements.  

 In this study, a high-power pulsed laser, high-speed camera, and gold nanoparticles 

(GNPs) were used to create a laser calorimeter to measure the CWRs of low concentrations 

of propylene glycol (PG), trehalose, and glycerol and mixtures of glycerol and PG with 

trehalose in the 106-107 °C/min warming rate range (20-40 wt%). CCRs were also measured 

via direct quenching to determine how the relationship between CCR and CWR changes 

with CPA concentration. In addition to these experiments, a theory for determining the 

CCR and CWR of mixtures of CPAs was developed and tested. To help understand the 
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thermal gradients and warming rates measured by laser calorimetry, Monte Carlo (MC) 

simulations of photon transport and finite element heat transfer modeling were carried out. 

4.2 Model development 

A vast amount of experimental evidence indicates that the CCR and CWR of a CPA have 

an exponential relationship with concentration.37,69 By taking advantage of this property, we 

can create a model that describes what happens to CCR or CWR of mixtures of CPAs, given 

knowledge of the CPAs in the mixture. For brevity, only the CCR will be considered in the 

following analysis, though it is also valid for CWR as well. 

4.2.1 Single species CCR estimation 

Since CCR depends exponentially on concentration, it can be expressed in the form 

 𝑅𝑅 = 𝐴𝐴𝑒𝑒−𝛼𝛼𝑐𝑐 (4.1) 

where 𝐴𝐴 and 𝛼𝛼 are constants, 𝑐𝑐 is the weight fraction concentration, and 𝑅𝑅 is the CCR. In 

principle, the CCRs of all CPAs should have identical 𝐴𝐴 values since at zero concentration 

they are all identically water. Consider a mixture of two CPAs at concentrations 𝑐𝑐1 and 𝑐𝑐2 

whose individual CCRs can be expressed by the equations  

 𝑅𝑅1 = 𝐴𝐴𝑒𝑒−𝛼𝛼1𝑐𝑐1, 𝑅𝑅2 = 𝐴𝐴𝑒𝑒−𝛼𝛼2𝑐𝑐2 (4.2) 

4.2.2 Two-species CCR estimation 

The CCR of the mixture of these two CPAs must take the form of 𝑅𝑅1,2 equation (4.3), 

which is further discussed in the supplemental material. This reduces to 𝑅𝑅1 and 𝑅𝑅2 for 𝑐𝑐2 =

0 and 𝑐𝑐1 = 0 respectively, where 𝑓𝑓 is some unknown function 

 𝑅𝑅1,2 = 𝐴𝐴𝑒𝑒−𝛼𝛼1𝑐𝑐1𝑒𝑒−𝛼𝛼2𝑐𝑐2𝑒𝑒−𝑜𝑜(𝛼𝛼1,𝛼𝛼2,𝑐𝑐1,𝑐𝑐2)𝑐𝑐1𝑐𝑐2 (4.3) 

The function 𝑓𝑓 cannot be determined a priori; however, experimental evidence may provide 

insights into its functional form. The relationship between exponential factors, shown in 

Figure 4.13 for the CCR, was determined to be a linear average of their respective 

concentrations based on analysis of the data in Figure 4.8 and Figure 4.9. Since the 
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exponential factors of a unary trehalose solution and a unary glycerol solution are almost 

identical, the exponential factor of glycerol-trehalose mixtures has almost no concentration 

dependence. Using this linear relationship, we arrive at a functional form for 𝑓𝑓 and thus an 

expression for 𝑅𝑅1,2. 

 𝑓𝑓 =
(𝛼𝛼2 − 𝛼𝛼1)

𝜒𝜒1
 (4.4) 

 𝑅𝑅1,2 = 𝐴𝐴𝑒𝑒−𝛼𝛼1𝑐𝑐1𝑒𝑒−𝛼𝛼2𝑐𝑐2𝑒𝑒−𝛼𝛼2−𝛼𝛼1𝜒𝜒1
𝑐𝑐1𝑐𝑐2 (4.5) 

In this equation, 𝜒𝜒1 is the concentration weight fraction for species 1 at saturation in water. 

For trehalose, this value is roughly 0.4, corresponding to a solubility of 69g per 100g of 

water.  

2.3 Multi-species CCR estimation 

From this expression, we can apply the same argument for a mixture of 𝑛𝑛 CPAs.  

 𝑅𝑅𝑛𝑛(𝑐𝑐1, … , 𝑐𝑐𝑛𝑛) = 𝐴𝐴 � 𝑒𝑒(−𝛼𝛼𝑖𝑖𝑐𝑐𝑖𝑖)
𝑛𝑛

𝑖𝑖=1
� 𝑒𝑒−

𝛼𝛼𝑗𝑗−𝛼𝛼𝑖𝑖
𝜒𝜒𝑖𝑖

𝑐𝑐𝑖𝑖𝑐𝑐𝑗𝑗

1≤𝑖𝑖<𝑗𝑗≤𝑛𝑛
 (4.6) 

In summary, equation (4.6) can be applied to both CCR and CWR experimental results in 

single and mixture CPA solutions. Additional discussion for when the leading preexponential 

constant A varies between CPAs can be found in the section 4.4.   

4.3 Methods for CCR and CWR Attainment 

4.3.1 Critical cooling rate measurements 

Two CPA mixtures were considered for this study: a PG-trehalose-water solution and a 

glycerol-trehalose-water solution, and the concentration fractions of the individual CPA 

chemicals were varied. A cryotop consisting of an 80-µm-thick strip of polypropylene adhered 

to a 5-mm-diameter wooden rod was constructed to hold the sample.113,114 Next, a 25-µm-

diameter Type T unsheathed fine-gauge thermocouple was fastened to the cryotop with 

cyanoacrylate so that the junction of the thermocouple resided near the leading edge of the 

cryotop. For data acquisition, a StingRay DS1M12 from EasySync Ltd connected the 
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thermocouple directly to a laptop. This method of thermocouple data acquisition with a 

cryotop builds directly from methods outlined in Kleinhans 2010.115 The thermocouple-

cryotop assembly was then attached to a mechanical jig that controlled its height. This 

design feature allowed for the controlled plunging of the sample into liquid nitrogen (LN2), 

thereby increasing the repeatability between trials, shown in Figure 4.1. A micropipette was 

used to place a droplet of the CPA solution on the cryotop so that the thermocouple junction 

was directly in the center of the hemispherical droplet. Then, the droplet was plunged into 

LN2, allowed to reach thermal equilibrium with the LN2, and then raised up to assess ice 

formation by visual assay. Samples with any traces of ice were classified as not vitrified. 

Figure 4.2 provides a demonstration of the vitrification criterion used. The temperature data 

gathered were then labeled as either vitrified or not vitrified. 
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Figure 4.1. Schematic of CCR experimental setup 

 

Figure 4.2. Visual assay to assess ice formation. Images show a gradually increasing concentration 

of PG from left to right and its effect on the amount of ice detected. The right-most image is the only 

image we classified as vitrified.  

 Temperature data were then exported to MATLAB for analysis. A best fit line of 

temperatures between -20 °C and -190 °C was used to determine the cooling rate in the 

droplet, as shown in Figure 4.4. The temperature profiles were approximately linear in this 

range of temperatures for droplets smaller than 10 µL. The cooling rate was controlled in 

this experiment through volume modulation of the droplet, shown in Figure 4.5. There are 

some differences between the measured data in Figure 4.5 and the data gathered in this 

study. Wowk and Baudot used DSC to extract kinetic parameters to estimate the CCRs 
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using Boutron’s model P. Boutron, Cryobiology 23, 88–102 (1986). Warkentin uses x ray 

diffraction of quartz capillary tubes which show high variability in CCR. Their data also 

follows roughly the same trend as ours but is offset. This may be due to several factors. 

First, they used XRD to validate vitrification, which may be less sensitive than visual 

detection, making their measurements lower than ours. Additionally, they had difficulty 

measuring cooling rate as it was not linear for many of their samples, due to film vs 

nucleate boiling during cooling in liquid propane and liquid nitrogen, likely causing the 

large uncertainty in measurement. 

 

Figure 4.3. CCRs attained via measurement by thermocouple and LN2 quenching compared with 

the critical cooling data available in the literature for PG (a) and glycerol (b). Error bars represent 

the difference between the lowest measured cooling rate that achieved vitrification and the largest 

measured cooling rate that did not achieve vitrification.  
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To determine the CCRs of the CPAs, the following technique was employed. First, a 5-µL 

droplet of CPA was plunged into LN2, and its cooling rate was recorded. Droplets larger 

than 5 µL gave inconsistent cooling rates due to cracking, so the starting volume for the 

CCR experiments was limited to 5 µL. If this solution vitrified, the CPA concentration was 

too high for the CCR to be measured by this particular method, and the CPA concentration 

was simply lowered until the 5 µL droplet did not vitrify. The droplet volume was then 

decreased until no ice could be visually detected after plunging the droplet in LN2. The 

cooling rate measured at this point was called the CCR. Using this method, CCRs between 

5,000 and 100,000 °C/min were attainable.  

 

Figure 4.4. Thermocouple data obtained from LN2 quenching of a 0.9-µL droplet of PG. 
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Figure 4.5. Dependence of the cooling rate on droplet volume for cryotop quenching into LN2, (a) 

linear and (b) log-scale concentration. 
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4.3.2 Laser calorimetry  

 

Figure 4.6 (a) Schematic of Laser Warming. (b) Plot showing how warming rates are calculated 

from temperature indicators in high-speed videos of laser warming. 

Microliter droplets (0.1-0.5 µL) of a CPA and gold nanorod (GNR) solution were 

placed on the tip of a cryotop and plunged into LN2. Droplet solutions were chosen so that 
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the cooling rate of plunging was sufficiently above the CCR of the CPA to minimize 

crystallization during cooling. Next, a 2-mm-diameter unpolarized 1064 nm pulse laser with 

a peak power of 10 kW (LaserStar, Model Number 585-986-080) was fired vertically on the 

top of the hemispherical droplet, initiating plasmonic heating facilitated by the presence of 

GNRs, allowing for ultra-rapid warming of the droplet. The concentration dependent 

absorption coefficient for the GNR solution was measured via UV-Vis spectroscopy, see 

Figure 4.17. From this data, the GNR concentration (1.65×1016 - 6.83×1016 nps/m3) was 

chosen so that the absorption coefficient was between 0.5 cm-1 and 2.0 cm-1, corresponding 

to a transmittance of 80-95% through the microliter-(mm) scale droplets assuming Beer’s 

law, allowing for warming rates between 4.0×105 and 107 °C/min given the energy of the 

laser,116 Since the transmittance was large, there was negligible attenuation of the laser 

throughout the droplet, thus leading to relatively uniform warming rates.  During warming, 

a high-speed camera (MEMRECAM Qv1) with an adjustable lens (Nikon ED 200 mm 1:4D) 

was used to record the changes in the droplet. Frame rates between 4,000 and 15,000 frames 

per second (fps) were used over the course of this study. The maximum frame rate of the 

camera is 84,000 fps, which corresponds to a maximum detectable rate on the order of 108 

ºC/min, assuming 10 frames are needed to resolve the warming rate. Dynamic ice detection 

was performed by visually identifying the occurrence of ice (i.e., a white opaque regions) in 

droplets using high-speed video footage. Image processing tools that adjusted the contrast 

aided in the detection of ice near the visual limit of detection. Figure 4.7 shows the difference 

between a vitrified droplet and one with ice during warming. Due to the high-speed camera’s 

ability to detect some near infrared light, there was a bright flash at the moment the laser 

fired. This flash allowed for the synchronization of the high-speed camera and laser pulse, 

thus determining the exact time the laser fired.  



     

98 
 

 

Figure 4.7. The figure above shows a vitrified droplet (a) and a droplet mid-pulse during laser 

warming (b). The opaque areas in the middle of the droplet on the right correspond to ice formation 

during warming, indicating that the warming rate was lower than the CWR. The opaque areas in the 

vitrified droplet on the left are reflected images of the laser chamber interior. One characteristic of 

the nucleated ice is that it moves within the droplet during laser warming (see videos of laser warming 

in the supplemental material), providing a distinction between these artifacts and ice. 

The CWR of the CPA was detemined by modulating the laser energy in the following 

fashion. First, the droplet was warmed at the lowest laser setting (4.92×107 W/m3) and 

assessed for ice. If no ice was detected, the concentration of GNRs in the droplet was 

decreased until a concentration that led to ice formation was identified. Once a sufficiently 

low GNR concentration that led to ice formation was identified, the laser voltage was 

increased by increments of 5 V, which increased the warming rate slightly. This procedure 

of increasing the laser voltage was continued until no ice was detected during warming. The 

warming rate observed when any further increase in laser voltage led to no detectable ice 

was identified as the CWR. The warming rates were attained through analysis of the high-

speed video, from which the times at which the laser fired, ice formed, ice completely melted, 

and the sample boiled were detemined. By assuming that the temperatures of the droplet 

when the ice melted and liquid boiled are the melting and boiling temperatures of the CPA 

solution, respectivly, and that the initial temperature of the droplet is -196 degrees °C (LN2 

temperature), the high-speed camera data can be used to arrive at two different values for 

the average warming rate in the droplet. The laser was fired just prior to the residual liquid 
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nitrogen evaporating, so we are confident that the initial temperature of the droplet is -196 

degrees °C. The internal droplet temperature after leaving the LN2 bath was measured and 

showed the droplet temperature remains at LN2 temperature until the boiling of adjacent 

LN2 has ceased.  Since the laser was fired once the residual LN2 evaporated, we are confident 

in the assumption that the droplet is at LN2 temperature the moment the laser fires. The 

final warming rate was determined by averaging the warming rates estimated based on the 

temperature indicators of ice melting and liquid boiling, assuming ice was detected. In the 

cases where no ice was detected, the boiling temperature indicator was used alone. These 

scenarios allowed for more accurate upper bound error estimation. Figure 4.15 shows high-

speed videos of under-warmed and critically warmed droplets. 

4.4 Results and discussion 

4.4.1 Validity of visual assay to determine CCR and CWR  

Visual detection of melting and boiling is key for this analysis to be valid. By warming 

below the CWR we are able to see ice form and then subsequently melt as the droplet 

temperature increases. The time at which all ice has melted (disappeared) is noted and 

corresponds to the droplet being at the melting temperature. Thus, by using the frame 

data we can then calculate the warming rate since we know the time at two temperature 

points (LN2 and melting). We slowly increasing warming rate until no ice was formed on 

warming. This was the critical warming rate calculated from ice melting. For boiling, we 

used pulses that were longer than necessary to bring the droplet up to room temperature, 

thus causing the droplet to boil. When boiling bubble formation encompassed the entire 

droplet, the temperature was assumed to be the boiling temperature. Incidentally, the 

rates from boiling warming rate and melting warming rate were similar, which makes sense 

as the temperature increased linearly due to the laser. This gives us confidence that both 

temperature indicators are satisfactory.   
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When considering CCR and CWR measurements, it is important to interpret the 

data with respect to the method with which it was gathered. For example, measurements 

made with DSC examine heat flow associated with crystallization and may give different 

results than convective methods that rely on the visual detection of ice, which itself is 

subjective. Even CCR and CWR data gathered by the same method, DSC for example, may 

differ simply from the use of different sample sizes or pans of different roughness, which can 

alter nucleation in the sample. A separate problem arises in convective methods that rely on 

visual detection, where differences in lighting, image resolution, and experimenter 

subjectivity all can lead to different measurements of CCR and CWR. Figure 4.3 shows that 

the CCRs of glycerol and PG exhibit the same trends, or have roughly the same slopes, with 

changing concentration as those reported in the literature.69,117,118 DSC in general agreed 

better with our CCR data than convective cooling in capillary tubes; however, there was 

considerable variability in CCR data gathered via capillary tubes for glycerol than the data 

gathered here with freely exposed droplets. Additionally, extrapolations of CCRs of PG and 

glycerol to zero concentration give a CCR for pure water on the order of 107 °C/min, 

consistent with a meta-analysis of CCR data in the literature. The degree of offset between 

the measured values and those from the literature differ between PG and glycerol, which is 

to be expected, as the data from the literature were gathered via DSC for PG and via 

capillary quenching for glycerol. However, the exponential trend for CCR and concentration 

should be mostly independent of characterization method, as was observed, with the 

magnitude of the offset between methods governed by the detection threshold of 

crystallization for vitrification. In both cases, since the offset appears to be constant with 

concentration and the exponential factor is roughly the same, the offset between methods 

can likely be attributed to differences in the thresholds for the visual detection of ice, where 

the cryotop quenching method for attaining CCRs likely has a lower threshold than DSC 

and capillary quenching. One explanation for this difference in detection threshold is the 

small size of the capillary tubes, which makes the visual assessment of crystallization 

difficult. It is also possible that the cryotop induces more heterogeneous nucleation than the 
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capillary tube and DSC, requiring larger CCRs to compensate for increased nucleation. Note 

that in both Figure 4.8 and Figure 4.3, no data obtained by convective methods go beyond 

106 °C/min. The ultimate limit of detection for convective warming has not been explored, 

but given the thermocouples currently available on the market, 106 °C/min is likely 

approaching this limit (see further discussion in SM). 

There were larger uncertainties in the CWR experiments than in the CCR 

experiments, with generally better fitting data in the latter, see Figure 4.8. This difference 

can be attributed to several causes. First, the droplets in the CCR experiments were at LN2 

temperature when analyzed, which provided a static view of the degree to which the droplet 

was crystalized and allowed for the use of high-quality imaging to aid ice detection. In the 

CWR experiments, the high-speed video frames were less resolved than the images taken in 

the CCR experiments, making ice detection more difficult. Bubble formation from laser 

warming also made ice detection difficult in some cases by obscuring the ice underneath. 

The most prominent source of error was likely the temperature gradients within the warming 

droplet itself, with parts of the droplet warming faster than others. The source of these 

gradients and the implications for the CWR measurements are discussed in more detail 

below. It should be noted, though, that these temperature gradients also exist in convectively 

warmed and cooled droplets, so the relative magnitude of the gradients is important when 

considering error in the measurements. Future studies may incorporate more advanced image 

processing techniques to quantitatively determine the amount of ice in droplets systems, 

such as those used in the measurement of ice growth rates in thin films of CPAs.119  
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4.4.2 Concentration dependence of CCR and CWR  

 

Figure 4.8. Measured CCRs and CWRs of CPA solutions. Plots show CCR of (a) PG-trehalose 

solutions and (b) glycerol-trehalose solutions; and CWRs of (c) PG-trehalose solutions and (d) 

glycerol-trehalose solutions. Each plot includes the two-species model equation (4.6) for the 

CCR/CWR based off the CCR/CWR measurements of single-species solutions of trehalose, PG, and 

glycerol. 
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Table 4.2. Exponential and pre-exponential factors for the cooling and warming rate dependence of 

the CCR and CWR, respectively. 

 

The CCRs measured for PG-trehalose and glycerol-trehalose solutions both showed 

a strong exponential dependence on concentration (Figure 4.8). The CCR and CWR data 

for unary solutions of glycerol, PG, and trehalose in Figure 4.8 and Figure 4.9, along with 

equation (4.6), allowed for calculations of the CWRs and CCRs of the mixtures of these 

solutions, which are shown as the model lines in Figure 4.8. This calculation was contingent 

on the data in Figure 4.13, which indicate the functional form of the concentration 

dependence of the exponential factor from equation (4.4). Figure 4.13 shows how the 

exponential factor changes as the concentration of trehalose is altered, indicating that a 

linear relative concentration averaging of exponential factors is appropriate for a two-species 

solution, e.g., a constant change in concentration fraction leads to a constant change in the 

exponential factor. This result allows for a simple calculation of the changes in the CCR or 

CWR of a solution as the concentrations of its constituents are altered, provided that the 

exponential and pre-exponential factors for the individual constituents are known. Using this 

relation, one can identify better CPA mixtures by analyzing the effects of changes in the 

component concentrations on the CCR and CWR without requiring cumbersome and slow 

characterization. The exponential and pre-exponential factors for glycerol, PG, and trehalose 

are given in Table 4.2. We see some deviation from this model, but the general trends seem 

 
𝑨𝑨  

Pre-exponential 
factor CCR 
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𝑨𝑨  
Pre-exponential 

factor CWR 
(°C/min) 

𝜶𝜶 
Exponential 
factor CCR 

(wt%-1) 

𝜶𝜶 
Exponential factor 

CWR 
(wt%-1) 

Trehalose 3.64E7 6.42E10 0.207 0.243 

PG 5.22E7 7.26E10 0.325 0.368 

Glycerol 4.96E7 2.18E11 0.216 0.295 
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to be captured quite well. In Figure 4.8c, we see that the model-predicted lines converge 

towards a singular point near 50 wt% concentration of PG. Of course, in reality, this 

convergence does not occur and is simply the consequence of uncertainty being compounded 

with further extrapolation. In other words, the multi-species mixing model for CWR and 

CCR works best in the regime that the data were measured in barring some low-error 

measurement method that can measure across large sections of the concentration regime. 

Another option is to drastically lower the uncertainty in the concentration regime that the 

measurements were made in, thereby allowing for more confident extrapolations both 

forward and backward. The CCRs and CWRs for trehalose were measured for higher 

concentrations of 35-40 wt% while at lower concentrations they were then estimated by 

taking the exponential fit data for trehalose-glycerol and trehalose-PG mixtures in Figure 

4.8 and extending them to zero concentration for PG and glycerol. This data was used in 

combination with the measured values for trehalose to derive the exponential fit parameters 

for trehalose, which are shown in Table 4.2 along with those for PG and glycerol. The low-

concentration extensions for both the CCRs and CWRs of trehalose line up with the 

measured data, implying that the estimation of the CCRs and CWRs for lower 

concentrations of trehalose is accurate, assuming that the exponential dependence on 

concentration behaves similarly at low concentrations as it does at moderate concentrations. 

Additionally, it was shown that trehalose has a larger effect on the CCR and CWR of 

glycerol than on those of PG, though the exact mechanism causing this is unclear. One 

proposed mechanism is that added sugars affect the CPA glass transition temperature, 

thereby altering the vitrification properties.120  It is also possible that the large difference in 

viscosity between PG and glycerol plays a role. We offer an additional explanation based on 

equation (4.6). If we compare two solutions of equal weight percent trehalose and 

glycerol/PG, we see that the only differing parameter is 𝛼𝛼𝑗𝑗. Since we have already 

determined that PG-water solutions have a higher 𝛼𝛼𝑗𝑗 that glycerol-water solutions, it follows 

directly that the addition of trehalose, or for that matter, any other CPA, will affect the 
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CCR and CWR of the glycerol solutions more than those of the PG solutions with respect 

to concentration. 

  

Figure 4.9. (a) CCRs of trehalose gathered by direct measurement and extrapolation of the CCRs 

from glycerol-trehalose and PG-trehalose solutions. Also shown is the predicted CCR of pure water. 

(b) CWRs of trehalose gathered via laser calorimetry of trehalose solutions and extrapolations from 

the laser calorimetry of glycerol-trehalose and PG-trehalose solutions.  

Table 4.3. Estimated values of the CCR and CWR of pure water from the experimental values 

attained from LN2 quenching and laser calorimetry of PG, glycerol, and trehalose solutions. 

Rates Experimental 

CCR 3.64 −5.22E7 (°C/min) 

CWR 0.64− 2.18E11 (°C/min) 
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The CCRs and CWRs of CPAs are known to depend exponentially on concentration 

in several different concentration regimes. Unfortunately, due to the constraints on the 

methods for measuring the CCR and CWR, one method cannot be used over the entire 

concentration regime, as shown in Figure 4.10. That is to say, it is not that data collected 

by different methods cannot be directly compared but that some discrepancies are to be 

expected when comparing CCRs and CWRs from different methods. Thus, we cannot be 

certain that the exponential relationship applies across the entire concentration regime or if 

the limitations of the methods themselves mask the true relation. As a result of the method 

constraints, measurements are made by DSC in the low-rate regime (<100 °C/min), by 

convective cooling/warming via quenching in the moderate-rate regime (103-106 °C/min), 

and by laser calorimetry for CWR measurements only in the high-rate regime (>106 °C/min). 

As of this date, there exists no method capable of volumetric cooling in this high-rate regime. 

Each method has unique limitations. DSC is limited by the ability to stably extract or add 

heat to a sample and by the sensor sensitivity. Convective methods rely on thermocouples, 

which inherently have a maximum detectable rate. The thermocouple also adds thermal 

mass and possible nucleation sites to a system, thereby altering the CCR or CWR 

measurement. The key downside of convective methods is that outside of the lumped regime 

(i.e., larger droplets) temperature gradients can be appreciable so that measured 

temperatures at one point are not representative of the whole system. Additionally, because 

the way to attain larger warming rates is to decrease the sample volume, different warming 

rates necessarily have different cooling rates prior to warming in convectively warmed 

systems.  

The general question now arises as to how the CWR should be measured, for 

instance, whether all samples should be cooled at the same rate prior to warming or whether 

samples should be cooled as fast as possible prior to warming. At higher CPA concentrations, 

which correspond to lower warming rates, this requirement does not pose much of a problem, 

as cooling rates much larger than the CCR are easily attainable, but this is not true as the 
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CPA concentration is decreased. Laser calorimetry is still limited by size on cooling, but 

relatively uniform warming at arbitrary rates is achievable, allowing for a much more robust 

characterization of the CWR along with the ability to attain much larger warming rates. As 

the CPA concentration decreases and the CCR increases, temperature uniformity on 

warming becomes much more important, as conduction no longer smooths out the 

temperature gradients on the shorter timescales during warming. Future experiments 

involving less powerful lasers may make it possible to determine CWRs from 100 °C/min up 

to 108 °C/min, all being warmed uniformly with the cooling rate under precise control, 

thereby eliminating much of the error between characterization methods. It should also be 

noted that coupling high-power laser calorimetry with faster droplet cooling approaches will 

make possible the characterization of CWRs of CPAs in the 1-2 M regime (~10-20 wt%), 

with rates exceeding 108 °C/min. 

In the literature, extrapolations of CWR data from moderate-concentration CPAs 

out to zero concentration yield extreme differences in the CWR of pure water, though the 

measured data follow exponential fits quite well in the regimes they were measured in. The 

estimated values of the CCR and CWR for water that are derived from the PG, glycerol, 

and trehalose data are shown in Table 4.3. The same treatment of the literature data for 

the CCR from moderate-concentration CPAs also yielded differences in the CCR of water 

but to a much lesser extent. These differences in the extrapolated CWRs and CCRs of water 

could be caused by errors in the measurement methods themselves or by the possibility that 

the CCR and CWR do not follow an exponential dependence on concentration throughout 

the entire concentration regime. The discrepancies between the extrapolated values from 

different CPAs are much more apparent in the CWR measurements than in the CCR 

measurements, possibly implying the presence of systemic errors in the measurement 

methods themselves. There is also evidence that the exponential relationship between 

CWR/CCR and concentration does not apply to the entire concentration regime, as it is 

known to break down at high concentrations; however, it is unclear whether this breakdown 
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is due to the different characterization methods applied in the different regimes shown in 

Figure 4.10 or differences in sample volume or whether it is a fundamental property of CPAs.  

 Using the rotational correlation time for water, the time it takes for a water molecule 

to rotate one radian via diffusion, we can estimate an upper bound on the CWR for pure 

water. This correlation time has been measured at 1.7 ps,121 which means that if water is 

warmed from its glass transition temperature to the melting temperature faster than 1.6×1015 

°C/min, the water molecules will not have enough time to rotate and align in the new crystal 

formation, assuming a maximum necessary rotation of 180 degrees. This of course is an 

overestimate, as the rotational correlation time for supercooled and vitrified water is 

certainly larger than that of room-temperature liquid water. Therefore, we can infer that 

extensions of CWRs beyond 1015 °C/min are erroneous and that either the exponential model 

breaks down or there is error in the measurement.  

The ratio of CWR to CCR was also shown to be exponentially dependent on 

concentration based on the multi-species model developed and data gathered throughout the 

experiments (see Figure 4.9 and Figure 4.14). This dependence is to be expected, as both 

the CCR and CWR are exponentially dependent on concentration. It was found that the 

lower the concentration is, the larger the difference between the CWR and CCR, with 

estimates of the difference for pure water being a factor of roughly 3000-3500. This result 

has unfortunate implications for cryopreservation. As the concentrations of CPAs are 

lowered to avoid CPA toxicity, not only does the CCR rise, but the CWR rises at an even 

faster rate, meaning that extremely fast warming rates on the order of 109 °C/min are 

required to rewarm CPA concentrations under 15 wt%, at least for the CPAs studied. Unless 

CPAs that have a much lower CWR/CCR ratio exist, it seems unlikely that the current 

methods will successfully rewarm samples with CPA concentrations much under 15 wt% 

without appreciable ice formation. 
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Figure 4.10. Effect of trehalose on the relationship between CWR/CCR and CCR of glycol-trehalose 

solutions. The CWRs and CCRs were determined from the two-species model based on the quenching 

and calorimetry experiments. The shaded regions show the different CWR measurement regimes 

corresponding to conventional DSC, direct quenching, and laser calorimetry with our current system. 

Different laser powers and high-speed cameras allow the boundaries of the laser calorimetry region to 

be extended.  

Figure 4.9 illustrates this difference with a plot of CWR/CCR vs CCR. One can see 

that in a two-species solution of glycerol and trehalose, the CWR/CCR curves of the 

individual species form upper and lower bounds to the CWR/CCR curves of mixtures of the 

two species. This feature arises because the exponential factors of a unary trehalose solution 

and a unary glycerol solution are almost identical, and so the exponential factor of glycerol-

trehalose mixtures has almost no concentration dependence. In contrast, for PG-trehalose, 

shown in Figure 4.14, these lines cross, which can be attributed to the concentration 

dependence of the exponential factor between PG and trehalose. Since the minimum 
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warming rate of the laser was 400,000 °C/min, a line taken from 400,000 °C/min on the y-

axis to 400,000 °C/min on the x-axis in Figure 4.9 arrives at the lower bound of the red-

shaded laser calorimetry region. This red-shaded region could be broadened with the 

implementation of lasers of higher or lower power as well as faster high-speed cameras. The 

volume of the sample is also a limiting factor in laser calorimetry. In principle, much smaller 

droplets than were used in the study could be constructed and measured via laser 

calorimetry; however, this measurement would require an additional focusing lens for the 

high-speed camera. Additionally, it should be noted that this upper limit on the warming 

rate measurement was not reached in this study and that vitrification on cooling was actually 

the limiting factor.  

4.4.3 Mixture Model 

We come across the relation for a mixture of two CPAs by this simple method. We know 

that at  𝑐𝑐1 = 0 the 𝑅𝑅1,2 = 𝑅𝑅2 since it is no longer a mixture but a unary solution, likewise 

for 𝑐𝑐2 = 0. Then the following function maintains both these constraints. 

 𝑅𝑅1,2 = 𝐴𝐴𝑒𝑒−𝛼𝛼1𝑐𝑐1𝑒𝑒−𝛼𝛼2𝑐𝑐2𝑒𝑒−𝑜𝑜(𝛼𝛼1,𝛼𝛼2,𝑐𝑐1,𝑐𝑐2)𝑐𝑐1𝑐𝑐2 (4.7) 

 

We notice in Figure 4.11 that this formula for mixing comes naturally from the graphical 

representation of how the mixture of two CPAs should affect CCR or CWR, so that 𝑅𝑅1,2 

contains both 𝑅𝑅1 and 𝑅𝑅2, and that the mixing terms is some function of the individual 

components, all while maintaining exponential dependence on concentration. 
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Figure 4.11. Shows how the CCR or CWR is changed when two CPAs are mixed together (assuming 

equal pre-exponential factors), where concentration simply refers to the total concentration of all 

components of the CPA. 

In theory, the preexponential factor should be the same for all cryoprotectants, but 

in actuality, there will be differences due to error and uncertainty, and breakdowns in the 

exponential trend. To combat this variation, the pre-exponential factor can be considered to 

be the average of those for each individual species 𝑖𝑖 in the mixture.  

 𝐴𝐴𝑡𝑡𝑣𝑣𝑔𝑔 = 1
𝑁𝑁

� 𝐴𝐴𝑖𝑖

𝑁𝑁

𝑖𝑖=1
 (4.8) 

 

So, equation (4.6) for 𝑡𝑡hen becomes 

 𝑅𝑅𝑛𝑛(𝑐𝑐1,… , 𝑐𝑐𝑛𝑛) = 𝐴𝐴𝑡𝑡𝑣𝑣𝑔𝑔 � 𝑒𝑒(−𝛼𝛼𝑖𝑖𝑐𝑐𝑖𝑖)
𝑛𝑛

𝑖𝑖=1
� 𝑒𝑒−

𝛼𝛼𝑗𝑗−𝛼𝛼𝑖𝑖
𝜒𝜒𝑖𝑖

𝑐𝑐𝑖𝑖𝑐𝑐𝑗𝑗

1≤𝑖𝑖<𝑗𝑗≤𝑛𝑛
 (4.9) 
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For CPA mixtures with constituents that have pre-exponential factors that vary 

considerably, a similar treatment must be applied to the pre exponential factor as was done 

in equation (4.4). For a mixture of two species if the linear concentration average that 

applied for the exponential factor also applies to the pre-exponential factor, we arrive at 

equation (4.10). 

 𝐴𝐴𝑚𝑚𝑖𝑖𝑚𝑚 = 𝐴𝐴1 +
𝐴𝐴2 − 𝐴𝐴1

𝜒𝜒2
𝑐𝑐2 (4.10) 

 

At this moment it is not known if equation (4.10) is valid. Verification is left to a future 

study, though we hypothesize this behavior which is seen in Figure 4.12. 

 

Figure 4.12. Shows how the CCR or CWR is changed when two CPAs are mixed (assuming mixing 

of pre-exponential factors), where concentration simply refers to the total concentration of all 

components of the CPA. 
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Figure 4.13. Concentration dependence of the exponential factor for a PG-trehalose mixture (a) and 

a glycerol-trehalose mixture (b). 
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Figure 4.14. Effect of trehalose on the relationship between CWR/CCR and CCR of PG-trehalose 

solutions. The CWRs and CCRs were determined from the two-species model based on the quenching 

and calorimetry experiments.  

4.5 Warming Rate Estimation 

4.5.1 Warming rate estimation via highspeed camera   

The high-speed camera had the ability to pick up near-infrared radiation, which was advantageous 

for synchronizing the camera with the laser pulse, allowing for accurate estimation of the start of the 

laser pulse. By using this time point with temperature indicators at the melting point and boiling 

point of the CPA, we could predict the warming rate in the droplet during laser warming. This 

treatment is contingent on an absence of substantial superheating of the liquid and solid phases in 

the droplet. If this superheating were to occur, we would expect major differences in the warming 

rates calculated from melting and boiling. Fortunately, there was not a significant difference between 

these two metrics, at least with respect to the error in the system. That is, the inter-droplet variability 

outweighed any differences between warming rates calculated with these two metrics.  
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VIDEO LINKS IN CAPTION 

Figure 4.15. Videos of laser warming for a droplet warmed below the critical warming rate (a) 

https://www.youtube.com/watch?v=TY5WjSFbjsw and above the critical warming rate (b) 

https://www.youtube.com/watch?v=q4aM0Ekpiq8 

 

The two most substantial sources of error in the laser calorimetry experiments are 

thought to be the droplet shape and random scattering due to bubble and crystal formation, 

both of which affect the absorption profile in the droplet and induce thermal gradients. In 

some cases, a ring of ice formed around the base of the droplet at the beginning of a set of 

experiments. This ice formation was due to the curvature of the droplet being too large and 

causing lensing of the laser, as seen in Figure 4.18. Over the course of a set of experiments, 

residue from the droplets would build up on the cryotop and increase the effective 

hydrophilicity of the cryotop surface, leading to flatter droplets and a reduction in the 

number of droplets with this ring feature. Warming rates taken from droplets with an 

apparent ice ring at the base were simply ignored. The droplet shape also changed during 

warming, which altered the absorption profile in the droplet by changing how the droplet 

bent the incoming laser over the duration of the pulse. Due to the random nature of this 

phenomenon, it is difficult to quantify its overall effect on the warming rate measurement 

variability. Bubble and crystal formation in the droplet during warming also induce laser 

scattering, but the extent to which it affects the measurement variability and thermal 

gradients is also unknown and would make an interesting topic for future study. 

https://www.youtube.com/watch?v=TY5WjSFbjsw
https://www.youtube.com/watch?v=q4aM0Ekpiq8
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Figure 4.16. Comparison of the CWRs measured via laser calorimetry and the warming rates 

calculated from the MC model based on the laser settings and gold concentrations in the CWR 

experiments.   

The MC model also provided an independent metric for the warming rate 

calculations in the laser calorimetry experiments. Figure 4.16 shows the measured warming 

rates and the predicted warming rates calculated based on the absorption properties of the 

GNR solution, shown in Figure 4.17, and the laser energy settings used on samples warmed 

at the CWR. Most of the model-predicted rates are within the error bars of the CWR data 

gathered via laser calorimetry. This agreement in the data leads us to believe that the 

warming rates measured in the laser calorimetry experiments are reasonable approximations 

of the true values, since two independent methods gave similar results. The MC model was 

also able to accurately predict the ice ring that forms along the outer edge of the droplet in 

cases of high droplet curvature. The success of the MC model in accurately predicting the 

warming rates and temperature gradients in the droplets suggests that it is a powerful tool 
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for studying warming in warming regimes not yet attainable with current technology (>108 

°C/min) as well as at scales that are invisible to the current high-speed camera, such as on 

the cellular level. 

4.5.2 Modeling warming rates via Monte Carlo light transport simulation   

The validity of the CWR measurements made via laser calorimetry is contingent on the 

uniformity of the temperature profile during warming. If large gradients exist throughout 

the droplet, the calculated warming rate may not be accurate. Temperature uniformity 

during the plasmonic heating of GNPs has been studied via MC modeling previously in Liu 

et al. 2020. 116,122 That MC model of laser warming was adapted to the laser calorimetry 

setup used in this study, which incorporated the scattering, absorption, reflection, and 

refraction interactions of laser photons with droplets. First, a photon path Γ through the 

system consisting of linear segments of length 𝑠𝑠𝑖𝑖 was constructed, where 𝑠𝑠𝑖𝑖 is a function of 

the absorption coefficient 𝜇𝜇𝑡𝑡, scattering coefficient 𝜇𝜇𝑠𝑠, and a uniform random variable 𝑈𝑈[0,1] 

between 0 and 1. 

 𝑠𝑠𝑖𝑖 = −
𝑙𝑙𝑛𝑛�𝑈𝑈[0,1]�
(𝜇𝜇𝑡𝑡 + 𝜇𝜇𝑠𝑠)

 (4.11) 

 

Each of these segments can be thought of as a photon path prior to a scattering event. The 

polar angle 𝜃𝜃 and azimuth angle 𝜑𝜑 between subsequent segments 𝑠𝑠𝑖𝑖 and 𝑠𝑠𝑖𝑖+1 are governed 

by equations (4.12) and (4.13), respectively, where 𝑔𝑔 is the scattering anisotropy coefficient. 

 
𝑐𝑐𝑚𝑚𝑠𝑠(𝜃𝜃) =

�1 + 𝑔𝑔2 − � 1 − 𝑔𝑔2

1 − 𝑔𝑔 + 2𝑔𝑔𝑈𝑈[0,1]
�

2
�

2𝑔𝑔
 (4.12) 

 𝜑𝜑 = 2𝜋𝜋𝑈𝑈[0,1] (4.13) 

Photons that cross the droplet boundary are reflected via Snell’s law with respect to the 

normal direction at the point of intersection. Upon reflection, photon energy is diminished 

according to the Fresnel equations. By applying the expected value to Beer’s law along Γ , 
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we note that the photon energy before and after photon scattering is given by equation 

(4.14), while the energy absorbed is given by equation (4.15).  

 𝐸𝐸𝑖𝑖+1 =
𝜇𝜇𝑠𝑠

𝜇𝜇𝑡𝑡 + 𝜇𝜇𝑠𝑠 
𝐸𝐸𝑖𝑖 (4.14) 

 𝐸𝐸𝑡𝑡𝑎𝑎𝑠𝑠𝑡𝑡𝑐𝑐𝑎𝑎𝑒𝑒𝑑𝑑 =
μ𝑡𝑡

μ𝑡𝑡 + μ𝑠𝑠
 (4.15) 

 

After a sufficient number of scatterings, absorptions, and reflections to cause the photon 

energy to fall below some small threshold, the photon trajectory will be terminated. After 

simulating millions of photons in the environment, we can generate an accurate 

approximation of the heat source function or specific absorption rate (SAR). Once the SAR 

is calculated, it can then be used as input into a COMSOL model of heat transfer within 

the droplet to determine the spatial-temporal temperature profile via finite element analysis.  

 ρ𝑐𝑐𝑝𝑝
∂𝑇𝑇
∂𝑡𝑡

− ∇ ∙ (𝑘𝑘∇𝑇𝑇 ) = 𝑆𝑆𝐴𝐴𝑅𝑅 (4.16) 

 𝑇𝑇 (𝒙𝒙, 0) = 𝑇𝑇𝐿𝐿𝑁𝑁2
,    𝑥𝑥 ∈ Ω (4.17) 

 −𝑘𝑘Δ𝑇𝑇 (𝒙𝒙, 0) = ℎ�𝑇𝑇𝑡𝑡 − 𝑇𝑇(𝒙𝒙, 0)�,    𝑥𝑥 ∈ 𝜕𝜕Ω (4.18) 

 

Where Ω consisted of a hemisphere with diameter 1.24 mm, corresponding to a .5 µL droplet, 

𝑇𝑇𝐿𝐿𝑁𝑁2 was liquid nitrogen temperature 77K, 𝑇𝑇𝑡𝑡 was ambient temperature 273K, and the heat 

transfer coefficient was taken to be 100 Wm-2K-1.123 To verify that there is not extreme local 

heating around each nanoparticle, causing a breakdown of the global heating assumptions, 

we reference the solution to the transient heat equation around a nanoparticle.124  

 𝑇𝑇 (𝑟𝑟, 𝑡𝑡) − 𝑇𝑇∞ =
𝑑𝑑𝑄𝑄𝑛𝑛𝑡𝑡𝑛𝑛𝑡𝑡
4𝜋𝜋𝑟𝑟𝑘𝑘∆𝑡𝑡

�𝑒𝑒𝑟𝑟𝑓𝑓𝑐𝑐 �
𝑟𝑟 − 𝑟𝑟𝑝𝑝

2
√

𝛼𝛼𝑡𝑡
� − exp�

𝑟𝑟 − 𝑟𝑟𝑝𝑝

𝑟𝑟𝑝𝑝
+

𝛼𝛼𝑡𝑡
𝑟𝑟𝑝𝑝

2� erfc �
𝑟𝑟 − 𝑟𝑟𝑝𝑝

2
√

𝛼𝛼𝑡𝑡
+

√
𝛼𝛼𝑡𝑡

𝑟𝑟𝑝𝑝
�� (4.19) 

 

Where 𝑑𝑑𝑄𝑄𝑛𝑛𝑡𝑡𝑛𝑛𝑡𝑡 is the power generated by a single nanoparticle, 𝑟𝑟𝑝𝑝 is the nanoparticle 

diameter, ∆𝑡𝑡 is the pulse duration of the laser, 𝑘𝑘 is the thermal conductivity, and 𝛼𝛼 is the 
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thermal diffusivity. We note that at the nanoparticle surface, the steady state temperature 

difference between the nanoparticle and its surroundings is: 

 ∆𝑇𝑇𝑛𝑛𝑡𝑡𝑛𝑛𝑡𝑡 = 𝑇𝑇 (𝑟𝑟, 𝑡𝑡) − 𝑇𝑇∞ =
𝑑𝑑𝑄𝑄𝑛𝑛𝑡𝑡𝑛𝑛𝑡𝑡
4𝜋𝜋𝑟𝑟𝑘𝑘∆𝑡𝑡

 (4.20) 

 

For the pulse energy of 60 joules, pulse duration of 1 ms, nanoparticle density 5×1016 np/m3, 

and droplet volume of .5 µL, we estimate the ∆𝑇𝑇𝑛𝑛𝑡𝑡𝑛𝑛𝑡𝑡 = .006 K. Thus, we can be confident 

that localized heating around the nanoparticles is inconsequential, and that the global 

heating approximation is valid. Additionally, an alternate rational for validating bulk 

heating in laser warmed nanoparticles is given by analyzing thermal confinement.125  

For each critical warming measurement, the MC model was used to predict the 

warming rate of the droplet by using the optical properties of the GNR concentration used 

in that droplet as well as the laser settings at the determined CWR. The thermal properties 

of PBS+2M glycerol were used in the finite element modeling for all CPA concentrations 

modeled, as this mixture provided the closest temperature-dependent data to the CPAs used 

in this study.126 To adequately describe laser warming, the optical properties of the GNPs 

need to be measured. A linear relation between the absorption coefficient and concentration 

of the GNR solution was determined via UV-VIS spectroscopy, as shown in Figure 4.17. The 

scattering coefficient and scattering anisotropy coefficient were estimated via the relation 

found in Liu et al. 2020. The droplet in the COMSOL modeling had a contact angle of 90 

degrees, making it a perfect hemisphere. In reality, the droplet spread out more, 

eliminating the large degree of lensing that occurred at the edges. Regardless, the warming 

rates from the COMSOL model of the perfect hemisphere were essentially identical to those 

with a slightly flatter shape. Due to this lack of difference, the hemispherical droplet shape 

was used in the modeling for ease of defining the boundary.  
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Figure 4.17. Absorption coefficient vs concentration of GNR solution measured via UV-VIS 

spectroscopy.  

 

Figure 4.18. Temperature profile in a droplet of GNR solution right at the end of the laser pulse. 
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4.6 Conclusion 

The CWRs ranging from 0.4×105-107 of glycerol-trehalose and PG-trehalose solutions were 

measured via laser calorimetry, the fastest such rates measured to date. The CCRs of these 

same CPAs were also measured via direct quenching into LN2. The data for CCR and CWR 

both were consistent with extrapolations from literature data measured at higher 

concentrations. Additionally, by measuring the CWR and CCR dependence of PG and 

glycerol for varying concentrations of trehalose, a model describing CCRs and CWRs for 

CPA mixtures was developed and verified, allowing for calculations of the CCR and CWR 

of CPA mixtures given only their constituent solutions’ individual CCRs or CWRs through 

the use of equation (4.6). This model allows for the analysis of CPA cocktails without the 

need to make and characterize them, making CCR and CWR optimization much more 

efficient. The data as well as model parameters for fitting the data for PG, glycerol, and 

trehalose were provided. We now provide a framework, through laser calorimetry, for 

measuring the CWRs of CPAs in not only the low-concentration regime but throughout the 

concentration regime by simply altering the laser power, eliminating much of the uncertainty 

that arises when comparing CWRs measured by different techniques at different size and 

rate scales. Together, this work reported new experimental and theoretical results linking 

the CWR and CCR for a given CPA within an otherwise inaccessible low-concentration 

measurement regime (20-40 wt%). 
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Chapter 5 

Monte Carlo Modeling of Light Transport in 

Cryopreserved Systems 

 

5.1 Introduction 

Understanding light transport in media that absorb and scatter is of vast importance in a 

diversity of fields in science and engineering. Many imaging techniques, such as optoacoustic 

imaging, rely on photon absorption and scattering, as well as the theory that underlies it, to 

adequately generate 3D images of biological systems.127 Modeling photon migration in 

systems has been used to analyze time-resolved Raman spectroscopy to predict the extent 

of scattering in light-opaque systems.128 Proper understanding of absorption and scattering 

in a system can also be used to engineer warming rate profiles resulting from photon scatting 

and absorption. For example, cancer photothermal therapies using gold nanorods as a means 

to control spatial absorption profiles have been shown to be an effective method for 

destroying cancer cells when warmed locally by high intensity light.129 Perhaps most bizarre 
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of all is the applicability of light transport modeling in cryopreservation, where wavelength-

tuned nanoparticles are used in conjunction with a high-powered pulse laser to rapidly 

rewarm cryopreserved specimens from cryogenic temperatures, outpacing ice formation on 

warming.130 

Though light propagates as both a wave and a particle, from a modeling standpoint 

it is much easier to treat as a discrete particle. Boltzmann provides an exact description for 

a particle formulism of light transport. Unfortunately, the Boltzmann transport equation is 

an integrodifferential equation which yields no analytic solutions outside of trivial cases. 

This is further complicated when coupling the transport equation to other phenomena which 

may be at play in the system, such as boundary conditions involving reflectance and 

refraction between media of different constitutions. Several attempts have been made to 

explain light transport in systems outside of Boltzmann’s formulism. One such attempt 

derives itself from a simplified solution to Boltzmann’s equation. The Bhatnagar–Gross–

Krook equation contains a solution when simplified to be in the semi-infinite domain, in the 

absence of scattering, and a constant refractive index. This solution is commonly known as 

the Beer-Lambert law, discussed later in this chapter.131 A second approximation comes from 

considering the case where scattering dominates absorption, derived from functional 

expansion methods: the standard diffusion approximation (SDA). The SDA reduces the 

complexities of light transport in scattering media to a diffusion problem, and thus a 

relatively simple partial differential equation, that under further simplifications, can be 

linked to an exponential decay solution akin to the Beer-Lambert law. Unfortunately, these 

methods fail when considering the full problem of light transport, absorption, scattering, 

reflection, and refraction, in arbitrary domains. Even finite element approaches are unstable 

and thus unsuitable for solving these types of problems due to inconsistencies in discretizing 

the computational domain. Monte Carlo methods ultimately have shown to be the most 

accurate and effective method for simulating light propagation in tissue.  
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Monte Carlo simulations use probabilistic sampling and statistical modeling to 

calculate either the mathematical functions that solve systems of equations or mimic the 

nature of the laws governing the system to generate the solutions based off probabilistic 

interpretations of the governing equations. These types of simulations arise necessarily in 

areas of science and engineering involving systems of coupled linear and nonlinear partial 

differential equations, quantum mechanics, and even mathematical finance. The earliest 

known utilization of the Monte Carlo method was in the 18th century, when Georges Louis 

LeClerc, Comte de Buffon tossed a large number of needles onto a number of lines on the 

ground to estimate the value of 𝜋𝜋 as a rational number. He showed that, given that the 

needles were tossed randomly, had a probability of landing on a line that was 2/𝜋𝜋.  He even 

reportedly tested this by tossing baguettes over his shoulder onto a tile floor.132 In these 

studies, we use Monte Carlo simulations to analyze the way that light propagates in 

cryopreserved systems, interacting with the system to generate heat and bring the preserved 

specimen out of the cryopreserved state. We study the effects of changing various optical 

properties such as absorption, scattering, scattering anisotropy, refractive index, and the 

domain geometry to better understand spatial control of light absorption profiles.  

Successful vitrification, and thus cryopreservation, of biological systems – i.e., 

putting them in an amorphous glassy state at -140 ºC for indefinite storage – demands rapid 

cooling rates, ultra-rapid warming rates, and chemicals known as cryoprotective agents 

(CPAs). Each CPA has its own critical cooling rate (CCR) and critical warming rate 

(CWR), which are the rates necessary to avoid damaging phase change of water (i.e., 

formation of ice). Understanding these rates, especially the CWR, cannot be understated, as 

nonuniform warming it can lead to cracking due to buildup of thermal stresses, and 

suboptimal warming may simply fail to rewarm a sample at rates necessary to avoid 

devitrification.133 Convective warming is most commonly used to rewarm samples with 

somewhat high levels of CPA (>6M), since this approach is not sufficiently rapid or uniform 

to rewarm larger organ and tissues at rates necessary to avoid devitrification or cracking. 
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Recently two novel warming approaches have individually demonstrated their capabilities 

to rapidly and uniformly rewarm both larger milliliter sized tissues and smaller microliter 

scale systems of cells and embryos. For larger sized tissues, high concentration CPAs (8-

10M) are used along with RF assisted magnetic nanoparticle heating to achieve uniform 

warming rates on the order 100 °C/min.42 For smaller systems such as embryos low 

concentration CPA (2-3M) and gold nanoparticle assisted laser heating is used to generate 

the necessary rapid rates on the order of 107 °C/min.134 The primary innovation of laser 

based approach is the use of gold nanoparticles as ultra-efficient transfer agents for laser 

heating.135 Injected gold nanoparticles within systems like embryos or droplets allow warming 

at rate of millions of degrees/min, thus outrunning damaging ice formation and other 

thermal effects during warming. The gold nanoparticles have a size and a shape that is 

engineered to strongly interact with specific wavelengths of incident light. Due to the 

particle’s plasmon resonance (a collective oscillation of free electrons that strongly couples 

to the incident radiation) the absorption cross section of the particles is extremely large.136 

To better engineer a system to rewarmed cryopreserved specimens we must first build a 

model to derive the laser induced warming profiles. This laser warming profile, or specific 

absorption rate (SAR) profile, generated via the Monte Carlo simulation is the output used 

to analyze not only warming profile uniformity, but the warming rate itself, and thus is the 

key element of this study. 

5.2 Monte Carlo Overview 

In systems involving light propagation in scattering and absorbing media there are several 

phenomena to consider. First, absorption, whereby a photon is absorbed by the media and 

converted into heat in the form of kinetic vibrations. Scattering is a process by which the 

photon interacts with the media and is not absorbed, but has its trajectory changed instead 

through interactions with the electron clouds around media particles in its vicinity. The 

degree to which it is scattered, that is, its deflected angle, can be characterized by the 
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scattering anisotropy 𝑔𝑔. Other relevant parameters and nomenclature can be seen below in 

Table 5.1. 

Table 5.1. A table of some of the most used parameters involving Monte Carlo photon 

transport simulations used throughout this chapter. 

PARAMETER 
NAMES 

DESCRIPTION UNITS 

𝑛𝑛 Index of refraction 1 

𝐼𝐼𝑡𝑡 Laser energy density 
𝑊𝑊
𝑚𝑚2 

𝐸𝐸𝑝𝑝 Laser photon energy 𝐽𝐽 

𝐸𝐸𝑠𝑠 Simulation photon energy 𝐽𝐽 

𝑓𝑓𝑠𝑠 Energy scale factor 1 

𝑁𝑁𝑝𝑝 Photon volumetric flux #
𝑚𝑚3𝑠𝑠

 

𝜇𝜇𝑡𝑡 Absorption coefficient 
1

𝑐𝑐𝑚𝑚
 

𝜇𝜇𝑠𝑠 Scattering coefficient 
1

𝑐𝑐𝑚𝑚
 

𝜇𝜇𝑒𝑒 Attenuation coefficient 
1

𝑐𝑐𝑚𝑚
 

𝑟𝑟 Reflectance 1 

𝑔𝑔 Scattering anisotropy 1 

𝑐𝑐 Speed of light 
𝑚𝑚
𝑠𝑠
 

ℎ Planck constant 𝐽𝐽𝑠𝑠 

𝜑𝜑 Fluence rate 
𝑊𝑊

𝑚𝑚2𝑠𝑠
 

𝐽𝐽𝑝𝑝 Laser photon flux 
#

𝑚𝑚2𝑠𝑠
 

𝑠𝑠 Photon step size 𝑐𝑐𝑚𝑚 

𝛸𝛸[0,1] 
Uniform random number 

between 0 and 1 
1 
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An overview of how Monte Carlo light transport can be seen in the flowchart below. 

First a photon is generated at a random position on the boundary of the domain which is in 

the cross section of the laser beam. Then the photon’s trajectory into the domain is 

calculated based of the laws of refraction. From that point its energy is updated to 

accommodate for reflective loss at the boundary. Next the photon steps through the domain 

in steps determined probabilistically based off the absorption and scattering coefficients of 

the medium. At the end of this step some of the photon’s energy is stored in the domain at 

the point of absorption. The photon then changes direction according to the scattering 

anisotropy of the medium. This process continues until the photon energy is below a certain 

threshold at it is “killed.” The laws of reflection and refraction occur at boundaries of the 

domain if the photon encounters it. 

 

Figure 5.1. The above figure shows the flowchart for a basic Monte Carlo photon transport 

algorithm. Variants of this algorithm are used throughout this chapter, as well as in chapter 4. 

 



     

129 
 

5.2.1 Photon Step Size and Absorption 

The two key fundamental parameters governing Monte Carlo simulations of light transport 

in media are the absorption coefficient 𝜇𝜇𝑡𝑡 and scattering coefficient 𝜇𝜇𝑠𝑠. The absorption 

coefficient can be thought up as the reciprocal of the absorption mean-free path of the 

photon, that is, 1/𝜇𝜇𝑡𝑡 gives the expected value for the distance a photon travels before being 

absorbed. At absorption the photon is converted to thermal energy, which propagates via 

conduction through the medium, or is reemitted as an infrared photon to likely be reabsorbed 

by the media. For our purposes, we only consider the first case. The scattering coefficient 

likewise gives the scattering mean-free path, whereby the photons trajectory is expected to 

change every 1/𝜇𝜇𝑡𝑡 length units the photon propagates. The combined effect of both 

absorption and scattering is characterized by the attenuation coefficient 𝜇𝜇𝑒𝑒 = 𝜇𝜇𝑡𝑡 + 𝜇𝜇𝑠𝑠, where 

1/𝜇𝜇𝑒𝑒 is the mean free path length before either scatter or absorption occurs. This attenuation 

coefficient gives us a basis for calculating the step size a photon should take before 

interacting with the medium. Based on the definition of 𝜇𝜇𝑒𝑒, the probability 𝑃𝑃(𝑠𝑠) of a photon 

either scattering or absorbing in a distance traveled 𝑠𝑠 is: 

 𝑃𝑃(𝑠𝑠) = 1 − exp(−𝜇𝜇𝑒𝑒𝑠𝑠) (5.1) 

Clearly, this is not a constant function of 𝑠𝑠, but if we assume a uniform probability 

distribution for 𝑃𝑃(𝑠𝑠) then we arrive at the following expression for 𝑠𝑠: 

 𝑠𝑠 = −
ln�Χ[0,1]� 

𝜇𝜇𝑒𝑒
 (5.2) 

We now have a distribution to sample from for photon step size that follows the laws of 

optics. After taking this step, the photon may either be scattered or absorbed. One approach, 

the binary approach, would simply to either absorb the photon at the end of the step or 

scatter it so it then moves in a different direction. It would not be incorrect to carry out the 

simulation this way; however, it generates an undesirable amount of noise, requiring post-

processing and excessive computational time generating extra photons to compensate for the 

noise. A more elegant approach is to consider the photon to have a well of energy from which 
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loss from absorption can be taken from. In this approach, the photon both scatters and is 

absorbed at the end of each step, only losing a part of its energy to the surrounding 

environment. The proportion of energy lost after each absorption even is the ratio of the 

absorption coefficient and the attenuation coefficient. Thus, the photons energy before 𝐸𝐸 

and after 𝐸𝐸′ the absorption event is: 

 𝐸𝐸′ =
𝜇𝜇𝑡𝑡
𝜇𝜇𝑒𝑒

𝐸𝐸 (5.3) 

5.2.2 Photon Flux and Laser Profile 

The laser can be characterized by its fluence rate 𝜑𝜑(𝑥𝑥, 𝑦𝑦, 𝑧𝑧), which gives the energy density 

of the laser in the beam as a spatial function, where the z-axis marks the propagation axis 

of the laser. In practice, the laser beam is usually collimated, or at least focused such that 

there is an insignificant change in fluence rate for changes in the sample being irradiated. 

Thus, we can ignore in 𝜑𝜑 over the z-direction. Additionally, laser beam is almost always 

radially dependent, and thus fluence rate can be reduced to a function of the radius of the 

beam, 𝜑𝜑(𝑟𝑟). The functional form of the profile for  𝜑𝜑(𝑟𝑟) may take a variety of forms based 

on filters applied to the laser; however, the most common beam profiles are either constant 

(top-hat) or gaussian (normal curve). We consider both types of profiles in this study but 

choose to focus on the top-hat profile, since there is the least number of unknowns when 

calculating what the average fluence rate should be. Since the Monte Carlo profile involves 

firing photons, we must convert the fluence rate into the photon flux 𝐽𝐽𝑝𝑝(𝑟𝑟) by using the 

energy, or wavelength via the Planck relation, of the photons being fired. 

 𝐽𝐽𝑝𝑝(𝑟𝑟) =
𝜆𝜆𝜑𝜑(𝑟𝑟)

ℎ𝑐𝑐
 (5.4) 

We can avoid using the refractive index 𝑛𝑛 since the photons are propagating through air (𝑛𝑛 

~ 1) prior to entering the sample. 
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5.2.3 Domain and Boundary 

The shapes of the samples being laser warming during cryopreservation are either spherical 

or hemispherical due to the symmetric nature of surface tension on the encompassing droplet 

of CPA. Typically, the wetting angle of the CPA on the surface it sits on is not 90 degrees 

and can vary depending on surface chemistry and CPA type. For other conditions the droplet 

may be modeled as a chord-area intersecting a sphere, a so-called semisphere. Due to the 

spherical nature of the boundary, it is convenient to represent the boundary in terms of 

spherical coordinate parameters. Additionally, for easy of computation, it is also convenient 

to represent the boundary as a vector function. The boundary Ω����� can be represented by: 

 Ω����� = ⟨𝑅𝑅𝑠𝑠𝑖𝑖𝑛𝑛(𝜑𝜑)𝑐𝑐𝑚𝑚𝑠𝑠(𝜃𝜃), 𝑅𝑅𝑠𝑠𝑖𝑖𝑛𝑛(𝜑𝜑)𝑠𝑠𝑖𝑖𝑛𝑛(𝜃𝜃),𝑅𝑅𝑐𝑐𝑚𝑚𝑠𝑠(𝜑𝜑)⟩ (5.5) 

Where 𝑅𝑅, is the droplet raidus, while 𝜑𝜑 and 𝜃𝜃 are the azimuth and zenith parameters in 

spherical coordinates. We can also define the normal boundary function Ω�����𝑛𝑛: 

 Ω�����n = −
Ω�����φ × Ω�����θ

��Ω�����φ�2�Ω�����θ�2 − �Ω�����φ ∙ Ω�����θ�2
 (5.6) 

Where Ω�����φ and Ω�����θ are the partial derivatives of Ω����� with respect to 𝜑𝜑 and 𝜃𝜃. 

5.2.4 Photon Launch 

From the domain we now start to launch the photons into the system. A random point 

within the cross-section of the beam is chose and the photon is placed at that point on the 

boundary that intersects that point on the beam. To do this, special care should be taken 

to ensure that the point chosen is indeed randomly sampled over a disc.  

Once the photon finishes its new step it then has a change in direction according to 

the scattering anisotropy. Given the radius of the droplet 𝑅𝑅, a random point (𝑥𝑥, 𝑦𝑦, 𝑧𝑧) on the 

droplet can be determined. 

 𝜃𝜃 = 2𝜋𝜋𝛸𝛸[0,1] (5.7) 

 𝑅𝑅𝑐𝑐𝑡𝑡𝑛𝑛𝑑𝑑 = 𝑅𝑅2𝛸𝛸[0,1] (5.8) 
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 𝑥𝑥 = cos(𝜃𝜃) �𝑅𝑅𝑐𝑐𝑡𝑡𝑛𝑛𝑑𝑑 (5.9) 

 𝑦𝑦 = sin(𝜃𝜃)�𝑅𝑅𝑐𝑐𝑡𝑡𝑛𝑛𝑑𝑑 (5.10) 

 𝑧𝑧 = �𝑅𝑅2 − 𝑥𝑥2 − 𝑦𝑦2 (5.11) 

From here we must calculate the interaction with the boundary that causes the light to bend 

as it enters the droplet since the air and droplet have different indexes of refraction.  

5.2.5 Initial Photon Trajectory 

Due to the local curvature of the droplet, as well as the differences in the refractive indexes 

between the air and droplet, both the photon’s energy and trajectory change as it enters the 

droplet. Given an incident trajectory 𝑑𝑑�⃑�𝑖 = ⟨0,0,−1⟩, since the photon is traveling straight 

down at the droplet, we can calculate the transformed trajectory 𝑑𝑑�⃑�𝑒 = ⟨𝑢𝑢𝑥𝑥, 𝑢𝑢𝑦𝑦, 𝑢𝑢𝑧𝑧⟩.  

 𝑑𝑑�⃑�𝑛 = Ω�����n(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) (5.12) 

 𝜃𝜃𝑖𝑖 = mod(arccos�𝑑𝑑�⃑�𝑖 ∙ 𝑑𝑑�⃑�𝑛�, 𝜋𝜋/2)  (5.13) 

 𝜑𝜑𝑖𝑖 = arcsin �
𝑛𝑛𝑖𝑖

𝑛𝑛𝑒𝑒 𝑠𝑠𝑖𝑖𝑛𝑛(𝜃𝜃𝑖𝑖)
� (5.14) 

 𝑣𝑣 = −𝑑𝑑�⃑�𝑛 × 𝑑𝑑�⃑�𝑖 (5.15) 

 𝑑𝑑�⃑�𝑒 = −𝑑𝑑�⃑�𝑛 cos(𝜑𝜑𝑖𝑖)�𝑣𝑣 × −𝑑𝑑�⃑�𝑛� + (1 − cos(𝜙𝜙𝑖𝑖))(𝑣𝑣 ∙ 𝑑𝑑�⃑�𝑛) ∙ 𝑑𝑑�⃑�𝑛 (5.16) 

Where 𝑛𝑛𝑖𝑖 and 𝑛𝑛𝑒𝑒 are the refractive index of air and the droplet respectively.  

Due to reflectance, there is also an associated energy loss with both passing through a 

boundary and reflecting internally off one. This loss is related to the reflectance and can be 

determine from the Fresnel Equations. 

5.2.6 Fresnel Equations 

The transmittance 𝑡𝑡 and reflectance 𝑟𝑟 can be determined by the Fresnel equations below. 

Given an angle of incidence 𝜃𝜃𝑖𝑖 and angle of transmittance 𝜃𝜃𝑒𝑒, along with indexes of refraction 

𝑛𝑛𝑖𝑖 and 𝑛𝑛𝑒𝑒 then from Snell’s law we have 

 𝑛𝑛𝑖𝑖 cos(𝜃𝜃𝑖𝑖) = 𝑛𝑛𝑒𝑒cos (𝜃𝜃𝑒𝑒) (5.17) 
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Then we can determine the reflectances and transmittances: 

 𝑟𝑟𝑠𝑠 =
𝑛𝑛𝑖𝑖 cos(𝜃𝜃𝑖𝑖) − 𝑛𝑛𝑒𝑒 cos(𝜃𝜃𝑒𝑒)
𝑛𝑛𝑖𝑖 cos(𝜃𝜃𝑖𝑖) + 𝑛𝑛𝑒𝑒 cos(𝜃𝜃𝑒𝑒)

 (5.18) 

 𝑟𝑟𝑝𝑝 =
𝑛𝑛𝑖𝑖 cos(𝜃𝜃𝑒𝑒) − 𝑛𝑛𝑒𝑒 cos(𝜃𝜃𝑖𝑖)
𝑛𝑛𝑖𝑖 cos(𝜃𝜃𝑒𝑒) + 𝑛𝑛𝑒𝑒 cos(𝜃𝜃𝑖𝑖)

 (5.19) 

 𝑡𝑡𝑠𝑠 =
2𝑛𝑛𝑖𝑖 cos(𝜃𝜃𝑖𝑖)

𝑛𝑛𝑖𝑖 cos(𝜃𝜃𝑖𝑖) + 𝑛𝑛𝑒𝑒 cos(𝜃𝜃𝑒𝑒)
 (5.20) 

 𝑡𝑡𝑠𝑠 =
2𝑛𝑛𝑖𝑖 cos(𝜃𝜃𝑖𝑖)

𝑛𝑛𝑖𝑖 cos(𝜃𝜃𝑒𝑒) + 𝑛𝑛𝑒𝑒 cos(𝜃𝜃𝑖𝑖)
 (5.21) 

   

The subscripts s and p indicate the parameters for s-polarized and p-polarized light. Since 

we are considering an unpolarized laser, then we have the total transmittance and total 

reflectance: 

 𝑡𝑡 = 𝑡𝑡𝑠𝑠 + 𝑡𝑡𝑝𝑝 (5.22) 

 𝑟𝑟 = 𝑟𝑟𝑠𝑠 + 𝑟𝑟𝑝𝑝 (5.23) 

Thus, the energy of the photon before 𝐸𝐸 and after 𝐸𝐸′ entering the droplet is  

 𝐸𝐸′ = 𝑡𝑡𝐸𝐸 (5.24) 

5.2.7 Scattering and Updating Position and Trajectory 

After the photon is fired, it first enters the boundary and then calculates a new trajectory 

from its old trajectory due to scattering. The frequency of scattering is determined by the 

magnitude of the scattering coefficient while the angle of scattering is determined from a 

probability distribution based on the scattering anisotropy 𝑔𝑔. When a photon takes a new 

step, it updates its position and trajectory. 

 𝑥𝑥 = 𝑥𝑥 + 𝑠𝑠 𝑢𝑢𝑥𝑥 (5.25) 

 𝑦𝑦 = 𝑦𝑦 + 𝑠𝑠 𝑢𝑢𝑦𝑦 (5.26) 

 𝑧𝑧 = 𝑧𝑧 + 𝑠𝑠 𝑢𝑢𝑧𝑧 (5.27) 
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Since the trajectory vector ⟨𝑢𝑢𝑥𝑥, 𝑢𝑢𝑦𝑦, 𝑢𝑢𝑧𝑧⟩ is normalized this recovers a step size of 𝑠𝑠. After 

absorption a new trajectory is calculated corresponding to the scattering anisotropy 𝑔𝑔 and 

scattering angle 𝜃𝜃𝑠𝑠. 

 𝜃𝜃𝑠𝑠 = arccos

⎝
⎜⎜
⎜⎜
⎛1 + 𝑔𝑔2 − � 1 − 𝑔𝑔2

1 − 𝑔𝑔 + 2𝑔𝑔𝛸𝛸[0,1]
�

2

2𝑔𝑔
⎠
⎟⎟
⎟⎟
⎞

 (5.28) 

Since scattering is inherently symmetric the azimuthal scattering angle 𝜑𝜑𝑠𝑠 is simply: 

 𝜑𝜑𝑠𝑠 = 2𝜋𝜋Χ[0,1] (5.29) 

The updated trajectory ⟨𝑢𝑢𝑥𝑥, 𝑢𝑢𝑦𝑦, 𝑢𝑢𝑧𝑧⟩ can now be calculated. 

 𝑢𝑢𝑥𝑥 =
sin(𝜃𝜃𝑠𝑠) (𝑢𝑢𝑥𝑥 𝑢𝑢𝑧𝑧 cos(𝜑𝜑𝑠𝑠) − 𝑢𝑢𝑦𝑦 𝑠𝑠𝑖𝑖𝑛𝑛(𝜑𝜑𝑠𝑠))√

1 − 𝑢𝑢𝑧𝑧2
+ 𝑢𝑢𝑥𝑥 cos(𝜃𝜃𝑠𝑠) (5.30) 

 𝑢𝑢𝑦𝑦 =
sin(𝜃𝜃𝑠𝑠) (𝑢𝑢𝑦𝑦 𝑢𝑢𝑧𝑧 cos(𝜑𝜑𝑠𝑠) − 𝑢𝑢𝑥𝑥 𝑠𝑠𝑖𝑖𝑛𝑛(𝜑𝜑𝑠𝑠))√

1 − 𝑢𝑢𝑧𝑧2
+ 𝑢𝑢𝑦𝑦 cos(𝜃𝜃𝑠𝑠) (5.31) 

 𝑢𝑢𝑧𝑧 = − sin(𝜃𝜃𝑠𝑠) cos(𝜑𝜑𝑠𝑠)
√

1 − 𝑢𝑢𝑧𝑧2 + 𝑢𝑢𝑧𝑧 cos(𝜃𝜃𝑠𝑠) (5.32) 

Figure 5.2. Diagram showing how scattering occurs during the photon transport simulation and how 
the scattering anisotropy factor affects the scattering angle.137 

5.2.8 Storing Energy and Photon Death 

So far, the photon will just keep propagating and loose more and more of its energy, so we 

must set some threshold where the photon is destroyed. This will inherently fail to conserve 

the energy of the photons since some energy will be lost, so we will employ a roulette method. 
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Given some threshold 𝑤𝑤 ≪ 1, we will randomly generate a new photon on average once 

every 1/𝑤𝑤 photons launched. This acts to recover the lost energy from apply the energy 

threshold in the first place.  

To store photon energy the domain is discretized. Then at every absorption event 

the energy lost due to absorption was stored in the domain bin corresponding to the location 

of the absorption event. The initial energy of the photon is not necessarily the actual energy 

via the Planck relation, since the lasers in question have 𝐽𝐽𝑝𝑝 on the order of 1025 𝑚𝑚−2𝑠𝑠−1. 

Instead, we use the energy scale factor 𝑓𝑓𝑠𝑠 to relate the laser photon energy 𝐸𝐸𝑝𝑝 to the 

simulation photon energy 𝐸𝐸𝑠𝑠. 

 𝐸𝐸𝑠𝑠 = 𝑓𝑓𝑠𝑠𝐸𝐸𝑝𝑝 =
𝑓𝑓𝑠𝑠ℎ𝑐𝑐

𝜆𝜆
 (5.33) 

Thus, when the photon is fired it has an initial energy of 𝐸𝐸𝑠𝑠, and an initial weight of 𝑤𝑤 = 1. 

At each absorption event the energy of the photon and the weight both drop by equation 

(5.3), likewise for other energy loss events such as boundary interactions.  

5.2.9 Interaction with Boundary 

At some point the photon will interact with the boundary as it did when it entered the 

droplet. For cases like this, the photon position suddenly transitions from within the domain 

to outside the domain. If (𝑥𝑥, 𝑦𝑦, 𝑧𝑧) ∈ ¬Ω, then calculate the point along the previous 

trajectory where the photon made contact with the domain. That is  

if: (𝑥𝑥, 𝑦𝑦, 𝑧𝑧) ∈ ¬Ω 

then: 𝑓𝑓𝑖𝑖𝑛𝑛𝑑𝑑 {𝑠𝑠′| (𝑥𝑥 + 𝑠𝑠′𝑢𝑢𝑥𝑥, 𝑦𝑦 + 𝑠𝑠′𝑢𝑢𝑦𝑦, 𝑧𝑧 + 𝑠𝑠′𝑢𝑢𝑧𝑧) ∈ Ω} 

Once 𝑠𝑠′ is determined then the reflected trajectory 𝑑𝑑�⃑�𝑒 is.  

 𝑑𝑑�⃑�𝑖 = ⟨𝑢𝑢𝑥𝑥, 𝑢𝑢𝑦𝑦, 𝑢𝑢𝑧𝑧⟩ (5.34) 

 𝑑𝑑�⃑�𝑛 = Ω�����𝑛𝑛(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) (5.35) 

 𝑑𝑑�⃑�𝑒 = −(𝑑𝑑�⃑�𝑖 ∙ 𝑑𝑑�⃑�𝑛)𝑑𝑑�⃑�𝑛 +∙ 𝑑𝑑�⃑�𝑖 (5.36) 

With the photon energy before 𝐸𝐸 and after 𝐸𝐸′ the reflection as 
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 𝐸𝐸′ = 𝑟𝑟𝐸𝐸 (5.37) 

Where 𝑟𝑟 is the reflectance (5.23) from 5.2.6. 

The new photon position is 

 ⟨𝑢𝑢𝑥𝑥′, 𝑢𝑢𝑦𝑦′, 𝑢𝑢𝑧𝑧′⟩ = 𝑑𝑑�⃑�𝑒 (5.38) 

 𝑥𝑥 =  𝑥𝑥 + 𝑠𝑠′𝑢𝑢𝑥𝑥 + (𝑠𝑠 − 𝑠𝑠′)𝑢𝑢𝑥𝑥′ (5.39) 

 𝑦𝑦 =  𝑦𝑦 + 𝑠𝑠′𝑢𝑢𝑦𝑦 + (𝑠𝑠 − 𝑠𝑠′)𝑢𝑢𝑦𝑦′ (5.40) 

 𝑧𝑧 =  𝑧𝑧 + 𝑠𝑠′𝑢𝑢𝑧𝑧 + (𝑠𝑠 − 𝑠𝑠′)𝑢𝑢𝑧𝑧′ (5.41) 

Finally, 

 ⟨𝑢𝑢𝑥𝑥, 𝑢𝑢𝑦𝑦, 𝑢𝑢𝑧𝑧⟩ = ⟨𝑢𝑢𝑥𝑥′, 𝑢𝑢𝑦𝑦′, 𝑢𝑢𝑧𝑧′⟩ (5.42) 

In summary, the photon took a step outside the boundary. So first, the distance to 

the boundary and point where the photon intersected it was calculated. Next, the new 

trajectory was calculated via spectral reflection off the boundary. Then, the loss due to 

partial transmittance was applied to the photon energy. Next, the photon continued for the 

remain portion of its initial step in the new reflected trajectory. Finally, the new trajectory 

and positions were updated.  

5.2.10 Adjusting Step Size for Multi-Boundary Systems 

It should be apparent at this point that the scheme above works well for large domains 

relative to the step size taken by photons. If, however, this is not the case, the algorithm 

does not properly simulate the environment. For example, consider Figure 5.3 below, where 

a photon takes a step between domains Ω1 and Ω3. 
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Figure 5.3. A photon traveling between domains Ω1 and Ω3 with a step size that is too large. This 

shows the error that can arise when the step size in a MC photon transport simulation is too large in 

a system with multiple domains. 

It is clear that the step size was too large, in fact, the variable step size described by equation 

(5.2) is not appropriate. In these situations, there are a few choices. The first, is to choose a 

constant step size scheme, with step size 𝑠𝑠𝑐𝑐𝑡𝑡𝑛𝑛𝑠𝑠𝑒𝑒𝑡𝑡𝑛𝑛𝑒𝑒, such that 𝑠𝑠𝑐𝑐𝑡𝑡𝑛𝑛𝑠𝑠𝑒𝑒𝑡𝑡𝑛𝑛𝑒𝑒 is smaller than the 

minimum length scale in all of the domains. 

 𝑠𝑠𝑐𝑐𝑡𝑡𝑛𝑛𝑠𝑠𝑒𝑒𝑡𝑡𝑛𝑛𝑒𝑒 < minimum length scale in  Ωi (5.43) 

This scheme is prohibitively expensive though, a more reasonable scheme is to tag each 

photon with the domain it is currently in and determine if it crossed a boundary in the 

domain, i.e., the tag changed from one domain to another. If there is a crossing between 

domains, then the step size is reduced, and absorption values adjusted accordingly so that 

the true path of the photon is realized throughout the domain. This still has a flaw though. 

Depending on the geometry of the domain, it is possible that a photon skips over a domain 

entirely and arrives back it its original domain. In cases where this has a significant change 

of happening, a constant step size may be the most suitable choice for the simulation. For 

modeling multi-compartment zebrafish embryo laser nanowarming, this constant step size is 

used do to the complex and curved geometry.  
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5.2.11 SAR and Generating Temperature Profiles 

The output of the Monte Carlo simulation is a three-dimensional heat source function 

(the specific absorption rate or SAR). This in its own can be used to assess a variety of 

characteristics about the laser warmed system such as SAR uniformity, hotspots, and 

boundary layers. Though this may be helpful, a proper understanding of the actual 

temperature profile in the laser warmed droplets gives a more complete picture. To calculate 

the temperature profile, we used the SAR profile as a heat source function to the heat 

equation (5.44) which was solved by the finite element software COMSOL, where the values 

of all parameters are temperature (and thus spatially) dependent. 

 𝜌𝜌𝑐𝑐𝑝𝑝
𝜕𝜕𝑇𝑇
𝜕𝜕𝑡𝑡

− ∆ ∙ (𝑘𝑘∆𝑇𝑇) = 𝑆𝑆𝐴𝐴𝑅𝑅 (5.44) 

The geometry of the droplet was also built in COMSOL to match that used in the 

corresponding Monte Carlo simulation. Since we are modeling droplets of CPA and CPA 

loaded biological specimens, we need the temperature dependent values for the specific heat 

𝑐𝑐𝑝𝑝, density 𝜌𝜌, and thermal conductivity 𝑘𝑘. We use the temperature dependent properties of 

2M 1,2-propanediol, a common cryoprotectant, outlined by Choi et al (2008).138 These 

parameters have values in the following ranges: 𝑐𝑐𝑝𝑝~1768 − 4019 𝐽𝐽
𝑘𝑘𝑔𝑔 𝐾𝐾, 𝑘𝑘~.35 − .5 𝑊𝑊

𝑚𝑚 𝐾𝐾, and 

𝜌𝜌~900 − 1000 𝑘𝑘𝑔𝑔
𝑚𝑚3. 

5.3 Simulation Results 

Several scenarios were simulated via Monte Carlo to gain insight into the laser warming 

process. Throughout this section we will go over the laser warming of millimeter-scale 

droplets and of cryoprotectant solution and gold nanoparticles (with or without biological 

specimens), showing how droplet shape, size, contents, and photothermal properties affect 

the SAR profile. In Chapter 4, we relate these simulations to laser calorimetry experiments 

to help validate both the model and the experimental methods.  
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5.3.1 Laser Warming of a Hemispherical Droplet on a Cryotop 

A cryotop is a thin piece of low thermal mass plastic in which a droplet of CPA 

laden with or without biological samples is placed during some cryopreservation processes. 

The geometry of the cryotop-droplet system can be seen in Figure 5.4 below. 

 

Figure 5.4. A symmetric cross-section of the geometry of a cryotop with a hemispherical 1 mm 

droplet on its end. 

To test the validity of the model we first compared the simulations to known limiting cases 

of light transport, specifically to the Beer-Lambert law equation (5.45) and to the diffusion 

limited high-scattering approximation equation (5.46), Where 𝐴𝐴 is some domain-specific 

constant relating to the reflectance, and thus the index of refraction. The indexes of 

refraction were matched between the droplet at the surrounding environment to eliminate 

any effects of reflectance. 

 𝑆𝑆𝐴𝐴𝑅𝑅(𝑧𝑧) = 𝜇𝜇𝑡𝑡𝜑𝜑 exp(−𝜇𝜇𝑡𝑡𝑧𝑧) (5.45) 

 𝑆𝑆𝐴𝐴𝑅𝑅(𝑧𝑧) = 𝜇𝜇𝑡𝑡𝜑𝜑𝐴𝐴 exp(−�3𝜇𝜇𝑡𝑡(𝜇𝜇𝑡𝑡 + (1 − 𝑔𝑔)𝜇𝜇𝑠𝑠)𝑧𝑧) (5.46) 
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Figure 5.5 Monte Carlo simulations without scattering compared for Beer’s Law (a), and with 

dominant scattering compared to the diffusion approximation (b). (c) Temperature profile post 

warming in a droplet subjected to laser warming. 

We see strong agreement between the simplified cases with no and high scattering 

to Beer’s Law and the diffusion approximation in Figure 5.5(a) and (b). This gives us 

confidence that the model is working correctly and thus we can trust it’s outputs in more 

complicated systems. In Figure 5.5(c), we see the temperature profile of a typical laser 

warmed hemispherical droplet. Notice that the edges remain very cold, this is because of the 

large difference between the indexes of refraction of air and the droplet. This causes incoming 

light to bend as it makes contact (from above) with the droplet. The angle of incidence of 

the laser on the droplet determines the degree of bending and also the ratio of transmitted 

to reflected light. This combination of low transmittance and inward bending of the laser 

c 
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causes these areas of low warming to occur. In the next section we perform an optimization 

study on the absorption and scattering coefficients in order to determine the values that 

lead to the most uniform temperature profile post-warming.  

5.3.2 Optimizing Photothermal Properties for Uniform SAR 

In this section we examine the roll that the scattering and absorption coefficients have in 

the overall SAR profile, by considering the mainly absorptive effects of gold nano rods 

(GNRs) and absorption and scatter effects of gold nanoshells (GNSs). We consider a 

hemispherical droplet that is 1mm in radius and subject it to a .5ms laser pulse. The various 

other parameters are listed in Table 5.2. 

A simulation of laser warming of a droplet on a perfectly reflective cryotop was 

carried out per the parameters in Table 5.2. The boundary condition applied at the underside 

of the droplet was a perfectly reflective boundary condition with no transmittance, no energy 

loss, and no scattering (normal or diffuse). This was done to simulate the warming of a 

droplet on a mirror to maximize the amount of laser energy absorbed by the droplet. The 

scattering and absorption coefficients were measured via the cuvette method outlined in Liu 

et al. (2020). The scattering anisotropy factor of the GNRs was assumed to be 0.25, which 

was obtained by fitting the experimental angular scattering data in the reference work, with 

the Henyey-Greenstein phase function for GNRs with sizes close to those used in this study. 
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 Table 5.2. A summary of input parameters in the two Monte Carlo models for the cuvette 

experimental data analysis and laser warming of a GNP-loaded droplet simulation. *Measured values; 

**Assumed values. The other unmarked values are either known constants or derived from the 

measured or assumed values. The choice of scattering anisotropy factors for different GNPs is 

explained Liu et. al. (2020).116 

PARAMETERS DESCRIPTION VALUES 

𝑛𝑛𝑑𝑑 Refraction index of solutions 1.35139 (droplet) 

𝑛𝑛𝑡𝑡 Refraction index of air 1.00 

𝑟𝑟𝑡𝑡 1/e2 radius of Gaussian beam (mm) 1 * 

𝜑𝜑 Laser energy density (W/m2) 1.83×109 * 

PW Pulse width of laser beam (ms) 0.5* 

𝐸𝐸𝑝𝑝 Photon energy at 1064 nm (eV) 1.211 

𝑁𝑁𝑝𝑝ℎ𝑡𝑡𝑒𝑒𝑡𝑡𝑛𝑛𝑠𝑠 Flux of photons ( #
m2∙s

) I0/𝐸𝐸𝑝𝑝 

𝜇𝜇𝑒𝑒 Attenuation coefficient of GNP solutions 𝜇𝜇𝑡𝑡 + 𝜇𝜇𝑠𝑠 

𝜇𝜇𝑡𝑡 Absorption Coefficient of GNP solutions 5 cm-1** 

𝜇𝜇𝑠𝑠 Scattering Coefficient of GNP solutions 

0.3 cm-1 (GNR) ** 

 11 cm-1 (GNS) ** 

 or other assume values 

𝛾𝛾 Ratio of scattering to absorption 𝜇𝜇𝑠𝑠/𝜇𝜇𝑡𝑡 

𝑔𝑔 Scattering anisotropy factor 
0 (GNS)140 ** 

 0.25 (GNR)141 ** 

 

When modulating the absorption and scattering coefficients in this study, a linear 

average of the absorption and scattering properties of the GNR and GNS solutions located 

in Table 5.2 were used. Increased concentration was assumed to be a linear scaling up of 

both the absorption and scattering coefficients. Many simulations were carried out at various 

concentrations of GNR and GNS to determine the effect that scattering, absorption, and 

their relative ratio relative to the size of the droplet had on the warming uniformity within 
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the droplet. A new parameter, 𝛾𝛾, defined the ratio of the scattering coefficient, to the 

absorption coefficient.  

In COMSOL simulation, the thermal properties of 2M (20.15 wt%) PG were used to 

simulate the thermal properties of a CPA laden droplet. The thermal conductivity, specific 

heat, and density of the liquid CPA solutions were calculated by the weighted average. As 

for the vitreous status, the thermal conductivity and density were assumed as constant from 

room temperature to the vitreous status. This assumption is based on the reported findings 

that thermal conductivity of a vitreous glycerol. and the density of other vitreous CPA 

solution keep almost constant during vitrification. For specific heat, however, there can be 

a ~ 56% jump during the vitrification transition. The transition temperature of the 2M PG 

was assumed to be −105 °C. 

The results of the laser warming simulations can be seen in Figure 5.7. We see that 

for GNR alone (a), we have an extreme hotspot near the top of the droplet, corresponding 

to the reflected focus of the bent laser light entering the high refractive index droplet. We 

see, with the introduction of higher scattering (b), that the hotspot is diminished 

substantially. The optimal ratio of scattering to absorption is depicted in (c), which lacks a 

hotspot all together. Finally, in (d), we see that too much scattering can lead to poor 

penetration into the droplet, frequent photon scattering hinders penetration and causes them 

to stay near the surface, increasing the temperature near the boundary but leaving the 

interior of the droplet cold. In (e) and (f) we see the normalized standard deviation of SAR, 

a metric for temperature uniformity, whereby we can determine the 𝛾𝛾 value corresponding 

to the most uniform combination of the absorption coefficient and scattering coefficient, 

given the constraints of linking them to measured data for GNRs and GNSs. In (g) we see 

the optimal 𝛾𝛾 value as a function of the dimensionless constant 𝜇𝜇𝑡𝑡𝑅𝑅, which is the ratio of 

the mean free path of photon absorption to the diameter of the droplet. We see 𝛾𝛾 decay 

exponentially with increasing 𝜇𝜇𝑡𝑡𝑅𝑅. 

 



     

144 
 

 

Figure 5.7. Predicted temperature profiles of the vertical central cross-sections in the laser-warmed 

2 mm-diameter hemispherical droplets at the end of the 0.5ms laser pulse irradiation from the top of 

the droplet. (a) The temperature profile in the droplet loaded with GNR-2 at the end of the pulse 

with 𝜇𝜇𝑡𝑡 = .5 𝑐𝑐𝑚𝑚−1, 𝛾𝛾 = 0.06. (b) The temperature profile in the droplet loaded with GNS-2 at the 

end of the pulse with 𝜇𝜇𝑡𝑡 = .5 𝑐𝑐𝑚𝑚−1, 𝛾𝛾 = 2.2. (c) The temperature profile in the droplet at the end of 

the pulse assumed with an optimal 𝛾𝛾 where 𝜇𝜇𝑡𝑡 = .5 𝑐𝑐𝑚𝑚−1, 𝛾𝛾 = 5.5. (d) The temperature profile in 

the droplet at the end of the pulse with an overlarge 𝛾𝛾 where 𝜇𝜇𝑡𝑡 = .5 𝑐𝑐𝑚𝑚−1, 𝛾𝛾 = 30. (e) Normalized 

SAR, as an indicator of the uniformity of laser warming, changes with the optical 𝛾𝛾 of the droplet 

with the 𝜇𝜇𝑡𝑡 set constantly at 5 𝑐𝑐𝑚𝑚−11. The SAR was normalized by the value at 𝛾𝛾 = 0.01. (f) 

Normalized SAR changes with the optical properties γ and 𝜇𝜇𝑡𝑡𝑅𝑅 of the hemispherical droplet. The 

σSAR was normalized by the value at 𝛾𝛾 = 0.01. (g) The optimal γ of the hemispherical droplet for 

each 𝜇𝜇𝑡𝑡 to achieve the lowest normalized SAR (i.e., the most uniform heating temperature profile).116  

5.2.3 Laser Warming of a Spherical Droplet 

Along with hemispherical droplets, there is a need for laser warming spherical 

droplets of vitrified material as well. Since a sphere is the most compact three dimensional 

shape, it is the ideal shape for uniform and rapid cooling. Additionally, it lends itself to easy 

printing and maneuverability in the vitrified state.  
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A 40 μL droplet of CPA was vitrified, and laser warmed while under high-speed 

video. Still shots of the video can be seen in Figure 5.8 while the corresponding temperature 

profile is given in the bottom-right, given the laser pulse energy and absorption properties 

of the GNRs used. The model captures the hotspot at the bottom of the droplet, seen top-

right, where the laser is focused by the droplet into a small region at the bottom of the 

droplet. Light bent away from the loser edges causes cold spots around the bottom outer 

shell of the droplet which manifests itself as ice since it was not brought up to the melt 

temperature in time.142 

 

Figure 5.8. Top left: 40 µL vitrified droplet of 2M propylene glycol + 1M trehalose with GNR prior 

to laser warming. Top right: droplet during laser warming (note the boiling at the bottom of the 

droplet). Bottom left: droplet immediately after laser warming (note the shell of ice around the bottom 

of the droplet). Bottom right: temperature profile after laser pulse from Monte Carlo and finite 

element heat transfer model of laser warming (note that lensing causes a hotspot at the bottom and 

under warmed shell around the bottom half).  
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5.2.4 Laser Warming of Zebrafish Embryos 

A more complex system modeled is the laser warming of a droplet-encapsuled zebrafish 

embryo. These embryos have complex geometries with a high scattering yolk in the center 

that acts as a shield to laser penetration. Fortunately, the only necessary parts of the embryo 

required to be warmed under ideal conditions are the cells composing the “head” of the 

embryo. This study used the Monte Carlo model to accompany the cryopreservation and 

laser warming of zebrafish to better understand the effects of rapid laser warming on the 

vitrified embryos. These zebrafish serve as a model organism for a vast array of aquatic 

organisms and are thus of high importance as they serve as a template for cryopreservation 

of many aquatic systems. 

In this study. zebrafish embryos were injected via micro-pipette with a GNR and 

CPA solution to aid in vitrification and rewarming, outlined in Figure 5.9. Preserved 

embryos were imaged under a high-speed camera as they were laser warmed to study the 

dynamic effects of laser warming. We have found that there is significant warming in the 

surrounding droplet, but limited warming in the embryo yolk. Thus, to entirely rewarm the 

embryo, such a high laser power and pulse width were needed that the surrounding CPA-

GNR droplet was vaporized in the process. This seemed to be centered at the top of the 

embryo. Multiple trials have confirmed this phenomenon, which could be attributed to 

several causes, including nonuniform distribution of laser absorption in the embryo or GNR 

and CPA leaking out of the embryo. To address this issue of large thermal gradients in the 

embryo a Monte Carlo model of light interaction with the system was constructed which 

considered absorption, scattering, refraction, and reflection. The absorption coefficient and 

scattering coefficients of GNR-CPA solution used for vitrification and rewarming were 

measured via methods outlined in Liu et. Al (2020) and determined to be 4.54 cm-1 and .05 

cm-1 respectively while the scattering anisotropy coefficient was assumed to be .25, though 

the scattering coefficient was so low it had a negligible effect on the warming profile. Since 

the head containing the cells in the embryo was permeable to GNR and CPA, it too was 
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given these properties. The absorption coefficient of the yolk was assumed to be identical to 

the droplet as the microinjection system controlled for this. The scattering coefficient and 

anisotropy coefficient were estimated to be 70 cm-1 and 0.70 respectively.143 There is great 

uncertainty around these numbers since in egg yolk, and presumably zebrafish embryo yolk, 

the scattering coefficient changes with the denaturing of proteins.  It is also unknown how 

vitrification, or crystallization, effects the optical properties of yolk. These parameters were 

then imputed into a Monte Carlo program that outputted the spatially dependent specific 

absorption rate throughout the system. This profile was then imputed into COMSOL 

Multiphysics and used, along with the thermal properties of the system constituents, to 

estimate the temperature profile in the system. This was then compared to a Beer’s Law 

model of absorption. 
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Figure 5.9. Overview of the cryopreservation and laser warming process. Our new single injection 

protocol begins with the microinjection of CPA (PG and MeOH) and GNRs into the yolk of a 

zebrafish embryo reaching the high cell stage. After a recovery period of 2 h, the injected embryos 

are placed in a precooling bath for 5 min to dehydrate the perivitelline fluid. Immediately after, the 

embryos are placed on a polypropylene strip called a cryotop and plunged into liquid nitrogen. After 

equilibration to −196 °C, the embryo is brought under the laser for warming. After warming, the 

embryo is placed in a post-warming washout bath for rehydration and CPA removal from the 

perivitelline fluid, after which the embryo is placed in embryo medium and stored in an incubator at 

28 °C. Embryo development was monitored regularly up to 5 days. Select embryos surviving to Day 

5 were transferred to a separate housing where they reach spawning age. Once sexual maturation is 

reached, the adult zebrafish are spawned with the corresponding transgenic zebrafish adults.130  

 The modeling shows that there are significant temperature gradients in the system, 

more than were previously thought. Lensing of the laser by the droplet causes cold spots to 

arise at the periphery while the high scattering environment of the yolk leads do under 

warming below the yolk, and hot spots near the top of it. This leads us to believe that using 

a more uniform laser profile around the embryo would lead to lessen these thermal gradients. 

A more uniform SAR profile could then be achieved by using multiple lasers hitting the 

droplets from multiple sides. Figure 5.10 shows the result of laser warming of the embryo 
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via Monte Carlo to using Beer’s law, showing the necessity of more complicated simulations 

when difficult geometry and scattering are involved. 

 

Figure 5.10. (Top) The temperature profile in a droplet encased zebrafish embryo after a 1ms laser 

pulse. This assumed a Beer’s Law distribution of light in the system that only considered absorption. 

The laser profile was uniform across the embryo and is represented by the red arrows above. (Bottom) 

Monte Carlo simulation of the same embryo.130 
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5.3.5 Laser Warming in Coral Nanofragments 

The rapid deterioration of coral reefs around the world’s oceans is a direct consequence of 

rising temperatures and ocean acidity associated with anthropogenic climate change. Coral 

reefs also house an immense quantity of the ocean’s biodiversity, making them of utmost 

value to preserve as a hedge against ecological collapse. One such preservation method is to 

preserve millimeter scale coral nanofragments, which consist of a fleshy layer of coral tissue 

atop of skeleton of bone.  

In this study, Monte Carlo simulations for light transport within droplet 

encompassed coral nanofragments were carried out following previously outlined 

protocols.39,144 Additionally, diffusion theory was applied to CPA loading to estimate the 

concentration of CPA in the coral vs time during the CPA loading protocol. The coral 

nanofragment skeleton was modeled as a 50 µm thick disc of diameter 1.5 mm. A secondary 

skeletal structure sat atop this disk, which was modeled as ring of diameter 500 µm and 

height 200 µm. Tissue filled the ring cavity and sat atop the rest of the skeletal structure 

with a thickness of 50-100 µm. A 2 mm diameter hemispherical droplet of GNR loaded CPA 

encompassed the nanofragment. A cross section of the droplet and nanofragment can be seen 

in Figure 5.11. Thermophysical and optical properties of the coral skeleton were modeled 

after those of human bone while those for the coral tissue were modeled after PBS +2M 

glycerol loaded tissue. The Monte Carlo simulations were carried out for varying amounts 

of GNR in the tissue to model the worst, realistic, and best cases for warming corresponding 

to a GNR concentration of 0%, 50%, and 100% inside the tissue relative to the droplet GNR 

concentration. The Monte Carlo simulation results were then analyzed in COMSOL to 

generate the predicted temperature profiles in the droplet and nanofragment given the 

system parameters outlined in Table 5.3. 
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Table 5.3. Thermophysical and optical properties used in Monte Carlo light transport simulations 

and COMSOL Multiphysics FEM heat transfer analysis. 

PROPERTIES COMPARTMENT VALUE  REFERENCE 

Density Skeleton 2.94 g cm-3 145 

Thermal Conductivity 0.58 W m-1 K-1 146 

Specific Heat 1260 J kg-1 K-1 147 

𝜇𝜇𝑎𝑎 0.2 cm-1 137 

𝜇𝜇𝑠𝑠 20 cm-1 

Density Tissue + CPA 1.00 g cm2 water density 

Thermal Conductivity PBS+2M glycerol* 138 

Specific Heat PBS+2M glycerol ref* 

𝜇𝜇𝑡𝑡 0.5 cm-1 137 

𝜇𝜇𝑠𝑠 10 cm-1 

𝑔𝑔 0.94 

 

Simulation results for laser warming of the nanofragments are shown in Figure 5.11 

and 5.13. From these we see that even for a moderate GNR uptake, where only 50% of the 

GNRs enter the coral, we see relatively favorable warming profiles, with much of the coral 

rewarmed well above the critical warming rate for the CPA. The warming rates generated 

throughout the coral were 100 times faster than those generated from convective warming, 

indicating that this laser warming method allows for much lower concentrations of CPA 

than convective methods. Figure 5.12 shows the CPA loading and unloading protocol, and 

the concentration as a function of tissue depth assuming a diffusion coefficient of 6 × 1011 

m2/s. This indicates that the concentration of CPA in the outer 100 µm tissue layer is at 

least 50% of the loading CPA concentration. It is worth noting that as the concentration 

equilibrates in the tissue the CPA will continue to diffuse until cryopreservation locks the 
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concentration gradients into place. Additionally, the concentration is relatively past 100 µm 

in depth. Coupling this with the fact that warming rates in this region are also lower, 

indicates a layer of dead coral tissue along the bone-tissue laser in the calyx.  
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Figure 5.13. Warming rate profiles in the droplet for (a) laser warming (~30,000 K/s) and (b) 

convective warming in 300K water (~300 K/s) with (c) and (d) corresponding to the temperature at 

the top, middle, and bottom of the coral nanofragment for laser warming and convective warming 

respectively. 

5.4 Optimizing Laser Warming Through Mirrors and Multiple Lasers 

 

Figure 5.14 Laser warming on a spherical droplet with one laser (Right) and two lasers (Left) 
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Many systems that we may wish to cryopreserve and rewarm with laser warming will require 

droplets in excess of 4 mm in diameter, such as salmon embryos, or high numbers of 

specimens per droplets such as coral larvae and shrimp. Currently, this is not possible with 

the single beam laser warming system, due to optical constraints in the SAR profile in larger 

droplets. In this study, we model the results of using a beam splitter and mirrors to expand 

and manipulate the high-power laser pulse so that it hits the cryopreserved droplet from 

opposite sides, increasing the uniformity and volume of rewarmable material.  

 

Figure 5.15. Model of laser warming for perfectly opposite lasers, which should be avoided due to 

reentering of beams into the laser. The goal instead must be to offset the beams slightly so that we 

can maximize uniformity while avoiding beams reentering the laser. 

Several key design features need to be met for the system to function properly and 

safely. The peak power density of the laser in question is 0.2 MW/cm2, meaning we need 

sufficiently durable optics to handle beam manipulation. This limits us to high energy 

Nd:YAG plate beam splitters. A one-inch diameter 1MW/cm2 continuous wave beam splitter 

from Newport was selected, which gives us a buffer between the max laser fluence and 

damage threshold of the beam splitter. Note that increasing the beam diameter only makes 

damage less probable. One-inch diameter mirrors were selected from Newport with a damage 

threshold of 4.5 GW/cm2 continuous wave, substantially higher than the power many 
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commercial lasers can produce, including our own laser. We must be careful not to line up 

the beams directly across from one another so that they don’t reconverge back at the laser. 

To solve this we propose offsetting the beams by about 10 degrees and having the beams 

termionate on absorbing pads so that the collimated beam doesn’t continue indefinitly and 

cause damage or harm to someone or something. 

 

Figure 5.16. (Left) Schematic of lasers hitting the droplet as to no interest each other perfectly and 

reflect back into the laser. (Right) CAD model of laser mirror or beam splitter for horizontal-

horizontal reflection. 

Positioning of the mirrors and lining up all the optics will be accomplished by using a 

continuous wave lower power (10mW) 1064 nm laser so that we can adjust the optics without 

risking dangerous pulses from the high0power laser. Unfortunately, since the laser is invisible, 

the use of 1064 nm glowing cards will have to be used to determine where the beam is. We 

must also be very careful to keep the mirrors and beam splitter very clean, as dust or 

particulate may destroy the reflective coating if irradiated by the laser. This means regular 

proper cleaning per the manufacturer’s instructions.  

Another thing to consider is that the laser with the chamber open, and thus with 

the beam exposed, is a Class 4 laser. This is the highest class of laser, with the capability of 

burning the eyes or skin, leading to permanent damage from direct, diffuse, or indirect beam 

viewing. For this reason, as well as to keep the optics clean, an enclosure must be built 
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around the open beams to make this system safe. An enclosure for our laser system need not 

be complicated. We can contain the system inside one large box, with holes cur through for 

the laser to emerge from, this will not just prevent the laser from doing damage to the 

surrounds, but also keep the optics clean from dust and debris from the environment, as well 

as prevent bumping the optics out of alignment. Laser safety fabric panels from Thorlabs 

will be used to design optical enclosures. These panels are made of a rubber compound fabric, 

which can withstand high energy laser irradiation at 1064 nm. Sliding doors allow for 

realignment and periodic cleaning of the optics while retaining safety capability, with an 

opening at the baser end to connect to the laser chamber without the possibility for laser 

leaking out.  

 

Figure 5.17. CAD model of optical setup for beam splitting system. 

Laser 
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5.5 Conclusion 

In this chapter, we presented an overview of the theory of light transport in scattering and 

absorbing media applied to systems undergoing laser warming for cryopreservation purposes. 

We examined the SAR profiles and how uniformity relates to system geometry and local 

optical properties. We examined several examples of laser warming including hemispherical 

and spherical droplets, zebrafish embryos, coral nanofragments, and multi-laser systems. 

These light transport simulations helped to identify the optimal optical properties of gold 

nanoparticles for laser nanowarming to maximize the survivable, revivable sample. We 

noticed several important phenomena that had been leading to unfavorable warming results, 

especially lensing-related hot spot formation and under-warmed zones. Monte Carlo 

modeling has proven to be an invaluable tool for analyzing laser-biosystem interaction.  
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Chapter 6 

Conclusion 

 

The work presented sought to devise a theory that explained the links between nucleation, 

growth, phase geometry, and transformed fraction. Using a first principles approach, we 

linked these phenomena by deriving a nonlinear differential equation and an associated 

partial differential equation whose solutions allowed us to characterize a much broader class 

of phase change phenomena than previously possible. We determined the exact values of the 

Avrami parameters in isothermal systems in terms of the nucleation rate, growth rate, and 

fractal dimension of the phase inclusions. This allowed us to devise a process whereby the 

temperature dependent changes in nucleation and growth rate could be extracted from 

calorimetry curves, allowing for measurement of these properties from a relatively simple set 

of experiments. Using diffusion limited aggregation (DLA) as a model of crystallization, we 

simulated heat release curves and showed that the nucleation and growth rates could be 

recovered with high fidelity. We anticipate this method to join the standard methods for 

measuring these phenomena, likely replacing some of the more experimentally burdensome 

measurement methods. 
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 Through ultra-rapid laser calorimetry and direct quenching experiments we built up 

the collective knowledge of CPA behavior and crystallization tendency in the low 

concentration regime. We outlined an experimental protocol for future research in this area, 

or adjacent fields concerned with crystallization on rapid time scales. Additionally, we 

created and validated a model of CPA mixing and its effects on the critical cooling and 

warming rates of CPA mixtures, allowing for the determination of these values for mixtures 

of CPAs given knowledge about their constituent parts. This is an important advancement 

in cryobiology as it allows for rapid screening of CPA cocktails as well as aiding in the 

determination of CPA concentrations within loaded and unloaded cells.  

 In the final chapter, we presented significant advancements in the understanding 

and application of laser nanowarming through the use of Monte Carlo simulations of light 

transport throughout various cryopreserved systems. Using these simulations, alongside 

optimization techniques, we were able to determine the optimal optical properties (i.e., 

absorption coefficient, scattering coefficient, scattering anisotropy) that maximized 

temperature uniformity throughout the system given some constraints such as system 

geometry and refractive index. This allowed us to optimize the concentrations of absorbing 

and scattering nanoparticles during warming, which ultimately led to a more uniform, higher 

viability warming protocol. Additionally, these simulations allowed for the increase in 

throughput of laser warming by spreading out the SAR distribution within cryopreserved, 

laser warmed droplets, allowing for larger droplets (and thus more biological substance) to 

be warmed. Finally, the simulations presented identified a key failure mode in the laser 

warming of spherical droplets. We discovered that the high refractive index of the droplet 

was causing the droplet to act as a lens, focusing the laser light within the bottom portion 

of the droplet, causing rapid boiling, and reducing overall cell survival. This led to a change 

in the cryopreservation laser warming protocol, ultimately increasing cell survival. 

 To summarize, the theory, models, and experiments in this work have led to a 

significant improvement in our understanding of phase change and how it relates to 
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nucleation, growth, phase geometry, and transformed fraction, both during the 

cryopreservation process as well as in the broader sense. These advancements have led to 

(and will lead to) better measurement methods for nucleation rates and growth rates, a 

better understanding of calorimetric experiments, and more successful cryopreservation 

protocols. 
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